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Article summary line: Rural residence, presence of private water supplies and proximity to 

high densities of farmed animals is associated with increased risk of STEC O157 infection in 

England. 
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Summary 

Infection with STEC O157 is relatively rare but has potentially serious sequelae, particularly 

for children. Large outbreaks have prompted considerable efforts designed to reduce 

transmission primarily from food and direct animal contact. Despite these interventions, 

numbers of infections have remained constant for many years and the mechanisms leading to 

many sporadic infections remain unclear.  

 

Here we show that two thirds of all cases reported in England between 2009 and 2015 were 

sporadic. Crude rates of infection differed geographically and were highest in rural areas 

during the summer months. Living in rural areas with high densities of cattle, sheep or pigs 

and those served by private water supplies were associated with increased risk. Living in an 

area of lower deprivation contributed to increased risk but this appeared to be associated with 

reported travel abroad. Fresh water coverage and residential proximity to the coast were not 

risk factors. 

 

To reduce the overall burden of infection in England, interventions designed to reduce the 

number of sporadic infections with STEC should focus on the residents of rural areas with 

high densities of livestock and the effective management of non-municipal water supplies. 

The role of sheep as a reservoir and potential source of infection in humans should not be 

overlooked. 

 

Introduction 

Shiga toxin-producing Escherichia coli (STEC) are a group of bacteria associated with human 

disease and are defined by the presence of one or both phage encoded Shiga toxin genes; stx1 

and stx2. Compared to other bacterial pathogens, it is a relatively rare infection in many parts 
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of the world but is of public health concern due its low infectious dose (<100 bacteria)[1]and 

potential to cause severe disease (3). 

Worldwide, it is estimated that there are around 2.8 million cases annually, leading to 3,890 cases 

of haemolytic uraemic syndrome (HUS) and 230 deaths [2]. The Europe wide rate of infection is 

estimated to be 1.4 cases per 100,000 population but reported rates vary between countries 

(Range: <0.1 to 12.4 cases per 100,000 population) [3]. The O157 STEC serogroup is most 

commonly associated with human disease in the UK however, other serogroups are seen 

more frequently in other European countries[3]. Rates of infection in England have remained 

fairly constant for many years (around  [4]. Europe has shown a similar pattern with an 

increase since 2011 attributed to wider use of molecular methods following a large outbreak 

linked to sprouted fenugreek seeds [5]. Rates of infection are highest in children and most 

cases occur in the late summer, at least in temperate areas, and this pattern is seen universally 

[6].  

Healthy cattle are the main reservoir of STEC although they are also carried by sheep and 

other animals [7]. Animals shed a range of phage types (PTs) with the most prevalent in UK 

cattle being PT21/28, 8 and 34, PT 4 in sheep and PT2 in pigs [8, 9]. STEC O157 survives 

well in the environment, remaining viable for many months in temperate conditions [10, 11].  

Transmission to humans occurs through multiple routes. Cases present themselves 

sporadically (occurring independently of other cases) or as part of small outbreaks due to 

person-to-person spread in closed settings, particularly childcare facilities. The low infectious 

dose of STEC means that once in the population, person-to-person spread is common [1]. 

Larger outbreaks tend to be associated with foodborne transmission, with an increasing trend 

towards salad vegetables and away from meat and dairy products [4]. Direct contact with the 

farming environment or ruminants, such as in open farms or petting zoos [1], are important 

risk factors for STEC infection [12]. Indirect contact with animals or environments 
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contaminated with their faeces is also of importance but the actual process leading to 

infection is less well understood. Heavy rainfall and flooding events can lead to 

contamination of fresh and marine water systems [13], beaches [14-18] and food crops. 

Poorly managed private water supplies present a particular risk in areas of high animal 

density [19, 20].  

Phylogenetic analysis of strains circulating in humans and UK cattle during 2014 described 

three distinct lineages (I, II and I/II) descended from a common ancestor. Lineage I contains 

PT 21/28 and PT32; strains encoding stx2 only and associated with more severe disease. 

Lineage II contains PT8 and Lineage I/II PT2. Isolates from humans and UK cattle are 

closely related suggesting that PT8 and, in particular, PT21/28, have a domestic source and 

are domestically acquired [21]. With the advent of routine whole genome sequencing (WGS), 

it is now possible to identify links between cases that previously appeared sporadic in nature. 

