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Mattéo Delabre1, Nadia El-Mabrouk1, Katharina T. Huber2, Manuel Lafond3,
Vincent Moulton2, Emmanuel Noutahi1, and Miguel Sautie Castellanos1
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Abstract. Classical gene and species tree reconciliation, used to in-
fer the history of gene gain and loss explaining the evolution of gene
families, assumes an independent evolution for each family. While this
assumption is reasonable for genes that are far apart in the genome,
it is clearly not suited for genes grouped in syntenic blocks, which are
more plausibly the result of a concerted evolution. Here, we introduce the
Super-Reconciliation model, which extends the traditional Duplication-
Loss model to the reconciliation of a set of trees, accounting for seg-
mental duplications and losses. From a complexity point of view, we
show the associated decision problem is NP-hard. We then give an exact
exponential-time algorithm for this problem, test its time efficiency on
simulated datasets, and give a proof of concept on the opioid receptor
genes.

Keywords: Gene Tree · Reconciliation · Duplication · Loss · Synteny

1 Introduction

Gene gain and loss is known as a major force driving evolution. Assuming the
gene and species trees are known and represent the true evolution, incongruence
between the two trees can be explained from gene gain and loss events, and
“reconciling” the two trees allows recovering these events.

Tree reconciliation can be performed through different biological models of
evolution, the most common being the Duplication-Loss (DL) [14, 32, 33] or
Duplication-Loss and Transfer [5, 9, 30] models. While most reconciliation meth-
ods are based on the parsimony principle of minimizing the number or cost
of operations, probabilistic models seeking for a reconciliation with maximum
likelihood or maximum posterior probability have also been developed [4, 26, 29].

Whatever the model, current algorithms for reconciliation take each gene
family individually, assuming an independent evolution through single duplica-
tions and losses. Although this hypothesis holds for genes that are far apart in
the genome, it is clearly too restrictive for those organized in syntenic blocks or
paralogons, i.e. sets of homologous chromosomal regions, among one or many
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genomes, sharing the same genes (e.g. neuropeptide Y-family receptors [20], the
Homeobox gene clusters [1, 12, 13], the FGFR fibroblast growth factor recep-
tors [3, 15] or the genes of the opioid system [10, 27, 28]). These genes are more
plausibly the result of an evolution from a common ancestral region, rather than
from a set of independent gene duplications that would have converged to the
same organization in different genomic regions.

The purpose of this paper is generalizing the DL reconciliation model from
a unique gene tree to a set of gene trees, accounting for segmental duplications
and losses. As far as we know, this problem has never been considered before.
The closest algorithms are DeCo [6] and DeCoStar [31] which, given a set of gene
families, a set of adjacencies between genes, a set of gene trees and a species tree,
output an adjacency forest reflecting the evolution of each adjacency. However,
adjacencies are taken independently, and still only single duplications and losses
are considered, although, based on DeCoStar results, some correction strategies
have been developed to cluster individual events into single segmental events [11].
Another related problem asks for the reconciliation of a set of gene trees leading
to a minimum number of duplication episodes, refering to possible whole genome
duplication events, defined as sets of single duplications mapped to the same
node in the species tree [22, 24]. However the considered model does not account
for gene orders and duplications involving a set of neighboring genes.

Here, we consider the Super-Reconciliation problem in which, given a set of
gene families, a set of syntenies, a gene tree for each gene family and a species
tree, we seek an evolutionary history of the set of syntenies that is in agree-
ment with the individual gene trees whilst minimizing the number of segmental
duplications and losses. Our proposed model is a direct generalization of the
reconciliation of a single gene tree. As such, it ignores tandem duplications,
rearrangements and assumes that the input set of gene trees is consistent.

After defining the new Super-Reconciliation model in the next section, we
begin, in Section 3, by characterizing the conditions under which a Super-
Reconciliation exists for a set of syntenies and a set of gene trees. We prove,
in Section 4, that the associated decision problem is NP-hard. We then exhibit
a dynamic programming algorithm in Section 5. An application on simulated
datasets and a proof of concept on the genes of the opioid system are then pre-
sented in Section 6. We conclude with a discussion on future work in Section 7.

