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Abstract

This study aimed to develop a rapid, simple and inexpensive screening method for selecting 

the best polymeric candidates possessing high active pharmaceutical ingredient (API) 

miscibility during the early stages of formulation development of solid dispersion based 

pharmaceutical products. A new thermal imaging based method, thermal analysis by 

structural characterization (TASC), was used as a thermoptometeric tool in conjunction with 

data analysis software to detect the melting point depression and post-melting dissolution of 

felodipine particles screened over thin spin-coated films of ten polymers commonly used in 

the pharmaceutical field. On the polymeric substrates the drug showed different degrees of 

melting point reduction, reflecting their different levels of polymer-drug miscibility. Using 

TASC to detect melting point depression is significantly (20-40 times) faster than the 

conventional DSC method without loss of the sensitivity of detection. The quantity of the 

material required for the screening is less than 1/1000th of the material used in conventional 

DSC tests which significantly reduce the material wastage. Isothermal TASC tests and IR 

imaging confirmed the occurrence of thermal dissolution of the drug in the polymer for more 

miscible pairs. The real-time stability tests validate the accuracy of the polymer-drug 

miscibility screening results. These results demonstrate TASC as a promising screening tool 

for rapidly selecting the polymeric excipients for pharmaceutical formulations development. 

Keywords: drug-polymer miscibility, melting point depression, thermal analysis by 

structural characterisation, solid dispersions, preformulation screening
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Introduction 

Polymers are widely used in pharmaceutical solid dosage forms to form solid dispersions 

with the active pharmaceutical ingredients (APIs) to improve the in vivo dissolution and 

absorption of the drug1-4. In addition to being chemically compatible with the drug, the 

polymer should have good miscibility with the drug in the solid state to ensure good long-

term physical stability over the shelf-life of the product. Accurate selection of the most 

suitable polymeric excipients in the preformulation stage can significantly help to reduce time 

and material waste and thus reduce the cost of developing new pharmaceutical solid 

dispersion based products. 

There is a range of theoretical and experimental approaches used in practice for screening 

drug-polymer miscibility in the early stage of formulation development5-8. Theoretical 

miscibility prediction, for example using the solubility parameter is based on calculations 

which do not necessarily reflect the actual interaction between drugs and polymers5, 7, 9. 

Experimental confirmation is still needed and the results often deviate from the prediction. 

The most widely used miscibility prediction method is based on the combination of 

experimental testing and theoretical calculations. The method uses the DSC to measure the 

melting point depression of the crystalline drug due to the presence of the polymer reducing 

the chemical potential of the drug at melting5, 7, 10, 11. The reduction of the chemical potential 

is an indicator of the drug-polymer miscibility. The data can be used to calculate the Flory–

Huggins interaction parameter and construct the drug-polymer miscibility phase diagram6, 12-

16. Although this method has proven to be more reliable than the solubility parameter 

calculation, there are two significant drawbacks of this approach. Firstly, it is extremely time 

consuming. Melting point depression is an excellent direct indicator for the miscibility 

between the drug and polymer, however the detection of the melting point depression is a 
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highly kinetic process and heavily affected by the heating rate and highly sensitive to the 

homogeneity of the mixing between the drug and the polymer and drug to polymer ratio in 

the mixture (high drug to polymer ratios, more than 75% w/w, are often required)12-14. The 

DSC measurements often need to be carried out using ultra slow heating rate (0.5-1 °C/min) 

to ensure the observation of the depression of drug melting. Secondly, when the Flory–

Huggins interaction parameters are calculated, the low temperature data (below the melting 

point of the drug) are extrapolated instead of experimentally measured which again creates 

ambiguity of the methodology and accuracy of the results17. Other experimental methods 

based on X-ray diffraction, infrared, Raman and terahertz spectroscopy and solid-state 

nuclear magnetic resonance have also been reported18-22. For these methods, the solid 

dispersions formulations of the drug in polymer were analysed instead of the physical 

mixtures used in the melting point depression method, which makes them highly time-

consuming and relying on highly specific instrumentation and expertise. While they can 

generate a significant amount of in-depth knowledge about molecular level interactions 

between the drug and the polymer, they are not suitable as a routine rapid screening method18-

22. 

