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Abstract

We propose a framework for identifying discrete behavioural types in experimental data.

We re-analyse data from six previous studies of public goods voluntary contributions games.

Using hierarchical clustering analysis, we construct a typology of behaviour based on a simi-

larity measure between strategies. We identify four types with distinct sterotypical behaviours,

which together account for about 90% of participants. Compared to previous approaches, our

method produces a classification in which different types are more clearly distinguished in

terms of strategic behaviour and the resulting economic implications.
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1 Introduction

The heterogeneity in decision-making behaviour observed in both field settings and their labo-
ratory counterparts is by turns a great joy and a great frustration to practitioners of behavioural
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economics. The richness in the variety of individual behaviour is evidence that people are indeed
different, and approach the same economic decision-making task in a variety of ways. However,
parsimonious, practical, and tractable economic models try to capture the commonalities in be-
haviour. Extracting those commonalities from the embarrassment of riches offered by the data is
an important challenge in the development of behavioural economics and game theory.

One approach is to group behaviour into a small number of distinct types, which we refer to as
a typology. In this paper we will focus on the case of public goods voluntary contribution games
(VCGs), for which Fischbacher et al. (2001) (FGF) have proposed one such typology, which groups
participants into four types. We choose this as an interesting setting because the P-experiment

protocol introduced by FGF, based on the linear VCG (Ledyard, 1997), has been employed as
a standard methodology by many studies conducted in various languages and locations (Kocher
et al., 2008). The analysis we conduct in this paper benefits from being able to re-use data from a
number of studies using a sufficiently similar protocol.

Although a number of papers have used variants of the FGF typology, the literature in experi-
mental economics has not employed a framework for defining or evaluating candidate typologies.
To address this, we introduce techniques from machine learning, in which exactly these types of
classification problems have been studied in depth. Ideally, a typology represents the data well
when the behaviours of two participants classified as the same type are similar, while the be-
haviours of two participants classified as different types are dissimilar. Machine learning provides
methods for evaluating the tradeoffs between within-type similarity and across-type dissimilarity,
and for constructing classifications which are optimal according to some criterion with respect to
these tradeoffs. Machine learning is commonly associated with datasets with large numbers of
observations, a problem experimental economists rarely face. However, it also studies the organi-
sation of multi-dimensional data. In the data we analyse, a participant’s type is determined based
on a 21-dimensional conditional contribution strategy elicited by the P-experiment protocol.

We use data from six previous studies using the P-experiment protocol to construct alternative
typologies using hierarchical cluster analysis (Kaufman and Rousseeuw, 1990). Our typologies
differ from FGF in the organisation of conditionally-cooperative participants. FGF propose to
categorise these participants primarily into conditional cooperators and non-monotonic “hump-
shaped” contributors. In contrast, cluster analysis identifies a group of strong conditional coopera-
tors, centred on participants who match group contributions on a one-for-one basis, and a group of
weak conditional cooperators, centred on those who match group contributions at approximately a
one-for-two rate.

Machine learning offers tools for visualising the properties of classifications of high-dimensional
data, such as our behavioural typologies. We use silhouette analysis (Rousseeuw, 1987) to assess
the cohesion of types using both approaches, and illustrate that, in the FGF typology, participants
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grouped in the same type exhibit behaviours with heterogeneous consequences in the VCG.
To be useful in understanding economic and strategic behaviour, the classifications in a ty-

pology should correlate with choices made by the same participants which are not used in the
classification process. In the P-experiment, participants make two types of choices: conditional
contributions, which are used in the classification, and unconditional contributions, which are not.
Across our dataset, FGF’s conditional cooperators and hump-shaped contributors do not differ in
their unconditional contributions. In contrast, participants classified as strong conditional cooper-
ators make generally higher unconditional contributions than those classified as weak conditional
cooperators. This supports the strong/weak conditional cooperator distinction as being a more in-
sightful description of the data, and that the underpinnings of the behaviour of weak conditional
cooperators may be distinct from those of strong conditional cooperators.