2 Trees, Reconciliation and Problem Statement

A string or a sequence is an ordered set of characters. Given a string X =
x1 · · ·xn, a substring of X is a consecutive set of characters from X in the same
order as in X, and a subsequence is a set of characters of X in the same order,
but not necessarily consecutive in X (X is a substring and a subsequence of X).

All trees are considered rooted. Given a tree T , we denote by r(T ) its root,
by V (T ) its set of nodes and by L(T ) ⊂ V (T ) its leafset. We say that T is a
tree for L = L(T ). A node v is an ancestor of v′ if v is on the path from r(T )
to v′; v is the father of v′ if it directly precedes v′ on this path. In this latter
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case, v′ is called the child of v. We denote by E(T ) the set of edges of T , where
an edge is represented by its two terminal nodes (v, v′, with v being the father
of v′. Two nodes v and v′ are separated in T iff neither one is an ancestor of the
other. A node is said to be unary if it has a single child and binary if it has two
children. Given a node v of T , the subtree of T rooted at v is denoted T [v].

A binary tree is a tree with all internal (i.e. non-leaf) nodes being binary. If
internal nodes have one or two children, then the tree is said partially binary .

Creating a unary root consists in creating a new node v, a new edge (v, r(T ))
and assigning v as the new root of T . Grafting a leaf w consists of subdividing an
edge (v, v′) of T , thereby creating a new node v′′ between v and v′, then adding
a leaf w with parent v′′. If W is a rooted tree, grafting W to T corresponds to
grafting a leaf w, then replacing w by the root of W .

The lowest common ancestor (LCA) in T of a subset L′ of L(T ), denoted
lcaT (L′), is the ancestor common to all nodes in L′ that is the most distant from
the root. The restriction T |L′ of T to L′ is the tree with leafset L′ obtained from
the subtree of T rooted at lcaT (L′) by removing all leaves that are not in L′ and
all unary nodes. Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T ). We say that T
displays T ′ iff T |L′ is label-isomorphic to T ′ (i.e. isomorphic with preservation
of leaf labels). We also say that T is an extension of T ′.

Species, gene and synteny trees: (See Figure 1) The species tree S for a set Σ of
species represents an ordered set of speciation events that have led to Σ.

A gene family is a set Γ of genes where each gene g belongs to a given species
s(g) of Σ. If Γ ′ ⊆ Γ is a subset of genes, we denote s(Γ ′) = {s(g) : g ∈ Γ ′}.

A synteny is an ordered sequence of genes. We consider that genes of a
synteny all belong to different gene families (tandem duplications are ignored).
More precisely, let F = {Γ1, Γ2, ..., Γt} be a set of gene families, and γF =
{(g, Γ ) : g ∈ Γ ∧ Γ ∈ F} be a function. We say that an ordered sequence of
genes X = x1x2...xk is a synteny on F iff γF is well-defined for all genes of X,
γF is injective, and all genes in X belong to the same species. If X is a synteny,
then s(X) simply denotes the genome containing X.

A synteny family is a set X of syntenies. We say that a set F of gene families
are organized into a set X of syntenies iff there is a bijection between the genes
of F and the genes in X (each gene of F belongs to exactly one synteny of X ).

A tree T is a gene tree for a gene family Γ (respec. a synteny tree for a
synteny family X ) if its leafset is in bijection with Γ (respec. X ).

Given a gene tree T , the corresponding synteny tree is the tree T̃ obtained
from T by replacing each leaf of T by the synteny containing the considered
gene.

Given a tree T (either gene tree or synteny tree), we extend the mapping s
to internal nodes v of T by defining s(v) = lcaS({s(l) : l ∈ L(T [v])}).

An evolutionary history is represented by a labeled tree, where the label of
a node is its corresponding event. In the case of gene families, an event is fully
determined by its type, either a duplication, a speciation or a loss. The labels of
a gene tree are obtained through reconciliation, as described below.
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2.1 Reconciliation

Definition 1 (Reconciled gene tree). Let T be a binary gene tree and S be
a binary species tree. A DL reconciliation (or simply reconciliation) R(T, S) of
T with S is a labeled extension of T obtained by grafting new leaves satisfying:
for each internal node v of R(T, S) with two children vl and vr, either s(vl) =
s(vr) = s(v), or s(vl) and s(vr) are the two children of s(v). The node v is
a duplication in s(v) in the former case and a speciation in the latter case. A
grafted leaf on a newly created node v corresponds to a loss in s(v). All other
leaves are labeled by the default event “extant”.

