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Abstract 32 

Instrumental records of temperature and hydrological regimes in East Africa evidence frequent droughts 33 

with dramatic effects on population and ecosystems. Sources of these climatic variations remain largely 34 

unconstrained, partly because of a paucity of Late Holocene records. Here, we present a multi-proxy 35 

analysis of a 4-m continuous sediment core collected in the Kyambangunguru crater marsh, in southwest 36 

Tanzania, covering the last 4000 yrs (cal. BP). We used microscopic (macro-remains, microfossils, 37 

palynofacies, pollen), elemental (carbon, nitrogen contents), molecular (br GDGTs, n-alkanes) and 38 

compound-specific isotopic (δ2H n-alkanes) investigations to reconstruct the environmental history of 39 

the marsh. The multi proxy record reveals that, 2500 years ago, the marsh underwent a major ecological 40 

transition from a lake to a peatland. Temperature and hydrological reconstructions evidence warmer and 41 

drier conditions between 2200 and 860 cal. BP, which probably triggered the establishment of a 42 

perennial peatland. This study is one of the first combined temperature and precipitation record of Late 43 

Holocene in the region and highlights changes in the spatial distribution of the East African climate 44 

regimes. Several cold periods are observed, between 3300 and 2000 cal. BP and since 630 cal. BP, the 45 

latter corresponding to the Little Ice Age. Moreover, wetter conditions are reported during the Medieval 46 

Climate Anomaly in contrast to other north-eastern African records suggesting that Tanzania is located 47 

at the transition between two hydro-climatic zones (north-eastern versus southern Africa) and has 48 

experienced variable contributions of these two zones over the last millennium.  49 
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1. Introduction 55 

Tropical highlands are major sources of food and freshwater for more than 35 tropical countries 56 

(Williamson, 2014). The climate dynamics and variability of these topographically complex 57 

environments, however, remain poorly studied. While it has been shown that the Quaternary climatic 58 

trends in East Africa were primarily controlled by orbital forcing (e.g. Garcin et al., 2006; Tierney et al., 59 

2008), the shorter scale climate dynamics of this region is largely unconstrained. Notably, mid- to late 60 

Holocene records of many East African lakes (e.g. Gasse, 2000; Wanner et al., 2011) suggest rapid and 61 

frequent, high amplitude, climatic fluctuations at the centennial scale. These fluctuations and their 62 

consequences are not well understood due to a general lack of highly resolved records (Nicholson et al., 63 

2013). Furthermore, the timing and intensity of these events are not always synchronous from site to 64 

site (Tierney et al., 2011, 2013). Here, we present detailed records of climate and ecosystem changes 65 

from a sequence of sediments covering the late Holocene (the last 4000 years) in the Kyambangunguru 66 

marsh. This marsh is located in the Rungwe Volcanic Province (RVP; southwest Tanzania), a highland 67 

representing one of the four major food crop producing regions in the country (Majule, 2010).  68 

Marshes and peatlands have a great potential for quantitative high-resolution palaeoclimatic records 69 

(Amesbury et al., 2012; Blackford, 2000) notably in the tropics (e.g. Bonnefille et al., 1990; Bourdon et 70 

al., 2000; Page et al., 2011; Rucina et al., 2010; Swindles et al., 2018). However, they are highly dynamic 71 

ecosystems where the vegetation cover and the hydrology functioning can be totally modified at a 72 

centennial scale (Loisel and Yu, 2013). This may complicate the interpretation of climatic proxies, 73 

notably those based on biological markers as their fluctuations may be related to ecological, local change 74 

rather than regional climatic change. A major challenge in using marsh/peat records as climatic archives 75 

is thus to disentangle biological signals linked to dynamic changes of the peatland ecosystem itself from 76 

those that are driven by local to regional environmental change (Chambers et al., 2012; Morris et al., 77 

2015). The focus of this study is to investigate the internal, ecological changes within the marsh in the 78 

context of regional climatic variations. We aim to retrieve detailed (quantitative) air temperature and 79 

(qualitative) hydrological condition records of the late Holocene from the southernmost part of East 80 

Africa to test whether rapid and high amplitude climatic events (e.g. Russell and Johnson, 2005; Wanner 81 
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et al., 2011) were recorded in this area in comparison to other East African records. Additionally, the 82 

multi-proxy approach, combining microscopic observations and geochemical characterization, intends 83 

to determine potential feedbacks of these rapid climatic events in the tropical highland wetlands as well 84 

as potential human impact in the region. 85 

Analysis of pollen, non-pollen palynomorphs (NPPs), macro-remains, palynofacies and bulk elemental 86 

(C and N content) determination was conducted to characterize the ecological states of the wetland, 87 

complemented by biomarker-based proxies to determine past variations in air temperature and 88 

hydrology. Branched glycerol dialkyl glycerol tetraethers (br GDGTs) and compound specific long 89 

chain n-alkane hydrogen isotopic composition (δ²Hwax) were used for mean annual air temperature and 90 

hydrological conditions reconstruction, respectively. Br GDGTs are membrane lipids produced by 91 

unknown bacteria (Sinninghe Damsté et al., 2000) whose relative abundances in environmental samples 92 

have been shown to correlate with temperature and pH (Weijers et al., 2006, 2009). This enabled the 93 

reconstruction of past pH and air temperatures from the br GDGT distribution in sediments, peats and 94 

soils (Nichols et al., 2014; Peterse et al., 2011; Weijers et al., 2007a). Long chain n-alkanes are 95 

constituents of the epicuticular wax layer of leaves (Eglinton and Hamilton, 1967). It has been shown 96 

that their hydrogen isotopic composition (δ²Hwax) reflects the hydrogen isotopic composition of the water 97 

taken up by the plants (e.g. Estep and Hoering, 1980; Sauer et al., 2001; Sessions et al., 1999). 98 

Accordingly, they can be used to reconstruct variations in local palaeohydrology as shown in several 99 

lacustrine sedimentary archives from the Quaternary and the Holocene in East Africa (e.g. Loomis et 100 

al., 2015; Powers et al., 2005; Tierney et al., 2008; Verschuren et al., 2000). The combined use of these 101 

two proxies allows distinguishing the temperature from the hydrological signal which has been a major 102 

limitation in lake-based East African climatic reconstructions (Verschuren, 2003). Moreover, in settings 103 

with high sedimentation rates like marshes, they can offer highly detailed and independent 104 

reconstruction of the temperature and the hydrological conditions.  105 

 106 

 107 

 108 



5 
 

2. Regional setting: the Rungwe Volcanic Province and the Kyambangunguru marsh 109 

The Rungwe Volcanic Province (RVP; SW Tanzania; Fig. 1A), is a large volcanic mountain region 110 

(1500 km²) located at the triple junction of the Malawi Rift, Rukwa/Tanganyika Rift and the Usanga 111 

Basin in the southern part of the East African Rift System (Fontijn et al., 2010, 2012). The RVP is 112 

delimited by the Poroto Mountains in the north, Lake Malawi in the south and the Livingstone 113 

escarpment in the west (Fig. 1B). The area is known to be seismically active with volcanic eruptions 114 

occurring from the late Miocene (9.2 Ma) to the 19th century, with hot spring activity still found today 115 

(Branchu et al., 2005). The region contains three major stratovolcanoes: the Ngozi, Kyejo and Rungwe 116 

(Fontijn et al., 2010, 2012). South of these high-altitude sites and north of Lake Malawi lies the Karonga 117 

plain. Several monogenic maar-type craters were created during late Pleistocene phreatomagmatic 118 

explosions along the Mbaka fault system and are now filled by closed lake hydro-systems (Fontijn et 119 

al., 2012; Fig. 1B). The region belongs to the humid equatorial zone of Africa, mainly determined by 120 

the migration of the Intertropical Convergence Zone (ITCZ), a key atmospheric feature of tropical 121 

atmospheric circulation with low-pressure air masses accompanied by high precipitation. The ITCZ 122 

reaches its southernmost position (centred at ca. 15°S, Fig. 1A) in January, resulting in seasonal 123 

fluctuations between hot humid conditions from November to May and relatively colder and dry 124 

conditions from June to October (Fig. 1C). The RVP is among the most humid regions of Tanzania 125 

along with the coastal zone (Basalirwa et al., 1999). It is characterized by a different rainfall distribution 126 

with persisting rainfall in April-May. Nivet et al. (2018) showed that the Indian tropical Ocean and the 127 

Austral Ocean are the main sources of moisture in the area, with only a minor influence of the Congo 128 

Air Mass. Thus, the currently observed variability of the regional rainfall is likely highly impacted by 129 

the Indian Ocean Dipole, through Sea Surface Temperature anomalies. Over the last century, climatic 130 

trends from the RVP point towards drier conditions associated with a shorter rain season (Williamson 131 

et al., 2014) and a continuous increase in temperature ( 1°C for the last 100 yr.; Branchu et al., 2005). 132 

Typical vegetation of the region includes Zambezian Miombo-type woodland at low altitude and 133 

Afromontane vegetation at higher altitude (Garcin et al., 2006, Williamson et al., 2014). In many 134 

locations, the woodland has been replaced by diverse crops (banana, rice, cocoa, tea, coffee, maize; 135 
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Coffinet et al., 2017; Williamson et al., 2014). The RVP is today one of the main agricultural resources 136 

of Tanzania (Majule, 2010). 137 

The Kyambangunguru marsh (9°22’ S - 33°47’ E, 660 m a.s.l.) is located in one of the numerous maar 138 

craters of the RVP, between the Mbaka River and the Mbaka fault. These maar craters are essential 139 

water and biodiversity resources for the region. At Kyambangunguru, no human activity has been 140 

recorded nor is known within the crater (no land or water use). Human settlement expands in the plains 141 

surrounding the volcano (mainly family-scale farming) but not on its slopes. The inner marsh covers 142 

about 0.04 km² and its catchment area – limited to the crater slopes elevated ca. 100 m above the water 143 

table – is relatively small (0.20 km²; Delalande et al., 2008a, Fig. 1D). According to the Lwifwa Masoko 144 

station of the University of Dar es Salaam located at Lake Masoko, 7.5 km to the south east, mean 145 

precipitation (P) is up to 2099 mm.yr-1, with April being the most humid month (470 mm in average) 146 

and September the driest one (8 mm in average; Nivet et al., 2018). Air temperature fluctuates around 147 