These cases may exhibit spatial clustering, sometimes over long periods of time, suggesting 

that geographically restricted transmission of highly related strains can occur [22]. 

Ecological studies in the UK, Europe and further afield demonstrate a spatial association 

between rates of infection, cattle density and other factors and all describe a seasonally driven 

picture with rates highest in the summer [23-29]. There are limitations to these studies.  

Sheep were only considered in one study [29], despite being a known reservoir. The study 

populations were restricted to children [25] or focussed upon severe disease [25]. Some 

studies may also have included cases linked to outbreaks which is not ideal as the source of 

their infection may have differed from sporadic cases [28]. Cases reporting foreign travel 

were included in some studies [25, 26, 28], but not others [23-25]. Finally, all of these studies 

were performed at serogroup level only, even though different subgroups may have different 

sources and hence potentially different risk factors. 
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In this study we overcome these limitations using enhanced surveillance of STEC which has 

been performed in England since 2009. These data arguably represent the most 

comprehensive dataset for STEC infections in the world. This allows accurate identification 

of cases who have been part of an outbreak (and so are not representative of all cases) and 

those who report travel abroad or within the UK 

This study had three aims. The first was to describe the spatial and temporal distribution of 

sporadic STEC O157 cases in England, the second was to test the relationship between the 

numbers of infections and hypothesised risk factors, the third was to test whether these risks 

differed by STEC subtype. Finally we explored how these risks varied between all sporadic 

cases and sporadic cases when those reporting national or foreign travel are excluded.  

Methods 

Isolates of E. coli O157 identified locally are sent for confirmation and typing at the 

Gastrointestinal Bacterial Reference Unit (GBRU). Detection and confirmation of STEC 

includes biochemical identification and serotyping of bacterial isolates. Since 1989, strains 

belonging to E. coli O157 have been further differentiated by using a phage typing scheme 

developed in Canada [4]. 

The National Enhanced Surveillance System for STEC (NESSS) was introduced in England 

in 2009. The system collects clinical and epidemiological information for each laboratory 

confirmed case using a standardised questionnaire. This information is linked to reference 

microbiology information including PT, presence of virulence factors and whole genome 

sequence data. 

 

The case definition for the purpose of this study was a sporadic case of STEC O157, 

confirmed by GBRU and reported to the national enhanced surveillance system for STEC 
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(NESSS) between January 1st 2009 and December the 31st 2015. An overview of the data 

selection process is shown in Figure 1.   

 

The main aim of our analysis was to estimate the effect of hypothesised risk factors on the 

occurrence of sporadic cases (i.e. those occurring independently of each other). We therefore 

excluded cases linked to known outbreaks because their residential location rarely reflects 

exposure to the source of their infection, particularly for large outbreaks linked to widely 

distributed foodstuffs. Cases linked to household outbreaks were also excluded. Household 

outbreaks were identified as those where at least two cases had isolates of the same serotype 

and phage type that were collected within six months of each other, processed by a laboratory 

in the same Health Protection Team area and sharing the same surname and/or UK postcode.   

The postcode (an alphanumeric reference developed by the UK Post Office to facilitate the 

delivery of mail and each containing around 15 addresses) for each case was geocoded to 

provide a spatial reference, allow visual display of the location of cases and enable the details 

of each case to be spatially joined to other datasets at the Lower Super Output Area (LSOA) 

level defined by the Office for National Statistics [30]. LSOAs were chosen because they 

provide the most homogenous unit in terms of geographical size (Mean 3.9 Km2, Range 0.02-

684 Km2) and population size (Mean 1,613 persons, Range 985-8,300 persons). 

 

Crude incidence rates were calculated using the total population denominator data for each 

LSOA drawn from the last ONS Census performed in 2011.  

For each LSOA, a dependent variable, indicating the number of cases that occurred during 

the study period was created. Because STEC is an uncommon infection, the majority (90.1%) 

of LSOAs had no cases, 9.3% had one case and less than 0.6% had more than one case.  
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Dependent variables were created for all PTs, PT21/28 and PT8, further divided into three 

classes (all reported cases, those not reporting foreign travel and those reporting no travel 

either within the UK or abroad) giving a total of nine dependent variables. 

