
Characterisation of Received Signal Strength Perturbations

using Allan Variance

Chunbo Luo†, Pablo Casaseca-de-la-Higuera‡, Sally McClean%, Gerard Parr♦, Peng Ren$

† College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK

‡ School of Engineering and Computing, University of the West of Scotland, Paisley, PA1 2BE, UK

% School of Computing and Information Engineering, University of Ulster, Coleraine, BT52 1SA, UK.

♦ School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

$ China University of Petroleum(Huadong), Qingdao 266580, China.

E-mail: c.luo@exeter.ac.uk, pablo.casaseca@uws.ac.uk,

si.mcclean@ulster.ac.uk, G.Parr@uea.ac.uk, pengren@upc.edu.cn

Abstract—The received signal strength (RSS) of wireless signals
conveys important information that has been widely used in wireless

communications, localisation and tracking. Traditional RSS-based

research and applications model the RSS signal using a deterministic

component plus a white noise term. This paper investigates the
assumption of white noise to have a further understanding of the

RSS signal and proposes a methodology based on the Allan Variance

(AVAR) to characterise it. Using AVAR, we model the RSS unknown

perturbations as correlated random terms. These terms can account
for both coloured noise or other effects such as shadowing or small-

scale fading. Our results confirm that AVAR can be used to obtain

a flexible model of the RSS perturbations, as expressed by coloured
noise components . The study is complemented by introducing two

straightforward applications of the proposed methodology: 1) The

modelling and simulation of RSS noise using Wiener processes, and

2) RSS localisation using the extended Kalman filter.

Index Terms—Received Signal Strength (RSS), coloured noise,

Allan variance, Kalman filter, RSS simulation, RSS based localization

I. INTRODUCTION

Wireless signals are widely used for data and voice commu-

nications, object detection and localization. These systems (e.g.

wireless sensor networks) often utilize the received signal strength

(RSS) as a performance index because its value indicates the

signal quality and suggests whether the system can properly

function or not [1]–[6]. Such applications can be found in mobile

sensor networks and robotic cooperative networks where RSS is

used to estimate the position of each node. It is thus of great

interest and practical importance to measure and model RSS as

accurately as possible. For example, a node with inaccurate RSS

may lead to failure in detecting objects, cause communication out-

ages between the source and destination, and provide inaccurate

position information. Because of the dynamic propagation features

of radio frequency channels and transceivers’ electronic system

noise, RSS measurements vary irregularly in practical scenarios,

making their accurate identification and modelling not only an

important task but also a difficult one.

The Friis transmission equation can be used to characterise and

model the received wireless signal strength under ideal conditions

of free space [7]. However, the practical propagation environment

where wireless signals are generated and propagated is usually

far from ideal due to reflection, scattering, diffraction, and atten-

uation. The dominating mechanism is influenced by a number of

factors such as properties of the transmitted signal, interaction

with surrounding objects, and relative movement of the receiver

with respect to the transmitter [8]. In [9], the authors extensively

studied the radio propagation channels and identified the reflecting

surface, terrain type and fading as the three major factors which

affect RSS values. The electronic systems and antennas equipped

by the transmitter and receiver also contribute significantly to RSS

measurements [10], [11].

It is thus necessary to properly characterise the perturbations

present in RSS measurements so that their malignant effects

can be reduced in practice. Since the distribution and second

order statistics of these perturbations strongly depend on the

propagation mechanisms, so far proposed models are typically

constrained to specific propagation phenomena and do not allow

considering multiple fading driving causes [12]. Thus, there is

need of flexible models to characterise RSS perturbations allowing

accurate estimation of the power spectral density (PSD) regardless

the dominating propagation mechanism. Besides, to the best of our

knowledge, the characterisation of coloured noise components in

nonfaded RSS measurements has not been systematically studied

so far [2], [5], [13]–[15]. The use of the aforementioned flexible

models would allow further insight on the temporal changes of

RSS signals.

A. Motivations from an Engineering perspective

A considerable effort has been devoted to the characterisation

of wireless channels to enable successful deployment of com-

munication systems. This covers a span ranging from the classic

work by Gudmundson [16], who proposed a simple decreasing

correlation model for shadow fading outdoor radio channels, to

more recent contributions such as [17] considering correlation in

indoor channels due to both multipath reflections and shadowing,

and the processing of phase noise using pulse Doppler processing

algorithms and sidelobe blanker techniques [18].

The following factors can affect RSS in a practical wireless

system:

1) Large scale path loss due to the distance travelled between

transmitter and receiver.

2) Medium scale fading or shadowing: the effect of large

objects in the channel in between transmitter and receiver.

3) Small scale fading: the effect of the constructive or destruc-

tive addition of multipath waves at the receiver as it moves

on the order of a wavelength.

4) Temporal fading, due to the movement of people and objects

in the environment.

5) Interference, due to the transmission of other signals in the

same band.

6) Thermal noise.

7) Changes in transmit power, due to battery, temperature, or

other changes in the transmitter hardware.
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8) Changes in the RSS measuring circuit in the receiver, again,

due to battery, temperature, or other changes in the receiver

hardware.

The first three are static when the environment is unchanged,

and the transmitter and receiver are stationary. Factors 4–8 may

contribute to dynamic changes in measured RSS even in station-

ary conditions. Because of the complexity of identifying every

affecting mechanism, a simplified treatment of RSS measurements

with uncorrelated lognormal distributed perturbations1 is widely

accepted in the literature and usually applied in practical systems

[8], [19], [20]. Specifically, RSS is modelled using four major

terms: antenna gains, transmitting power, free space path loss and

lognormal white noise. This can be used to model any uncertainty

with a random term, which may include more effects than actual

thermal noise2. Such assumptions offer a simple model to describe

RSS and make its mathematical expression tractable. However,

they can only be made if the noise PSD approximately spreads

evenly over the whole bandwidth. If meaningful variations in the

PSD do exist, the perturbations can no longer be considered as

uncorrelated and this issue needs to be considered.

Considering the nature of wireless channels, modelling RSS

perturbations as uncorrelated random processes does not seem

sensible from the Engineering perspective. Instead, considering

a correlated stochastic process accounting for unknown perturba-

tions due to shadowing, reflections or any other temporal fading

mechanism seems more reasonable. Furthermore, even in situa-

tions where the existence of temporal fading could be negligible,

considering correlated perturbations might be advisable. For ex-

ample, the measurements from some physical instruments present

such noise components with both short and long term correlations

due to circuit drifts leading to nonuniform spectral distributions

[21]. Stebler et al. [22] state that in the spectral domain, if the

measurement sensors such as the accelerometers and gyroscopes

are corrupted by random errors of complex spectral structure, the

methods such as AVAR or PSD analysis may fail due to the

difficulty of separating the error processes. It is thus particular

important to check if such problem exists in RSS measurements.