22 °C throughout the year; July is the coldest month (19 °C on average) and November the warmest (25 148 

°C on average). The crater depression is filled with peat like deposits overgrown by marsh-type 149 

vegetation and the water level (H) varies around 70 cm of amplitude over the year (Fig. 1C). At the end 150 

of the rainy season, the marsh resembles a shallow lake with floating vegetation mats and patches of 151 

free water surface (Fig. 1E) while the water table considerably decreases during the dry season (Fig. 152 

1C). On a monthly scale, water level fluctuations (H) correlate with the rainfall (P): H = 1.03 P – 18 153 

(in cm; n = 12; r = 0.97). During the humid season, the marsh water is warm (around 25 °C), low 154 

mineralized and slightly acidic (pH around 5.8). On the contrary, during the dry periods, it is 155 

characterized by higher mineral concentration as well as pH increase up to around 6.4, because of water 156 

evaporation at the surface (Delalande, 2008; Delalande et al., 2008a). The water residence time in the 157 

marsh is short (a few months), based on the isotopic water budget of the marsh in- and outputs (18O 158 

and 2H of H2O; Delalande et al., 2008a), suggesting a prominent influence of climate in the marsh 159 

water budget. The isotopic signature of the marsh water during the humid season (2H-H2O = -7‰) is 160 

close to the mean annual isotopic signature of precipitation recorded at Lwifwa Masoko station (Nivet 161 

et al., 2018). At the end of the dry season, the marsh water isotopic signature (2H-H2O) becomes more 162 

2H-enriched (between 7 and 16‰, Fig. 1C) demonstrating significant evaporation resulting from the 163 
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drier climatic conditions. The slopes of the crater are steep and covered by Zambezian-type (Miombo) 164 

forest, dominated by Brachystegia, Uapaca and Acalypha tree species, all common to the region (White, 165 

1983). Shrubs of Rubiaceae and Myriaceae families are present at the edge of the marsh. The vegetation 166 

of the marsh is dominated by sedges (Carex, Cyperus) while floating (Nymphaea) and submerged 167 

macrophytes are abundant in the depressions filled with water during the rainy season. 168 

 169 

3. Materials and methods 170 

3.1. Core retrieval and sampling 171 

A 4-m long core was collected with a Wright corer in the Kyambangunguru marsh in December 2012. 172 

The coring process was stopped at 4 m because of the thickness of the Rungwe Pumice tephra (Fontijn 173 

et al., 2012) and thus covers the most recent history of the Kyambangunguru wetland. The core was 174 

sampled in 1 cm thick slices at the Lwifwa-Masoko station of University of Dar es Salaam and kept at 175 

-20 °C until further treatment. 21 samples were chosen for dating while 35 samples were selected every 176 

12 cm to perform the elemental (carbon and nitrogen content), molecular (br GDGTs, n-alkanes) and 177 

isotopic (δ²Hwax) analyses. Total organic carbon (Corg) and nitrogen (N) contents were determined after 178 

decarbonatation by elemental analysis at the Service Central d’Analyse du CNRS, Villeurbanne, France.  179 

105 1 cm-thick samples (ca. every 3 cm) were selected for plant macrofossil analysis. Among these, 44 180 

samples (distributed evenly along the core) were additionally analysed for pollen and non-pollen 181 

palynomorphs (NPPs). Within these 44 samples, 12 were used for palynofacies determination. 182 

Additionally, 5 surface soil samples (0-5 cm) from the catchment area were collected between the marsh 183 

and the top of the crater.  184 

 185 

3.2. Absolute chronology and sediment accumulation rate 186 

 187 

The chronology of the core is based on 21 Accelerator Mass Spectrometry (AMS) dates performed on 188 

bulk Total Organic Matter (TOM; 17 samples) and wood fragments (4 samples; Table 1) all along the 189 

core. Samples were subjected to acid-alkali-acid treatment to remove the mineral phase. AMS-14C and 190 
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associated 13C analyses were conducted on aliquots prepared according to the following AMS protocol: 191 

burning at 860 °C for 30 min under vacuum, in the presence of a Cu (II)-oxide/Cu (III)-oxide mix and 192 

of Ag string. The obtained CO2 was graphitized on powdered Fe with H2 at 650 °C for 100 min, and 193 

graphite was compressed in analytical pellets. Residual CO2 gases were used for associated 13C 194 

measurements on a SIRA 10 and are expressed in delta notation per mil versus V-PDB (Vienna Pee Dee 195 

Belemnite). Graphite preparation and 13C measurements were made at the GEOPS Laboratory 196 

(University of Paris-Saclay, France). 14C counting was performed using the AMS facility at the LMC14 197 

laboratory (Laboratoire de Mesure du Carbone 14; Artemis, Saclay; Cottereau et al., 2007). Analytical 198 

uncertainties, are ± 0.1‰ for 13C and between 0.2 and 0.5 pMC (percentage of Modern Carbon) for 14C 199 

activity. 200 

Calibrated radiocarbon ranges were obtained using OxCal 4.3 software (Bronk Ramsey, 2009) with the 201 

ShCal13 (Hogg et al., 2013) and Bomb13SH3 (Hua et al., 2013) atmospheric curves as the calibration 202 

set (Table 1). A Bayesian age-depth model was used to establish an absolute chronology based on these 203 

calibrated 14C date ranges. The age-depth model was constructed applying a P_Sequence function, with 204 

the parameters k0=1 and log10(k/k0)=1, in the OxCal v. 4.3 software (Bronk Ramsey, 1995, 2008). 205 

Additionally, boundaries reflecting potential changes in the rate of deposit accumulation were 206 

introduced to the model, based on observations of micro- and macrofossils (see section 4.5 and 4.6). 207 

These boundaries were defined as follows: (i) 417.5 cm: top of the tephra layer and bottom of the model, 208 

(ii) 191 cm: abrupt change from lacustrine to marshland conditions, (iii) 115.5 cm: distinct increase in 209 

water table and (iv) 0 cm: top of the core. Computing of the age-depth model led to the exclusion of two 210 

samples (SacA40028 and SacA38523). Dates with the lowest individual agreement between the 211 

modelled and the calibrated date, i.e. SacA40077 and SacA40076, were also excluded from the 212 

calculations until the lowest critical value of the agreement index (Amodel) suggested by Bronk Ramsey 213 

(2008) for model reliability (Amodel = 60%) was achieved. Final Amodel value of the chronology was 63%. 214 

The age is presented as a µ (mean) value of the modelled age expressed as calibrated year before present 215 

i.e. AD 1950 (cal. BP; Fig. 2), rounded to tens.  216 
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A mean value for the sedimentation accumulation rate (SAR), expressed in cm year-1, was determined 217 

as the median value of the probability distribution of the modelled age (μ) for each depth (in cm) at 218 

which a date was modelled. The applied formula was the following:  219 

SAR =
1

μdepth−0.5−μdepth+0.5
 (1) 220 

 221 

3.3. Plant macrofossil analysis 222 

About 5 cm3 of sediment were rinsed with warm water and sieved at 0.25 mm. Macrofossils were studied 223 

in transmitted light with a Nikon SMZ800 stereoscopic microscope at a magnification of 10 to 200. 224 

Species determination of individual plant macrofossils was performed based on the data from 225 

Velichkevich and Zastawniak (2006, 2009). The data were presented as numbers of detected 226 

macrofossils and were presented as diagram drawn in the POLPAL software (Nalepka and Walanus, 227 

2003). Analysis was performed at the Adam Mickiewicz University in Poznań (Poland).  228 

 229 

3.4. Pollen, non-pollen palynomorphs and microscopic charcoal 230 

Samples for pollen, non-pollen palynomorph and charcoal analysis were prepared using standard 231 

laboratory procedures: adding 10% HCl to dissolve carbonates, heating in 10% KOH to remove the 232 

humic fraction and at least 24-hour treatment with HF to remove the mineral fraction followed by 233 

acetolysis (Berglund and Ralska-Jasiewiczowa, 1986). Lycopodium tablet of known number of spores 234 

(n=20848, produced by Lund University) was added to each sample for calculation of microfossil 235 

concentration (Stockmarr, 1971). Pollen and spores were counted with a biological microscope under 236 

400× and 1000× magnification until the number of at least 500 pollen grains was obtained (Vincens et 237 

al., 2003, 2007). Pollen grains were identified using atlases (Gosling et al., 2013), internet-based 238 

databases such as African Pollen Database (http://apd.sedoo.fr/), and the Universal Pollen Collection 239 

(Institut des Sciences de l'Évolution Montpellier; http://www.palyno.org/). Non-pollen palynomorphs 240 

(NPPs) were identified using available literature (Gelorini et al., 2011; Miola, 2012; van Geel et al., 241 

http://apd.sedoo.fr/
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2011). The NPP type numbers follow the convention of ‘HdV-number’ and ‘UG-number’, in which 242 

acronym ‘HdV’ means Hugo de Vries Laboratory of the University of Amsterdam (The Netherlands), 243 

whereas ‘UG’ is Universiteit Gent (Belgium) (Miola, 2012). Percentages of pollen grains originating 244 

from forest and savannah communities were calculated as the ratio of an individual taxon and the TPS 245 

(total pollen sum); the TPS consists of the sum of AP (arboreal pollen) and NAP (non-arboreal pollen 246 

but excludes any taxa originating from aquatic and wetland plants as well as spores and NPPs). 247 

Percentages of aquatic and wetland pollen taxa, as well as spores and NPPs, were calculated as the ratio 248 

of an individual taxon or NPP type and the TPS enlarged by this taxon or NPP type.  249 