This study demonstrates the development of a new rapid drug-polymer miscibility screening 

method based on measuring the melting point depression process. Thermal analysis by 

structural characterisation (TASC) is a recently developed thermal imaging tool that can be 

used to study thermal behaviour including melting and thermal dissolution23, 24. This method 

detects any changes in the physical features of the regions of interests (ROIs). The detailed 

working principle of the TASC algorithm is described in our previous study23, 24. In brief, the 

algorithm allows the quantification of changes in successive micrographs of samples when 

they are under thermal treatment (which could be heating, cooling or isothermal). Within a 
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5

temperature programme scan, each pixel of the selected ROI region is subtracted from its 

precursor and the sum of the modulus of differences is calculated. Once the scan is 

completed, the minimum value for the sum of all differences obtained during the course of 

the scan is returned as the TASC values which are normalised with respect to the image when 

it shows no further change. For the application introduced in this study, the weight of the 

drug sample required is approximately 3-5 µg in contrast to mg amount of the drug needed 

when DSC based methods are used. This significantly increases the sensitivity of detection of 

this new method in comparison to commonly used method such as DSC. In addition, previous 

studies showed that the thermal transition temperatures detected by TASC are much less 

sensitive to heating rate than DSC 23, 24. With high sensitivity and a weak dependence of the 

detected thermal transition on heating rate, this study aimed to develop TASC into a rapid 

and inexpensive screening method for drug-polymer miscibility. In this study, a 20 °C/min 

heating rate was used, which improved the testing speed at least 20 times in comparison to 

the usual DSC measurements of melting point depression. As this method is a microscopic 

method, instead of using a bulk physical mixture of drug and polymer, the analysis only 

requires the observation of a single drug particle’s melting behaviour in the presence of 

polymer. Polymer coated microscope slides were used as the solid substrate to sprinkle the 

drug particles on (although the data collection only requires a single drug particle). Figure 1 

illustrates the procedure for a test on a single drug/polymer pair. In principle this process can 

be easily scaled up to screening multiple combinations of drug and polymer. To establish the 

foundation of this screening method, the analytical methodology was tested using a model 

drug, felodipine, and ten of the most commonly used pharmaceutical polymers as follows 

Soluplus, hypromellose acetate succinate (HPMCAS), polyvinylpyrrolidone (PVP), Eudragit 

E PO, polyvinylpyrrolidone vinyl acetate (PVPVA), hydroxyl propyl cellulose (HPC), 

polyacrylic acid (PAA), sodium carboxymethylcellulose (Na CMC), polyvinyl alcohol (PVA) 
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and hydroxyethyl cellulose (HEC). As the miscibilities of felodipine with many polymers are 

well documented in the literature5, 12, 25, it is an excellent model drug to allow us to compare 

the TASC results with the existing literature data. 

Experimental Section

Materials

The drug used in this study, felodipine form I, was purchased from Molekula (Dorest, UK) 

and confirmed as form I by PXRD, DSC and IR. Polyvinyl pyrrolidone vinyl acetate with a 

commercial name known as Plasdone™ S630 (PVPVA), hydroxyl propyl cellulose, 

commercially known as Klucel™ EF PHARM (HPC), hydroxypropyl methyl cellulose acetyl 

succinate, commercially known as AquaSolve™ (HPMCAS-MG grade), sodium carboxy 

methyl cellulose, commercially know as Aqualon™ CMC 7L2P (Na CMC), polyvinyl 

pyrrolidone, commercially known as Plasdone™ K29-32 (PVP) and hydroxyethyl cellulose, 

commercially known as Natrosol™ 250 L PHARM (HEC) were kindly supplied by Ashland 

Industries Europe GmbH (Schaffhausen, Switzerland). Polyacrylic acid (PAA) was ordered 

from Sigma-Aldrich (St. Louis, US). Eudragit® E PO (poly(butyl methacrylate-co-(2-

dimethylaminoethyl) methacrylate-comethyl methacrylate)) was kindly provided by Evonik 

Industries (Darmstadt, Germany). Polyvinyl alcohol (PVA) with 88% hydrolysation was 

purchased from Acros Organics (New Jersey, USA). Soluplus® (polyvinyl caprolactam-

polyvinyl acetate-polyethylene glycol graft copolymer) was kindly supplied from BASF 

