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Abstract 

We draw from an eight-year dataset of 98 organisational entities involved in pre-competitive 

innovation networks across the UK pharmaceutical sector. These data map into three networks that 

are representative of: (i) a product development-led sequential pathway that begins with digitalised 

product development, followed by digitalisation of supply networks, (ii) a supply network-led 

sequential pathway that starts with digitalised supply networks, followed by digitalisation of product 

development, and (iii) a parallel — platform-driven — pathway that enables simultaneous digitalisation 

of development, production, and supply networks. We draw upon extant literature to assess these 

network structures along three dimensions — strategic intent, the integrative roles of nodes with high 

centrality, and innovation performance. We conduct within-case and cross-case analyses to postulate 

10 research propositions that compare and contrast modalities for sequential and platform-based 

digitalisation involving collaborative innovation networks. With sequential development, our 

propositions are congruent with conventional pathways for mitigating innovation risks through modular 

moves. On the other hand, we posit that platform-based design rules, rather than modular moves, 

mitigate the risks for parallel development pathways, and lead to novel development and delivery 

mechanisms.        

Keywords: Central nodes; Design rules; Digitalisation; Platforms; Pre-competitive consortia; Network 

effects 
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1. Introduction  

A key theme of the Industry 4.0 phenomenon is the claim that digitalisation makes the supply chain 

more efficient, agile and customer-focused (Xu et al., 2018). Think tanks such as the World Economic 

Forum and consulting firms including PWC and McKinsey have defined digitalisation descriptively as 

an all-encompassing term (Pearce, 2018; Schrauf and Berttram, 2016; Leclerc and Smith, 2018). For 

instance, it has been used to describe not only data analytics but also as a mechanism for altering the 

structure of supply chain configurations. According to Schrauf and Berttram (2016): 

 

“The supply chain today is a series of largely discrete, siloed steps taken through marketing, 

product development, manufacturing, and distribution, and finally into the hands of the 

customer. Digitization …[Digitalisation]… brings down those walls, and the chain becomes a 

completely integrated ecosystem that is fully transparent to all the players involved — from 

the suppliers of raw materials, components, and parts, to the transporters of those supplies 

and finished goods, and finally to the customers demanding fulfilment. This network will 

depend on a number of key technologies: integrated planning and execution systems, 

logistics visibility, autonomous logistics, smart procurement and warehousing, spare parts 

management and advanced analytics.” (p. 1) 

 

Such descriptions raise questions about the theoretical foundations of evolving digitalisation 

phenomena based on network-centric developments. Are conventional theories of supply chain 

innovation sufficient to address network-wide and platform-centric digitalisation? For instance, 

digitalisation has enabled path dependent (i.e., sequential, and typically cumulative) innovations 

(Murray and O' Mahony, 2007). In some service-based sectors, digital platform-driven innovations 

(Parker and Van Alstyne, 2005; Parker et al., 2016) have been the dominant transformation 

challenge. In this research, we examine manufacturing and supply network-related digital 

transformations that feature complex product and production technology challenges, coupled with the 

complexities of a multi-tier supply network. Pre-competitive innovation in the pharmaceutical sector, 

the focus of our research, provides a relevant industrial context where the multi-actor network context 

is deployed to address the combined challenges of regulated product development and security of 

supply across multiple entities, both requiring robust governance mechanisms. In this context, should 
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the risk associated with design of digital supply chain configurations centred on sequential innovations 

be managed in the same manner as the risks for platform-driven innovations?    

We observed a variety of pharmaceutical digitalisation initiatives using the industry study 

approach (Joglekar et al., 2016). Based on our eight-year study of network-based, pre-competitive, 

pharmaceutical consortia in the UK, we report on innovations that ranged from informatics and digital 

factory designs focused on small molecule chemistry and the production of traditional solid oral dose 

forms (i.e., pills) to the more recent development of bioanalytical ‘lab-on-a-chip’ devices and protein-

based biologics (i.e., large molecules). This industry faces many business challenges that have driven 

the requirements for digitalisation and subsequent industry-wide efforts that affect all types of entities 

such as focal firms and their suppliers (e.g., Shah, 2004; Pedroso and Nakano, 2009; Munos, 2009). 

The nature of problem solving, including the need for regulatory oversight, render networked 

collaboration an essential element of innovation in the pharmaceutical industry (Powell et al., 1996; 

Hora and Dutta, 2013). Thus, our choice of this industry offers an ideal window to observe network-

based digital innovations. The innovation networks in our study draw on pre-competitive 

collaborations involving 98 individual entities that range from the largest multinational corporations 

(MNCs) in this industry (e.g., GSK and Astra Zeneca) and academic institutions (e.g., University of 

Cambridge) to material and logistics suppliers (e.g., DHL), and UK regulatory bodies (e.g., the 

Medicines & Healthcare products Regulatory Agency - MHRA) needed for approval of clinical tasks 

and trials.  

At the outset of our study, in 2011, the size of these networks was small, involving 24 

organisations in the case of the EPSRC Centre for Innovative Manufacturing in Continuous 

Manufacturing and Crystallisation (CIM CMAC) (UK Research and Innovation, 2018a). Initially, the 

focus of innovation was on individual digital technologies such as predictive analytics and modelling in 

drug development, and process analytical technologies to improve drug quality and lower production 

cost. Due to rapid technological developments and rising customer expectations (e.g., wider and 

greater data access to suppliers, care providers and patients), digitalisation has become a much 

broader phenomenon (Venkatraman, 2017). Such escalations expanded network size and scope 

because participating entities recognised that their collaborative networks had to be transformed to 

capitalise on a wider variety of digital innovation opportunities relevant to their segments of the 

pharmaceutical industry. Owing to the growth in the scale and scope of such innovations, these 



 

 4 

consortia contributed to a UK technology road map in 2012 which is summarised in Appendix A. The 

roadmap illustrates various pathways with anticipated digitalisation milestones, such as individual 

diagnostics tools for outcome monitoring, incorporation of continuous unit (i.e., modular) operations, 

the development of high-volume, non-volatile compounds, and greater use of platforms. As with all 

roadmaps (Phaal et al., 2004) this UK technology roadmap omits operational details such as choice 

and type of performance outcome and allied trade-offs and does not account for the variegated nature 

of technology ‘jumps’ along these digitalisation pathways. The potential for such variation underscores 

the need to build operations management theory based on the network-centric digitalisation 

phenomena. Note that this roadmap in Appendix A features both sequential and parallel (and thus 

platform-based) pathways. That is, it was possible to pursue development parallelisation without 

platform-based practices (Joglekar et al., 2001), for example while setting up two-sided design rules 

and application programming interfaces for managing demand and supply. However, based on our 

evidence and for the purpose of this study (e.g., to explore the rapidly expanding role digital 

technologies play in drug development and manufacturing, and how organisations could best 

appropriate the value of digital innovations in their supply networks), we ignore that possibility and use 

the terms parallel development and platform-based digitalisation interchangeably. Also, we use the 

terms digitalisation and digitisation interchangeably. 

Published research on pre-competitive networks has focused on R&D issues (e.g., how 

absorptive capacity negatively affects the relationship between collaboration with research 

organisations and the performance of technologically new or improved products) without exploring the 

impact of digitalisation (Tsai, 2009). And, prior research on the use of digital technologies in supply 

networks has largely focused on electronic procurement and procurement process performance 

(Mishra et al., 2013; Srai and Lorentz, in press). Commensurate with new technology developments 

and rising end-customer expectations, multi-organisational networks and industry consortia have 

been employed to institute new types of collaborative knowledge exchange (Srai and Alinaghian, 

2013) and associated risk management practices for, e.g., ‘coopetition’ arrangements between 

organisations which could impact all entities in the wider network and the industry as a whole 

(Gnyawali and Park, 2011; Pathak et al., 2014). The growth in digitalisation capabilities, ranging from 

data collection and sharing tools, analytics and machine learning — along with heightened consumer 

expectations — brings new demands on innovations (Nambisan et al., 2017). Such growth also raises 
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a host of theory questions, in addition to the basic question of sequential innovation pathways in 

network settings (raised previously): How do organisations identify and set up their outcome 

performance goals and metrics for digital competition and collaboration? Conventional operations 

management theory, such as the sand cone model, call for sequential pathways that enable 

organisations to establish quality and dependability cumulatively before pursuing delivery speed and 

cost-reduction challenges (Ferdows and De Meyer, 1990; Schroeder et al., 2011). Such models, and 

the nature of the underlying knowledge network exchanges and knowledge accumulation, have not 

been tested in network-centric digital innovation settings, thus creating a gap in the literature.  

At a strategic level, the issue of intent is relevant particularly where the motivation behind 

digitalisation is for a truly transformational impact across organisations, networks, and industries. 

Recent analysis of the role of integrative supply management practices (ISMP) for outsourcing have 

identified key integration dimensions such as failure-prevention and performance-enhancing practices 

(Narasimhan et al., 2010) as constructs that accompany the intent for innovation. However, 

digitalisation may prompt organisations to set additional strategic goals (i.e., business models enabled 

by digitalisation, for example, ‘microfactories’ with 3D drug printing capability) that may require a 

complete disruption of existing ISMPs. And, if we are to study the broader digital integration 

challenges identified by practitioners (e.g., Schrauf and Berttram, 2016), the framing for ISMP may 

have to be broadened to include rising customer expectations and evolving strategic intents involving 

such novel business models. Thus, the underlying theory has gaps. For instance, do organisations 

that wish to achieve such digital ambitions need to commit to alternate ISMP mechanisms? Given 

these gaps, and as a point of departure, we set up an initial research model linking strategic intent 

and innovation performance outcomes (see Figure 1). Consistent with Narasimhan et al. (2010), this 

model posits a positive, mediating role for network integration. 

 

 

 

Figure 1. Initial model for exploring network centric digital innovations 
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Our research fills these gaps in the digital supply network literature through a grounded 

theory-building exercise (Eisenhardt, 1989; Barratt et al., 2011). We describe our methodology, which 

requires the examination of three separate collaboration networks, with each network drawing out 

unique innovation pathways, as part of our research design. We divide our analysis of these networks 

into two stages: a within-case analysis that captures the nature of innovation pathways in each 

network, and a cross-case analysis to compare and contrast the essence of the observed network-

centric innovation structures. These analyses lead to 10 research propositions, and to a refined 

framework on the relations between key constructs associated with network-centric innovations along 

alternative digitalisation pathways. We find that, with sequential development, our propositions are 

congruent with conventional pathways (e.g., the sand cone model) for mitigating innovation risks 

through modular moves. On the other hand, we posit that platform-based design rules, rather than 

modular moves, mitigate the risks for parallel pathways during product development and delivery. We 

conclude with a discussion of the managerial relevance of these propositions and the implications for 

future research. 

 

2. Literature review  

2.1. Strategic Intent: Aligning Business Models with Environmental Needs 

Organisation studies, information systems and operations management literatures reflect a long 

tradition of research that assesses strategic intent in terms of its fit between a firm’s inter-

organisational choices (e.g., location decision) and its environment (e.g., changes in customers’ 

needs) (e.g., Venkatraman 1989; Bensaou and Venkatraman, 1995; DiRomualdo and Gurbaxani, 

1998; Salvador and Villena, 2013; Ketokivi et al., 2017). Many early studies in the operations strategy 

literature attributed these concepts to specific variables. For instance, in the sand cone model, quality 

and dependability take precedence over speed and cost (Ferdows and De Meyer, 1990) in terms of 

development pathways, and as such, organisations’ intent was to manage underlying trade-offs 

sequentially (Boyer and Lewis, 2002; Flynn and Flynn, 2004; Schroeder et al., 2011). And, why might 

digitalisation prompt novel theory constructs around strategic intent along such pathways? On the 

organisational theory side, Venkatraman et al. (2014) argue that digitalisation has resulted in two 

novel outcomes: (1) digital business innovation (DBI) platforms and (2) digital business innovation 

capability at the network level of analysis. For instance, early IT and innovation literature has 
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analysed innovations at individual and organisation levels, but rarely at the inter-organisational level. 

However, since digitalisation occurs both intra- and inter-organisationally (Snow et al., 2017), it must 

be understood in the context of innovation ecosystems (and their underlying networks). 

A second view of emergent theory is based around data and analytics logic. Here, unique 

sets of competitive measures and outcomes could emerge through optimisation and allied data 

analytics. Guha and Kumar (2017) reviewed emerging analytics capabilities drawing upon the 

organisational goals (Romano and Formentini, 2012) and supplier performance (Chai and Ngai, 2015) 

literature. They point out that supply network design using digitalisation can generate a massive 

amount of data and visibility for customers. This raises customer expectations in terms of cost, quality 

and time-to-market parameters (Bloch 2011; Srinivasan et al., 2012). In the analysis of the combined 

organisational strategy and data analytics literature, Venkatraman (2017) marshalled evidence to 

show the potential for multiple digital transformation options (e.g., ‘experimentation at the edge’, 

‘collision at the core’, ‘reinvention at the root’) in network-centric innovations.  

          In the supply network domain literature, Narasimhan and Narayanan (2013) synthesised a 

variety of constructs and called for a joint study of strategy integration (i.e., organisational factors), 

absorptive capacity (i.e., organisational learning), supply network integration (i.e., external knowledge 

and supplier integration) and contextual variables (e.g., innovation culture), while focusing on 

supplier-enabled innovation.  We extend their framing logic to posit that strategic intent around 

digitalisation can drive network performance. Our case analysis, therefore, seeks evidence on the fit 

between inter-organisational choices (i.e., strategic intent) and their digital environments as its point of 

departure. 

 

2.2. Network Integration: Role of Nodes with High Centralisation 

Many organisation studies scholars have analysed innovations by mapping information and material 

exchanges on to network structures (e.g., White, 1981; Gulati et al., 2000). This literature posits that 

markets are more than sites for transactions between buyers and sellers. Firms that act as buyers, 

sellers, and suppliers continuously and jointly construct networks of information and material flows as 

a means for addressing internal and market uncertainties and to exploit opportunities. Powell et al. 

offered a seminal finding, informed by the innovations in the biopharmaceutical industry (1996):  
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“[When the] knowledge base of an industry is both complex and expanding, and the sources 

of expertise are widely dispersed, the locus of innovation will be found in networks of learning, 

rather than in individual firms.” (p. 116) 

 

Following Powell et al. (1996), networks and underlying relational structures have been 

studied in terms of constructs such as centrality and structural holes (Ahuja, 2000). Choi and Hong’s 

2002 study examined evidence from supply networks for Honda Accord, Acura CL/TL and 

DaimlerChrysler’s Grand Cherokee product lines to capture the system structure in three dimensions: 

formalisation, centralisation and complexity. While formalisation refers to the degree to which 

increasingly complex supply networks are controlled by explicit rules, procedures, and norms, our 

focus here relates to roles and responsibilities and what influence central nodes play in integrating 

multi-organisational networks. In a more recent review Kim et al. (2011) further analysed these 

network data using social network analysis to contrast material flows and contractual relationships. 