Microscopic charcoal particles (size range 0.02-0.5 mm) were counted on the same microscopic slides 250 

as the ones used for pollen counting until the total number of charcoal particles and Lycopodium spore 251 

standard was at least 200 in each sample (Finsinger and Tinner, 2005). Values are expressed as the 252 

charcoal accumulation rate (CHARmicro) in grains cm–2 year–1 and were calculated based on the 253 

following formula proposed by Davis and Deevey Jr.(1964):  254 

CHARmicro = CHACmicro × SAR (2) 255 

where CHACmicro is the concentration of microscopic charcoal particles (in grains or particles cm–3) and 256 

SAR is the sediment accumulation rate (in cm year-1). The diagrams were prepared using the POLPAL 257 

software (Nalepka and Walanus, 2003) and the analyses were performed at the Adam Mickiewicz 258 

University in Poznań (Poland). 259 

 260 

3.5. Quantitative palynofacies analysis 261 

Sample preparation included treatment with 50 ml of HF overnight at 40°C followed by 50 ml of HCl 262 

for 30 min to eliminate siliciclastic and carbonate minerals. Samples were then rinsed until neutral pH. 263 

Quantification of the different types of organic matter (OM) is based on the methodology developed by 264 

Graz et al. (2010) using incorporation of a standard solution of Cupressus pollen at 10 mg.ml-1 in each 265 

sample. Samples were prepared in thin sections before optical investigations using a transmitted light 266 

microscope with a 50× magnification. Particle identification was performed using the methodology 267 
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described by Boussafir et al. (2012) and Graz et al. (2010). Particles were classified into 3 types: (i) 268 

Ligno-Cellulosic tissues (LC) at different stages of degradation comprising fresh tissues detected as 269 

translucent LC (tLC), slightly degraded/amorphised LC (saLC) with cell structures that are still partially 270 

recognizable and totally degraded/amorphous LC, characterised by red aggregates of amorphous OM 271 

(rAOM) as originally described by Graz et al. (2010), (ii) mycelium fragments (myc; Graz et al., 2010) 272 

and (iii) planktonic remains (algal organic matter, algOM; Boussafir et al., 2012). Whenever necessary, 273 

particle identification was aided using UV excitation. The total mass of each particle type was 274 

determined after 40 counting according to Eq. 3: 275 

𝑚𝑝𝑎𝑟𝑡 =
𝑚𝑠𝑡𝑑×𝐴𝑝𝑎𝑟𝑡

𝐴𝑠𝑡𝑑
×

𝑑𝑝𝑎𝑟𝑡

𝑑𝑠𝑡𝑑
 (3) 276 

with mpart: mass of the particle; mstd: mass of the standard; Apart: counted surface of the particle; Astd: 277 

counted surface of the standard; dpart: density of the particle; dstd: density of the standard. Densities used 278 

for the calculation were determined by Graz et al. (2010). Results are expressed as relative abundance 279 

(in terms of mass) of each particle to the total. Sample preparation and analysis were performed at the 280 

University of Orléans (France).  281 

 282 

3.6. Biomarker analyses 283 

3.6.1. Lipid extraction 284 

After freeze-drying, samples were submitted to a modified Bligh-Dyer extraction as described in 285 

Coffinet et al. (2015). The total lipid extract was then separated into three fractions on a silica column 286 

with a succession of (i) DCM, (ii) DCM:acetone (2:1, v:v) and (iii) DCM:MeOH (1:1, v:v) followed by 287 

pure MeOH as solvents (Coffinet et al., 2015). The apolar fraction containing the n-alkanes and the 288 

intermediate polarity one (fraction 2) containing the GDGTs were analysed. Prior to analysis, the apolar 289 

fraction was further separated on silver nitrate impregnated silica columns (10%, w:w) in Pasteur 290 

pipettes (with heptane and then DCM as eluents) in order to purify the linear n-alkanes for compound-291 

specific δ²H analysis.  292 
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3.6.2. n-Alkane analyses 293 

n-Alkanes were analysed at Sorbonne University (Paris, France) by gas chromatography coupled to a 294 

mass spectrometer (GC-MS) using an Agilent Network 6890 GC System coupled with a 5973 Mass 295 

Selective Detector, with electron impact at 70 eV. 1 µl was injected and separation was achieved using 296 

a Restek RXI-5 Sil MS silica capillary column (30 m × 0.25 mm i.d., 0.50 µm film thickness) with He 297 

as the carrier gas at 1 ml min-1 flow rate. Initial temperature was set at 50 °C and increased to 320 °C at 298 

4 °C min-1. Samples were injected in splitless mode and the injector temperature was 280 °C. 299 

The average chain length (ACL; Eq. 4) describes the n-alkane distribution profile of a sample and is 300 

used to determine the predominant origin of the n-alkanes. Typically, n-alkanes with chain with less 301 

than 21 carbon atoms are suggested to be produced by algae and cyanobacteria (e.g. Han et al., 1968) 302 

while n-alkanes with more than 25 carbon atoms more likely originate from terrestrial higher plants 303 

(Eglinton and Hamilton, 1967). n-Alkanes with chain length between 21 and 25 carbon atoms are 304 

predominantly found in aquatic macrophytes (Ficken et al., 2000). 305 

ACL= 
∑ 𝐶𝑖×𝑖

∑ 𝐶𝑖
 where i spans from 21 to 35  (4) 306 

The carbon preference index (CPI; Eq. 5) is a ratio assessing the relative importance of odd over even 307 

homologues and reflects the degree of maturity (organic matter degradation) of a sample. Immature 308 

samples have very high CPI (>> 1; Killops and Killops, 2005). Unusually low CPI (below 3) in recent 309 

sediments are generally considered as polluted by a source of mature organic matter (petroleum, wood 310 

burning; Bray and Evans, 1961). 311 

𝐶𝑃𝐼 = 0.5 × (
∑ 𝐶𝑜𝑑𝑑 25−33

∑ 𝐶𝑒𝑣𝑒𝑛 24−32
+

∑ 𝐶𝑜𝑑𝑑 25−33

∑ 𝐶𝑒𝑣𝑒𝑛 26−34
)      (5) 312 

The Paq index (Eq. 6) was developed by Ficken et al. (2000) and is a proxy for the relative contribution 313 

of emergent/terrestrial macrophytes compared to submerged/floating ones. Contribution of submerged 314 

and floating macrophytes is considered as high when Paq values are higher than 0.4 and insignificant 315 

when Paq values are lower than 0.1. 316 

𝑃𝑎𝑞 =
𝐶23+𝐶25

𝐶23+𝐶25+𝐶29+𝐶31
        (6) 317 
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n-Alkane hydrogen isotopic composition (δ2H n-alkane) was measured at Newcastle University (United-318 

Kingdom) using a Delta V+ isotope-ratio mass spectrometer (IRMS, Thermo Fisher) connected to a GC 319 

Ultra Trace (Thermo Fisher), a Finnigan GC Combustion III (Thermo Fisher) and a high temperature 320 

conversion (HTC) system set up at 1400 °C. The GC temperature was set to start at 50 °C and then to 321 

raise to 250 °C at 15 °C min-1 and from 250 °C to 320 °C at 5°C min-1. Temperature was then held at 322 

320 °C for 15 min. Every sample was analysed in duplicate and the 2H/1H ratio was reported on the V-323 

SMOW (Vienna standard mean ocean water) scale and expressed in delta per mil (δ‰). A mixture of 324 

n-C16 to n-C30 alkane standard and 5α androstane standard (A. Schimmelmann, Indiana University) was 325 

run at the beginning and at the end of each sequence. Standard error of the measurements of the 326 

individual long chain n-alkanes (C23-C31) from this standard mix ranged between 0.3‰ and 1.1‰. 327 

3.6.3. GDGT analysis 328 

GDGTs were analysed at Sorbonne University (Paris, France) with a high-pressure liquid 329 

chromatography coupled to a mass spectrometer with an atmospheric pressure chemical ionization 330 

source (HPLC-APCI-MS, Shimadzu LCMS-2020). Separation was achieved with a Prevail Cyano 331 

column (2.1 mm x 150 mm, 3 µm; Alltech, Deerfield, IL, USA) at 30 °C, using a mixture of hexane and 332 

isopropanol at 0.2 ml min-1 according to Coffinet et al. (2015). Elution began at 99% A/1% B for 5 min 333 

followed by a linear gradient to 98% A/2% B in 45 min. A second linear gradient led to a mixture of 334 

90% A/10% B in 10 min, maintained for 10 min and returned to the initial conditions (99% A/1% B) in 335 

14 min, maintained for 10 min. Injection volume was 10 µl. Single ion monitoring (SIM) of the [M+H]+ 336 

ions was used to detect the GDGTs. 337 

Mean annual air temperatures (MAAT) were estimated using the calibration specifically developed for 338 

East African lakes by Loomis et al. (2012): 339 

𝑀𝐴𝐴𝑇 = 22.77 − 33.58 × 𝑓(𝐼𝐼𝐼) − 12.88 × 𝑓(𝐼𝐼) − 418.53 × 𝑓(𝐼𝐼𝑐) + 86.43 × 𝑓(𝐼𝑏) (7) 340 

where f(x) is the fractional abundance of the compound x relative to the total br GDGTs and the roman 341 

numerals correspond to the different br GDGT compounds according to Weijers et al. (2007b) 342 

numbering. 343 
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pH was calculated using the soil calibrations developed by Tierney et al. (2010b) and based on the 344 

cyclisation ratio of br GDGTs (CBT; Weijers et al., 2007b): 345 

pH = 10.32 – 3.03 × CBT    (8) 346 

   
    














III

IIbIb
logCBT     (9) 347 

where the roman numerals correspond to the different br GDGT compounds according to Weijers et al. 348 

