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Abstract
Background/Aims: Angiogenesis is a key feature during embryo development but is also part 
of the pathogenesis of cancer in adult life. Angiogenesis might be modulated by inflammation. 
Methods: We established an angiogenesis model in chick chorioallantoic membrane (CAM) 
induced by the exposure of lipopolysaccharide (LPS), and analyzed the effects of the 
antioxidant N-acetylcysteine (NAC) on angiogenesis in this model as well as on the expression 
of key genes known to involved in the regulation of  angiogenesis. Results: Treatment with 
NAC was able to normalize LPS induced angiogenesis and restore the LPS-induced damage of 
vascular epithelium in chick CAM. Using quantitative PCR, we showed that NAC administration 
normalized the LPS induced expression of Keap1-Nrf2 signaling and oxidative stress key 
enzyme gene expressions (SOD, GPx and YAP1). Conclusion: We established a LPS-induced 
angiogenesis model in chick CAM. NAC administration could effectively inhibit LPS-induced 
angiogenesis and restore the integrity of endothelium on chick CAM. LPS exposure caused an 
increased expression of genes involved in oxidative stress in chick CAM. NAC administration 
could abolish this effect.
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Introduction

During embryogenesis the cardiovascular system develops and reaches full functional 
status at birth. This developmental of the cardiovascular system is caused by epigenetic 
mechanisms that are sensitive to eviromental challenges [1, 2] as well as direct effects of 
various drugs on embryonic development [3]. Normal vasculature development occurs 
typically at three different morphological stages, which includes vasculogenesis, angiogenesis 
and vascular remodeling [3]. Both vasculogenesis and angiogenesis are accomplished 
during the prenatal period. The formation of the primitive vascular plexus derived from 
hemangioblasts in extra-embryonic yolk sacs or from within the embryois the first step of 
vasculogenesis. Angiogenesis involves the expansion and remodeling of the vascular plexus 
through endothelial sprouting and intussusceptive microvascular growth [4]. It is a complex 
process and regulated by a many factors. An important stimulating factor of angiogenesis 
is VEGF, acting through VEGFR. VEGF is a specific mitogen which stimulates vasculogenesis 
and angiogenesis [5]. Another significant growth factor are  the angiopoietins (Ang1 and 
Ang2) which are involved in the secondary stages of vessel growth and are required for the 
formation of mature blood vessels [6]. Fibroblast growth factor 2 (FGF-2), known for its 
angiogenic potential, is also of great importance in angiogenesis. One of the most important 
functions of FGF-2 is the promotion of endothelial cell proliferation and the physical 
organization of endothelial cells into tube-like structures, thus promoting angiogenesis [7].

Pathological angiogenesis is characterized by aberrant proliferation of blood vessels, 
seen for example during cancer formation. Another example of pathological angiogenesis 
is important for vision loss in diabetic patients. Here pathological angiogenesis is seen in 
the retina and may cause blindness [8]. Hypoxia is considered as an important factor in 
pathological angiogenesis, since hypoxia can activate the crucial angiogenesis mediators 
such as transcription factors hypoxia-inducible factor (HIF) and vascular endothelial growth 
factor (VEGF), which in turn promote tumor dissemination, invasion and metastasis [9, 10]. 
Therefore, either laser photocoagulation or intravitreal injection of therapeutic antibodies 
binding VEGF is currently used for the treatments of pathological angiogenesis in diabetic 
patients [11]. However, there are many drawbacks for those therapeutic approaches because 
the consistent application is of inconvenience, low or variable efficacy, and costly. Thus, it is 
necessary to look for alternative treatment strategies, especially noninvasive and efficacious 
natural agents.

Pollet et al. reported that bacterial lipopolysaccharide (LPS) stimulated endothelial 
sprouting to initiate angiogenesis in vivo and in vitro through activating TRAF6-dependent 
signaling pathways [12]. Endotoxin and/or some cytokines stimulate pathological 
angiogenesis  and the aberrant formation of new blood vessels [13]. Simon et al. reported 
that LPS exposure evoked cell death in umbilical vein endothelial cells through triggering 
ROS production [14]. In vivo studies demonstrated that LPS exposure caused large amounts 
of ROS production in activated microglia, which, in turn, cause neuronal damage [15]. Many 
compounds have been found to possess the inhibitory effect on LPS-stimulated reactive 
oxygen species (ROS) production [16].