(Ludwigshafen, Germany). NaCl (≥ 99.0 %) was purchased from Thermo Fisher Scientific 

(Geel, Belgium). The solvents used for the polymer films preparation were dichloromethane 

anhydrous (≥99.8%) (DCM) and absolute ethanol. Both were purchased from Sigma-Aldrich 

(Gillingham, Dorset, UK).
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Preparation of polymer coated glass substrates by spin coating

Spin coated thin films of different polymers were prepared using Spincoat G3P-8 (Specialty 

Coating Systems, Indianapolis, US). Various polymer solutions were prepared and the details 

can be found in Supplementary Information Table S1. In all cases, 2-5 drops of the prepared 

solutions were dispensed to the top of a glass coverslip with a glass pipette. This was 

followed by continuous spinning using 2000 rpm for 120 seconds to evaporate the solvent 

and form a uniform polymeric thin film on the coverslip. The volume of the solution 

dispensed was judged by through full coverage of the film on the surface of the slide, thus it 

varied with the viscosity and surface tension of each solution. The thickness of the pure 

polymeric films was measured after the preparation as described in Table S1 using electronic 

thickness gauge model ET-3 (West Lafayette, US) and expressed as the average ± SD (n=5). 

Thermal Analysis by Structural Characterisation (TASC)

TASC characterisation was performed using a TASC system composed of a Linkam 

MDSG600 heat-cool automated temperature controlling stage attached to a Linkam imaging 

station equipped with reflective LED light source and a 10X magnification lens (Linkam 

Scientific Instruments Ltd, Surry, UK). Felodipine particles used for analysis were selected 

within the range of 90-100 μm by passing the felodipine powder through 100 and 90 μm 

sieves for 5 minutes. Particles passing through 100- μm sieve and retained by 90- μm sieve 

were collected and used for analysis. The particles were sprinkled on the substrate. High 

packing density that causes particle overlapping should be avoided to ensure the quality of 

the data acquisition. Characterisation was conducted using two experimental methodologies: 

heating only (30 - 180 ˚C) and heating-isothermal (heating to above the melting and keeping 

isothermal for 15 minutes). Heating rates of 20 ˚C/min were used for the TASC screening. In 

addition, analysis was also performed on solid dispersions loaded with 10-100% w/w 
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8

felodipine in Soluplus with 10% w/w increments between consecutive loadings as a 

representative polymer/drug system to investigate the use of TASC to determine the 

maximum solubility of a drug in polymer.

For all TASC experiments, stacks of images of the sample were collected simultaneously 

with a rate of 1 frame/ºC using a black background to restrict the analysis to the crystalline 

felodipine form I particles and reduce the noise to signal ratio. These acquired images were 

analyzed using TASC software and the changes in the appearance of felodipine particles 

during the different regimes were converted into normalized curves against temperature or 

time24. Statistical analysis using one-way ANOVA was performed to understand the 

significance of the differences between the signals and the melting onsets of the samples. 

Statistical significance was accepted at a p value ≤ 0.05.   

In order to investigate the best sampling method for the data analysis, ROI’s were chosen 

either from the particle edge or the large central regions of the particles. It was found that 

large ROI’s covering the central region gave more reproducible results. Therefore, all 

analyses were performed on five felodipine particles for each set of data using large ROIs.  

Thermogravimetric Analysis (TGA)

TGA Q5000 (TA Instruments, Newcastle, USA) was used to study the thermal stability of 

felodipine and the polymers used in this work before the design of the TASC temperature 

programmes to eliminate any possibility of degradation during the screening process. A 

heating rate of 20 ºC/min for the range 25-550 ºC was used for estimating the degradation 

onset of the compounds. Two replicates were tested and Universal Analysis software was 

used to analyze the acquired data. 
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Differential Scanning Calorimetry (DSC) 

DSC was used to identify the thermal properties such as the melting and the glass transition 

temperatures of different raw materials. A Q-2000 MTDSC (TA Instruments, Newcastle, 

USA) equipped with a RC 90 cooling unit was utilized for the characterization of these 

materials. The instrument was calibrated prior to the sample characterization. At least three 

replicates of 2-3 mg of each sample were scanned at 20 ºC/min heating rate using standard 

aluminum TA crimped pans (TA Instruments, Newcastle, USA). The use of 20 ºC/min is to 

match the heating rate used in the corresponding TASC experiments for each sample for the 

purpose of comparison. Universal Analysis software was used to analyze the collected data. 