(2007b) numbering. 349 

 350 

4. Results 351 

4.1. Lithology  352 

The bottom of the core corresponds to a pumice-rich tephra. The overlaying deposits (ca. 418 to 200 353 

cm) consist of an alternating layer of peat, organic gyttja and silty clay material, with charcoal-rich 354 

layers (Fig. 2). Above 200 cm, the sediment mostly consists of peat at diverse stages of decay. Large 355 

amounts of higher plant macrofossils are observed at depth ranging between 175 and 75 cm, while the 356 

decomposition of plant fragments is more pronounced from 75 cm to the top of the sequence. The upper 357 

clayey part of the sequence contains two additional tephra layers at 65.5-63 cm and at 57-51 cm (Fig.2). 358 

 359 

4. 2. Chronostratigraphy, age-depth model and sedimentation accumulation rate 360 

As shown in Table 1 and Figure 2, dates were obtained all along the core and generally fit with the 361 

stratigraphy. Nevertheless, two age reversals are observed at the base of the core, based on Total Organic 362 

Matter (TOM) measurements (Fig. 2). The first one occurs between 371.5 and 402 cm depth 363 

(SacA44028) and the second corresponds to the bottom tephra layer of the core between 417.5 and 420.5 364 

cm depth (SacA38523; Table 1). This could be attributed to stratigraphic misplacement or cross-365 

contamination during coring. Therefore, these dates were not included in the age model. All the wood 366 

remain-based ages are very close to those from bulk TOM or slightly older (mean standard deviation 367 
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between the bulk TOM and the wood remain age is +2.3%). This minor mismatch could be due to the 368 

additional transport time of the wood remains from the catchment into the marsh sediment while the 369 

bulk TOM signature is expected to be predominantly autochthonous (see sections 4.4 to 4.6). 370 

Alternatively, “younger” TOM ages could result from microbial activity or organic matter derived from 371 

root development occurring after sedimentation (Trumbore, 2009). The 13C values obtained after 372 

sample preparation on residual CO2 vary from -20.0‰ to -29.5‰ along the core (average value -25.3‰; 373 

Tab. 1). This range is compatible with organic carbon originating from the vegetation, likely C3 type 374 

plants, and consistent with 13C values measured at the nearby Lake Masoko (Gibert et al., 2002). 375 

Compared to the mean TOM 13C value (-24.8‰), the mean wood 13C value is lower (-27.2‰) also in 376 

agreement with a C3 type plant signature. 377 

The investigated sediment sequence from Kyambangunguru shows continuous sedimentation of ca. 378 

4080 calibrated years, spanning from ca. 4020 and -60 cal. BP (Fig. 2). The “apparent” sediment 379 

accumulation rate (SAR) ranges from 0.03 to 0.18 cm yr-1 (i.e., each cm thick sample of the profile 380 

records 6.3 to 33 years). The highest SAR was recorded in the bottom section of the profile (between 381 

0.10 and 0.18 cm yr-1), in the 417-191 cm section (from 4015 to 2280 cal. BP). Intermediate SAR values, 382 

ranging between 0.07 and 0.11 cm yr-1, were recorded between 191 and 8 cm (from 2280 to 130 cal. 383 

BP), whereas the lowest SAR (0.03-0.06 cm yr-1) was recorded in the top section of the profile between 384 

8 and 0 cm (from 130 to -60 cal. BP). The σ error of the modelled dates ranged between 0.2 (top of the 385 

profile) and 53 years.  386 

 387 

4.3. Palynofacies 388 

The Kyambangunguru core is largely dominated (ca. 80% of the OM throughout the core) by ligno-389 

cellulosic tissues (LC) from vascular plants (Fig. 3). Microscopic investigation of the LC reveals 3 stages 390 

of degradation. On average, fresh, well-preserved, tLC tissues represent 19% of the total OM (Fig. 3), 391 

while slightly degraded, saLC particles are the most abundant type of OM (ca. 39% on average) in the 392 

core. Amorphous rAOM represents ca. 11% of the total LC OM with an increase to 20% in the section 393 

from ca. 3140 to 830 cal. BP (300-62.5 cm). In addition to LC, fungal mycelia are observed in the layer 394 
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spanning the period between 239 and 60 cm (ca. 2670 to 800 cal. BP). Grey cell fragments and granular 395 

amorphous OM, related to planktonic-derived material, are found throughout the core (Fig. 3), but are 396 

particularly abundant at the base (below 330 cm, i.e. ca. 3360 cal. BP) and at the top of the profile (from 397 

89.5 to 0 cm, ca. 1150 cal. BP to modern). 398 

 399 

4.4. Plant macrofossil analysis 400 

Plant macrofossils are dominated by macrophytes (sedges, submerged/floating plants and algae) and 401 

wood remains. Eleocharis sp. is present all along the core, while Nymphaea sp. (floating macrophyte), 402 

disappeared between 160 and 100 cm (ca. 1960 and 1270 cal. BP; Fig. 4). In addition, in the layer 403 

between 415.5 and 281.5 cm (ca. 4000 to 3000 cal. BP), macrofossils are composed of remains of algae 404 

(Nitella sp., Fig. 4) and submerged/floating plants (Potamogeton sp. and Caldesia parnassiflora; Fig. 405 

4). These species are replaced by Juncus sp. from 239.5 to 139.5 cm (ca. 2670 to 1730 cal. BP). During 406 

this interval, there is a relative increase in abundance of wood remains in comparison to the other 407 

sections of the core. Nitella sp. together with Carex sp. and Chara sp. are the dominant remains found 408 

in the sequence from 139.5 to the surface (1730 cal. BP to modern; Fig. 4). At 105 cm (ca. 1330 cal. 409 

BP), Aldrovanda vesiculosa seed was found. 410 

 411 

4.5. Pollen, NPPs and microcharcoal 412 

265 taxa of pollen and spores as well as non-pollen palynomorphs (NPPs) – organic walled microfossils 413 

which are not pollen – were identified by palynological analysis. The results of this analysis were 414 

separated into two groups: indicators of terrestrial vegetation, i.e. vegetation surrounding the lake/marsh 415 

and indicators of aquatic vegetation reflecting mainly lake-marsh vegetation. Three pollen zones 416 

reflecting compositional changes in terrestrial (woodland and open land) communities (labelled as 417 

KY/tp-1 to -3 with tp: terrestrial pollen; Fig. 5) were defined. Additionally, the KY/tp-1 zone was 418 

subdivided into three subzones (KY/tp-1a-c). Pollen and NPPs reflecting lake/marsh vegetation changes 419 

enabled the establishment of 6 zones (KY/lpn-1-6 with lpn standing for local pollen and NPPs; Fig. 6).   420 
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4.5.1. Terrestrial vegetation 421 

The KY/tp-1 zone (416–303 cm; ca. 4000–3160 cal. BP) is characteristic of the highest percentages of 422 

Acalypha, Moraceae, Macaranga and Piptadenia/Piptadeniastrum/Entada (Fig. 5). Moraceae and 423 

Macaranga pollen reached their maxima (27–28% and 11%, respectively) at 353-333 cm (ca. 3520–424 

3380 cal. BP). Poaceae pollen increased until 397 cm (ca. 3850 cal. BP) when they distinctly decreased 425 

while Proteaceae pollen revealed a first maximum at 378 cm (ca. 3700 cal. BP). During the KY/tp-1b 426 

subzone (353–333 cm; ca. 3520–3380 cal. BP), Poaceae percentages fell to their minimum values (8%). 427 

During the KY/tp-1c subzone (333–303 cm; ca. 3380–3160 cal. BP) pollen values of Moraceae and 428 

Macaranga dropped simultaneously with the rise in Poaceae percentages and the appearance of palm 429 

pollen (Elaeis guinensis and Raphia type). During the entire KY/tp-1 zone charcoal (0.02–0.5 mm), 430 

accumulation rate (CHAR) was high and relatively stable without any distinct maximum (8450–37940 431 

particles cm-2 yr-1; Fig. 5). 432 

The KY/tp-2 zone (303–63 cm; ca. 3160–830 cal. BP) was characteristic of the highest values of Uapaca 433 

(15–24%; 162.5-133.5 cm; ca. 1990–1660 cal. BP) in the profile. However, at 123–113.5 cm (ca. 1540–434 

1430 cal. BP) they substantially declined, simultaneously to a rapid increase in Poaceae values. At the 435 

beginning of the zone, Raphia pollen increased rapidly (303–283 cm; ca. 3160–3010 cal. BP; up to 436 

15.5%). Values of Proteaceae increased from 234.5 cm (ca. 2630 cal. BP) and reached the maxima after 437 

113.5 cm (ca. 1430 cal. BP). Simultaneously, or slightly prior to the Poaceae maximum in this zone 438 

(123–113.5 cm ca. 1540–1430 cal. BP), values of Ricinus communis and Macaranga increased (142.5 439 

cm; ca. 1760 cal. BP), whereas percentages of Nauclea type (123 cm; ca. 1540 cal. BP), Elaeis guinensis 440 

(143 cm; ca. 1770 cal. BP), Raphia type (132.5 cm; ca. 1650 cal. BP) and later Rutaceae (113.5 cm; ca. 441 

1430 cal. BP) decreased substantially or disappeared. Among pollen taxa related to arboreal plants 442 

occupying montane forest zones, Apodytes cf. dimidiata, Olea, Podocarpus and Prunus africana type 443 

were the most common. During the KY/tp-2 zone, three distinct phases of increase in CHAR values, 444 

potentially related to an increase in fire activity, were identified. These occurred at 297.5, 248.5 and 445 

117.5 cm (ca. 3120, 2740, and 1480 cal. BP respectively) and were intersected by periods with CHAR 446 
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values lower than during the KY/tp-1 zone. From 83 cm (ca. 1070 cal. BP), CHAR values started to 447 

increase gradually.  448 

The KY/tp-3 zone (63–5 cm; 830 to 60 cal. BP) was characterized by the highest percentages of Poaceae 449 

(67–90%), the continuous presence of Ricinus communis and distinct drops of Proteaceae and Uapaca. 450 

At 50 cm (ca. 690 cal. BP), Syzygium pollen value revealed a substantial increase (up to 16%). In general, 451 

