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Abstract 

[1] A well-known feature of observed and simulated climate is enhanced land surface 

warming compared to the ocean.  This difference in warming, frequently expressed as a ratio, 

is often contrasted between the observed record and climate model output as both an 

evaluation metric for climate models and as a global index used for climate change detection 

and attribution. Latest simulated estimates of the ratio use full global coverage and marine 

surface air temperature, making genuine comparisons with observations difficult, since global 

observed datasets typically use sea surface temperatures and have limited spatial coverage. 

We show that re-calculating simulated ratios when using sea surface temperatures and limited 

spatial coverage (to resemble the observations) raises the ratio by ~0.25. We also update the 

observed ratio using latest observations and we find a close convergence of observed and 

simulated ratios towards ~1.6 for the 2000-2016 period accompanied by a decline in temporal 

variability. If we revise estimates of the likely range of ratios from climate models to account 

for the above factors, then our new observed ratio estimate is slightly less than the median of 

the GCM ensemble range (1.54 to 1.81). 

 

1. Introduction 

[2] Greater levels of temperature change over the land surface, compared to the ocean surface 

is a well-noted phenomenon of climate change (e.g. Lambert and Chiang, 2007; Sutton et al., 

2007; Drost and Karoly, 2012a; Drost et al., 2012b; Byrne and O’Gorman, 2013).  Interest in 

the warming ratio (hereafter “WR”) reflects the importance of the phenomenon in both 

societal terms (i.e. the implications of mitigating and adapting to global temperature targets 

over land) and also in terms of the dynamical processes responsible for the WR under both 

transient climate change and climate equilibrium. Existing studies provide substantial 

assessments of the coupled ocean-atmosphere processes which appear to be responsible for 

the WR showing that whilst thermal inertia differences do contribute, the dominating 

mechanisms are related to boundary layer properties, humidity and surface processes (e.g. 

Sutton et al., 2007; Joshi et al., 2008; Byrne and O’Gorman 2018). Recent studies have also 

described how the nature of the WR is different depending on the forcing agent, land surface 

properties (including stomatal responses to CO2 concentrations) (Sutton et al., 2007; Joshi et 

al., 2008a; Joshi and Gregory, 2008b). Other work has shown evidence for a land-sea WR 

under paleo-climatic change (Schmittner et al., 2011) whilst other work has identified 

processes constraining the WR (e.g. oceanic heat uptake; cloud feedbacks) (Lambert et al., 

2011; Sejas et al., 2014).  

[3] Braganza et al. (2003; 2004) considered simple land-minus-ocean temperature differences 

(rather than a ratio) finding a rising trend in the observed land-ocean contrast well-captured 

by GCM simulations and attributable to anthropogenic forcing. Sutton et al. (2007) diagnosed 

an observed WR of ~2.0 using data for 1980-2004 noting lower simulated WR values.  

Lambert and Chiang (2007) report an observed land-sea contrast in temperature change, also 

for 1980-2004, of ~1.55 or ~1.76 obtained by regressing ocean and land temperatures (the 

two estimates reflecting which variable is assumed independent). More recently, using 

additional GCMs involved in the UN Intergovernmental Panel on Climate Change’s 5th 

assessment report (IPCC AR5), the likely value of the WR has been placed between 1.4 and 

1.7 (Collins et al., 2013) whilst Drost et al., (2012) derive an observed WR of between 1.39 
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and 1.69 for 1990-2010 and a simulated WR of 1.54 for the same period using CMIP3 

GCMs.   

[4] In this study we also extend estimates of the present day and recent-period WR using two 

estimates of observed land surface air temperature and a set of historically-forced GCM 

simulations. We investigate the sensitivity of the simulated WR to the choice of sea surface 

temperatures (SST) or marine surface air temperature (SAT). The implications (as yet 

unquantified) of interchanging between SST and marine SAT deserve attention, especially 

when seeking to make like-for-like GCM-to-observation comparisons of the WR, given that 

major global observed records use oceanic SST rather than marine SAT. 