The cost of a reconciliation R(T, S) is the number of induced duplications
and losses.

Given a gene tree T and a species tree S, a minimum reconciliation, i.e.
a reconciliation of minimum cost, is obtained from the LCA-mapping which
consists in setting s(v) = lcaS(s(L(T [v]))) for each v ∈ V (T ), and labeling each
internal node v of T as a speciation if and only if s(vl) and s(vr) are separated
in S, and as a duplication otherwise. Observe that in any case, if s(vl) and s(vr)
are not separated, then it is impossible for v to be a speciation. We denote by
LCA-reconciliation the reconciliation labeled by means of the LCA-mapping.

Fig. 1. (i) Two genomes A and B; three gene families (red, green and blue) grouped
into two syntenies A1, A2 in A and two syntenies B1, B2 in B. (ii) Ignoring node labels
and dotted lines, T , T ′ and T ′′ are the corresponding gene trees and T̃ , T̃ ′ and T̃ ′′

are the corresponding synteny trees. The reconciled gene trees R, R′ and R′′ are the
same trees but including node labels and dotted lines. Nodes identified by circles are
speciations, those represented by rectangles are duplications, and dotted lines represent
lost branches. (iii) The reconciled trees embedded in the species tree S. (iv) A Super-
Reconciliation R, representing a more realistic evolutionary history from a common
ancestral synteny. Each ancestral node is identified by the synteny, the event and the
segment of the synteny affected by the event. Square nodes represent Dup events, round
nodes Spe events, brackets pLoss events and dotted lines fLoss (see text).
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Before extending the reconciliation concept to a set of gene trees, we need to
specify an evolutionary model for syntenies. In this paper, syntenies are consid-
ered to have evolved from a single ancestral synteny through speciation (defined
as for single genes), segmental duplication and segmental loss, where:

– a speciation Spe(X, [1, l]) acting on a synteny X = g1 · · · gl belonging to a
genome s(X) has the effect of reproducing X in the two genomes sl and sr
children of s(X) in S.

– a (segmental) duplication Dup(X, [i, j]) acting on a synteny X belonging to
a genome s(X) is an operation that copies a substring gi · · · gj of size j−i+1
of X = g1g2 · · · gi · · · gj · · · gl somewhere else into the genome s(X), creating
a new copied synteny X ′ = g′i · · · g′j where each g′k, for i ≤ k ≤ j belongs to
the same gene family as gk;

– a (segmental) loss Loss(X, [i, j]) acting on a synteny X = g1 · · · gi · · · gj · · · gl
is an operation that removes a substring gi · · · gj of size j−i+1 of X, leading
to the truncated synteny X ′ = g1 · · · gi−1gj+1 · · · gl. A loss is called full if X ′

is the empty string (i.e. all genes of X are removed) and partial otherwise.
We may denote full loss events as fLoss and partial loss events as pLoss.

An evolutionary history of a set of syntenies can thus be represented as
a partially binary tree where leaves correspond to extant syntenies and lost
syntenies (resulting from full losses), and each internal node v corresponds to an
event E(X, [i, j]) with E ∈ {Spe,Dup, pLoss} (and leaves correspond to either
extant genes or fLoss events). Thus, in contrast to a single gene family, a tree
representing the evolution of a set of syntenies is not only labeled by the type
of event corresponding to each internal node, but also by the segment of the
synteny affected by the event (see the bottom-right tree in Figure 1). If E is:

1. Spe, then v is a binary node with two children corresponding to syntenies
Y and Z such that X = Y = Z and s(Y ) and s(Z) being the two children
of s(X) in S.

2. Dup, then v is a binary node with two children corresponding to syntenies
X and X ′ = X[i, j], where s(X) = s(X ′).

3. pLoss, then v is a unary node with a child corresponding to the truncated
synteny X ′ = X[1, i− 1]X[j + 1, l], and s(X) = s(X ′).

The topology of a tree representing the evolution of a set of syntenies differs
from that of a single gene family since the former may contain unary nodes,
resulting from partial losses, while the latter only contains binary nodes.

Our goal is to infer an evolutionary history of a set of syntenies which is a
reconciliation of a set of individual gene trees, formally defined below.