Reactive oxygen species (ROS), as a component of oxidative phosphorylation, play an 
important role in the redox control of various signaling pathways [17-19]. However, excessive 
ROS generation in the body is associated with the pathogenesis of many diseases [17-
19]. Excessive ROS accumulation could interfere with cellular and physiological functions 
through deleterious oxidization of macromolecules including proteins, lipids, DNA and 
signal transduction [20]. ROS can act as primary or secondary messengers to promote cell 
growth or death, and oxidative stress could initiate crucial reactions that either positively 
or negatively influence embryonic development. Therefore, a fine balance between ROS 
production and degradation is key for normal physiological functions of the cell [21, 22]. In 
this context, oxidative stress is regarded as a result of an imbalance between ROS generation 
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and degradation. We have been interested in N-acetylcysteine (NAC) since it could act as an 
antioxidants to restore intracellular levels of glutathione (GSH), the one of the body’s most 
powerful antioxidant defenses [23].

NAC is a cysteine pro-drug, which has been used in therapeutic practices on the 
treatment of various disorders such as paracetamol intoxication for several decades [24]. 
As an antioxidants, NAC could also commendably diminish oxidative stress in patients 
with chronic obstructive pulmonary disease (COPD) [25, 26]. The function of NAC as anti-
oxidation is achieved via its reaction with free radicals as well as the restitution of reduced 
glutathione (GSH) in numerous cells of the body [24, 26]. In this study, we investigated the 
biological effect of NAC on the pathological angiogenesis using an in vivo chick ACM model.

Materials and Methods

Avian embryos and treatments
Fertilized chick eggs were obtained from the Avian Farm of the South China Agriculture University. For 

early gastrula embryos, HH0 (Hamburger and Hamilton stage 0) [27] chick embryos were prepared and 
incubated in absence/presence of N-acetylcysteine (NAC) (Sigma, USA) or/and lipopolysaccharides (LPS, 
also called  lipoglycans and endotoxins) (Sigma, USA) using early chick culture (EC culture) [28]. For later 
stage embryos, various concentrations of NAC (200/400/800/1000 µg/ml), LPS (1/5/10/20/100 µg/ml), 
Vitamin C (Vc) (5mg/ml) or saline (control) were directly injected into the air chamber at the blunt end of 
the fertilized egg.

The embryos were harvested at desired time based on the experimental requirements after incubation 
at 38°C. All of the embryos were photographed using a stereomicroscope (Olympus MVX10, Japan) before 
they were fixed with 4% paraformaldehyde for analysis of morphology and gene expression. Only the 
surviving embryos were used for further research. For the histological analysis, the treated embryos or 
yolk sacs were dehydrated, embedded in paraffin wax and serially sectioned at 5 µm using a microtome 
(Leica RM2126RT, Germany). And then the sections were de-waxed in xylene, rehydrated and stained with 
either hematoxylin and eosin dye or immunofluorescent staining. The sections were photographed using a 
fluorescent microscope (Olympus IX50) with the NIS-Elements F3.2 software package.

Assessment of angiogenesis using chick chorioallantoic membrane (CAM)
As previously described [29], chick embryos were incubated until day 7 when chick CAM is well 

developed. The embryos were treated with NAC, LPS, or saline (control) for 48 hours and all surviving 
embryos were harvested for analysis. The CAM and accompanying blood vessels in the control, NAC and/
or LPS-treated embryos were photographed using a Canon Powershot SX130 IS digital camera (12.1M 
Pixels). Ten embryos in each experimental group were examined. CAM tissues from eight embryos in each 
group were embedded, sectioned and stained with hematoxylin & eosin. The blood vessel density (BVD) 
were quantified using an IPP 5.0 image analysis program. The blood vessel density was expressed as the 
percentage of area occupied by blood vessel as previously described [30]. The chick CAM tissues were also 
harvested for biochemical assays as described below.