Their work emphasised the importance of taking a network-centric view for supply chains, such as  

examining centrality (i.e., measure of influence within a network). They found that firms with high 

centrality play a vital role in networks and, thus, require a unique set of capabilities for enhancing 

network-centric performance outcomes. In particular, they posited that the role of nodes is that of 

integrator (in transforming systems and promoting architectural innovation), allocator (distributing 

resources to meet demand loads), pivot (to facilitate operationally critical flows across networks), 

coordinator (influencing and aligning goals), navigator (in acquiring information) and broker (to 

process information). Nuanced roles have also been analysed with a variety of centrality measures to 

better understand networked knowledge integration in the design of products (Parraguez et al., 2016), 

processes (Roth et al., 2016) and supply chains (Jayaram and Pathak, 2013). 

       Kim et al. (2011) have explicitly argued that organisations with high betweenness centrality 

can better engage in supply chain risk management, because of dependencies nodes have on a 

central node to interact with the rest of the network. In addition, network structure can significantly 

determine the likelihood of disruption, with different levels of resilience linked to specific structural 

relationships among network entities (Kim et al., 2015). We extend their logic to digital innovation 

pathways and posit that centrality can moderate the relationship between strategic intent and 
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innovation performance. Our case analysis, therefore, unpacks evidence on the role of nodes with 

high centrality while exploring network integration practices. 

 

2.3. Innovation Performance: Modalities for Mitigating Risk 

While the examination of material flow and contractual relations remains a mainstay of the network-

centric supply chain literature (Bai et al., 2016), theories for network-based assessment of innovations 

have also been informed by product architecture and allied modular moves for risk management 

(Baldwin and Clark, 2000). Following Baldwin and Clark, various studies have looked at complexity 

management issues such as the duality between design and organisational networks (Sosa et al., 

2004), risk sharing (Camuffo et al., 2007) and network-based problem-solving capabilities (Gomes 

and Joglekar, 2008). A key question involves the concurrent design of product, process and supply 

chain (Three-Dimensional Concurrent Engineering (3D-CE), see Fine, 1998). Simultaneous design of 

product, process and supply chains highlights the importance of information sharing (Blackhurst et al., 

2005) across these often-siloed tasks. Fine et al. (2005) examine the underlying task conflicts via a 

goal programming approach to address multiple and interdependent challenges in designing and 

planning a product market launch. Petersen et al. (2005) argue that an integrative view (involving 

technical and business performance goals) directly impacts supply chain configuration decisions. 

Forza et al. (2005), while framing these three aforementioned articles from 2005, found that 

coordinated decisions across these three domains outperform uncoordinated decisions. They also 

raise questions about the limits of such arguments; for instance, is it possible, cost-effective and 

efficient to evolve one 3D-CE system from another? Longitudinal studies of such evolution, and allied 

risks, using network-centric innovation are sparse. And the impact of digitalisation, in particular, 

platform-based digitalisation, is yet to be analysed carefully in such evolving settings. For instance, 

we are beginning to understand the impact of platform creation on demand and supply management 

(Parker and Van Alstyne, 2005; Parker et al. 2016). With companies shifting innovation initiatives 

centred on internal resources to those dependent on external networks (Nambisan and Sawhney, 

2011), when would a modular design move, with or without digitalised platforms, affect both the 

technical and business performance of network-centric innovation?  

In summary, there is a large stream of literature on network-centric innovation performance.  

This literature lacks robust theory for risk-adjusted network performance in the digitalisation context. 
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We therefore focus on modalities of mitigating risk adjustments as measures of interest while 

engaging in grounded theory building based on network analysis. 

 

3. Research Method   

This study explores network-centric innovation via the case study method involving network mapping. 

We discuss our case selection criteria and then lay out our process of identifying pertinent cases. In 

addition, we outline the specific network mapping approaches used, which support within-case and 

cross-case analyses as the underpinning evidence base for grounded theory development. 

 

3.1. Background 

In 2004, the US Food and Drug Administration (FDA) Critical Path Initiative1 helped foster the 

formation of numerous consortia focused on specific drug development challenges (Woodcock et al., 

2014). This was followed in 2008 by the European Commission’s launch of the Innovative Medicines 

Initiative (IMI) linked to the European Technology Platform on Innovative Medicines. The most recent 

IMI programme (2014-2020) aims at accelerating the development of, and patient access to, 

innovative medicines, particularly where there is an unmet medical or social need (IMI, 2018). Multiple 

Global initiatives continue to emerge across the pharmaceutical sector and are predominantly based 

on the principles of pre-competitive collaboration (Srai et al., 2015a). Pre-competitive collaborations 

that build enabling platforms often focus on developing standards and tools and aggregate data to 

achieve a necessary scale for research by accessing resources and capabilities across organisations 

(Institute of Medicine, 2010). 

                                                      
1 The Critical Path Initiative (CPI) is FDA's national strategy for transforming the way FDA-regulated 

medical products are developed, evaluated, and manufactured.  … [it aimed to address] the reasons 

for the widening gap between scientific discoveries that have unlocked the potential to prevent and 

cure …[diseases] … and their translation into innovative medical treatments. … [given the] increasing 

difficulty and unpredictability of medical product development, the report concluded that collective 

action was needed to modernize scientific and technical tools as well as harness information 

technology to evaluate and predict the safety, effectiveness, and manufacturability of medical 

products (FDA, 2018). 
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This study focuses on the UK pharmaceutical ecosystem and explores how public-private 

partnerships (consortia) have been structured to deliver strategic goals and objectives relating to 

specialised research programmes. For example, the establishment of a national multidisciplinary  

research Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation — CIM 

CMAC (UK Research and Innovation, 2018a). 16 cases spanning development and production were 

short-listed for this study based on specific criteria: The organisations and consortia had to engage in 

innovation and technology development activities with a distinct supply chain focus or supply network 

reconfiguration element. For example, network partners can collectively assess the consequences of 

adopting digital process technologies — on supply network designs and business models in different 

development–launch–supply scenarios — and how they compare to existing ‘batch’ process-based 

supply models.  

Data-gathering efforts began in 2010, in advance of the launch of the CIM CMAC in 2011 and 

concluded with an interview with the director of the most recently created consortium (FPC@DCU) in 

June 2018. The consortium approach enabled ongoing access to expert informants over this eight-

year period and allowed for refinement and the gathering of additional data, where applicable. In 

terms of validation, checks and balances were established and are evidenced in the authors’ 

contributions to key scientific publications linked to specific technologies and individual research 

programme outcomes during this eight-year period (e.g., inkjet printing capability review (Daly et al., 

2015); precision manufacturing workflow development (Brown et al., 2018)). Table B1 in Appendix B 

outlines details of the 16 consortia cases which span activities in digital development, digital 

production, and/or digital supply networks across the pharmaceutical sector.   

 

3.1.1. Selection criteria  

With hundreds of networked tasks, and sub-projects to choose from, all involving new materials and 

emerging technologies, it was deemed of little benefit to map a representative ‘product’ or set of 

‘generic’ product families given the complexities and specificities of the pharmaceutical sector. 

Therefore, we first employed industrial systems and value network mapping approaches to construct 

a ‘one-off’ current state sector view capturing key consortia actors, activities and measures (Srai et 

al., 2016a; Srai and Alinaghian, 2013). 
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This process facilitated a decoupling of individual network innovation ‘stories’, outlined in 

Table B1 in Appendix B, to explore how emerging activities could affect existing supply network 

configurations, measures and interactions. This was enabled by engaging with key consortium 

partners in the case selection process. We identified six cases out of the short-list of 16 based on the 

following key criteria:  

1. Cases had to contain a digital element in terms of drug development or medicine production. 

2. The technology intervention demonstrates new functionality or a certain ‘proof of concept’ 

linked to digitally enabled testing, validation or production.  

3. These interventions had to have high potential for supply network reconfiguration in 

supporting new supply models (e.g. ‘make-to-order’) and/or disrupting existing conventional 

development and production approaches based on ‘batch’ processing.  

 

The mapping techniques were then used to capture alternative supply network configurations, 

transitions and evolutionary phases for the cases all of which met the above criteria. Finally, to 

examine network structure, the formal and informal knowledge exchanges between the different 

organisational entities (academic-industry-institutional) and the governance mechanisms (partnering 

arrangements for e.g., hub-spoke models and platform-based programmes) involving the consortia, 

we explored six representative cases in greater depth (see sections 4.1–4.3). An illustration of the 

three representative innovation networks relating to these cases are shown in Figures 3-5.  

 

3.1.2. Case samples  

As we explore emerging phenomena involving network-centric digital innovations, where research 

and theory are at an exploratory or formative stage, a mixed methodology was employed (Eisenhardt 

and Graebner, 2007). This involved key industrial stakeholder and expert group input, followed by 

assessment of multiple cases across the activities of the six consortia. This research strategy aligns 

with our study’s empirical inquiry into a contemporary phenomenon, both in-depth and within its real-

life context (Yin, 2009). 

To increase external validity and develop generalisable propositions, our case study 

approach aimed to maximise the diverse network innovation contexts that co-exist. With an emphasis 

on digital development, production and supply networks, our case samples span network-centric 
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product, process and business model innovations consistent with Williamson and Zeng (2009) and 

Srai et al. (2016a), namely:  

(1) Digital Design 

(2) Adaptive Clinical Supply 

(3) 3D Printing including ‘Lab-on-a-Chip’ 

(4) Process Analytics 

(5) ‘Intelligent’ Packaging 

(6) Continuous Processing End-to-End (E2E) 

 

These categories were also deemed appropriate as they are consistent with both the 

developmental and commercial goals of the multiple consortia under study and involve technology 

interventions with a digital element. Secondly, the highly overlapping nature of the six consortia 

(membership, geography, technologies, activities, stages of evolution) enabled our exploration of 

specific, complementary innovations, reducing both complexity and variation in terms of fit and 

context.  

  

3.2. Data Collection for Individual Cases 

In addition to semi-structured interviews, secondary data and observations from network-centric 

digital initiatives involving the various consortia (see description before Table B1 in Appendix B), the 

process also involved a series of workshop-type engagements involving academia and industry 

between 2014 and 2016. These interactions linked with Royal Society of Chemistry and MIT-CMAC 

themes and events focused on specific outcomes, for example, emerging equipment and analytics, 

future structure of pharmaceutical development and manufacturing, future supply chain design, and 

targeting technology interventions (e.g., Page et al., 2015; Nepveux et al., 2015; Srai et al., 2015a; 

Srai et al., 2015b; Harrington et al., 2017). 

For the Reconfiguring Medicines End-to-End Supply (REMEDIES) consortium, eight 

workshop-type engagements (aligned with stakeholder meetings and involving all 24 consortium 

partners) were conducted on a six-monthly basis between 2014 and 2018. Furthermore, given the 

clinical and commercial platform design of the programme’s activities, bi-weekly meetings involving 

six applications (‘Apps’) and specific digital flagship projects over the same period enabled the 
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authors to interview multiple respondents and observe the evolution of eight network innovation 

cases. When conducting interviews, we sought a minimum of three individuals aligned to each 

network innovation case. Given the interplay within and between activities involving the five UK 

consortia, individuals who were involved in multiple consortia were targeted so that data could be 

collected on, for example, information flows between nodes of multiple networks.  

To ensure reliability of the data collection, a semi-structured interview protocol was built 

around a base framework and a generic example, exploring the operations management challenges 

of digitalisation (see Appendix C). The protocol outlined the aims and outcomes of the study, and 

guided our information gathering on the respondent and primary data involving specific digital 

experiments and the consortia. Interviewees were also asked to discuss any other distinguishing 

features from a network innovation perspective for each of their programme activities (e.g., … [the] 3D 

printing of drug combinations with specific drug release profiles involved [X] key network partners and 

focused on specific generic drug product [Y] for the following reasons…). From the shortlist of 16 

cases, Figure 2 summarises the positioning of the six representative cases across different contexts 

and environments, represented by four quadrants: Southwest (SW), Northwest (NW), Southeast (SE) 

and Northeast (NE).  

 

 

Figure 2. Positioning of 16 cases using a base framework  

(See Table B1 in Appendix B for further details on individual cases.) 
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In terms of (i) product development, the SW quadrant represents conventional development 

and conventional supply networks. This base framework enables us to chart ‘pathways’ and 

‘transitions’ away from conventional settings using the digital cases. Respondents ‘self-identify’ the 

position of their specific activity on the grid, outline what best describes this positioning, and then 

provide evidence to support this positioning (e.g., secondary data sources to validate, and to support 

context). For example, the NW quadrant represents contexts where there is digital product/production 

development but the supply network remains conventional, and the SE quadrant represents contexts 

where the supply network is digitalised, yet development remains conventional. Finally, the NE 

quadrant represents those cases where there are activities involving both digital development and 

digital supply network design. Similarly, for (ii) production, the SW quadrant represents conventional 

production activities and conventional supply networks in commercial settings.  

The shaded SW quadrant denotes our point of departure and the conventional/current state in 

terms of extant theory and evidence from the literature and industrial practice. The pathways from the 

SW to NW quadrants represent ‘sequential’ transitions in digital product development (case 3) and 

production (case 10) respectively, where product development/production is first digitalised followed 

by supply network digitalisation (i.e., in the NW to NE pathways). The SW to SE pathways capture 

sequential transitions for digital supply in development (case 4) and production (case 12) settings. 

Here, the reverse is true — the supply network is digitalised first, followed by product 

development/production digitalisation (i.e., the SE to NE pathways). Finally, direct transitions to the 

NE quadrant from the SW quadrant, represented by cases 8 and 15, explore ‘parallel’ pathways. 