IR imaging

In order to understand the miscibility and diffusivity of felodipine in the polymeric spin 

coated films and the possibility of drug-polymer interaction, drug particles on uncoated glass 

coverslips as a control, or spin coated polymer films (Eudragit E PO, PVPVA, Soluplus or 

HEC) representing miscible, partially miscible or immiscible binary systems respectively 

were heated at 20 ºC/min from 30-140 ºC and then kept isothermal slightly above the melting 

point of the drug for 15 minutes to allow for the maximum possible interaction between 

felodipine and the polymeric films. The samples were then analysed using a Nicolet iN10MX 

infrared microscope (Thermo Fisher Scientific, Madison, WI, US) with 25 μm spatial 

resolution in transmission mode using the coverslip glass as a reference. With standard 

0.17mm glass coverslips the useable spectral range was from 4000 to 1200 cm-1. IR maps 

were acquired with 64 scans at 8 cm-1 spectral resolution, and analysed using the Omnic Picta 

software (Thermo Fisher)
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Stability studies for validating the miscibility screening results

Solid dispersions of felodipine in Soluplus (as a representative of miscible) and PAA (as a 

representative of immiscible) binary blends with high and low drug loading were prepared 

using spin coating method. The samples were stored at room temperature and 75% relative 

humidity (RH) for 1 month. At different time intervals (after 1 day, 1 week, 2 weeks and 1 

month), the samples were examined using a polarized light microscope (Leica DM LS2; 

Germany) for the presence of felodipine crystals in the solid dispersions in order to validate 

the miscibility of drug and polymer obtained by TASC screening method. 

Correlation data analysis

The data collected from TASC analysis for pure felodipine particles with or without the 

presence of the different polymeric substrates were analysed using Microsoft Excel 

correlation data analysis.  

Results and discussion

Standardization of the analysis of melting point depression using TASC

Felodipine form I crystals showed an extrapolated melting onset at 141.0 ± 0.3 ºC detected 

using DSC at 20 °C/min (same scanning rate as the one used in TASC) and thermal 

degradation onset approximately at 180 ̊C detected using TGA (Supplementary Information 

Figure S1). This DSC detected melting point is close to the melting onset reported in the 

literature which is 143.8 ± 0.2 ºC 26. The thermal events detected by the DSC and TGA were 

used in the design of TASC temperature programs to avoid drug degradation. As using TASC 

for screening relies on the detection of the change at the onset of drug melting, it is firstly 

important to standardise the data analysis of the onset of a TASC curve. As seen in Figure 

2A, the signal of the melting of felodipine crystals on a glass substrate at 20 °C/min shows 
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11

the increase in signal intensity indicating the onset of the melting. The onset can be either 

analysed by the direct extrapolation of the signals such as is used for DSC data analysis 

(performed manually) or by taking the 2nd derivative of the whole signal (performed using 

Origin software). It can be seen that the 2nd derivative method produces a clear peak 

indicating the onset temperature. Both data analysis methods show very similar results, with 

the melting onset of felodipine at 143.4 ± 0.9 °C which is close to the DSC results and the 

literature value. As all the screening tests are performed using TASC in this study, the value 

of melting point quoted above was used as the standard to with which melting point 

depressions were compared. As seen in Figure 2B, once the drug particle was analysed on a 

polymer coated substrate there was more complex behaviour, which made the second 

derivative method less reliable. Therefore, the extrapolation method was selected and used as 

the data analysis method for all samples studied. 

