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ABSTRACT 

Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of 

myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol 

hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly 

influences cellular processes; from nuclear mRNA export and phosphate homeostasis in 

yeast and plants, to establishment of left-right asymmetry in zebra fish. We elaborate an 

active site fluorescent probe that allows high throughput screening of Arabidopsis 

inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant 

comparable to the Km values of inositol phosphate substrates of this enzyme, and can be 
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 2 

used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We 

identify several micromolar Ki inhibitors and validate this approach by solving the 

crystal structure of protein in complex with purpurogallin. We additionally solve 

structures of protein in complexes with epimeric higher inositol phosphates. This probe 

may find utility in characterization of a wide family of inositol phosphate kinases.  

 

INTRODUCTION 

Inositol pentakisphosphate 2-kinase (IP5 2-K) catalyzes the phosphorylation of the axial 

2-hydroxyl of myo-inositol 1,3,4,5,6-pentakisphosphate 1 and its deletion in mice is 

embryo lethal 2. The single yeast ortholog, named IPK1, was identified as one of three 

genes that complement a synthetic lesion in mRNA export from the yeast nucleus 3, a 

phenotype that has been confirmed in plants 4. Knockdown of the gene disrupts left-right 

asymmetry in zebrafish 5 and in plants disruption reduces the accumulation of inositol 

hexakisphosphate in vegetative and storage tissues 6, where it accumulates to several 

percent of seed dry weight 7. More recently, inositol pentakisphosphate 2-kinase has 

received considerable attention as the enzyme responsible for the metabolic connection 

between receptor-activated inositol phosphate metabolism and the metabolism of an 

emergent class of signaling molecule, the diphosphoinositol phosphates 8, albeit a class of 

molecule described in the early 90’s 9. In yeast, disruption of IPK1 leads to the 

accumulation of PP-InsP4 
10, a molecule not identified in plants. 

 

While the study of inositol pentakisphosphate 2-kinase has been aided by high resolution 

description of crystal structure for plant 11, 12 and mammalian 13 enzymes which elucidate 
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 3 

folding motions that accompany catalysis 11, 12, 14, 15, probes of the active site have yet to 

be described. This limits study to coupled enzyme assays 12, 15, to end-point assays 11 or 

assays that demand HPLC separation of products, commonly radiolabeled 16. The latter 

two approaches do not allow for real-time measurement, while the former is easily 

confounded by interferences. An additional complication is the lack of known inhibitors 

of the enzyme, something that could be obviated with development of a high-throughput 

screening method. Here we report a small molecule active site probe of Arabidopsis 

thaliana inositol pentakisphosphate 2-kinase (AtIP5 2-K) which may find utility in 

characterization of this family of enzymes. 

 

Fluorescent derivatives of phosphoinositides have been exploited in commercial assays of 

phosphoinositide phosphatases.  In one such assay, the PtdIns(3,4)P2 product of end-point 

5-dephosphorylation of PtdIns(3,4,5)P3, when added to a synthetic BODIPY-tagged 

PtdIns(3,4)P2, competes for binding to a PtdIns(3,4)P2-specific binding protein, assayed 

by change in fluorescence anisotropy or polarization 17.  We rationalized that a 

fluorescent – tagged inositol pentakisphosphate, 2-FAM-InsP5 
18 may, in contrast, work 

directly as an active-site ligand for inositol phosphate kinases that accommodate inositide 

and nucleotide co-substrates in relatively large (volume) active sites or in enzymes such 

as inositol pentakisphosphate 2-kinase which show ligand-induced folding motions that 

accompany catalysis 14, 15. To date, this and similar molecules have been used only as 

ligands of inositol phosphate-binding proteins such as the IP3 receptor 19 and the histone 

deacetylase, HDAC4, which binds D-Ins(1,4,5,6)P4 between itself and its cognate partner 

20.  We further rationalized that IP5 2-K, which lacks phosphatase activity 21, would, in 
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 4 

the absence of nucleotide, be unable to dephosphorylate the fully substituted inositol ring 

of the probe or phosphorylate it. Among proteins with inositol phosphate kinase or 

diphosphoinositol phosphate kinase activity, dephosphorylation of the fully phosphate-

substituted ring is the exclusive catalytic property of inositol hexakisphosphate kinase 22 

and diphosphoinositol phosphate kinase, the latter additionally possessing a distinct 

phosphatase domain 23, 24. 