While Figure 2 depicts a separation of product development and production cases, we do not 

consider these in isolation because behind this pairing arrangement are increasing linkages between 

specialist actors and the integration of development and commercial activities in the pharmaceutical 

sector. For example, with the transfer of many elements of clinical supply to commercial supply 

inherently built-in, we specifically focus on alternative clinical supply chain designs and technology 

solutions — i.e., (i) product development; SE quadrant, that are readily transferable to commercial 

settings, i.e., (ii) production; SE quadrant — in terms of improved product quality, inventory savings, 

increased flexibility and quicker response to customer demands. And vice versa — technical 

performance goals, for example, from ‘smart label’ interventions (case 12), around near-field 

communication tags and cloud-based software systems for effective tracking informs clinical supply. 
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As Eisenhardt (1989) suggests, this strategic arrangement of case pairs enabled us to tease out 

theoretical insights, which led to more generalisable propositions. These cases are explored in 

sections 4.1–4.3. 

 

3.3. Data Analysis 

As outlined in section 2, our research method and investigative process revolves around three 

dimensions of analysis — strategic intent, network integration (and the role of the central nodes) and 

innovation performance (and the modalities of risk mitigation). We analysed the interviews using 

thematic and process coding techniques to gain clarity on different contexts and to identify any 

patterns within selected network innovation cases (Gioia et al., 2012). After completing the within-

case analyses, we conducted cross-case analyses looking for additional patterns and linkages to our 

three analysis dimensions. These formed the basis of our proposed theoretical framework and 10 

propositions that frame the key insights of this research paper. Section 4 now presents individual case 

descriptions and the within-case analyses. Detailed network analyses are also covered in this section. 

 

4.  Within-case Analyses  

In this section, three matched pairs of cases (six case studies in total) are briefly outlined in order to 

demonstrate the digital intervention and explore how strategic intent around digitalisation could drive 

network performance. Structured around the conceptual model outlined in section 1, within-case 

analyses of the three matched pairs involving interpretation of qualitative data, are presented in 

sections 4.1–4.3. In some instances, technical papers have been published in domain journals based 

on this work (e.g., Brown et al., 2018). We report on their results and then cite such papers for brevity. 

 

4.1. Sequential Innovation: Northwest Pathway 

The ‘Dial-a-Molecule’ and ‘Golden Batch’ cases (see Table B1 in Appendix B) are representative of 

sequential SW→NW and NW→NE pathways (see Figure 2) involving digital and conventional 

contexts. Specifically, product development and production were digitalised first where outcomes of 

the case pairs represent the iterative two-way information flows between a ‘targeted’ experimental 

design, prediction and advanced modelling of new molecules and formulated materials (e.g., 
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synthesis design), and the control and the optimisation of industrial processes needed to manufacture 

them (e.g., crystallisation unit operation). 

 

4.1.1. Strategic intent: Aligning business models with environmental needs 

We explore the fit between emerging business models and UK ecosystem needs by charting 

coordinated academic-industry initiatives since 2011 on transforming 3-4σ sector performance in 

terms of manufacturing ‘right-first-time’ (i.e., comparable to yields of 93.3-99.4%). Typically, the cost 

of poor quality at these levels of sigma (σ) result in 15-20% spend of revenues on rework, inspection, 

and testing for organisations (e.g., Jacobs et al., 2015) and equates to global losses of £15 billion 

annually for the pharmaceutical sector (Srai et al., 2015a). In particular, we explored industry 

practices that have traditionally been based around conventional ‘batch’ development, production, 

and testing, to benchmark performance outcomes against other sectors (e.g., the design and 

manufacture of microprocessor chips), where operating at >5σ results in reducing defects, errors, and 

failures to near zero within the manufacturing process (Panat et al., 2014). 

The ‘Dial-a-Molecule’ case embodies the digital design innovation category that incorporates 

activities of both the Dial-a-Molecule Grand Challenge Network, established in 2007, and the 

Advanced Digital Design Transforming Pharmaceutical Development and Manufacture (ADDoPT) 

consortium, launched in 2015. These UK initiatives are part of a long-term coordinated effort from 

researchers and industrialists to contest conventional bench-scale and ‘make and test’ R&D 

approaches. The ‘Golden Batch’ production case represents current ‘digital factory’ initiatives in the 

pharmaceutical sector and links to outputs from development activities across three of the consortia 

under study. In both cases, we examine the interplay and evolution involving modular (unit) 

operations of active pharmaceutical ingredient (API) synthesis and crystallisation. Our representative 

cases focus on digital inputs involving two sequential transitions: (1) from conventional batch 

processing and off-line quality-control testing to modular batch processing that incorporates ‘real-time’ 

process analytics and (2) from modular batch processing to fully modular continuous systems. 

Synthesis and crystallisation steps have been specifically targeted for several reasons in this 

study. First, crystallisation processes have historically been operated in batch mode to enable 

flexibility in response to varying customised design requirements and changing market demands. 

However, the approach can also lead to massive batch-to-batch variations in product quality which 
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directly impact (i.e., increase) manufacturing costs due to waste and necessary re-working (Su et al., 

2015). Second, API synthesis and crystallisation operations are sequential steps at the beginning of 

the drug manufacturing process, so they enable exploration of concurrent design thinking in terms of 

the molecule-process-platform technology. Third, API synthesis and process intensification at this 

step is critical in determining the overall yield. Finally, API crystallisation performance determines the 

purity of most APIs at this early stage of the process, which directly impacts pharmacological 

properties and therapeutic efficacy of drug performance (Variankaval et al., 2008; Yu et al., 2014).  

 

4.1.2. Network integration: Role of nodes with high centralisation 

 

 

Figure 3. Network structure for  

Northwest (NW) pathways involving sequential transitions (SW→NW and NW→NE)    

 

Information exchanges between individual organisational entities (including eight MNCs, seven 

academic institutions, and three SMEs) across three consortia are summarised in Figure 3. The 

patterns and insights derived from the sequential transitions (SW→NW and NW→NE) relate to the 

dynamics of information transfer between associated activities involving specific communities of 

individual network players. Based on a social network analysis (SNA) approach (Parraguez et al., 

2016), five such communities across the three consortia are active, with 23 critical nodes and 163 
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edges (maximum partition density of 0.7412158). Each of these five communities represent a 

subnetwork. The connections for these subnetworks are summarised as follows:  

 A dense COORDINATION subnetwork comprised of seven industrial and seven academic 

partners (all with eigencentrality measures > 0.74) is focused on relationship coordination and 

reducing the amount of load on the network as a whole.  

 The ACADEMIC subnetwork centres around three core academic institutions (nodes B09, 

B12, B15, with eigencentrality measures > 0.97) with links to four ‘supporting’ academic 

institutions (nodes B10, B11, B13 and B14). All seven entities have close links with the main 

UK government agency that funds research and training in engineering and the physical 

sciences, EPSRC (node B19), and a Knowledge Transfer Network (KTN) specialising in 

cross-sector collaboration and innovation networking (node B21). 

 A COMMERCIAL subnetwork involving the seven core industrial stakeholders is further 

coordinated by an industry alliance, the Medicines Manufacturing Industry Partnership 

(MMIP) (node B22) established jointly by the UK Government and the biopharmaceutical 

industry in 2014. In a similar configuration to the ACADEMIC subnetwork, the COMMERCIAL 

subnetwork centres around three core industrial stakeholders (nodes B01, B02, B06, with 

eigencentrality measures > 0.95) with interests in two or more consortia. Four industrial 

stakeholders (nodes B03, B04, B07 and B08) are actively engaged in only one consortium 

but have multiple interactions with other consortia members.  

 The three core academic institutions (nodes B09, B12, B15) and three core industrial 

stakeholders play an important role (eigencentrality measures > 0.97) in a DESIGN RULES 

subnetwork involving a series of specialist SMEs (nodes B16-18, with eigencentrality 

measures of 0.56).  

 Three sector specialists form an outlier subnetwork designated here as ANALYTICS and 

have close links with the REMEDIES consortium (node B23). 

 

In terms of relationships, governance and coordination, these cases are characterised by multiple and 

complementary knowledge exchanges involving leading Global MNCs, technology SMEs and 

specialist partners from UK universities (e.g., University of Cambridge and the University of 

Strathclyde), and research centres (e.g., CIM CMAC). Our analysis first focused on six key (i.e., with 
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high eigencentrality) nodes of the Dial-a-Molecule Grand Challenge Network (nodes B01, B02, B09, 

B15, B11, B14), which comprises of a cross-disciplinary, cross-sector community of over 650 

academics, early career researchers and industrial stakeholders. Phase 3 of this network (2016–

2020) is underway and involves a more decentralised structure involving three specialist themes 

supported by a central resource (based at node B14). Using these nodes as a baseline, we can track 

the formation, expansion and transitions of major networks and subnetworks that have been 

facilitated by funding from two UK government agencies (nodes B19 and B20) and the KTN (node 

B21). 

The second consortium (ADDoPT) is a four-year collaboration structured around a specialist 

SME (node B16) that acts as the ‘consortium coordinator’. Consisting of 12 members, the goals of the 

programme are organised around eight research strands and a series of case studies set within the 

development and manufacturing supply chain of one of the four manufacturing partners (nodes B01, 

B02, B05, B06). Here, we focused on information exchanges concerning development of the 

advanced control and monitoring strategies critical to integrating a greater degree of digital design into 

practice.  

These interactions between partners in development align with the activities and aims of the 

third consortium — the Future Continuous Manufacturing and Advanced Crystallisation Research Hub 

(CMAC Hub) — for example, the rapid screening of drug compounds and model-based predictive 

capabilities linked with the scale up, design and modelling of new manufacturing and supply network 

processes. Relationships, governance, and coordination in the ‘Golden Batch’ case, sees a Hub 

(node B12) and Spoke model involving 12 core academic partners engaging with a growing network 

of ~ 50 industrial partners and new actors to the sector (UK Research and Innovation, 2018b).  

As for roles, four organisational entities (nodes B01, B02, B09, B15) are actively involved 

across all three consortia. Indeed, participation in these consortia has contributed to valuable ‘internal 

networking’ within their organisations or academic institutions and access to, hitherto, unrealised 

capabilities on their very doorstep. These entities serve as a ‘backbone’ to the COORDINATION 

subnetwork in that they can align network members and their activities with the strategic goals of the 

various consortia. This is a significant advantage as it links the DESIGN RULES subnetwork in 

supporting increased information flows between digital design activities and full-scale manufacturing 

processes. The two principle nodes within the academic network (B09 and B12) act as both ‘pivots’ 
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and ‘navigators’ in an integrated fashion. Together, they explore and facilitate flows of information 

across their network of partners by specialism (i.e., the configuration of commercial supply networks 

and modular operations in batch and continuous modes, respectively). In a design context, the central 

node (B09) serves as the ‘integrator’ tasked with organising and incorporating a range of ‘outcomes’ 

from various work streams, demonstrating an increasing influence exerted by the DESIGN RULES 

subnetwork.  

 

4.1.3. Innovation performance: Modalities for mitigating risks 

One key question we explore is how networks are setting up performance goals based on digital 

inputs, which relate to the acquisition, sharing and scaling of data and information across the 

subnetworks (outlined in section 4.1.2).  

A good starting point here has been the development of ‘digital workflows’, which have 

recently provided development activities with standardised data acquisition, analysis and reporting 

protocols. A seven-stage systematic approach for crystallisation process design (Brown et al., 2018) 

looks to reduce complexity and mitigate the risk of decision choices — where one or multiple aspects 

of a crystallisation process could result in performance issues at a later development step or 

operation. Design and process criteria inform progression to the next step, and if not met, the stage is 

re-visited. Decisions are made on feasibility — based on experimental data (actual and modelled) to 

ensure optimisation of reaction conditions, and to ensure that specific processes are directed towards 

the most suitable platforms, such as, modular batch or modular continuous configurations (e.g., 

Baldea et al., 2017).  

In terms of information sharing, laboratory-based virtual networks have emerged through the 

consortia’s adoption of Electronic Laboratory Notebooks (ELNs), which have facilitated the rapid 

exchange of reaction and processing data. This has the potential to transform the very nature of 

synthesis to become a ‘data-driven discipline’ and enable better prediction of properties and the 

performance of ‘target’ molecules. By extension, through acquisition and sharing across consortia, 

prediction of experimental outcomes (e.g., Bryant et al., 2018) can create opportunities to accelerate 

the design and modelling of new molecules, manufacturing processes, and combinations of different 

unit operations in single-process equipment.  
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Specific to the ‘Dial-a-Molecule’ case, innovation performance in a network context can be 

summarised using lower levels of a sequential progression involving quality and dependability 

(Ferdows and De Meyer, 1990; Flynn and Flynn, 2004). Measures linked to strategic intent of the 

cases focus on improved process control through the development of Quality-by-Design (QbD) 

principles where advanced control and monitoring strategies can eliminate the need for physical 

experimentation and testing (Yu et al., 2014). At higher levels of a sequential progression involving 

responsiveness/speed and cost, differentiation in a digital development context focuses on prediction 

ability to meet predefined quality ('right first time') and ‘scale-up’ characteristics. In product 

development, such predictive capabilities, which enable the transition from physical testing and 

experimentation to better informed and targeted molecule selection, can facilitate increased success 

rates, shortened product development time, and decreased waste due to fewer clinical trial (Phase I, 

II and III) failures.  

In terms of lower levels of a sequential progression in a digital production context (‘Golden 

Batch’ case), targeting ideal process parameters has enabled more ‘robust’ processes. For example, 

targeted process parameters enabled the development of a scalable and transferable crystallisation 

process route to a hitherto elusive demonstrator API using specialist equipment developed by a 

consortium SME (Agnew et al., 2016). Indeed, the overall goal is to demonstrate ‘dial-an-attribute’ 

performance for final products — exploiting predictive control models and automated optimisation 

tools — across the whole process design space. With increasing confidence and evidence-based 

adoption in advanced process analytics linked to QbD principles (e.g., Yu et al., 2004), the ‘real-time’ 

release of products can become a reality. Defined as “… the ability to evaluate and ensure the quality 

of in-process and/or final product based on process data” (ICH, 2009: p 17), this is possible because 

of consistent and predictable performance when actual processes can be compared to ‘Golden Batch 

parameters’ (typically, valid combinations of measured material attributes and process controls, in-

line). At higher levels of sequential progression, critical parameters and data — linked to predictive 

product quality controls and process feasibility — can vastly reduce the number of experiments 

required and eliminate non-viable drug candidates earlier in the R&D pipeline because of increased 

speed in decision-making and allied responsiveness. In commercial contexts, experimentation in 

using data from small-scale experiments to virtually design full-scale manufacturing processes is 

evidenced by a specialist CMAC Hub work package on ‘integrated predictive development pathways’. 
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With particle engineering at its core, a fully integrated modelling approach guides the design of 

processes and materials at molecule, particle and formulation levels — with a specific goal of 

reducing cost through enabling rapid development timescales (UK Research and Innovation, 2018b).  