The following explanatory variables were constructed for each LSOA: 

Livestock density variables for cattle, sheep and pigs were calculated using the agricultural 

census of 2010 [31]. This census is performed every ten years by the Department for the 

Environment, Food and Rural Affairs and collects detailed information on land usage and 

livestock populations. Farm level data are aggregated to a 5x5 km grid and individual farms 

are not identified.  

Estimates of deprivation were obtained from the Office of National Statistics (ONS). The 

index of Multiple Deprivation (IMD) was obtained for England for 2011 [32] which provides 

a set of relative measures of deprivation for LSOAs. This is based on seven domains of 

deprivation (income, employment, education, health, crime, housing and living environment). 

These domains are combined and ranked to produce the overall IMD score for each LSOA. 

For our analysis these data were divided into quintiles where quintile 1 is most deprived.  

The degree of rurality for each LSOA was derived from the ONS rural urban classification 

used to distinguish rural and urban areas in England and Wales in 2011[33]. The 

classification defines areas as rural if they are outside settlements with more than 10,000 

resident population. For LSOAs, there are four urban classes (major conurbations, minor 

conurbations, cities and towns, cities and towns in sparse settings) and four rural classes 

(town and fringe, town and fringe in a sparse setting, village and dispersed settlements, 

village and dispersed settlements in sparse settings). Due to the small numbers of cases 

resident in areas considered sparse, we grouped these eight classes into five by merging the 

three sparse categories with the corresponding non-sparse categories.  
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Outbreaks have been linked to beaches [14, 18], hence the straight-line distance from the 

centroid of each LSOA to the GB coastline was calculated in kilometres. 

Inland water coverage was identified as a risk factor in a Finnish study [27]. The shapes and 

areas of inland water features were extracted from the Ordnance Survey Master Map 

Topography Layer [34], summed and divided by the area of each LSOA to provide a 

proportional measure of fresh water coverage. 

For each LSOA, the count of private water supplies was calculated using data submitted by 

local authorities to the Drinking Water Inspectorate during 2016. Local authorities are 

responsible for the enforcement and monitoring of the Private Water Supplies (PWS) 

Regulations 2005 which require PWS to meet certain standards and for the location of each 

supply to be recorded. Three classes were created (0, 1-20 and >20 supplies). 

Because the datasets used for inland water coverage and animal density differed from LSOAs 

in terms of geographical area or shape, we used a geographical information system (GIS) 

overlay function to create proportional measure in Km2 for each LSOA.  

We used Jenks’ natural breaks method to create four categorical variables for each animal 

species, distance from the coast and inland water coverage. This method is designed to 

determine the best arrangement of values into different classes by seeking to minimise the 

variance within classes and maximise the variance between classes [35]. 

Statistical analysis 

We considered three methods of regression analysis: Poisson, negative binomial and zero 

inflated Poisson. The results of a likelihood ratio test of alpha and goodness of fit test 

following Poisson regression indicated that the data were overdispersed. The same analysis 

was repeated using negative binomial and zero inflated negative binomial regression 
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respectively. The Vuong test was not significant indicating that the standard negative 

binomial approach was best suited to the data. Proceeding with the negative binomial 

regression approach we conducted a multivariable analysis for each dependent and the 

independent variables. The first set of dependent variables were all sporadic cases, all 

sporadic cases minus those reporting foreign travel and all sporadic cases with no foreign or 

domestic travel. Two further models were then produced focussing upon PT21/28 and PT8 

only. Person years (the total population of each LSOA multiplied by the years of observation) 

was included as an exposure variable. None of the multivariable analyses showed any 

associations with the distance from the coast and inland water coverage variable, hence these 

were removed from the analysis. The remaining independent variables were all included in 

the nine models to allow greater comparability between models. The dependent and 

independent variables were checked for correlation using Spearman’s rank test. All 

coefficients showed low to moderate correlation with the exception of cattle and sheep 

density with a coefficient of 0.7. An analysis for collinearity indicated that the addition of 

each independent variable in turn did not lead to significant changes in the coefficients or 

significance of any other variables in the model. Presenting each livestock density variable to 

the model as continuous variables did not affect the results.  