It is important to establish the effect of selection of the ROI on the accuracy and 

reproducibility of the results. Previously it has been reported that larger ROI’s often give 

more reproducible results 23. As shown in Figure 3 A-D, multiple drug particles were tested 

on Soluplus coated substrates, either the particle edges or the large central region of the 

particles were selected as the ROIs and analysed. When selecting large central areas of the 

drug particles, the signal is less noisy within the onset and melting region, resulting in a 

smaller standard deviation (SD) for the large ROI sampling (in the example of Figure 3 the 

average of the extrapolated melting onset ± SD is 115.6 ± 6.4 °C and 114.4 ± 1.5 °C for of 

the edge and the large ROIs, respectively). The improvement in the reproducibility using 

large ROI may be attributed to the low level of the geometrical differences between the 

different large ROI areas. The variability in the change of the images on the edge regions is 

greater than the central region due to large variation in the thickness and shape of the edges. 
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In addition to the selection of ROI, it is also important to establish the effect of polymer film 

thickness on the TASC responses. As seen in Figure 4, two sets of polymer-coated substrates 

with different coating thickness were used to test the melting of the crystalline felodipine 

particles that were placed on top. The thicknesses of the films were either 17.8 ± 8.0 μm 

(with 40% w/w Eudragit solution as the coating solution) or 1.6 ± 1.3 μm (with 20% w/w 

Eudragit E PO solution). The extrapolated onset of the depressed melting of the drug are 

104.6 ± 1.5 °C for the thick and 102.1 ± 3.4 °C for the thin film. The signals of the two sets 

of samples show no statistically significant difference (P>0.05). As the results demonstrate 

no statistically significance for the two extreme thicknesses that cover the full range of the 

film thickness used in this study, we are confident that the data reported in this study using 

different polymer films can be reliably compared for their difference in the miscibility with 

the model drug. Therefore whilst standardization of the film thickness would be ideal, it is in 

practice often extremely challenging to achieve and does not make a significant improvement 

in data.

Miscibility screening using TASC 

TASC analysis was used to experimentally detect the onset of melting point depression of 

felodipine in the presence of polymers. As seen in Figure 5, the polymers led to different 

levels of depression of the melting of crystalline felodipine. The depressed melting points are 

summarized in Table 1. Based on the magnitude of depression of the onset of the drug 

melting, the polymers can be ranked in the order of Eudragit E PO > Soluplus = HPC >  

PVPVA > HPMCAS > PVP K29/32 > PAA = HEC =  PVA = Na CMC, with Eudragit E PO 

being most miscible with felodipine. The miscibility ranking by TASC with Eudragit E PO, 

Soluplus, PVPVA and HPMCAS agree well with literature data12, 27, 28. However, within the 
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literature there is no direct comparison of these ten polymers. Therefore, the traditional 

method used for predicting the drug polymer miscibility using solubility parameters was used 

to compare with the TASC results.

The calculations of the solubility parameters of the drug in the polymers are detailed in the 

Supplementary information. The results alongside the TASC results are summarised in Table 

1. The solubility parameter approach is widely used in the literature for estimating drug-

polymer miscibility using a group contribution method29, 30. The rule of thumb for ranking is 

that if the difference in the solubility parameter (Δδ) between the drug and the polymer is less 

than 7 (MJ/m3)½, the binary mixture is considered being miscible, while if the value of the Δδ 

is more than 10 (MJ/m3)½, this indicates immiscibility. Intermediate values for Δδ were 

considered as an indication of partial miscibility 31-33. Based on this approach, felodipine is 

expected to have good miscibility with eight of the studied polymers: PAA, PVPVA, 

Eudragit E PO, HPC, Soluplus, HEC, HPMCAS and PVP K29/32. The drug is predicted to 

be partially miscible with Na CMC and PVA as the Δδ between the drug and the polymers 

are between 7-10 (MJ/m3)½. Within these eight polymers, experimentally HEC and PAA 

show a statistically insignificant melting point depression of felodipine when tested using 

TASC, indicating poor miscibility. PVA was predicted to be partially miscible with 

felodipine as its Δδ values fall between 7-10 (MJ/m3)½ but the TASC results confirmed that 

this polymer is at the bottom of the miscibility ranking and showed no melting point 

depression. 

