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ABSTRACT

In this study, we explore the interaction network properties of Microblogging Word of Mouth 

(MWOM), and how it is utilized by two different types of service providers, namely 

entrepreneurial and conventional. We use social network analysis, involving network metrics, 

sentiment, content and semantic analysis of real time data collected via Twitter, to compare 

two providers in terms of how they leverage MWOM in their social interactions. Results 

demonstrate that MWOM is utilized in an inherently different manner by an entrepreneurial 

provider, compared to a conventional one.  Based on the findings, the study identifies 

distinctions between the entrepreneurial and conventional service providers in how they 

utilize MWOM on social media. Specifically, the entrepreneurial provider capitalizes on the 

interactive nature and dialogic capabilities of Twitter; whereas the conventional provider 

mostly relies on focal information sharing, thus neglecting the network members’ content 

creation and relationship building capability of social media networks. The study has 

significant implications as it provides key insights and lessons in terms of how companies 

should respond to emerging digital opportunities in their online social interactions.

Keywords: Microblogging word of mouth (MWOM); Entrepreneur; Social media; Twitter 

Structuration Theory
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1. INTRODUCTION

The use of social media is an emerging research area where businesses can flourish 

with their creativity, and can define and communicate their unique identity and image in the 

minds of their stakeholders. Given the importance of using social networking sites such as 

Twitter for successful marketing practice, the manner by which different firms (e.g. 

conventional versus entrepreneurial businesses) capitalize on them and their properties, 

shapes business and marketing outcomes, and represents an increasing and important 

research avenue with practical relevance (Anderson et al. 2015).  

As a social media tool utilized by organizations, microblogging word-of-mouth 

(MWOM) is a specific form of electronic-word-of-mouth (e-WOM) within the context of 

Twitter, given its rise as the most influential and popular microblogging social media 

platform (Jin & Phua 2014; Hennig-Thurau, Wiertz & Feldhaus 2015). Twitter yields 

effective MWOM as individuals express their opinions and sentiments that impact other 

members of the social network. While similar to e-WOM- which reflects positive or negative 

statements made online about products or services accessed by a large number of individuals 

instantly (Hennig-Thurau et al., 2004; Christodoulides, Michaelidou & Argyriou, 2012; Kim, 

Sung & Kang 2014; Kim et al.  2016)- MWOM is brief, encompassing of short and frequent, 

informal social media communications directed at other people within the context of Twitter 

about an object or topic, [e.g. products or services, brands, their characteristics, and their 

providers] (Hennig-Thurau, Wiertz & Feldhaus 2015). MWOM is generated by social media 

users, for example individuals, firms or organizations (actors) to express their thoughts and 

views about a topic and it is used by managers as a form of social capital as it allows the 

connection and interaction of different individuals (Jin 2013; Jin & Phua 2014; Phua & Jin 

2011; Williams 2006). Within Twitter, MWOM is generated by individual actors and it is 

seen as more credible and trustworthy, relative to communication sent from businesses (de 
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Mator, Alberto & Rossi 2008). MWOM is also likely to influence individuals’ purchases of 

products and services (Hennig-Thurau et al. 2004; Hennig-Thurau, Wiertz & Feldhaus 2015). 

Despite the increasingly vast usage of MWOM, research on the concept is still in its infancy 

(Hennig-Thurau et al. 2015). In particular, the properties of MWOM and how businesses 

leverage MWOM for marketing remains largely unattended.  However, understanding the 

properties of MWOM and how it is leveraged by different types of businesses (e.g. 

conventional and entrepreneurial) offers new and significant theoretical and practical 

insights. For example, entrepreneurial businesses have been traditionally inclined to rely on 

Word-of-Mouth (WOM) communication as a tool for customer acquisition (Stokes & Lomax 

2002). Additionally, such firms tend to be digitally-minded, and thus are expected to be more 

proactive in using MWOM [e.g. for community and content co-creation (see also Kleijnen et 

al. 2009)], relative to conventionally established businesses. 

The present study investigates MWOM with the aim to identify its interaction 

characteristics and utilization among network members within the context of Twitter, as 

MWOM is seen as synonymous to this specific platform (Jin & Phua 2014). In particular, we 

focus on identifying differences in leveraging of MWOM between conventional and 

entrepreneurial businesses (see also Ostrom et al. 2015). In addressing the above objectives, 

and in line with previous research (e.g. Kalanda & Brown 2017), we follow an indeterminist 

approach (Kato 2014) to draw on some concepts and ideas of structuration theory (Giddens 

1984), as a 'viable platform' which enables the identification, assessment and explanation of 

social interactions (Stewart & Pavlou 2002, p. 377). More specifically, structuration theory 

guides our study given that MWOM is a novel concept, currently is its infancy, and reflecting 

a type of interaction within a social network system. Structuration theory enables us to draw 

on some of its ideas, and particularly, the notions of interaction and structure, in order to 
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understand MWOM's properties, and how its leveraging differs between service providers. 

As such, we explore the notion of "interaction" within social networks (MWOM/Twitter) 

which is underpinned by structuration theory. At the same time, we draw on the notion of 

structure, which reflects resources and exploitation of opportunities (Sarason et al. 2006; 

Stewart & Pavlou 2002; Jones & Karsten 2008) to compare two different companies. In 

particular, we focus on the principle which asserts that the interaction among members of a 

network (e.g. customers of a business) relates to the structure, in terms of resources and 

opportunities, of a business (e.g. domination) (Orlikowski 1992; Stewart & Pavlou 2002; 

Sarason et al. 2006). Two research questions guide our study, RQ1: What are the power 

interaction characteristics of MWOM? and RQ2: What are the differences in the 

utilization/leveraging of MWOM between different types of businesses (conventional vs. 

entrepreneurial)? though both at the domination structure in terms of resources and 

opportunities. 

To the authors' best knowledge this study represents the first attempt in exploring 

MWOM characteristics and the differences in its utilization/leveraging by different types of 

firms, linking to notions from structuration theory. The study contributes to the understanding 

of how different types of companies capitalize on emerging content (e.g. MWOM) on digital 

platforms. In this way, we produce novel insights with theoretical contributions as we 

examine a novel social media concept, namely MWOM, which reflects interaction within a 

social network of actors utilizing structuration theory notions (e.g. the notion of interaction 

within a social system and actors, being a key element of structuration theory, Giddens 1984). 

Additionally, we extend prior research which links structuration theory to the study of digital 

phenomena (e.g. Jones & Karsten 2008), and contribute to structuration theory by 

demonstrating how interaction exchanges are manifested in a digital social network context. 
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Thus, we provide novel evidence that structuration theory is theoretically relevant in this 

domain of research, and that it can offer distinct insights with useful managerial implications. 

Concomitant to this, the study is practically relevant as it uses live Twitter data, to identify, 

assess and classify five novel MWOM interaction differences, that characterize the marketing 

and communication practices of conventional and entrepreneurial businesses. The 

identification of these five interaction differences offers practical implications, as it provides 

valuable insights or lessons into how businesses should leverage digital social networks (e.g. 

MWOM) for effective marketing and communication strategies, as well for creating new 

ventures and business models. The following section reviews related literature on 

structuration theory, which provides insights into understanding interactions in social media 

networks (Stewart & Pavlou 2002), and MWOM. Subsequent to this, the methodology, 

analysis and findings are presented. Discussion of the findings, limitations and future 

research conclude the paper. 

2. THEORETICAL BACKGROUND

2.1. Structuration theory

Stewart and Pavlou (2002) argue that structuration theory addresses customer and 

business interactions, as well as the structural contexts which guide these interactions. The 

application of the theory and its relevance to empirical research has been often labelled as 

problematic (Jones & Karsten 2008), mostly applied within the remit of interpretivism and 

using qualitative methodologies (e.g. Kalanda & Brown 2017; Nicholson et al. 2013). 