Results are presented in terms of Incidence Rate Ratio (IRR) estimates and the 95% 

Confidence Interval (CI). The overall significance for a variable was estimated using the 

Wald test. All statistical analyses were performed using Stata version 13 [36].  

Results 

Rates of infection 

A total of 3,559 (34%) cases were eligible for inclusion in the statistical analysis (Figure 1). 
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The crude incidence of all sporadic confirmed STEC O157 cases (including those reporting 

foreign travel) reported during the study period was 9.1 per million person years. The rural 

rate (13.3 per million person years) was 1.6 times higher than that of the urban rate (8.1 per 

million person years).  Rates varied across the country with the highest in the North of the 

country, the North West, Midlands and the South West Peninsula (Figure 2a ) and this was 

seen each year during the study (Figure 3). 

The crude incidence rate of PT21/28 was 2.5 per million person years and for PT8 it was 3.3 

per million person years. There was a distinct seasonality both in rural and urban areas with 

rates comparable during the winter but higher in rural areas during the summer (Figure 3.). 

The rate of infection declined from 2012, particularly for PT21/28 infections in rural areas 

(Figure 3).  

The spatial distribution of animals varied across the country (Figure 2 g-i). The mean cattle 

density ranged from 0-199 animals/Km2 with the highest densities observed in the South 

West Peninsula, areas of the North West (Cheshire) and Midlands (Staffordshire) and in the 

North. Sheep density ranged from 0-572 animals/Km2 with the highest densities observed 

along the Welsh Borders, Oxfordshire, the South West Peninsula and in the North. Pig 

density ranged from 0-499 animals/Km2 with the highest densities observed in East Anglia 

and the North East. 

Multivariable analysis 

The results of the multivariable analysis for all sporadic cases are presented in Table 1. 

These indicate that living in a rural village, in an area with high densities of farmed animals 

(cattle, sheep or pigs), the presence of PWS and those areas considered least deprived were 

positively associated with risk for all sporadic cases. Removing cases reporting foreign travel 

removed the effect seen in the IMD variable.  
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The dataset was then split into PT21/28 and PT8. The results for PT21/28 are presented in 

Table 2 and indicate that living in an area with high densities of farmed animals  and being 

served by PWS were positively associated with risk. Living in a rural village was a risk factor 

only for cases who reported no travel. Areas regarded as the most deprived were associated 

with increased risk of PT 21/28 infection. 

The results of the multivariable analysis for PT8 are presented in Table 3 and indicate that 

living in a rural village and areas with high densities of cattle and/or pigs and areas 

considered least deprived (Quintiles 4&5) were positively associated with risk. Removing 

cases reporting foreign travel from the dependent variable increased the risk effect for cattle 

and pig density but removed the effect of deprivation. PWS and sheep density were not 

significant predictors of infection for PT8.  

Discussion 

Risk was positively associated with cattle density across all models. The risk of a case 

occurring in areas with 87 animals/Km2 or more was more than twice that of area with fewer 

than 18 animals/Km2. This finding was somewhat expected as cattle are regarded as the main 

reservoir of STEC O157 [7] and the most common subtypes shed in cattle faeces are PT21/28 

followed by PT8 [9]. 

Sheep density was positively associated with risk for all STEC O157 cases and PT21/28 

cases but not for PT8. The greatest effect of sheep density was seen in the PT21/28 model 

where the risk was increased almost threefold in areas with high densities of sheep. There is 

increasing evidence that sheep and other small ruminants are an important reservoir of STEC 

and that sheep density is associated with non O157 STEC infections [29]. The association 

with PT21/28 is interesting because the carriage of PT21/28 in sheep is low (14%) compared 

to cattle (37%) [37] yet they appear strongly significant in our model. This exposure to sheep 
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and lambs has been linked to at least two PT21/28 outbreaks at petting farms/lambing events 

in England and an extended outbreak of closely related strains was linked to an ovine source. 

[38, 39]. A recent study in the Republic of Ireland demonstrated a geographical association 

between sheep density and STEC O26 but not STEC O157 [29]. Disentangling the relative 

contribution of ruminant species to the overall burden of infection is difficult due to scant 

contemporary information on shedding by sheep compared to cattle, a lack of genetic 

difference between cattle and sheep strains [40] and the fact that sheep and cattle are farmed 

in the same geographical areas in the UK. However, our results suggest that the role of sheep 

as a reservoir and potential source of infection in humans should not be overlooked. 

