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Chapter 1

Introduction

This thesis is, unashamedly, a thesis of two parts. The first and larger part consists of a study of
(an aspect of) the Souslin Hypothesis, and the second and smaller part concerns a study of (an
aspect of)) forcing axioms. Given that the very concept of a ‘forcing axiom’ (an idea due to Martin,
[MS70]) arose out of Solovay and Tenenbaum’s proof of the consistency of the Souslin Hypothesis
[ST71], one could attempt to build some sort of tenuous connection between the two parts, but this
connection would exist only in my imagination if it were to be very overactive, so I shall not attempt
to make it. A simpler connection which I shall satisfy myself with pointing out is that both of these
topics are central topics in set theory, the former on the ‘applied’ side, the latter on the ‘pure’ side.

All the topological spaces in this thesis are Hausdorff spaces. The Souslin Hypothesis, broadly
interpreted, concerns the difference between two properties enjoyed by sets of reals: having a
countable dense set (that is, being separable), and having the property that any collection of pairwise
disjoint non-empty open sets is countable (that is, being ccc, or having the countable chain condition).
It is easy to see that the former implies the latter, but the former is a property of the topological
space as a whole, whereas the latter is purely a property of the topology of the space. It follows that
while the former is the stronger property, the latter is a nicer property, in that it is more amenable
to testing by purely topological methods.

Before starting with the history of the Souslin Hypothesis and trying to justify this broad
interpretation of it, I feel a justification of the study of this problem is in order. Why are separable
spaces important? Most objects that mathematicians study are infinite. However, despite there
being quite a few infinite cardinalities, most of the infinite objects that mathematicians study are
either countable or ‘essentially’ countable, in that there are some countably many ‘characteristics’
such that any particular ‘piece’ of this object can be described to any predetermined precision by
describing their behaviour on a large enough finite subset of these characteristics. A guiding example
is a real number and its infinite decimal expansion. As any infinite, uncountable, mathematical
object typically has a topological structure, and separability is the most stringent definition for
‘essentially countable’ in a topological context, it follows that the nicest (infinite) topological spaces
are the separable ones. On the other hand, the countable chain condition is arguably the least
stringent definition for ‘essentially countable’ in a topological context. One looks forward then, to
finding classes of topological spaces where the two coincide, since these are examples of spaces where
having a little gives one a lot.

Returning to the history of the Souslin Hypothesis, it starts thus: Cantor showed in that all
countable dense linear orders without endpoints are isomorphic. It follows that any complete, dense-



in-itself, linearly-ordered compact topological space which has both end points and is separable is in
fact homeomorphic to the unit interval [0, 1]. Souslin wondered if a similar characterisation of [0, 1]
could be obtained by replacing ‘separable’ in this statement by ‘has the countable chain condition’,
and the assertion that this does indeed happen has come to be known as ‘Souslin’s Hypothesis’. Of
course, if all such spaces were separable, then one would obtain the desired conclusion. Consequently,
one can rephrase Souslin’s Hypothesis (henceforth, SH) in the following way:

Question 1. In the category of complete, dense-in-itself, linearly-ordered, compact topological
spaces with both endpoints, are the properties of separability and having the ccc equivalent?

It is now known that SH is independent of ZFC. Jech [Jec67] and Tennenbaum [Ten68] showed
that the negation of SH is consistent with ZFC, and Solovay and Tennenbaum [ST71] showed that SH
is consistent with ZFC. Jensen also showed that the negation of SH holds in Gédel’s Constructible
Universe [Jen68], and also that SH is consistent with ZFC together with the Generalised Continuum
Hypothesis GCH [DJ06]. Each of these results have resulted in important advances in set theory,
and SH and Cantor’s Continuum Hypothesis, CH, have been the two motivating problems which
have driven the growth of the entire subject of modern set theory.

However the setbacks of independence have not stopped topologists from investigating this gap
between separability and the countable chain condition. For brevity, by a Souslinean space, we
shall mean a compact, non-separable, ccc space. One can in fact show that Suslin’s hypothesis is
equivalent to the following:

Question 2. Is there a linearly ordered Souslinean space?

The most inclusive question one can ask is: which categories of compact topological spaces
do not contain any Souslinean spaces? But two more natural questions are: What properties of
the unit interval [0, 1] ensure that there are no Suslinean spaces with that property? In a given
class of spaces, what strengthenings of the countable chain condition ensure separability? While
the first question is a very simple investigation of the contexts in which there is no gap between
separability and the countable chain condition, the second question treats the Souslin Hypothesis as
being an investigation of the nature of the unit interval [0, 1]; the third question can be seen as an
investigation of the ‘size’ of the gap between separability and the ccc. An excellent reference for this
topic is [Tod00], and an older reference is [Tal74].

In this thesis, instances of all three of these questions are considered, though all of the results
are negative in that they suggest that this gap is not so easily bridgeable. The results of the relevant
chapters are, barring one chapter, based on the paper [BNIar], which is joint work with Piotr
Borodulin-Nadzieja. The motivating question for that paper was the following, a positive answer to
which Todorcevié¢ called “the ultimate version of Suslin hypothesis” in [Tod00]:

Question 3. Is there a Souslinean space which does not map continuously onto [0, 1]“1?

One can show that no compact linearly-ordered space can be mapped onto [0, 1]“* (see Corol-
lary 121), and the property of mapping continuously onto [0, 1]“! can be seen as suggesting that a
space is large in a certain way that we might discount any Souslinean spaces having this property as
not violating the spirit of the Souslin Hypothesis. The property of not being linearly ordered which
is present in the statement of Souslin’s original hypothesis can be seen as another such discount
to largeness. Another example of a discount to largeness is having a m-basis (see Section 2.4) of
size greater than or equal to the continuum, ¢, or not being first countable (that is, not having a
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countable local basis at each point). Indeed, Hajnal and Juhdsz have shown that Martin’s Aziom at
w1, MA,,, implies that there are no Souslinean spaces having a m-base of size less than ¢, [Juh71],
and Todorcevi¢ and Velickovi¢ showed that MA,, is equivalent to the statement that there are no
Souslinean spaces which are first countable, [TV87].

Returning to our so-called ‘ultimate Suslin hypothesis’, it was shown by Bell that MA,, is
consistent with a Souslinean space which maps onto [0, 1]“*, [Bel96], and later Moore showed that
MA implies the existence of such a space, [M0099]. It was finally shown by Todorcevi¢ that such a
space exists just in ZFC itself [Tod00].

This led Plebanek and Borodulin-Nadzieja to weaken this ‘ultimate Suslin Hypothesis’ by
strengthening the countable chain condition in the question of Todorc¢evié. They considered the
following question [BNP15]:

Question 4. Is there a Souslinean space which supports a measure but does not map continuously
onto [0, 1]*1?

Here, the measures are finitely additive and non-negative, and since the measure of the entire
space is finite, so any space carrying a measure necessarily has the countable chain condition. In
[Kun81], using CH, Kunen constructed a Souslinean space supporting a measure which is first
countable, and hence does not map onto [0,1]“*. In [BNP15], Plebanek and Borodulin-Nadzieja
were able to construct such a space under MA. The motivating question of [BNIar] was whether
such a space could be constructed just in ZFC.

We were not able to find such a ZFC construction. We were however able to weaken the
hypothesis needed for the existence of such a space to one involving two cardinal characteristics of
the continuum.

Theorem 5. (add(N) = non(M)) There is a Souslinean space which supports a measure, and does
not map continuously onto [0, 1]*. In fact, this space is of the form K \ w for K a compactification
of w.

In particular, such spaces exist in any model of CH or MA. Our methodology was to analyse the
space constructed by Todor¢evié¢, and to find a modification of it from this extra hypothesis so that
it supports a measure. The existence of the measure is shown in an indirect way, using a result of
Kamburelis which characterises when a Boolean algebra supports a measure by its behaviour in
forcing extensions in a measure algebra [Kam89]. By varying Todoréevié¢’ construction slightly, we
were able to obtain several different compactifications of w which did or did not support a measure.
For example

Theorem 6. There is a Souslinean space which supports a measure which is of the form K \ w for
K a compactification of w.

That there is a Souslinean space of the form K \ w for K a compactification of w was first shown
by Bell [Bel80]. Our construction, which is the first such space also supporting a measure, answers
a question from [DP15]. In more recent work, Borodulin-Nadzieja and Zuchowski have constructed
other such examples [BNZlG]. The Banach spaces of continuous functions of these compactifications
are of interest as well. For example

Theorem 7. There is a compatification K of w such that K \ w is non-separable and such that the
natural copy of ¢y in C(K) is complemented.



Such spaces were studied by Drygier and Plebanek in [DP17], but they could only construct
such a space under CH. In particular, no such ZFC example was known before.

The second part of this thesis does not have so many new results, and most of it is related to
some work in progress. The main theme underlying it is to gain an understanding of the current
limitations of forcing axioms. These limitations are of two types, and both of them have to do with
the currently available forcing techniques being unable to handle the cardinal Ns.

We start by recalling what a forcing axiom is.

Definition 8. Let P be a class of partial orders and k a cardinal. Then FA,(P) denotes the
statement that for every P € P and any collection of dense subsets of P of size at most k, there is a
downwards-closed directed subset of P which meets every element of this collection.

The first such was Martin’s Aziom, denoted MA, due to Martin and Solovay, [MS70], which
is the forcing axiom for the class of partial orders having the countable chain condition (that is,
partial orders having no uncountable antichains, shortened to ccc) and meeting k-many dense sets
for any k < ¢, the size of the continuum. Here it should be noted that if the continuum hypothesis,
CH, holds, then MA is trivially true. What Martin and Solovay showed is that MA can hold with
the continuum being arbitrarily large. An important fragment of MA is MA,,, which is the forcing
axiom for the class of partial orders having the ccc and meeting X;-many dense sets, which often
suffices for many applications of MA 4+ —CH.

Since then, two other forcing axioms have joined it, the Proper Forcing Axiom, denoted PFA,
due independently to Shelah[She98] and Baumgartner [Dev83], which is the forcing axiom for the
class of proper partial orders (see Definition 51) and meeting R;-many dense sets, and Martin’s
Mazimum, denoted MM, due to Foreman, Magidor, and Shelah [FMS88], which is the forcing axiom
for the class of partial orders which preserve stationary subsets of w; and meeting ¥;-many dense
sets. This order also reflects their ordering by strength: MA,,, is the weakest of these, whereas MM
is the strongest. Also, while MA is consistent with the continuum being arbitrarily large, PFA and
MM both imply that ¢ = Na.