 

2. Data and Methods 

 

2.1 Observed Data 

[5] For the diagnosis of the observed WR we use two gridded instrumental records of 

monthly temperature. The first, HadCRUT4, spans 1860-2016 and is a blended data set of 

land SAT and ocean SST (Morice et al., 2012). Uncertainty estimates are supplied for 

HadCRUT4 via an ensemble-sampling approach and for the purpose of our study here we use 

the median dataset of the ensemble results. The second observed data set is the land-only 

Berkley Earth SAT record, hereafter “BE”, spanning 1750-2015 (Rodhe et al., 2012). The 

two observed records are selected to provide a representation of the sensitivity of observed 

temperatures to both station inclusion and, importantly, differing gridding and 

homogenization algorithms over the land surface (see Rodhe et al. 2012 for a description of 

how the latter contrast with techniques used by other groups) so called ‘structural 

uncertainties’ (Morice et al., 2012). By selecting BE as the alternative land dataset such 

differences are larger and so the sensitivity clearer than if other data sets were used which 

applied similar assemblage techniques to HadCRUT4 (e.g. NASA-GISTEMP).       

2.2 GCM Data 

[6] For diagnosis of the GCM WR we use data from 21 GCMs within the IPCC AR-5 CMIP5 

archive (Taylor et al., 2012). In order to match the time coverage of the observed data sets, 

for each GCM we use data from the CMIP5 ‘historic’ experiments (forced with historical 

estimates of greenhouse gases, aerosols and natural forcing) up to the simulated year 2004 

and thereafter we append data from each GCM’s RCP4.5 experiment.  Since we are focusing 

upon the GCM’s comparison with the observed record, we do not use GCM data past 2016 in 

the analysis and therefore the choice of RCP experiment is of minimal importance, since the 

anthropogenic forcing divergence (between each RCP) does not dominate the simulated 

climate until later (Hawkins and Sutton, 2009).   

[7] We use ensemble means of each GCM’s historical and RCP4.5 simulations to create the 

SAT and SST temperature anomalies from which the simulated WRs are calculated, except 

when investigating the temporal variability of the WR. When investigating the temporal 

variability we use just one ensemble member per GCM to calculate the land and ocean 

warming anomalies in order to retain unforced variability that would be dampened by using 

an ensemble mean. 
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2.3 Calculation of WR 

[8] The WR is defined as the mean land temperature change, ∆TL, divided by the mean ocean 

temperature change, ∆TO. In calculating the mean over land and ocean, grid cells contributing 

either to ∆TL or ∆TO are first area-weighted and are designated land or ocean according to 

whether the land fraction in the grid cell is less than or great than 50%. For all data 

(observations and GCMs) the WR is calculated for each month for the 1890-2016 period 

before an annual average WR is calculated. ∆TL and ∆TO  are calculated with reference to 

their respective 1890-1920 climatological average which represents a period in which the 

anthropogenic forcing is small allowing us to diagnose the WR during rising levels of 

anthropogenic forcing, whilst also allowing for a reasonable spatial coverage of observations 

(more so than, say, 1850-1880). It is also consistent with previous investigations (Drost et al., 

2012a). 

[9] Because the spatial coverage of the observed anomaly data sets are not consistent through 

time we follow the approach of Braganza et al. (2003) and develop a fixed mask that 

excludes grid cells which do not have at least 40-years of data (a year defined as having at 

least 6-months data present in a given cell) from 1900 onwards (Figure 1a). The resulting 

mask does not change through time and observed data coverage can vary within the mask’s 

extent (so long as the grid cell meets the inclusion criteria). The sensitivity of global indices 

to coverage variability within the mask’s extent has been shown to be low (Braganza et al., 

2003). The mask is applied to the observed data before integrating ∆TL and ∆TO and we 

calculate the GCM WR both with the mask applied (“masked”) and without (“unmasked”) in 

order to quantify the sensitivity of the WR to the coverage. 

[10] In the case of the observed WR, ∆TO is always comprised of SST since the ocean 

element of HadCRUT4 is HadSST3 (Kennedy et al, 2012a) and for the BE analysis we 

substitute HadCRUT4 data points over land only (with the Berkley Land Surface data). In the 

case of the GCM WR, however, we calculate WR both using SSTs over the ocean (hereafter 

“GCM SAT:SST”) and oceanic SAT (“GCM SAT:SAT”) so that we can investigate the 

effect of variable choice upon the WR value.   