 

RESULTS AND DISCUSSION 

2-FAM-InsP5 binds to AtIP5 2-K 

2-FAM-InsP5 was incubated at 25 °C for 10 min with AtIP5 2-K and polarization of the 

probe measured as a function of protein concentration (Figure 1B). The increase in 

polarization from a machine-set value of 35 mP for unbound probe was fitted to a 4-

parameter logistic function yielding an EC50 of 63±0.6 (mean, se) nM for AtIP5 2-K.  
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 5 

  

Figure 1. 2-FAM-IP5 is an active site ligand of AtIP5 2-K. (A) structures of myo-Ins(1,3,4,5,6)P5 

(InsP5),  myo-InsP6 and 2-FAM-InsP5.  (B) Binding of 2-FAM-IP5 to AtIP5 2-K followed by 

increase of fluorescence polarization of 2-FAM-IP5, 95% confidence limits shown by shading 

around line of best fit. Data was plotted with ggplot2 in R 
25
. (C) AtIP5 2-K catalyzed 

phosphotransfer from 2-FAM-IP5 to ADP; ADP elutes at approx.8.7 min, ATP at approx. 10.4 

min. (D) Surface representation of the closed conformation of AtIP5 2-K (PDB 2XAM) (cyan) 
12
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 6 

used as a receptor for docking of 2-FAM-IP5 (yellow). (E) Close-up of the active site of 

AtIP5 2-K (cyan) showing lowest energy docked conformation of 2-FAM-IP5 (yellow) 

overlaid with the crystallographically-determined position of myo-InsP6 (black). The positions of 

ADP (black) and magnesium (green) were fixed during docking. 

We performed similar experiments with the structurally-related potato multikinase 

StIPMK 26 and the unrelated kinase AtITPK4, an Arabidopsis inositol 1,3,4-trisphosphate 

5/6-kinase 27. These experiments gave EC50 values of 40 ± 2 nM with a 1 nM probe 

concentration for StIPMK, and 12.6 ± 0.02 μM with 10 nM probe concentration for 

AtITPK4.  For AtIP5 2-K, transformation of polarization to fraction bound yielded Kd = 

0.26 µM (Supporting Information Figure 1).  This value is considerably lower than the 

Km (22 µM for InsP5) 
21, but is similar to the Kd (for InsP5) of 0.6 µM obtained by 

isothermal calorimetry 14.  2-FAM-InsP5 was clearly a poorer probe for AtITPK4, a 

protein whose presumed ATP-grasp structural fold is shared not only with plant ITPKs 

that show phosphotransferase activity 29, but also with mammalian (PPIP5K), and 

yeast/plant diphosphoinositol phosphate kinases 24, 28.  

 

2-FAM-InsP5 is an active site ligand of AtIP5 2-K  

As the inositol moiety lacks a free hydroxyl group that might provide a site for 

phosphorylation, we tested whether the probe was a substrate for the inositol phosphate-

ADP phosphotransferase activity of AtIP5 2-K 1.  Incubation of enzyme with 2-FAM-

InsP5 and ADP revealed a time- and 2-FAM-InsP5–dependent conversion of ADP to ATP 

monitored by HPLC by increase of ATP (Figure 1C). Thus, despite the absence of an 
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 7 

axial phosphate, the molecule is a substrate for phosphotransfer to ADP as acceptor; 

though the reaction was considerably slower than that using InsP6 substrate, yielding 

0.82% and 3.3% conversion of ADP to ATP for 2-FAM-InsP5 and InsP6, respectively, 

over 12h. We posit that the protein-ligand interactions required for accommodation of the 

planar fluorescein moiety of the 2-FAM-InsP5 force one or more equatorial phosphates 

into positions which allow catalysis.  In the presence of ATP, the enzyme did not 

phosphorylate the probe (data not shown). In an attempt to confirm that 2-FAM-InsP5 

binds to the active site of AtIP5 2-K we undertook extensive cocrystallization and ligand 

soaking experiments, but were unsuccessful. 

In silico docking supports active site binding of 2-FAM-InsP5  

Since crystallographic data confirming the binding of 2-FAM-InsP5 to AtIP5 2-K proved 

elusive, we turned to in silico docking to predict the binding of this large ligand in the 

active site of the enzyme. The three known conformers of AtIP5 2-K, open (PDB 4AXC), 

half-closed (PDB 4AXE) and closed (PDB 2XAM), were used as receptor structures in 

separate docking calculations employing 2-FAM-InsP5 as a flexible ligand. The lowest 

energy binding pose predicted for the closed conformer indicated that the inositol ring 

binds in a similar position and orientation to that of myo-InsP6, such that the 1D-P3 and 

1D-P5 positions are conserved (Figure 1D, E). This positioning of the inositol phosphate 

moiety was also observed in four other binding poses within 0.5 kcal mol-1 of the lowest 

energy pose (Supporting Information Figure 2). These four poses place a phosphate 

group close to the (myo-InsP6) 1D-P4 and 1D-P6 positions, with 1D-P1 and P2 positions 

unoccupied.  In the lowest energy pose (Figure 1D), the FAM moiety is oriented such 

that it protrudes from the active site pocket between W129 (α6 of the N lobe, for 
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 8 

nomenclature 12) and E205 (CIP-I lobe 12), suggesting the active site in the closed 

conformation can accommodate 2-FAM-InsP5. Whilst the result of docking using the 

half-closed structure as receptor was consistent in terms of placement of the FAM 

moiety, the binding modes for the open (apo) structure were more variable and did not 

consistently place the inositol ring in the same position as that of myo-InsP6 (Supporting 

Information Figure 2).  