CHAR values were higher than in the previous zone and two distinct maxima of their values were 452 

recorded at 50 and 10 cm (ca. 690 and 160 cal. BP).  453 

4.5.2. Aquatic/marsh vegetation 454 

During the KY/lpn-1 zone (416–383 cm; ca. 4000–3740 cal. BP) the algae Tetraedron trigonum type, 455 

Tetraedron incus/caudatum and Coelastraum reticulatum reached their maxima (Fig. 6). These algae 456 

taxa rapidly declined between 412 and 393 cm (ca 3970 and 3820 cal. BP). Along the KY/lpn-2 zone 457 

(383–303 cm; 3740–3160 cal. BP), Alismataceae (cf. Caldesia) was regularly observed (0.8–6.5%). 458 

Pollen of Nymphaeaceae (Nymphaea type) and their epidermis (UG-1241), Potamogeton and algae such 459 

as Scenedesmus, Tetraedron minimum, Pediastrum undiff., Pediastrum angulosum and Botryococcus 460 

were frequent during these two zones. At 323 cm (ca. 3310 cal. BP), Nymphaea type percentages 461 

increased simultaneously with a decline in Potamogeton. The KY/lpn-3 zone (303–193 cm; ca. 3160–462 

2300 cal. BP) was characterized by an increase in Cyperaceae pollen and tissue fragment percentages 463 

(rise in fungal NPP UG-1176 and UG-1197) and a simultaneous drop in Scenedesmus and Tetraedron 464 

minimum.  465 

The KY/lpn-4 zone (193–113 cm; ca. 2300–1430 cal. BP) was characterized by a prominent increase in 466 

Cyperaceae percentages (12–77%). The spores of Lycopodiella caroliniana were regularly present (0.2–467 

18%) together with amoeba Assulina muscorum. Between 143 and 123 cm (ca. 1770 and 1540 cal. BP), 468 

monolete spores reached their maximum values in the core (64–69%). Values of Nymphea type, UG-469 

1241 (Nymphaea tissues), Potamogeton, Alismataceae (cf. Caldesia), Pediastrum angulosum, 470 

Botryococcus and Scenedesmus dropped markedly. NPPs of fungal origin increased distinctly, notably 471 

UG-1197 and Entorrhiza in the deeper part of the zone and HdV-172, UG-1077, UG-1176 and UG-472 

1107 in the upper part. 473 
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The KY/lpn-5 (113–46.5 cm; ca. 1430–650 cal. BP) and KY/lpn-6 (46.5–5 cm; 650 to 60 cal. BP) zones 474 

were characterized by the increase in frequency of algae, mainly Botryococcus, Scenedesmus and 475 

Pediastrum angulosum and, among submersed macrophytes, of Nymphaea type pollen and their related 476 

tissues (UG-1241). In the KY/lpn-5 zone, Hallorrhagaceae appeared (1.5–24%). Entorrhiza and fungal 477 

type UG-1107 reached maxima in the profile (59–76%). In the KY/lpn-6 zone, Alismataceae (cf. 478 

Caldesia) and Potamogeton became more frequent while Cyperaceae pollen percentages distinctly 479 

dropped.   480 

 481 

4.6. Elemental analysis 482 

Corg content is high throughout the core (39.0 - 57.8%; mean 51.0% ± 6.2; Suppl. Table 1), except in the 483 

tephra layer at the base of the core (5%). Total nitrogen (TN) varies from 1.5 to 3.6% except for the 484 

tephra layer (0.2%). Slightly lower TN values are observed between 199.5 and 100 cm (ca. 2350 and 485 

1270 cal. BP; ca. 2%, Suppl. Table 1) leading to higher C/N ratios that range from 16 to 38 (Fig. 7 and 486 

Suppl. Table 1). In the other sections of the core, C/N ratios are relatively invariant at ca. 15. 487 

 488 

4.7. Br GDGT abundance and distribution 489 

Br GDGTs are abundant throughout the core (mean 121.5 ± 81.3 µg g-1 of dry wt. peat), with maximal 490 

concentration observed at 150.5 cm (ca. 1850 cal. BP; Suppl. Table 1). CBT varies between 0.53 and 491 

2.01 with a mean value of 1.31 and is higher above 180.5 cm (ca. 2180 cal. BP; 1.41-2.01; Suppl. Table 492 

1). MBT is comprised between 0.65 and 0.89, with a mean value of 0.77 (Suppl. Table 1). The highest 493 

MBT values (>0.80) are found between 194 and 45 cm (ca. 2310 and 630 cal. BP). 494 

 495 

4.8. n-Alkane distribution and their δ²H composition 496 

Mid- to long-chain n-alkanes (>C21) dominate most of the samples, with C23 and C25 being the most 497 

abundant (on average 23% and 21%, respectively; Suppl. Fig. 1). Two n-alkane distribution patterns are 498 
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observed in the core (Suppl. Fig. 1), defined as patterns A and B. Pattern A was identified in the sections 499 

from 417 to 180 cm and from 30 cm to the surface (ca. 3670 -2300 cal. BP and ca. 430 cal. BP-modern 500 

respectively). It is dominated by odd numbered n-alkanes, the most abundant one being C23, with a 501 

decreasing trend in relative abundance from C23 to C31. Pattern B (Suppl. Fig. 1) was observed in the 502 

sections from 193 to 29.5 cm (ca. 2300 to 430 cal. BP). This distribution is characterized by a flattening 503 

of the n-alkane profile. The C29
+ n-alkanes (up to C35 in some samples) as well as the C23

- n-alkanes, 504 

especially C19, increase while the C23, C25 and C27 decrease, in comparison to pattern A. In pattern B, 505 

even numbered n-alkanes are also found in larger amount than in pattern A. 506 

The CPI index confirms a strong odd-over-even predominance throughout the core (mean 8.1±3; Suppl. 507 

Table 2) while the ACL index varies between ca. 25 and 27 (Fig. 7; Suppl. Table 2). The Paq index is 508 

systematically higher than 0.4, ranging between 0.50 and 0.85 (Fig. 7; Suppl. Table 2). 509 

The δ²H values of odd mid to long chain n-alkanes (C23-C31) varies between -96‰ and -172‰ (Suppl. 510 

Table 2) and are higher in the deepest part of the core, between 417 and 391 cm (ca. 4010 and 3800 cal. 511 

BP; between -96‰ and -122‰; Suppl. Table 2). Long chain n-alkanes (C29 and C31) are more ²H-512 

enriched (-130‰ on average; Suppl. Table 2) than mid chain (C23 and C25; -150‰ on average; Suppl. 513 

Table 2) compounds. 514 

 515 

5. Discussion 516 

The combination of palaeobotanical, elemental and molecular analyses enabled the reconstruction of the 517 

Holocene ecological history of the Kyambangunguru wetland together with regional climate. The proxy 518 

analyses revealed the presence of three major phases in the Kyambangunguru wetland ecosystem 519 

development over the last 4.0 ka cal. BP for which the interaction with regional and global climatic 520 

changes are discussed. The chronology of the sediment record was compared to published records of 521 

the region (Filippi and Talbot, 2005; Fontijn et al., 2012; Garcin et al., 2007) showing overall good 522 

consistency. The tephra layer at the base of the core, dated at ca. 4.1 ka cal. BP, corresponds to the 523 

Rungwe Pumice deposits identified at Lakes Masoko and Malawi and dated at 4.3 ka cal. BP and 4.3 to 524 
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3.6 ka cal. BP, respectively. The second tephra observed at ca. 0.9 ka cal. BP in the Kyambangunguru 525 

core can be related to the Aphyric Pumice deposits observed at 1.2 ka cal. BP in the Lake Masoko 526 

sediment record and between 1.1 and 0.6 ka cal. BP in the Lake Malawi one. The last tephra layer 527 

identified at Kyambangunguru is harder to define. It is dated at ca. 0.8 ka cal. BP and could either 528 

correspond to the Aphyric Pumice described earlier or to the Ngozi Tuff, even though this event was 529 

dated between 0.5 and 0.3 ka cal. BP at Lakes Masoko and Malawi. This regional comparison, even if 530 

it stresses its inherent time uncertainty, further validates the age-model used in this study.  531 

 532 

5.1. Ecosystem, air temperature and precipitation variability at the Kyambangunguru crater marsh 533 

Three units (labelled as Units I-III; Fig. 7), representing the major developmental phases of marshland 534 

ecosystem over the last 4.0 ka cal. BP, were distinguished based on the local plant community changes 535 

inferred from pollen, non-pollen palynomorph and plant macro-fossil analyses. In addition, the origin 536 

of the OM and its degree of preservation were determined using the palynofacies and C/N records 537 

(Bourdon et al., 2000) while the distribution of br GDGTs allowed reconstructing the pH of the site, 538 

following the approach described by Weijers et al. (2007b) and Tierney et al. (2010b). For the climatic 539 

reconstruction, the mean annual air temperature (MAAT) and the hydrological conditions over the last 540 

4.0 ka cal. BP years were reconstructed using the br GDGT distribution and the hydrogen isotopic values 541 

of the n-alkanes (δ²Hwax), respectively. Br GDGT-derived MAAT were calculated with the East African 542 

lacustrine calibration developed by Loomis et al. (2012), i.e. Eq. 7, which takes into account in situ 543 

production of br GDGTs in lakes, as discussed in the Suppl. Information. The δ²Hwax was determined as 544 

the weighted average of the δ²H values of the C23 and the C25 n-alkanes which are expected to have 545 

recorded mainly the wetland water isotopic composition (δ²H-H2O) variations during the accumulation 546 

of the sedimentary sequence (as discussed in the Suppl. Information). Because the study site has no 547 

outflows, the δ²H-H2O variations depend essentially on the rates of precipitation and evaporation and 548 

the δ²Hwax can be interpreted as changes in the precipitation to evaporation ratio (P/E ratio; Gonfiantini, 549 

1986; Sachse et al., 2004). 550 

 551 
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5.1.1. Unit I: ca. 4.0 – 2.3 ka cal. BP (417–193 cm) – shallow lake, cold and wet conditions 552 