Pig density was positively associated with risk across all models. However, for the PT8 and 

PT21/28 models, the observed effect was not linear.  Pigs can shed STEC [41], and pork 

products have been implicated as the source or vehicle of infection in outbreaks worldwide, 

but they are not generally considered to be an important reservoir for STEC O157 [42] or 

source for human infection [43]. Studies of intestinal carriage in England showed a low 

carriage rate in pigs and that the characteristics of pig strains differed from those seen in 

humans during the same time period [9, 37, 44]. Pig density was not identified as a risk factor 

for STEC infection in the Netherlands [24]. In spite of this, associations with pig density 

appear in this study. This dichotomy may be partly explained by the few areas of the country 

with high pig densities or may be due to differences in pig husbandry practices between 

countries.  

We found an increased risk associated with the presence of PWS for all STEC O157 cases, 

PT21/28 cases but not PT8.  Private water supplies that do not meet the requirements of the 

EC directive present a high risk of infection with STEC [20], however, the reason for the 

difference between PTs is unclear and may relate to factors not considered by this study.   
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Living in a rural village was a risk factor for all STEC O157 cases and for PT8. For the 

PT21/28 model, living outside a major urban conurbation was a significant risk factor but 

only for cases reporting no travel. Residents of rural areas are more likely to come into 

contact with contaminated environments either through work or leisure [28] and residential 

proximity to the ruminant reservoir also increases the possibility of exposure from wildlife 

and insect vectors [45, 46]. 

Living in less deprived areas was strongly associated with all STEC O157 cases and PT8. 

What is intriguing was that when foreign travel cases were removed, this effect was removed 

for all STEC O157 cases and PT8. This indicates that the deprivation effect is strongly driven 

by foreign travel and that risk factors for these groups differ from indigenously acquired 

infection. The strong association with foreign travel in the PT8 model was anticipated as a 

greater proportion of cases of PT8 report travel abroad compared to other PTs [1]. Lower 

deprivation was protective for cases of PT21/28. reporting no travel but the reasons for this 

are unclear. One explanation could be related to deprivation and/or likelihood of exposure to 

PT21/28 compared to other strains. PT21/28 is a strain indigenous to the UK and rates of 

infection are highest in the north of England where there are also more areas considered to be 

the most deprived. However, crude rates of infection with STEC are lower in the most 

deprived areas, cases are less likely to travel abroad or within the UK [47] and levels of social 

interaction differ from residents of less deprived areas [48]. Socioeconomic status has been 

shown to be associated with risk for other gastrointestinal infections [49-51]  introducing the 

possibility that whilst risk factors may differ broadly across the country, within regions, 

socio-economic status has a greater  influence on risk factors and transmission dynamics. 

This is an area that would benefit from further research. 

 In developed countries, disadvantaged children, but not adults, appear to be at greater risk of 

gastrointestinal infection and that living in deprived areas  is protective for infectious 
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intestinal disease (IID) overall but is associated with more severe symptoms in those who do 

become infected [52] . Our findings indicate that once the effect of foreign travel is removed, 

deprivation has little effect on sporadic infection with STEC O157. This suggests that 

infection is a result of a localised and stochastic process driven by exposure to the local 

environment and that  exposures related to affluence, such as diet, occupation or leisure 

pursuits are likely to be less important.  

Residential distance from the coast and living in an area with a high proportion of fresh water 

coverage were not significant and removed at an early stage of the modelling process. These 

environments may act as reservoirs for STEC [53] and recreational exposure to fresh water 

has been suggested as a risk factor for STEC infection in epidemiological studies from other 

countries. The lack of an association in the UK may relate to the general unpopularity of 

freshwater swimming in the UK in comparison to other countries [54-57]. These variables 

were proxies for exposure and so do not capture details of individual interactions with these 

environments.   

There are several potential limitations to our study. First, molecular typing methods, used 

routinely in England since 2015, are superior to the phenotypic methods we used to 

discriminate between cases and have been shown to reduce the number of cases considered to 

be sporadic [58]. It’s therefore possible that a small number of cases included in our study 

were microbiologically linked and therefore may not be considered truly sporadic. . 