Additionally, this theory is highly abstract, rather than being applicable or instantiated within 

a specific context (Jones & Karsten 2008; Stones 2005). Never-the-less it encompasses 

concepts which are useful to explore elements of social interactive processes between 

customers and businesses, in an attempt to identify and evaluate how companies leverage or 
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adopt new and emerging digital opportunities (e.g. social media). Prior research has drawn on 

concepts of structuration theory individually or in combination, adopting mostly a flexible 

and indeterministic approach (Kato 2014), in multiple domains including management, 

management accounting, consumer culture, information systems and e-commerce (e.g. 

Macintosh & Scapens 1990; DeSanctis & Poole 1994; Barley & Tolbert 1997; Algesheimer 

& Gurau  2008; Chiasson & Saunders 2005; Jones & Karsten 2008; Nicholson et al. 2013; 

Chang 2014; Lindridge & Eagar 2015; Kalanda & Brown 2017). Additionally, several 

authors have highlighted the benefits of drawing on structuration theory concepts in the 

domain of information technology (Gregor & Johnston 2000; Chatterjee et al. 2002; De 

Vaujany 2008; Greenhalgh & Stones 2010). 

The theory focuses on the social interaction that happens among actors or members of 

a social network. Giddens (1984) asserts that business and marketing activities are recursive 

in that the activities are created and recreated by social actors, who reproduce or redefine the 

conditions for the activities to happen. The above notion signifies the reflexive form of 

knowledgeability of the actors involved. 

Structuration theory highlights two essential elements, namely interaction, and 

structure on which we specifically draw on in this study, as they reflect useful elements for 

understanding MWOM and how it is leveraged by different firms.  Particularly, we focus 

primarily on the premise of interaction- which indicates the activity within the social system 

(e.g. social network) focusing on space and time (Giddens 1984)-and how it is manifested by 

actors within the social network to produce or re-produce properties of an interactive system 

toward achieving desired outcomes (Stewart & Pavlou 2002). Interaction appreciates the 

reflexivity of actors (human agents) within the social system the actors are in. Additionally, 

actors are both enabled and constrained by structures (e.g. resources and opportunities), and 
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yet the structures may be the outcomes of interaction among actors (Sarason et al. 2006).   

According to Orlikowski (1992), there are three types of structures namely, signification, 

legitimation and domination (Stewart & Pavlou 2002). Structures of signification reflect rules 

that make up meaning (Stewart & Pavlou 2002), structures of legitimation are the norms and 

rules that allow actors to justify their actions, while structures of domination reflect 

‘asymmetries in resources’ (e.g. knowledge, financial assets and technology), that actors 

draw on to exercise power to achieve their goals (Stewart & Pavlou 2002). Sarason et al 

(2006) suggests signification is more likely to occur during discovery of opportunities; 

legitimation is more likely during evaluation of opportunities, and finally domination is more 

likely during exploitation of opportunities. Stewart and Pavlou (2002) further suggest that 

interaction indicates a form of communication during signification, sanctions during 

legitimation, and power during domination (also Sydow & Windeler 1998). In line with our 

research questions, our study focuses on power interaction to examine characteristics of 

MWOM and how it's leveraging varies across different types of companies in domination 

structure (e.g. in terms of resources and opportunities identified, Sarason et al. 2006).

2.2 Power Interaction Characteristics of MWOM

 

The proliferation of interactive communication technologies, has enabled more 

informational and reflexive actions to be performed, offering value meaning and clarity in a 

far more transparent way. This transparency, wealth of information, value meaning and 

clarity are then viewed as the norms and rules that guide members of a social network to 

reflect, interact and communicate among them. The rise of real-time interactive social media 

has created new conversation channels that have significantly affected how people 

communicate with one another (e.g. Godes et al. 2005; Hennig-Thurau et al. 2010).  The 
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popularity of MWOM has gained traction as it enables members of the network (actors) to 

share service impressions with the sender’s social network or service community in real-time. 

In this paper, MWOM refers to “any brief statements made by a consumer about a 

commercial entity or offering that is broadcasted in real time to some or all members of the 

sender’s social network through a specific web-based service” (Hennig-Thurau et al. 2015). 

MWOM can be viewed as interaction among all actors. All interactions, namely 

transactions, conversations and relationships, contain a level of exchange, the objectives of 

which encompass both economic value and social capital (Cropanzano & Mitchell 2005). 

Therefore, when an episode of interaction occurs, there must be some shared value between 

individuals in a variety of forms. MWOM can be effective to influence actors’ behavior as it 

is perceived as a very dynamic form of interpersonal interaction that goes beyond commercial 

information exchanges (Kozinets et al. 2010). However, little is known about the interaction 

properties of MWOM.

The most important aspect of MWOM is its potential for both consumers and 

businesses to create personalized, two-way communication. Simmons (2006) suggests that 

real-time, one-to-one interactive communication helps to create more customized brand 

experiences in line with the consumers’ growing need for self-expression and individualism. 

The increasing use of interactive communication technologies, combined with the growing 

effort of businesses to fulfil individual needs, is arguably shifting the market power more and 

more towards the consumer (Pires et al. 2006). Thus, even though interactive communication 

technology is significantly more effective when it is personalized (Ansari & Mela 2003), 

Pires et al. (2006) argue that it is necessary to explore the marketing processes that allow 

consumers’ growing empowerment. 

From a ‘value co-creation’ angle, MWOM may provide a significant platform for 

consumer actor engagement (Chandler & Lusch 2015). Such engagement reflects a form of 



ACCEPTED MANUSCRIPT

10

social and interactive behavior, therefore social networking sites, such as Twitter, serve as 

ideal platforms where consumer actors participate in collaborative recommendations and 

development for specific products, services, and brands – through MWOM (Ramaswamy 

2009). For example, prior research suggests that Twitter enables MWOM with users sharing 

brand-affecting thoughts and feelings with almost anyone who is online (Jansen et al. 2009; 

Jin & Phua 2014). There is empirical support for treating feelings as information (Schwarz & 

Clore 1996) and as MWOM offers value, increased interpersonal influence on the brand 

reduces marketing costs and empowers the community to generate new ideas (see also Van 

Doorn et al. 2010). 

2.3 Interaction differences in MWOM between Entrepreneurial and Conventional Service 

Providers 

When considering the “dynamic process whereby structures come into being” 

(Giddens 1976:121), Giddens suggests framing layers of consciousness and action, which 

may be implicated in the production and reproduction of social systems (Bryant et al. 1991). 

Consequently, structuration theory provides a sound theoretical compass through framing 

interactional layers (representing dynamic process of conscious and active interaction 

exchanges in an existing structure) for distinguishing MWOM characteristics and its 

utilization as a social networking tool between firms (e.g. entrepreneurial and conventional 

firms). This is in line with similar research looking at online networks, drawing on specific 

aspects of structuration theory (e.g. Kalanda & Brown 2017; Kaewkitipong et al 2016; 

Christopherson 2007). MWOM's characteristics and differences in its utilization as a social 

networking tool vary between different types of firms (e.g. entrepreneurial and conventional 

firms) with similar resources and technological opportunities, and present a novel and 

exploratory research enquiry. Characteristics of MWOM include the level of interactions 
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(e.g. reciprocal action and influence) between actors in a social media network, how firms are 

managing their interactivity, how the value of offers is signaled and marketed; ultimately 

indicating differences between conventional and entrepreneurial forms with similar 

technological opportunities in terms of social media exploitation (e.g. domination structure). 

The salient characteristics of entrepreneurial firms have been well documented in 

entrepreneurship theory in terms of the methods and practices that reflect how a firm operates 

rather than what it does (Lumpkin & Dess 1996). Miller’s (1983, p.71) original 

conceptualization has been used as the basis for this distinction; “An entrepreneurial firm is 

one that engages in product market innovation, undertakes somewhat risky ventures and is 

first to come up with ‘proactive’ innovations, beating competitors to the punch”. 