The chick embryo aortic arch assay
The aortic arches assay was done with minor modifications as reported previously [31]. Briefly, aortic 

arches of day 13 chick embryos are isolated and cut into small piece of rings tissues. The outgrowth of cells 
including the formation of vessel-like structures occurs mainly within 24-48 hours. The distance between 
cell emigrating from the aortic arches and the aortic arches is a parameter describing cell migration.

Assessment of blood vessel integrality
The assay of Evans blue (EB) (Sigma, US) leakage was used to evaluate blood vessel disruption following 

LPS, NAC, Vitamin C and saline treatment as described previously. The EB measurement was performed 
according to the previous study [32]. Briefly, 2 % EB (4 ml/kg) was injected via YSM. At 2h after EB injection, 
YSM were harvest. The embryos for detecting the Evans blue contents were reperfused with PBS before 
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harvest. YSM samples were then homogenized by formamide 
(1 ml formamide/100 mg tissue) and incubated for 24 h at 
60°C The absorbance of supernatants was measured at 620 
nm [33] with microplate reader (Biotek, ELX800, US).

Semiquantitative RT-PCR
Total RNA was isolated from the gastrula chick embryos or 

chick CAM tissuesusing a Trizol kit (Invitrogen, USA) according 
to the manufacturer’s instructions. First-strand cDNA was 
synthesized to a final volume of 25 μl using SuperScript RIII 
first-strand (Invitrogen, USA). Following reverse transcription, 
PCR amplification of the cDNA was performed. The sets of 
primers used for semiquantitative RT-PCR are provided in 
the Table 1. The PCR reactions were performed in a Bio-Rad 
S1000TM Thermal cycler (Bio-Rad, USA). The final reaction 
volume was 50 μl composed of 1 μl of first-strand cDNA, 25 
μM forward primer, 25 μM reverse primer, 10 μlPrimeSTARTM 
Buffer (Mg2+ plus), 4 μl dNTPs Mixture (TaKaRa, Japan), 0.5 
μlPrimeSTARTM HS DNA Polymerase (2.5U/μl TaKaRa, Japan), 
and RNase-free water. cDNA was amplified for 30 cycles. One 
round of amplification was performed at 94°C for 30 s, 30 s at 
58°C, and 30 s at 72°C. The PCR products (20 μl) were resolved 
using 1% agarose gels (Biowest, Spain) in 1× TAE buffer (0.04 MTrisacetate and 0.001 M EDTA) and 10, 
000x GeneGreen Nucleic Acid Dye (TIANGEN, China) solution. The resolved products were visualized using 
a transilluminator (SYNGENE, UK), and photographed using a computer-assisted gel documentation system 
(SYNGENE). Each of these experiments was replicated at least three times.

Data analysis
Statistical analysis for all the experimental data generated was performed using a SPSS 13.0 statistical 

package program for windows. The data were presented as mean ± SE. Statistical significance were 
determined using paired t-tests, independent samples t-test or one-way analysis of variance (ANOVA). 
*p<0.05, **p<0.01 and ***p<0.001 indicate significant difference between control and ethanol-treated 
specimens.

Results

Selecting the optimal concentration of NAC using gastrula chick embryos
To choose the optimal concentration of NAC, we incubated HH0 chick embryos in 

EC culture containing 0 (control), 200, 400, 800, 1000 μg/ml NAC, until HH12 (Fig. 1A). 
NAC showed a trend of a dose dependent increase in mortalitz, however, this effect was 
not significant (Fig. 1G); interestingly, exposing 800 μg/ml NAC (3461±214.9μm) did not 
significantly alter the length of HH12 chick embryo compared to control (3557±86.71μm), 
although other concentrations of NAC stimulated the growth of gastrula chick embryos 
to some extent (Fig. 1F-H). Therefore, 400 and 800 μg/ml NAC are used in the following 
experiments.

400 and 800 μg/ml NAC administration on its own did not affect angiogenesis on chick 
CAM
Using the angiogenesis model on chick CAM, we studied the effect of 400 and 800 μg/

ml NAC on the embryonic angiogenesis. NAC did not significantly affect the angiogenesis on 
CAM (Fig. 2B-D) as well as the blood vascular densities of the vascular nets on chick CAM 
(Fig. 2E). The expressions of oxidative stress-related key genes on chick CAM were assessed 
using quantitative PCR following the exposure of 400 and 800 μg/ml NAC (Fig. 2G-L).