Definition 2 (Super-Reconciliation). Let G = {T1, T2, · · · , Tn} be a set of
binary gene trees for the gene families F = {Γ1, Γ2, · · · , Γt} organized into a set
X of syntenies belonging to a set Σ of taxa, and let S be a binary species tree
for Σ. For each i, 1 ≤ i ≤ n, let T̃i be the synteny tree corresponding to Ti.
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A Super-Reconciliation R(G, S) of G with S is a labeled synteny tree which
is an extension of the trees T̃i, for 1 ≤ i ≤ n, representing a valid history for X .

The cost of a Super-Reconciliation R(G, S) is the number of induced Dup,
fLoss and pLoss events.

For example, the cost of the Super-Reconciliation in Figure 1 is 6. Notice
that, although this cost is higher than that obtained by considering each gene
family independantly (cost of 3), the induced history is much more realistic as it
is unlikely that independant gene duplications would have led to the same gene
organization in different genomic regions.

We are now ready to state the optimization problem considered in this paper.

Super-Reconciliation problem:
Input: A set Σ of species and a species tree S for Σ; a set of gene families
F = {Γ1, Γ2, · · · , Γt} organized into a set of syntenies X ; a set of gene trees
G = {T1, T2 · · · , Tt} one for each family of F .
Output: A Super-Reconciliation R(G, S) of minimum cost.

3 Existence conditions

As a synteny is represented by a gene order and can only be modified through
losses (duplications create new syntenies but do not modify existing syntenies),
an evolutionary history does not always exist for a set of syntenies X , regard-
less of the trees linking them. If this holds, the syntenies are said to be order
consistent . Due to space constraints, we leave the details on order consistency
constraints in the supplementary material.

In addition, in contrast to the reconciliation of a single gene tree which always
exists, this is not the case for a Super-Reconciliation as different gene trees may
exhibit an inconsistent speciation history for the same syntenies. A set of trees
on subsets of X is said consistent iff, for any triplet Trp = {X1, X2, X3} of
disjoint elements of X , all trees containing Trp as a sub-leafset exhibit the same
topology for Trp.

Lemma 1 (Tree consistency condition). Let G = {T1, T2, · · · , Tt} be a set
of gene trees for a set of gene families organized into a set X of syntenies, and
let S be the species tree. If a Super-Reconciliation R(G, S) exists, then the set of
corresponding synteny trees {T̃1, T̃2, · · · T̃t} is consistent.

Proof. By definition, a Super-ReconciliationR(G, S) displays T̃i, for all 1 ≤ i ≤ t,
as R(G, S) is an extension of each tree. Thus, for any triplet Trp = {X1, X2, X3}
of X , if T̃i and T̃j contain the triplet Trp as a sub-leafset, then R(G, S) displays

both T̃i|Trp and T̃j |Trp. In other words, T̃i|Trp and T̃j |Trp are label-isomorphic.
ut

The consistency problem of rooted trees has been widely studied. The BUILD
algorithm [2] can be used to test, in polynomial-time, whether a collection of
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rooted trees is consistent, and if so, construct a compatible, not necessarily
fully resolved, supertree, i.e. a tree displaying them all. This algorithm has been
generalized to output all compatible minimally resolved supertrees [8, 21, 25],
which may be exponential in the number of genes.

The following theorem makes the link between a supertree and a reconcilia-
tion.

Theorem 1. Let G = {T1, T2 · · · , Tt} be a set of trees for a set of families
organized in an order consistent set of syntenies X , and S be the species tree.
Let G̃ = {T̃1, T̃2 · · · , T̃t} be the set of synteny trees corresponding to those in G.
If G̃ is a consistent set of trees then:

1. A Super-Reconciliation R(G, S) is an extension of a supertree for G̃;
2. Any supertree is the “backbone” of a Super-Reconciliation. Namely, for any

supertree T̃ for G̃, there is a Super-Reconciliation R(G, S) which is an exten-
sion of T̃ .

The first statement of Theorem 1 follows from Lemma 1. As for the second
statement, we will prove it implicitly in Section 5 by providing an algorithm that
yields a minimum cost reconciliation on any supertree.

Following Theorem 1, the problem reduces to finding a supertree for the set
of synteny trees minimizing the number of segmental duplications and losses. A
natural algorithm for the Super-Reconciliation problem follows:

1. Explore the space of all order consistent ancestral syntenies A for X ;
2. Explore the space of all supertrees T̃ for G̃;
3. Find a Super-Reconciliation of minimum cost which is an extension of T̃

with A as an ancestral synteny;
4. Select the Super-Reconciliations leading to the minimum cost.