Post-melting polymer–drug mixing as another indication of miscibility

Significant differences in the TASC curves at the post-melting temperature regions can be 

observed in Figure 5 when the drug particles were melted on different polymers. This post-
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melting region reflects the thermal process of the continuous mixing of the drug in the 

softened polymer. The post-melting behaviour of the drug in the polymer was further 

investigated to confirm the miscibility of the drug with the polymer. The temperature 

program used in this study was to heat the drug polymer system at 20 °C/min to 150 °C and 

maintaining it isothermal for 15 minutes. The presence of a detectable event during the 

isothermal cycle slightly above the melting temperature is further indication of miscibility 

between the drug and the polymer, since an immiscible liquid will remain unchanged at the 

interface, but a miscible liquid will tend to spread and dissolve. The results of this screening 

were then converted into graphs of normalised values against time, which show the presence 

or absence of post-melting events. Figure 6 shows the heat-isothermal analysis for the pure 

felodipine form I on representative examples of polymeric substrates for miscible and 

immiscible drug-polymer blends. No polymer-drug melt-mixing event was detected for 

felodipine crystals above HEC, Na CMC, PVA and PAA polymeric substrates indicating no 

further events other than the pure melting of the drug. In contrast, the other polymers 

(PVPVA, Soluplus, HPC, Eudragit E PO, HPMCAS and PVP K29/32) which showed 

melting point depression of crystalline felodipine detected by TASC all show the presence of 

further events after the melting of the drug, as highlighted in Figure 6. The results of the 

heating-isotherm above the melting are closely associated with the melting point depression 

detected by TASC screening using the single heating cycle. This confirms that good 

miscibility between the polymer and drug should exhibit melting depression which is 

companied by further mixing of the molten drug in the polymer. The most miscible pair of 

drug-polymer combination is expected to show most substantial change of the curve during 

isothermal period. Using the simple correlation analysis, the melting and heating-isothermal 

curves of the pure drug on a glass substrate were compared with the curves of the first 

heating cycle and the heating-isotherm cycle of the drug analysed on polymer coated 
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substrates. As shown in Figure 7, the most miscible polymers with felodipine, Eudragit EPO 

and Soluplus, exhibit much lower correlation with the heating-isothermal TASC data, 

indicating their clear miscibility advantage over other polymers.

Confirming miscibility using IR imaging 

In order to further validate the screening method and confirm the interactions between the 

different polymers with felodipine, the samples were analyzed using IR imaging after TASC 

heat-isotherm screening. The analysis is based on mapping the distribution of drug and 

polymer. The wavenumber region of 3600-2800 cm-1 was used to identify the presence of 

both the drug and the polymer as they both have well-separated peaks within this region. The 

boundary of the molten felodipine drug particle without polymer is shown in Figure 8A. 

There is a sharp boundary shown in light blue between the molten drug and the substrate. 

This is also apparent in Figure 8I in which HEC was the underlining polymer with no 

detectable melting point depression. In contrast, in Figure 8C and E where the substrates were 

coated with Eudragit E PO and Soluplus the boundaries are diffused indicating the diffusion 

of the molten drug into the polymer. Caution is needed for interpreting the contour map as the 

colors in the contour maps are indicative of the presence of the drug. Although the gradient is 

scaled to the height of the felodipine NH band (see the absorbance scales of the spectra 

graphs shown in Figure 8B, 8D, 8F, 8H, 8J), the colours are not a linear measure of the 

concentration of the drug but indicate spatial zones through the 3-dimensional droplet and the 

corresponding colour-coded spectra indicate the composition in those areas. As shown in 

Figure 8G, despite PVPVA being measured to be miscible with felodipine, the boundary is 

still relatively sharp. This could be due to a range of factors including surface tension, 

viscosity and diffusivity of the drug in the underlining polymer. Therefore careful analysis of 

the spectra is also required. 
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As shown in Figure 8B, without any polymeric substrate, felodipine was converted 

completely from form I into its amorphous form after melting, as indicated by the uniform 

blue shift in its NH stretching mode from 3372 to 3339 cm-1 due to the stronger 

intermolecular hydrogen bonding between its molecules in the amorphous form as reported in 

the literature26, 34-36. In the spectra of felodipine on Eudragit E PO (Figure 8D), the NH 

stretching band of the drug revealed an increasing shift to higher wavenumbers as the drug 

diffuses away from the center of the molten drug particle. This indicates that the hydrogen 

bonds became weaker as the drug dissolved in the polymer. The spectra of Figure 8F and H 

show more complicated behaviour. Shoulder peaks appear at a lower wavenumber and 

increase in intensity with distance from the center of the drug particle. This is indicative of 

stronger hydrogen bond formation between the drug and the Soluplus and PVPVA. No shift 

or shoulder peak of the NH band was observed for felodipine on HEC film indicating no 

diffusion into the HEC film at all (Figure 8J). The overall results of IR imaging were 

consistent with the data collected from TASC screening. In both methods the miscible drug 

polymer pairs showed interaction (melting point depression, diffusion in the polymer film), 

however the different extent and direction of the shift in the NH bands demonstrated that the 

precise nature of these interactions depends on the chemical structures. 