AVAR presents following advantages with respect to other

methods for characterization of coloured noise: 1) AVAR is

independent of the long-term systematic components in the inves-

tigated time series; 2) AVAR converges for most of the commonly

encountered types of noise, whereas other classical methods do

not always converge to a finite value; 3) In practical applications, it

has weak sensitivity to low-frequency signal variations; 4) AVAR

is more computationally effective than classical spectral methods

and widely used to investigate the spectral characteristics of a time

series for noise type identification [23].

B. Contributions

In this paper, we deal with the characterisation of correlated

perturbations in RSS. We first demonstrate the time and system-

dependency of noise in RSS measurements from practical system

setups where no temporal fading is expected. As an effective and

flexible instrument to analyse correlated stochastic processes, the

AVAR is then introduced with a specific focus on its calculation

[24]. The characterisation of RSS perturbations is thus performed

using AVAR. A number of experiments considering different

propagation setups are conducted and analysed. Based on these

results, we further introduce two applications of the proposed

1We will use the word perturbation to refer to any unwanted signal term
in the RSS measurements, regardless of its nature or driving mechanism.

2Without loss of generality, we refer to random perturbation as noise.

characterisation: 1) modelling coloured noise components using

Gaussian Wiener processes and; 2) distance estimation from RSS

measurements using an extended Kalman filter.

The main contribution of the paper is the proposal of a general

approach to characterize the perturbations of RSS measurements,

which can be applied to heterogeneous devices and different prop-

agation environments. The first application is presented as a tool

to develop further studies on positioning or channel estimation.

Finally, we illustrate the application of this methodology, using

distance estimation as a case study.

The remainder of the paper is as follows: Section II introduces

the related work and background, and motivates the paper; Section

III discusses RSS through the path loss model, the calculation

of AVAR and perturbation model; Section IV presents differ-

ent experiments using different setups; Section V presents the

applications of modelling coloured noise using simulation and

the extended Kalman filter (EKF) for RSS distance estimation;

Section VI discusses the relevant issues of RSS measurements

and modelling of perturbations, and Section VII concludes this

paper.

II. RELATED WORK

A. RSS-based Research and Applications

RSS-based research and applications can be found in broad

areas. One particular example is wireless communication, which

requires an adequate level of RSS in order to establish connections

or continue communications [8]. Parsons further investigated

mobile radio propagation channels, and demonstrated that a prop-

agation channel can affect the RSS by means of fading and noise

and thus have strong impact towards the performance of a radio

system [9]. Not only communication systems rely on accurate RSS

measurement and modelling, but another large group of applica-

tions has also extensively exploited RSS,namely localization and

tracking [3], [25]. Li et al. proposed to use RSS-based localization

algorithms using LS channel estimation when the propagation

model is unknown. In order to improve the accuracy of RSS

based localization, Chandrasekaran et al. exploited the correlations

in positioning errors over time. Practical application of RSS

measurements was demonstrated in [1], [26], which implemented

positioning and collision avoidance algorithms in unmanned aerial

vehicle networks.

With an increasing interest on RSS-based applications, it be-

comes obvious that existing solutions supported by relatively

unsophisticated techniques need to be further investigated, in order

to have a better understanding of RSS perturbations, improve

their modelling and enhance performance. The accuracy of using

RSS-based localization is analyzed in [5], which shows that, in

a cellular network, RSS-based localization has limited accuracy

that does not meet specific government requirements, but is still

an attractive solution for less demanding services. Arora and

McGuire studied the lower bound of the localization estimation

error of mobile terminals used in urban areas and suggested that

the presence of buildings invalidates some popular assumptions

for estimation errors such as the Cramer-Rao lower bound [27].

Our recent project [28] investigated the application of RSS

measurements for the purpose of collision avoidance in unmanned

aerial vehicle networks. We discovered that coloured noise can

affect the algorithms at a certain level of accuracy, which has

significance for such high mobility scenarios. This motivated us

to explore the characteristics of RSS perturbations into greater

details and model and simulate coloured noise for reconstruction

and test purposes.
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B. RSS Measurements Signal Model

Since RSS is an important feature of wireless signals, its

modelling has been extensively studied. The Friis transmission

equation [7] firstly introduced the free space propagation model.

However, practical wireless systems and their applied environ-

ments are far from this ideal environment: the transmit and

measurement circuits may drift with time and the propagation

channels may randomly reflect or scatter signals and create fading.

These radio propagation properties were studied and several path

loss models (e.g. [29], [30]) were proposed and generalized as

follows,

PL = PL+Xσ (1)

where P̄L is the mean propagation loss and Xσ is a random

variable accounting for any perturbation in the signal. This model

error can include any unknown effect due to shadowing, multi-

path reflections, etc. When no fading is present, a model consid-

ering Xσ as a zero mean Gaussian distributed random variable

with standard deviation σ is widely studied and accepted in

the literature. The corresponding nonlogarithmic model assumes

a lognormal distribution for the random term in natural units.

Thus, if Xσ is described in the log domain, it will follow a

Gaussian distribution. When fading is present, the data may follow

Rayleigh, Rice, Weibull, or Gamma distributions depending on the

dominating propagation mechanism [8]–[10].

C. White and Coloured Noise

The study of particle movements under thermal fluctuations [31]

helped define and model noise. The approximation that the random

forces – which control the particle movement – are uncorrelated as

perceived by the particle itself is usually assumed. The movement

driven by these random forces is called white noise. This concept

was applied in the systems where, compared with its own time

scale, the outside forces are under much shorter correlation times.

Similar approximations can be found in physics and electronics

[11], [32], etc.

However, when the time scale of such a process is comparable

to the characteristic relaxation time of the system itself, any results

obtained from white noise theory that make predictions about

the dynamics do not lie within its regime of validity [21]. For

example, the study of laser gyro systems dynamics has revealed

the following noise components: quantization noise, instability

bias etc. [33]. These noise types have comparable correlation time

scales with regard to the gyro system itself.

Let us consider the random term in eq. (1). When no fading

is present, this term is usually assumed as uncorrelated (white)

noise whereas when any temporal fading exists, the perturbations

are actually correlated, and this assumption can no longer be

made. Even in cases where the assumption of white noise could be

maintained, there might be some uncontrolled effects giving rise

to noise components with correlation time scales comparable to

the measurement instrument itself. In this case, the correlation of

the random signal would not be negligible, and a further look on

the different noise components seems advisable. In order to have

a better understanding of RSS values, it is worthwhile having

a flexible tool able to characterise correlated (coloured) noise

without needing to know precisely the propagation mechanisms.