Table 1. Primers sets used in the RT-PCR 
analysis
Primers Forward Reverse 
VEGFA ACAAGAAAATCACTGTGAGCCT TGCTCACCGTCTCGGTTTTT 
VEGFC TTGCGATCTGTGTCCAGTGT GAGCTGGAGTGTTCCCTGTT 
VEGFD CTTCTGGACCACGGATGGATT ATGCAGCTCCACTCTCACAAG 
VEGFR2 TTGGCTGGCGGTATTCACAT GTCTCTGGAGGAAAGCACCC 
VEGFR3 ATGTTCTCTCGACGCAGCCTTAG TGTACATGGCTGAGACGTTGG 
ANG1 ACAAAAGCGGCGTCTACACT AGCCAGTGTTCACCTGATGG 
ANG2 ACTGAATCCCAAGAAGTGAAGA TCTACTGCAACCATGCTCAGA 
ET1-1 GGAGCTGTTTACCCCCACTC GTGCCCTTTTAACGGGGAGA 
ET1-2 GAGCTGTCCAAGTCAGACGC TCAGCCCAAGTGCCCTTTTA 
ETA ACTAGACGGCCTCCGGTATC TCGGGCCATTCCTCATACAC 
ETB GTGTCATGCCTGGTGTTCGT GCCAGTCCTCTGCAAGTAGC 
GAPDH GTCAACGGATTTGGCCGTAT AATGCCAAAGTTGTCATGGATG 
SOD1 CAGATAGGCACGTGGGTGAC CCATGGTACGGCCAATGATG 
SOD2 ACTGTTGTGCGACAAAGGGA  CACAAAGTGTGCGTTTCCACT  
GLRX CTGCCCTTACTGCAAGAATGC AAACACACGAGGGACGGTTC 
GPX1 GGGTACCGAAAGTCACTGGG GTTCACGCGGGACAGTTTTC 
SRXN1 CTGTGTTGGAGCCGGAGAAA GTAGAAGTAGTCCCCGCCCT 
Yap1 GTGTCATGGGTGGGAGTAGC TGGCTACGGAGAGCCAATTC 
SIRT3 AGTGCAGGACTGGCTGC CTTCCGAATGAGCTCTGCCA 
HIF1α GGCAGTACTTCCATCCTGCTC GCTACAATGCACTGCTGCAAAG 
HIF-1β TGGTGCCTCCAGTGAACATC CACCTGGGCTGCGAACG 
HIF2α CGATGACAGCTGACAAGGAGAAG AGGTGGGAACTGACATTGTGG 
Fgf2 AGAAACTGCATGGTGGCAGA CCTTCAGTGATTCCGGGGAC 
FgfR ACTGCGCAGACAGGTAACAG GGCAGCTCATACTCGGAGAC 
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Fig. 1. Assessment of 
gastrula chick embryo 
development and 
mortality in absence/
presence of various 
c o n c e n t r a t i o n s 
of NAC. A: The 
sketches illustrate to 
incubation of HH0 
chick embryos until 
HH12 in EC culture 
in absence/presence 
of NAC (see also 
material and method 
for more details). 
B-F: Representive 
bright-field images of 
HH12 gastrula chick 
embryos were taken from saline treated control embryos (B), as well as embryos treated with 200 μg/ml 
NAC (C), 400 μg/ml NAC (D), 800 μg/ml NAC (E), 1000 μg/ml NAC (F) ,respectively. G-H: Bar graphs showing 
the comparison of mortality (G) and lengths (H) of the HH12 chick embryos either with saline (B) or with 
200 μg/ml NAC (C), 400 μg/mlNAC (D), 800 μg/ml NAC (E), 1000 μg/ml NAC (F) , respectively. (n>3 chick 
embryos in each group). (*P<0.05, **P<0.01, ***P<0.001 versus controls). Scale bars = 300 µm in B-F.