 

4.2. Sequential Innovation: Southeast Pathway 

The ‘On-Demand Clinical Supply’ and ‘Smart Label’ cases (see Table B1 in Appendix B) represent 

the sequential SW→SE and SE→NE pathways (see Figure 2) and also explore digital and 

conventional contexts. Beyond transforming how products are designed and manufactured, 

digitalisation can enable new approaches to managing future supply demands which are in line with 

recent US and EU regulations around serialisation. In short, pharmaceutical serialisation refers to the 

track and trace of prescription drugs movement throughout the supply chain from point of 

manufacture to dispense.  

Specifically, desired outcomes of the case pair are analogous in developing more ‘localised’ 

capabilities in a series of clinical and commercial contexts. For example, using information and data to 

enable more demand-driven and customised product design (‘personalisation’ in terms of country- 

clinic-individual) coupled with ‘on-demand’ logistics supply. 

 

4.2.1. Strategic Intent: Aligning business models with environmental needs 

Clinical trials account for an estimated 50% or more of drug development costs (Huber and Howard, 

2016). Over the eight-year period of this study, the average estimated cost of advancing a drug from 

concept to market (incorporating post-approval Phase IV expenses) has risen from ~ £600 million to 

£2.2 billion (DiMasi et al., 2016). While R&D spending growth has also overtaken both revenues and 

sales, general and administrative (SG&A) expenses during this time (Dixit and David, 2017), firms are 

increasingly ‘hedging their bets’ and strategically redirecting efforts to alternative therapies. The 

discontinuation of promising molecules in late Phase II and Phase III trials can have serious 

repercussions for patients, as recently evidenced by Pfizer’s cessation of all neuroscience and 

dementia-related drug development activities because of the high failure rate of clinical trials and poor 

return on investments (Le Couteur, 2018).  

In exploring strategic intent around how digital experiments drive network performance and 

choices, we use the ‘On-Demand Clinical Supply’ case to represent the Adaptive Clinical Supply 
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innovation category. Here, organisations are moving towards more collaborative models involving 

specialised networks to improve the non-competitive aspects of demand and supply chains, for 

example, in designing clinical trials with built-in flexibility and agility. This is a key industry goal as 

consortium partners estimate that between 50–75% of clinical trial material is not dispensed, which is 

resulting in massive annual inventory write-offs (write-offs are in the £10’s of millions per year for each 

of the major MNCs). 

While the ‘Smart Label’ case has more of a commercial focus in developing systems for the 

effective track and trace of ‘high-value’ drug products across the E2E supply chain, outcomes will 

have direct implications for clinical supply. Serialisation is a critical requirement for the pharmaceutical 

industry, particularly since the US Drug Supply Chain Security Act (DSCSA) took effect in 2013. 

DSCSA “outlines steps to build an electronic, interoperable system to identify and trace certain 

prescription drugs … distributed in the United States” (FDA, 2018). It aims to protect consumers from 

“counterfeit, stolen, or contaminated … or potentially dangerous drugs and establishes national 

licensure standards for wholesale distributors and third-party logistics providers” overseen by the FDA 

(ibid). As a result, supply chains are expected to be electronically integrated with nodes of traceability 

to be established by November 2023 (EY, 2018). As for the UK, the EU’s Falsified Medicines 

Directive (FMD) mandates serialisation at a unit (pack) level and dispenser authentication by 

February 2019 (European Commission, 2018). In response, consortia are leading experimentation 

around more ‘intelligent packs’ that offer clear signals about the condition of a product, its observance 

of storage and transit environmental conditions, and the use of printed-electronics for smart labels. 

Whilst far from realisation, the technology lends itself to potential opportunities for flexible ‘best before’ 

labels that could disrupt multiple elements of hitherto conventional delivery models.  

Adding to the complexity around pharmaceutical supply chain models are current 

uncertainties over BREXIT which could impact £450 billion in overall annual trade between the UK 

and the EU (Goasduff, 2016). How will future EU legislation affect both UK pharmaceutical operations 

(in terms of influence and scale) and, critically, funding streams for future academic-industry 

consortia?  
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4.2.2. Network integration: Role of nodes with high centralisation 

 

Figure 4. Network structure for  

Southeast (SE) pathways involving sequential transitions (SW→SE and SE→NE)    

 

Based on the approach from Parraguez et al. (2016), patterns and insights from information 

exchanges between individual organisational entities and the REMEDIES consortium are derived 

using two sequential transitions (SW→SE and SE→NE). As illustrated in Figure 4, three loosely 

interconnected communities are in operation, with 12 critical nodes but only 24 edges (maximum 

partition density of 0.4444’). Some specific characteristics include: 

 An INTEGRATION—COORDINATION subnetwork centres on the academic research lead of 

platform activities (central node C05, with an eigencentrality of 1.00) along with the industrial 

stakeholder (node C01) leading the clinical platform (eigencentrality measure, 0.89). 

 With a community membership of eight, the CLINICAL subnetwork is sparse and based 

largely on the central academic partner and two core industrial stakeholders (all with 

eigencentrality measures > 0.70).  

 Critically, the UK regulator MHRA, is a key contributor to both CLINICAL and 

INTEGRATION—COORDINATION subnetworks (node C09) with an eigencentrality of 0.68. 

 A RISK subnetwork, comprised of four key partners, assesses a range of clinical and 

commercial technologies and is led by a pharmaceutical risk specialist (node C08) with an 
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eigencentrality of 0.49. One area of focus, led by sector specialists, relates to ‘informed 

logistics’ initiatives, including the development and integration of ‘intelligent’ pharmaceutical 

packaging, e.g., led by the process manufacturing partner of the UK government’s network of 

‘Catapult’ centres (node C07). 

 Given the specialist nature of the activities across the supply network, nodes C03 and C04 

are most recent additions to the consortium, in addition to node C12 (in an informal partnering 

arrangement) 

 

4.2.3. Innovation Performance: Modalities for mitigating risk 

In terms of clinical trials, many new medicinal products are introduced early and/or exclusively into 

locations with limited pharmacovigilance capabilities and capacities (WHO, 2017). High-level strategic 

goals of the overall REMEDIES research programme help to inform new models of care based on 

improved ‘compliance’, ‘adherence’ and ‘personalisation’. In terms of innovation performance, we can 

again view digital inputs linked to business outcomes in terms of sequential progression (Ferdows and 

De Meyer, 1990; Flynn and Flynn, 2004).  

Lower-level measures linked to strategic intent in a clinical setting relate to the development 

of new operating regimes that drive Quality Assurance (QA) dominant product releases. Specifically, 

the ‘On-Demand Clinical Supply’ case initially targets ‘low hanging fruit’ with reconfiguration potential 

for replacing the current manual Quality Control (QC) testing regime (e.g., high-volume stock keeping 

units (SKUs) for which traditional demand forecasting could provide stable volume projections for 

lead-time critical products). At higher levels of sequential progression, QA dominant product releases, 

coupled with improved compliance, lends itself to a radical shift to ‘adaptive’ clinical trials where 

production planning could be driven by clinical trials and performance outcomes (e.g., responsiveness 

and flexibility involving supply). Digital interventions enabling late postponement and product 

customisation initiatives could potentially collapse standard transaction and processing times and 

eliminate costly write-offs of unused clinical stock, typically in excess of £50 million per MNC per year. 

As for lower level sequential progressions in a commercial digital supply context, 

experimentation with printed electronics for packaging is providing information and validation around 

anti-counterfeiting, product tampering and product consumption safety. In essence, quality and 

dependability measures relate to the ‘integrity’ of the product, specifically, ‘transparency’ and 



 

 27 

‘security’. As packaging capabilities are upgraded in line with serialisation requirements, significant 

changes will impact operational routines, standard operating procedures and workflows, as well as 

risk evaluation and mitigation strategies. At higher levels, efforts have extended to product 

‘personalisation’ and experimentation in handling SKU volume and variety in line with both policy 

requirements and future therapy areas. Likewise, serialisation is enabling data and information 

exchanges for advanced analytics which could lead to deeper insights into consumption patterns, 

geographical penetration, and sales and marketing cost-benefit effectiveness (EY, 2018). 

Experimentation around ‘speed’ involving ‘tracer pack’ trials have demonstrated improved supply 

responsiveness, which could significantly reduce patient kit waste and costs when transferred to 

clinical trial contexts. 

 

4.3. Platform-based Innovation: Parallel Pathway 

The ‘Lab-on-a-Chip System’ and ‘Digitalisation Lab’ cases (see Table B1 in Appendix B) are 

positioned in the NE quadrant (see Figure 2) and enable us to explore parallel pathways (SW→NE) 

involving the simultaneous digitalisation of supply networks and development/production. In contrast 

to the previous cases outlined in sections 4.1 and 4.2 which were of a ‘sequential’ nature, the parallel 

pathway is different, with multiple dimensions of changes in each digitalisation effort. Here, firms need 

to consider ‘unconventional’ requirements in a rapidly changing industrial landscape. For example, 

digitalisation concepts coupled with increasing ‘personalisation’ will greatly impact institutional 

contexts in many sectors (Cesuroglu et al., 2017). Hence, we go beyond sequential transition 

pathways to investigate how next-generation pharmaceutical products and services are being 

developed. Using platform-based design principles — which require radically new supply network 

configurations — we explore potential sea-change requirements in supply collaboration, site location, 

capacity, inventory, and customer engagement using the two case studies.  

Specifically, characteristics of the case pair centre on ‘miniaturisation’ and the delivery of 

lower volume, high variety niche products and complementary services (e.g., data analytics) to new 

markets. In essence, desired outcomes of the NE quadrant appear as polar opposites to those of 

traditional high volume, low variety blockbuster business models. 
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4.3.1. Strategic Intent: Aligning business models with environmental needs 

Experimentation around ‘point-of-care’ and ‘digital microfactory’ concepts are forcing organisations to 

rethink how best to (re-)configure supply chains to manage (increasingly) ‘two-way’ interactions and 

new relationships involving both customers and suppliers.  

The ‘Lab-on-a-Chip System’ case charts the emergence of microfluidics-enabled ‘sample-to-

answer’ solutions that are both reliable and fast and could support operations in more decentralised 

settings. Microfluidics … [is defined as] “…the engineering or use of devices that apply fluid flow to 

channels smaller than 1mm in at least one dimension. Microfluidic devices can reduce reagent 

consumption, allow well controlled mixing and particle manipulation, integrate and automate multiple 

assays (known as ‘lab-on-a-chip’), and facilitate imaging and tracking” (Nature, 2018). With current 

diagnosis procedures often being time-consuming and costly, ‘miniaturisation’ has enabled improved 

biomedical applications in terms of cost reduction, high-throughput, ease-of-operation and analysis 

(Wu et al., 2018). In terms of future business models, we also use the case to explore the rise in 

strategic importance of biologics in the pharmaceutical sector (Waltz, 2014; see also Appendix B), 

specifically, ‘smart’ materials and emerging capabilities that support a broad spectrum of bioanalytical 

assay formats targeting proteins, nucleic acids and cells (e.g., Burger et al., 2015; Nwankire et al., 

Saez et al., 2018). While production processes of synthesised chemical drugs (small molecules) may 

be relatively well defined, biologics, however, have more complex production processes that tend to 

yield much smaller quantities with less uniform batch-to-batch equivalence. It is also difficult to scale 

biologics from laboratory quantities used for early analysis and pre-clinical testing to larger-scale 

batches while maintaining product purity (Morrow and Felcone, 2004). 

In terms of digital inputs, a QbD platform approach integrates virtual prototyping enabled by 

modelling and simulation, novel ’scale-down’ paradigms and rapid design-for-manufacture practices. 

Specifically, a scaffold module forms the basis of the QbD platform (e.g., Smith et al., 2016), with 

flexible functionality achievable through 3D-printed components or reactionware-type modifications as 

per Kitson et al. (2012) and Dragone et al. (2013). In addition, some ‘Lab-on-a-Chip’ studies have 

begun to incorporate digital and mobile technologies (Wu et al., 2018) in developing smarter digital 

supply chain concepts to interact with customers throughout the entire product lifecycle (Harrington 

and Burge, 2018). 
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The ‘Digitalisation Lab’ case is a Proof-of-Concept reference facility conceived by a Global 

MNC to facilitate the E2E integration of modular and continuous manufacturing equipment streams. 

Contract manufacturing organisations (CMOs) and primes leverage an open-access network of 

assets for rapid assessments of flagship project innovations involving information exchanges between 

upstream with downstream processes to drive business model-changing shifts. Various consortia are 

leveraging facility expertise in many technical areas — for business processes aligned with 

development and production, process automation, manufacturing execution systems, IT, and data 

science — to transform new technologies into solutions that address specific business challenges. 

With new systems comes the need for new regulations, where regulatory confidence and internal buy-

in is paramount. According to one central node respondent: 

“we needed to make the required transition real to people — including having a working 

production unit — so they could experience physically what can be achieved, and also 

embrace the changes and challenges associated with it.” 

 

The goal for developing this reference facility is an entirely digitalised and virtual approach to 

the design and launch of new products. Here, the conventional new product introduction (NPI) 

process, where products are taken through design, manufacturing and supply stages sequentially and 

separately, is replaced by a digital approach that enables NPI in a rapid, connected and continuous 

E2E manner — ‘from microfactory-to-activated patient’. Rather than identifying and solving problems 

in isolation, manufacturing challenges are viewed holistically and managed as a team effort. Greater 

integration of R&D and manufacturing functions is enabling better understanding of the complete 

system of product design, manufacture and supply, through effective use of data, to enable rapid 

assessment of manufacturability, robustness, consistency and performance. 