2 The game

The experiments used in our analysis involve one-shot interaction among participants in a VCG.
Participants are anonymously placed into groups with M members. Each participant receives G
tokens. She can allocate any number of tokens between 0 and G to a group account; tokens not
allocated to the group account are kept in her private account. We refer to the tokens allocated to
the group account as her contribution. The participant receives a point for each token kept in her
private account. Each token contributed to the group account yields P > 1 points, which are then
split equally among the group members. The parameters P and M are chosen so that the marginal
per-capita return (MPCR), P/M , is less than one. With these parameters, a participant who cares
only about maximising her own earnings has a strictly dominant strategy, which is to contribute
no tokens. In contrast, the strategy profile that maximises total earnings of the group is for each
member to contribute all G tokens.

In the P-experiment protocol, contributions are made in two stages. In Stage 1,M−1 members
make their contributions. The remaining member learns the average contribution of other members,
and then decides on her contribution. A participant does not know whether she will make her
contribution in Stage 1 or Stage 2, nor, if she is to be the Stage 2 contributor, what the average
contribution of the other members in Stage 1 will turn out to be. Decisions are therefore elicited
using the strategy method (Selten, 1967). Each participant i states what her contribution will be if
she is chosen to contribute in Stage 1; we write the unconditional contribution of participant i as ui.
She also states her contribution in Stage 2, for each possible realisation of the average contribution
of the other members of her group.1 We call these Stage 2 contributions the contribution strategy.
We write the contribution strategy of i as a vector ci. The component cig is the contribution of

1In the P-experiment protocol, the average contribution of other members is rounded to the nearest integer.
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participant i in Stage 2, if the other members contribute g tokens on average in Stage 1. The
contribution strategy is the basis for identifying behavioural types.

3 Typologies

Let N denote the set of participants, and C = {(i, ci)}i∈N be the set of all participants paired with
their contribution strategies. We define a typology T as a partition of C into equivalence classes.
Each equivalence class is interpreted as a distinct behavioural type. We write T (i) as the type of
participant i in typology T .

The existing state-of-the-art in the literature is the typology based on Fischbacher et al. (2001),
which we will call T F . T F partitions participants into one of four types.

• Free-riders (FR) always maximise individual earnings by keeping all tokens in the private
account, irrespective of the outcome of the first stage.

• Conditional cooperators (CC) increase their contributions to the group account based on
higher contributions by others in the first stage. A participant i is deemed a conditional
cooperator by testing whether the Spearman’s ρ correlation coefficient between the vector
[0, 1, . . . , G] of possible average contributions g and the participant’s strategy [ci0, c

i
1, . . . , c

i
G]

is significantly positive at significance level ≤ 0.001. We separately tabulate exact con-

ditional contributors (XC), who match exactly one-for-one, labeling other CC as inexact

conditional contributors (IC).

• Hump-shaped (HS) contributors are identified based on visual classification of contribution
strategies, in which ci0 and ciG are small, but cig is larger for some intermediate values 0 <

g < G; these strategies often have a triangular shape when plotted.

• Others (OT) is the residual type, comprised of participants whose contribution strategies do
not satisfy the criteria defining the other types.

The T F procedure is implemented by defining a stereotypical behaviour, combined with a formal
or informal criterion for deciding when a given contribution strategy is “similar enough” to the
stereotype. This similarity is a matter of judgment; alternative proposals for inclusion criteria have
been made in subsequent papers (e.g. Rustagi et al., 2010; Fischbacher et al., 2012). By adjusting
the classification criteria, one can make the residual “other” group smaller, but with the possibility
that a participant’s contribution strategy might satisfy the criteria for more than one other type. The
most recent refinement of the criteria by Thöni and Volk (2018) encounters this problem, requiring
a further criterion for assigning contribution strategies that satisfy their versions of both the CC
and HS criteria.
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The stereotypical behaviours in T F are chosen based on an ad-hoc combination of theoretical
models and inspection of the data. We are interested first in assessing the performance of this
classification in identifying coherent types.

Question 1. How does the four-type typology T F compare with other candidate groupings of the

data into four types?

One approach to systematically constructing alternate candidate typologies with a specified
number of types is hierarchical cluster analysis with Ward’s minimum variance method (Ward,
1963). Cluster analysis takes as a starting point a metric of (dis-)similarity between two objects.
We define the dissimilarity between the contribution strategies ci of participant i and cj of par-
ticipant j as the Manhattan distance d(ci, cj) =

∑G
g=0

∣∣cig − cjg∣∣. This is the expected difference
between the Stage 2 contributions of participants i and j, if the average contribution g of other
group members is chosen uniformly at random. Two contribution strategies separated by a smaller
distance are more similar.