Step 1 is discussed in Supplementary material and Step 2 has been discussed
in this section. Before developing an algorithm for Step 3, which is the purpose
of Section 5, we begin by analyzing the theoretical complexity of the Super-
Reconciliation problem.

4 Complexity of the Super-Reconciliation Problem

We have recently considered the problem of finding a supertree of a set of gene
trees minimizing the classical single gene duplication and single gene duplication
and loss distances. The problem has been shown NP-hard for the duplication dis-
tance, and exponential-time algorithms have been developed for both distances.
For segmental duplications only, the hardness of Super-Reconciliation is al-
most immediate from the results of [19]. For both duplications and losses, the
problem remains NP-hard, although the proof is far more technical. Here we
give the simpler proof of hardness for minimizing duplications only, and refer
the reader to the Supplementary material for the NP-hardness proof for mini-
mizing segmental duplications and losses.
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Theorem 2. The Super-Reconciliation problem is NP-hard for the dupli-
cation cost. Furthermore, the minimum number of duplications is hard to ap-
proximate within a factor n1−ε for any 0 < ε < 1, where n is the number of
syntenies in the input.

Proof. The hardness follows from that of the MinDup-Supertree problem,
defined as follows. Given a species tree S and a set of gene trees T1, . . . , Tk,
possibly with overlapping leafsets, MinDup-Supertree asks for a supertree T
that displays T1, . . . , Tk such that the LCA-reconciliation with T and S yields
a minimum number d of duplications. It was shown in [19] that it is NP-hard
to approximate d within a factor n1−ε for any 0 < ε < 1, where here n is the
number of genes in Γ =

⋃k
i=1 L(Ti).

To reduce MinDup-Supertree to the Super-Reconciliation problem, it
essentially suffices to exchange the roles of genes and syntenies. More precisely,
given an instance of MinDup-Supertree consisting of a species tree S and gene
trees T1, . . . , Tk, we compute an instance of Super-Reconciliation as follows.
The species tree is the same as S, and for each gene g ∈ Γ , we have a synteny Xg

with s(Xg) = s(g). Moreover for each gene tree Ti, we create an identical gene
tree T ′i , but in which each gene g ∈ L(Ti) is replaced by a unique gene gTi

that
belongs to synteny Xg (and hence s(g) = s(gTi

) = s(Xg)). Thus the synteny tree

T̃i for T ′i is obtained by replacing each leaf g of Ti by Xg. In particular, there
are n syntenies. The order of the genes on the syntenies is arbitrary (since we
are not counting segmental losses).

It only remains to show the correspondence between the solutions for the
two problem instances. Suppose that the MinDup-Supertree instance admits
a supertree T with d duplications when reconciled. Let T̃ be the synteny tree
obtained from T by replacing each gene g ∈ L(T ) by Xg. Because s(g) = s(Xg),

both T and T̃ have the same duplications under the LCA reconciliation, which
is d. Conversely, if our Super-Reconciliation instance admits a synteny tree
T̃ with d duplications, replacing each leaf Xg by g yields a supertree for the
MinDup-Supertree instance with d duplications. Because the value of the
solutions are preserved and n = |Γ | is the number of syntenies, this reduction is
approximation preserving and the hardness result follows. ut

We state our second hardness result formally here.

Theorem 3. The Super-Reconciliation problem is NP-hard for the Dup,
fLoss and pLoss cost.

5 A Super-Reconciliation for a supertree

In this section, we are given a set G = {T1, T2, · · · , Tt} of consistent gene trees
for a set of families F = {Γ1, Γ2, · · · , Γt} organized in an order consistent set of
syntenies X , and a species tree S for the set Σ of taxa containing the genes. In
addition, we are given a supertree T̃ for the synteny trees G̃ = {T̃1, T̃2, · · · , T̃t}
corresponding to those in G, and an order consistent ancestral synteny A for X .
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Given a Super-Reconciliation R(G, S) (R for short), because R is obtained
from T̃ by grafting leaves, each node of T̃ is present in R. Hence we say that
v ∈ V (T̃ ) has a corresponding node v′ in R. More precisely, if l ∈ L(T̃ ), then
l ∈ L(R) also and the correspondence is immediate. If v is an internal node of
V (T̃ ), the node v′ of R corresponding to v is lcaR({l : l ∈ L(T̃ [v])}). We show
that, as in the traditional reconciliation setting, the nodes of R that are also in
T̃ should be mapped to the lowest species possible. To simplify the argument,
we will call an internal node a full loss if it is the parent of an fLoss event.