Fig. 2. Assessment 
of NAC effects on 
angiogenesis and 
mRNA expression of 
key enzymes involved 
in ROS production 
in chick CAM. A: The 
sketches illustrate the 
experimental design 
of the experiment. 
NAC or saline were 
given at day 7 of 
embryo development. 
Angiogenesis and 
gene expression 
was assed at day 9. 
B-D: Representative 
bright-field image of 
angiogenesis on CAM 
exposed to saline 
(Control, B), 400 μg/ml NAC (C) and 800 μg/ml NAC (D), respectively. E: Bar graph showing blood vascular 
densities on the CAM in control embryos, embryos treated with 400 µg/ml NAC and 800 µg/ml NAC groups.  
n>3 CAMs in each group. F-L: Quantitative PCR data show the gene expressions of TLR4 (F), GLRX (G), GPX 
(H), SRXN (I), SOD1 (J), SOD2 (K) and YAP1 (L) in control – saline treated -  embryos, embryos treated with 
400 µg/ml NAC and 800 µg/ml NAC , respectively. (Each of these experiments was replicated at least three 
times.). (*P<0.05, **P<0.01, ***P<0.001 versus controls). Scale bars = 1 mm in B-D.
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NAC administration suppressed LPS-induced angiogenesis on chick CAM and aortic arch 
explant models
Using the chick CMA model (Fig. 3A), we analyseddifferent combinations of LPS (10 and 

100 μg/ml) and NAC (400 and 800 μg/ml) for 2 days. The results showed that both dosages 
of LPS increase blood vascular densities (10 μg/ml LPS: 27.86±1.35, p<0.001; 100 μg/ml 
LPS: 29.62±3.99, p<0.001). The LPS-induced angiogenesis was significantly suppressed by 
NAC (10 μg/ml LPS & 400 μg/ml NAC: 15.71±1.77 %, p<0.01; 100 μg/ml LPS & 400 μg/ml 
NAC: 24.24±2.66, p<0.001; 10 μg/ml LPS & 800 μg/ml NAC: 13.73±1.31%, p<0.01; 100 μg/
ml LPS & 800 μg/ml NAC: 17.50±1.47, p<0.001) (Fig. 3B-I). To confirm the experimental 
results above, we further employed the in vitro explant culture assay of the chick embryo 
aortic arches as previously described [31], 1μg/ml LPS in culture medium could stimulated 
the cell extension from the cultured explants of chick aortic arches. Again the LPS-stimulated 
cell extension from aortic arch explants was significantly regressed by addition of 1000 μg/
ml NAC (1 μg/ml LPS: 421.4±3.293, p<0.001; 1 μg/ml LPS & 1000 μg/ml NAC: 359.2±25.98, 
p<0.001) (Fig. 3J-M), indicating that NAC administration indeed suppress LPS-induced 
angiogenesis.

NAC administration suppressed LPS-enhanced adhesion of endothelial cells and 
angiogenesis-related gene expressions on chick CAM
To investigate whether or not the integrity of blood vessels was altered in presence/

absence of LPS and/or NAC, we carried out the Evans blue perfusion experiments in chick 

Fig. 3. Assessment of angiogenesis on chick CAM and in vitro explant culture in absence/presence of LPS 
and NAC. A: The sketches illustrate the same way to treat embryos as did in Fig. 2A. B-H: The representative 
bright-field image of angiogenesis on chick CAM exposed to simple saline (Control, B), 10 LPS (C), 100 LPS 
(D), 10 LPS + 400 NAC (E), 10 LPS + 800 NAC (F), 100 LPS + 400 NAC (G), and 100 LPS + 800 NAC (H) 
respectively. I: Bar chart showing the comparison of blood vascular densities on the CAM among control, 
10 LPS, 100 LPS, 10 LPS + 400 NAC, 10 LPS + NAC, 100 LPS + 400 NAC, and 100 LPS + 800 NAC groups (n>3 
CAM in each group).  J-L: The representative bright-field images of the aortic arch explants from 13-day 
chick embryos were taken at in vitro 3-day incubation in presence of sample saline (Control, J), 1 LPS or 1 
LPS + 1000 NAC groups. M: Bar chart showing the comparison of cell emigratory distances from the in vitro-
cultured aortic arch explants among control, 1 LPS and 1 LPS + 1000 NAC groups (n>3 aortic arch explants 
in each group). Scale bars = 1 mm in B-H and 50 µm in J-L.
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CAM model. The amount of Evans blue accumulated in the tissues is inversely related to the 
integrity of blood vessels. (Fig. 4B).