For any fixed C = 1, 2, . . . , |C|, Ward’s method generates a candidate typology TH(C) which
partitions C into exactly C groups. The partition TH(C) is one that minimises the within-group
sum of squared errors among all possible partitions with exactly C groups. We propose the typol-
ogy TH(4) as an alternative to T F maintaining the same number of types.2

By maintaining the same number of types, two candidate typologies will differ only in which
four types they identify. Therefore, one can, for example, read off any differences in the stereo-
typical behaviours of the types between typologies. However, there is no a priori reason to have
exactly four types, and it may be that more (or fewer) types provide a more satisfactory description.

Question 2. Given the distribution of contribution strategies in the data, what is an appropriate

number of types to include in a typology?

Ward’s method proposes a partition for eachC, which has the property that the partition TH(C)

can be computed efficiently given TH(C + 1) by combining together the two “most similar” ele-
ments of TH(C +1). The tradeoff in having more (resp., fewer) types is that the variability within
a type will be less (resp., more). For example, there is a trivial, but unsatisfying, clustering which
assigns each contribution strategy to its own distinct type. The resulting types are by definition
perfectly coherent, having zero variability, but fail to capture that there may be many strategies
which differ, for example, by only one token in one contingency.

2There are other approaches to clustering. In the Online Appendix, we report clusters based on k-means, another
popular algorithm. Our key results on the number and character of clusters are unchanged. We use Ward’s method in
the article as the computational problem posed by the minimum variance method can be solved efficiently. In contrast,
the k-means problem is NP-hard; no polynomial-time algorithm for solving it is known, and an exact solution is
therefore infeasible on datasets of interesting sizes. Methods to approximate solutions to the k-means problem are
dependent on the initial conditions set for the computation.
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There are several approaches in the literature to analysing this tradeoff. Recall that solutions
TH(C) and TH(C + 1) differ in that one cluster in T (C) is divided into two in TH(C + 1). There
are exactly two members t1, t2 ∈ TH(C + 1), such that t1 6= t2 and t1 ∪ t2 ∈ TH(C). Let W (t)

denote the sum of squared errors in cluster t. Duda and Hart (1973) define the index

Je(2)/Je(1) =
W (t1) +W (t2)

W (t1 ∪ t2)
. (1)

Because Ward’s method minimises the within-cluster sum of squared errors, Je(2)/Je(1) ≤ 1.
This is considered in conjunction with the value of a pseudo-T 2 statistic,

PT 2 =

{
1

Je(2)/Je(1)
− 1

}
× {|t1|+ |t2| − 2} =

{
W (t1 ∪ t2)

W (t1) +W (t2)
− 1

}
× {|t1|+ |t2| − 2} ,

(2)
where |t| is the number of members of cluster t. Duda and Hart recommend preferring clusterings
with relatively high Je(2)/Je(1) and relatively low PT 2 values.

The criteria of Duda and Hart refer specifically to the output of hierarchical clustering. Another
measurement of type coherence, which can be applied to any typology T , is silhouette analysis
(Rousseeuw, 1987). For any participant i, the average distance from i’s contribution strategy to the
contribution strategies of other participants of a given type t ∈ T is

a(i, t) =

∑
j 6=i:T (j)=t d(c

i, cj)∑
j 6=i:T (j)=t 1

. (3)

For i, the distance to the “closest” type which is different from the type to which i is assigned is

b(i) = min
t6=T (i)

a(i, t). (4)

The participant’s silhouette index is then defined as

s(i) =
b(i)− a(i, T (i))

max{b(i), a(i, T (i))}
. (5)

The silhouette index ranges from -1 to +1. Values greater than zero indicate that the members of
i’s type are closer, on average, than the members of the next closest type.

In the trivial typology that assigns each distinct strategy to its own cluster, the silhouette index
is +1 for all strategies. Taken to the other extreme, fixing a small number C of groups and assign-
ing strategies at random to the groups leads to silhouette indices distributed with a median near
zero and small absolute values. Although hierarchical clustering does not construct its solution
for C groups at random, but by combining two similar groups from its solution for C + 1 groups,

6



any grouping of heterogeneous strategies under one type necessarily decreases the silhouette in-
dex. Kaufman and Rousseeuw (1990) suggest selecting an appropriate number of clusters C by
analysing the levels and distributions of silhouette indices as an indicator of the trade-off between
within-cluster similarity and across-cluster dissimilarity.