The palaeoenvironmental proxies suggest a relatively stable and persistent lake environment during this 553 

period. Planktonic remains are observed in the palynofacies (Fig. 3) and in the non-pollen palynomorph 554 

profile (NPP; Fig. 6) and the C/N values (ca. 15; Fig. 7) indicate a mixed aquatic and terrestrial source 555 

of the OM (Meyers, 1997). The GDGT derived-pH of ca. 7 (Fig. 7) is consistent with current pH values 556 

of the RVP crater lakes (ranging between 5.8 and 8.7; Delalande, 2008), further supporting the 557 

occurrence of a lake at this time. The high abundance of macro- and microremains (Figs. 4 and 6) from 558 

algae (Nitella sp.) and submerged/floating macrophytes (Potamogeton sp. and Nymphaea sp.) and the 559 

relatively high Paq values (0.7-0.8; Ficken et al., 2000) suggest that the lake was relatively shallow and 560 

its water column likely harboured abundant macrophyte vegetation. The growth of Caldesia 561 

parnassifolia for instance may indicate a water depth lower than one meter (Gupta and Beentje, 2017; 562 

Sinkevičienė, 2016). In addition, the NPP record reveals a characteristic pattern of successive and rapid 563 

decline of Tetraedron trigonum type, Coelastrum reticulatum and Tetraedron incus/caudatus, all before 564 

3.8 ka cal. BP (Fig. 6). This reduction is possibly related to the spread of Nymphaea whose floating 565 

leaves may have limited the light availability, although it did not seem to impact Tetraedron minimum 566 

and Scenedesmus, which might be more resistant species. The second stage of microalgal community 567 

retreat, which affected Scenedesmus and Tetraedron minimum, occurred at ca. 3.2 ka cal. BP and seem 568 

to have also been stimulated by Nymphaea expansion. Simultaneously, an increased input of fungal 569 

remains, UG-1176 and UG-1197, may indicate spreading of emerged marsh plants around the lake. This 570 

is further supported by the high Corg values (> 50%; Suppl. Table 1) and the predominance of 571 

lignocellulosic-derived OM in the palynofacies record partly originating from Cyperus (Laggoun-572 

Défarge et al., 2008a) according to microscopic observation (Fig. 3). 573 

Unit I is marked by an abrupt decrease in mean annual air temperature (MAAT) of about three degrees 574 

(from 26 °C to 23 °C, Fig. 8) at ca. 3.9 ka cal. BP. The MAAT continues to decrease by another three 575 

degrees to 20 °C at 2.7 ka cal. BP (Fig. 8). This trend is synchronous with the “3.3–2.5 ka. BP” cold 576 

Holocene event introduced by Wanner et al. (2011) which was also observed – to a lower extent – at ca. 577 
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4.0 – 3.0 ka cal. BP in Lakes Tanganyika and Malawi (Powers et al., 2005; Tierney et al., 2008; Fig. 8) 578 

and in Lakes Turkana and Challa (Berke et al., 2012;  579 

Sinninghe Damsté et al., 2012). At the same time, the δ²Hwax record shows more negative values until 580 

ca. 3.0 ka cal. BP (up to -168 ‰; Fig. 9), which can be interpreted as an increase in the P/E ratio either 581 

due to higher precipitation or/and lower evaporation rates. A wetter environment is also inferred from 582 

the terrestrial pollens, with a decrease in pollen supply from grassland communities from ca. 3.7 to 3.4 583 

ka cal. BP and an expansion of mountain forest and Zambezian Miombo woodland communities 584 

(Moraceae and Macaranga at ca. 3.5 – 3.4 ka cal. BP, Uapaca optimum, presence of Apodytes cf. 585 

dymidata, Olea, Podocarpus and Prunus africana). Wetter conditions at the same period were also 586 

inferred from a pollen record at Lake Masoko (Vincens et al., 2003). Notably, a synchronous Uapaca 587 

pollen optimum occurred both at Masoko and Kyambangunguru (after ca. 3.1 ka cal. BP, Vincens et al., 588 

2003). δ²Hwax values remain negative during unit I, although two positive peaks in δ²Hwax are noticeable 589 

at ca. 3.6 and 2.8 ka cal. BP possibly indicating brief dry events interrupting the overall wetter period. 590 

These dry events are in agreement with observations by Russell et al. (2003) and Russell and Johnson 591 

(2005) at Lake Edward (Uganda; Fig. 9). Peaks in Mg content in calcite at 3.6 and 2.8 ka cal. BP were 592 

indeed linked to evaporative concentration of the lake (increase in the [Mg2+]/[Ca2+] ratio in lake water) 593 

in response to short but pronounced drought events.  594 

5.1.2. Unit II: 2.3 – 1.4 ka cal. BP (193–113 cm) – marsh/peatland formation under sustained warm 595 

and drier conditions 596 

An abrupt, environmental change occurred at ca. 2.3 ka cal. BP leading to the establishment of a peatland 597 

with variable hydrological conditions (Fig. 7). The onset of unit II is marked by an apparent decrease in 598 

the sedimentation rate from 0.13 cm yr-1 to 0.08 cm yr-1 (Fig. 2), an increase in the Cyperaceae tissue 599 

and ferns (monolete spores) accumulation and a strong increase of the C/N ratio (up to 40), all 600 

evidencing peat soil formation. High C/N ratios (usually > 30 and sometimes up to 100) are indeed 601 

typical for peatlands, due to the high preservation of the OM in relation to the prevailing acidic and 602 

anoxic conditions (Laggoun-Défarge et al., 2008b; Meyers, 1997). Simultaneously, a substantial 603 

decrease or almost total disappearance of algae (Scenedesmus, Pediastrum, Botryococcus and 604 
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Tetraedron minimum) and aquatic plants such as Nymphaea spp. (Fig. 6) reflect a substantial fall in the 605 

water table. However, irregular appearances of these taxa, as well as of the macroalgae Nitella sp., 606 

indicate episodic inundation of the wetland (Fig. 4). The main constituents of the peatland community 607 

were Juncus sp., Eleocharis sp., ferns and perhaps other Cyperaceae species (Figs. 4 and 6). Permanent 608 

waterlogged conditions, and low pH (down to 5.2, Fig. 7) contributed to the establishment of plant taxa 609 

restricted to humid acidic environments, such as Drosera, Lycopodiella caroliniana and Aldrovanda 610 

vesiculosa (Figs. 4 and 6; (Gałka et al., 2015), and the appearance of protists frequently found in 611 

peatlands, such as the testate amoeba Assulina muscorum (van Geel, 1978). The increase in reddish 612 

amorphous OM (rAOM) and the appearance of fungal mycelia at that time (Fig. 3) also suggest the start 613 

of a terrestrialization process and the development of vascular plants within the marsh (Bourdon et al., 614 

2000). The increase in wood remains in the macrofossil profile, related to the development of trees and 615 

shrubs at the edges of the marsh or even in the marsh itself, supports this interpretation. 616 

Unit II displays the highest δ²Hwax values of the core (up to -136 ‰; Fig. 9), suggesting low P/E ratio 617 

and thus the driest period of the last 4.0 ka cal. BP, consistent with several East-African records – Lake 618 

Edward (Uganda), Lake Turkana (Kenya), Lake Tanganyika (Tanzania) (Nash et al., 2016 and 619 

references therein). A major drought event is widely described at ca. 2.0 ka cal. BP, followed by a second 620 

period between ca. 1.7 and 1.0 ka cal. BP, during which successive minor drought events occurred (Alin 621 

and Cohen, 2003; Russell et al., 2007; Russell and Johnson, 2005; Verschuren and Charman, 2008). In 622 

the Kyambangunguru δ²Hwax record, a positive excursion that could be interpreted as a drought event is 623 

observed at ca. 2.2 ka cal. BP. However, the major dry period seems to have occurred later, between ca. 624 

1.7 and 1.4 ka cal. BP (centred at 1.5 ka cal. BP, Fig. 9). Around the same time (ca. 1.7 ka cal. BP), 625 

Uapaca pollen suddenly declined and fire activity increased, which contributed to the opening of the 626 

woodland canopy and a spread of the grassland communities (Fig. 5). The same abrupt changes are 627 

noticeable in charcoal and pollen data at Lake Masoko (Thevenon et al., 2003; Vincens et al., 2003) and 628 

in the Amboseli basin in Kenya (Rucina et al., 2010). Alternatively, these vegetation changes could have 629 

been induced by enhanced human activity. Indeed, a first spread of human settlement is considered to 630 

have occurred during the Late Iron Age, around 1.5 ka cal. BP (Marchant and Taylor, 1998; Vincens et 631 

al., 2003). However, several sites in East Africa (Lakes Turkana, Tanganyika, Naivasha, Challa, Edward 632 
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and Sacred Lake; see references in Marchant et al., 2018) support a widespread increase in aridity as the 633 

main cause explaining the sedimentological evidence of droughts, as discussed by Marchant et al. 634 

(2018). Notably, we promote that δ²Hwax records, such as this study and Konecky et al. (2014), could 635 

help disentangling the human impact from the climatic one as they should only be marginally impacted 636 

by human activities. According to the br GDGT data, MAAT remained high during unit II, oscillating 637 

around 21.5-22 °C (Fig. 8), suggesting a dry and warm period during unit II. During the same period, 638 

higher temperatures are also reported in the records from Lake Challa (Sinninghe Damsté et al., 2012), 639 

Lake Turkana (Berke et al., 2012) and Lake Tanganyika (Tierney et al., 2008) (Fig. 8).  640 

5.1.3. Unit III: ca. 1.4 ka cal. BP – modern (113–0 cm) – periodically flooded marsh and 641 

transition to colder conditions 642 

At the onset of Unit III, an increase in the water table led to the reappearance of microalgae assemblages 643 

(mainly composed of Botryococcus, Scenedesmus and Pediastrum angulosum), and macrophytes such 644 

as Nymphaea, Alismataceae and Hallorrhagaceae at ca. 1.4 ka cal. BP. However, until ca. 0.7 ka cal. 645 