 

4.3.2. Network integration: Role of nodes with high centralization 

Using the SNA approach (Parraguez et al., 2016), information exchanges between individual 

organisational entities are presented for the ‘Digitalisation Lab’ case in Figure 5. Four communities 

are interacting with 24 critical nodes and 143 edges (with a maximum partition density of 0.6057472), 

and are summarised as follows: 
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Figure 5. Network structure – Parallel pathway (SW→NE)  

 

 A platform-based COORDINATION subnetwork of 18 consortium partners revolves around 

six central nodes (all with eigencentrality measures > 0.82). The 12 remaining nodes form 

two distinct outlier networks each with a community of six members. They are designated 

here as LEFT- BRANCH and RIGHT- BRANCH respectively (eigencentrality measures in the 

range of 0.54-0.64).  

 The LEFT-BRANCH outlier network (nodes D08, D11, D13, D15, D17, and D19) represents 

an individual workstream led by a central academic partner (node D04) focused on platform 

technologies and ‘plug-and-play’ equipment development. 

 The RIGHT-BRANCH outlier network (nodes D07, D09, D10, D12, D14, and D22) represents 

an individual consortium work stream led by a lead industrial partner (node D02). Technical 

outcomes focus on both data organisation and analytics. 

 A community of eight members make up the APPLICATIONS subnetwork, which is based 

around four central nodes (academic institution D03; industry partners D01 and D02, and 

D24). The four remaining nodes represent stand-alone work streams and digital experiments 

led by specialist partners (D16, D18, D05 and D06).  
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 A REGULATORY subnetwork consisting of four core members (academic institutions D03 

and D04; MNCs D01 and D02) and the UK regulator (node D20) began collective 

engagements in 2016.  

 The PLATFORM DESIGN subnetwork is a three-way research-industry-government 

engagement (nodes D01, D03 and D21) to support collaborative industrial projects in the UK. 

The rationale for platform-level interventions is underpinned by: traditional market failures, 

spill-over effects associated with R&D activity, and difficulties in internalising the full benefits 

of training (BIS, 2015). 

 As part of platform design, all research strands and subnetwork communities develop new 

tools and training packages to support consortium activities. Accordingly, a not-for-profit 

organisation (node D22) with a focus on specialist skills acts as a strategic partner to industry 

in providing support to the UK’s Science Industry Partnership and membership forums. Node 

D22 is now also linked to the UK regulator (node D20) through consortium activities. 

 

The ‘Lab-on-a-Chip system’ case explores a dyadic partnership newly established to target 

techno-economic requirements for a range of increasingly decentralised applications. Organised in 

two segments — ‘core platform’ and ‘pilot applications’ — the project-focused initiative operates as a 

virtual institute headquartered at an academic institute in Ireland (node E01) and partners with a 

complementary mirror group at a German-based institute specialising in production technology (node 

E02). The core platform provides a basis for a series of pilot applications demonstrating bioanalytical 

assay formats, general chemistry and immunoassays, nucleic acid testing and cell analysis 

techniques. Specific assay targets are discussed with existing and potential industry partners who 

have an opportunity to set the direction for the pilots. Within a joint development environment aligning 

manufacturing and characterisation equipment, node E01 leads microfluidic design, simulation, 

prototyping, fluidic testing, project acquisition and management while node E02 is mainly responsible 

for ‘scale-up’ initiatives.  
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4.3.3. Innovation Performance: Modalities for mitigating risk  

High level strategic goals of the cases involve using a range of diverse digital technologies to 

‘connect’ previously disparate upstream and downstream operations. Key to this is the integration of 

data generated along the product lifecycle in a variety of digital contexts. In terms of data timescales 

— days, hours and minutes are no longer considered digital. Data integration is defined as the 

automatic generation, recording, and assembly of data streams and its subsequent presentation — in 

‘real-time’ — to provide meaningful information for optimising existing processes.  

In terms of parallel transitions from the SW to the NE quadrant, data and information is 

central to determining the viability (technical, operational, societal) of ‘continuous’ processing 

platforms and a suite of data tools to support more ‘localised’ production (‘microfactory’ concepts) and 

‘personalisation’ in terms of diagnosis (‘Lab-on-a-Chip’ systems). For example, novel design thinking 

and ethnographic approaches are being utilised to better understand the needs of the individual. The 

aim to ‘join up data’ and engage with the patient has resulted in new measures relating to ‘levels of 

parallelisation’ in the case of microfluidic platforms. Here, ‘scaling effects’ have led to new 

phenomena that enable entirely new applications that are not accessible with classical liquid handling 

platforms. For example, early diagnosis and prognosis of prostate cancer is increasingly moving 

towards evaluations based on a strategic combination of biomarkers (Mishra et al., 2018). This has 

greatly improved patient safety by minimising the risk of errors for individual patients by enabling 

integrated devices to address point-of-care challenges in a more simple and consistent manner (e.g., 

Mark et al., 2010). These advances reflect a changing ecosystem where multiple partners and 

‘platform strategies’ are favoured in delivering tailored solutions according to critical requirements of 

different applications for increasingly niche market segments, i.e., the capability to ‘parallelise’ multi-

parameter detection on the same device when compared to conventional single-marker methods. In 

terms of actors, new-to-sector ‘designers’ are increasingly talking directly to end-users, which has 

helped them to refine formal and informal connections and underscored the need to do so. This is 

evidenced by central nodes leveraging their extensive networks, particularly in scouting for new and 

new-to-the-sector partners.  

However, questions remain about data ownership (use and protection) and compensation in 

developed countries (Harrington and Burge, 2018). Who exactly will capture value, for example, 

platform sponsors, consumer users, developer users, or other platform participants? (Parker et al., 
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2018). And for remote locations and developing countries where digital literacy will be required to 

enable access and influence solutions? Hence, there is a concerted institutional focus on ‘digital 

standards’, where consortia are looking to engage with UK regulators in this space and gain expertise 

in the area of data and legal frameworks.  

  

5. Cross-case Analyses  

Using the cases outlined in section 4, we explore network effects relating to transition pathways and 

transformations impacting ‘current state’ 3-4σ sector performance. Specifically, we focus on 

innovations that challenge both conventional ‘batch-based’ philosophies in development and 

production and industry practices built around traditional ‘make-to-stock’ models.  

As per Edmondson and McManus (2007), we first use the base framework (see Figure 2) to 

link cross-case observations on transitions to intermediate and nascent theory development. As 

depicted in Figure 6, sequential transitions (SW→NW and SW→SE) positioned beyond conventional 

settings (e.g., the SW quadrant) enable us to explore provisional explanations of phenomena, the 

potential of new constructs and the relationships between these and well-established constructs. 

Subsequent sequential transitions (NW→NE and SE→NE) go beyond intermediate theory settings 

(e.g., the NW and SE quadrants). Based on these we propose tentative answers to novel questions of 

how and why these transitions take place (over other options and pathways) and tease out new 

connections among phenomena. Finally, parallel transitions (SW→NE) with potentially no 

intermediate framing enable us to explore platform-based phenomena based on ‘direct routes’ to 

synchronised digitalisation involving development, production, and supply network activities. 

In summary, as shown in Figure 6 — in terms of time scales — if T1 + T2 < T3, then 

sequential transitions are characterised by organisations and their networks largely leveraged legacy 

systems with ‘one side’ digitalised first to ensure a ‘rapid’ test to determine success or failure. As a 

rule, product development and production activities tend to be digitalised first before supply networks 

(SW→NW before SW→SE), hence, supply network reconfigurations remain largely reactive. 

 In the case of T1 + T2 > T3, the parallel pathway forces organisations to radically reconfigure 

and to rethink production/supply/regulatory networks, customer acceptance and business models in 

tandem. For example, pre-competitive consortia are ‘proactive’ in efforts to deliver new systems and 
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new regulations in a ‘non-conventional’ manner, as evidenced by E2E digital demonstrators (linked to 

our cases) that do not operate under current regulations. 

 

 

 

Figure 6. Base framework charting sequential (vertical and horizontal) and parallel (diagonal) 

transitions 

 

Findings to support these initial observations are outlined in our cross-case analyses in 

sections 5.1–5.3 and are again structured around the three analysis dimensions: strategic intent, role 

of central nodes, and innovation performance. Key summary points are outlined in Table 1. 

Transition         Pathway       Time
------------- ------------ -------

Sequential        SW→NW         T1

Sequential        NW→NE          T2

Sequential        SW→SE          T1

Sequential         SE→NE          T2

Parallel             SW→NE          T3

(New Platform)

T1 + T2 < T3

• ‘Inside-out’ network effects

• Leveraging legacy systems 

• Rapid test to success/failure

• ‘Quick’ regulatory approval cycles

T1 + T2 > T3

• ‘Outside-in’ network effects 

• Leveraging pre-competitive consortia

• Digital on both sides of platform 

• New systems and new regulations
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Table 1. Cross-case analyses 

 ‘Dial-a-Molecule’  

and ‘Golden Batch’  

‘On-Demand Clinical Supply’  

and ‘Smart Label’  

‘Lab-on-a-Chip System’  

and ‘Digitalisation Lab’  

Type of Network 

Innovation 

(Framing of 

cases) 

 

Digital Development  

& Digital Production 

 

Digital Supply Network 

 

Digital Development, Digital Production,  

& Digital Supply Network 

 

 

Transition  

 

Sequential 

 

Sequential 

 

Parallel 

 

Strategic intent: 

Aligning Business 

Models with 

Environmental 

Needs 

 

 Moving from ‘one-experiment-at-a-time’ 

traditional empirical approaches towards 

modelling-based design of drug 

products & manufacturing processes  

 Experimentation goes beyond traditional 

DoE by leveraging modelling tools & 

process analytical techniques to support 

delivery of targeted molecules & ‘robust’ 

processes  

 

 Traditional ‘make-to-stock’ supply 

chains enhanced through 

‘adaptive’ approaches enabled 

through digital information  

 Data systems reconfigured for 

improved traceability & 

compliance monitoring, requiring 

new regulatory constructs 

 

 Parallel reconfiguration paths to meet 

future techno-social sector requirements 

implying a ‘de facto’ platform approach 

with emergence of new design rules 

 Cases focusing on ‘data organisation’, the 

E2E integration of ‘modular’ equipment & 

continuous process innovations that 

operate at much lower and 

unconventional scales  
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 Sequential changes in predictive 

capabilities enabling ‘real-time’ 

comparison of batches against ‘ideal’ 

process states for selected processes 

 

 Sequential changes in process & 

packaging redesign supporting 

potential for more Quality 

Assurance (QA) dominant product 

releases in certain cases   

 Evidence that organisations have now 

scrapped ‘batch’ development, which 

could trigger future domination of ’make-

to-order’ models 

 

Network 

integration:  

Role of Nodes 

with High 

Centralisation 

 

 Multidisciplinary communities take 

active roles facilitating the development 

of collaborative research proposals, 

interdisciplinary mobility funding & proof-

of-concept awards 

 Principle nodes within the academic 

subnetwork co-developing initiatives as 

pairs of ‘pivots’ & ‘navigators’ related to 

their specialisms; brokering access to 

potential end-user groups 

 Virtual integrated networks of ‘asset 

libraries’ and advanced reaction 

 

 New ‘outcome-based’ product 

delivery models coordinated by 

clinical & commercial central 

nodes focused on quality & 

dependability measures relating to 

the ‘integrity’ of products 

 Specialised subnetworks 

commissioned to design clinical 

trials & protocols with built-in 

flexibility & agility 

 Consortium approach & 

subnetwork activities now 

 

 ‘Unique pairings’ & ‘platform-based 

strategies’ required to deliver an 

increasingly diverse scope of applications  

 Hybrid role of nodes with high centrality 

often interchangeable with multiple 

combinations in play, based around 

evolving modes of innovation 

 Central nodes increasingly using 

language around ‘new measures’, such as 

‘levels of ‘modularisation’, ‘scale 

juxtapositioning,’ capabilities for 

‘convergence’ & ‘precision’. 
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platforms made accessible by network 

members and their wider communities  

enabling active engagement with 

regulators  

 

Innovation 

performance: 

Modalities for 

mitigating risk 

 

 ‘Quality-by-Design’ (QbD) principles 

have emerged over time based on 

advanced control & monitoring 

strategies which are mitigating but linear 

 Initiatives have made multiple albeit 

small changes to existing batch-based 

processing routines  

 Pre-competitive focus on small 

molecules; high-volume low-variety solid 

oral dose forms dominant 

 

 

 

 

 

 Supply network design rules 

emerging linked to archetypes & 

segmentation around 

‘personalised’ solutions  

 While hitherto sequential in 

nature, network-centric 

experimentation around increasing 

SKUs sees partners leveraging 

consortium links  

 Moving towards more ‘coopetition’ 

at platform level with potential for 

rapid two-way transfer of design & 

manufacturing data 

 

 Relevance of network innovation 

dimensions (supply network & operations) 

becoming fundamentally different in 

parallel pathways  

 Consortium effect enabling shifts from 

‘passive’ interactions (single-firm) towards 

unique conversations & transactions 

beyond the ‘norm’ (platform-centric) 

 While coopetition on quality, 

dependability, service & cost required as 

“qualifiers”, competition now shifting to 

other measures, depending on new 

business models 
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5.1. Strategic Intent: Aligning Business Models with Environmental Needs 

Digital experimentation results in better targeted product designs, more optimised processes and 

enhanced customisation, as evidenced by our case studies. Increasing use of ‘digital workflow’ 

methodologies underpin the digital development and production cases (SW→NW and NW→NE 

pathways). As a result, it is theoretically feasible to avoid extensive experimental stages of 

development through data-driven model predictive control approaches for a series of process 

platforms. In practice, a hybrid approach is often adopted where parameter estimation, based on 

experimental results from traditional design of experiment (DOE) approaches, are used to assess 

specific process conditions (e.g., cooling rate, concentration, seed loading) using specialist software 

developed by SMEs. A common thread of enabling ‘crystal quality’ is evident for the case pair, which 

define both basic attributes of a ‘targeted molecule’, i.e., specific crystal-size distribution, shape, 

polymorphic form and purity (Laird, 2013), and ‘robustness’ in terms of ‘control’ and ‘right-first-time’ 

synthesis and crystallisation. In practice, predictive capabilities and ‘ideal’ process states are well 

developed for select processes in large-volume and low-variety contexts, for example, the 

crystallisation of model compounds such as paracetamol (acetaminophen) (Brown et al., 2018). 