III. ANALYSIS OF RSS PERTURBATIONS

A. RSS and Time Dependency

A wireless system generates signals using its internal circuit

and transmits them from its antennas. The radio frequency signals

are broadcast through propagation media using electromagnetic

waves. The major causes of the degradation of the received

signal strength include thermal noise, antenna features and channel

propagation loss. According to [10, equation (3.93)], the received

signal strength can be given by

Py(d)[dB] = Px − PL(d0)− 10n log(
d

d0
) +Xσ (2)

where n is the path loss factor whose value is associated with

the propagation environment [8], Px is the transmitting power, d
and d0 are the transmitter-receiver distance and reference distance

respectively. As described before, Xσ is the random perturbation

(noise) term. The key symbols used in this paper are listed in

Table I. Given a fixed position of transmitter and receiver, we can

rewrite (2) to describe the time varying relationship as

Py(t)[dB] = Px − PL(d0)− 10n log(
d

d0
) +Xσ(t), (3)

where the first three terms on the right hand side are not time

varying.

When no fading is present, Xσ(t) is usually modelled as a

zero-mean Gaussian distributed random variable with standard

deviation σ and PSD given by

Sw(f) =
N0

2

where N0 = 2σ2.

Using a white process to model the random variable is conve-

nient in describing its movements driven by random forces and

has the advantage of simplicity in the mathematical expression and

analysis. However, it can be an over simplification for describing

practical systems where the noise is from complicated sources

and shows different behaviours at different correlation times [33].

In order to verify that the noise present in RSS measurements

is actually coloured, we tested a dataset of N = 15000 Line of

Sight (LOS) RSS measurements3 from an 802.11g receiver against

the null hypothesis of whiteness of the noise. We employed the

Ljung-Box Q-test [34] for the sample autocorrelation coefficient

of the noise process Xσ(j), j = 1, . . . , N :

ρ̂(k) =

∑N
j=k+1Xσ(j)Xσ(j − k)

∑N
j=1X

2
σ(j)

k ∈ Z

with null and alternative hypothesis:

H0(white noise) : ρ̂(k) = 0 ∀k 6= 0

H1(coloured noise) : ρ̂(k) 6= 0 for some k 6= 0.

Under the null hypothesis, the statistic

Qm = N(N + 2)

m
∑

k=1

ρ̂2(k)

N − k

asymptotically follows a Chi-squared distribution with m degrees

of freedom (χ2
m). Fig. 1 shows the obtained Qm values for

m = 1, 2, . . . , 100 together with the threshold values at which,

we would reject the null hypothesis at αsig = 0.05 significance

level4. The obtained values are far above the thresholds which

means that the null hypothesis can be rejected with a very low

error probability (p). Actually, the p values obtained from our data

are all below 2.22 · 10−16 (simulation floating point accuracy),

3The setup conditions for the LOS experiment are given in Section IV
(see Figure 3). The absence of shadowing obstacles and nearby objects
prevented for correlation effects due to temporal fading.

4The null hypothesis would be rejected with 5% error probability.
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TABLE I
TABLE OF KEY SYMBOLS

Symbol Description

Px, Py Transmitting, receiving power

d, d0 Distance between transmitter and receiver and ref-

erence distance

PL,PL Propagation loss and average propagation loss

X,X Perturbation of signal strength, average value

Sw, SX PSD, its two-side version

σ Standard derivation of the perturbation

f Frequency

N0 Noise power density

N Number of measurements

ρ̂, Qm Statistic to test the sample autocorrelation coeffi-

cient

p Null hypothesis error probability

τ correlation interval

tm,M Time stamps, total number of stamps

σ2
τ AVAR

Ts Sampling time

χ2
m Chi-squared distribution with m degrees of free-

dom

α Order of noise components

A− E Coefficients of noise terms in time domain

hα Coefficients of noise terms in frequency domain

fh, wh Bandwidth of the measurement system, angular

expression

H(z) z transform for generalized Wiener model

Qd Variance of input noise process

ak, bk Coefficients of the MA, and AR models

z Observed signal

wα Observation noise terms

i Deterministic control input term

s State vector

u Driving noise vector

A State transition matrix for EKF models

B Driving noise transformation matrix

h(·),H(t) Nonlinear transformation of the observation, its

Jacobian

a(·),A(t) Nonlinear transformation of the state vector, its

Jacobian

Q State noise covariance matrix

P Estimation error covariance matrix

K Kalman gain

I Identity matrix

meaning that the probability of incorrectly assuming that the noise

is not white would be lower than that.

The results of this test show that the noise present in the

RSS measurements has a time-dependency statistical behaviour.

In order to analyze this noise, the instrument of AVAR will be

introduced as an effective tool to identify the noise components.

We will show that AVAR constitutes a flexible tool to characterise

any type of correlated noise term.

B. Allan Variance

The Allan variance (AVAR) was proposed by David W. Allan

to characterise the underlying noise processes of clock systems

in 1966 [24] and, together with some modifications, it has been

recommended as a standard for such purpose [35]. Let X(t) be

the noise signal under study. The AVAR is obtained for different

Fig. 1. Ljung-Box Q-test statistics obtained for m = 1, 2, . . . , 100 time
lags from N = 15000 RSS samples. Threshold values for αsig = 0.05
are also presented.

time stamps tm as:

σ2
τ =

1

2
Var{X(tm + τ )−X(tm)} =

1

2
Var{Xm+1 −Xm} (4)

where

Xm =
1

τ

∫ tm+τ

tm

X(t)dt (5)

and, for stationary processes, is only a function of τ . The sampling

period is 100ms in our experiments. With this in mind, the AVAR

can be easily estimated by numerically computing (5) as a sample

average for different time instants tm, m = 1, ...,M − 1 and the

AVAR as a sample variance (note that E{Xm+1 −Xm} = 0 for

stationary processes):

σ̂2
τ =

1

2(M − 1)

M−1
∑

m=1

(µm+1 − µm)2 (6)

where

µm =
1

K

K
∑

k=1

X(tm + kTs)

with Ts the sampling time and K = ⌊τ/Ts⌋. The number of

available samples M to calculate the sample variance is a function

of the total length of the signal N ·Ts and the integration interval

τ :

M = ⌊
NTs

τ
⌋

It is worth noting here that the error of the AVAR estimator,

usually decreases as the averaging time τ increases. Confidence

intervals for the estimation can be established by considering the

distribution of the sample variance. Thus, we can use the Chi-

squared distribution to establish its confidence interval as follows

χ2 =
̥σ̂2

τ

σ2
τ

,

where σ2
τ is the true variance value and ̥ is the number of degrees

of freedom (DOF) of the estimator5. χ2 denotes the cumulative

distribution function (CDF) of the chi-squared distribution. Given

a confidence of ε, the confidence interval for the Allan variance

5The number of DOF should be specifically estimated since the samples
used for computing AVAR are seldom uncorrelated.
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estimation is given by

̥σ̂2
τ

χ2(ε)
≤ σ2

τ ≤
̥σ̂2

τ

χ2(1− ε)
.