Furthermore, we determined gene expressions of tight junction and adherens junction 
molecules using quantitative PCR. Both 10 and 100 μg/ml LPS significantly increased gene 
expressions of tight junction molecules including Claudin-1, Claudin-5, Claudin-12, ZO1, ZO2 
in chick CAM. Increased expression of these genes was blunted by NAC in a dose-dependent 
manner (except for Claudin-12 and ZO-2 in the 10 μg/ml LPS + 400 μg/ml NAC groups) (Fig. 
4C-G). Both dosages of LPS administration also significantly increased the expressions of VE-
cadherin, β-catenin, Plakoglobin, Vinculin and Par3; the addition of 400 or 800 μg/ml NAC 
suppressed the LPS-enhanced expressions of Plakoglobin and Vinculin (Fig. 4H-L). 10 and 
100 μg/ml LPS significantly increased gene expressions of Ang2, VEGFR3 and FGF2 on chick 
CAM. Addition of 400 or 800 μg/ml NAC suppressed LPS-enhanced expressions of these 
genes (Fig. 5F, H, I). On the contrary, both 10 and 100 μg/ml LPS inhibited the expressions of 
Ang1 and VEGFR2 on chick CAM, and the expressions of Ang1 and VEGFR2 gradually rose by 
the addition of 400 or 800 μg/ml NAC (Fig. 5G, J).

Fig. 4. Assessment of vascular integrity and gene expression of genes involved in tight-junction adhesion 
molecules, modulation of subcellular distribution of junctions, cell polarity proteins, junction formation 
and epithelial polarization in chick CAM in absence/presence of LPS and NAC. A: Sketches illustrates how 
Evans blue was injected into the blood vessel. B: Bar graphs showing blood vessel integrity. The amount of 
Evans blue accumulated in the tissues is inversely related to the integrity of blood vessels.  C-L: Quantitative 
PCR data showing gene expressions of Claudin-1 (C), Claudin-5 (D), Claudin-12 (E), ZO-1 (F), ZO-2 (G), VE-
Cadherin (H), β-catenin (I), Plakoglobin (J), Vinculin (K) and Par3 (L) in control, 10 μg/ml LPS, 10 μg/ml LPS 
+ 400 μg/ml NAC, 10 μg/ml LPS + 800 μg/ml NAC, 100 μg/ml LPS, 100 μg/ml LPS + 400 μg/ml NAC, and 100 
μg/ml LPS + 800 μg/ml NAC groups. Each of these experiments was replicated at least three times. (*P<0.05, 
**P<0.01, ***P<0.001 versus controls).
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Fig. 5. 
Assessment 
of the 
angiogenesis-
related gene 
expressions 
in chick CAM 
in absence/
p r e s e n c e 
of LPS and 
NAC. A-E: 
Quantitative 
PCR data 
s h o w i n g 
the gene 
expressions 
of Ang2 (A), 
Ang1 (B), 
VEGFR3 (C), FGF2 (D), and VEGFR2 (E)in control, 10 μg/ml LPS, 10 μg/ml LPS + 400 μg/ml NAC, 10 μg/ml 
LPS + 800 μg/ml NAC, 100 μg/ml LPS, 100 μg/ml LPS + 400 μg/ml NAC, and 100 μg/ml LPS + 800 μg/ml 
NAC groups. Each of these experiments was replicated at least three times. (*P<0.05, **P<0.01, ***P<0.001 
versus controls).

Fig. 6. Assessment of the oxidative stress-related gene expressions in chick CAM in absence/presence of 
LPS and NAC. A: Sketches illustrating key genes involved in oxidative stress regulation. B :Potential effects of 
LPS on genes involved in oxidative stress. C-H: Gene expressions of Nrf2 (C), Keap1 (D), SOD1 (E), SOD2 (F), 
GPx (G), and YAP1 (H) in control, 10 μg/ml LPS, 10 μg/ml LPS + 400 μg/ml NAC, 10 μg/ml LPS + 800 μg/ml 
NAC, 100 μg/ml LPS, 100 μg/ml LPS + 400 μg/ml NAC, and 100 μg/ml LPS + 800 μg/ml NAC. Each of these 
experiments was replicated at least three times. (*P<0.05, **P<0.01, ***P<0.001 versus controls).
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Oxidative stress is closely related to NAC-suppressed angiogenesis induced by LPS on chick 
CAM
It is well known that external environment factors often interferes with embryonic 