For sequential pathways focused on supply (i.e., SW→SE followed by SE→NE), the use of 

‘just-in-time’ technology has demonstrated a step change in traditional ‘dependability’ measures such 

as ‘provide fast deliveries’, ‘meet delivery promises’ and ‘reduce production lead times’ (Boyer and 

Lewis, 2002) — from 4-6 months to <1 week. What is also clear is the impact of ‘quality’ in terms of 

supply chain information and its role in reducing waste within clinical supply. With improved 

information quality, zero-stock-out (patient-level) clinical supply chains with low waste and high 

velocity (and by association, lower cost) is a targeted business output, as is the strategic intent to 

extend the application to ‘make-to-order’ delivery models.  

In meeting basic future requirements of the pharmaceutical sector that support lower-volume, 

high-variety niche products, parallel pathways (SW to NE) enabled by platform-oriented approaches 

have highlighted the need for new design rules around ‘scale’. Enabled by ‘converging’ technologies, 

data and information, these parallel pathways operate with the new paradigms of ‘process 

intensification’, ‘modularisation’, and ‘combinations’ in continuous modes, which challenge the 

traditional location-decision logic (and that of the ‘large batch’ pharmaceutical plant). Data 

organisation is seen as a critical step in building predictive models (Mukherjee and Sinha (2017). 
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These models are essential building blocks for design rules that enable parallel development. For 

example, the design rules are required for integrating smaller footprints — in setting up E2E 

configurations that offer both flexibility in terms of production capacity, and speed in terms of ‘scale-

out’ — with digital twins providing additional options for distributed manufacturing-type blueprints 

(Brennan et al., 2015; Srai et al., 2016b).  

 

5.2. Network Integration: Role of Nodes with High Centralisation 

The combination of fundamental and applied research in drug discovery being pursued in academia is 

creating more opportunities for novel interactions and partnering models with industry (Tralau-Stewart 

et al., 2009).  

For digital development and production pathways (SW→NW; NW→NE), multidisciplinary 

communities of practice leverage knowledge gained from previous collaborations. This has lowered 

risk while bringing together multiple funded groups to tackle specific ‘grand challenges’. Firm practices 

pre-2011 (before this study commenced) can be best described as ‘single-firm led’ and as having a 

sequential nature, avoiding operational tasks that were loaded with risk in transitioning. Post-2011, 

consortia (e.g., CIM CMAC) have enabled a more network-centric collaborative and multi-disciplinary 

approach to evaluate business cases and risky investment decisions. Specific partners have been 

identified based on their specialisms and this has resulted in consortia growing well-coordinated 

networks of assets and resources.  

We examine digital supply pathways (SW→SE; SE→NE), in the context of growing patient 

involvement through information and communication technology and ‘intelligent’ technologies looking 

to transform wider healthcare provision. Again, innovations in this space are a marked departure from 

traditional ‘one-size-fits-all’ supply network configurations where initiatives have made multiple —

albeit small — changes to conventional routines. What is now clear is the need for more E2E 

collaboration at a system-level, as evidenced by the development of business models based around 

new ‘outcome-based’ product delivery models being coordinated by clinical and commercial central 

nodes. A common approach here has been to first build temporary partnerships to tease out explicit 

links between the ecosystem, the innovation and capabilities needed. We have seen the 

establishment of specialised subnetworks engaging with non-consortium partners on equipment to 

facilitate more ‘adaptive’ clinical trials.  
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Where traditional engagements involving conventional rules (e.g., around compliance) may 

typically result in a once-off interaction between a single firm and the UK regulator, the consortium 

approach is now enabling active engagement and two-way information exchanges with regulators. 

Collective conversations have centred on promoting ‘regulatory innovation’ and up-front agreement 

on, and validation of, a consortium programme of digital initiatives. An example is the case of adaptive 

clinical trials, with directed feedback on validation requirements involving pre-production and real-time 

production data to support ‘near-real time’ product release. This is particularly evident in the case of 

the parallel pathways (SW→NE), where ‘unique pairings’ are aiming to deliver an increasingly diverse 

scope of applications at ‘non-standard’ scales. Our cases highlight the interchangeable roles of key 

actors with multiple combination options (e.g., ‘integrator-allocator’, ‘pivot-coordinator’, ‘navigator-

broker’) based on the product’s or service’s stage of emergence and mode of innovation (e.g., a 

modular ‘plug-and-play’ technology, coupled with hot melt extrusion or 3D printing). Furthermore, our 

studies provide evidence of shifts away from industry standard ‘scale-up’ regimes and thinking with 

emerging design rules (idea of ‘scale juxtapositioning’) driven by novel SME-MNC combinations, i.e., 

tech entrepreneurs and industry incumbents.  

 

5.3. Innovation Performance: Modalities for Mitigating Risk  

Moderating practices in the pharmaceutical sector are often seen as ‘ultra-conservative’ and ‘old 

school’ compared to other industries that routinely implement sophisticated technologies to increase 

both process and product understanding and implementation (Rantanen and Khinast, 2015). As 

shown in sections 5.1 and 5.2, this ‘slow’ route of ‘incrementalism’ associated with sequential 

pathways is driven by entities avoiding operational tasks burdened with risk in ‘transitioning’. 

However, recent preliminary studies have shown that benefits of digitalisation most significantly 

outweigh the considerable risks, for example, in the area of digital production processes (BSI, 2016).  

To link innovation performance with specific risk-based regulatory approaches, we examine 

pathways in the context of (1) how manufacturing process factors affect product quality and 

performance and (2) the capability of process control strategies to prevent or mitigate the risk of 

producing poor quality products (FDA, 2004). Initiatives in primary manufacturing and formulation 

processing have acted, somewhat, as ‘show pieces’ resulting in only minor modifications to existing 

routines (e.g., less physical testing). Traditional control strategies for batch processing, have been 
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based around fixed recipes and profiles. For sequential pathways SW→NW and NW→NE, digital 

inputs relating to the quality control of unit operations have largely centred on ‘near-continuous’ 

monitoring conditions within mixing vessels, tablet presses and other critical equipment. Here, QbD 

principles are mitigating yet linear, evidenced by a sequential approach to API crystallisation, which is 

a key focus of three consortia outlined in section 4.1. Upstream and downstream operations (to 

crystallisation) continue to be ‘batch’ or ‘semi-continuous’ and operate as decoupled operations often 

with independent coordination and governance mechanisms (Srai et al., 2015b). This sequential 

approach to crystallisation has had a knock-on effect as it is essentially the ‘rate-limiting step’ that 

most influences subsequent ‘modular moves’ right up to when the crystal dissolves upon 

administration to a patient, enabling the molecular form of the drug to be absorbed (Brown et al., 

2018).  

For digital supply pathways (SW→SE; SE→NE), it is now possible to map emerging supply 

network design rules to segmentations based on product types in some cases (e.g., small molecule, 

formulation type, chemistry, stability), study design (complexity, shelf-life, phase and speed), 

customer demand profiles, technologies and risk profiles. Archetypes can also be developed through 

data analytics involving public domain data sources to identify opportunities to increase product 

personalisation capability and tailor supply chains accordingly. While hitherto sequential in nature, 

network-centric experimentation around increasing SKUs sees partners leveraging consortium links. 

This enables a reduction in investments at risk via delayed decision requirements (spanning both 

development and production contexts). As outlined in Table 1, the goals of participating organisations 

with a focus on traditional solid oral dose forms are changing and will require a move towards greater 

‘coopetition’ at a platform level. Here, ‘scale-out’ concepts are now radically different with potential for 

rapid two-way transfers of design (clinical) and manufacturing (commercial) information and data.  

For parallel pathways (SW→NE), the nature of the supply network and operations are 

fundamentally different in these transitions, with a shift from ‘standard’ dialogues and ‘passive’ 

interactions, towards ‘unique’ conversations beyond the ‘norm’. Multiple partners are now required to 

deliver a wide-ranging set of applications and future large-scale integration of, for example, ‘point-of-

care’ solutions that could move beyond the multiple risk approaches identified for disruptive 

innovation. Reflecting on collaborations, designed around platforms, a consortium co-founder and 

steering group member stated (REMEDIES, 2018):  
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“Before… [the launch of the consortium] collaborations were on [a] scale of each of our 

individual workstreams. We were advised that a programme with 24 partners, and the breadth of work 

we wanted to undertake, would be unmanageable. We managed to achieve this super-sizing by 

finding coherent themes, creating technical work packages, or Apps, that sat within our two 

overriding workstreams for the clinical and commercial supply chains.” 

 

It is argued that this platform effect could prompt the need to re-define the role of regulators 

beyond that of traditional regulatory control and governance tasks, to facilitate performance 

‘outcomes’ (e.g., Huber, 2013). In addition, while ‘coopetition’ on quality, dependability, service, and 

cost are qualifiers in platform moves, we argue that competition is shifting to other measures based 

on new business models (e.g., a batch-to-continuous-conversion tipping point, a small molecule to 

biologics strategic shift). More ‘continuous’ digital production processes, in conjunction with digital 

design, could enable future production of novel medicines without the intermediate role of batching, or 

the scheduling issues associated with traditional pharmaceutical manufacturing and supply. Real 

game-changing opportunities emerge when such technologies (digital tools for design, 3D printing, 

continuous manufacturing, smart packaging for compliance and counterfeit detection, mobile phone 

apps) converge and interact, for example, in supporting patient stratification and the target-driven 

design of nanomedicines and cell and gene therapies (Hare et al., 2017; Harrison et al., 2018b). 

 

6. Results: Research Propositions  

Drawing on the emerging technologies (e.g., advanced process analytics) and contexts (e.g., design, 

production, supply network) outlined in this study, we now explore theoretical implications that a 

series of digital interventions could bring to theory and practice. For example, how relevant are 

‘conventional’ theories of supply chain innovation today in addressing network-centric digitalisation 

and complementary digital innovations. Hence, we articulate the following propositions in this section 

on how digitalisation could affect development, production and supply networks. See Appendix D for a 

summary of the propositions and evidence base from our cases that support their development. 

Our initial discussions, based on the cross-case analyses, began with an overarching 

observation regarding the nature of cumulative capabilities. Here, we first explore what digitalisation 

means for conventional core constructs — quality, dependability, speed and cost. Organisations 
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continue to view measures such as ‘quality’ and ‘dependability’ as critical, for example, in digital 

supply contexts as relating to ‘integrity’ ‘transparency’ and ‘security’, as well as improved ‘quality’ for 

the end-consumer (e.g., availability and quality of information ensuring specification compliance). In 

summary, the sand cone model and conventional supply network dimensions (e.g., Srai and Gregory, 

2008) work well in sequential pathways; however, the nature of the constructs are continually evolving 

and are driven by central actors and their networks. The following two propositions serve as 

overarching principles, in terms of sequential pathways: 

 

Proposition 1A: When transitioning from Conventional–Conventional to Digital–Conventional 

or Conventional-Digital configurations, quality and dependability processes are established by 

central network actors before cost and responsiveness. 

Proposition 1B: When transitioning from Digital–Conventional (or Conventional–Digital) to 

Digital–Digital configurations, the presence of quality and dependability processes mediate 

the risk of achieving desired cost reduction and responsiveness outcomes.  

 

Second, we examined how organisations and networks aim to manage the changing nature of quality, 

dependability, speed and cost definitions and any underlying trade-offs (as per Boyer and Lewis, 

2002) in a digitalisation setting. Our study finds that to avoid resistance and mitigate organisational 

risk, sequential pathway initiatives continue to make numerous yet minor changes at the individual 

unit operations level. While ‘modular’ batch arrangements (enabled by process intensification 

initiatives) have replaced more conventional batch-based processing routines, maintaining inventories 

and performing off-line quality control testing remain the norm. In summary, conventional 

reconfigurations also carry risk (and are in line with propositions 1A and 1B). Focus continues to 

centre on lower-level measures that are easier to handle in conventional settings. As a result, 

sequential transitions (e.g., SW→NW; NW→NE and SW→SE; SE→NE) may never quite arrive at the 

end-goal (NE) because of variations in the modular nature of the innovations, cycle time 

considerations and desired delivery targets. Thus, we offer three additional propositions as 

overarching principles to address these issues. 
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Proposition 1C: Modular moves by central actors serve as risk abatement mechanisms in 

delivering outcomes (for example, quality and dependability, responsiveness and cost 

reduction).  

Proposition 1D: In order to cut the cycle time (T1+T2) it is desirable to stay conventional 

either on the demand or supply side in the intermediate stage. 

Proposition 1E: The basis for competition after the collaborative stage is associated with the 

precision with which you can deliver operational measures. 

 

In contrast, the parallel pathway is different, with numerous dimensions of changes in each 

digitalisation effort. Here, firms need to consider the changing industrial landscape in incorporating 

emerging business model measures, and risk abatement mechanisms (e.g., institutional engagement 

and the confluence of multiple partners; degrees of freedom in ‘stress-testing’ the existing regulatory 

regime, product architectures and standards). The following two propositions serve as overarching 

principles in terms of parallel pathways: 

 

Proposition 2A: Goals for transitioning from Conventional–Conventional to Digital–Digital 

configurations are aligned with the strategic intent of new business models. 

Proposition 2B: When transitioning in parallel form from Conventional–Conventional to 

Digital–Digital configurations, organisations attempt to leverage all four measures (e.g., 

quality, dependability, responsiveness, cost reduction) simultaneously. 

 

In terms of regulation, traditional batch processing with new digital factory elements (process 

analytics) has seen firms following the same conventional rules (e.g., for compliance), which has 

resulted in transitory exchanges with the regulator. In continuous E2E and micro-factory cases, new 

rules, multiple engagements, multiple partners, eco-system and platform thinking, and other 

‘unconventional’ practicalities are in evidence. The mode of innovation is also changing here – linked 

to evolution/maturity (evidenced by firms abandoning ‘batch’ development in favour of ‘continuous 

flow’ approaches). A rapidly growing number of consortium-driven cases based around continuous 

processing have been identified, as opposed to fleeting early successes (one-off case studies) 
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observed in the traditional firm-firm competition phase pre-2011. In summary, three additional 

propositions are offered as overarching principles in terms of parallel pathways. 

 

Proposition 2C: New ‘platform-driven’ risk abatement mechanisms are brought into play by 

central nodes where the risks in this transition are moderated by network centric platform 

constructs (e.g., regulatory support to such platforms). 