Because the error term Xσ(t) in (3) may be composed of

multiple components, it is important to count on a flexible

representation of the power-law PSD so that the contribution

of each component can be taken into account. Therefore, we

apply the AVAR tool in this paper in order to not only obtain

their contributions but also to apply them in practice. Power-

law processes have been proved to be accurate instruments for

representing the intrinsic properties of coloured noise an its PSD

[36]–[38]. Let us consider a (one-sided) PSD which can be

reasonably used to model the random fluctuations in RSS signals:

SX(f) =
∑

α

hαf
α, (7)

In practice, these random fluctuations can often be represented

by the sum of five stochastic processes −2 ≤ α ≤ 2 assumed to

be independent [24], [35].

As described in [24], coloured noise is a combination of several

types of components which cover different frequency bands of the

noise spectrum. Similar to [24] and the IEEE standard [35], we

only consider the major components which contribute the most

part of the noise spectrum and AVAR values. Specifically the

following 5 components: −2 ≤ α ≤ 2 are analyzed. Some details

of these noise components are introduced below [36]:

• Brow(nian) noise (α = −2): This type of noise corresponds

to a random walk behavior of the received signal [11]. Its

origin is actually Brownian motion in the receiver circuitry.

• Pink noise (α = −1): This component, also referred to as

flicker noise, shows a 1/f pattern. It has a variety of different

causes, usually related to the flow of direct current.

• White noise (α = 0): Named by analogy to white light,

with a flat frequency spectrum. As a wideband noise, RSS

measurements have the equivalent component of white noise

denoted by (3). The source of this noise can be thermal

noise from the antennas and transceiver circuit or random

shadowing effects [10] of the propagation channel.

• Blue noise (α = 1): With a f increasing law, this term is

sometimes loosely used to describe noise with minimal low

frequency components. The specific origin is not well known,

but one possible source is from the interference mitigation

circuit which helps combat interference and improve the

wireless signal quality [39].

• Violet noise (α = 2): This noise presents a f2 law and is

also referred to as purple noise or differentiated white noise.

Our results are aligned with no previously reported evidence

of its presence in RSS measurements (to the best of our

knowledge).

Specifically, for the model in (7), and considering the bounds

for α, the AVAR can be expressed in the time domain as [36]:

σ2
τ ≈ Ah−2τ +Bh−1 +

Ch0

τ
+
Dh1 + Eh2

τ 2
(8)

with the mapping coefficients given by

A =
2π2

3
, B = 2 ln(2), C =

1

2
,

D =
1.038 + 3 ln(whτ )

4π2
, E =

3fh
4π2

,

where fh = wh/(2π) is the bandwidth of the measurement

system.

The hα coefficients can be estimated using Least Squares (LS)

algorithms [40]. We showed in [41] that the introduction of

AVAR to characterise the noise PSD is preferable to (for instance)

directly fitting (7) using the periodogram. To illustrate this, we

conducted a simple experiment (see the applications in Section

V-A for the detailed procedure): We generated 1000 realizations

(where each one has N = 214 = 16384 samples) of a noise

process whose PSD is given by (7) with h−2 = 0.01, h−1 =
1, h0 = 100, h1 = 0, h2 = 0 as in [40]. For each of them, we

estimated the two sets of hα values using LS to fit the AVAR

curve (ĥσ
α) and the PSD directly estimated with the periodogram

(ĥPSD
α ), respectively, for the sake of comparison. The histograms

for the relative errors eiα = (ĥi
α−hα)/hα are presented in Fig. 2,

where lower values and dispersion can be observed for the AVAR

case.

As we will show in the experimental section, the power-law

identities present in RSS noise components can lead to simpler

analyses if they are handled correctly. We will use the Least

Squares (LS) algorithm to characterise the noise components

through a parametric estimation of the AVAR as a power series

(8). As shown in [41] and studied in Section III-B (see Fig. 2),

the estimation method based on AVAR is preferable to direct

estimation in the frequency domain based on the PSD. The noise

characterisation is performed by taking advantage of the one-to-

one relationship between the parametrization of AVAR and the

noise PSD [see (8)].

We treat RSS coloured noise components as power-law pro-

cesses so that they can be identified and analyzed even without

the details of each noise source. Usually it is not a trivial task to

identify the exact origin of each noise component. For example,

[39] found that the wireless signal processing module of some

peripheral cards can generate coloured noise. Specifically these

network chipsets automatically increase the operational signal

level and carrier sense threshold in order to ensure a certain

level of signal to interference and noise ratio and the successful

demodulation of incoming signals. Thus their RSS measurements

usually follow a random walk behaviour, but statistically drift

towards higher values with the increase of running time. The

AVAR tool employed in this paper is able to analyze such time

dependent behaviour even if such mechanism of the inner circuit

is unknown. Furthermore, the flexibility of the power law PSD

representation in eq. (8), allows for proper characterisation of

correlated perturbations due to actual temporal fading (reflections,

shadowing, etc), with no need to identify the dominating propa-

gation mechanisms. This means that the α noise components can

be used to model these perturbations even when their origin is not

due to the specific types of noise mentioned above.

IV. EXPERIMENTS

This section characterises the correlated components of RSS

perturbations using AVAR and the LS algorithm for model fitting.

We carried out three groups of experiments, where different

datasets were collected. The three scenarios under consideration

are: different setups of the propagation environment, modifications

of both transmitter and receiver hardware, and change of time span

for parameter estimation. For the sake of comparison, we have

simulated reference datasets perturbed with white noise whose

mean and standard deviation are directly calculated from the

obtained data. For each experiment, we show the result of the

two datasets simultaneously in order to highlight the different

characterisations of coloured and correlated perturbations and

white noise. We also introduce the fitting curve given by LS

algorithm to obtain the corresponding coefficients hα of the RSS

datasets.
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Fig. 2. Distribution of the relative estimation errors for h0 (a), h−1 (b) and h−2 (c) coefficients using AVAR. The results obtained from direct
estimation using the periodogram are also presented and denoted as PSD in the above figures.

A. Modification of the Propagation Environment

Three experiments were carried out to investigate the AVAR

parameters regarding different fading/noise environments: 1) LOS

signals with neither shadowing nor reflections; 2) The environ-

ment included both LOS and reflected signals from two plastic

mattresses; 3) Shadowing environment with a human being com-

pletely blocking the LOS signals.