TASC screening results compared to real-time stability studies

Physical instability of solid dispersions can be caused by either moisture uptake (which 

plasticize the material) and/or elevated environmental temperature. In simple terms, both of 

these conditions effectively reduce the gap between the Tg of the samples and the storage 

temperature, increasing the molecular mobility of the samples. In general, a formulation 

containing a polymeric excipient with good miscibility with the drug and an appropriate drug 
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loading (below the saturated solubility of drug in the polymer) often can provide a stabilizing 

effect and minimize drug recrystallization under stressed conditions, whereas poor polymer-

drug miscibility often leads to the rapid development of phase separation and drug 

crystallization5-8,21,27,35. In order to test the validity of the TASC screening of polymer-drug 

miscibility, real-time stability of binary solid dispersions (10-90% drug loading) of felodipine 

with one miscible (felodipine-Soluplus) and one immiscible polymer (felodipine-PAA) were 

prepared as solid dispersion films. The samples were aged at room temperature and 75% RH. 

Such high relative humidity is often employed in pharmaceutical stability testing to accelerate 

instability. However it should be highlighted here that the full effects of moisture uptake 

occurring with storage under high humidity are complex and can strongly perturb the 

thermodynamic equilibrium and hence physical stability of these systems. Here we are not 

claiming any correlation between the TASC results and the physical stability of the solid 

dispersions, but seeking to understand if a relationship exists between the stabilization effect 

of the polymers and the prediction of miscibility measured by TASC. Felodipine in Soluplus 

is expected to be more a miscible binary blend than felodipine-PAA based on TASC 

screening. Pure felodipine began recrystallising immediately after spin coating and almost 

completely crystallised after 1 day of storage as seen in Figure 9A. The felodipine-Soluplus 

formulations with up to 50% drug loading were free of any crystallisation after 1 month, 

while the higher loadings revealed the presence of crystals as shown in Figure 9B-D. This 

may be due to the drug loading exceeding the equilibrium solubility of the drug in Soluplus 

under the aging condition. However this needs further investigation as crystallization may be 

affected by kinetic factors. In contrast felodipine PAA solid dispersions, after 1 month of 

aging showed the presence of felodipine crystals, indicating the poor miscibility between the 

two components as seen in Figure 9 E and F. These results demonstrate that there is a 

correlation between the miscibility prediction by TASC and the physical stability of the 
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samples. However further investigation is required to understand the molecular basis of the 

stabilization mechanism which is outside the scope of this study. 

Conclusion

This study described the development of a rapid drug-polymer miscibility screening method 

based on TASC which allows rapid elimination of unsuitable candidates of excipients. The 

new thermal imaging based TASC screening method is 20-40 times faster, in terms of 

screening speed, than the conventional DSC method for melting point depression detection. 

In addition there is an increase in sensitivity of detection with the use of only 1/1000th of 

amount of the testing materials used in conventional DSC. The method was able to screen the 

miscibility of the model drug, felodipine, with ten pharmaceutical polymers using the 

magnitude of melting depression of felodipine in the presence of the polymers. Post-melting 

drug-polymer mixing studies provide valuable and unique information of the mixing between 

the molten drug and the softened polymer, which further confirms the miscibility. IR imaging 

and long-term stability studies provide further validation of the screening results obtained by 

TASC method. The results of this study demonstrated the clear advantages (such as being fast 

and inexpensive and user-friendly) of using this new thermal imaging tool as a screening 

method of drug-polymer miscibility during the preformulation phase of pharmaceutical 

product development and its potential of being further developed into a high throughput 

screening method. 
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Table 1. Solubility parameter values, thermal transitions (melting, glass transition and the 

measured depression in melting) with different methods of ranking for the compounds used 

in this study (the measurements were performed on 5 or more particles).