4 Results

We re-analyse the data from six VCG experiments using the P-experiment protocol, published
between 2001 and 2016. We surveyed the literature for studies which met these criteria:

• P-experiment protocol published in a peer-reviewed journal as of September 2016;

• Participants played the VCG in groups of 4;

• Participants were endowed with 20 tokens;

• MPCR equal to 0.4 points per token.

We identified a total of nine studies satisfying these criteria; the authors of six of these kindly pro-
vided us with their datasets.3 These six experiments were conducted in four different countries and
four different languages, with a total of N = 551 participants: Fischbacher et al. (2001) (Switzer-
land, N = 44); Herrmann and Thöni (2009) (Russia, N = 160); Fischbacher and Gächter (2010)
(Switzerland, N = 140); Fischbacher et al. (2012) (United Kingdom, N = 136); Cartwright and
Lovett (2014) (United Kingdom, N = 31); and Préget et al. (2016) (France, N = 40).

There are 397 distinct contribution strategies chosen by the 551 participants. Of these, 86 are
perfect free riders, with cg = 0 for all g; a further 44 are perfect one-to-one matchers, with cg = g

for all g. There are 5 who unconditionally contribute all their tokens, cg = 20 for all g. Overall,
only 16 contribution strategies are chosen by more than one participant, leaving 381 participants
whose contribution strategy is unique within the dataset. The objective of a typology is to offer an
organisation of this heterogeneous data.

4.1 Definition of the typology

Result 1. TH(4) creates a more cohesive grouping than the four-type typology T F .

We begin by visualising, using heatmaps, the patterns of behaviour associated with the different
types in TH(4) compared to those in TH . The heatmap for type t is produced from the contribu-
tion strategies of all participants assigned to t by constructing the set {(k, cik)}T (i)=t,k=0,...,20. The

3In the case of the other 3 papers, we either received no response, or the authors were not able to find the data.
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frequencies of the ordered pairs in this set are used to generate the heatmaps, shown in Figure 1;
darker shades correspond to higher frequencies. For each type we plot the medoid of the type using
unfilled diamonds. The medoid is defined as the contribution strategy which has the smallest aver-
age distance from other strategies in the type, and is one method of expressing a “typical” member
of the type. These medoids motivate our naming of the four types:4

• Own-maximisers (OWN, 25.8% of participants), with a modal allocation of zero in all con-
tingencies;

• Strong conditional cooperators (SCC, 38.8%), who match average contributions exactly or
approximately one-for-one;

• Weak conditional cooperators (WCC, 18.9%), who have generally increasing contribution
strategies, but at a rate of less than one-for-one;

• Various (VAR, 16.5%), which as the residual type includes various behaviours, such as those
who contribute most or all tokens irrespective of what others do, with an average contribution
of about one-half the endowment in all contingencies.

Each participant has a type generated by TH(4) and one generated by T F .5 Table 1 compares
the typologies by giving the shares of participants classified in each possible pair of types (th, tf ) ∈
TH(4)×T F . The key difference between the two typologies is in their categorisation of the modes
of conditional cooperation. TH(4) produces types which capture strong versus weak versions
of conditional cooperation, with the strong version anchored by the 44 participants who match
exactly one-for-one (XC), while the weak version clusters around a medoid in which contributions
are matched roughly one-for-two. Conversely, the conditional cooperators in T F appear in all four
types in TH(4). Hump-shaped contributors split primarily between own-maximisers and weak
conditional cooperators.

These observations suggest that conditional cooperators and hump-shaped contributors under
T F are not cohesive types, insofar as they group within the same type behaviours with dissimilar
contribution consequences. Figure 2 plots the silhouette indices of the members of each type. The
plot is generated by sorting members of each type in decreasing order by their silhouette index
s(i), and plotting those sorted s(i) values against the participant’s sorted rank. In T F , a majority of
participants identified as hump-shaped contributors (25 of 39) have strategies which are on average
closer to one of the other three types’ strategies, than to other hump-shaped contributors. Among

4We carry out the clustering using the builtin clustering facilities in STATA, and the silhouette indices using the
STATA package silhouette. There are packages for hierarchical clustering in most common data-analysis lan-
guages, including R, Python, and Julia.