Since then, these axioms, namely, MA,,,PFA and MM, have had very many applications,
both inside set theory, as well as outside set theory, to Abelian group theory, measure theory,
functional analysis, topology etc. See for example [Fre84, Bau84, Tod13]. The large number of these
applications raises two natural questions which we now discuss.

The first is the following. Many of these applications can be thought of as exploiting the ‘gap
between countable and uncountable, equivalently, between w and w;. Understanding this gap has
proved to be enormously fruitful to set theory, both from attempting to widen it (where one uses
statements which hold in Gédel’s Constructible Universe to perform diagonalisations for example),
and attempts to narrow it (using forcing axioms to glue together approximations to an object
coherently). It has also proved fruitful both from the ‘pure’ standpoint as well as the ‘applied’
standpoint. What about the other gaps between cardinals? Do each of them have their own
interesting combinatorics? Is there some sort of stabilising phenomenon whereby the gap between
N,1437 and N, 1438 tend to become similar or less interesting as « increases? Questions about the
stability of these gaps is far too advanced a question for us, and we make do with simply trying
to understand the most basic unexplored such gap, that between w; and wo. While we have so far
persisted in this vague choice of terminology, and asked grand questions, we now ask some simpler
(but still vague) questions. Does wo have any interesting combinatorics of its own? Can one simply
‘pull up one cardinal higher’ various results about w; and have them apply to ws? Since forcing
axioms play an important role in the combinatorics of wy, they provide us a way of concretising
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some of these vague notions. Are there any interesting forcing axioms for meeting we-many dense
sets?

Note that MA,,, already provides a positive answer to this question. However, since PFA and MM
imply that ¢ = No, we cannot pull them up one level while avoiding inconsistencies. Furthermore,
since ccc partial orders cannot construct very interesting objects of size Ny, while MA,,, does provide
a positive answer to our question, it is a rather weak positive answer, so one hopes that one can do
better.

The second of these natural questions goes as follows. When one considers the interesting
consequences of PFA and MM both within and without set theory, these consequences are shown
to be consistent with ¢ = Ny. But do these consequences themselves impose any limitations
on the size of the continuum? In the case of consequences outside of set theory (for example
[Farll, Tod06, BJP05, Vel05]), one can think of this as trying to measure how set theoretic these
consequences are: we are asking if they have any bearing on the most famous problem in set theory.

Since MA is consistent with the continuum being arbitrarily large, we do have some understanding
of the relation between its consequences and the size of the continuum. For the rest however we
are ignorant, and so we ask: are there interesting fragments of PFA which are consistent with the
continuum being larger than No?

Both of these questions are in fact instances of the same problem, namely that of preserving wo
(and hence, w; as well) in iterated forcing constructions. Both of the two standard approaches do
not easily work as shown by the following folklore facts:

Theorem 9. (i) The finite-support iteration of posets which do not have the countable chain
condition collapses w; at stages of cofinality w.

(ii) The countable-support iteration of posets which do not have the Ng-cc collapses wo at stages
of cofinality w.

(iii) In a countable-support iteration, CH is true at stages of cofinality wi, so the countable-support
iteration of posets which add a real collapses wsy at stages of cofinality ws.

The sole possibility left if one persists in doing a countable support iteration is to start with a
model of CH and iterate Na-cc posets which do not add a real. A result of Shelah [She98, Appendix,
3.4A] shows that the most natural candidate for a forcing axiom of this sort fails.

Theorem 10. (CH) There is a o-closed Na-cc partial order P and Ro-many dense subsets of it such
that no directed subset of P can meet all of the dense sets.

Some positive results were obtained (see [She78, KT79]) by strengthening the Ro-cc and adding
the condition that the posets P be well-met: given any p, ¢ € P which are compatible (there is some
r € P such that r < p, q), they in fact have a greatest lower bound. In Chapter 10 we give a simple
proof of the following:

Theorem 11. (CH) There is a o-closed well-met No-cc partial order P and No-many dense subsets
of it such that no directed subset of P can meet all of the dense sets.

In fact our posets satisfy a much stronger chain condition. In particular, not only is the well-met
condition necessary to obtain the positive results, one must also strengthen the Ny-cc considerably.
On the other hand, if one abandons countable-support iterations, another way of iterating partial
orders must be found. Such an approach was taken by Asper6 and Mota in [AM15a, AM15b, AM16]
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where they consider a type of iteration which they call iterated forcing with finite support using
symmetric systems of structures as side conditions. Using this, they were able to show that certain
fragments of PFA are consistent with the continuum being larger than ws.

Following this work of Asperé and Mota, in Chapter 8 a fragment of PFA, the Bounded Graph
Ideal Dichotomy, abbreviated GIDy,, is isolated which it is hoped would be amenable to some
modification of their method. If such a modification could be found, one would be able to show that
GIDy, is consistent with the continuum being larger than Ny. In Section 8.4 an attempt is made to
justify this hope.

This fragment in fact corresponds to restricted forms of a certain class of partial orders which
have been used very successfully by Todorcevi¢ to discover many interesting consequences of PFA
(see for example [Tod13]), the partial orders which have finite chains of elementary substructure as
side conditions, or the partial orders built using the side condition method. The axiom GIDy, is then
an attempt at isolating a ‘bounded form of an axiom for the side condition method’. In Chapter 9
several applications are given of GIDy, (though most of them in fact follow from a previously known
statement proved consistent by Todorcevié¢ in [Tod85]), and in Section 9.4 an attempt is made at
justifying its status as the bounded form of an axiom for the side condition method by giving the
example of the prototypical application of the side condition method, the Open Graph Aziom of
Todorcevié¢, abbreviated OGA. Namely, it is shown that GIDy, implies a very weak form of the OGA
which is obtained by restricting two unbounded set quantifiers to sets of size at most Nj.

Unfortunately, we have been unable so far to show that GIDy, is indeed consistent with the
continuum being larger than Ng, which leaves the importance of the axiom GIDy, in a state of limbo.
We hope that this is merely its temporary abode.

1.1 A personal tour of the thesis

In Chapter 2, various background results are collected together. As the thesis is a thesis of a few
parts, I have tried to partition this chapter so that the reader may easily be able to find various
results and notation quickly when they need to refer back to this chapter. Nonetheless, I have tried
to include in the beginning of every chapter the (non-obvious) notation I have adopted earlier to
help with the ease of reading.

In Chapter 3, a proof is given of a measure-theoretic result of Kamburelis which is used later in
Chapter 6. The proof I give is somewhat different than the one in the paper of Kamburelis [Kam8&9],
and these differences raise some questions which are also discussed. This chapter is self-contained.

Chapters 4, 5, 6, 7 are joint work with Piotr Borodulin-Nadzieja and from the paper [BNIar]. In
Chapter 4, slaloms are introduced, and some families of slaloms are constructed. The main result of
this chapter is obtained via a modification of a construction of Fremlin and Kunen, [FK91]. While
our conclusion is stronger than their conclusion, we require more than ZFC unlike their result.

Chapter 5 describes a functor due to Todoréevié [Tod00] which constructs a compact space when
given the input of a family of slaloms. The rest of this chapter is devoted to a long list of facts
about this functor. Barring Section 5.1, there are no definitions in this chapter, and in particular,
the statements (but not the proofs) from Chapter 6, 7 can be understood without reading the rest
of this chapter. The reader may then go back to this chapter as and when required. I hope that
this might lessen any demotivating effect of the long dry list of facts contained therein. Almost all
of these facts have straightforward proofs, however I have tried to not skip any details in order to
make them as clear as possible (mostly to myself).
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Chapter 6 collects together all of these facts to prove that the spaces obtained by applying
Todorcevi¢’” functor have the properties that we want. Most of the proofs are obtained by simply
composing the various facts from Chapter 5, except for the case of mapping onto [0, 1]“*, where I
have given more details since this was a notion that was previously unknown to me.

Chapter 7 is not self-contained, however it exhibits a degree of independence. It is an application
of the compact spaces we have constructed to Banach spaces, and the problem that we have
considered is motivated within the chapter itself. Since I was not familiar with this area before, 1
have also included some (possibly basic) results that the chapter requires within the chapter instead
of relegating them to Chapter 2.

Chapters 8 and 9 are unrelated to the previous chapters. They describe some work in progress
of mine. The bulk of Chapter 8 concerns itself with formulating and proving consistent an axiom
GIDy, which is a consequence of PFA (but does not require large cardinals for its consistency). This
axiom aims to capture some common arguments that can be found in various arguments about
proper forcing, and which one hopes might be consistent with the continuum being larger than
No. The reason for this hope is explained in Section 8.4. The arguments from this chapter are
modifications of arguments of Todorcevié for example from [Tod13]. It might be argued then that
the main result of this chapter is simply the formulation of this axiom and the analogy which is
explained in Section 8.4. Apart from Chapter 5, this is the other chapter which could be categorised
as a ‘technical chapter’.

In Chapter 9 some applications are given of GIDy, which can all be found for example in [Tod13].
In fact most of these are consequences of a fragment of GIDy, which has been considered before
for example in [Tod85]. However, in Section 9.4 another attempt is made at justifying the abstract
approach employed in the formulation of GIDy,.

Chapter 10 is self-contained. An elementary (modulo a function constructed by Todorcevié)
argument is given why a very natural higher forcing axiom fails.

Throughout, I have tried to break chapters down into easily digestible pieces, and I hope this
makes the task of the reader easier.
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Chapter 2

Preliminaries

2.1 General notation

An equality sign with a triangle on top, é, will be used to establish some notational convention.
The positive natural numbers are denoted by N*. If X is a set, then P(X) shall denote the powerset
of X. If P is a partial order, we shall usually not be careful with specifying what the carrier set is
and what the symbol for the order relation is. In general, if a partial order P is clear from context,
then < shall refer to its order relation, and P shall also be used to denote its carrier set as well.

By a real number we will mean an element of Baire space, w*, or an element of some [], ., Sn,
where S,, C w, the exact choice of which shall be clear from the context. If S C w X w, then S(n)
will denote the horizontal section {m: (n,m) € S}. If A and B are subsets of some set S (which
will typically be the set of natural numbers), then A =* B shall denote that modulo a finite set, A
and B are equal; equivalently, that the symmetric difference of A and B is finite. We will similarly
talk of A C* B etc., which unless another context is specified, shall mean that A C B modulo a
finite set. Similarly, unless another context is specified, [A] shall denote the set {B C S: B =* A}.

By Fin we will denote the ideal of finite subsets (of a set which should be clear from the context).