AtIP5 2-K accommodates neo- and D-chiro-inositol hexakisphosphate substrates 

Having determined 2-FAM-InsP5 to be an active site ligand, we sought to establish its 

utility in reporting the binding of other epimers of higher inositol phosphates to AtIP5 2-

K, prior to prospecting for novel substrates of the enzyme.  While highly phosphorylated 

isomers of other inositols are widespread in nature 30, the underpinning enzymology is 

not described 31. We initially tested the ability of a range of inositol phosphates to 

displace 2-FAM-InsP5 from AtIP5 2-K. Displacement of the probe was fitted to a 4-

parameter logistic (Figure 2).  
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 9 

 

Figure 2. Displacement of 2-FAM-IP5 binding to AtIP5 2-K by myo-InsP6, D-chiro-InsP6, neo-

InsP6 and myo-Ins(1,3,4,5,6)P5,  95% confidence limits are shown. The structures of inositol 

phosphates are shown as Mills projections, with 1D-numbering of inositol ring carbon atoms. 

The known kinase substrate myo-Ins(1,3,4,5,6)P5 and kinase product myo-InsP6  yielded 

EC50 values (mean, standard error) of  18 ± 1 and 959 ± 1 nM, respectively,  reflecting 

the acceptance of these molecules as substrates for kinase and phosphotransferase 

activities, respectively (Figure 3). AtIP5 2-K has been shown to phosphorylate the axial 

2-hydroxyl of myo-inositol phosphate substrates, D-Ins(1,4,5,6)P4, D-Ins(3,4,5,6)P4, 

Ins(1,3,4,6)P4 and Ins(1,3,4,5,6)P5 
11, 12, 14, 15, 21. We recently showed that neo-inositol 

1,3,4,6-tetrakisphosphate and D-chiro-inositol 2,3,4,5-tetrakisphosphate are substrates for 
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 10

the kinase activity of AtIP5 2-K , while D-chiro-inositol 1,3,4,6-tetrakisphosphate is not 

32. The first possesses axial hydroxyls on the 2- and 5- positions, the second has axial 

hydroxyls on the 1- and 6-positions, while the third has no axial hydroxyls 31. In the 

current study, D-chiro-InsP6 and neo-InsP6 displaced 2-FAM-InsP5 with EC50s of 4496 ± 

1 nM and > 500 ± 0.5 µM, respectively, (Figure 2) and proved to be substrates for 

inositol phosphate-ADP phosphotransferase activity (Figure 3).   

 

Figure 3. Myo-InsP6, D-chiro-InsP6 and neo-InsP6 are substrates of the inositol phosphate-ADP 

phosphotransferase activity of IP5 2-K.   Inositol phosphate-dependent conversion of ADP to 

ATP was followed by HPLC of nucleotides. 
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 11

Crystal structures of AtIP5 2-K in ternary complex with myo-, neo- and D-chiro-

inositol phosphates 

To address the structural determinants of reactivity towards these novel substrates of the 

inositol phosphate-ADP phosphotransferase activity of AtIP5 2-K, we undertook 

cocrystallization experiments with these compounds in the presence of ADP. We are not 

aware that neo- and D-chiro-inositol phosphates have been identified as protein ligands in 

the PDB. Crystal structures were obtained in space group P1 at a resolution of 3.0 Å for 

the complex with D-chiro-InsP6 (PDB entry 6GFG) and at 2.65 Å for neo-InsP5 (6GFH) 

(Figure 4 and Supporting Information Table 1).  To provide reference points for analysis, 

we also solved the structures of the ternary complexes of AtIP5 2-K with myo-InsP6 and 

ADP (2.03 Å resolution; PDB entry 6FJK) and with myo-InsP5 and ADP (2.36 Å 

resolution; PDB entry 6FL3).   
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 12

 

 

Figure 4.  Ternary complexes of AtIP5 2-K with epimeric higher inositol phosphates. (A) 