Secondly, we excluded cases linked to household outbreaks. We made this decision based on 

the difficulty in identifying the primary case amongst co-primary and asymptomatic 

(microbiologically confirmed) cases generated by microbiological screening of household 

contacts. In addition, we noted epidemiological links between foodborne outbreaks and 

secondary transmission within households which may have introduced a bias away from the 

exposures of interest. Thirdly, for every STEC O157 infection reported to national 
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surveillance systems in England, there are an estimated 7.4 in the community [59]. The 

reasons for this are likely to be related to severity of disease, health seeking behaviours and 

whether or not a clinician takes a sample and requests a microbiological examination from a 

laboratory. Notwithstanding that the ratio of STEC O157 reports is considerably smaller than 

other pathogens, the cases reported to national surveillance represent a biased sample of the 

true community burden of STEC O157 in England. Transmission routes are varied and 

infection is a result of complex interactions between people and their local environment. Our 

approach meant that individually reported exposures could not be considered in our analysis. Finally, 

this is an ecological study and association does not equal causation which could only be inferred from 

other study designs involving an intervention. We are confident that the association with animal 

density is most likely due to environmental exposure, however, other factors not included in our study 

(for example, locally sourced food) cannot be ruled out as a potential route of infection.  

In conclusion, using arguably one of most comprehensive enhanced surveillance of STEC 

datasets in the world, we found that two thirds of infections were sporadic and that the spatial 

and temporal distribution of these cases showed distinct variation within England. We 

provide evidence that living in a rural area with high densities of farmed animals and served 

by private water supplies partly explain this variation.  Our results indicate that travel abroad 

may expose individuals to risks not present in their local residential environment and that this 

risk is influenced by socio-economic status. Further analysis is required to elucidate the 

relative importance of exposures reported by individual cases including travel, contact with 

animals and the agricultural environment and consumption of food and water.  

To reduce the overall burden of infection in England, interventions designed to reduce the 

number of sporadic infections with STEC O157 should focus on the residents of rural areas 

with high densities of livestock and the effective management of non-municipal water 

supplies.  
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Figure 1. Flow chart for case selection. 
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Figure 2. a. Cumulative incidence rate (Sporadic cases/million person years) and spatial 

distribution of the eight independent variables used in the analysis b.) Residence (1: 

Urban-Major conurbation, 2: Urban-Minor conurbation, 3: Urban-City and town, 4: 

Rural-Town and fringe, 5:Rural-Village. c.) IMD (deciles). d.) Distance from LSOA 

centroid to GB coast in Km. e.) Proportion of inland fresh water coverage of each 

LSOA (Km2). f.) Numbers of private water supplies in each LSOA. g.) Cattle density 

Animals/Km2).  h.) Sheep density (Animals/Km2). i.) Pig density (Animals/Km2).  
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Figure 3. Annual incidence rate of STEC O157 per million population including cases reporting travel 

outside the UK in England between 2009-2015. (Unit of analysis is a local authority area) 
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Figure 4.  Monthly rate of sporadic STEC O157 infection per million population in urban 

and rural settings in England between 2009 and 2015 (Travel included). 

PT 8 

PT 21/28 

All PTs 
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Table 1. Results of multivariable analysis. All  STEC O157 PTs 

Variable Detail 
All  (n=3,559) Excluding foreign travel (n=2,511) Excluding all travel (n=1,940) 

IRR 95% CI P IRR 95% CI P IRR 95% CI P 

Cattle density 

(Animals/Km2) 

0-17  1 -  <0.001   <0.001   <0.001 

18-44 1.25 1.14 - 1.37  1.34 1.19 - 1.50  1.28 1.12 - 1.45  

45-86 1.33 1.16 - 1.51  1.52 1.30 - 1.77  1.49 1.25 - 1.78  

87-199 1.84 1.58 - 2.14  2.24 1.88 - 2.67  2.24 1.83 - 2.74  

Sheep density  

(Animals/Km2) 

0-36 1 - <0.001   <0.001   <0.001 

37-104 1.09 0.98 - 1.20  1.08 0.96 - 1.21  1.13 0.98 - 1.29  

105-216 1.20 1.05 - 1.38  1.25 1.07 - 1.46  1.26 1.05 - 1.51  

217-572 1.56 1.30 - 1.88  1.63 1.32 - 2.01  1.71 1.34 - 2.17  

Pig density 

(Animals/Km2) 