3. Results 

[11] Annual WR series for the recent period, 1980-2016, are shown in Figure 1b.  All series 

converge after the year 2000 and we discuss this convergence later.  For the 1980-2016 

period the observed HadCRUT4 and BE WR (note BE finishes 2015) is 1.45 and 1.62 

respectively (see Table 1 for mean values). To investigate the BE and HadCRUT4 contrast 

we plot land temperature anomalies for both in Figure 2, but benchmarked to their respective 

1951-1980 climatology which allows a comparison of the two series for the early and modern 

parts of the series. For the climatological 1890-1920 period, against which we calculate ∆TL 

for the WR calculation, Figure 2 shows that BE is notably cooler than HadCRUT4, thus BE 

∆TL will be larger than the corresponding anomalies for HadCRUT4. It is interesting to note 

that beyond 2000 there is a reverse in the differences with HadCRUT4 land temperature 
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anomalies being slightly larger than BE. The effect of this divergence moderates somewhat 

the tendency for the BE WR to be greater than the HadCRUT4 WR (but the divergence is not 

large enough to completely offset the 1890-1920 difference).  

[12] For the masked GCM SAT:SST data, which is the best resemblance to the observed data 

in terms of coverage and marine variable choice, the multi-model mean WR (1.60 for 1980-

2016, Table 1 and Figure 1b) is very close to the observed values. By comparing the masked 

GCM SAT:SST and masked GCM SAT:SAT results we can quantify the sensitivity of the 

WR to marine variable choice. For 1980-2016 the masked GCM SST:SAT WR is higher than 

the masked GCM SAT:SAT WR (1.60 compared with 1.45). The larger simulated WR 

obtained when using marine SST instead of SAT can be attributed to lower warming of SSTs 

compared to SAT, with notable differences over the Northern Atlantic sub-polar gyre, the Sea 

of Japan and the Bering Sea (see Figure 3). The regions of δSST and δSAT differences 

correspond with recently identified regions of increased oceanic heat uptake (Drijfhout et al., 

2014).  The only region within the fixed mask where SST warms more than marine SAT is 

within the small number Arctic cells that remain in the fixed mask (red, Figure 3). Here, the 

replacement of sea ice by open ocean in winter months leads to a warmer simulated skin 

temperature and the skin warming associated with this phase change is much bigger than the 

local rise in SAT for the same time period. As expected, WR values calculated without the 

application of the fixed mask are lower due to the inclusion of Arctic oceanic grid cells which 

have substantial SST and marine SAT warming. The difference in WR for SAT:SAT due to 

the application of the mask is +0.09 and for SAT:SST it is +0.11. The magnitude of the 

masking affect is almost as large as the sensitivity of variable choice within the masked area. 

Accounting for both sensitivities, simulated WRs are approximately 0.25 higher for masked 

SAT:SST data than unmasked SAT:SAT, with the former being the best resemblance to the 

observations. 

[13] In all three data sources, HadCRUT4, BE and the multi-model mean (masked 

SAT:SST), a contrast in WR character during the recent 1980-2016 period appears evident 

before and after the year ~2000 (Table 1, final 3 columns and Figure 1b). For the latter part of 

the recent period (after 2000) mean WR values converge towards very close agreement, with 

values of 1.61 (HadCRUT4), 1.68 (BE) and 1.68 (GCM multi-model mean). Simultaneously, 

for the 2000-2016 time period, a substantial reduction in the inter-model spread of WR 

values, measured by the standard deviation of the 21 simulated WR values, is evident 

compared to other time slices of the analysis period [e.g. an analogous 17-year period prior to 

2000 (Table 1 column 4, 1980-1996)].   

[14] The inter-annual standard deviation, σ, is calculated from the annual WR series for all 

data, for the 2000-2016 period in order to assess errors in WR in the period where well-mixed 

greenhouse gas forcing is dominant (Joshi et al., 2013). Values of σ prior to 2000 are 

sensitive to large fluctuations in WR arising solely from denominator values (∆TO) being 

close to zero (for example, an inter-annual change in ∆TO of, say, 0.1, has a greatly amplified 

impact on WR variance than if ∆TO is 0 at t=0 than, say, 1 at t=0). In the case of the GCMs, 

WR from just one ensemble member is used to derive σ avoiding the suppression unforced 

variability (which is present in the observations). For the 2000-2016 period the GCM multi-

model mean σ (the mean of the 21 σ values, 0.19) is remarkably close to the HadCRUT4 

(0.18) and BE (0.14) values. For the observed 2000-2016 WR the standard error can be 

inferred (2𝜎/√𝑛) giving respective uncertainty estimates of WR=1.61±0.09 for HadCRUT4 
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and WR=1.68±0.07 for BE. In the case of the simulated WR, in which there are 21 GCM 

series, uncertainty can also be estimated by the 16th and 84th percentiles of the 21 WR values. 