Complex of AtIP5 2-K with ADP and myo-InsP6 (cyan) overlaid with D-chiro-IP6 (gold). (B) 

Orthogonal (to A) projection of myo-InsP6 (cyan) and D-chiro-InsP6 (gold) ligands. The 

numbering of carbons is shown for both ligands. (C) AtIP5 2-K with ATP and myo-

Ins(1,3,4,5,6)P5 (green) overlaid with neo-Ins(1,3,4,5,6)P5 (purple), the numbering of carbons 

is shown for myo-InsP6. (D) Orthogonal (to C) projection of myo-Ins(1,3,4,5,6)P5 (green) and 
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 13

neo-Ins(1,3,4,5,6)P5 (purple) ligands.  We use the common 1-D nomenclature for myo-InsP5 

and myo-InsP6. The numbering of substituents on D-chiro-InsP6 is unequivocal, as is the 

numbering of substituents on neo-InsP5; however, because of symmetry elements neo-

Ins(1,3,4,5,6)P5 = neo-Ins(1,2,3,4,6)P5 

These structures revealed no significant differences in the conformation of backbone 

atoms between each other, root mean square deviation (RMSD) 0.46 Å over 400 common 

atoms (Supporting Information Table 2). Similarly, when PDB entry 6JFK was compared 

with that solved with the same ligands in space group P212121 
12 with a non-His-tagged 

form of the protein (PDB 4AQK), we obtained a RMSD 0.77 Å with 398 common Cα 

atoms (Supporting Information Table 2). The 12 contacts made with myo-InsP6 by active 

site residues (inositide contacts) and 18 with ADP (nucleotide contacts) are conserved in 

the D-chiro-InsP6- and neo-InsP5-liganded structures (contact residues are defined in 

Supporting Information Table 3). In the structure of the complex with myo-

Ins(1,3,4,5,6)P5 and ADP, the 5-phosphate group of the inositide ligand, unlike the other 

phosphates, makes only a single amino acid contact with the enzyme, this being with the 

sidechain of Lys170, whilst its other contacts are to water molecules. 

Crystallization of the enzyme with D-chiro-InsP6 and ADP yielded clear electron density 

accommodating both the coenzyme and ligand in each of the two monomers of the 

enzyme found in the crystallographic asymmetric unit (Figure 4 A,B and Supporting 

Information Figures 3,4). The two adjacent axial 1- and 6- phosphates of the ligand 

broadly occupy the position observed for the D-1-phosphate in the complex with myo-

InsP6, liganded to Arg130. Only minor differences in enzyme conformation were 

observed between the D-chiro-InsP6 and myo-InsP6 complexes (RMSD 0.42 Å over 296 
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residues of the N-I and C-lobes, and 0.48 Å over the entire protein, 391 residues 

(Supporting Information Table 2). The positions of ligand- and coenzyme-binding 

residues were also preserved: the RMSD for inositide contact residues was 0.42 Å whilst 

that for nucleotide contact residues was 0.25 Å (Supporting Information Table 4).  

For crystals grown in the presence of neo-InsP6 and ADP, difference electron density 

maps revealed neo-inositol 1,2,3,4,6-pentakisphosphate [neo-Ins(1,2,3,4,6)P5 = neo-

Ins(1,3,4,5,6)P5] bound similarly in both active sites. In addition, residual difference 

electron density and omit maps indicated not ADP but ATP bound as coenzyme, 

presumably arising from phosphotransfer between neo-InsP6 and ADP (Figure 4 C,D and 

Supporting Information Figures 3C, 4C). No significant difference in the conformation of 

backbone residues was observed between the neo-InsP5 and myo-InsP6 complexes 

(RMSD 0.53 Å over 298 residues of the N-I and C-lobes and 0.56 Å over the entire 

protein). Neo-InsP6 possesses a C2 axis of rotational symmetry that bisects the C1-C6 and 

C3-C4 bonds. Consequently, axial substituents P2 and P5 are superposable, as are 

equatorial C1 and C6, and C3 and C4.  In the neo-inositol 1,2,3,4,6-pentakisphosphate-

liganded structure (PDB entry 6GFH), one of the axial positions (5-OH), is apposed to 

the magnesium ion and ATP in a position occupied  by the 2-hydroxyl group of myo-

InsP5 (PDB entry 6FL3). The orientation of the other axial position (of the neo-ligand), a 

phosphate (P2), is opposed to that of the equatorial 5-phosphate of myo-InsP5.  