If f: X =Y is a function and Z C Y, then f|Z shall denote the function from Z into Y
obtained by restricting the domain of f. If f is a function and X is a subset of its domain, then
f[X] will denote the set of the images of the elements of X under f.

Sequences shall often be confused with their range, and a set of ordinals will also be confused
with the sequence of its increasing enumeration.

If u and © are sequences, then the concatenation of @ with ¥ will be denoted z e v. If X,Y are
sets of ordinals and « is an ordinal, then X < Y, X < o, < Y etc. shall refer to the particular
relation holding between every pair of elements from each set, or every element from one set and the
ordinal, or the ordinal and every element from the set etc. All graphs are assumed to be undirected.
If A and B are sets, then A ® B shall denote the collection of two element sets {a,b} such that
a € Aand b e B. In case A and B are sets of ordinals, then A ® B shall denote the collection of
ordered pairs {«, 8} such that « € A, f € B, and a < S.

Notation 1. Let n € w. Let F C [w;]". If @ € [w1]™ where m < n, then
N —n
(Fla = {v € |wi] cu<v,uev e F}.
If u = (&) is a sequence of length 1, then we write (F)¢ instead of (F) €
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We now give a clarification of hopefully the most enigmatic term we shall use in this thesis.

Definition 2. Given a set S, a cardinal x is large enough with respect to S or much larger than S
if &k > (2IT1)* where T is the transitive closure of S.

Before starting with specific notation and preliminaries, we list some standard references where
the results we quote below can be found. For Boolean algebras and Stone duality, we refer to
[KMBS89]. For measure theory, we refer to [Frel5], or even our set theory references, which are
[Jec03, Kunl4]. For set theory of the reals, we refer to [BJ95]. We do not require any knowledge of
topology beyond a basic course and the definitions we supply.

2.2 Boolean algebras

If 9B is a Boolean algebra, we shall denote its constants by Oy and 1y, and its operations by +x,
—m, its relations by <g etc. whenever we want to be precise or feel that there is some scope for
confusion. Otherwise, we will typically suppress the subscripts, and in fact we shall treat Boolean
algebras as being subsets of powerset algebras in the sense that we will usually use U instead of +,
\ instead of —, C instead of < etc.

Definition 3. Let 8 be a Boolean algebra, and let A C B*. We say that A is a generating set of
B if every element of B can be expressed as a Boolean expression of some finitely many elements of

A.

If B is a Boolean algebra and Z is an ideal on it (U is a filter on it), then we denote the quotient
Boolean algebra as B/Z (B/U). If b € B, then [b]z ([b]ys) shall denote the corresponding member
of %I (%u)

Proposition 4. Let B be a Boolean algebra, and U a filter on it. If b € B and u € U, then
[blue = [0 N ufy.

Proposition 5. Let B be a Boolean algebra, and 2 a subalgebra of it. Let U be an ultrafilter on 2,
and V the ultrafilter on B which it generates. Let b € B\ A be such that for each a € U, bNa # Ogy.
Then [bly # Ogp/y. Indeed, all the elements of B/V are of this form.

If 9B is a Boolean algebra and a € 93, then B, shall denote the principal ideal generated by a,
which we note is a Boolean algebra as well: its constants are Og, and 1y, = a, and the operations
are given by b+g, ¢ = b+g c and —g,b = a —g b (the others). Expressions for the other operations
and relations can be derived from these.

Proposition 6. Let B be a Boolean algebra, and let A C BT be a generating set of it. Let T C B
be an ideal. Then those non-zero elements of the form [a|r for a € A form a generating set of B/Z.

Definition 7. Let B be a Boolean algebra, and let A C B". We say that A is a m-base of B if
there is an element of A below every non-zero element of B.

Theorem 8. Let B be a Boolean algebra, and let A C B' be a generating set for it. Then the
non-zero elements of the form
((Nan(() ~b)

acF beG
for finite subsets F,G of A form a mw-base of B.
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Next, we shall need two fundamental results by Sikorski about Boolean algebras. The first is
known as Sikorski’s Extension Criterion.

Theorem 9. Let 2 and B be Boolean algebras, and let C C A" be a generating set for it. Let
f :C — B be any map. Then the following is a necessary and sufficient condition for f to
extend to a homomorphism of A into B: for any n € w, for any by, ba,..., b, € C, and for any
€1,€9,...,6n € {—1,+1},

gibi NegboN...Nepb, =0y — Elf(bl) n EQf(bQ) N...N Enf(bn) = Oy
The second is known as the Sikorski Extension Theorem.

Theorem 10. Let B be a Boolean algebra, 2 a Boolean subalgebra of B, and € a complete Boolean
algebra. Let f : A — € be a Boolean homomorphism. Then this can be extended to a Boolean
homomorphism f .8 — €.

We end with the following definitions which we will need in the thesis.

Definition 11. Let 25 be a Boolean algebra. If C C B is a subset of % which consists of pairwise
disjoint sets and such that the only element of B greater than all of them is 1g, then we call C a
partition of unity in B.

2.3 DMeasure theory

We are interested in measures on Boolean algebras. However, these come in many forms, so we
clarify.

Definition 12. Let 8 be a Boolean algebra. A function u : B — [0, 00) is called a measure on B if
(i) p(0m) = 0;
(ii) it is finitely additive: if a,b € B are disjoint, then p(a Ub) = pu(a) + wu(b).

It is said to be strictly positive if u(a) = 0 implies that a = Og. It is said to be countably additive
or o-additive if for any sequence (a,: n € w) C B consisting of pairwise disjoint elements, if
Unew@n € B, then pu(Unewan) = Znewp(an).

We shall in fact need another type of measures as well, see Definition 22.

Note that the homomorphisms between Boolean algebras which support a measure will typically
be assumed to preserve the measure, though if we need to underline this aspect of theirs, we might
be explicit in referrring to them as measure-preserving homomorphisms. In this thesis, by default, all
measures are assumed to be strictly positive. Note that if p is a measure on B, then by rescaling, we
can assume that there is a probability measure v on B. That is, v is a measure such that v(1g) = 1.
The class of atomless Boolean algebras on which there is a strictly positive finitely additive measure
is denoted M. Kelley’s Theorem, Theorem 65, gives a criterion for when a Boolean algebra is in M.
Note that if 4 is a measure on an atomless Boolean algebra 9B, then if a € B, then there is some
b < a such that u(a) > u(b) > 0.

If p is a measure on the Boolean algebra B, and a € 28, then we can define the restriction of
1 to the Boolean algebra B,. Typically, we shall perform this procedure when g is a probability
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measure, and so we normalise this restriction to obtain a probability measure p, on B,. It is easy
to show that u, inherits all the properties of p such as strict positivity, countable additivity etc.

If B € M as witnessed by a strictly positive finitely additive measure p, this allows us to define a
notion of distance d on B by defining d(A, B) = u(AAB). This makes (8, d) into a (not necessarily
complete) metric space. If £ is the density character of this metric space, we say that the density
character, or simply density or u-density if we wish to be careful, of 95 is x as well.

Theorem 13. Let i be a measure on B. Let T be an ideal of B such that p vanishes on I:
beZ = u(b)=0.
Then the function [u]z on B /I defined by: for b € B,
[ulz([blz) = p(b)

is well-defined and a measure on B/I. If u is countably additive, so is [u|lz. Furthermore, if
Z={beB: u) =0}, then [u|z is strictly positive.

Also important to us will be the class of measure algebras.

Definition 14. Let 25 be a Boolean o-algebra. If there is a strictly positive o-additive measure p
on it, then we refer to (B, ) as a measure algebra. If further u(lyg) = 1, then the term probability
algebra is also used.

Note that homomorphisms between measure algebras are the Boolean algebra homomorphisms
which preserve the o-algebra structure (that is, countable unions, countable intersections etc.) as
well as the measure. One can also show that if (B, ) is a measure algebra and a € B, then (B, f4)
is a measure algebra as well. Again, when we do this, we shall normally start with a probability
algebra, and note that (B,, 11,) is then a probability algebra as well.

If (B, i) is a measure algebra, then B € M as well, so we can again define a notion of distance
d on B by defining d(A, B) = u(AAB). This makes (8, d) not only into a metric space, but into a
complete metric space, the completeness requiring the countable additivity of u. Naturally, we can
then talk about the density character, or simply density or p-density of B. If the density character
of a measure algebra is Xy, we say that it is a separable measure algebra. If (8B, u) has density
character k, and for each a € B, (B, 114) has density character k as well, then we say that (B, u)
is homogenous.

The most important way of constructing measure algebras is the following: one starts with a set
X, A a g-algebra on it, and p a not necessarily strictly positive o-additive measure on 4. Such a
triple (X, A, p) is called a measure space. Then we consider the o-ideal of null elements of A (which
we shall refer to as the null ideal of the measure space or the null ideal of A):

N={Y € A: u(Y) =0},

and then on the quotient Boolean algebra [A]x we can define a measure [u]a in the following way:
if Y € A, then un([Y]n) = w(Y). Using Theorem 13 one check that pps is well-defined, and a
countably additive strictly positive measure on [A]x .

Often however, it is not so easy to obtain a measure space in the first place. The following
result lets one construct them. We shall refer to it as the Hahn-Kolmogorov Theorem, though it
or a closely related result is often attributed to Caratheodory as well. Caratheodory’s Theorem
is typically much more explicit about the construction, and proceeds through the construction of
outer measures etc. Here we do not have any use of this explicitness.
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Theorem 15. Let (X, A, 1) be a triple such that

(i) X is a set;

(i1) A is an algebra on it (not necessarily a o-algebra);
(iii) p is a countably additive measure on A.

Let B be the o-algebra on X which A generates. Then there is a unique extension fi of u to B.
Furthermore, the elements of A form a dense subset of B: for every e > 0 and B € B, there is some
A € A such that u(AAB) < e.

The Hahn-Kolmogorov Theorem or Caratheodory’s Theorem allow us to construct many more
measure algebras, including the most important examples of measure algebras. Let I be an infinite
set. We can then define on the algebra of basic clopen subsets of the product space 2! (that is,
[0,1]7 with the product topology) a strictly positive finitely additive measure y (sometimes referred
to as the coin toss measure) in the following way: if o : F' — 2 is a function whose domain F' is a
finite subset of I, then we specify that

p{f €2 fIF=0}) = o

It is easy to verify that this is a finitely additive measure, and because the space 2! is compact, it is
in fact o-additive for trivial reasons. Since the o-algebra that the clopen subsets of 2/ generate is
the o-algebra Bor(2!) of Borel subsets of 2/, we can extend p to a measure ji on Bor(2/). By doing
so, we obtain a measure space (2!, Bor(2/), ii). Let N7 be the null ideal of this measure space. The
final step is important enough to this thesis that we enshrine it in an official definition.