We set the experiment platform in the centre of a basketball

court (size: 28m*15m) which did not have active RF equipment

around. It was composed of an ASUS RT-N66U transmitter and a

Lenovo T60 receiver, sitting on two plastic seats respectively, as

shown in Fig.3. The carrier frequency (central frequency) was set

to 5.22GHz (WLAN Channel 44). A frequency scanner was used

to check that the RF environment was free from interference. The

transmitter constantly broadcast BEACON signals every 100ms,

which were received and demodulated by the receiver. Each

experiment lasted approximately 1 hour. We then used an off-line

application to extract the RSS measurements with time stamps

from the original received packets. The mean removed RSS

measurements were analysed to identify their components, which

were presented in the figures.

The model coefficients hα of these data are calculated using

the LS algorithm and listed in Table II. Fig.4-6 show the AVAR

values of the datasets with correlated components and those of

the reference artificial white noise respectively, together with the

LS fitted curve.

Analysis of the results

From Fig.4 - Fig.6 and Table II, we can see that because of

the existence of correlated components, the AVAR curves of the

RSS measurements do not decrease linearly with the increase of

correlation time τ on the log-log diagram, whereas those with

artificial white noise do follow this linear law. We can thus

conclude that the traditional white noise assumption is inaccurate

in every case (Xσ in (3)). This could be expected in all the cases

except LOS, since fading due to either reflections or shadowing

is present. However, for the LOS case, our experiment shows that

the noise does also have coloured components, as opposed to the

majority of approaches which generally assume white noise in

these situations.

More specifically, the experiments show that the scenarios with

LOS signals are closer to the assumption of white noise. Such

trend diminishes with the degradation of the propagation envi-

ronment following reflection and human being blocks. In detail,

Fig.4 presents the white noise component (h0) as the dominant one

which is coloured by a Brownian noise term h−2. Fig.5 presents

both white noise (h0) and 1/f terms (h−1), the latter respectively

accounting for reflections and shadowing. Fig.6 shows that the

AB

28m

15m

1m
A: Transmitter

B: Receiver

(a)

(b)

Fig. 3. Exemplar settings of the experiment environment and platform.

strong shadowing imposes a dominant 1/f component (h−1), with

meaningful contribution from the Brownian (h−2) component.

These two terms make the contribution of the white noise term

negligible. Overall, the AVAR calculations do not show clear

contributions from the f and f2 components (h1 and h2).

B. Change of the Time Span

The following experiment aims to answer the question whether

the characterisation obtained using AVAR coefficients changes

over time or not. The same datasets from IV-A can be used

since each of them was acquired in consecutive time slots. If

meaningful changes over time do exist, distinctive coefficients

would be obtained based on different periods of data. Therefore,

we divided each dataset into two equal halves where the first half

was acquired earlier than the second one. These sub-datasets were

then analysed to obtain the AVAR coefficients.
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TABLE II
MODEL PARAMETERS hα OBTAINED FROM DIFFERENT PROPAGATION ENVIRONMENTS.

AVAR h LOS LOS+Reflection NLOS(Human)

h−2 1.49497 · 10−05 3.22435 · 10−14 0.00651
h−1 3.03409 · 10−10 0.003110 0.77365
h0 0.09220 0.122037 2.69637 · 10−13

h1 2.22057 · 10−14 2.22065 · 10−14 2.22046 · 10−14

h2 2.22070 · 10−14 2.22711 · 10−14 2.22046 · 10−14

TABLE III
MODEL PARAMETERS hα OF THE MEASUREMENTS OBTAINED IN TWO CONSECUTIVE TIME PERIODS. THE SYMBOLS 1st AND 2nd DENOTE THE

FIRST AND SECOND HALF OF THE CORRESPONDING DATASET.

LOS LOS+Reflection NLOS(Human)

h 1st 2nd 1st 2nd 1st 2nd

h−2 1.10 · 10−05 2.01 · 10−05 2.89 · 10−14 2.93 · 10−14 0.00641 0.00602
h−1 2.28 · 10−09 6.09 · 10−09 0.00230 0.00367 0.74122 0.83067
h0 0.10806 0.07656 0.13845 0.11163 1.47 · 10−07 4.12 · 10−08

h1 2.22 · 10−14 2.23 · 10−14 2.22 · 10−14 2.22 · 10−14 8.82 · 10−14 2.71 · 10−14

h2 2.22 · 10−14 5.06 · 10−14 2.30 · 10−14 2.22 · 10−14 2.22 · 10−14 2.22 · 10−14
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Fig. 4. AVAR and the LS fitted line of the LOS scenario.
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Fig. 5. AVAR and the LS fitted line of the NLOS scenario with plastic
foam blocks.

Table III summarises the experiment results. In each dataset,

the dominant component does not change over time, but the
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Fig. 6. AVAR and the LS fitted line of the NLOS scenario with a human
block.

combination and contribution from each component may vary

a little over time due to adjustment issues. In detail, the LOS

dataset mainly has white noise (h0); the reflection dataset has

clear contributions from white noise (h0) and 1/f perturbations

(h−1), which mainly accounts to the temporal fading; the dataset

with human blocks is mainly affected by both flicker (h−1) and

Brownian (h−2) components accounting for the shadowing. This

experiment confirms that the proposed method does provide stable

characterisation of RSS perturbations, and is useful for further

processing in order to compensate or avoid the impact coming

from coloured/correlated random terms.

C. Change of the Distance between Transmitter and Receiver

The next experiment investigates the influence of changing the

distance between transmitter and receiver towards the components

of the RSS perturbations (AVAR coefficients) in the LOS scenario.

The other conditions remain unchanged. Table IV demonstrates

the results, from which we can easily see that both the two cases

have the same dominant noise (h0), but the amounts have varied.

In the case of “2m” distance, the 1/f component emerges as

a small contribution whereas the remaining ones have greater

weights. The origin of these correlated terms may be due to
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TABLE IV
PARAMETER hα OF THE MEASUREMENTS UNDER DIFFERENT

DISTANCE

AVAR h 1m 2m

h−2 1.49 · 10−05 4.90 · 10−05

h−1 3.03 · 10−10 0.000903
h0 0.09220 0.070940
h1 2.22 · 10−14 9.99 · 10−07

h2 2.22 · 10−14 9.99 · 10−07

temporal fading caused by contributing reflections (e.g. floor)

which are non-negligible in this new setup.

D. Different Hardware Setups

In order to examine the impacts of different hardware towards

the corresponding AVAR parameters, we carried out two groups

of experiments for the scenario of LOS signals using different

hardware sets. Hardware-1 used an ASUS RT-N66U card for

transmitter and an Intel PRO/Wireless 3945ABG card mounted on

a Lenovo Thinkpad T60 laptop as the receiver, while hardware-2

used two Gigabyte GN-WI01GT cards for transmitter and receiver,

respectively. The distances between transmitter and receiver are

both set to 2m.