Comparison of the structures of complexes of AtIP5 2-K with myo-, neo- and D-chiro-

inositol phosphate ligands reveals, for the D-chiro- and neo- ligands, the conservation of 

interactions with Arg130 and Arg415 and the effective colocalization of the different 

inositol phosphate ligands (Fig.  4 A-D and Supplementary Information Figure 5). All 
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 15

enzyme-ligand complexes, also retain contacts between phosphate and at least two of the 

trio of lysines, Lys168, Lys170 and Lys200, that co-ordinate P2 and 1D-P6, P5 and 1D-

P6, and 1D-P6 of myo-InsP6, respectively 12, 33, suggesting that these residues are major 

determinants of recognition of other (including epimeric) higher inositol phosphate 

substrates of the enzyme. Other residues that make contacts with myo-InsP6 are involved 

in recognition of neo-InsP5 and/or D-chiro-InsP6, albeit via contacts to differently 

numbered phosphates of the ligand (Supplementary Information Figure 5). Thus, Tyr419, 

which contacts 1D-P4 in the myo-InsP6 complex, contacts P3 in the neo-InsP5 complex, 

but lacks contacts in the D-chiro InsP6 complex.  Arg415 contacts 1D-P3 and 1D-P4 

(myo-) and contacts P3 and P4 in neo-InsP5 and P3 in D-chiro-InsP6.  Lys170 which 

contacts P5 and 1D-P6 (myo-), contacts P1 (neo-) and P4 (D-chiro-); while Asn238 which 

contacts 1D-P1 and 1D-P6 (myo-) makes contact with P1 and P6 of the neo-ligand and P5 

of the chiro-ligand.  

A High Throughput-compatible fluorescence polarization Screen (HTS) identifies 

novel AtIP5 2-K ligands 

The binding of 2-FAM-InsP5 to AtIP5 2-K and its displacement by confirmed active site 

ligands affords the opportunity to identify novel active-site ligands. We therefore 

determined whether 2-FAM-InsP5 and AtIP5 2-K could be used to develop an assay 

suitable for high-throughput screens. In the first instance we used 96-well microtiter 

plates to match the format of the NCI Diversity Set II, Developmental Therapeutics 

Program NCI/NIH, before developing assays in 384-well microtiter plates. Compounds 

were tested as singletons at 12.5 µM concentration in 0.1 % DMSO for their ability to 

displace 2-FAM-InsP5 (5 nM) from 100 nM protein in a 100 µL volume.  Control 

Page 15 of 35

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 16

samples of unbound probe (with machine set value of 35 mP) and ‘fully-bound’ probe 

(reaching 350 mP) yielded a Z’-factor 34 of >0.9.  An initial screen yielded a hit rate of ≈ 

1 % at polarization value < 150 mP, more than 9 standard deviations removed from the 

mean of the ‘fully-bound’ value (Figure 5). A number of initial ‘hits’ were discarded on 

analysis of their optical properties at the concentration used, either absorbance or 

fluorescence, or on subsequent preliminary dose-response analysis. 

 

Figure 5.  High Throughput-compatible Screen of IP5 2-K ligands. Anisotropy of AtIP5 2-K-

bound 2-FAM-IP5.  The chemical structures of NCI Diversity Set II ligands carried forward to 

individual analysis are shown with the data points that identify them. 
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Of the remainder, eight compounds were further ordered from the NCI DTP for follow up 

study: NSC 19063, NSC 35676, NSC 36815, NSC 107022, NSC 76988, NSC 37627, 

NSC 91529, and NSC 345647, and taken forward for initial dose-response analysis over 

5 decades of concentration in the range 1 nM-100 µM, before further refinement of the 

assay. These assays were performed in 20 µL volume in 384-well plates with 2nM 2-

FAM-InsP5 and 200 nM protein, quadruplicate samples were pipetted by hand.  

Of these eight compounds, three (Figure 5): NCI 35676, purpurogallin, CAS# 569-77-7, 

an aglcycone with similarity to catechol (1,2-dihydroxybenzene) and an inhibitor of 

catechol-O-methyltransferase 35; NCI 76988, 5,6,7,8,4’-pentahydroxyflavone 

(nortangeretin), CAS# 577-26-4 and NSC 345647, chaetochromin, CAS# 75514-37-3, 

yielded IC50 (mean, standard error) of 3.7 ± 1.0 µM, 17.6 ± 8.0 µM and unestimable,  

respectively (Figure 6A).   
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Figure 6. (A) Inhibition of 2-FAM-IP5 binding to AtIP5 2-K by myo-InsP6, myo-Ins(1,3,4,5,6)P5, 

purpurogallin, 5,6,7,8,4’-pentahydroxyflavone and chaetochromin;  (B)  Morrison plot of 
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inhibition of IP5 2-K by purpurogallin, 5,6,7,8,4’-pentahydroxyflavone and chaetochromin; 95% 

confidence limits are shown. For comparison myo-Ins(1,3,4,5,6)P5 and myo-InsP6 are 

shown again in (A). 