Definition 16. Let I be an infinite index set. The measure algebra (Ry, ur) is the following:
(i) |y = Bor(2!) /N7, and

(ii) pr = [filn, where [i is the extension of the coin toss measure on the basic clopen subsets of 2!
to Bor(21).

Note that (9, ur) is an atomless probability algebra, and one can also show that it is homogenous
with density character |I|. By a deep result of Maharam, the above construction is generic for this
class of Boolean algebras.

Theorem 17. Let k be an infinite cardinal. Let (B, p) be a homogenous atomless probability algebra
of density character k. Then (B, u) is isomorphic as a measure algebra to (R, ).

This allowed Maharam to classify all atomless measure algebras. We state this result here in the
language of probability algebras.

Theorem 18. Let (B, 1) be a an atomless probability algebra. Then there is a countable sequence
of cardinals (kn: n € w) and a countable partition of 1y, (a,: n € w), such that for each n € w,
(Ba,s Ma,) is isomorphic to (Re,,, s, )-

We shall need the following basic facts about the measure algebras (Ry, ur).

Proposition 19. Let k < A be cardinals. Then (R, py) is a measure subalgebra of (Ry, ).
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Note that because of the nature of the construction of (Ry, uur), any particular element of the
algebra is the quotient of an element of Bor(2!), and measure of the latter in the appropriate sense
is equal to the pr-measure of the former. This allows us to be sloppy in sense that we may talk
about the ji7-measures of the elements of Bor(2!) without doing any undue harm. We shall be very
sloppy (in this sense) throughout this thesis. A first example follows.

Proposition 20. Let I be an index set. Let X,Y C I be such that X and Y are disjoint. If
A € Bor(2¥X), then let Eq4 = {f € 21: f|x € A}.

(i) Let A € Bor(2¥X). Then pur(Ea) = px(A).
(i) Let A € Bor(2X) and B € Bor(2Y). Then E4 and Ep are independent sets in Bor(27).

(111) In fact, if (Xn:n € w) are pairwise disjoint subsets of I and (Ap: n € w) is such that
A, € Bor(2%), then (Ex,: n € w) is a mutually independent sequence of events.

The following is the Borel-Cantelli Lemma and its converse which we shall need.
Theorem 21. Let (E,: n € w) be a sequence of events in a probability space.
(i) If ¥peoPr(E,) < 0o, then the probability that infinitely many of them occur is 0:

Pr(limsupy 00 Fp) = 0.

(ii) Further, if (En: n € w) form a mutually independent sequence of events, and Xp,c,Pr(E,) = 0o,
then the probability that infinitely many of them occur is 1:

Pr(limsupy 00 Fp) = 1.

In fact, it is sufficient for (E,: n € w) to only be a sequence of pairwise independent sequence
of events for this conclusion to hold.

While the first part is easy to prove, it should be pointed out that proving the converse assuming
only pairwise independence is much harder than assuming mutual independence.

We end this section with another type of measures which we shall need. The chief difference
with the kinds of measures we have considered so far is that they are allowed to take negative values
as well.

Definition 22. Let B be a Boolean algebra. A function u : 8 — (—o0,+00) is called a signed
measure on ‘B if

(i) p(0s) = 0;
(ii) it is finitely additive: if a,b € B are disjoint, then p(a Ub) = p(a) + wu(b).
It is said to be bounded if supyegp|p(b)| is finite.

An important fact about bounded signed measures is that they can be uniquely represented
as the difference of (positive) measures. This is known as the Jordan decomposition of a signed
measure into (positive) measures.
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Theorem 23. Let B be a Boolean algebra, and p a bounded signed measure on it. Then there are
measures v1 and vy on B such that u(b) = v1(b) — va(b) for each b € B. This representation is
Moreover unique.

Definition 24. Let u be a signed measure on a Boolean algebra 98 and let 4 = v; — 1» be its
Jordan decomposition, then the variance of p, denoted |u| is defined as follows: for each b € B,

|1l (b) = v1(b) + v2(D).

Proposition 25. If i is a signed measure on a Boolean algebra B, then |u| is a (positive) measure
on *B.

The collection of bounded signed measures on a Boolean algebra form a Banach space, where
the norm is given by the variation.

2.4 Topology

All topological spaces are assumed to be Hausdorff. We shall need the following standard fact from
topology.

Theorem 26. Let X be a compact space and Y any (Hausdorff) space. Let f: X — Y be a
continuous map. Then it is a closed map: the image of a closed set is a closed set.

Definition 27. Let X be a topological space. If L is a compact topological space such that X C L
and X is dense in L, then we say that L is a compactification of X. We also call L\ X the remainder
of X in L, or a growth of X.

In this thesis, we shall only consider the above situation where K is the set of natural numbers
w with the discrete topology, so we shall be talking about growths of w.

Definition 28. Let X be a topological space, and let x € X. We say that x has countable 7-
character at x if there is a countable collection of non-empty open sets U (not necessarily containing
x) such that for any open subset V' of X containing z, some U € U is contained in V.

2.5 Stone duality

Definition 29. Let 96 be a Boolean algebra. The Stone space of 5 is the topological space which
is described by the following;:

(i) the carrier set of this space is Ult(*B), the collection of all the ultrafilters on B, and

(ii) the basis for the topology on it consists of the following sets: for each b € B,

{U € ULL(B): b e U).

We point out that we do not always use this Ult(8) terminology for the Stone space of B. This
space is compact, Hausdorff and zero-dimensional, and one can show that all spaces of this sort are
obtained as the Stone space of some Boolean algebra. Indeed, the Stone functor is a contravariant
functor between the category of Boolean algebras with Boolean homomorphisms, and compact,
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Hausdorff, zero-dimensional topological spaces with continuous maps, and one can in fact show that
this is an equivalence of categories. The functor in the other direction being the one which takes a
compact Hausdorff zero-dimensional topological space and returns the Boolean algebra of its clopen
subsets.

The properties of the Boolean algebra and the properties of its Stone space are strongly
intertwined. Important to this thesis are the following;:

Theorem 30. Let B be a Boolean algebra and K its Stone space.
(i) K is separable iff B is o-centered.
(i) K is metrisable iff B is countable.

The former can be shown using elementary Stone duality, whereas the latter requires, for example,
the Urysohn Metrisation Theorem.

Theorem 31. Let B be a Boolean algebra, and let A be a Boolean subalgebra of it. Let K be the
Stone space of B and let L be the Stone space of A. Then the map f : K — L given by

fU)=ung

is a continuous surjection. Furthermore, for each V € L, f~1[{V}] is the Stone space of B /U where
U is the (not necessarily mazximal) filter on B that V generates.

Checking the continuity is simply a matter of applying the definition, whereas checking the
surjectivity requires us to extend the filters on B that ultrafilters on 2 generate to ultrafilters on B
(in particular, some form of the Axiom of Choice is needed to guarantee that such extensions can be
found). Checking the last sentence is also just a matter of applying the definitions.

We shall need the following fact about Boolean algebras with generating sets of a particular

type.

Theorem 32. Let K be the Stone space of a Boolean algebra B8 which is generated by a chain
C C%B. Then there is a linear order on K which induces its topology. That is, K is a compact
linearly ordered topological space.

We shall need some basic facts about the Stone-Cech compactification of a space. What follows
can be done much more generally, but we do not have any need for this generality.

Definition 33. Let X be a discrete topological space. The Stone-Cech compactification of X,
denoted SX is the Stone space of P(X). The topology is the usual topology on Stone spaces.

One can naturally identify X with the principal ultrafilters of P(X), and this gives an embedding
of X into S8X. In fact, X is dense in fX. Even more, any compact space in which X is dense is the
continuous image of SX.

Theorem 34. Let U C P(w)/Fin and U C P(w) be its saturation with respect to Fin:
Acll «— [Alel.

Then if U is an ultrafilter of P(w)/Fin, then U is a non-principal ultrafilter of P(w). Furthermore,
every non-principal ultrafilter of P(w) is obtained in such a way.
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Corollary 35. fw \ w is the Stone space of P(w)/Fin.
A similar statement is true for subalgebras of P(w)/Fin and subalgebras of P(w) as well.

Theorem 36. Let B be a subalgebra of P(w)/Fin and B C P(w) its saturation with respect to Fin:
AeB < [A] €B.

Then B is a Boolean algebra, and every Boolean subalgAebm of P(w) containing all the finite sets is
obtained in this way. Also, if K is the Stone space of B, then K \ w is the Stone space of B.

2.6 Banach space theory

All Banach spaces are assumed to be real Banach spaces. Recall that if K is a compact space,
then C'(K), the space of continuous real-valued functions with domain K, is a Banach space, the
operations being defined pointwise, and the norm being the supremum norm: for f € C(K),

If1l = sup{|f(z)|: = € K}.

There is a strong correlation between the properties of a compact space K and the properties
of its space of continuous functions C(K). Relevant to us is the next theorem. Note that the
equivalence of the first two statements is just the second part of Theorem 30.

Theorem 37. Let K be the Stone space of an infinite Boolean algebra 8. Then the following are
equivalent:

(i) B is countable;
(i) K is metrisable;
(i1i) C(K) is separable.

If X and Y are Banach spaces and T': X — Y is an isomorphic embedding of X into Y, that is,
an injective bounded (equivalently, continuous) linear operator between X and Y, then we can talk
about ran(7") as being a copy of X in Y. One can show that this is a closed subspace of Y. There
is however a more important class of closed subspaces of a Banach space.

Definition 38. Let X,Y be Banach spaces, with X a closed subspace of Y. We say that X is
complemented in Y, if there is a bounded linear operator P : Y — Y such that P? = P (that is, a
projection) such that ran(P) = X.

This gives rise to an obvious notion of a complemented copy of a Banach space in another. Note
that since P2 = P, it follows that P is the identity on X in the above. If X is a complemented
subspace of Y via a projection P, let Z be the kernel of P. One can show that Z is as well a closed
subspace of Y, and in fact the operator I — P witnesses that it is as well complemented. We also
have a decomposition of X, X =Y @ Z. That is, every element of Y can be uniquely expressed as
the sum of an element of X and an element of Z. In this sense, one can say that X is not merely a
closed subspace of Y, it is in fact nicely embedded as a closed subspace of Y.
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Theorem 39. Let K and L be compact spaces such that there is a continuous surjectionT': K — L.
Then T : C(L) — C(K) is an isometric embedding where for any f € C(L),

T(f)(x) = f(Tz).