0-19 1 - 0.005   <0.001   0.015 

20-63 1.03 0.93 - 1.14  1.10 0.98 - 1.23  1.08 0.94 - 1.23  

64-169 1.29 1.11 - 1.51  1.43 1.20 - 1.71  1.40 1.15 - 1.71  

170-499 1.35 0.94 - 1.93  1.59 1.07 - 2.35  1.46 0.91 - 2.32  

Number of private water 

supplies 

0 1 - 0.003   0.002   0.019 

1-20 1.19 1.06 - 1.34  1.22 1.07 - 1.41  1.18 1.01 - 1.39  

>20 1.35 1.09 - 1.68  1.48 1.16 - 1.88  1.44 1.09 - 1.89  

Residence 

Urban: Major conurbation 1 - <0.001   <0.001   <0.001 

Urban: Minor conurbation 1.23 1.02 - 1.49  1.18 0.93 - 1.49  1.33 1.04 - 1.71  

Urban: City and town 1.06 0.97 - 1.16  1.04 0.94 - 1.17  1.01 0.89 - 1.14  

Rural: Town and Fringe 1.12 0.98 - 1.28  1.16 0.99 - 1.37  1.17 0.98 - 1.41  

Rural: Village 1.43 1.23 - 1.66  1.54 1.29 - 1.84  1.61 1.31 - 1.97  

IMD 

1 (Most deprived) 1 - <0.001   0.965   0.082 

2 1.04 0.92 - 1.17  1.01 0.88 - 1.15  0.90 0.77 - 1.04  

3 1.12 1.00 - 1.26  1.03 0.90 - 1.18  0.88 0.75 - 1.02  

4 1.13 1.01 - 1.27  0.99 0.86 - 1.13  0.80 0.69 - 0.94  

5(Least deprived) 1.27 1.14 - 1.43  1.02 0.89 - 1.17  0.85 0.73 - 1.00  
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. Table 2. Results of multivariable analysis – STEC O157 PT21/28. 

 

Variable Detail 
All  (n=839) Excluding foreign travel (n=815) Excluding all travel (n=620) 

IRR 95% CI P IRR 95% CI P IRR 95% CI P 

Cattle density 

(Animals/Km2) 

0-17  1 - <0.001 1 - <0.001 1 - 0.002 

18-44 1.42 1.17 - 1.73  1.43 1.17 - 1.74  1.34 1.07 - 1.69  

45-86 1.36 1.04 - 1.77  1.35 1.03 - 1.77  1.25 0.91 - 1.71  

87-199 1.98 1.46 - 2.68  2.01 1.48 - 2.73  1.93 1.36 - 2.76  

Sheep density  

(Animals/Km2) 

0-36 1 - <0.001 1 - <0.001 1 - <0.001 

37-104 1.19 0.97 - 1.46  1.21 0.98 - 1.50  1.27 1.00 - 1.62  

105-216 1.83 1.42 - 2.38  1.85 1.43 - 2.41  2.04 1.50 - 2.77  

217-572 2.48 1.77 - 3.46  2.49 1.78 - 3.50  2.75 1.85 - 4.09  

Pig density 

(Animals/Km2) 