Compound δ (MJ/m3)½ Δδ 
(MJ/m3)½

TASC Tm (°C) 
(n=5)

Δδ
ranking

TASC Tm depression 
ranking

Eudragit E PO 18.7 2.1 102.1 ± 3.4 5 1

Soluplus 21.6 0.8 117.0 ± 3.6 4 2

HPC 23.6 2.8 118.1 ± 4.1 6 2

PVPVA 20.1 0.7 128.2 ±2.7 3 3

HPMCAS 21.1 0.3 131.3 ± 2.3 2 4

PVP K29/32 20.7 0.1 140.8 ± 1.7 1 5

PAA 20.5 0.3 142.0 ± 0.9 2 6

HEC 25.8 5.0 142.8 ±1.3 7 6

PVA 29.7 8.9 143.6 ± 1.2 9 6

Na CMC 27.9 7.1 144.2 ± 1.3 8 6

Felodipine 20.8 --- 143.4 ± 0.9 --- ---
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Figure 1. Illustration of the TASC based drug-polymer miscibility screening method
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Figure 2: Method used to assign the melting point of felodipine using normalised TASC and 

the 2nd derivative of the normalised TASC value. A) Pure felodipine form I TASC analysis 

and B) is the depressed melting point of the drug crystals due to the presence of Eudragit E 

PO film  
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Figure 3: Reproducibility of microscopic and TASC analysis of felodipine crystalline 

particles on Soluplus film using heat ramp at 20 °C/min integrated using (A and B) the edge 

and (C and D) the large central regions of the particle as the ROIs
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Figure 4. TASC signals of crystalline felodipine particles melted on the surfaces of Eudragit 

EPO coated substrates with either 1.6 ± 1.3 μm or 17.8 ± 8.0 μm thickness (n=5).
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Figure 5. Melting point depression of felodipine form I particles caused by different 

polymeric spin coated substrates detected by TASC analysis using 20 °C/min and large 

central regions of the particles as the ROI’s; A) felodipine-Eudragit E PO, B) felodipine-

Soluplus, C) felodipine- PVPVA, d) felodipine- HPMCAS E) felodipine- Na CMC and F) 

felodipine-PAA 
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Figure 6. Post-melting drug-polymer mixing behaviour of felodipine form I particles caused 

by different polymeric spin coated substrates detected by TASC analysis using 20 °C/min 

from 30-150 °C and then keeping isothermal for 900 seconds above the melting at 150 °C; A) 

felodipine-PVPVA, B) felodipine-Soluplus, C) felodipine- HEC and D) felodipine- PVA 

Page 28 of 33

ACS Paragon Plus Environment

Molecular Pharmaceutics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



27

Figure 7. Plot of correlation coefficient of the entire normalised TASC signal for analysis 

felodipine form I particles on glass substrate with felodipine form I particle on different 

polymers during heating cycle (HC) and heating-isothermal cycle (HIC) 
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Figure 8. Figure 8. 2D IR images and spectra of representative felodipine particles on 

polymeric substrates of miscible and immiscible blends; A and B: molten felodipine in 

amorphous form on a glass coverslip; C and D: molten felodipine over Eudragit E PO film; E 

and F: molten felodipine over Soluplus film; G and H: molten felodipine over PVPVA film 

and I and J: molten felodipine over HEC film. The colour scale (blue-red) indicates the height 

of the felodipine NH band at 3339 cm-1 (marked with the dotted line) in each particle. The 

scale bars are 0.1mm. Spectra are extracted from line profiles across the particles and 

coloured according to the map (red spectra represent the centre of molten felodipine particle, 

the blue spectra represent the surrounding polymer film or glass in case of pure felodipine 

and the other spectra represent the middle zones).
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Figure 9. Real-time stability study of felodipine solid dispersions in Soluplus and PAA at 

room temperature and 75% relative humidity; A) pure felodipine recrystallised after 1 day, B) 

50% W/W felodipine in Soluplus after 1 month; C) 60% W/W felodipine in Soluplus after 1 

month; D) 90% W/W felodipine in Soluplus after 1 month; E) 20% W/W felodipine in PAA 

after 1 month and F) 90% W/W felodipine in PAA after 1 month.
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