As proof of concept that the displacement assay yields novel active site ligands, we 

performed assays of the ability of purpurogallin, 5,6,7,8,4’-pentahydroxyflavone and 

chaetochromin to inhibit the InsP5 kinase activity of AtIP5 2-K, measured as HPLC-

monitored production of ADP.  Assays constructed to limit substrate depletion to less 

than 8%, gave, when fitted to the Morrison equation (Km InsP5 set at 22 µM  21 ), Ki 

values (mean, standard error) of 1.08 ± 0.12 µM, 5.04 ± 0.74 µM and 0.64 ± 0.09 µM for 

purpurogallin, 5,6,7,8,4’-pentahydroxyflavone and chaetochromin, respectively (Figure 

6B).  

Ternary structure of AtIP5 2-K with purpurogallin and ADP 

We also sought to verify active site binding of ligands by X-ray crystallography.  

Cocrystals obtained with purpurogallin at 5 mM gave a structure for the enzyme plus 

bound ADP which, when refined using data to 2.1 Å resolution (Supporting Table 1), 

revealed difference Fourier electron density features in the active sites of both monomers 

in the asymmetric unit (PDB entry 6FL8). Furthermore, this density coincided with that 

otherwise occupied by inositol phosphate ligands in our structures of ternary complexes 

described above. Modeling of purpurogallin to this density (Figure 7 and Supporting 

Information Figures 3,4) and subsequent refinement gave a structure revealing near ‘co-

planarity’ of the rings of purpurogallin with the inositol ring (for consideration of the 
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‘planarity’ of myo-inositol, see 36).  A number of specific protein-ligand interactions are 

revealed (Figure 7).  
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Figure 7.  Ternary complex of AtIP5 2-K with purpurogallin and ADP. (A) Interactions of AtIP5 

2-K with purpurogallin (magenta). Enzyme polypeptide backbone is shown as a grey cartoon 

with active site residues in magenta. Hydrogen bonds are shown as dashed lines (distances in 

Ångstrom indicated), cation-π interactions as dotted lines. The characteristic interactions of 

the ‘fully-closed’ form of the enzyme (between G254 and E255 with W129 and R130) are also 

shown. (B) AtIP5 2-K active site showing ADP and myo-InsP6 (cyan) overlaid with 

purpurogallin (magenta). (C) Orthogonal (to B) projection of myo-InsP6 (cyan) and 

purpurogallin (magenta) ligands. 

For the 6-membered ring of purpurogallin, a cation-π interaction with Lys168 is observed 

and hydrogen bonding interactions can be identified with both Gly20 and the sidechain of 

Asn238 with hydroxyl substitutents to the ring. The positioning of the 7-membered ring 

is stabilized by a further cation-π interaction, this time with Lys170, while one of the 

ring’s hydroxyl substituents forms a hydrogen bond with the side chain of Lys200.  This 

trio of lysines, Lys168, Lys170 and Lys200, offer conserved interactions with the inositol 

phosphate ligands of Figure 4 and Supporting Information Figures 3,4.  

 

For ligands of modest affinity such as purpurogallin, careful analysis of the fit of the 

ligand to electron density maps is important. Consideration of a combination of real space 

correlation coefficients, real space R-factors and temperature factor data is necessary to 

assess protein–ligand model quality 37. These crystallographic statistics for purpurogallin 

(and for the other ligands described above) are presented in Supporting Information Table 

5. The validity of our interpretation for purpurogallin is supported by the observation that 

the enzyme is found in the ‘closed’ conformation previously only observed when in 
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ternary complex with inositol phosphate ligands and nucleotide. For example, the RMSD 

against the complex with myo-InsP6 (PDB entry 6JFK) is 0.60 Å for 397 residues 

(Supporting Information Table 2), while the RMSDs between the inositide- and 

nucleotide-coordinating residues of the two structures are 0.52 Å and 0.35 Å, respectively 

(Supporting Information Table 4).  Additionally, Gly254 and Glu255 (strand L3) form 

interactions respectively, with Arg130 and Trp129 (helix α6), interactions serving as 

hallmark features of the ‘fully-closed’ form of the enzyme 14, 15. Significantly, all 

published inositide ligand-free structures (i.e. those binding only nucleotide) adopt the 

‘half-closed’ conformation 15. These data, with those of Figures 5 and 6, reveal a 

rationale for design of inhibitors that trap protein in the fully closed (ordinarily, inositide- 

and nucleotide co-liganded) state. 