Lemma 2. Let R(G, S) be a Super-Reconciliation of minimum cost which is
an extension of T̃ . Let v ∈ V (T̃ ) and let v′ be the node corresponding to v in
R(G, S). Then s(v′) = lcaS(s(L(T̃ [v])).

Proof. First observe that the statement is clearly true for the leaves. Assume
that the statement is false. Now, let v be a node of T̃ such that its corre-
sponding node v′ does not satisfy the statement - moreover, choose v to be a
minimal node with this property (meaning that for the children vl and vr of v,
the corresponding nodes v′l and v′r in R(G, S) satisfy s(v′l) = lcaS(s(L(T̃ [vl]))

and s(v′r) = lcaS(s(L(T̃ [vr]))). Note that v must exist, since the statement is
true for the leaves.

Now, we may assume that s(v′) 6= lcaS(s(v′l), s(v
′
r)), as otherwise v′ satisfies

the lemma. Thus in S, there are at least k edges on the path from s(v′) to
lcaS(s(v′l), s(v

′
r)), where here k > 0. It is not hard to verify that in this case, v′

must be a duplication node, according to the definition of a reconciliation. This
implies that there are at least k full losses on the path from v′ to v′l and at least
k full losses on the path from v′ to v′r. Consider the Super-Reconciliation R′

that is identical to R(G, S), with the exception that s(v′) = lcaS(s(v′l), s(v
′
r)).

Then the 2k losses on the paths between v′ and v′l and between v′ and v′r are
not needed anymore, although if v′ is not the root, k losses become necessary on
the path between v′ and w′, where w′ is the node corresponding to the parent
w of v in T̃ . Remapping v′ cannot increase the number of duplications, and so
we have saved k losses.

It remains to argue that the number of partial losses remains the same. But
this is easy to see. We keep the same synteny assignment at nodes v′, v′l and v′r
(and w′ if v′ is not the root) as in R(G, S). If v′ was a segmental duplication in
R(G, S), we set v′ to be a segmental duplication in R′ as well. The number of
partial losses on the paths between v′ and v′l, v

′
r (and w′) therefore remains the

same as in R(G, S). ut

We now show that speciation and duplication nodes are easy to identify.
Essentially, we may set the events of internal nodes as in the classical LCA-
mapping reconciliation. In what follows, assume that T̃ is reconciled under the
LCA-mapping, and put s(v) = lcaS(L(s(T̃ [v]))) for every v ∈ V (T̃ ).

Lemma 3. Let R(G, S) be a Super-Reconciliation of minimum cost which is
an extension of T̃ . Let v ∈ V (T̃ ) be an internal node of T̃ and let v′ be its
corresponding node in R(G, S). Moreover let vl and vr be the children of v. If
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s(vl) and s(vr) are separated in S, then v′ is a speciation, and otherwise v′ is a
duplication.

Proof. Let v′l and v′r be the nodes corresponding to vl and vr, respectively, in
R(G, S). First, if s(vl) and s(vr) are not separated, then by Lemma 2, s(v′l)
and s(v′r) are not separated, hence it is not possible for v′ to be a speciation.
Therefore v′ must be a duplication.