5The typology TF is generated by the procedure proposed in Fischbacher et al. (2001) as given above, and therefore
differs slightly from the percentages quoted in the corresponding papers where the authors used a variant approach.

8



Typology T F Typology TH(4)
0

5
10

15
20

 S
ta

ge
 2

 c
on

tr
ib

ut
io

n

0 5 10 15 20
 Average Stage 1 contribution of other group members

 Free-riders

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Own-maximisers

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Conditional cooperators

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Strong conditional cooperators

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Hump-shaped

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Weak conditional cooperators

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Others

0
5

10
15

20
St

ag
e 

2 
co

nt
ri

bu
tio

n

0 5 10 15 20
Average Stage 1 contribution of other group members

Various

Figure 1: Heatmaps of contribution strategies of the participants classified in each type.
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Classification In typology T F

CC

FR XC IC HS OT Total %

OWN 87 0 24 18 13 142 25.8%
SCC 0 44 159 6 5 214 38.8%

In typology TH(4) WCC 0 0 77 13 14 104 18.9%
VAR 0 0 24 2 65 91 16.5%
Total 87 44 284 39 97 551

% 15.8% 8.0% 51.5% 7.3% 17.4%

Table 1: Comparison of the T F and TH(4) typologies. Cells report the number of participants
overall to be classified in the row type in TH(4) and the column type in T F . The last column/row
report overall percentages.

those identified as others, 65 of 97 have strategies closer on average to one of the other three types
than to the rest of those considered others. Many conditional cooperators likewise have negative
indices.

We compare this with the silhouette plot for the types generated by typology TH .6 All own-
maximisers have positive indices, as do most strong conditional cooperators (197 of 214). The
distinction between strong conditional cooperators and weak conditional cooperators eliminates
the large negative indices observed among T F ’s conditional cooperators. The heterogeneity of the
remaining participants classified as various is evident in the range of indices among the partici-
pants; although a majority (54 of 91) have negative indices, the magnitudes are much smaller than
those measured for the others type in T F . Overall, 66.6% of the participants have a higher index
in TH(4) than T F . The average index increases from 0.17 in T F to 0.40 in TH(4), and the median
from 0.23 to 0.43. The medians are significantly different (p < 0.001 using sign-rank test).

Result 2. The typology TH(5) identifies a unconditional high contributors as a distinct type.

We address Question 2 with a two-stage procedure. In the first stage, we select a range of
possible candidate typologies, using the Duda-Hart selection criterion. The Duda-Hart Je(2)/Je(1)
and PT 2 exclude typologies with fewer four clusters; solutions with four or more clusters all

6The silhouette index measures the average distance from a strategy to members of different types, while the
T̃H(C) computed by Ward’s method minimises the sum of within-cluster sum of squared errors. Therefore,
negative silhouette indices can result from clustering. Consider the dataset consisting of seven elements in R,
(0, 8, 15, 20, 20, 20, 20). The two-cluster solution via Ward’s method places the four values of 20 in one cluster,
and 0, 8, and 15 in the other. 15 has a negative silhouette index (−0.318). However, 15 is not clustered with the
four instances of 20 because doing so would increase the variance of that cluster by more than it would decrease the
variance of the other cluster. This example is robust to perturbing the four values of 20 by small amounts to be distinct.
The possibility of negative silhouette indices therefore means silhouette analysis provides a useful cross-check on the
clustering output.
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Figure 2: Silhouette plots of type clusters. Each participant is assigned an index in [−1, 1], com-
paring the average distance between the participant’s strategy and the strategies of participants of
the same type, against the average distance to participants’ strategies who are classified in the next
closest type.
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Figure 3: Heatmaps of clusters combined in TH(5) to yield TH(4). Unconditional high contribu-
tors are considered a distinct type in TH(5).

exhibit high Je(2)/Je(1) and low PT 2 values. Among these candidate solutions, we calculate in
the second stage the mean silhouette index for each. The choice of 5 clusters provides the highest
index (0.42), compared to 0.40 for TH(4) and 0.37 for TH(6).7 We therefore select the five-type
typology TH(5) as the most appropriate. This typology differs from TH(4) by identifying as a
distinct type Unconditional high contributors, comprising 4.7% of subjects who contribute most or
all tokens irrespective of what others do.8 Figure 3 provides the heatmaps after the disaggregation
of unconditional high contributors from the remaining contributors classed as Various. Among the
26 participants classified as unconditional high contributors, 25 have a positive silhouette index,
with an average of 0.47 across the cluster.
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Figure 4: Boxplots of Stage 1 contributions by type, for each typology. Boxes indicate the in-
terquartile range of the distribution; unfilled diamonds indicate medians.