Entrepreneurial firms or ventures (e.g. Airbnb)– unlike conventional ones – are innovative 

(e.g. Drucker 1985), seeking novel ways to bring entrepreneurial concepts to fruition (Bhuian 

et al. 2005), they manifest a willingness to introduce new products/services or technologies, 

enter new markets and finally engage in product-service innovation (Avlonitis & Salavou 

2007). These tendencies are vividly expressed in high-technology ventures that face rapidly 

changing environments, accelerated product development and market volatility (Wu 2007). 

As the digital economy develops, entrepreneurial activities within a digital context - such as a 

new business model of digital services and/or distribution (Esmaeeli 2011; Turban et al. 

2008; Dutot & Van Horne 2015) - are perceived as one of the most important drivers for 

competitiveness and economic growth, highlighting the instrumental role of emerging 

technologies in business (Hernandez-Perlines 2016). Nambisan (2016, p.1033) discusses this 

in the context of Airbnb: For example, when Brian Chesky and Joe Gebbia launched their 

venture in 2007—which later pivoted to Airbnb—their initial focus was on meetings and 

events for which hotel space was sold out. However, soon they discovered that such demand 

for affordable accommodation existed year-around internationally and scaled up their 
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services rapidly. Thus, digital infrastructures infuse a level of fluidity or variability into 

entrepreneurial processes, allowing them to unfold in a non-linear fashion across time and 

space. 

A substantial difference between entrepreneurial and conventional businesses with the 

same social media opportunities (e.g. utilization of Twitter) is how they capitalize on 

MWOM power interaction characteristics (e.g. how interactivity is managed) to market their 

offerings (Hull et al. 2007). While marketing signifies value-added offerings to consumers, it 

comes with a variation of interaction among actors. On a social media network (such as 

Twitter), value is communicated dynamically not only through marketers, but also through 

other special actors (e.g. a CEO) that shape, formulate and influence value in their own way. 

This is of sheer importance for entrepreneurial ventures which rely on the influence of these 

actors to build trust, consumer rapport and communicate with customers in real-time. For 

example, Tesla and Space X CEO Elon Musk is well known for using Twitter to announce 

new-to-the-world products and company milestones, thus enhancing the level of interaction 

with the company. Richard Branson epitomizes the social CEO persona by directly tackling 

customer complaints; while Google CEO Sundar Pichai’s response to a 7-year old’s job 

application became a viral sensation overnight.

In addition, entrepreneurial ventures are characterized by foresight for market change 

and social media represent an experimentation platform for testing new products and services 

via social interactions with target customers. This is important, as MWOM facilitates social 

interaction (Fischer & Reuber 2011), enabling entrepreneurial firms to leverage its 

relationship-building capability in a more dynamic way. In turn this expands social networks 

and online communication in the pursuit of new ideas. However, this particular process is not 
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commonplace in conventional businesses where scholars demonstrate that interactivity is 

mostly leveraged in a less dynamic manner, primarily for customer relationship management 

(Trainor, Andzulis, Rapp & Agnihotri 2014) or brand management (Asmussen, Harridge-

March, Occhiocupo & Farquhar 2013). The tendency of a firm to 'champion' the 

technological forefront of their market is therefore, an ideal representation of the 

entrepreneurial archetype, vis-a-vis the conventional one, reflecting that while opportunities 

are present for both firms (e.g. domination structure, Sarason et al. 2006) the level of 

interaction and engagement, and how it is managed with different actors varies between 

service providers. 

Furthermore, Shane and Venkataraman (2000) positioned the entrepreneurial firm 

type within the context of the opportunities they discover, albeit to make progress in 

opportunity exploration, entrepreneurs need to act (McMullen & Shepherd 2006). Digital and 

online communication technologies, such as social networking sites (e.g. Twitter), play an 

important and recurring role in leveraging or exploiting business opportunities as they 

facilitate the establishment of a dialogue between the firm and its customers (Hair et al. 

2012). However, while having the same resources and technological opportunities in terms of 

Twitter and MWOM utilization, conventional and entrepreneurial firms may differ in how 

they market or signal their offerings (Kirmani & Rao 2000). This is because, to reduce the 

observed information asymmetry between seller and buyer, entrepreneurial businesses would 

be expected to focus on signaling mechanisms that reduce uncertainty and incentivize 

transactions (Giones & Miralles 2015a). More specifically, in offerings that involve 

technology as part of the digital business model, the process of delivering or signaling offers 

is inherently different, compared to those ventures that rely on more conventional means; 

such that the entrepreneurial business is expected to be more flexible, participative and 
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adaptive’ within their network (Duchesneau & Gartner 1990).  Entrepreneurial businesses 

thus embrace, keep and grow digitally-born opportunities such as MWOM, while 

conventional businesses superficially embed digital technology into their services, without 

fully leveraging opportunities to signal and market their offerings via interactions. 

Differences in signaling offerings between service providers may become clear when 

looking at affective and cognitive properties of MWOM, with research highlighting the 

importance of user-generated content sentiment (Ludwig et al. 2013). Indeed, sentiment 

provides a useful conduit for understanding tone and consumer participation (Ordenes et al. 

2017); for example, entrepreneurial businesses are more likely to initiate consumer 

participation as they signal their offerings, compared to conventional businesses.  On the 

basis of the above discussion we offer two propositions:

P1: Conventional and entrepreneurial businesses [both at domination structure in 

terms of resources and MWOM technological opportunities] use MWOM to interact with 

actors; the level/depth of interaction, and how interaction is managed will be different 

between service providers, such that entrepreneurial service providers being more dynamic 

and engaging, within their network relative to conventional providers.

P2: Conventional and entrepreneurial businesses [both at domination structure in terms 

of resources and MWOM technological opportunities] capitalize on MWOM to market their 

offerings; however, they signal them in a different manner with entrepreneurial firms being 

more flexible and participative in signaling offerings, relative to conventional businesses. 

The following sections present the methodology, followed by the analysis and results. The 

paper ends with a discussion of the findings highlighting theoretical and practical 

contributions.
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3. METHODOLOGY

3.1 Industry Context  

In line with previous research, and given the flexibility that structuration theory offers 

to examine individual elements or concepts, the paper investigates the power interaction 

characteristics of MWOM focusing specifically on companies at domination structure (in 

terms of resources and technological opportunities involving capitalization of Twitter and 

MWOM) within a service context. We selected accommodation provision as the context, 

because this specific service type provides greater opportunities for interaction between 

stakeholders and actors on social networking sites. In particular, we focus on two 

accommodation providers namely, Airbnb and Holiday Inn. These two accommodation 

providers are at domination structure in terms of resources (i.e. well established and large 

business-scale firms), and are valued higher than US$ 1 Billion, with the same technological 

opportunities (in terms of usage/ capitalization of Twitter and MWOM). For example, in 

2016 Airbnb had received more than $1.6 billion accumulated funding (Figure 1).  Similarly, 

Holiday Inn is one of the largest hotel groups in the accommodation industry.  However, in 

terms of types of firms, Airbnb is a privately owned, unique representation of the 

entrepreneurial firm and one of the fastest growing accommodation providers. Albeit, 

Holiday Inn is an established brand and a conventional type of provider. The both operated at 

a global scale; and while at domination structure in terms of resources and social media 

opportunities, the two providers reflect sufficient variation in terms of their business model 

(type of company), that enables a profound comparison on how they leverage MWOM. For 

example, Airbnb embraces the principle of sharing economy through online media, where 

multiple member actors share their accommodation resources and are active in creating and 
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recreating value. In doing so, Airbnb provides a platform where member actors can advertise 

their available rooms. On the other hand, Holiday Inn operates as a conventional 

accommodation provider and marketer. 

Figure 1 here.