Proposition 2D: There is no intermediate stage in defining platform-based design rules. Both 

the demand and supply side of the platform much be digitalised simultaneously to reduce 

cycle time. 

Proposition 2E: Following the collaborative stage the basis for competition is associated with 

the ability to redesign the business model. Such redesigns often lead to alternative measures 

beyond quality, dependability, responsiveness and cost as the critical success factors. 

 

 

7. Discussion  

Figure 7 provides an integrated view of the ten propositions discussed thus far into sequential 

and platform-based models for digitalisation pathways. The sequential model at the top of Figure 7 is 

centred on network-based collaboration; the outcomes are moderated by modular moves. Firm-level 

‘experimentation’ to enhance collaborative work can take many forms yet are based on traditional 

performance measures such as cost, quality, service, and dependability (and an ability to offer 

improvements >4σ). On the other hand, the parallel pathway model at the bottom of Figure 7 

leverages the creation of platforms where central actors play an integrating role involving a series of 

digital inputs in order to generate outcomes relating to new business models. Firm-level 

‘experimentation’ involves ‘customisation’ in this platform setting. As digital transformation implies new 

technologies, standards, and radically different interpretations of performance measures (e.g., 

‘quality’, ‘dependability’ ‘service’ and ‘cost’, as examples from our cases) the risks in transitions are 

being moderated by the presence of new network-centric constructs. Quality, dependability, service 

and cost now act as qualifiers, as partner organisations attempt to leverage all four measures 

simultaneously to compete on different platform/system measures.   
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Figure 7. Integrative View of Sequential and Parallel Digitalisation Pathways 

 

 

7.1. Comparison between Sequential and Parallel Digitalisation Pathways 

7.1.1. Overlapping and divergent results 

Overlapping features involving sequential and parallel digitalisation pathways include a collective 

moderating effect of the consortium approach that is evident in de-risking projects and enhancing 

resources (with communications between subnetworks formed). Vulnerabilities associated with 

moderating practices and transition are demonstrated by the case studies, where sequential and 
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parallel pathways in each case require configuration changes. A key question here is about the 

drivers of pathways and how firms ‘handle’ configuration change i.e., sequential (and never arrive at 

the end-goal) versus parallel transitions (loaded with risk).  

This research suggests that sequential models (e.g., the sand cone) begin to break down as 

they encounter a ‘perfect storm’ (a dust storm?) in a digital context. We present evidence of emergent 

business model measures arising from the experiments/cases in diagonal pathways only. Here, the 

risks in the parallel transitions are moderated by the new network constructs, and platform-based 

design rules, which also amplify value creation.  

 

7.1.2. What sequential pathways offer that parallel pathways do not  

Quinn (1978) proposed that most effective strategies tend to emerge step-by-step from an iterative 

process in which organisations probe the future, then experiment, and learn from a series of partial or 

incremental commitments. While moderating firm practices are often sequential, avoiding those 

actions that are loaded with risk in transitioning to a future (desired) state, modifications can be 

immediate in instances where no regulatory changes are needed. As outlined in our case studies, 

they can be easier to define (compared to uncertain, and hypothesis-driven, platform-based 

developments), hence, organisational buy-in is easier. Finally, our sequential cases offer a myriad of 

‘exceptions’ to existing rules that serve to promote sequential moves when improving operational 

routines. This finding supports a recent study on pharmaceutical regulation which reports resistance 

to the implementation of Global pharmaceutical norms for quality standards where, most notably, 

variation among developed countries is marked (Pezzola and Sweet, 2016).  

 

7.1.3. What parallel pathways offers that sequential pathways do not 

In transition paths to ‘on-boarding’, internal initiatives by incumbent firms tend to self-serve and are 

often characterised by linear growth. A ‘design-first’ then ‘figure-out-how-to-attach-to-a-system’ 

mentality has resulted in ‘inside-out’ network effects that are sequential in nature. With increasing 

requirements for platform shifts, our cases offer a series of new design rules to which the ‘exceptions’ 

(see sec. 7.1.2) will ultimately need to adhere to. In summary: 
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 Platforms are digital on all sides and accelerate via network effects: ‘True’ platforms are 

100% digital on all sides (supply and demand, or design-production-supply network in this 

study). 

 Platforms promote ‘outside-in’ network effects: In coupling internal and external ecosystems, 

platform approaches promote ‘outside-in’ network effects that are ‘parallel’. ‘Outside-in’ 

network effects are truly collaborative and can influence and leverage the needs of 

incumbents. This means that work from one subnetwork gets impacted by another 

subnetwork. That is, parallel moves trigger ‘flywheel effects’, enabling ‘discoverability’ and 

‘visibility’ at each network node, enriching the larger network or ecosystem 

 ‘Outside-in’ network effects enable ‘parallel’ moves in terms of risks: Leadership is critical to 

navigating risk. In minimising risk of failure, legacy firms sacrifice the benefits of success, 

whereas, platform companies foster an innovation and risk-taking culture. In pre-competitive 

consortia, network integration sees central nodes (actors) reducing friction between the 

different stakeholders. 

 

7.2. Academic Contributions 

The rapidly expanding role of digital technologies across industry sectors motivates this paper, along 

with the challenges and opportunities these interventions create in driving structural shifts in supply 

networks linked to development and production. This study presents specific information and details 

regarding pathways to delivering future scenarios across design, production and supply networks and 

assessment of the barriers to implementation. It examines digital pathways to new product 

development and supply network development and explores the contexts in which ‘traditional’ project 

approaches can benefit organisations.  

The operations and supply network digitalisation concepts outlined in this paper contribute to 

a growing digital supply network literature domain, specifically around: (1) product variety, consistency 

and functionality, (2) inventory and customisation options and, (3) evolving industry structure. 

Grounded in the extant literature, our sequential and platform-based models address network-centric 

innovation in three main areas: (1) strategic intent and the fit between business models and 

environmental needs, (2) network integration and the role of the central nodes, and (3) innovation 

performance in terms of risk-adjusted outcomes. Using a base framework (2x2 matrices), we explore 
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theoretical implications in a series of conventional and digital contexts. Our casework focuses on a 

UK perspective with a ‘flashlight view’ on a complete digitalisation element. We decouple the digital 

stories using an industrial systems’ mapping approach to capture emerging platforms, activities and 

actors. Observations related to our digital cases suggest a need to re-examine or modify existing 

theories and well-developed constructs that have been studied over time, for example, cumulative 

capabilities and trade-offs.  

First, our study reports on how organisations revise traditional practices using digitalisation 

capabilities (e.g., inventory management, production scheduling, and batch sizing). Digitalisation is 

driving the need for change, but also forcing organisations to radically reconfigure, to adopt platform 

strategies and parallel transitions, and decouple functional solo or single-firm optimisations.  

Second, business models and consortia engagements result from emergent risk management 

mechanisms arising from digital differentiation. A key question for organisations is whether digital 

capabilities are moderating parallel pathways, that is, whether risks in this transition are moderated or 

whether opportunities are intensified. Here, for both demand and supply sides, firms need to consider 

the business ecosystem — incorporating their business model, their institutional stakeholders and 

emerging digital standards, which offer empirical opportunities for follow-on theory development.  

Our observations on sequential and parallel digitalisation in networks, and allied data-driven 

decision-making, which is consistent with Guha and Kumar (2017), offer opportunities for follow-up 

optimisation research. For instance, how would network-centric measures with either sequential or 

platform-based modalities affect goal programming associated with three-dimensional concurrent 

engineering (3D-CE) (Fine et al., 2005)?  

 

7.3. Managerial Contribution 

From a practice perspective, this research applies and advances operations and supply chain 

digitalisation concepts to provide insights and inform both strategic and operational decision-making. 

For example, technological advances change the nature of trade-offs by advancing the overall 

‘performance frontier’ (Boyer and Lewis, 2002), however, their study is a static case study looking at 

‘performance frontiers’ in various combinations. Our study explicitly examines transitions up and 

across this ‘frontier’, based on business model needs, how and when sequential and parallel platform-
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based innovations are similar and different, and when an organisation or network of partners could 

benefit by choosing one or the other. 

We demonstrate how transitions and networks organise and behave (often very differently), 

and where and how return-on-investment (ROI) and risk drive the pathway choice. In sequential 

pathways, ‘use cases’ have typically been the modus operandi but have often been characterised by 

‘narrow tactical items’ (e.g., new technology adoption at one process step that is implemented for just 

one product type) as a means of getting internal buy-in within an organisation. Hence, ‘attractive’ 

cases often determine the pathway choice which can result in short-term incremental gains (but 

possibly never the ‘strategic intent’ end-point in the long-term). 

In contrast, parallel pathways require the development of hypotheses and a future vision at a 

strategic level. As immediate ROI is not apparent — investing in a platform requires many players and 

pooled resources (intellectual and financial). The consortium effect serves to ‘de-risk the risk 

conversation’, which helps consortium partners sell the hypotheses to internal stakeholders in their 

respective organisations and defer collective decisions on, for example, the regulatory pathway until 

necessary. This is a departure from when organisations had to attempt strategic breakthrough 

agendas with large ROI pressures on their own, which were often doomed to fail from the outset (akin 

to activities pre-2011 where single-firm investments in continuous processing development are 

estimated to have been in excess of £800 million in aggregate yet resulted in low adoption rates of 

5% and often only at pilot scales (e.g., RSC, 2011; Badman and Trout, 2015). We observed the 

flywheel effect of multiple pre-competitive collaborations, which suggests that platform approaches 

need both radical and incremental projects to support transition from their outmoded established 

practice. 

 

7.4. Limitations and Future Directions 

We adopted a consortia mapping framework with temporal and completeness elements in order to 

capture case studies involving tens of prominent sector stakeholders over eight years. These 

consortia maps illustrate a cumulative effect over a finite timeframe and are consistent and legitimate, 

ensuring generalisability based on the industrial systems mapping approach outlined in section 3.2. 

The approach enabled us to build evidence one-step-at-a-time; that is, to develop micro-maps 

charting evolutions and patterns pre-2011, from 2011-2014 (sequential cases), and from 2014-2018 
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(sequential and parallel cases) with supporting evidence from published papers, industry white 

papers, and consortium annual reports. However, this provided us with a ‘once-off’ sector view — we 

captured only 16 cases and associated organisations, and it should be clarified that parallel moves 

need not map onto platforms every time, i.e., in a structural sense, it is possible to have parallel 

development without platform-based design rules. We have elected to ignore that aspect of 

development because in our observed data, the network entities did not wish to take the risk of 

parallel development without the benefit of platform-based design rules. 

While we examine other cases to inform our narrative on how the pharmaceutical industry is 

evolving, and UK consortia links to other Global programmes and geographies (e.g., the US-based 

Centre for Structured Organic Particulate System - CSOPS), it is possible that other scholars and 

practitioners could have different views on digitalisation. Another limitation of this study is a focus on 

developmental target drugs that are based on small molecules and on solid oral dose forms. With the 

trend towards large molecules (i.e., biologics) and drug device combinations, future research will 

include testing and refining the models and frameworks using case studies involving other industry 

segments (e.g., stratified medicines).  

Replication and extension of our work (e.g., testing and optimisation of the 10 propositions) in 

other ecosystems such as Google’s Alphabet firms or the many network-centric partnerships 

assembled by Amazon could help to extend our collective understanding of sequential and platform-

based digitalisation.      
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Appendix A: UK pharmaceutical and biopharmaceutical technology road map 2012-2025+ 

Source: UK Technology Strategy Board/Innovate UK (TSB, 2012), adapted by the authors  

 

Appendix B: Consortia 

As shown in Table B1 below, six consortia were sampled over an eight-year period (2010–2018), with 

the technologies or innovations under study determining the specific type of network. The six 

consortia can be further classified based on their funding sources and specialties as follows:  

 The Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation 

(CIM CMAC), the Future Continuous Manufacturing and Advanced Crystallisation Research 

Hub (CMAC Hub) and Dial-a-Molecule Grand Challenge Network are funded by the UK’s 

Engineering and Physical Sciences Research Council (EPSRC). They largely focus on R&D 

involving the chemical synthesis of small molecule compounds (with the final product being 

the traditional pill) and their subsequent exploitation in industry. Research funding of 

approximately £60 million was allocated by EPSRC and other institutional actors across these 

three consortia and matched by industrial partners (total investment estimated at ~ £120 

million). Supporting initiatives include the £2.6 million Intelligent Decision Support and Control 
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Technologies programme (ICT CMAC, 2018) in collaboration with a number of industrial 

stakeholders (2013-2018), as well as a £4.3 million Doctoral Training Centre (2012-2018) as 

part of the UK’s ‘Manufacturing the Future’ programme (EPSRC, 2012). A UK Research 

Partnership Investment Fund (UK RPIF) capital award (£32.6 million in total) specifically 

supports research and innovation around the development of bespoke, mobile and 

reconfigurable manufacturing platforms (UK Research and Innovation, 2018b). 

 Strategic goals of the Advanced Digital Design Transforming Pharmaceutical Development 

and Manufacture (ADDoPT) and Reconfiguring Medicines End-to-End Supply (REMEDIES) 

consortia centre on design, clinical and commercial activities focused on developing E2E 

pharmaceutical supply chains. This involved connecting key players, including major CMOs, 

equipment manufacturers along with knowledge transfer networks and healthcare providers. 

Sponsored by the UK Department for Business, Innovation and Skills (BIS) Advanced 

Manufacturing Supply Chain Initiative (AMSCI), matched funding from industrial partners 

brought research funds to ~ £42million.  

 It has been argued that organisations should strategically shift their R&D investment to large 

molecule compounds, also known as biopharmaceuticals or biologics (Waltz, 2014). The 

average biologic offers a greater return on investment owing to higher average peak sales 

and less drop-off in sales following a loss of exclusivity (David et al., 2010). The sixth 

consortium, while not UK but Ireland-based, was selected as it represents a platform-based 

initiative between two European research institutes that demonstrates transitions in a 

biologics context. 