TABLE V
PARAMETER hα OF THE MEASUREMENTS UNDER DIFFERENT

HARDWARE SETTING

AVAR h Hardware-1 Hardware-2

h−2 4.903 · 10−05 2.337 · 10−14

h−1 0.000903 0.020693
h0 0.070940 0.984316
h1 9.999 · 10−07 1.060 · 10−7

h2 9.999 · 10−07 7.545 · 10−10

From Table V, we can see that different hardware settings can

have large estimation discrepancies about the AVAR parameters,

but they do not significantly change the relative weights of the

different noise components, which are more related to the actual

noise power. For example, the dominant noise in these two cases is

still white (h0), and the next component in terms of significance is

flicker noise (h−1), which lays on the interval 10%− 20% of the

former. In order to deal with the inevitable hardware diversity,

practical scenarios such as distance estimation can employ an

estimation algorithm or a calibration procedure to improve the

accuracy of a specific application.

E. Comparison with straightforward estimation using spectral

methods

Commonly employed characterization procedures for coloured

noise rely on the definition of parametric models for the PSD

which consider specific contribution from each noise component.

By adjusting the parametric equation in the frequency domain (e.g.

using the periodogram), the different noise levels can be estimated.

However, as we showed in [41], the use of the periodogram

(specially when estimated through the Discrete Fourier Transform)

is prone to errors when the PSD shows a significant frequency-

dependant behaviour, especially for power-law densities [37].

Exploring alternative approaches is thus preferable.

Fig. 7 compares the obtained results in the first experiment

with an estimation of the PSD of the noise obtained from the

periodogram. The flicker (α = −1) and white noise (α = 0)

contributions can be easily appreciated in the figure while the

random walk contribution (α = −2) is not so obvious due to its

low value. The significant frequency peak at f = 1Hz prevents

from proper identification of the white noise contribution, which

leads to a poor fitting of the PSD model if the periodogram

estimation is directly employed. The theoretical fittings obtained

from both the AVAR and PSD estimations are also shown in

the figure. In fact, the values obtained from the latter tend to

overestimate the white noise component and underestimate the

other 1/fα coefficients. This can be observed in the figure where

the negative slope of the PSD fitting is lower in absolute value,

and the constant noise floor is reached at lower frequencies. On

the other hand, the fitting obtained using AVAR better follows the

PSD curve, featuring the same slope and reaching the noise floor

level at the expected frequencies.
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Fig. 7. PSD estimation of the RSS signal with theoretical fittings using
both Allan and direct estimation via periodogram.

F. Experiments on a different dataset

The next group of datasets were collected by Caleb Phillips and

Eric W. Anderson from the University of Colorado [42]. Different

from the previous indoor experiments, the data were collected in

an open flat flood plain where the distance between transmitter

and receiver is about 100 feet. The researchers recorded RSS

measurements received at each 5 degree azimuth position. In order

to control the length of this article, we picked the two typical

azimuth angles 0, 90 degrees, and processed the datasets at these

directions.

Each of these datasets contains 80s of measurements. Com-

paring with the datasets collected in the previous experiment,

the length is shorter. The AVAR calculations only cover a short

correlation time interval, e.g. up to 80s. Nevertheless, the effects

of coloured noise can still be observed from the results. Fig.8 -

Fig.9 show the RSS measurements and the corresponding AVAR

values, together with the comparable datasets with artificial white

noise. The coefficients of the five types of noise components are

listed in Table VI.

The results demonstrate fairly stable combination of noise,

where the major contributions come from Brownian, Pink and

White Noise for the first dataset, and Brownian and White Noise

for the second dataset. The difference in this case is from the

antenna effects where data received from the side lobe of the

antenna may affect the contributions of different noise.
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Fig. 8. The RSS measurements and AVAR (0 degree).
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Fig. 9. The RSS measurements and AVAR (90 degree).

TABLE VI
PARAMETER hα OF THE FLOOD PLAIN DATASET.

AVAR h 0◦ 90◦

h−2 0.000075 0.000096

h−1 0.014009 8.138e-8

h0 0.017734 0.026985

h1 1.046e-12 9.999e-7

h2 2.402e-14 9.997e-7

V. NOISE MODELLING AND PROCESSING

The experiments for AVAR and RSS measurements show

distinctive differences from the assumption of only white noise,

suggesting the existence of other noise components even when

little fading exists. While the traditional assumption of white noise

provides a feasible framework in modelling RSS, the discovery

in our experiments sheds light on more accurate signal modelling

and noise processing. This is particularly important for applica-

tions involving time varying processes, e.g. tracking positions of

vehicles or mobile robotic equipment.

The advantage of AVAR for characterising perturbations for

noise type identification through log-log representation paves the

road for noise synthesis and real-world applications such as

position estimation. In particular, practical measurements of RSS

signals show favourably stable combination of noise types, which

can be characterised by AVAR and used to determine parameters

of system models. In this section we illustrate two applications of

the present study:

1) Noise synthesis for simulation purposes. We introduce a

simple method based on Wiener processes which allows

incorporation of coloured noise components into the gen-

eration of artificial datasets.

2) Position estimation using RSS. We propose a method based

on the extended Kalman filter which considers the coloured

noise components. According to [43], Extended Kalman

filter is a standard method for tracking and navigation where

the underlying transition incorporates non-linearity.

A. Simulation of RSS Noise

We are interested in simulating discrete noise processes fol-

lowing the PSD in (7) or, equivalently, its power-conserving two
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sided version:

SX(f) =
∑

α

h−α

2

1

|f |α
(9)

Assuming statistically independent sources of these noise com-

ponents [33], we can simulate them individually using the method

from [37] and then adding the corresponding components to gen-

erate the final result. The simulation method consists in filtering a

white noise process using the following generalized Wiener model

H(z) =
1

(1− z−1)α/2
. (10)

The spectral density of the filtered noise can be calculated

through Sd = ∆tQdH(z)H(z−1) with z = ejω∆t, ∆t the

sample time and Qd the variance of the input noise process [44]:

Sd(f) =
Qd∆t

(2 sin(π|f |∆t))α
. (11)

Sd(f) can be approximated for the frequencies below the

Nyquist limit as

Sd(f) ≈
Qd∆t

1−α

(2π|f |)α
, (12)

which shows a power law property like the terms in (9). The input

noise variance is thus selected by properly mapping (12) to each

component of (9) so that it can be synthesized using the filter in

(10):

Qd =
h−α

2

(2π∆t)α

∆t
. (13)

The even α values yield filters which can be accurately imple-

mented, such as the random walk model (α = 2, see an example

of the model description in Section V-B, equation (20)). For the

odd values, an approximation needs to be made. In this case,

the transfer function in (10) can be expanded as a pure moving

average (MA) process:

H(z) = 1 +
α

2
z−1 +

α/2(α/2 + 1)

2!
z−2 + ... (14)

The coefficients of the z−k terms in the above equation are given

by

bk =

k
∏

n=1

(α/2 + n− 1)/n. (15)

An autoregressive (AR) process can be used as an alternative.