3.2 Data Collection and Analysis Method

MWOM was captured using real time data from Twitter due to its pervasive use among 

related stakeholders. Twitter is the most popular MWOM-enabled platform and its imposed 

240-character limit provides certain options in terms of content generation and sharing. Users 

have the opportunity to add pictures, videos and web links (URLs) to their text messages, and 

as a result there is a potential for creating buzz. Firms can generate content to engage with their 

audiences, whereas audiences can actively participate with the creation of content directly 

related to the firm. 

Primary data were collected using the built-in Twitter API search tool in NodeXL, which 

provides live data crawling and social network analysis capabilities. The extraction procedure 

included identifying and selecting the entrepreneurial (“AirBnB”) and conventional 

(“Holiday Inn”) service provider public usernames to allow for extraction of their Twitter 

network edges for further analysis. Once tweets were extracted in raw form, data were 

cleaned so that groups of networks only contained tweets exclusively about each service 

provider. The process eliminated duplicate edges, noisy and redundant data (Smith et al. 

2009). Data contained information on the types of relationships that connect Twitter users. 

Hashtags were included, being the most commonly used form when providing information on 
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a particular topic. Sample also contained replied-to ties, an integral Twitter feature that 

allows users to reply to other user’s messages, demonstrating an organic stance to MWOM. 

Finally, the sample also contained mentions, a feature that represents the influence of a 

Twitter user which was used in later stages in our analysis. Table 4 provides the dataset tweet 

profile in detail. Following the process, a total of 5,293 usable tweets were collected during 

June 2016.1 

To explore how both firms (Airbnb and Holiday Inn) leverage MWOM for interaction with 

their customer actors (P1) and for signaling and marketing their offers (P2), network metrics 

analysis, content analysis (e.g. sentiment analyses) were conducted; as they are useful to 

explore the characteristics of the interaction among actors within the MWOM Twitter 

network (Groeger & Buttle 2016; Lerman & Gosh 2010) .The first analysis, the network 

metrics, consists of three subgroups, namely aggregate (or overall) network metrics, 

vertex/actor specific network metrics and network graphs of specific actors. These networks 

metrics are metrics that reveal the network mathematical/numerical properties and insights of 

the interactions among actors take place, i.e. mathematical map and characteristics of the 

interactions/inter-connections/inter-relationships among actors that exist in the Twitter 

microblogging network. In sum, network metrics help to unveil the metric properties of the 

overall network and specific-actor network. 

1 2016 has been a crucial year for Airbnb. The company’s valuation increased at around  $30 billion – remaining 
among the top 4 most valuable privately-held companies in the world and moving from a ‘unicorn’ to a ‘decacorn’ 
status. In addition, Airbnb turned profitable in the second half of 2016 and launched a new digital marketing 
campaign called ‘Live There’. This is the exact stage where Airbnb reached domination structure (Stone 2017; 
O'Brien 2016; Newcomer & Barinka 2016).
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The second group, namely content analysis, consists of six subgroups, such as tweet 

profile, top hash-tags, top replied-to, top mentioned, sentiment analysis and semantic 

analysis. This content analysis specifically reveals the content (how tweets being generated 

and spread, sentiment and semantic/word clouds/topics) properties and insights of the 

interactions/inter-connections/inter-relationships among actors that exist in the Twitter 

microblogging network. Twitter profile (table 4) helps unveil the generation and spreading 

properties of the contents generated by actors as well as unveil the role/positioning of the 

focal actor(s) and related actors and topics. Top hash-tags, top replied-to and top mentioned 

(tables 5, 6 and 7 respectively) enable us to find the most frequent topic tweeted by hash-tags, 

and which actors have been most frequently replied-to and mentioned in the data set.   

Sentiment analysis (table 8) unveils the affective, cognitive and drive contents of Twitter in 

the interactions among actors in the networks, thus showing the depth of interaction (P1), 

allowing us to also identify how participatory is the interaction to signal offerings (P2). On 

the other hand, semantic analysis (fig. 3 & 4) is useful to unveil how dynamic is the 

interaction by identifying most frequent words used in the interactions among actors, and, 

specifically help to explore the role of the focal actor(s) of each of the firms and the topics 

surrounding them. Both semantic and sentiment analyses have been useful for understanding 

content, tone and involvement of interactions among actors (e.g. Ludwig et al. 2013; Ordenes 

et al. 2017; Zavattaro et al. 2015). Overall, both network metrics and network content 

analysis in fact contribute to unveiling the insights into both propositions (see table 1), where 

all the analyses provide insights to address our theoretical propositions. As our study is 

exploratory in nature, the integrated approach in using the analytical findings helps to have 

some sort of comprehensiveness or cross-validation to our discussion and interpretation.    
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In terms of software selection, NodeXL is one of the most popular open source 

template integrating the most commonly used network metrics and graph layout algorithms 

for social network analysis (Hansen, Shneiderman, & Smith 2011). For the purposes of 

semantic analysis, the study used Wordij 3.0 which is a family of computational algorithms 

designed to automate content analysis by analyzing co-occurrence of word pairs. Finally, for 

sentiment analysis the latest version of Linguistic Inquiry and Word Count (LIWC) has been 

utilized (Pennebaker, Chung & Ireland 2007), which is a text analysis software platform 

assessing the emotional, cognitive and structural components of texts using a 

psychometrically validated internal dictionary. Its reliability (e.g. Pennebaker and King, 

1999) and validity (Pennebaker, Mehl & Niederhoffer 2003) are well documented 

(Pennebaker 2017). In sum, network analysis (metrics and content) is effective to 

comprehend the interactions among actors within a social network (Wasserman & Faust 

1994). It allows for the exploration of structural relationships of content generated by social 

media users. The core advantage of this approach is that natural MWOM text extracted from 

a social network (in our case, Twitter) is analyzed empirically to provide valuable insights 

into the structure of a social media community (in our case Airbnb and Holiday Inn). Social 

networks are characterized by integration and interactivity (Van Dijk 2012). As a 

consequence, via this analysis we were able to understand the interaction properties and 

characteristics for each of the selected organizations. Table 1 summarizes these analyses.

Table 1 here

4. ANALYSIS AND FINDINGS

4.1 Networks Metrics
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The networks metrics consists of overall networks metrics (Table 2), actor-specific 

networks metrics (Table 3) and networks graphic profile (Figure 2), that enable us to examine 

the entrepreneurial characteristics of MWOM. A description of the network metrics is as 

follows:

- Vertex: a node representing a basic element. Simply, a vertex is a Twitter user.

- Edge: a line tying nodes representing a relationship

- Geodesic distance refers to the shortest path between two nodes in a network.

- Average clustering coefficient is a measure in which if all vertices/nodes are linked to one 

another. When the clustering coefficient is high for the network, it allows for the visualization 

and identification of groups within the network.

- Betweenness centrality refers to the number of times a node lies in the shortest path between 

two other nodes, implying that the node serves as a bridge and can be seen as a measure of 

the extent to which the removal of the node disrupts links within the network.

Table 2 presents the overall networks metrics that summarizes key properties of the entire 

network. The remarks in the table describes the meanings of the metric measures.

Table 2 here.

Referring to Table 2, the vertices and total edges reflect the size of Twitter data allowed 

to be downloaded by Twitter Inc. through NodeXL software. These properties are therefore 

not to be compared as they are. The geodesic distance, maximum and average, are higher for 

Airbnb than Holiday Inn, showing that Airbnb covers a wider span of network. The average 

clustering coefficient suggests that Airbnb network is less clustered compared to Holiday Inn, 

by nearly a third. In other words, members of Airbnb network are more dispersed than the 

ones of the Holiday Inn’s network. The average betweenness coefficient indicates how 
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central the company is in communicating with the rest of the members within the Twitter 

MWOM network. Holiday Inn has a much higher level of betweenness (1604) compared to 

Airbnb (183). This demonstrates that Holiday Inn communicates much more intensively 

compared to Airbnb when two members of Twitter network tweet each other. Following the 

overall networks metrics, actor-specific metrics provide a further picture. 

Table 3 here.