 

Given the complexities in effectively engaging with all entities involved in the network 

innovation cases, multiple engagements with the central nodes (predominantly, the consortium and 

work-package leaders especially in terms of research and commercial strands of activities) was 

conducted and data regarding structure and information flows between these central nodes and key 

partners was sought (maximum number of nodes was fixed at 24). Where applicable, we targeted 

engagement with academic institutions, MNCs and SMEs involved in three or more of the consortia 

for data triangulation efficiency and increased validity of our findings (Eisenhardt and Graebner, 

2007).  
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Table B1. Overview of our 16 case studies across six network innovation categories 

Case 

ID 

Network 

Innovation 

Category 

Product, 

Process, or 

Capability 

(supporting 

journal articles or 

industry 

commentary) 

Network 

Type 

Network Name 

(Timeframe of activities & funding) 

Weblinks 

 

Digital Element  

 

Technology/ 

Network Innovation 

Intervention 

1 Digital 

Design  

Drug Discovery 

Portal  

(Clark et al., 

2010) 

Academic 

Network  

Centre for Innovative Manufacturing in 

Continuous Manufacturing and Crystallisation 

(CIM CMAC) (2011-2016) 

https://www.cmac.ac.uk/CIM_Summary.htm 

 

 

Platform linking 

scientists with 

appropriate 

chemical 

expertise 

through a target-

matching virtual 

screening 

approach 

 

Digital workflows & 

intelligent virtual 

screening enabling 

standardised data 

acquisition, analysis & 

reporting approaches  

https://www.cmac.ac.uk/CIM_Summary.htm
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2 Digital 

Design  

Machine 

Learning & 

Prediction (Chi 

et al., 2009) 

Academic 

& 

Industrial 

Network 

Future Continuous Manufacturing and Advanced 

Crystallisation Research Hub (CMAC Hub) 

(2017-2027) 

https://www.cmac.ac.uk 

 

Prediction of 

experimental 

outcomes 

Initial screening of drug 

compounds to predict 

success in compound 

activity & interaction; 

accelerating the scale-

up, design & modelling 

of new manufacturing 

processes 

3 Digital 

Design  

‘Dial-a-

Molecule’ 

(Kilpin et al., 

2015; Houben & 

Lapkin 2015; 

Sans & Cronin, 

2016) 

Academic 

& 

Industrial 

Network 

Dial-a-Molecule Grand Challenge Network 

(2010-2020) 

http://generic.wordpress.soton.ac.uk/dial-a-

molecule/ 

 

Advanced Digital Design Transforming 

Pharmaceutical Development and Manufacture 

(ADDoPT) programme (2015-2019) 

https://www.addopt.org 

 

 

Transform 

synthesis to 

become a data-

driven discipline 

Better predicting 

properties & 

performance of target 

molecules; automatic 

discovery & optimisation 

of chemical processes 

https://www.cmac.ac.uk/
http://generic.wordpress.soton.ac.uk/dial-a-molecule/
http://generic.wordpress.soton.ac.uk/dial-a-molecule/
https://www.addopt.org/
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4 Adaptive 

Clinical 

Supply  

‘On-Demand 

Clinical Supply’  

(Moore, 2015) 

Global 

MNC-led 

network of 

academic 

& 

specialist 

partner 

Reconfiguring Medicines End-to-End Supply 

(REMEDIES) programme (2014-2018) 

https://remediesproject.com 

 

Digitally-enabled 

‘on-demand’ 

supply & new 

protocols 

Assembly-to-order 

investigational patient 

packs 

5 Adaptive 

Clinical 

Supply  

Patient Kit 

‘Tagging’ 

(Harrington et al., 

in press) 

Global 

MNC-led 

network 

REMEDIES Convergence of 

multiple digital 

technologies in 

clinical 

Integrating packaging 

and continuous 

manufacture 

developments to identify 

opportunities to tag 

patient kits 

6 3D Printing 

including 

‘Lab-on-a-

Chip’  

3D Printing 

(Clinical)  

(Alomari et al., 

2015) 

Joint 

initiative 

led by two 

Global 

MNCs & 

REMEDIES Additive 

Manufacturing 

for personalised 

medicines 

‘On demand’ 

extemporaneous 

manufacture of unit 

doses 

https://remediesproject.com/
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their 

networks 

7 3D Printing 

including 

‘Lab-on-a-

Chip’  

3D Printing 

(Drug Product)  

(Khaled et al., 

2015) 

Academic 

& 

Industrial 

Network 

CMAC Hub 

 

Additive 

Manufacturing 

for personalised 

medicines 

3D printing of drug 

combinations with 

specific drug release 

profiles 

8 3D Printing 

including 

‘Lab-on-a-

Chip’  

‘Lab-on-a-Chip 

System’  

(Ihalainen et al., 

2015; Smith et 

al., 2016; Wu et 

al., 2018) 

 

Joint 

initiative 

led by two 

European 

Research 

Institutes  

FPC@DCU (2018-2023) 

https://www.dcu.ie/fpc/index.shtml 

 

Novel 

diagnostics, 

pharmaceutical 

production & cell 

line 

developments 

incorporating 

digital 

connectivity 

Portable point-of-care 

solutions involving 

biomolecules & cell-

based applications 

9 Process 

Analytics 

 ‘Digital Twin’ 

(The Economist, 

2017) 

 

Specialist  

SME-led 

network 

CMAC Hub 

 

Virtual replica of 

experiments, 

equipment & 

measurements 

Data from small-scale 

experiments to virtually 

designed full-scale 

https://www.dcu.ie/fpc/index.shtml
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manufacturing process 

‘digital twins’ 

10 Process 

Analytics 

‘Golden Batch’ 

(Wojewodka et 

al., 2011) 

 

Academic 

& 

Industrial 

Network 

CIM CMAC 

CMAC Hub 

Model-based 

predictive 

control 

Real-time comparison of 

current batch with ideal 

process state  

11 ‘Intelligent’ 

Packaging 

‘Agile Pack’ 

(Moore, 2015)  

Global 

MNC-led 

network 

REMEDIES Methods for 

agile & cost-

efficient 

component 

supply 

 

Next generation RFID 

technologies; 

Compliance & anti-

counterfeiting focus 

12 ‘Intelligent’ 

Packaging 

‘Smart Label’ 

(Moore, 2015)  

UK 

Technolog

y 

innovation 

centre & 

its network 

partners 

REMEDIES Digitally tracking 

individual packs 

within the supply 

chain — from 

manufacturer to 

healthcare 

Near-field 

communication tags, 

printable electronics 

components & cloud-

based software systems 

for effective tracking of 

pharmaceutical products  
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 professionals & 

patients 

13 ‘Intelligent’ 

Packaging 

 

‘Mobile Apps’ 

(Bauer & 

Murphy, 2017) 

 

Specialist  

SME-led 

network 

REMEDIES Digital leaflets & 

mobile phone 

apps 

Links with serialisation 

for track & trace 

14 Continuous 

Processing 

End-2-End 

‘Mobile 

continuous 

platforms’ 

(Mulgrew, 2017) 

  

Academic 

& 

Industrial 

Networks 

CMAC Hub 

REMEDIES 

Modular large 

lab/small pilot 

plant 

configurations 

capable of a 

range of 

chemistries  

Open access asset 

network for use by 

contract manufacturing 

organisations (CMOs) & 

primes 

15 Continuous 

Processing 

End-2-End 

‘Digitalisation 

Lab’ 

(McLaughlin, 

2016) 

 

Global 

MNC-led 

initiative 

Global MNC & specialist network partners 

REMEDIES 

Proof of Concept 

reference facility 

integrating real 

equipment 

streams  

Network enabled E2E 

digitalised model acts as 

a digital factory blueprint 

for a network of 

manufacturing sites 
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16 Continuous 

Processing 

End-2-End 

‘Microfactories’ 

(Harrison et al., 

2018a) 

 

Academic 

& 

Industrial 

Networks 

CMAC Hub 

 

Integrated 

predictive 

development 

pathways 

Rapid assessment of 

Manufacturability, 

Robustness, 

Consistency & 

Performance 
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Appendix C: Case study protocol outline 

Section 1. Exploring the Digital Evolution of Product Supply Networks 

Aim: This research project aims to explore the operations management challenges of digitalisation. 

Our exploration involves examining conventional constructs in a series of digital development and 

manufacturing contexts. Consortia-led experiments/projects were specifically identified that could lead 

to radically new supply network design principles. 

Background: Beyond transforming how products and services are designed, manufactured and 

delivered, digitalisation can enable new approaches to both designing and managing future supply 

networks. This has unprecedented implications for Operations and Supply Chain Management 

(OSCM) research and practice. Previous studies have focused on ‘shoring up’ through ‘conventional’ 

Supply Network Configurations (Structure, Dynamics, Relationships, Governance, and Coordination). 

We are keen to revisit these findings, in light of the emergence of digital technologies, to explore the 

rapidly expanding role that digital technologies play across many industry sectors, and the challenges 

and opportunities these changes present to drive structural shifts in supply networks. 

Approach: We wish to interview key stakeholders involved in consortia and obtain key insights from 

interviews to reveal emerging trends and explore generalised patterns. This study is built on 

established mapping techniques previously employed by the authors. 

Outputs: This research project aims to identify and codify key trends in the digitalisation of supply 

networks. The findings will be used to support organisations in making critical decisions in response 

to such trends, and to inform programmes and consortia that are looking to manage innovation risk 

and outcomes. 

Section 2. Statement of confidentiality 

All your responses will be anonymised and all information that could in any way permit the 

identification of your organisation will be regarded as strictly confidential. It will be used for the 

purposes of this research only and will not be released or disclosed without your prior consent. You 

can withdraw your participation at any point of this project. 

Section 3. Semi-structured interviews  

Primary data involving digital experiments, programmes, and consortia 

1) What is your position in your organisation, and how long have you been in post? 

2) What is your role/are your roles within the consortia you are involved in? 
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3) Interviewees will then be asked to define a discrete project activity within a consortium programme. 

Criteria for selection of activity: 

a. Involves a technology intervention 

b. Has a digital component 

c. Development or Manufacturing (Commercial) context 

d. Involves one or more of the following: Product, Service, Process or Capability, Supply 

Network 

4) Other (e.g., Institutional, Regulatory) 

Section 4. Base Framework 

 

(1) Interviewer explains base framework (x-axis, y-axis, criteria for ‘High’ and ‘Low’ within 

quadrants) 

(2) Interviewees will then be asked to ‘self-identify’ the position of their activity on the grid 

(3) Interviewees will then be asked to describe what best describes this positioning  

(4) Interviewees will then be asked to provide evidence to support this positioning (e.g., 

secondary data sources to validate, and give context) 

(5) Interviewees will then be asked to comment on effects of digitalisation on:  

 Conventional measures and trade-offs (based on Ferdows and DeMeyer 

1990; Boyer and Lewis, 2002) 

(6) Interviewees will then be asked to comment on: 

 Role of central nodes 

 How the consortia manage innovation risk 

 Strategic integration of goals 

 Any other discriminating features, from a network innovation perspective
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Appendix D: Summary of Research Propositions 
 
Table D1. Sequential pathway propositions and evidence base  
 

# Pathway  Research Proposition Supporting cases 

1A Sequential When transitioning from Conventional–

Conventional to Digital–Conventional or 

Conventional-Digital configurations, quality 

and dependability processes are established 

by central network actors before cost and 

responsiveness 

 ‘Dial-a-Molecule’  

 ‘Golden Batch’  

 ‘On-Demand Clinical Supply’  

 ‘Smart Label’ 

  

1B Sequential When transitioning from Digital–Conventional 

(or Conventional–Digital) to Digital–Digital 

configurations, the presence of quality and 

dependability processes mediate the risk of 

achieving desired cost reduction and 

responsiveness outcomes 

 3D Printing (Clinical) 

 3D Printing (Drug Product) 

 ‘Mobile continuous platforms’  

 ‘Microfactories’ 

1C Sequential Modular moves by central actors serve as risk 

abatement mechanisms in delivering 

outcomes (for example, quality & 

dependability) 

 ‘Dial-a-Molecule’; ‘Golden Batch’; 

‘Digital Twin’  

 ‘On-Demand Clinical Supply’; 

‘Smart Label’; Patient Kit ‘Tagging’ 

1D Sequential In order to cut the cycle time (T1+T2) it is 

desirable to stay conventional either on the 

demand or supply side in the intermediate 

stage 

 Drug Discovery Portal; Machine 

Learning & Prediction 

 ‘Mobile Apps’; ‘Agile Pack’  

1E Sequential Basis for competition after the collaborative 

stage is associated with the precision with 

which you can deliver operational measures 

 ‘Dial-a-Molecule’; ‘Golden Batch’  

 ‘On-Demand Clinical Supply’; 

‘Smart Label’ 

 3D Printing (Clinical); 3D Printing 

(Drug Product); ‘Mobile continuous 

platforms’; ‘Microfactories’ 
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Table D2. Parallel pathway propositions and evidence base 
 

# Pathway  Research Proposition Supporting cases 

2A Parallel Goals for transitioning from Conventional–

Conventional to Digital–Digital configurations are 

aligned with the strategic intent of new business 

models 

 ‘Lab-on-a-Chip System’ 

 ‘Digitalisation Lab’  

2B Parallel When transitioning in parallel form from 

Conventional–Conventional to Digital–Digital 

configurations, organisations attempt to leverage 

all four measures (e.g., quality, dependability, 

responsiveness, cost reduction) simultaneously 

 3D Printing (Clinical); 3D Printing 

(Drug Product); ‘Lab-on-a-Chip 

System’ 

  ‘Mobile continuous platforms’; 

‘Digitalisation Lab’; ‘Microfactories’ 

2C Parallel New ‘platform-driven’ risk abatement 

mechanisms are brought into play by central 

nodes where the risks in this transition are 

moderated by network centric platform constructs 

(e.g., regulatory support to such platforms) 

 ‘Lab-on-a-Chip System’ 

 ‘Digitalisation Lab’ 

2D Parallel There is no intermediate stage in defining 

platform-based design rules. Both the demand 

and supply side of the platform must be 

digitalised simultaneously to reduce cycle time 

  3D Printing (Clinical); 3D Printing 

(Drug Product); ‘Lab-on-a-Chip 

System’ 

  ‘Mobile continuous platforms’; 

‘Digitalisation Lab’; ‘Microfactories’ 

2E Parallel Following the collaborative stage, the basis for 

competition is associated with the ability to 

redesign the business model. Such redesigns 

often lead to alternative measures beyond 

quality, dependability, responsiveness and cost 

as the critical success factors 

   3D Printing (Clinical); 3D Printing 

(Drug Product); ‘Lab-on-a-Chip 

System’ 

  ‘Mobile continuous platforms’; 

‘Digitalisation Lab’; ‘Microfactories’  

 