4.2 Out-of-sample prediction of unconditional contributions

Experiments using the P-experiment protocol all generate Stage 1 unconditional contributions ui

for each participant i. These are not used in constructing T F or TH(5). There is no previous
evidence that the T F typology is useful in explaining variations in Stage 1 contributions.

Result 3. In contrast to T F , different types in TH(5) generate distinct patterns of Stage 1 contri-

butions.

Figure 4 shows the distributions of Stage 1 contributions, grouped by type assignment based
on Stage 2 contribution strategies. In the T F typology, free-riders allocate on average 2.15 tokens
(with a mode at zero), while the other three types have dispersed distributions of Stage 1 contribu-
tions with means and medians near half of the endowment of 20 tokens. The Stage 1 contribution
of free-riders is different from other types (all Bonferroni multiple-comparisons tests p < 0.001),
while there is no significant difference in Stage 1 allocations among the remaining types.

Using TH(5), the ranking and magnitude of average allocations is consistent with the classi-
fication based on Stage 2 strategies. Own-maximisers contribute the least (3.20 tokens), followed
by weak conditional cooperators (8.23), strong conditional cooperators (10.04), various (11.42)
and unconditional high (13.96). Stage 1 contributions are significantly different across the five
types. The mean allocation of own-maximisers is significantly lower than all other clusters (one-
way analysis of variance with multiple comparisons and Bonferroni correction, all p ≤ 0.001).
There is a significant difference in contributions between weak conditional cooperators and strong
conditional cooperators (p = 0.088, Bonferroni corrected), but no significant differences between

7Details for each candidate solution are presented in the Online Appendix.
8We break out the (th, tf ) ∈ TH(5)× TF comparison for each study in the Online Appendix, using frequencies.
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the strong conditional cooperators and various, nor between the various and unconditional high (all
other comparisons p < 0.011, Bonferroni corrected).9

This analysis of Stage 1 contributions is convenient because all P-experiment protocols gener-
ate this data, and so are included in all the studies we survey. This can be interpreted as an internal
validity check on the protocol. If the types constructed from Stage 2 strategies are meaningful,
at minimum they should correlate with Stage 1 decisions made in the same play of the game. A
theory of types would be even more robustly founded if types predicted playing other iterations of
the game, or in other games. In a companion paper, Fallucchi et al. (2018), we use the five-type
classification and confirm that strong and weak conditional cooperators react differently to changes
in the financial incentives across non-linear versions of the VCG. This provides additional support
for the strong-weak conditional cooperation distinction.

4.3 A deterministic version of the clustering-based typology

The qualitative structure of the clusters reported in TH(4) and TH(5) is robust to using subsamples
of the dataset: the four-cluster and five-cluster solutions centre consistently on the medoids plotted
in Figure 1. However, with 397 distinct contribution strategies in the dataset, most participants do
not exactly match one of the stereotypical strategies. Classification therefore inherently requires
some measure of what it means for a contribution strategy to be “similar enough” to a stereotype.
The classifications we report as T F are based on the original Fischbacher et al. (2001) criteria. As
noted, subsequent authors have proposed modifications to the inclusion criteria. The effect of these
variations on what it means to be “similar enough” is to change which contribution strategies are
included at the periphery of the types, while not significantly affecting the type’s medoid.

Clustering differs in its approach to defining inclusion criteria. The criteria developed by clus-
tering are determined by the data; that is, what constitutes “similar enough” is defined relative to
the distribution of the data. This endogenous determination is implemented in Ward’s method by
minimising the sum of squared errors within types. Nevertheless, for some applications, it is useful
to have a deterministic rule for determining a priori the type membership for any given contribution
strategy.

The key insight from the clustering approach is the identification of a set of candidates for the
type-defining stereotypical behaviours, which are distinct from the set used in T F . In the spirit
of the approach used by T F , clustering suggests, for a typology with five types, this stepwise
classification scheme:

Step 1 SCC: all ci “similar enough” to the stereotype strategy of matching exactly one-for-one.