The results in table 3 suggest that, in comparison to Holiday Inn, Airbnb as an actor 

within its networks is less in-degree, which means a less focal actor; is less central (with 

respect to betweenness centrality and closeness centrality); less important/influential (with 

respect to PageRank), and has more connected clusters (with respect to clustering 

coefficient). It is worth noting that eigenvector centrality, a variant of PageRank, has 

somewhat suggested that Airbnb has played a more important and more influential role 

within its networks. PageRank algorithm is a better measure as it estimates not only the 

quantity of ties (the actor’s degree and the degree of its neighbors), but also the 

importance/quality of the ties between actors/vertices. Therefore, we used PageRank to 

represent the importance and influence of the actor/vertex of interest. Following the networks 

metrics, graphic analysis gave further insights. 

Figure 2 here.

Figure 2 visualizes graphically key networks characteristics surrounding Airbnb and 

Holiday Inn. Holiday Inn (the right graph of Figure 2, with Airbnb as the central node dark 

blue colored) has been playing much more centralized effort in Twitter communication 

compared to Airbnb (the left graph of Figure 2, with Airbnb the central node dark blue 
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colored in the central box). Holiday Inn is individually and directly connected to its neighbors 

that create big clusters centered to it. Airbnb is the opposite, with its network visualized as 

more networked, less individually connected to its neighbors, and more clustered. 

4.2 Content Analysis

To address our second proposition and understand how value is signaled and 

marketed in Airbnb and Holiday Inn, our second part of analysis reflects the identification of 

themes within text (Ryan & Bernard 2003).  Content analysis involves a tweet profile (Table 

4), top hashtag analysis (Table 5), top replied-to analysis (Table 6) and top mentioned 

analysis (Table 7). Additionally, sentiment analysis was conducted (Table 8), which provided 

an additional layer of understanding in line with previous research (e.g. Pfeil et al. 2009), 

allowing us to understand the emotion encoded in text by using a sentiment polarity 

dictionary and semantic analysis (Fig. 3 & 4). Finally, semantic analysis allowed us to 

explore of textual content in terms of frequency, occurrence and proximity and to identify the 

role of the focal actor(s) of each firm, producing normalized counts of word pairs. For easy 

reading, sentiment and semantic analyses are shown in separate sections, 4.3 and 4.4 

respectively. 

Regarding the tweet profile, the variables that can be reciprocally generated include the 

following:  

- Hashtags (#): denotes a tweet with a particular topic.

- Retweets (RT): a repost of a message of another user.

- Mentions (@): indicates a user mention.

- URL: the addition of an internet link.

Table 4 provides an overview of the tweet profile for both ventures. 
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Table 4 here.

Airbnb network members retweeted (RT) 45% of content and also demonstrated a more 

engaging behavior with the use of hashtags on a consistent basis (56% Airbnb vs. 37% 

Holiday Inn). As Airbnb’s sample contained far more retweeted content and with RT 

function being accepted as one of the key indicators of MWOM in Twitter social media 

network (Hoffman & Fodor 2010; Wolny & Mueller 2013), there are clearly identifiable, 

contextual differences between the two service providers. Airbnb’s network relies more 

strongly on retweets and hashtag use (more multi-way or network communication style), 

whereas Holiday Inn more depends on mentions to signal the service offers, a rather 

traditional service marketing approach (more one-to-one-way or more focal communication 

style). This is an important distinction that highlights the notion of community and content 

co-creation (Chandler & Lusch 2015; See-To & Ho 2014), and which is consistent with the 

networks metrics. Airbnb can now be regarded to ‘empower’ its networks’ actors/vertices in 

generating and sharing user-generated service/offer-related content (tweets) more strongly 

than Holiday Inn. 

Table 5 here

Table 6 here

Table 7 here

The findings of the content analysis indicate exciting conclusions that add to those from 

networks metrics analysis. More specifically, MWOM actions such as retweets or hashtags 

should be perceived as quality signals that demonstrate the intention to convey information 

about the service to stakeholders and potential customers. This is particularly important for 
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Airbnb as an accommodation service entrepreneur capitalizing MWOM properties to 

highlight the service qualities and reduce uncertainties and customer skepticism. The capacity 

of accommodation service entrepreneur to strategically leverage these signals, is highlighted 

from differences in content creators and the emotional tone of tweets respectively. The fact 

that for Airbnb one of the top-mentioned terms is Brian Chesky (Airbnb co-founder), 

demonstrates the importance of individual actors in orchestrating MWOM interaction. On the 

contrary, Holiday Inn has a very different content creation mechanism, where top mentions 

predominantly revolve around the brand itself (holidayinn, ihgservice, holidayinn_ptbo). This 

implies that these service offers are signaled and marketed in inherently different ways. 

Overall Airbnb tends to play as ‘genuine networker’ role, which empowers its networks’ 

actors/vertices in generating and sharing user-generated service-related content (tweets). On 

the contrary, Holiday Inn seems to play as a ‘focal’, ‘individualistic actor’ with centralized 

type of networks who handles or manages the network communication more on its own. 

  

4.3. Sentiment Analysis

Sentiment analysis is revealing of the ‘unconscious motives/cognition’ repressed 

semiotic impulses affecting motivation (Bryant et al 1991). It represents an option for better 

understanding how MWOM interaction properties are manifested by the two different firms, 

and specifically it allows us to identify how participatory the interaction is and in relation to 

signaling offerings (P2). By calculating the degree to which a text sample contains words in 

specific categories, the LIWC2015 software provides empirical values (frequencies) that 

demonstrate the interpersonal influences on each service. For the purposes of this study, three 

concepts have been examined namely affective processes (positive and negative emotion), 

cognitive processes (insight and cause) and drives (affiliation, achievement and risk). Table 8 

provides an interesting overview of sentiment findings.
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Table 8 here.

There are substantial differences in the affective, cognitive and drive processes of 

sentiment. Holiday Inn tends to be more affective and less cognitive compared to Airbnb. 

More specifically, in terms of affective process, Holiday Inn has as higher level of positive 

emotion (posemo) than Airbnb. Holiday Inn’s substantial distance in terms of positive 

emotions can be interpreted due to the fact that in most of the cases the content has been 

generated, transcended and managed through the venture itself. Understandably the 

‘organizational communication language’ tends to be more positive than the 

‘individual/personal communication language’. However, regarding negative emotions 

(negemo), there was no difference between the two service firms. Additionally, Airbnb, 

relative to Holiday Inn, scores higher with respect to overall cognitive processes, cognitive 

insight, cognitive cause, drive to achieve and drive to take risk. However, Airbnb tends to be 

less affiliative than Holiday Inn. An explanation of this may be related to the newness 

(innovativeness) of the accommodation service offer, where the offer from Airbnb is 

relatively ‘a new kid on the block’ (disruptively innovative) type, whereas the offer from 

Holiday Inn has been a conventional one, given Holiday Inn’s business venturing age.

Connecting the findings of sentiment analysis and the tone of tweets in Tables 5, 6 and 

7, there are differences in terms of affective and cognitive processes in Twitter content 

between Airbnb and Holiday Inn; with the former demonstrating a less affective but more 

cognitive stance whereas the latter demonstrating the opposite. One possible explanation of 

such big difference in cognitive processes (and their underlying insight and cause 

dimensions), may be reflected from the fact that Airbnb tweets make a very strong use of 

locations due to the Cannes film festival ‘theme’ which was captured during the data 
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collection; whereas the Holiday Inn tweets reflect a much more brand-oriented identity. 

Therefore, the cognitive process and drive sentiments within the Airbnb network 

communication are stronger due to the fact that Airbnb is still improving its service forms 

and offerings that require cognitive processes. To this end, Airbnb appreciates drives to 

achieve, to take risks and to be less affiliation-oriented among actors/members of the 

networks. Contrary, Holiday Inn is relatively less cognitive (due to its established service 

offerings), less achiever-oriented and risk-taker and more affiliative within its networks.     