This choice of percentiles is equivalent to p=0.66, and representative of the IPCC’s ‘likely’ 

definition. By this definition, and by calculating percentiles in each year and then averaging 

those values for 2000-2016, the likely range of the simulated GCM WR is 1.54 to 1.81. 

Discussion 

[15] The observed WR values for HadCRUT4 and BE for the recent period (1980-2016) 

agree well with previous calculations of the observed WR.  Some previous studies have 

calculated higher observed WRs for example Sutton et al. (2007) who calculated a mean 

value of ~2.0 for 1980-2004. Suggestions have been made that discrepancies may exist 

between WR estimates made using observed records compiled before and after 2010 and that 

changes in the observation assemblage might account for higher values (Drost et al., 2012b). 

Whilst bias corrections introduced into later records (most especially SST [Kennedy et al., 

2012a; 2012b]) will influence the resulting WR and further corrections may still be required 

(Hausfather et al., 2017) that could reduce the recent WR, we note in this study that there is 

sufficient sensitivity to the choice of reference period from which ∆TL and  ∆TO are 

calculated to account for the large WR value of Sutton (2007). For example, the WR 

estimates in our study, Drost et al. (2012a; 2012b) and Braganza (2003; 2004) all use a 

reference period of 1890-1920; if we re-calculate the observed WR in our study using ∆TL 

and ∆TO  with respect to the 1961-1990 period, as per Sutton et al. (2007) and Lambert 

(2011),  then we arrive at a higher WR, 2.02 (HadCRUT4 for 1980-2004) which is 

commensurate with those studies.  

[16] Differences between the GCM SAT:SAT and GCM SAT:SST WRs show that WRs 

calculated using marine SAT are lower than if SST is used and that WRs are also lower if 

GCM data are not masked to resemble observational coverage. This behavior is consistent 

with recent investigations into simulated global-mean ∆T (Cowtan et al., 2015; Richardson et 

al., 2016) which is shown to reduce when coverage masking is imposed and, further, when 

marine SAT is substituted with SST thus influencing GCM comparisons against the observed 

global-mean temperature.  It is important to also consider the differences in WR due to 

masking and variable choice when comparing observed WRs (of which all estimates, 

published to date, use SST) against simulated WRs where the variable choice over ocean is 

sometimes ambiguously described and may use unconstrained spatial coverage. The GCM 

sensitivity to oceanic variable choice,+0.15 in this study, and masking (a similar magnitude) 

will account for some of the reported discrepancies between observed and simulated WRs if 

the oceanic variable choices and spatial coverages are different 

[17] The convergence of modelled and observed WR time series during the 1990s is 

consistent with the declining effect and changing spatial distribution of anthropogenic sulfate 

aerosols (Allen and Sherwood 2010). Prior to the 1990s aerosol forcing disproportionately 

cools the land, reducing the WR by an amount depending on aerosol forcing levels. Evidence 

for this lies in 1%/yr CO2 experiments, in which WR convergence occurs at much lower 

values of global temperature change than in historical-forced experiments (Joshi et al., 2013). 

However, during the 1990s, the pattern of aerosol forcing shifts towards Eastern Asia and the 

Pacific Ocean (e.g. AeroCom Phase 2 emission data, Myhre et al., 2013), and, consequently, 

is not concentrated over land as much as before, and therefore projects less on the WR. Such 
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a shift is consistent with the results of Shindell et al. (2015) who report a simulated WR from 

sulfate-only experiments during the period 1996-2005 which is similar in magnitude to well-

mixed greenhouse gas (WMGHG) only studies: this period should be compared with our 

Figure 1b, which shows WR convergence during this period. 

 

5 Conclusions 

[18] We have updated calculations of the WR index using latest observed records and 21 

historically-forced CMIP5 GCMs. We have shown that true like-for-like comparisons of the 

WR are sensitive to GCM oceanic variable choice and masking and that these sensitivities, 

~0.25 in total, will account for some discrepancies between observed and GCM WR 

comparisons. In order to isolate genuine differences (related to actual climate dynamics and 

processes) we propose that future comparisons take account of this. We have also shown 

sensitivity of the WR to the climatological benchmark from which land and sea temperature 

anomalies are calculated. Standardising future investigations to a common 1890-1920 

reference period would better facilitate comparisons of WR between studies, at least those 

addressing the instrumental period.   