angiogenesis through excessive ROS production [34].Using quantitative PCR, we determined 
the expressions of oxidative stress-related genes (Fig. 6A-B) on chick CAM in absence/
presence of LPS or/and NAC. The results showed that both of 10 and 100 μg/ml LPS 
significantly increased the expressions of Nrf2, Keap1, SOD1, SOD2, GPx and YAP1 genes in 
chick CAM (Figs. 6C-H); addition of 400 or 800 μg/ml NAC suppressed the LPS-enhanced 
expressions of GPx, YAP1, Nrf2, , and Keap1genes (Fig. 6E, F, G, H). Addition of 400 or 800 μg/
ml NAC to the test system even raised the expressions of SOD1 and SOD2 genes.

Besides, we also investigated the effects of another antioxidant – Vitamin C (Vc) - on 
angiogenesis in this model, and the result showed that Vitamin C (5 mg/ml) significantly 
affected the angiogenesis on CAM (Fig. 7B) as well as the blood vascular densities of the 
vascular nets on chick CAM (5 mg/ml Vc: 19.81±0.63, p<0.001; Fig. 7E). The LPS-induced 
angiogenesis was significantly suppressedby addition of 5 mg/ml Vc. (10 μg/ml LPS: 
27.86±1.35, p<0.001; 10 µg/ml LPS + 5 mg/ml Vc: 16.63±0.64, p<0.001) (Fig. 7E).

The expressions of key genes on chick CAM were assessed using quantitative PCR 
following the exposure of 5 mg/ml Vc (Fig. 7F-J). 10 μg/ml LPS significantly increased 

Fig. 7. Assessment of Vitamin C (Vc) effects on angiogenesis in presence/absence of LPS. A-D: Representative 
bright-field images of angiogenesis on chick CAM exposed to saline (Control, A), 5 mg/ml Vc (B), 10 µg/
ml LPS (B), 10 µg/ml LPS + 5 mg/ml Vc (D) , respectively. E: Bar chart showing the comparison of blood 
vascular densities on the CAM in control, 5 mg/ml Vc, 10 µg/ml LPS, 10 µg/ml LPS + 5 mg/ml Vc (n>3 CAMs 
in each group). F-M: Quantitative PCR data show the gene expressions of Ang2 (F), Ang1 (G), VEGFR3 (H), 
FGF2 (I), and VEGFR2 (J), Nrf2 (K), Keap1 (L), GPx (M) in control  embryos, embryos treated with 5 mg/
ml Vc, 10 µg/ml LPS, 10 µg/ml LPS + 5 mg/ml Vc, respectively (Each of these experiments was replicated at 
least three times). *P<0.05, **P<0.01, ***P<0.001. Scale bars = 1 mm in A-C.
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the gene expressions of Ang2, VEGFR3 and FGF2 on chick CAM. Addition of 5 mg/ml Vc 
suppressed the LPS-enhanced the expressions of these genes (Fig. 7F, H, I). 10 μg/ml LPS 
inhibited the expressions of Ang1 and VEGFR2 on chick CAM, and the expressions of Ang1 
and VEGFR2 gradually rose by the addition of 5 mg/ml Vc (Fig. 7G, J).

We also determined the expressions of oxidative stress-related genes (Fig. 7K-M) on 
chick CAM in absence/presence of LPS or/and Vitamin C. The results showed that 10 μg/
ml LPS significantly increased the expressions of Nrf2, Keap1 and GPx genes on chick CAM.