4.4 Semantic Analysis

As aforementioned, semantic analysis was used to explore at a glance the frequently 

used key-words (wordcloud or can be called as thematic) and focal actors configuration 

drawn from the tweets including the level of interaction among these contents (between focal 

actors and the themes) within the social network. Specifically, the semantic network graphs 

in Figures 3 and 4 demonstrate the frequent particular words used in Twitter communication 

network. These words include verbs, Twitter user names, events, or particle words like ‘of’, 

‘for’ or ‘the’, the latter of which were excluded from the analysis. Notably, the semantic 

graph in Figure 3 shows a special actor within the Airbnb network, ‘bchesky (and 

brianchesky)’, besides Airbnb itself. Bchesky (and brianchesky) is an internet expert and the 

owner/founder of Airbnb, and based on the network graph (figure 2) he has a strong Twitter 

link to Airbnb. This indicates that Airbnb’s social network tends to benefit from this internet 

expert actor due to his followers, and because of being active in sharing information about 

Airbnb and its service offers in the network. With the presence of a "special actor" the 

interaction within Airbnb's network is intensified, dynamic and engaging within the social 

network (P1). Noteworthy, an additional frequently used word within the network of Airbnb 
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is that of ‘canneslions’, and this is explained by the fact that Twitter data was collected 

during the Cannes’ film festival (also table 5 above). 

Figure 3 here.

Semantic analysis for Holiday Inn (Figure 4) demonstrates quite different findings. 

With words like ‘holidayinn’, ‘holidayinn_ptbo’, ‘hotel’, ‘joyoftravel’, ‘trip’ and 

‘ihgservices’, Holiday Inn is found to be consistently marketing themselves through its 

personal brand and corresponding key service stimuli. Relative to Airbnb, analysis indicates 

no special actor within the network. In other words, the semantic profile of Holiday Inn 

confirms the ‘traditional/conventional’ marketing of services, which is centered and managed 

at large by Holiday Inn itself, although through utilizing Twitter as a communication 

platform.

Figure 4 here.

5. DISCUSSION 

Drawing on structuration ideas (Giddens 1984), this study examined interaction differences 

in Microblogging Word of Mouth (MWOM) between service providers, focusing specifically 

on interaction and signaling of offerings. Indeed, the results have highlighted a number of 

differences, that provide support to the theoretical propositions put forward in the study, and 

which show that even though accommodation service providers have the same 'strong' 

structure (e.g. domination) they differ in their social [inter]action. Findings from the different 

analyses pave the way to comprehend key insights into MWOM’s power interaction 

characteristics, i.e. power interaction within a domination structure by an entrepreneurial firm 

(Airbnb) versus a conventional firm (Holiday Inn), and to identify differences in interaction 

within a social networking platform. More specifically, we identify five key points or 
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domains of differentiation in terms of how MWOM is leveraged by both firms in terms of: 1) 

the level and dynamism of interaction; and 2) with regard to how participative the different 

providers are, in signaling offerings on Twitter. Additionally, these domains reflect levels or 

modes of utilization of MWOM, highlighting how interaction exchanges are manifested in a 

social networking context, and how an entrepreneurial organization interacts in their social 

network relative to a conventional provider. 

5.1 Level of Interaction 

The level of interaction reflects the activity within a social system (Bryant et al. 1991) 

and enables us to draw on particular properties of networks and yield useful insights and 

conclusions. MWOM as an 'interaction' reflects the communication and engagement among 

actors within a social network (e.g. Twitter), indicating how content is produced and re-

produced by different actors, in order to leverage opportunities (Stewart & Pavlou 2002).  

Such opportunities while present for different types of firms (entrepreneurial vs. 

conventional) though with similar/same resources (e.g. domination structure), they are not 

taken advantage of.  In particular, the results of this study show that, Airbnb, as an actor 

within its networks, is less focal, less central, (e.g. figure 2) less important and/or influential, 

and has more connected clusters; relative to Holiday Inn which seems to be a 'focal', 

individualistic actor with centralized type of MWOM network, and which handles or 

manages the communication more on its own.  Consistent with this notion, the content 

analysis suggests that Airbnb is more dynamic in that it empowers its network' s 

actors/vertices in generating and sharing user-generated service-related contents (tweets), that 

enhance communication and often generate ideas. In other words, Airbnb tends to be more 

interactive and more empowering, thus leveraging MWOM properties to a greater extent. 

Additionally, semantic analysis shows the existence of a special actor (owner, founder, 
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expert) within Airbnb’s social network, which is of nonexistence in the case of Holiday Inn. 

In line with Giddens (1984), special actors within social media networks allow the 

entrepreneurial firm to leverage the actors’ followers to share information about services 

within the network, thus enhancing the interaction by producing and encouraging re-

production of communication making it more dynamic and engaging within the social 

network.

Further, in view of Airbnb’s more ‘democratic/empowering/decentralized’ social 

network profile, the analysis suggest that Airbnb has a more transparent, risk-taker, and 

achiever-oriented style of power interaction at its domination stage. This means that Airbnb 

as an entrepreneurial firm is more dynamic, identifying opportunities within its network and 

capitalizing MWOM to a fuller extent. On the other hand, Holiday Inn’s sentiment profile, 

which reflects a more ‘focal/centralized’ social network, suggests a more controlled, risk-

averse and more affiliating orientation style of power interaction at its domination stage. 

These findings provide support to the theoretical proposition (P1), and extend past research 

(Fischer & Reuber 2011), highlighting that relative to conventional service providers, 

entrepreneurial firms have a wider social network interaction with their customers, and are 

more dynamically-driven to leverage MWOM in organizational practices (Asmussen et al. 

2013). Conversely, we identify that the social network of the conventional service provider is 

more controlled and utilized in an 'authoritative' way. These results suggest that conventional 

service providers should seek to enhance their digital social networks by capitalizing 

MWOM to a fuller extent, and by being more dynamic and engaging.



ACCEPTED MANUSCRIPT

30

5.2 Signaling of Offerings

Past research indicates that service offerings within social interactions are signaled in 

an inherently different manner (Giones & Miralles 2015b). Indeed, the analysis has provided 

key and novel insights on the differences between Airbnb and Holiday Inn in terms of how 

service offerings are signaled or marketed, thus providing support to P2. More specifically, 

content analysis indicates that Airbnb is a genuine networker that utilizes the network to 

signal offerings by engaging its networks’ members into generating and sharing tweets (user-

generated service-related contents).  This finding complement previous research which 

highlights the importance of user-generated content (Ludwig et al. 2013), and indicates that 

entrepreneurial firms are more flexible and participatory in their networks (Duchesneau & 

Gartner 1990). Notably, Airbnb as a service offer has been signaled through network 

participation, and therefore its network members bring their own signals of quality into the 

offer. In this way, Airbnb seems to be more adaptive on the MWOM, embracing this digital 

technology as an opportunity to market offerings within the social networking site. 

Conversely, Holiday Inn as a focal and individualistic actor does not leverage such 

opportunities; instead, Holiday Inn, as a service offer, is signaled primarily with orientation 

to its brand, indicating some sort of historical preservation being put into the new ‘interaction 

cloth’ of MWOM marketing. This is rather contradicting to conventional service marketing 

theory that stresses the community-building and content sharing qualities of social media and 

the fact that firms have the ability to strengthen their service marketing efforts by capitalizing 

on social technologies (see also López-López, Ruiz-de-Maya & Warlop 2014). 

These findings broadly suggest that entrepreneurial firms are likely to signal their 

offers through network participation, while conventional firms tend to signal their offers with 

an orientation to the brand. The above ideas suggest a link between how the firm or business 
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was originally created and has become established, and the characteristics of the 

interaction/communication at domination stage (Giddens 1984; Stewart & Pavlou 2002). 