Using this and the universal property of the Stone-Cech compactification, we can prove the
following universality result. We state it only for the cases of it that we shall need.

Theorem 40. Let K be a compactification of w. Then it can be isometrically embedded into C(fw).

Since o is isometric to C(Sw), this shows that C(K) for K a compactification of w embeds
isometrically into ls.

2.7 Set theory

We assume that the reader is familiar with for example the first 15 chapters of [Jec03], as well as
some basic knowledge about set theory of the reals and proper forcing. We do however give some
basic definitions here so as to clarify notation.

We shall not need any extensive knowledge of stationary sets or closed unbounded sets (barring
their definition) in this thesis. The only exception will be Fodor’s Lemma which we shall need at
one point, and we recap for the reader.

Theorem 41. Let k be an uncountable reqular cardinal and S C k a stationary subset of it. Let
f S — K be a regressive function: for every a € S, f(a) < a. Then f is constant on a stationary
subset of k.

In fact we shall only need thaat a function as above is constant on a set of size &.
We shall also need the following standard fact.

Proposition 42. There is an independent family of size ¢ in P(w)/Fin.

2.7.1 Notation relating to ideals on sets

In Chapter 8 we shall be extensively dealing with ideals on sets, so here we recall some relevant
terminology and results.

Let S be a set. Recall that a collection Z of subsets of .S is called an ideal if it contains all the
singletons, and is closed under taking subsets and finite unions. We say that it is non-trivial if
S ¢ Z. If it is also closed under countable unions, then we say that it is a o-ideal. A collection
J C T is called a generating set for 7 if their closure under subsets and finite unions is Z. If Z has a
generating set of size N1, then we say that it is wi-generated. Similarly, if the closure of 7 under
subsets and countable unions is Z, then we shall say that J is a o-generating set for Z, and if Z has
a o-generating set of size N1, then we shall say that it is wi-generated as a o-ideal. Usually when we
will talk about a o-ideal being wi-generated, we shall mean that it is wi-generated as a o-ideal. All
ideals will be assumed to be non-trivial unless otherwise mentioned.

Recall also that if Z is a non-trivial ideal on S, then U, the collection of all S\ I such that
I € T forms a filter on S, which contains all the co-finite sets and is closed under supersets and
intersections.
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2.7.2 Countable elementary structures

We shall have occasion to talk about countable elementary substructures of H (k) for x an uncountable
regular cardinal very often in Chapters 8 and 9. We remind the reader that this refers to the
collection of all elements of the universe which are hereditarily of size less than x; equivalently,
x € H(r) if  and every element in its transitive closure has size less than x. In particular, H (k) is
a transitive set, and the set of ordinals in H (k) is exactly k.

First a useful piece of notation. If N is a set of ordinals, then §x shall denote sup(N Nwy). In
practice, N will be a countable elementary substructure of some H (k) for some large enough regular
k, and so 6y = N Nws in this case.

We mention a basic fact about such H (k) which we shall need to ensure that various calculations
and manipulations which we perform with elements of these structures can in fact be performed
inside the structure itself (as opposed to needing the entire universe of sets).

Theorem 43. Let k be an infinite reqular cardinal. Then (H(k), €) is a model of all of ZFC with
the possible exception of the Axiom of Powerset.

When we talk about such structures we shall in fact always actually be referring to the structure
(H(r), €,<) where < will be some suitable well-ordering of the structure. One important use of the
well-ordering < is that it provides a canonical witness to existential statements which are true in the
structure.

We shall also talk about the correctness or elementarity of structures, referring simply to their
being elementary substructures of H(k), or elementary substructures of the universe with respect to
a particular fragment of ZFC etc.

We shall need the following simple fact at one point.

Proposition 44. Let A < k be uncountable regular cardinals. Let M < H(k) be such that A\ € M.
Then M N H(N) < H(N).

We shall also need certain types of sequences of elementary structures.

Definition 45. A sequence of countable structures (N¢: § < wy) is increasing or an increasing
chain if for every £ < wq, (N,: v < &) € Ne.

2.7.3 Forcing

Our forcing notation is standard as can be found in [Jec03] or [Kunl4]. In particular, if ¢ is a
stronger condition than p, then we write ¢ < p. Also, forcing partial orders will typically be assumed
to be separative.

We assume that the reader is familiar with forcing up to the statement (but not the consistency
proof of) the Proper Forcing Axiom. We point out however that this thesis does not contain
any iterated forcing constructions, though some are described in Chapter 8 while referring to the
literature. We also provide a recap of some standard definitions and in particular the basic results
from proper forcing.

First we mention the most important abbreviation we shall make use of. At various points we talk
about a certain statements being consistent. What we shall mean is that if ZFC is consistent, then
the conjuction of ZFC and these statements is consistent. Similarly, we shall talk about a statement
being consistent assuming the consistency of another statement. Here too, we shall actually mean
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that if the conjunction of ZFC and the latter statement is consistent, then the conjunction of ZFC
and the former is consistent.
Next, some standard definitions.

Definition 46. Let P be a partial order and p, q € P.
(i
(ii

) We say that p and ¢ are compatible, denoted p || ¢ if there is an r € P such that r < p, q.

)
(iii) If A C P is such that for each r,s € A, r L s, then we say that A is an antichain of P.

)

We say that p and g are incompatible, denoted p L q if they are not incompatible.

(iv) If k is a cardinal such that all antichains of IP have size less than &, then we say that P has

the k-cc.

(v) If k is a cardinal such that for any sequence of conditions (p,: o < k) such that a < 8 < &
implies that pg < p,, there is some g € P such that ¢ < p, for each o < &, then we say that P
is k-closed.

We remind the reader that the countable chain condition is the same as the Nj-cc, and that
o-closed is the same as Ng-closed.

Proposition 47. Let P be a poset and k be a cardinal.
(i) If P is k-cc, then it does not collapse cardinals greater than or equal to k
(i1) If P is k-closed, then it does not collapse cardinals less than or equal to k™.

Definition 48. Martin’s Aziom, abbreviated MA, is the statement that for any ccc partial order P
as well as < ¢-many dense subsets of P, there is a directed subset of P which meets all of these dense
sets. Also, if k is a cardinal, then MA, is the statement that for any ccc partial order P as well as
k-many dense subsets of IP, there is a directed subset of P which meets all of these dense sets.

We remind the reader of the standard consequence of the Baire Category Theorem that MAy,
always holds, and hence CH implies MA. The following is due to Solovay and Tennenbaum [ST71].

Theorem 49. (GCH) For any reqular cardinal k, there is a partial order which preserves cardinals
and forces MA + ¢ > k.

We now provide a recap of proper forcing.

Definition 50. Let P be a partial order and « a large enough regular cardinal. Let M < H (k) be
countable such that P € M. Let p* € P. Then p* is a (M,P)-master condition or (M,P)-generic
condition or a master condition for M if for every dense subset D of P in M,

pl-“DNMANG 0.

Definition 51. A partial order P is said to be proper if for all large enough regular cardinals
k, for all countable M < H (k) containing P, for all p € P N M, there is some p* < p which is a
(M, P)-master condition.

We remind the reader that ccc posets are proper, and that proper posets do not collapse wi.
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Definition 52. The Proper Forcing Axiom, abbreviated PFA, is the statement that for any proper
partial order P as well as wi-many dense subsets of P, there is a directed subset of P which meets
all of these dense sets.

Assuming the consistency of supercompact cardinals, PFA is consistent, a result independently
proved by Baumgartner [Dev83] and Shelah [She98]. It is also known that some large cardinals are
required for the consistency of PFA, the best currently known lower bounds being due to Todorcevié
[Tod84].

We list two more facts about proper forcing which are important to this thesis. The first is due
independently to Todor¢evié¢ [Tod97] and Velickovié¢ [Vel92].

Theorem 53. (PFA) ¢ = R,.

In particular, one cannot hope for a forcing axiom for proper posets which meets more than
N;-many dense sets unlike MA,,,. The second is folklore.

Theorem 54. If P is a proper poset, then it preserves stationary subsets of w.

Definition 55. Martin’s Maximum, abbreviated MM, is the statement that for any poset P which
preserves stationary subsets of wy as well as Ni;-many dense subsets of P, there is a directed subset
of P which meets all of these dense sets.

The previous theorem then tells us the following.
Theorem 56. (MM) PFA + ¢ = N,.

Therefore, MM as well does not have any analogue for meeting more than wi-many dense sets.
Assuming the consistency of supercompact cardinals, MM is consistent, a result due to Foreman,
Magidor, and Shelah [FMSS88].

We end this subsection with the following two simple results which we shall need in Chapter 10.

Theorem 57. There is a separative o-closed No-cc partial order if and only if CH.

Theorem 58. Let x be an infinite cardinal. Let P be a partial order of size k™ then after forcing
with the < k-support product of kK -many copies of P, we have that P is k-centered.

Note that above we have not mentioned anything about the preservation of cardinals.

2.7.4 Set theory of the reals

Let S be a set. If Z is an ideal of subsets of S, then the following are some cardinals associated
with it.
add(Z) = min{|A|: ACZ, | JA¢ T},

non(Z) =min{|X|: X C S, X ¢ T},
cov(Z) =min{|A|: ACZ, | JA=S}.

By N we will mean the o-ideal of Lebesgue null sets, by M, the o-ideal of meager sets, and by N,,,
the o-ideal of A\, -null sets.
The bounding number is defined by

b =min{|F|: F Cuw®, Vgew” If € F f £ g}

Here f <* g means f(n) < g(n) for all but finitely many n’s.
We shall need the following standard facts about these cardinals.
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Proposition 59. The cardinal add(N') is uncountable and regular. Also, add(N) < b.

Proposition 60.
w1 < add(N), non(A), cov(N), add(M), non(M), cov(M), b.
Proposition 61. (CH or MA)
add(A) = non(N) = cov(N) = add(M) = non(M) = cov(M) = b = «.

We warn the reader that the above definitely does not even scratch the surface of what is
known about models with various patterns of equalities and inequalities holding between the above
cardinals.
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Chapter 3

Kamburelis’ Theorem

The aim of this chapter is to give a self-contained proof of a theorem of Kamburelis from [Kam89],
Theorem 67, which is crucial to our understanding of the existence, non-existence and, permitting
temporarily some poetic license, substance of the measures on the algebras that we shall construct
in Chapter 5. Kamburelis’ Theorem characterises Boolean algebras which support a strictly positive
measure as those which are o-centred in some forcing extension by a measure algebra. One direction
of our proof is new in that it uses the Kelley Intersection Theorem, Theorem 65, instead of the
more involved argument from Kamburelis’ paper in order to conclude that Boolean algebras which
are o-centred in forcing extensions by a measure algebra support a strictly positive measure. This
approach allows us to show that depending on the size of the measure algebra, one can extract some
extra information on the types of measures that the Boolean algebra supports.