In this case, the transfer function is expressed as [37]:

H(z) =
1

1− α
2
z−1 − α/2(1−α/2)

2!
z−2 + ...

(16)

with the coefficients

ak =

k
∏

n=1

(n− 1− α/2)/n. (17)

This approach is used in Section V-B to model flicker noise

(α = 1).

The simulation of coloured noise presents a number of applica-

tions which are extensible to other signal domains. For example,

a straightforward one is the generation of synthetic signals to

test theoretical hypotheses and algorithms as demonstrated in this

paper. The procedure described here was used in Section III-B

to show the appropriateness of using AVAR to characterise the

noise PSD. The simulated noise in the time domain together

with the corresponding PSD are shown in Fig.10. Another useful

application can be the simulation of experimental frameworks

which are not easy to set up in practice, e.g. a scenario with

long distances between nodes and/or a controlled interference

environment.
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B. Coloured Noise and RSS Localization

One of the most useful RSS applications is tracking and

localisation, such as vehicle/robot tracking and wireless sensor

networks. Since both correlated perturbations (including coloured

noise) and white noise components are present in RSS acqui-

sitions, the traditional models which only consider white noise

should be modified to handle these correlated RSS components.

This subsection considers localization algorithms with the ex-

tended Kalman filter as an example to demonstrate the method to

deal with coloured noise. Based on the parameters estimated by

AVAR, we integrate the path loss model in (3) with the Kalman

filter so that the RSS signals can be used to track the distance

between a transmitter and a receiver. The measurement equation

can thus be reorganised as follows,

Py(t) = Py(d(0))− 10n log
d(t)

d(0)
+

∑

α

wα(t) (18)

where we have expressed the perturbation Xσ(t) in (3) as a

sum of the correlated (coloured) (α 6= 0) and white (α = 0)

components. Following our results in the experiments section, the

random walk and flicker noise (α = −2,−1 respectively) of the

coloured components are considered. The state evolution for the

distance can be written as:

d(t) = d(t− 1) + i(t− 1) + ud(t) (19)

where i(t − 1) is an optional deterministic control input and

ud(t) ∼ N (0, σ2
d) represents the white evolution noise. Since

we are dealing with coloured noise components, they need to

be considered in the state equations. The Brownian noise can be

modelled using a random walk process [45]:

w−2(t) = w−2(t− 1) + u−2(t) (20)

where u−2(t) ∼ N (0, σ2
−2) is a realization of a white noise

process with σ2
−2 = h−2(2π∆t)

2/(2∆t) [see (13)]. The un-

limited bandwidth of 1/f noise imposes an approximation for

the flicker component. Following the last procedure described in

Section V-A, we can use a p-order autoregressive (AR) model:
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w−1(t) = −

p
∑

k=1

akw−1(t− k) + u−1(t) (21)

with u−1(t) ∼ N (0, σ2
−1) a white noise process with σ2

−1 =
h−1π according to (13) and the ak coefficients given by (17) with

α = 1. The state vector is thus defined using a Gauss-Markow

process [46]: s(t) = [d(t), w−1(t), w−1(t − 1), . . . w−1(t− p+
1), w−2(t)]

T. Without loss of generality, we can remove the

deterministic control input from the equation and set the state

evolution as

s(t) = As(t− 1) +Bu(t) (22)

with u(t) = [ud(t), u−1(t), u−2(t)]
T. The state transition matrix

is

A(p+2)×(p+2) =



















1 0 0 . . . 0 0
0 −a1 −a2 . . . −ap 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . 0 1



















, (23)

and the driving noise vector is transformed by

B(p+2)×3 =



















1 0 0
0 1 0
.
..

.

..
.
..

0 0 0
0 0 0
0 0 1



















. (24)

The implementation of the extended Kalman filter is based

on the observation (18) and state (22) equations. We rewrite the

observation equation as

z(t) = h(s(t)) + w0(t), (25)

where w0(t) ∼ N (0, σ2
0) is the RSS measurement white noise

component whose variance is obtained as σ2
0 = h0/(2∆t) accord-

ing to (13). We calculate the Jacobian of h(·) as H(t)(p+2)×1 =
[−10n/(ln(10)d(t)), 1 . . . , 0, 0, 1]T.

The prediction equations can be obtained as follows

ŝ
−(t) = Aŝ(t− 1)

P
−(t) = AP(t− 1)AT +BQB

T
(26)

where Q is the state noise variance matrix given by

diag{σ2
d, σ

2
−1, σ

2
−2} and P−(t), P(t) are the updated and pre-

dicted estimation error covariance matrices respectively. The

Kalman gain is given by

K(t) = P
−(t)H(t)/(H(t)TP−(t)H(t) + σ2

0), (27)

the new state is

ŝ(t) = ŝ
−(t) +K(t)(z(t)− h(ŝ−(t))), (28)

and the predicted error covariance is given by

P(t) = (I−K(t)H(t)T)P−(t). (29)

In order to provide the model with more flexibility (e.g., cases

in which the environment changes and thus the noise parameters

can vary with time), the AR coefficients in (31) can be considered

as time-varying to augment the state vector equations of the EKF.

Equation (31) would then turn into

w−1(t) = −

p
∑

k=1

ak(t)w−1(t− k) + u−1(t) (30)

and the state vector would now be: s(t) = [d(t), w−1(t), w−1(t−
1), . . . w−1(t− p+1), w−2(t), a1(t), . . . , ap(t)]

T. The evolution

of the AR coefficients can be modelled as independent random-

walk processes:

ak(t) = ak(t− 1) + uak(t). (31)

This would lead to a nonlinear state evolution equation:

s(t) = a [s(t− 1)] +Bu(t) (32)

with u(t) = [ud(t), u−1(t), u−2(t), ua1(t), . . . , uap(t)]
T. The

Jacobian of of a(·) is: A(t)(2p+2)×(2p+2), given by





























1 0 . . . 0 0 0 . . . 0
0 −a1(t) . . . −ap(t) 0 −ψ(1) . . . −ψ(p)
0 1 . . . 0 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . 0 0 0 . . . 1





























,

(33)

where −ψ(i) = −w−1(t− i), i = 1, . . . , p and the driving noise

vector is now transformed by

B(2p+2)×(p+3) =































1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...