Additionally, the results show how social interactions in a digital social network occur, 

highlighting that companies with similar structure do not necessarily interact in the same way 

within their social network. In this sense, while technology and in this instance, digital 

platforms (e.g. MWOM/Twitter) are available for both firms, they are implicated with their 

actions (e.g. interaction) (Giddens & Pierson 1998; Jones & Karsten 2008); and which differ 

in terms of how the level of interaction and how they signal offerings. Table 9 below, 

summarizes the key points of differentiation between the two types of service providers.

Table 9. Summary of Points of Differentiation in Interaction and Signaling between Firms in 
Leveraging MWOM

Entrepreneurial Firm Conventional Firm

More network empowering More focal 

Transparent, risk-taker and achievement-oriented Controlled, risk-averse and affiliating

Special actor in network No special actor present within the network

Genuine social networker Focal and individualistic

Signal offerings via network participation Signal offerings via brand orientation

6. CONCLUSIONS, CONTRIBUTION AND LIMITATIONS

The study examines how MWOM is leveraged by two accommodation service 

providers. Specifically, we focus on an entrepreneurial accommodation provider (Airbnb) 

relative to a conventional one (Holiday Inn). Findings based on analysis of real-time data 

drawn from Twitter, provide key and interesting insights, and are in line with prior research 

suggesting that entrepreneurial companies [relative to conventional ones] such as Airbnb are 

innovative, respond to changing environments and trends and capitalize on new technologies 
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(Esmaeeli 2011; Turban et al. 2008; Dutot & Van Horne 2015). Our study confirms that such 

firms leverage social media more fully, and particularly MWOM, in interacting, marketing 

and signaling their offerings. More specifically, our results provide support for the theoretical 

propositions, and show that the entrepreneurial provider (Airbnb) capitalizes their social 

network in a greater extent, by being more engaging, participative and adaptive to the 

dynamic nature of user-generated content. On the other hand, the conventional provider 

(Holiday Inn) tends to rely more on focal information sharing, thus neglecting opportunities 

for capitalizing on network members’ content co-creation, and relationship building which 

enhance consumer engagement. 

Our study contributes to structuration theory by showing that interaction can manifest 

in social networking sites (e.g. Twitter), and that the theory is empirically relevant in the 

domain of digital technologies. Concurrently, the study enhances understanding of how 

different types of companies capitalize MWOM, and more specifically it extends scholarly 

research on: a) the interaction properties of MWOM and b) how MWOM is leveraged, as we 

identify and evaluate five domains or points of differentiation between the two types of 

service providers. In particular, the findings point to significant implications regarding 

reflexivity as an essential property of MWOM. For example, results suggest that 

entrepreneurial providers (such as Airbnb) are likely to be more proactive, flexible and 

accommodative in the interpretation of social systems i.e. marketing the services, but also the 

ability to reflect upon and modify interpretations. On the contrary, conventional providers 

(e.g. Holiday Inn) are likely be more reactive, rigid and controlled over the reflexivity 

processes in interpreting and re-interpreting the marketing of services. We also find that the 

duality of domination structure and power interaction is characterized by the marketing 

communication formality in relation to the existence of special actor. Thus, when it comes to 
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comprehend and model the power interaction style at domination stage (e.g. leverage of 

opportunities), the existence (or non-existence) of a special actor should be taken into 

consideration. Last but not least, the origin of the firm (i.e. the origin of their service or 

product offer) tends to shape the way the firm interacts and leverages MWOM (on Twitter) in 

marketing their service even at the domination stage of their business history. In other words, 

the findings suggest that MWOM marketing will still bear certain essential characteristics of 

how the service offer was born and has grown. 

Our study is also managerially relevant and this is evident by the use of real time 

Twitter data to identify the properties of MWOM and how it is leveraged by two different 

service providers. As such, in terms of the practical utility and lessons to be learned from our 

study, as domination structures are perceived as transformative relationships that facilitate 

goal attainment (Sarason et al. 2006), the use of digital means in key aspects of the 

value/offer creation and marketing process opens new opportunities and challenges for firms. 

Businesses nowadays are increasingly dependent on marketing their services on social media, 

hence MWOM is seen as an essential resource which shapes communication of service 

offerings. By having ample access to digital resources, entrepreneurial firms embrace more 

sharing collaborative usage of MWOM with their customer base (e.g. by being more genuine 

networkers, having a special actor, transparent and risk takers, signaling offers via network 

participation), and this enables them to explore opportunities for business models involving 

new digital services or the distribution and promotion of existing service offering online. 

Conventional firms can therefore learn from entrepreneurial firms in terms of leveraging 

MWOM more fully as its structural properties influence the effectiveness of communication 

and interaction within the firm's social network (Stewart & Pavlou 2002).
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Finally, in terms of our study’s limitations, as social media and their prevalence is 

relatively new, it is understandable that software or programs available to analyze social 

media data are still at an early stage of development. Additionally, there are other obstacles 

such as Twitter does not allow unlimited crawl by NodeXL (understandably this limitation 

also applies to any other crawl engine or tool), as well as data limitations as access to large 

quantities of Twitter data have considerable financial cost. Furthermore, analysis of large 

quantities of Twitter data (Big Data), present a challenge for researchers in view of 

methodological and analytical inadequacies (Liu et al. 2017). In spite of the above 

limitations, we attempted in the best possible way in crawling the Twitter data using NodeXL 

within what Twitter platform allows.  

Moreover, every attempt has been made to utilize existing software with robust and 

careful interpretation. In this paper, we focus on Twitter as it allowed better access (e.g. open 

platform) specifically while there are other social media platforms such as Facebook and 

LinkedIn. Hence, future research may aim to direct their focus to alternative social media 

platforms. Further, the study focused specifically on the domination structure (in terms of 

resources and opportunities exploitation) and corresponding power interaction, however, 

future research may aim to investigate other structures (signification and legitimation) and 

interactions (communication and sanctions). Replication attempts could also include 

additional measures to enable the exploration of other structures and interactions. Last but not 

least, despite the fact that our research takes a very important first step for illustrating 

interaction differences between conventional and entrepreneurial accommodation providers, 

the service-specific nature of our investigation does not allow for generalizations beyond 

institutional MWOM. Additionally, we focused on two, albeit varied accommodation service 

providers, and although in the context of our study this choice served our research objectives 

and facilitated live-data collection, future research may investigate more firms in other 
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service industries. Indeed, this presents an avenue for future research, to explore the industry-

wide interaction properties of MWOM and a more expansive selection of businesses may 

allow this. By demonstrating that interactivity is managed differently in entrepreneurial firms 

compared to their conventional, non-internet-native counterparts, we invite future attempts to 

address specific processes associated with the valence of MWOM. 
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Figure 1. 
Airbnb accumulated funding indicating a domination stage (circled)

Table 1 Propositions and Analytical Methods

Networks Metrics Analysis Content Analysis

Proposi
tion

Overall 
Network 
Metrics

Actor-
Specific 
Network 
Metrics

Graph
ic 

Ana-
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Tweet 
Profile

Top 
Hash-
tags

Top 
Replied

-to

Top 
men-
tioned

Senti-
ment 
Ana-
lysis

Seman-
tic 

Ana-
lysis

P1 √ √ √ √ √ √ √ √ √
P2 √ √ √ √ √ √ √ √ √
Results 
shown Table 2 Table 3 Fig. 2 Table 4 Table 5 Table 6 Table 7 Table 8 Fig 3 
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Table 2. 
Aggregate Networks Metrics

Measures Airbnb Holiday Inn 
(HI) Description Remark

Graph Type Directed Directed

Basic information whether 
graphically the directions of 
Twitter interactions shown or not. 
Directed denotes graph type 
where the directions of Twitter 
interaction shown. 

Directed means a vertex/node/actor 
may follow without having to be 
followed. 