In Section 3.1 we recall some standard facts from measure theory which we shall use as well
as recalling the results of Kelley [Kel59] that we shall require. In Section 3.2 we give our proof of
Kamburelis’ Theorem. In Section 3.3 we describe the extra information that one can extract from
our proof of this result, and conclude in Section 3.4 with some questions which this raises.

Before we start, we remind the reader of some notation we have established.

(i) NT denotes the positive natural numbers.
(ii) M is the class of Boolean algebras supporting a strictly positive finitely additive measure.

(iii) If I is an infinite set, then (7, p7) is the homogenous measure algebra of character |I|. Here
we are using Maharam’s Theorem, Theorem 18, which tells us that all homogenous measure
algebras of density character k (for x an infinite cardinal) are isomorphic as measure algebras
to justify our use of the article ‘the’.

3.1 Prerequisites

We shall need the following measure-theoretic lemma which can be proved using elementary Stone
duality; see for example [Kel59, Proposition 1].

Lemma 62. Let B € M. Let k € Nt and C C B be such that if a € C then p(a) > % Then, if
|C| > nk for some natural number n, then there is D C C of size greater than n such that (VD € B™T.

Crucial to Kelley’s characterisation theorem for Boolean algebras supporting strictly positive
finitely additive measures, that is, Boolean algebras in M is the following notion.
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Definition 63. Let B be a Boolean algebra. Let C C 8. If € > 0 is a real number, then we say
that the intersection number of C is at least € if for any k € N* and sequence (a;: i < k) of not
necessarily distinct elements of C, there is some F' C {0,1,...k — 1} of size at least ek such that
Nicrai € BT, The intersection number of C is defined to be the supremum of all the ¢ such that
the intersection number of C is at least . We adopt the convention that the supremum of an infinite
set is 0.

Note that Lemma 62 can be expressed in this newly acquired terminology as saying that if B is
a Boolean algebra in M, then for any k € NT, if C is a subset of B consisting solely of elements of
measure greater than %, then C has intersection number at least k.

Definition 64. Let B be a Boolean algebra. We say that it satisfies Kelley’s criterion if there is
a fragmentation B+ = (J,,c,, Cn such that each C,, has positive intersection number.

We are now in a position to state Kelley’s characterisation theorem, [Kel59, Theorem 4].
Theorem 65. Let B be a Boolean algebra. Then B € M iff B satisfies Kelley’s criterion.

If B € M (with u being a witnessing measure), it is easy to show that 9B satisfies Kelley’s
criterion using the observation we have just made. Namely, for each k € NT, let

Co = {a €B: pa) > %}.

Then by Lemma 62, each C; has intersection number at least k, from which it follows that
Bt = U, e+ Cn is a fragmentation of B into countably many sets of positive intersection number
which witnesses that 9% satisfied Kelley’s criterion. The other direction is considerably harder.
Kelley, for example, uses the Hahn-Banach Theorem, and for the role of the Axiom of Choice in the
matter, see [HR98, Form 52].

We shall also need a consequence of Maharam’s Theorem, Theorem 18 which almost appears
explicitly in [Kam89, Lemma 3.5]. Maharam’s Theorem tells us that an arbitrary measure algebra
can be decomposed into countably many canonical measure algebras, and from this we can conclude
that every measure algebra can be embedded into a canonical measure algebra. We are however
interested also in bounding the size of this target canonical measure algebra. Equipped with
some extra information about the original measure algebra, this follows by a simple application of
Maharam’s Theorem. The following lemma does exactly this, with the added ingredient that it
starts not with a measure algebra, but in fact with a Boolean algebra supporting a strictly positive
finitely additive measure.

Lemma 66. Let B be a Boolean algebra and k a cardinal. Suppose that there is a strictly positive
finitely additive measure p on B such that B has a u-dense subset of size at most k. Then B is a
subalgebra of R .

Proof. Let K denote the Stone space of 8. Then K is a compact space, and Clop(K) is isomorphic to
8. Consequently, we can consider v to be a measure on Clop(K) such that (98, u) and (Clop(K),v)
are measure isomorphic. Let A4 be the o-algebra of subsets of K that Clop(K) generates, and we
can extend v to v such that (K, .A,7) is a measure space using the Hahn-Kolmogorov Theorem,
Theorem 15. Since (8, 1) has a dense subset of size «, so does (Clop(K), ), and since this algebra
is dense in (A, D), it follows that the latter has a dense subset of size x as well. It follows that the
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measure algebra (A/N,[7]x) has a dense subset of size k as well where N denotes the null ideal of
A.

For notational convenience, we denote (A/N,[7]x) by (€,60). Now, Maharam’s Theorem,
Theorem 18, implies that there is a partition of 1¢, {¢,: n € w}, and a countable sequence of
cardinals {x,: n € w} such that (&, , 0., ) is isomorphic as a measure algebra to (Ry,,, fix, ). Since
¢ contains a v-dense subset of size «, it follows that each €., also contains a 6., -dense subset of size
at most x, and hence so do all of the i, have p,, -dense subsets of size at most x. Consequently,
kn < Kk for each n € w. By considering a partition of k into countably many sets each of size k, we
can embed each of the (R, , 1k, ) into a different piece. Since each of the (R, , fx, ) are isomorphic
to (€, 0., ), we can, by appropriately gluing together these embeddings obtain an embedding of
(€,0) in (R, px). Since (B, ) can itself be embedded in (&, 6), it follows that (B, i) is a measure
subalgebra of (R, 1k )- O

3.2 Kamburelis’ Theorem

Theorem 67. Let B be a Boolean algebra. The following are equivalent:
(i) B is in M;
(ii) There is a measure algebra R such that V™ B is o-centered”.

Proof. We start with (i) implies (7). Let x = |B|. We shall show that B is o-centered after forcing
with Ry, x,. For r € 2977 let (1), € 27 be defined by (r),(a) = r(n, a).
We know by Lemma 66 that 26 embeds into fR,, and we identify it with its image in R,. Let

{Ay: a < Kk} C Bor(2%)

be such that
Bt = {[A]: a < K},

and note that p,(A,) is necessarily non-zero for each o < k. For n € w, let

Eon={re2°"%: (r), € Aa},

and
Dy, ={r €2X":Vn € w[(r), € Au|}.

By Lemma 20, we have that pi,xx(Ean) = prx(Aq) > 0, and hence
Znew,uwxn(Ea,n) = ETLEUJNI{(AQ) = Q.

Since (Eqp: n € w) forms a mutually independent sequence of events and

Da - QWXH\ U Ea,na

new

we have by the converse of the Borel-Cantelli Lemma, Theorem 21, that p,x.(Ds) = 0 for each
a < k. Finally, let G be a V-generic subset of R, «,. Then in V[G], there is some g € 2** such
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that g ¢ N for any N € (N,xx)". In particular, for each o < K, g & Dy, so for each a < k, there is
some n, € w such that g € E, . Then for n € w, let

Cn ={[Au]: g € Eant,

and notice that each C,, is an ultrafilter on B, and since B =
in V[G].

Now we show that (i7) implies (7). The proof of this direction is different from that in Kamburelis’
paper. Let % be a measure algebra which forces that B is o-centered. By using the Axiom of Choice
in the extension, we can assume that B is in fact fragmented into countably many ultrafilters. For
n € w, let C, be an R-name such that

new Cn, we have that 9B is o-centered

VR «Bt = U Cn and each Cn is an ultrafilter”.

new

For n € w and k € NT, let
. 1
Di ={a € B": un(lla € Call) > wh

and
& ={lla€Cyll: a € D}

Note that if ' C D} is such that (. |la € Cnl € ST, then since
VR “C, is an ultrafilter”,

we must have that () F € B7T. Therefore, the intersection number of D is at least the intersection
number of &'. Now, to finish, note that by Lemma 62, each &£ has intersection number at least %,
and so each D} must also have intersection number at least % Since BT = Une%kel\w D;;, we have
by Theorem 65 that B € M. O

3.3 Strengthenings

Since Kamburelis’ Theorem characterises Boolean algebras 8 in M in terms of an extra parameter,
the measure algebra R, it is natural to wonder if particular properties of R give us any extra
information about 2B. In this section we show that some information can indeed be extracted in this
way, but while we are able to extract some extra information from both directions of the equivalence,
we are not able to actually obtain a strengthened equivalence. A clarification follows.

First, note that combining the proof of Theorem 3.2 with Lemma 66, we are able to strengthen
one half of Kamburelis’ Theorem.

Theorem 68. Let k be a cardinal and B be a Boolean algebra which supports a strictly positive
measure [ such that B contains a p-dense subset of size k. Then V¥rxe E9B s g-centered”. In
particular, B is o-centered in the forcing extension by a measure algebra which has a dense subset
of size k.

To strengthen the other half, we need a property which was first considered by Talagrand [Tal80]
for the case of k = Yy and by Dzamonja-Plebanek [DP08] more generally.
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Definition 69. Let 8 be a Boolean algebra and « a cardinal. We say that B is k-approximable if
there is a sequence of (not necessarily strictly positive) measures (u,: o < k) such that for every
a € BT there is some « < k such that pq(a) > % If Kk = Ny, then we use the term approximable.

We point out that by a result of Talagrand, see [MN80], when considering Rp-approximability,
replacing % above by any §, 0 < § < 1, gives rise to an equivalent definition. We shall unfortunately
not need this nice fact in the sequel.

We shall need the following lemmas in what follows. The first is a simple modification of
Lemma 62.

Lemma 70. Let B € M. Let a € B". Let k be a positive natural number and C C B be such that

if b€ C then “L‘Zg)b) > % Then, if |C| > nk for some natural number n, then there is D C C of size

greater than n such that (\yep(a Nb) € BT, and hence, (D € BT.

Proof. Apply Lemma 62 to the Boolean algebra B,. O
The next lemma is [Kel59, Theorem 2].

Lemma 71. Let B be a Boolean algebra, and let C C B have intersection number . Then there is
a (not necessarily strictly positive) measure p on B such that

inf{u(a): a € C} =4.

Theorem 72. Let B be a Boolean algebra and k a cardinal. Suppose that there is a measure
algebra R with a dense subset of size r such that VX E%B is o-centered”. Then B is in M and is
Kk-approximable.