0-19 1 - 0.029 1 - 0.021 1 - 0.034 

20-63 1.10 0.90 - 1.34  1.12 0.92 - 1.37  1.02 0.80 - 1.30  

64-169 1.38 1.01 - 1.88  1.39 1.02 - 1.90  1.60 1.13 - 2.25  

170-499 2.02 1.11 - 3.69  2.09 1.15 - 3.83  1.71 0.79 - 3.73  

Number of private water 

supplies 

0 1 - 0.002 1 - 0.002 1 - 0.056 

1-20 1.35 1.07 - 1.70  1.34 1.06 - 1.69  1.10 0.83 - 1.46  

>20 1.94 1.33 - 2.82  1.94 1.32 - 2.84  1.70 1.09 - 2.64  

Residence 

Urban: Major conurbation 1 - 0.212 1 - 0.193 1 - 0.018 

Urban: Minor conurbation 1.23 0.83 - 1.83  1.23 0.82 - 1.84  1.34 0.87 - 2.05  

Urban: City and town 1.00 0.83 - 1.21  1.00 0.83 - 1.22  0.92 0.74 - 1.15  

Rural: Town and Fringe 1.09 0.83 - 1.44  1.11 0.84 - 1.47  1.09 0.79 - 1.51  

Rural: Village 1.35 0.99 - 1.83  1.37 1.01 - 1.87  1.52 1.07 - 2.18  

IMD 

1 (Most deprived) 1 - 0.256 1 - 0.167 1 - 0.002 

2 0.91 0.73 - 1.14  0.89 0.70 - 1.11  0.75 0.58 - 0.96  

3 0.79 0.62 - 0.99  0.76 0.60 - 0.97  0.65 0.50 - 0.84  

4 0.80 0.63 - 1.01  0.77 0.61 - 0.98  0.60 0.46 - 0.78  

5(Least deprived) 0.85 0.68 - 1.08  0.83 0.66 - 1.06  0.67 0.51 - 0.87  
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Table 3. Results of multivariable analysis – STEC O157 PT8. 

 

Variable Detail 
All  (n=1,123) Excluding foreign travel (n=697) Excluding all travel (n=536) 

IRR 95% CI P IRR 95% CI P IRR 95% CI P 

Cattle density 

(Animals/Km2) 

0-17  1 - <0.001 1 - <0.001 1 - <0.001 

18-44 1.35 1.15 - 1.59  1.44 1.17 - 1.77  1.39 1.10 - 1.77  

45-86 1.55 1.24 - 1.94  1.85 1.40 - 2.45  1.95 1.42 - 2.68  

87-199 1.90 1.45 - 2.49  2.30 1.66 - 3.19  2.24 1.54 - 3.27  

Sheep density  

(Animals/Km2) 

0-36 1 - 0.790 1 - 0.420 1 - 0.076 

37-104 1.06 0.89 - 1.26  1.05 0.85 - 1.30  1.11 0.87 - 1.42  

105-216 1.01 0.79 - 1.29  0.83 0.61 - 1.13  0.73 0.51 - 1.06  

217-572 1.16 0.82 - 1.64  1.05 0.70 - 1.60  1.19 0.76 - 1.88  

Pig density 

(Animals/Km2) 

0-19 1 - 0.021 1 - 0.013 1 - 0.038 

20-63 1.12 0.95 - 1.33  1.20 0.98 - 1.48  1.25 0.99 - 1.58  

64-169 1.46 1.13 - 1.88  1.58 1.16 - 2.14  1.54 1.09 - 2.19  

170-499 1.42 0.77 - 2.62  1.54 0.75 - 3.16  1.54 0.67 - 3.53  

Number of private water 

supplies 

0 1 - 0.932 1 - 0.467 1 - 0.372 

1-20 1.00 0.81 - 1.24  1.06 0.82 - 1.37  1.07 0.79 - 1.44  

>20 1.08 0.72 - 1.61  1.32 0.85 - 2.07  1.42 0.87 - 2.34  

Residence 

Urban: Major conurbation 1 - 0.011 1 - 0.001 1 - 0.003 

Urban: Minor conurbation 1.20 0.85 - 1.68  1.17 0.75 - 1.82  1.51 0.96 - 2.37  

Urban: City and town 1.06 0.90 - 1.24  1.10 0.89 - 1.36  1.07 0.84 - 1.36  

Rural: Town and Fringe 1.16 0.92 - 1.47  1.20 0.89 - 1.63  1.28 0.91 - 1.80  

Rural: Village 1.58 1.21 - 2.05  1.92 1.39 - 2.65  1.94 1.34 - 2.81  

IMD 

1 (Most deprived) 1 - 0.001 1 - 0.246 1 - 0.764 

2 1.17 0.94 - 1.45  1.09 0.83 - 1.43  1.04 0.77 - 1.41  

3 1.32 1.07 - 1.64  1.31 1.01 - 1.71  1.19 0.89 - 1.60  

4 1.38 1.12 - 1.70  1.23 0.94 - 1.61  1.07 0.79 - 1.44  

5(Least deprived) 1.52 1.24 - 1.88  1.26 0.96 - 1.64  1.05 0.77 - 1.42  
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