Vertices 734 1850 Basic information about the total 
number of actors in the network Vertex = nodes/ actors/ people

Total Edges 1148 4141
Basic information about the total 
number of connections/ties/links 
in the network

Total number of connections /ties 
/links

Connected 
Components 273 192

The number of clusters 
(connected components) exist in 
the network

Despite the lower number of vertices 
and edges, Airbnb network has more 
clusters (connected components) that 
HI network
A connected component = a cluster

Single-Vertex 
Connected 
Components

194 139
The number of clusters 
(connected components) exist in 
the network Number of clusters with single vertex

Maximum 
Vertices in a 
Connected 
Component

250 1455

The maximum number of actors 
(vertices) in a cluster (connected 
component)

This measure indicates that Airbnb 
network is more 'decentralized' than 
HI network 

Maximum 
Geodesic 
Distance 
(Diameter)

8 7

The farthest distance (maximum 
number of hops) a network has This shows that Airbnb network 

covers wider network span (8 hops) 
than HI network (7 hops)

Average 
Geodesic 
Distance

3.01 2.39 The average distance (average 
number of hops) a network has

On average Airbnb network has 
greater geodesic distance (just over 3 
hops) than HI network (2.39 hops), 
showing that Airbnb network covers 
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more friends' friends than HI  

Graph Density 0.00132 0.00072

Ratio between the total number of 
interactions/interconnectedness/relationships present in the network 
divided by the total number of possible 
interactions/interconnectedness/relationships that could present. 

Airbnb social network is much denser 
than HI network, indicating that the 
Airbnb network 
members/actors/agents are more 
active/communicative than HI 
network members/actors/agents  

Average 
clustering 
coefficient

0.064 0.179

Ratio that shows how connected a 
network in terms of cluster. It 
shows the average density or 
concentration of a network in 
terms of cluster.

HI network as a cluster is more 
connected than Airbnb network, which 
means that HI network is more 
concentrated and Airbnb network is 
more dispersed. 

Average 
betweenness 
centrality

183 1604

The average score of an actor 
bridging (lying on the shortest 
path between) other actors in a 
network.  

HI network has the highest score, 
much higher than Airbnb, indicating 
that within HI network actors/nodes 
are more bridging for connections 
between other actors/nodes. 
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Table 3. 
Vertex/actor-specific Networks Metrics

Special vertex/actor Remark

Airbnb network HI network DescriptionVertex/Node/Actor

Airbnb bchesky Brianchesky holidayinn

Betweenness 
Centrality    47,318  13,059 67  2,092,039 

The score of a specific actor in 
bridging (lying on the shortest path 
between) other actors in a network. 

 

holidayinn has the highest score here, 
much higher than the rest, which 
means most often it is included in the 
shortest path between two other 
vertices/nodes/actors

Closeness 
Centrality 0.0024 0.0017 0.0012 0.0006

The average distance of a specific 
actor with every other actor in a 
network. The lower score indicates a 
more central position of a specific 
actor in a network.

holidayinn has the lowest score here, 
which means it is directly the most 
connected (closest) to most other 
vertices/nodes/actors in the network

Eigenvector 
Centrality 0.0551 0.0380 0.0038 0.0278

The influence score of a specific 
actor for strategically connected 
people. 

holidayinn has the second lowest 
score here, although the score is not 
very different from Airbnb or 
bchesky, which means the second 
lowest in terms of its own degree plus 
the degree of vertices directly 
connected to it. In other words, this 
measure says that Holiday Inn is not 
as important/influential as Airbnb or 
bchesky

PageRank 30.45 17.70 2.22 384.44

A variant of eigenvector centrality
holidayinn has the highest score, 
much higher than the rest, which 
means within its network holidayinn 
is estimated to be highly important
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Clustering 
Coefficient 0.0046 0.008 0.1000 0.0004

Ratio that shows how connected 
(dense) a specific actor’s neighbors 
are to one another. As actor, Airbnb, bchesky and 

brianchesky have neighbors with 
more connected one to the other 
compared to holidayinn
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Figure 2. 
Airbnb and Holiday Inn Twitter Networks Graphs 

Airbnb Holiday Inn

Table 4.

Tweets Profile

Service Total tweets URL (%) Hashtag (%) @ (%) RT (%)
Holiday Inn 4141 1776/4141

(42%)
1540/4141

(37%)
1233/4141

(29%)
1144/4141

(27%)
Airbnb 1148 497/1148

(43%)
646/1148

(56%)
113/1148

(10%)
514/1148

(45%)

Table 5. 
Top Hashtag Analysis

Airbnb Holiday Inn
Top hashtags in 
tweet in entire graph

Count Top hashtags in 
tweet in entire graph

Count

Canneslions 185 holidayinn 325
Airbnb 81 joyoftravel 245
Mecatcannes 34 mplusplaces 83
Ogilvycannes 29 summer 70
Tbwacannes 11 ad 60
Brianchesky 10 fathersday 57
Cannesmm 8 kenbizexpo 41
Yrcannes 8 hotel 38
Travel 8 beachside 35
Startup 7 hotels 32
Airbnb was second top hashtag with 
portion of 21% of total top hashtags, 
indicating that member actors play bigger 
role in Twitter mwom than Airbnb itself 

Holiday Inn was top hashtag with portion of 
33% of total top hashtags, indicating holiday 
inn has bigger share compared to Airbnb in 
Twitter mwom marketing communication
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Table 6.
Top Replied-to Analysis

Airbnb Holiday Inn
Top replied-to in 
entire graph

Count Top replied-to in 
entire graph

Count

Airbnb 4 holidayinn 153
Airbnb_uk 4 ihgservice 55
joannacoles 4 kriswilliams 28
Faris 3 evophd 13
brianchesky 3 bigbikesthom 9
cysba 2 dorisweldonkaz 7
nochedeperros 2 holidayinn_ptbo 5
bchesky 2 sdonline 4
givatayimrocks 2 certanovo 4
jelosta 2 holidayinn_tux 4
The replied-to profile of Airbnb shows 
that Twitter mwom marketing 
communication was primarily among 
member actors rather than with Airbnb. 

The replied-to profile of Holiday Inn shows 
that Twitter mwom marketing communication 
was mainly centered to Holiday Inn as focal 
actor.  

Table 7.
Top Mentioned Analysis

Airbnb Holiday Inn
Top mentioned in 
entire graph

Count Top mentioned in 
entire graph

Count

Airbnb 207 holidayinn 1841
bchesky 112 ihgservice 53
rickking16 51 holidayinn_ptbo 46
ogilvy 27 kenilworthtrade 31
reb_life 24 soyoso 29
brianchesky 19 ihg 27
cannes_lions 17 102touchfm 21
fastcompany 17 Certanovo 21
jenfaull 13 Kriswilliams 21
thedrum 12 Shelleyskuster 19
Airbnb was top mentioned with 41.5% of 
all top mentioned. The finding shows that 
bigger share of Twitter mwom as 
marketing communication was conducted 
by and among social network members. 

Holiday Inn was top mentioned with a huge 
87.3% (not to include ihgservice where 
Holiday Inn is in) of all top mentioned. The 
finding shows that Twitter mwom was 
generated and managed mainly to and by 
Holiday Inn as the focal social network actor.  
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Table 8.

Sentiment Analysis

Affective Processes Cognitive Processes Drives
Holiday Inn 4.69 3.67 5.47
Airbnb 2.95 7.49 5.18

Posemo Negemo Insight Cause Affiliation Achieve Risk
Holiday Inn 3.75 0.85 0.86 0.53 2.6 0.76 0.24
Airbnb 2.06 0.83 1.55 2.44 1.22 1.21 0.82

Figure 3.
Airbnb’s Semantic Network

Figure 4.
Holiday Inn’s Semantic Network
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Highlights:

 There are five key domains of differentiation in terms of how MWOM is leveraged

 An entrepreneurial firm is network-empowering, transparent and risk-taker

  A conventional firm is more focal, controlled, risk-averse and affiliating 

 An entrepreneurial firm signals offerings via network participation

 A conventional service provider signals offerings via brand orientation