 

Inhibition of labeling of inositol phosphates in vivo 

Finally, to assess the potential of compounds identified by our HTS screen to inhibit 

AtIP5 2-K in vivo, we radiolabeled Arabidopsis thaliana seedlings with 32P 

orthophosphate in media containing purpurogallin, 5,6,7,8,4’-pentahydroxy flavone or 

chaetochromin and quantified inositol phosphates and ATP by HPLC.  In labeled 

Arabidopsis, ATP and InsP6 are by far the strongest labeled peaks, other than 

unincorporated inorganic phosphate, while myo-Ins(1,3,4,5,6)P5 is the least strongly 

labeled of InsP5s 38. Because AtIP5 2-K catalyses transfer of the labeled γ-phosphate to 

myo-Ins(1,3,4,5,6)P5 to produce myo-InsP6, analysis of the ratio of labeling InsP6-ATP 

reveals the effect of the compound on enzyme activity. While we have no test of the 

permeability to, or metabolism of these compounds by plant cells, both purpurogallin and 
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chaetochromin reduced the InsP6-ADP ratio, from 1.33 ± 0.08 to 1.04 ± 0.03 (n=3; t-test 

P = 0.0042) and 1.01 ± 0.11 (n=3; t-test P = 0.0152), respectively, indicative of inhibition 

of AtIP5 2-K (Figure 8).   

 

 

Figure 8.  Inhibition of 32P Pi-labeling of inositol phosphates in Arabidopsis. (A) Distribution of 

label in ATP, InsP5 and InsP6 and (B) ratio of labelling IP6:ATP, 95% confidence limits are 

shown. 

CONCLUSIONS 
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We have elaborated a fluorescent probe of the active site of inositol pentakisphosphate 2-

kinase. Screening with which allows identification of potential substrates and inhibitors, 

confirmed by ligand-binding assays and validated by crystallographic analysis of 

substrate-enzyme and inhibitor-enzyme complexes. While little attention has been given 

to the biology of inositol phosphates other than those derived from myo-inositol, other 

higher inositol phosphates, neo-inositol hexakisphosphate, D-chiro-inositol 

hexakisphosphate and scyllo-inositol hexakisphosphate are abundant in soils 30 ,39.  It is 

possible that they are synthesized by pathways that employ orthologs of IP5 2-K.  Indeed, 

neo-inositol hexakisphosphate and neo-diphosphoinositol phosphates are found in 

amoeboid organisms 40. The present work identifies tools for the characterization of 

enzymes that bind highly phosphorylated inositols and provides a rationale for 

phosphorylation and dephosphorylation of other epimeric higher inositol phosphates by a 

ubiquitous metazoan enzyme. 

We further show the assay to be amenable to high-throughput screens, and in 

identification of a ligand that locks the enzyme in the ‘fully-closed’ conformation provide 

a basis for ligand-based drug discovery programs using these structures as templates for 

discovery of potential new pharmacophores that could target higher inositol phosphate 

metabolism. While the active sites of numerous inositol phosphate kinases are decorated 

with basic residues that dominate interactions with highly polar inositol phosphate 

ligands, our work illustrates how the same residues can be recruited to bind ligands of 

wholly unrelated structure, perhaps rendering such proteins ‘druggable’. Finally, we 

establish the principle of the use of fluorescence polarization-based direct competition 

assays on inositol phosphate kinases and inositol phosphate-nucleotide 
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phosphotransferases of ATP-grasp and IPK folds. 

EXPERIMENTAL SECTION 

1. Chemical synthesis 

Synthesis of 2-FAM-InsP5  = 2-O-(2-(5-fluoresceinylcarboxy)-aminoethyl)-myo-inositol 

1,3,4,5,6-pentakisphosphate (triethylammonium salt) was as described 18. The synthesis 

of neo-InsP6 and D-chiro-InsP6 was described 39. These inositol phosphates and 2-FAM-

InsP5 were fully characterized by 1H, 31P and 13C NMR spectroscopy and found to be 

≥95% purity. 2-FAM-InsP5 was additionally analysed by reverse phase analytical HPLC 

and confirmed to be ≥95% pure. Myo-Inositol 1,3,4,5,6-pentakisphosphate was supplied 

from SiChem and myo-InsP6 from Merck, both with ≥98% purity. 