BP, high percentages of Cyperaceae and of Entorrhiza spores are observed, which indicate that the 646 

peatland was subjected to pronounced water table fluctuations but without open water stages. Indeed, 647 

Entorrhiza is a genus of parasites that infect the roots of the Juncaceae (rush) and Cyperaceae (sedge) 648 

families when they are no longer in water (Riess et al., 2015; Vánky, 1998). At ca. 0.7 ka cal. BP, the 649 

water table likely increased substantially, which supported a spread of Nymphaea and contributed to the 650 

sharp decrease in Cyperaceae. Since ca. 0.4 ka cal. BP, Tetraedron minimum and Scenedesmus blooms 651 

became more frequent, and the structure of the microalgal communities resembled the one from the base 652 

of the core (start of Unit I). This time, however, large amounts of Carex remains and large fluctuations 653 

in pH (from 5.2 to 7.8; Fig. 7) suggest the coexistence of peat patches, likely acidic, and water 654 

depressions where the pH may have been higher, supporting the development of microalgal 655 

communities. This corresponds to the current status of the marsh. Continuous monitoring of the site 656 

during the last decade indicates the presence of a seasonally evolving ecosystem, i.e. (i) a shallow lake 657 

colonized by large sedge mats during the rainy season and (ii) a waterlogged marsh-like regime at the 658 

end of the dry season due to high evaporation rates (Delalande et al., 2008a, 2008b). 659 
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The period that corresponds to unit III at Kyambangunguru starts with relatively warm mean annual air 660 

temperatures, at ca. 22 °C, followed by an abrupt cooling to 20 °C at ca. 0.5 ka cal. BP (Fig. 8). A similar 661 

abrupt event was also identified at Lake Tanganyika (Tierney et al., 2010a; Fig. 8), in the Ethiopian 662 

Highlands and in southern Africa (Nicholson et al., 2013 and references therein) and could coincide 663 

with the transition between a “Medieval Climate Anomaly” (MCA; based on Jones et al. (2001) time 664 

boundaries: ca. 1.0 – 0.8 ka cal. BP) and a Little Ice Age (LIA; 0.7 – 0.1 ka cal. BP; Matthews and 665 

Briffa, 2005) in the African continent. The occurrence of climatic shifts in Africa that could be related 666 

to the European MCA and LIA events is currently under debate but a growing body of research seems 667 

to support such a cross-latitude connection (e.g. Lüning et al., 2018; Russell and Johnson, 2007; Tierney 668 

et al., 2013). At Kyambangunguru, the last 500 yrs exhibit the coldest temperatures of the record which 669 

would support the existence of a “Little Ice Age” equivalent in East Africa, in agreement with records 670 

from nearby Lake Malawi (Branchu et al., 2010; Powers et al., 2011; Fig. 8). At the transition between 671 

units II and III (ca. 1.4 – 0.8 ka cal. BP) the δ²Hwax values decrease, consistent with the reestablishment 672 

of higher P/E ratio under wetter conditions and the spreading of Proteaceae and the recovery of the 673 

Uapaca woodlands, as observed in the pollen record. At 0.8 ka cal. BP, the canopy density started to 674 

decrease, the fire activity increased, which led to a spread in the grassland communities, maintained 675 

until nowadays. Similar conditions were recorded at Lake Masoko (Vincens et al., 2003). Intensification 676 

of human activity in the region could be responsible for such vegetation changes, especially as no shift 677 

is observed in the δ²Hwax values during this period. Additional high-resolution reconstructions in the 678 

RVP and the neighbouring provinces are necessary to better assess the relative contribution of human 679 

versus climatic nature of these recent environmental shifts.  680 

 681 

5.2. Implications for climate dynamics in East Africa during the late Holocene and its impact on 682 

highland wetland ecology 683 

The temperature and P/E ratio records at Kyambangunguru show a high variability over the last 4.0 ka 684 

cal. BP. The main two warm periods, before ca. 3.7 ka cal. BP and between ca. 2.2 and 1.0 ka cal. BP, 685 

were generally accompanied by drier conditions (Figs. 8 and 9). A major dry event at 4.2 ka cal. BP is 686 
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a common feature in many tropical and temperate records and was interpreted as a southward migration 687 

of the ITCZ (e.g. Gasse, 2000; Mayewski et al., 2004). A severe drought has also been observed in many 688 

other East African sites around 2.0 ka cal. BP (Marchant et al., 2018) and could have been related to the 689 

dry and warm period centred at ca. 1.5 ka cal. BP at Kyambangunguru. The discrepancy in timing 690 

between the RVP and the other tropical East African records may be related to the unique location of 691 

the RVP at the southern end of the tropical climatic belt ( ≈ 10 °S), i.e. at the transition between two 692 

hydro-climatic regimes (the north-eastern and the southern ones). Two cold and wet periods were 693 

identified, between ca. 3.3 and 2.0 ka cal. BP and since ca. 0.6 ka cal. BP. The latter period is concurrent 694 

with the European Little Ice Age and suggests that this cold event may have occurred globally (e.g. 695 

Brown and Johnson, 2005). The warm and dry period at ca. 1.5 ka cal. BP and the two cold and wet 696 

events all correspond to cold periods identified by Wanner et al. (2011) supporting the idea that the 697 

Holocene climatic variability is at least partly driven by global scale events (e.g. solar and volcanic 698 

activities, changes in the thermohaline circulation). However, it emphasizes that these processes seemed 699 

to have contrasting effects at different latitudes (cooling vs. warming). 700 

A major ecological shift that led to the transition from a shallow lake to a peatland at Kyambangunguru 701 

started at ca. 2.5 ka cal. BP, in a rather wet environment, 300 years before the δ²Hwax exhibit an abrupt 702 

shift towards drier conditions (Fig 9). This time offset suggests that the ecological change recorded at 703 

Kyambangunguru was primarily due to a hydroseral succession, i.e. the natural progressive colonisation 704 

and infilling of a freshwater lake by different types of macrophytes leading to its transition to a swamp 705 

which could eventually turn into a forest (Charman, 2002). A drier peatland was established at ca. 2.2 706 

ka cal. BP and sustained until ca. 1.4 ka cal. BP likely as a result of combined warm and dry conditions, 707 

which significantly lowered the P/E ratio of the wetland (Fig. 8 and 9). This is consistent with the abrupt 708 

change at ca. 2.2 ka cal. BP observed in the biotic communities: planktonic and Nymphaea communities 709 

disappeared, while Cyperus spp. took over in only a century (Fig. 6). This behaviour suggests a threshold 710 

effect, which may reflect an autogenic hydroseral development triggered by gradual warming 711 

conditions. Previous studies have shown the ability of Nymphaea spp. to form mats floating at the 712 

surface of the water (Charman, 2002; Ellery et al., 1990) and pointed it out as a common step in the 713 

hydroseral succession leading to the conversion of a freshwater body to a swamp (Kratz and DeWitt, 714 
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1986; Swan and Gill, 1970). The development of floating mats could be accelerated in the tropics, as 715 

the warm air temperatures hold up high vegetation productivity rates (Talling et al., 1998). The slight 716 

warming recorded at ca. 2.6 ka cal. BP (by the br GDGTs; Fig. 8) could then have acted as a positive 717 

feedback in promoting high rates of vegetation productivity. The consequences of this fast development 718 

of floating mats are (i) large inputs of OM in the sediment, which progressively infilled the lake, (ii) a 719 

vertical expansion of the mats by peat accumulation, and (iii) a horizontal expansion and partial covering 720 

of the surface of the lake. From ca. 3.3 to 2.3 ka cal. BP (Fig. 6), opposite trends are observed in the 721 

distribution of plankton and Nymphaea suggesting that the more Nymphaea mats would cover the lake 722 

surface, the less light would penetrate the water column leading to a decrease in microalgae abundance, 723 

supporting the proposed mechanism of lake infilling.  724 

This terrestrialization process was interrupted at ca. 1.4 ka cal. BP, when pronounced fluctuations in the 725 

water table are revealed by the presence of Enthorriza in the microfossil record (ca. 1.4 – 0.7 ka cal. BP; 726 

Fig. 6). The water balance, recorded by the δ²Hwax, increased over this period, suggesting a relative 727 

increase in precipitation (Fig. 9) in agreement with the spread of Proteaceae and Uapaca in the terrestrial 728 

pollen. This likely re-flooded the marsh and created patches of open water, where phytoplankton, and 729 

then Nymphaea, could re-colonise the marsh (Fig. 6). A similar ecosystem change was encountered at 730 

the same period in a mountainous marsh in Madagascar (Bourdon et al., 2000). This period of water 731 

fluctuations, synchronous with the Medieval Climate Anomaly (MCA; 1.0 – 0.8 ka cal. BP), is the only 732 

period of the investigating 4000 yr record when conditions were warm and wet at Kyambangunguru, 733 

suggesting that its origin may be different from the other recorded climatic changes. The MCA is 734 

described as warm and dry in most north-eastern Africa (Lüning et al., 2017; Nash et al., 2016; 735 

Nicholson et al., 2013) and humid in southern Africa (e.g. Nash et al., 2016; Tyson and Lindesay, 1992; 736 

Woodborne et al., 2015). A recent literature review by Lüning et al. (2018) suggests a transition zone 737 

across Tanzania with increased signs of humidity along a NE-SW transect. Notably, Buckles et al. 738 

(2016) and Finch et al. (2017) recorded wet conditions at Lake Challa until ca. 800 BP and at the 739 

Kwasebuge peat bog until ca. 675 BP, respectively. Hence the Kyambangunguru record presented here 740 

extends this transitional zone to the southeast, in agreement with the hydroclimatic interpretation of a 741 

biogenic silica record by Johnson et al. (2004) at Lake Malawi.  742 
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 743 

6.  Conclusions 744 

The detailed multi-proxy analysis of a 4-m peat core covering the late Holocene (4000 years) reveals 745 

rapid and profound ecological changes of the Kyambangunguru wetland in the Rungwe Volcanic 746 