0 0 . . . 0 0 0 . . . 1































. (34)

The observation equation can also be written as

(25).The Jacobian of h(·) is now H(t)(2p+2)×1 =
[−10n/(ln(10)d(t)), 1 . . . , 0, 0, 1, 0, . . . , 0]T, and the prediction

equations are

ŝ
−(t) = a [ŝ(t− 1)]

P
−(t) = A(t− 1)P(t− 1)A(t− 1)T +BQB

T
(35)

where Q is extended to account for the time varying AR evolution

noise, and the dimension of P is extended accordingly to (2p +
2) × (2p + 2). Equations (27)–(29) are not modified in this new

EKF except for the different dimension of the involved terms.

We investigated the two proposed versions of the EKF with

the static and dynamic coloured noise models running an ex-

periment which was divided into two steps. The datasets were

acquired firstly and processed to obtain the corresponding AVAR

coefficients. These coefficients were then fed into the EKFs as

described above. For the sake of comparison, we also implemented

an EKF considering only white noise. The variance of the white

noise was defined equal to the coloured noise one. The same

parameter σd = 0.003 was used for the three EKFs. For perfor-

mance assessment on varying distance estimation, we employed

a flying Unmanned Aerial Vehicle (UAV) with a GPS receiver

(Ublox LEA4T) to record position information, which was post-

processed using reference information received by the GPS base

station. With the usage of highly sensitive antennas and accurate
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Fig. 11. Distance estimations obtained for the three compared EKFs.
The figure insets present the MSE values with respect to the actual GPS-
measured distance.

geographical information of the base station, the error between

GPS measurements and UAV’s true position is at the level of

10cm, which is also confirmed by manual measurements. Three

gyros (Analog Devices ADXRS610), a tri-axial accelerometer

(Memsic MXR9500), three magnetometers (NXP KMZ51) and

a pressure sensor (Freescale MPXH6115) are fused at the rate of

1KHz by the UAV’s on-board firmware to provide the IMU data.

Fig.11 shows the obtained estimated distances from the mea-

surement platform for the three EKF models. It can be easily

appreciated that the static coloured noise model yields a less

varying trajectory estimation at the expense of a slightly slower

stabilization compared with the white noise EKF. On the other

hand, the augmented EKF incorporating time-varying coloured

noise parameter estimation, overcomes both static models, with

both smaller acquisition time and variance in the estimation.

This is highlighted in the figure inset, where the Mean Squared

Errors (MSE) have been computed for the three filters, with the

lowest values obtained for the time-varying parameter EKF. The

learning curves for the time-varying AR coefficients are presented

in Fig. 12, showing a quick stabilization which leads to the faster

convergence of the time-varying model.

The next two experiments show the performance of the mod-

elling strategy when applied for distance estimation in different

scenarios including both stationary and mobile platforms.

The first one investigated the proposed EKF algorithm with

the coloured noise model running an experiment where a receiver

was used to locate a static object placed 1 m away. For the sake

of comparison, we also implemented the EKF considering only

white noise . Fig. 13 presents the results. We can easily see that

the coloured noise model has higher accuracy than the white noise

EKF algorithm during the majority of the measurement time.

Of particular interest in distance estimation is to evaluate

the modelling strategy in a mobile environment. The second

experiment used a flying UAV to record the RSS measurements

of wireless signals and measured the ground-truth by means of

a GPS receiver. Fig. 14 shows a scatter diagram of the distance

estimation errors vs actual distance obtained from the EKF filter

using our coloured noise model vs. a white noise model. It is easy

to see that most distance errors for the coloured noise EKF model

are less than 5m, while for the white noise model, the performance
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Fig. 12. Learning curves for time-varying AR coefficients included in
the EKF model.
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Fig. 13. UAV-to-transmitter stationary distance estimation vs. measure-
ment time.

varies significantly and the majority of errors are greater than 5m.

It is interesting to see that the errors of the coloured noise EKF

model raise sharply at around 48-49m. This can be explained by

a sudden signal loss during the movement of the UAV at greater

distances, which can be compensated in real world applications

by increasing the transmission power, or fusing multiple signals.

VI. DISCUSSION

This paper focuses on the analysis of random perturbations with

distinctive AVAR or PSD. Results from our experiments show

that the propagation environment has strong impact towards the

combination of the random perturbation terms. Within the same

environment, the change of measurement hardware or time does

not affect the weight of the different PSD components. Therefore,

they can be modelled by the coefficients hα. Such treatment

provides a tangible method in modelling and processing each

perturbation component and their various combinations.

Inappropriate ways of measurement may add significant noise

to the acquired RSS values. For WiFi signals, IEEE 802.11 [47],

[48] or IEEE 802.15.4 [49], [50] standards are often implemented

in the sensors or peripheral cards. In these devices, the signals

are firstly demodulated and then converted to digital forms by

the analog-to-digital converter, where useful signals are separated
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Fig. 14. UAV-to-transmitter mobile distance estimation error vs. actual
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from the circuit noise which usually appears to have a low noise

floor, e.g. -95dBm. Packets and readings will be lost if the signal

power is close to or below -95dBm. In order to avoid this problem,

the receiving power should always be above such a noise floor.

For example, in the previous experiments, the transmitting power

was set to 20dBm to ensure a strong average receiving power

level.

This paper analyses noise and other perturbations using 802.11

signals. However, the proposed methodology constitutes a general

characterisation framework since it can be directly applied to

various types of wireless signals following the propagation model.

Besides, the noise synthesis application studied in Section V-A

allows the simulation of coloured noise components that can be

effectively used to design and test optimal reception algorithms

for a number of signal models. As long as the noise of wireless

signals follows the power-law property, similar instruments can

be applied to identify and mitigate the corresponding coloured

noise components. The findings of this paper present an improve-

ment over traditional treatment of noise and the corresponding

applications.

VII. CONCLUSION

This paper investigates the perturbation components of wireless

signals in RSS modelling and measurements. We first introduced

the radio frequency signal propagation model and analysed the

textcolorblackperturbations in detail. Theoretically five compo-

nents were defined, however, our experiments found only three

major contributing components. The estimated coefficients from

experiments, which denote the contributions of each component,

can be modelled by a Wiener process as shown in Section V-A. We

also briefly cover the issues of applying a Kalman filter under the

presence of coloured noise. The method of analysis and results

can be used in practical scenarios requiring accurate modelling

and processing of RSS.

Our future research lines include the application of the EKF

to track moving objects. Such scenarios are subject to continuous

modifications of the propagation environment which may affect

the values of the AVAR components. To account for these, we are

currently working on the definition of evolution models for the

hα coefficients to incorporate into the EKF equations.

The EKF program and datasets are available on request.
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