Discussion

The chick embryo model has been extensively used to investigate the birth defects 
in various organ systems [35-40]. In the current study, we used chick embryos and chick 
chorioallantoic membrane (CAM) as an in vivo angiogenesis model to analyze the effects 
of N-acetylcysteine (NAC) on LPS-induced pathological angiogenesis. The chick gastrula 
embryos and CAM are an excellent model for studying angiogenesis because they are easily 
accessible for experimental manipulations and angiogenesis could be observed and analyzed 
easily as previously described [41, 42]. The chick CAM normally provides the developing 
embryo with nutrients. The highly vascularization of CAM makes it an excellent model for 
studying the formation of blood vessels in presence of any compound of interest. Moreover, 
the results produced are highly reproducible, because NAC concentrations as well as other 
factors influencing embryonic growth can be strictly controlled in EC culture medium (see 
Fig. 1).

Our study demonstrated that NAC on its own did not affect angiogenesis in the chick 
embryo model, but regulates genes expression of enzymes involved in oxidative stress (Fig. 
2). Angiogenesis could be induced by administration of lipopolysaccharide (LPS) in CAM. We 
suggest that this effect is mediated via the LDS receptor being detectable on chicken CAM 
(unpublished data). LPS substantially induces angiogenesis in chicken CAM, this process, 
however, could be abolished by NAC treatment (Fig. 3). Using chicken embryo aortic arch 
assay, we also obtainedsimilar results showing that NAC administration normalized the LPS-
enhanced cell extension from the cultured explants of chick embryo aortic arches (Fig. 3). 
These data are in agreement with previous reports showing that LPS induces endothelial 
sprouting and angiogenesis via stimulating the release of growth factors or cytokines [43].

The LPS-stimulated angiogenesis was accompanied by an upregulation of genes 
(Fig. 4) involved in tight-junction adhesion molecules, but also modulation of subcellular 
distribution of  junction and cell polarity proteins, resulting in junction formation and 
epithelial polarization [44]. These gene expressions were raised following the LPS exposure 
and most of them dropped by the addition of NAC (Fig. 4), which shows the same patternas 
seen on blood vessel density in presence of LPS/NAC, suggesting an antagonism of NAC 
on inflammation-induced pathological angiogenesis. FGF-2 and VEGF are key inducers of 
angiogenesis [45] and HIF2 (hypoxia-inducible transcription factor 2) plays an important 
role in blood vessel remodeling [46]. The followed experiments about the LPS/NAC-altered 
expressions of VEGFR2-3 and FGF2, as well as Ang1 and Ang2, the key genes on maintaining 
vascular endothelium integrity [47], likewise support the restoring effect of NAC on aberrant 
angiogenesis (Fig. 5).

To elucidate the underlying mechanism of NAC’s restoring effect on LPS-induced 
pathological angiogenesis, we focused onthe antioxidative potential of NAC. We observed 
that LPS-enhanced the expressions of Nrf2 and Keap1, the key antioxidative genes. NAC 
normalized expression of these genes. Moreover, the expressions of key redox enzyme genes 
such as SOD, GPx and YAP1 showed likewise a trend towards normal expression after NAC 
treatment (Fig. 6). We found that Vitamin C (a well-known antioxidant drug) could effectively 
inhibited LPS-induced angiogenesis as well (Fig. 7). These findings suggest that the NAC 
as antioxidant is able to restore pathological angiogenesis at least partially by modulation 
genes involved in oxidative stress.
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It is a clear study limitation that we only analyzed NAC as antioxidant. Thus is is unclear 
so far weather or not the observed NAC effects are compound specific or a class effect of 
antioxidants in general.

Conclusion

In summary (Fig. 8), we established a LPS-induced angiogenesis model in chick CAM. 
NAC administration could effectively inhibit LPS-induced angiogenesis and restore the 
integrity of endothelium on chick CAM. LPS exposure caused an increased expression 
of genes involved in oxidative stress in chick CAM, and NAC administration could abolish 
this effect. We recently demonstrated in the same model that combined ETA/ETB receptor 
blocade is likewise an effective pharmaceutical approach to inhibit LPS-induced angiogenesis 
[48]. It would be of interest to see wheater an combination of both strategies potentiate the 
inhibition on LPS-induced angiogenesis.

Our current studies suggest that NAC might act as a potential drug for the treatment of 
pathological angiogenesis in clinical practice as well, however, more experiments in models 
closer to clinical situation are clearly needed.
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Fig. 8. Hypothetic model illustrating how NAC blunts LPS induced angiogenesis.
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