Proof. Let R be the promised measure algebra, and let y denote its measure, and let (aa: a < K)
be a p-dense subset of SR. For n € w, let C,, be a R-name such that

VR E “Bt = U C,, and each C, is an ultrafilter”.

new

For each m € w, k € NT and « < k, let

. . 1 . . 1
Dy = {0 € B (o € Cul) > 1, 1(aatS|p € Conl) < =

The following claim, when combined with Lemma 71 finishes the proof of the theorem since

sBJr = U Dm,k,a-

mew,keNT a<r
Claim. For each m € w, k € NT and a < &, Dy ko has intersection number at least %

Proof. Let m € w, k € NT and o < & be fixed, and for notational convenience we denote Dok,
by D. For even more notational convenience, let a = a,. For b € D, let ¢, = ||b € Cpy||, and let
& ={ey: b € D}. Note that if F C D and (,cpep € RT, then N F € BT since

V3 E “C, € BT is an ultrafilter”.
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It follows that if we show that £ has intersection number at least %, then D has intersection number
at least % as well. So we aim for the former.
Note that if e € £, then p(e) > ¢, and p(ale) < 3-. Therefore,
plane) p(e) — ple\ a) ple) —ple\a) —pla\e)  ple) — plale)

\ _
pa) — pe) —ple\a)+pu(a\e) = pule) +ple\a)+pula\e)  ple) +plale)

Since p(e) > 3u(ale), we have that 2(u(e) — p(ale)) > u(e) + p(ale), and so

( (
plane) _ ple) — platse) _
(@) = e) + plade)

\/

Finally, applying Lemma 70, we see that £ has intersection number at least %, which proves the
claim. 4

O]

Corollary 73. Let B be a Boolean algebra and k a cardinal. Then the first implies the second
which implies the third:

(i) B supports a strictly positive measure pi such that B contains a p-dense subset of size k;

(ii) B is o-centered in the forcing extension by a measure algebra which has a dense subset of size
K;

(i1i) B is in M and is k-approximable.

We point out that the fact that the first of the above implies the third is well-known, see [DP0S],
so the interpolation of the two by the second is the real content of the corollary.

3.4 Some questions

Corollary 73 raises the natural question about whether any of the three statements are in fact
equivalent to the others. The question of whether the third statement implies the first was considered
by Talagrand in [Tal80], and it was shown that under CH, there is an approximable Boolean algebra
which does note support any separable measures. In [DP08], such a Boolean algebra was shown
to exist solely from ZFC. It follows that at least for the case of k = Ny, the first and the third
statement from Corollary 73 cannot be equivalent. This suggests the following two questions:

Question 74. Let B be a Boolean algebra and k a cardinal. Are the following equivalent?
(i) There is a measure algebra with a dense set of size K after forcing with which B is o-centered.
(ii) B supports a measure of density k.

Question 75. Let B be a Boolean algebra and k a cardinal. Are the following equivalent?
(i) There is a measure algebra with a dense set of size K after forcing with which B is o-centered.

(ii) B is k-approzimable.
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A general instance of the first question would be to understand the relation between the possible
densities of measures on a Boolean algebra when compared with this same set as interpreted in a

forcing extension by a measure algebra.
One might also ask, as Dzamonja-Plebanek do [DP08, Question 3.6]:

Question 76. Let k be an uncountable cardinal and B € M be k-approzimable. Does B support a
strictly positive measure of density k?
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Chapter 4

Slaloms and their destructibility

The aim of this chapter is to introduce slaloms. We shall be interested in certain families of slaloms
and particularly whether they are bounded in an appropriate sense, or whether they can be bounded
in an extension by a measure algebra. We shall also be interested in whether these families of slaloms
form a chain under an appropriate order. We shall use these families of slaloms to construct some
compact spaces in Chapter 5, and the properties of these compact spaces will be tightly connected
to the properties of the families of slaloms that we started with.

In Section 4.1 we introduce slaloms as well as the families of slaloms that we will be interested
in in this thesis. In Section 4.2, we modify a construction of Kunen and Fremlin from [FK91] to
construct a chain of slaloms from a particular family of slaloms. In Section 4.3, we show that this
family of slaloms is random destructible, a property that will be crucially used in Chapter 6 to
ensure that the compact spaces that we construct in Chapter 5 will support a measure.

Before we begin, we remind the reader of some notation.

(i) A natural number n will sometimes also denote the set of its predecessors {0,1,...,n — 1}.

(ii) If A Cw X w, then by A(n) we denote the set {m € w: (n,m) € A}.

4.1 Slaloms

Definition 77. For g € w® the set of g-slaloms, denoted S, is defined as follows.
Sy ={5 Cw xw:Yn(|S(n)| < g(n))}.

If h € w¥ is the exponential function, that is, h(n) = 2", then we write S for Sy, and we simply call
h-slaloms slaloms.

For the purposes of this thesis, any increasing function g € w* such that ) ﬁ is finite could
have been used instead of h.
First, we define two orders on the collection of slaloms.

Definition 78. Let A,B € S. We say that A contains B, denoted A C B, if for each n € w,
A(n) C B(n). We say that A almost contains B, denoted A C* B, if this happens for all but finitely
many n € w.

Definition 79. Let g € w®.
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(i) A family F C w* is localised by S, if there is an S € S, such that for every f € F, for all but
finitely many n € w, we have that f(n) € S(n) (we shall denote this by f C* ).

(ii) A family A C S, is C*-bounded by Sy, or simply, bounded by Sy, if there is S € S, such that
for every A € A, A C* S, that is, for all but finitely many n € w we have that A(n) C S(n).
A family is unbounded by S; when it is not bounded by S,.

If ¢ is the exponential function n — 2™, then we simply say localised, bounded etc.

One reason why slaloms are of interest in set theory is that they allow us to give combinatorial
characterisations of some of the cardinal invariants of the continuum. Of interest to us is the
following result of Bartoszynski.

Theorem 80. [BJ95, Theorem 2.3.9] Let g € w* be such that lim,, g(n) = co. Then
add(N) = min{|F|: F C w®, F is not localised by Sy}
We now come to the main property of families of slaloms that we shall be interested in.

Definition 81. Let g € w*¥, and P a forcing poset. Let F C w® be a family which is not localised
by §;. We say that F is g-destructible by P if

lFp “F is localised by Sg”.

Similarly, if A C &, is a family not bounded by any element of Sy, then we say that it is g-destructible
by P if '
IFp “A is bounded by S,

As before destructible means h-destructible (recall that h € w* is given by h(n) = 2"). If P is the
partial order to add a random real, equivalently, the Lebesgue measure algebra or any separable
measure algebra, then we shall simply say random g-destructible or random destructible.

Lemma 82. Let g € w* and F C w® be a family which is not localised by Sy. Then F is g-destructible
by some measure algebra iff it is g-destructible by a separable measure algebra, equivalently, is random
g-destructible.

Proof. If F is g-destructible by a separable measure algebra, it is trivially destructible by a measure
algebra, so one of the directions is trivial. For other directions, suppose that F is g-destructible by
a measure algebra B, and suppose that S is an B-name for a g-slalom witnessing this. In particular,
in the forcing extension by B, for each n € w, S(n) € [w]<9™. For each n € w, let C,, be a nice
name for S(n), so in particular,
kg “S(n) = Cy".

Note that since B has the ccc, for each n € w, C), only refers to countably many elements of B. Let
T be the following name for a function with domain w:

T ={(p,Cp): n € w}.

Clearly, T also only refers to countably many elements of B, and by looking at the measure subalgebra
generated by this countable subset of B we get a separable measure algebra localising F, hence
establishing the other direction. O
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A similar proof gives the following.

Lemma 83. Let g € w” and A C S, a family which is not bounded by Sy. Then A is g-destructible
by some measure algebra iff it is g-destructible by a separable measure algebra, equivalently, is random
g-destructible.

We shall also be interested in particular collections of slaloms.

Definition 84. Let )
Z={SCwxw:SeS and limQ—n|S(n)] = 0}.

Our choice of the letter ‘Z’ above comes from the fact that the slaloms in Z all have density 0
with respect to the exponential function h € w*. The elements of Z however do not lie in a region
of the Baire space which is below any particular function f € w", a property that we would like to
ensure in the families of slaloms which we study in this thesis. Such regions of the Baire space shall
be interesting to us since we can perform the Haar measure construction on this region, a fact that
shall be crucial when studying the effect of forcing with a measure algebra on sets of slaloms. We
make things precise.

Definition 85. Let g € w”.
(i) Let &, = [Tg(n).

(ii) We will consider X, equipped with the product topology, and let p, be the standard Haar
measure on Bor(X}), the Borel subsets of X, so in particular, if i < g(n),

o L
H(lF € Xy fm) =) = .

(iii) If h € w* is the exponential function n — 2", then X = A}, and p = py.

It is clear that these spaces &, are homoemorphic to the Cantor set. We shall be interested in
slaloms on such spaces, and in fact we restrict our attention to X.

Definition 86. (i) Let

1
Z={S Cwxw:S(n) 2" for each n and 22—n|5’(n)| < 00}

(ii) Let
W=1nS§.

That is, Z consists of those elements of S which are bounded by the exponential function h, and
which are further summable. Also, W consists of elements of Z which miss at least one point of
{n} x 2" for each n. That is, S € W iff S € 7 and for every n € w, S(n) is a proper subset of 2".

Notice also that if f: {(n,i): n € w,i < 2"} — w is the natural enumeration function (sending
{n} x 2" to [2",2""1) for each n), then I € T if and only if f[I] € I, where I;,,, the classical
summable ideal on w (see for example [Far00]), is defined as follows

Anon, ontl
I, ={ACw: Zw<oo}.

n
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4.2 A chain of slaloms

In [FK91] a subfamily of w* which cannot be localised by S was used to construct a family of
elements of Z which is not C*-bounded in S. (Note that in [FK91] the authors considered S, for
g(n) = n instead of S but it does not make any difference for their results.)

Theorem 87. [FK91, Theorem 4] There is a C*-chain {Ay: a < add(N)} C Z which is not
bounded by S.

The main result of this section is to perform a similar construction for the space X', but which
is not only unbounded by S, but also random destructible. Unfortunately, this requires us to go
beyond ZFC.

Before we proceed, we make the simple observation that if f € X, then

{(n, f(n)): n >0} eW,

and also, if S € § is such that S(n) C 2" for every n, then there is a f € X such that S C T, where
T(n)=2"\{f(n)} for every n. We shall use these observations in what follows.

Proposition 88 (folklore). There is a family F C X of size non(M) which is not localised by S.

Proof. For g € X, let
Ag ={f e X:Fn (f(n) = g(n))}.