[19]Our results provide evidence to support the suggestion of the stabilization of the WR in 

recent years. We suggest that this stabilization is a consequence of: (i) emerging dominance 

of the WMGHG temperature response over aerosol forcing; (ii) changed aerosol distribution 

giving greater forcing over ocean compared to land and; (iii) progressive evolution in the size 

of ∆TO leading to a reduction in the noise of the WR series. The fact that WR estimates from 

observations and simulations are in very close agreement since the year 2000 suggests that 

the dynamical processes within the GCMs responsible for the land-sea warming contrast are 

responding realistically to well-mixed external forcing.  
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Figure 1. (a) The fixed mask applied to both observed and GCM data prior to composing 

land and ocean mean temperature changes. Black grid cells are excluded from the averaging. 

(b) Time series of the annual WR (low pass filtered at 10 years) for HadCRUT4 (dotted), BE 

(dashed) and mean of the CMIP5 GCMs (thick). GCM data in this plot are the masked 

SAT:SST series and shading indicates 16th and 84th percentiles of the component 21 GCM 

series (also time filtered). 
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Figure 2. Annual land SAT anomalies (°C) for HadCRUT4 (black) and Berkley Earth (blue) 

with respect to their1951-1980 means. Thick lines in each case are the 10-year low pass 

series.  

 

 

 

Figure 3. Multi-model mean differences between δSST and δSAT for the 1980-2015 period 

with reference to 1890-1920. Blue cells indicate SSTs have warmed less than SAT. Grey 

cells indicate the grid cells excluded from the WR calculation as per the fixed mask derived 

from HadCRUT4 observations. 
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Table 1. Mean annual WR for the full 1890-2016 analysis period and subset time slices.  For 

GCMs, WR values are for the masked SAT:SST data. ‘GCM Range’ is the standard deviation 

of the 21 constituent GCM values in each time slice. For 2000-2016 the inter-annual standard 

deviation, σ, of the WR is also shown. 

GCM 1890-2016        1980-2016 

         

1980-1996 

          

2000-2016 

               σ 

ACCESS1-3 1.10 0.91 1.34 
 

1.69 0.40 

bcc-csm1-1 1.56 1.47 1.51 
 

1.53 0.20 

CCSM4 1.52 1.51 1.58 
 

1.65 0.14 

CMCC-CM 1.69 1.85 1.87 
 

1.86 0.23 

CNRM-CM5 1.60 1.38 1.50 1.61 0.22 

CSIRO-Mk3-

6-0 

1.33 1.27 1.53 1.74 0.30 

EC-EARTH 1.52 1.76 1.79 1.80 0.13 

FGOALS-g2 1.48 1.70 1.67 1.66 0.18 

GFDL-CM3 1.80 1.39 1.51 1.62 0.17 

GISS-E2-H 1.22 1.44 1.55 1.64 0.20 

GISS-E2-R 1.69 1.45 1.58 1.69 0.13 

HadCM3 1.47 1.48 1.59 1.68 0.15 

HadGEM2-ES 1.37 1.02 1.39 1.69 0.33 

inmcm4 1.90 1.88 1.83 1.76 0.22 

IPSL-CM5A-

LR 

1.43 1.46 1.50 1.54 0.05 

IPSL-CM5A-

MR 

1.32 1.34 1.43 1.51 0.13 

MIROC5 1.19 1.06 1.36 1.62 0.17 

MIROC-ESM 1.27 1.13 1.39 1.65 0.15 

MPI-ESM-

MR 

1.89 1.75 1.78 1.80 0.19 

MRI-CGCM3 1.51 2.34 2.13 1.95 0.21 

NorESM1-M 1.40 1.42 1.60 1.71 0.21 

GCM Mean 1.49 1.60 1.48 1.68 0.19 

GCM Range 

(stdev of 21 

values) 

0.22 0.20 0.33 0.11  

Observations 

HadCRUT4 1.32 1.45 1.28 1.61 0.18 

BE 1.43 1.62 1.57 1.68 0.14 
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