Province (RVP), southwestern Tanzania. Around 2.2 ka cal. BP, a shallow crater lake turned into a 747 

peatland. Starting at ca. 0.9 ka cal. BP the water level in the marsh increased, creating a shallow lake 748 

during the rainy season and a peaty marsh during the dry season. These significant ecological 749 

fluctuations correlated with major changes of the Late Holocene East African climate. Notably, the air 750 

temperatures remained high and the reconstructed precipitation low between ca. 2.2 and 0.9 ka cal. BP, 751 

which allowed the peatland terrestrialization to sustain. This study represents the first detailed late 752 

Holocene quantitative air temperature reconstruction from the RVP region. We identified a succession 753 

of cold/warm/cold events, largely in phase with the other regional East African climate records and with 754 

the cold periods identified worldwide by Wanner et al. (2011). This further supports that global scale 755 

processes may be the main drivers of the Holocene climatic variability. Moreover, warm conditions 756 

during the MCA followed by abrupt cooling during the LIA were observed at Kyambangunguru and 757 

elsewhere in East Africa suggesting that these two recent events occurred globally. The precipitation 758 

pattern at Kyambangunguru during these two events is opposite to most of the more north-eastern 759 

African records and rather resembles the southern African climatic records. Recent additional 760 

precipitation records in Tanzania also show such a pattern. Tanzania seemed thus to be located at the 761 

transition zone between two hydro-climatic poles (north-eastern and southern Africa) and to have 762 

experienced a variable relative contribution of these two poles over the last millennium. This study 763 

further demonstrates that peatlands and marshes provide valuable, high resolution climatic archives in 764 

the tropics that offer novel avenues of research for understanding linkages between the Holocene climate 765 

variability and ecosystem change in the tropics. 766 

 767 

 768 
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 780 

Figure and Table captions: 781 

Figure 1: Regional setting and climatic conditions of the studied site. A: geographical location of the 782 

Rungwe Volcanic Province (RVP, adapted from Delalande, 2008), the green lines outline the maximal 783 

positions of the intertropical convergence zone (ITCZ) over the year, the blue lines delimitate the 784 

equatorial rain region and the histograms show the monthly mean precipitation values (mm) at the main 785 

East African weather stations; B: topographical map of the RVP and location of the Kyambangunguru 786 

marsh; C: lake level (black dots), precipitation (blue bars) and marsh water δ²H composition (red dots) 787 

variations over one calendar year; D-E: pictures of the Kyambangunguru crater marsh taken in July 788 

2014.   789 

Figure 2: Lithology (A) and Bayesian age-depth model (B). The A values indicate the agreement 790 

between the modelled and the calibrated age and the Amodel the agreement of the model itself. TOM 791 

samples are in black, wood samples in red and tephra ones in grey. Horizontal dotted lines represent the 792 

model boundaries (see text for details) and excluded dates are identified as outliers. 793 
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Figure 3:  Quantitative palynofacies: relative abundance of the main organic aggregates analysed by 794 

photonic microscopy in transmitted light. In green: ligno-cellulosic tissues (LC): (i) fresh LC detected 795 

as translucent LC (tLC) in light green, (ii) slightly degraded/amorphised LC (saLC) in yellow-green and 796 

(iii) totally degraded/amorphous LC, characterised by red aggregates of amorphous OM (rAOM) in dark 797 

green. In orange: mycelium (myc) fragments. In blue: planktonic remains (algOM). 798 

Figure 4: Plant macro-fossil diagram. Results are given in absolute numbers. For the legend of the 799 

lithology column see Fig. 2. Roman numbers indicate the three ecological units as defined in the 800 

discussion part. 801 

Figure 5: Woodland pollen diagram for the Kyambangunguru marsh showing relative percentages of 802 

the selected taxa. The grey pattern shows a 10x magnification. For the legend of the lithology column 803 

see Fig. 2. Roman numbers indicate the three ecological units as defined in the discussion part.  804 

Figure 6: Ferns, aquatic pollen and NPP diagram for the Kyambangunguru marsh showing relative 805 

percentages of the selected taxa. The grey pattern shows a 10x magnification. For the legend of the 806 

lithology column see Fig. 2. Roman numbers indicate the three ecological units as defined in the 807 

discussion part.  808 

Figure 7: Lithology (A; see details in Fig. 2), total organic carbon over total nitrogen atomic ratio (B), 809 

br GDGT-derived pH (C; based on Tierney et al. (2010b) calibration) and n-alkane distribution indices 810 

(D-E; ACL and Paq, respectively). The three units discussed in the text are also represented along with 811 

their ecological interpretation. 812 

Figure 8: (a) Lake Tanganyika TEX86-derived lake surface temperature (LST) of the last 4000 (black 813 

contour red dots) and 1500 (red plain dots) years (Tierney et al., 2010a and 2008 respectively) and (b) 814 

Lake Malawi TEX86-derived LST of the last 4000 (black contour yellow dots) and 700 (yellow plain 815 

dots) years (Powers et al., 2005, 2011) compared to (c) Kyambangunguru br GDGT-derived MAAT 816 

(present study). The three units described in the text are also represented (dashed lines). 817 
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Figure 9: (a) Lake Edward Mg (mol %; Russell and Johnson, 2005) and (b) Kyambangunguru δ²Hwax 818 

records for the last 4000 years (present study). The three units described in the text are also represented 819 

(dashed lines). 820 

Table 1: AMS Radiocarbon chronology of the core KYAM12 (2012). Calibrated median age and range 821 

(2σ) were obtained using OxCal 4.3 software (Bronk Ramsey and Lee, 2013) with the ShCal 13 822 

atmospheric curve (Hogg et al., 2013) and Bomb13SH3 (Hua et al., 2013). 823 
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Highlights 

 4000-year continuous peat record of the Late Holocene in East Africa (SW Tanzania). 

 Multi proxy approach evidences major ecological changes at ca. 2500 yr cal. BP. 

 Detailed temperature and hydrology records highlight several cold events. 

 More recent climate conditions seem connected to South African climate variability. 
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Table 1. 

Depth 

(cm) 

AMS 14C 

measure ref 

Type of 

material 

Carbon 

mass (mg) 

14C activity 

(pMC) 

Measured 
14C age 

(cal. BP) 

Calibrated age range 

[cal. BP; 95.4% (2 σ) 

range] 

Modelled 

age ± σ 

error (cal. 

BP) 

13C (‰)

0.5 SacA40073 TOM 1.82 112.21 ± 0.33 
Post 

1950 

-8–-8 (3.3 %) 

-43–-46 (88.4 %) 

-47–-47 (3.7 %) 

-45±5 -29.5 

8.0 SacA36759 TOM 0.75 96.86 ± 0.43 255 ± 35 

435–408 (1.9 %) 

325–254 (39.4 %) 

225–143 (54.2 %) 

135±50 -24.5 

40.0 SacA44029 TOM 0.75 92.48 ± 0.24 630 ± 30 
646–588 (58.7 %) 

574–535 (36.7 %) 
574±28 -23.8 

51.0 SacA44030 TOM 0.75 89.99 ± 0.27 845 ± 30 763–673  701±15 -22.9 

54.0 SacA40074 TOM 0.55 89.53 ± 0.29 890 ± 30 800–682  730±14 -28.0 

54.0 SacA40075 Wood 0.91 90.27 ± 0.36 825 ± 30 742–666 729±14 -25.2 

57.0 SacA44025 TOM 0.75 89.20 ± 0.23 920 ± 30 

905–861 (14.1 %) 

842–829 (1.3 %) 

820–724 (80 %) 

765±17 -21.4 

64.0 SacA44026 TOM 0.75 88.55 ± 0.24 975 ± 30 921–774 852±30 -20.2 

116.5 SacA36761 TOM 0.50 82.03 ± 0.48 
1590 ± 

45 

1538–1348 (94.6 %) 

1331–1324 (0.8 %) 
1472±47 -25.5 

116.5 SacA40076 Wood 1.37 80.47 ± 0.28 
1745 ± 

30 

1702–1639 (39.3 %) 

1633–1542 (56.1 %) 

Not 

applied 
-28.2 

173.5 SacA36760 TOM 0.75 75.90 ± 0.38 
2215 ± 

40 
2318–2059 2113±37 -20.1 

190.5 SacA36747 TOM 0.75 75.68 ± 0.31 
2240 ± 

35 

2328–2146 (90.1 %) 

2131–2103 (5.3 %) 
2278±34 -25.0 

190.5 SacA40077 Wood 1.30 73.12 ± 0.26 
2515 ± 

30 
2719–2379 

Not 

applied 
-27.5 

222.0 SacA44027 TOM 0.75 73.18 ± 0.22 
2510 ± 

30 
2715–2379 2531±42 -26.8 

267.5 SacA36758 TOM 0.75 70.72 ± 0.37 
2785 ± 

40 
2945–2759 2892±30 -27.9 



267.5 SacA40078 Wood 1.40 69.87 ± 0.25 
2880 ± 

30 
3062–2857 2893±30 -27.9 

319.0 SacA40079 TOM 1.11 67.41 ± 0.25 
3170 ± 

30 

3445–3423 (4.8%) 

3411–3236 (90.6 %) 
3283±34 -28.6 

371.5 SacA36748 TOM 0.75 65.50 ± 0.29 
3395 ± 

35 

3692–3657 (10.4 %) 

3651–3478 (85 %) 
3646±37 -28.2 

402.0 SacA44028 TOM 0.75 65.76 ± 0.21 
3365 ± 

30 
3639–3456 

Not 

applied 
-26.4 

417.5 SacA40080 
TOM 

Tephra 
1.04 62.75 ± 0.24 

3745 ± 

30 

4151–3960 (91.1 %) 

3950–3926 (4.3 %) 
4015±47 -20.0 

420.5 SacA38523 
TOM 

Tephra 
0.30 67.47 ± 0.42 

3160 ± 

50 

3450–3206 (93.8 %) 

3197–3182 (1.6 %) 

Not 

applied 
-23.6 

 

 