Notice that for each g € X' the set A, is comeager. Indeed, for g € X and n € w, let

A = {f € X: f(n) = g(n)}.

Each A7 is open and | J,,-,,, Ay is dense for each m € w, and

A,= U 4;.
m n>m

Let {fa: @ <non(M)} C X be a family witnessing non(M), that is, be non-meagre of the smallest
possible size. Then for each g € X" there is an a such that f, € A, and so f,(n) = g(n) for infinitely
many n.

The family {f,: @ < non(M)} is not localised by S, because for every S € S there is gg € X
such that gg(n) ¢ S(n) for each n. Hence, there is an a such that f,(n) = gs(n) for infinitely many
n. So, for each S € S there is an o < non(M) such that {n: f,(n) ¢ S(n)} is infinite. O

Now, as in [FK91, Theorem 4], we will use a set of reals as above to find a C*-chain in W which
is not C*-bounded in S§. The proof is essentially the same as there, with some minor modifications.

Theorem 89. (add(N) = non(M)) There is a C*-chain {Ay: o < add(N)} C W such that for
every S € S there is a < add(N') such that Ay €* S.

Proof. Let F = {fo: o < add(N')} be as in Proposition 88.
Let Ay = fo N ([1,00) X w) and assume that we have constructed the A, for a < 3. For each
a < B fix a function g,: w — w such that

1 . 1
Z §|Aa(2)‘ < on-

i>ga(n)



As B < add(N) < b, there is a function g: w — w which is strictly increasing and which <*-dominates
{ga: a < B}. For each a < 3, fix m,, such that g(n) > go(n) for each n > m,.
For a < 3, define F,,: w — [w x w]<¥ such that

B (n) AaNg(n),g(n+1)) x wif n > myg,
al\n) =
() otherwise.

]<w

Now, since [w X w|<“ is countable and 8 < add(/N'), by Theorem 80 applied to the space wl*«
we see that there is an f-slalom ® C w X [w X w|<¥ for f € w* given by f(n) = n+ 1 which localises
all of the F,. That is,

(i) {n: Fa(n) ¢ ®(n)} is finite,
(ii)) {I: (n,I) € ®}| <mn.
Additionally, throwing out some elements if needed, we can assume that
(iii) for each (n,I) € ® there is a < 8 such that F,(n) = I.
The last condition implies that whenever (n,I) € ®, then I C [g(n),g(n+ 1)) X w and
1 1
gg(:n) @) < o

Also, if I is such that (n,I) € ® and (k,l) € I, then (k,l) € A, for some a < § and as we will see
at the end of the proof, therefore there is a v < a such that [ = f, (k). Let

A:U{I: dn (n,I) € O}.

Notice that )
. n
Z g’A(Z)\ < on
g(n)<i<g(n+1)

and since ) & = 2, we have that A € W. Moreover, for each a < /3 there is m > m, such that
(n, Fy(n)) € ® for every n > m. So, A, € AU (]0,9(m)] X w and it follows that A, C* A.
Now, it is easy to see that there is a k < w such that (AU fg) N ([k,00) x w) € W. Put

Ag = (AU fz) N ([k,00) X w).

We have now finished the construction. To see that {A,: o < add(N)} is not C*-bounded by any
slalom in S, notice that the family F was chosen so as to not be localised by any slalom in S, and
since every real from this family is C*-contained in some A, (to be more specific, we simply have
that if @ < add(N) then f, C* A,), the former family also inherits this property.

Clearly
U 4.¢c U fa
)

a<add(N) a<add(N
s0 Aq(n) C 2" for each n and o < add(N).
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Remark 90. Let
k=min{|D|: DCW,-3S5€SVD €D D C* S}.

The reader may notice that Proposition 88 amounts to a proof that x < non(M), and that
Theorem 89 can actually be proved from the assumption that add(N) = k.

In fact, there is a better upper bound for x (than non(M)). Recall that if Z is an ideal on w,
then cov*(Z) is the minimal size of a subfamily of Z such that for every infinite X C w there is an
element of the family intersecting X on an infinite set (see e.g. [HHHO7]). In this setting & is the
minimal size of a subfamily of Z, /,, such that for each subset of w intersecting each interval [2", 2nt1)
at least once, there is an element of this family intersecting it infinitely many times. Clearly then,
K < cov*(Zy ).

It is also not hard to see that cov(N) < k. Indeed, for W € W let Ay = {f € X: 3°n f(n) €
W(n)}. By the Borel-Cantelli Lemma, Theorem 21, A(Ay ) = 0 for each W € W. If F C W is
not bounded by any slalom, then each f € X is in some Ap, F € F (since we can in particular
consider the slalom which on every n is exactly 2" \ {f(n)}). Hence, if F witnesses x, then the
family {Ap: F € F} covers X, and hence has size at least cov(/N).

In fact, if cov(N) < b, then k = cov(N) (see [Bar88, Theorem 2.2]). It seems likely that
consistently cov(N) < k, but we were not able to prove it.

4.3 A random destructible family of slaloms

For this section, let B denote the following separable measure algebra: B = Bor(X')/N,,.

Definition 91. For n > 0, k < 2" let I = {f € X: f(n) = k}. Define a B-name S for a subset of
w X w in the following way:
[keSn)]=xX\I;.

Clearly, S is an B-name for a slalom. We will call S the canonical name for a slalom. Notice
that

kg “If € X S(n) =2"\ {f(n)}",
and f is a name for a random real.
We will prove that the family W is destructible by B.
Proposition 92. For every W € W
”_]B LcW g* Sm’
where S is as in Definition 91.

Proof. Fix a W € W and a b € B of positive measure, and let € > 0 be such that p(b) > €. Take n
such that Y. L|W(i)| < e. Clearly,

i>n 21
doul | I <e
i>n  keW (i)
and so if

=U U 1
)

i>nkeW (i
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then p(c) < e. So we finish by noticing that b\ ¢ € Bt and
b\ clk “Vi>n W(i) e S@)".
O

Corollary 93. (add(N) = non(M)) There is a C*-chain {Ay: o < add(N)} € W which is
unbounded but random destructible.
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Chapter 5

Todorcevié’ Construction

The aim of this chapter is to study a method due to Todorcevié [Tod00] of constructing compact-
ifications of the natural numbers using families of slaloms. The most important feature of this
method for us is that there is a strong correspondence between the properties of these families
(especially from the point of view of their boundedness) and the compactification obtained from
them by applying the Todorcevi¢ machinery to it. Of greatest interest to us will be the property of
whether the growths obtained from these compactifications support a measure or not and the nature
of any measures so obtained. We shall also be interested in whether these growths map onto [0, 1]“*.
In this chapter, we shall describe the Todoréevi¢ machinery, and study the correspondence between
the nature of the families of slaloms which are supplied to the machinery and the properties of the
spaces which we obtain. The concrete applications will be given in Chapter 6

In Section 5.1 we describe the basic idea of Todorcevié. In Section 5.2 we collect several facts
about the components of the spaces which are used to construct this space. In Section 5.3 we look
at how the choice of the families of slaloms which is supplied to the machinery affects the spaces
which are obtained.

Before we start, let us first recall some notation and terminology from the previous chapter.

Notation 94. (i) h € w* denotes the exponential function n — 2";

(ii) X denotes the product space [ h(n), and we define Haar measure on Bor(&X') in the standard
way, and in particular if i < h(n), then

1

p({f € Xy: f(n) =i}) = W;

(iii) S denotes the set of slaloms S C w x w such that |S(n)| < 2™ for each n € w;

(iv) If A,B € S, then A C B if A(n) C B(n) for every n € w, and A C* B if this happens for all
but finitely many n € w;

(v) V denotes the collection of those S € S such that S(n) C 2" for each n € w and which have
density 0 in the sense that lim, 5|S5(n)| = 0;

(vi) W denotes the collection of those S € S such that S(n) C 2" for each n € w and which are
summable in the sense that Y, 5-|5(n)| < oo;
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(vii) If A C S is such that there is some S € S such that for every A € A, A C* S, then we say
that A is bounded, or to be more precise, bounded by S;

(viii) If A C S is such that A is bounded by some element of S in an extension by some measure
algebra (equivalently, by the separable measure algebra), then we say that A is random
destructible.

5.1 The construction

In this section we will explain some details of the construction from [Tod00, Theorem 8.4]. The
space that Todorcevié constructs is the Stone space of a Boolean algebra P(€2)/Fin. This Boolean
algebra has two types of generators. We get down to the details.

Definition 95. (i) Let Q@ ={(S,n):ncw, S8, SC (nx2")}
(ii) For each A C w X w define
Ta={(T,n) € Q: An(nx2") CT}.
(iii) For (S,n) € Q let
Tisp ={(T,m) €Q:m>n,TN(nx2") =S8}
(iv) For A C P(w X w), let T 4 be the subalgebra of P(2) generated by

{TAi A€ .A} U {T(S,n): (S, n) S Q}

v) For A C P(w X w), let T¥ be the Boolean subalgebra of T 4 generated only by {T4: A € A};
A
(vi) For A C P(w X w), let K 4 be the Stone space of T 4/Fin.

Now, by varying the family A C P(w X w) that we supply to the Todorcevié¢ construction, we can
get compact spaces K 4 having a variety of different properties. In all the applications considered in
this thesis, A is in fact a subset of S.

5.2 Facts about the generators

In order to show the effect that supplying different families A C S to the Todoréevié machinery has
on the output spaces K 4, we shall need a number of observations about the generators of these
algebras, and we next collect them all in one place. The proofs of the lemmas in this section are
mostly routine verifications, however, it is hoped that separating these observations from the main
results improves the readability of this chapter.

Lemma 96. Let A Cw X w. Then T4 is infinite if and only if A € S.

Proof. If A € S, then (AN (n x 2"),n) € T4 for each n € w. If A ¢ S, there is some n € w such
that |A(n)| > 2". Therefore, (S,m) € T4 implies that m < n. This tells us that T4 is finite since
for any natural number n, the set {(S,m) € Q: m <n} is finite. O
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Lemma 97. Let A C w X w. Then ~ T4 is infinite if and only if there is some n € w such that
A(n) is non-empty.

Proof. Clear. O
Lemma 98. Let A,Be€ S. Then

(i) Tiausy =TaNTg;

(ii) if AC B, then Tp C Tjy.
Proof. Clear. O

Lemma 99. Let (S,n),(T,m) € Q. Then either T(g,) N T(1m) is empty or one of Tis ), T(1m)
contains the other.

Proof. Clear. O

Lemma 100. Let m <