9The substance of the results is unchanged if TH(4), combining UCH and VAR, is used instead.
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Step 2 OWN: all ci “similar enough” to the stereotype strategy of always contributing zero.

Step 3 UCH: all ci “similar enough” to the stereotype strategy of always contributing all tokens.

Step 4 WCC: all ci not yet classified who contribute less than the exact one-for-one matching
amount in a “substantial majority” of contingencies g.

Step 5 All remaining strategies are in VAR.

To construct a four-type version, omit Step 3.
Exactly as with T F -like schemes, this method requires the user to fill in what it means for a

contribution strategy to be “similar enough” to one of the stereotypes. In the Online Appendix, we
use the results of the clusters generated on our dataset to suggest parameters for distance bounds
to determine inclusion in these types.

Our dataset is drawn from experiments conducted in traditional laboratory settings. Even
within these settings, heterogeneity in contribution strategies is substantial. In studies conducted in
the field (e.g. Rustagi et al., 2010) or in natural experiments targeting broader, more representative
samples of participants (e.g. Slonim et al., 2013), heterogeneity in responses often increases. Clus-
ter analysis offers a framework for measuring and evaluating whether a given typology continues
to be a satisfactory organisation of the data when an experiment is taken to these new environ-
ments. In these situations, the endogenous determination of “similar enough” as a function of the
data may be seen as a strength, as it provides a way of distinguishing whether coherent-looking
types remain even in the face of potentially greater heterogeneity.

5 Discussion

We introduce hierarchical cluster analysis as a useful tool for evaluating whether a model with a
discrete number of behavioural types is an appropriate description of experimental data. In VCGs
using the P-experiment protocol, we confirm that own-maximisers and strong conditional coopera-
tors (matching the contributions of others one-to-one) emerge as the cores of clearly-distinguished
behavioural groups. Importantly, strong and weak conditional cooperation are identified as distinct
modes of behaviour. This provides an independent justification for a similar distinction among
types of conditional cooperator which has been proposed in several previous studies, including
Chaudhuri and Paichayontvijit (2006), Rustagi et al. (2010), Gächter et al. (2012) and Cheung
(2014).

The toolkit of cluster analysis provides methods to evaluate and select from competing potential
solutions. Therefore one can evaluate, for example, the candidate TH(4) against TH(5), or even
whether any discrete clustering at all is a satisfactory description of the data. Silhouette plots like
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those in Figure 2 help to provide a measure of the coherence of types according to some metric.
In the case of these plots, we are comparing types generated by clustering on the same distance
metric, versus those generated by FGF, which uses a different notion of similarity. They therefore
illustrate the differences in character of the type classifications produced by the two approaches.
This does not reduce to a “horse race” between the approaches; different descriptions of data may
prove to be useful for different purposes. Indeed a theme in the application of machine learning
techniques is the interaction between provable guarantees (e.g. that the solutions TH(C) minimise
the sum of within-cluster sum of squared errors) and heuristic judgments (e.g. using silhouette
indices and the criteria of Duda and Hart to recommend a preferred number of clusters).

Machine learning emphasises the importance of cross-validation in evaluating clustering. In
this paper, we do this by an out-of-sample comparison of the levels of unconditional contribu-
tions by the same participants in the same experiment, and find that the cluster-based typology
distinguishes these better than the FGF approach. Out-of-sample validation can also be done by
applying clustering techniques to two or more sets of decisions made by the same participants.
Poncela-Casasnovas et al. (2016) cluster subjects into four different types based on their behaviour
in a set of dyadic games. Results show that subjects are consistent across games and that differ-
ences exist between young and adults, and between male and female participants. Similarly, in our
companion paper (Fallucchi et al., 2018), we apply clustering techniques to contributions strate-
gies of the same participants in linear and non-linear VCGs, as a measure of the consistency of
behaviour and portability of types.

Interesting experimental designs often generate unanticipated results, which call for the devel-
opment of improved or new models. Unsupervised classification methods such as clustering are
one option for a structured approach to informing that process. Parametric mixture models (Bard-
sley and Moffatt, 2007) likewise organise experimental data through the lens of multiple discrete
types. However, to implement a mixture model, one must first specify the types. The medoids aris-
ing from cluster analysis can provide a first glimpse for the types to consider in a mixture model
analysis.10
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