2. Fluorescence polarization assays 

Fluorescence polarization assays were performed in 50 µL volume in Corning , Non-

binding 96-well plates (Product No. 3650  or 3991) or in 20 µL volume in Corning, Non-

binding 384-well plates (Product No. 3575). Fluorescence was recorded on a BMG 

ClarioSTAR plate reader with polarization and fluorescein filter set: 485 nm, 12 nM; 

dichroic 505 nm; emission 505 nm, 16 nm; and 200 flashes. Data was exported and fitted 

to a 4-parameter logistic in ggplot2.  The initial library screen was performed in 96-well 

format on a BMG PheraSTAR fitted with a 485/520 nm fluorescence polarisation 

module. For binding assays, 2 nM 2-FAM-InsP5 in 20 mM HEPES pH 7.3, 1mM MgCl2 

at 25°C, was incubated with increasing protein concentrations (1nM- 2µM). For inhibitor 

assays, inhibitor (5nM-10µM) was titrated against 100nM AtIP5 2-K protein and 2nM 2-

FAM-IP5 in buffer as above. For both, aliquots (20µl) were dispensed in quadruplicate 
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wells and polarization of the probe was measured at 25°C. Data were rendered in ggplot2 

25. 

3. HPLC 

For assay of phosphotransfer from 2-FAM-IP5 to ADP, AtIP5 2-K (1 µM) was incubated 

with 50 µM ADP and 50 µM 2-FAM-IP5 in 1mM MgCl2, 20 mM Hepes buffer, pH 7.3 at 

25°C. Reactions were stopped by the addition of an equal volume of 60 mM (NH4)2 

HPO4, pH 3.5 and 20 µL aliquots were subjected to anion ion-exchange HPLC on a 2 

mm x 250 mm Dionex (Sunnyvale, CA) IonPac AS11 column with 2mm x 50 mM AG11 

guard column. The column was eluted at a flow rate of 0.4 ml. min-1 with a gradient of 

NaOH delivered from solvent reservoirs containing water (A) and 225 mM NaOH (B) 

delivered according to the schedule: time (min), %B; 0,0; 20,100. Nucleotides were 

detected at 260 nm. 

For assay of phosphotransfer to ADP, AtIP5 2-K (240 nM) was incubated with 500 µM 

ADP and 50 µM myo-, neo- or D-chiro-InsP6 in 1mM MgCl2, 20 mM Hepes buffer, pH 

7.3 at 25°C. Reactions were stopped after 240 min by boiling for 1 min and 50 µL 

aliquots of a 10 times dilution of the original assay, in water, were subjected to reverse-

phase ion-pair HPLC 29.  

For assay of inhibition of AtIP5 2-K, protein 30 nM was incubated with 50 µM ATP and 

50 µM Ins(1,3,4,5,6)P5 in 1mM MgCl2, 20 mM Hepes buffer, pH 7.3.  Reactions, at 

25°C, were stopped by the addition of an equal volume of 60 mM (NH4)2 HPO4, pH 3.5, 

and placed on ice before analysis by reverse-phase ion-pair HPLC 13. Reactions were 

constructed to limit depletion of ATP to less than 8%. Inhibitors, up to 50 µM, were pre-
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incubated with enzyme and nucleotide for 20 min before addition of inositol 

phosphate to start the assay. 

4. Radiolabeling of Arabidopsis seedlings  

Arabidopsis thaliana seedlings (ecotype Col-0) were radiolabeled with 370 kBq of 32P 

orthophosphate in media containing 10 µM KH2PO4 and processed according to 38. 

 

ANCILLARY INFORMATION 

Supplementary information 

Protein purification, structural and docking methods, probe binding, docking images, 

structural density images, structural ligand interactions, refinement statistics, pairwise 

comparisons and definition of binding regions, ligand validation.(PDF)  

 

Molecular formula strings (CSV) 

 

PDB ID codes  

Authors will release the atomic coordinates and experimental data upon article 

publication. For AtIP5 2-K with ligands (numbered according to SMILES csv file); 

1 myo-InsP5 (PDB entry 6FL3) 

2 myo-InsP6  (PDB entry 6FJK) 

4 neo-InsP5 (PDB entry 6GFH) 

5 D-chiro-InsP6 (PDB entry 6GFG) 

6 purpurogallin (PDB entry 6FL8) 
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Homology models 
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Abbreviations 

2-FAM-InsP5 2-O-(2-(5-fluoresceinylcarboxy)-aminoethyl)-myo-inositol 1,3,4,5,6-

pentakisphosphate (triethylammonium salt) 

IP5 2-K  inositol pentakisphosphate 2-kinase 

AtIP5 2-K  Arabidopsis thaliana inositol pentakisphosphate 2-kinase 
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PP-InsP  diphosphoinositol phosphate 

PtdIns   phosphatidyl inositol phosphate 

InsP5   myo-inositol 1,3,4,5,6-pentakisphosphate 

IPTK4   inositol 1,3,4-trisphosphate 5/6-kinase 4 

StIPMK  Solanum tuberosum inositol-polyphosphate multikinase 

PPIP5K  diphosphoinositol pentakisphosphate kinase 
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