Suppose instead that s(vl) and s(vr) are separated in S, but that v′ is labeled
by a duplication event Dup(X, [i, j]), where X is the synteny assigned at v′. On
the path from v′ to v′l, there may be some pLoss events and some nodes that were
grafted owing to full losses. We may assume that all full loss events, if any, have
occurred before the pLoss events on this path (i.e. nodes grafted from full losses
are closer to v′). It is easily checked that this is without loss of generality, as this
does not change the resulting synteny in v′l. We shall make the same assumption
with the path from v′ to v′r. Now, by Lemma 2, s(v′) = lcaS(s(vl), s(vr)). Because
v′ is a duplication, the two children wl, wr of v′ in R(G, S) must satisfy s(w′l) =
s(w′r) = s(v′). Since s(v′l) 6= s(v′) 6= s(v′r), we have that {wl, wr} ∩ {v′l, v′r} = ∅,
and therefore wl and wr were grafted on T̃ due to full losses. If we label v′ as
a speciation Spe(X, [1, |X|]), these two full losses are not needed anymore, and
by doing so we have one duplication less and two full losses less. Let Yl and Yr
be the two syntenies that were assigned at wl and wr in R(G, S), respectively.
Then Yl = X and Yr = X[i, j] or vice-versa (assume the former, without loss
of generality). Suppose that wr was an ancestor of v′r in R(G, S), again without
loss of generality. The substring X[i, j] can be obtained from X by adding at
most two partial losses on the path from v′ to v′r. The rest of the reconciliation
can remain the same. To sum up, we have removed one duplication and two
full losses, and inserted at most two partial losses to reproduce the effect of the
segmental duplication. This contradicts the fact that R(G, S) is a reconciliation
of minimum cost. ut

From Lemma 3, it follows that we know the event-type (Dup or Spe) of
each internal node of the supertree T̃ . It then remains to extend the tree with
losses and infer the actual event at each node (i.e. the corresponding synteny
and segment being duplicated or lost). It is easy to see that losses and segments
affected by the events are fully determined by gene orders assigned to internal
nodes. Therefore, the problem reduces to the classical “small phylogeny problem”
most generally defined as follows: Given an alphabet Σ (nucleotides or amino-
acids or genes), a distance on the set of words of Σ (edit distance for gene
sequences or rearrangement distances for gene orders) and a tree T with leaves
being words on Σ (extant gene sequences or gene orders), find the labeling of
ancestral nodes (ancestral sequences or orders) minimizing the total cost of the
tree. This cost is the sum of costs of each branch, which is the distance between
the two words connected by the branch.

Here, we are given a synteny tree T̃ for a set X of syntenies on a set of gene
families F , and an ancestral synteny A which is an order of F . We want to find
a synteny assignment attributing a partial order on F to each node of V (T̃ ).
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We assume that the root r of T̃ is assigned the synteny A. It follows from the
considered evolutionary model that, for two nodes u and v of T̃ with u being
an ancestor of v, the synteny Xv assigned to v should be a subsequence of the
string Xu assigned to u. A synteny assignment verifying this condition is called
a valid synteny assignment for T̃ .

For v ∈ V (T̃ ), define d(v,X) as the minimum number of segmental dupli-
cations and losses induced by a synteny assignment on T̃ [v] with X being the
assignment at v. The problem Small-Phylogeny for Syntenies is to find
an optimal assignment, i.e. an assignment leading to d(T̃ ) = minX d(r(T̃ ), X)
for X belonging to the set of syntenies that are order consistent with X .

Solving this problem can be done by dynamic programming by computing
d(v,X), for each v ∈ V (T̃ ) and each possible synteny X.

Let v be an internal node of T̃ and vl, vr be its two children. Let X, Xl,
Xr be valid assignments for respectively v, vl and vr. Then Xl and Xr are
subsequences of X. If v is a speciation, then all missing genes in Xl and Xr are
the result of losses. Otherwise if v is a duplication, then for at most one of Xl

and Xr, the missing prefix or suffix can be due to the partial duplication of a
segment of X, and all other missing genes should be the result of losses. This
motivates the definition of the following two variants of the loss distance between
two syntenies.

Let X and Y be two syntenies with Y being a subsequence of X. We let
DT (X,Y ) denote the minimum number of segmental losses required to transform
X to Y and DP (X,Y ) the minimum number of segmental losses required to
transform a substring of X to Y .

Theorem 4. Let v be a node of T̃ , X be a synteny and S(X) be the set of
subsequences of X.

– If v is a leaf, then d(v,X) = 0 if X is the extant synteny corresponding to
leaf v, and +∞ otherwise;

– If v is a speciation with children vl and vr, then,

d(v,X) =min(Xl∈S(X))(D
T (X,Xl) + d(vl, Xl))+

min(Xr∈S(X))(D
T (X,Xr) + d(vr, Xr));

– If v is a duplication node with children vl and vr, then

d(v,X) = 1+

min



min(Xl∈S(X))(D
T (X,Xl) + d(vl, Xl))+

min(Xr∈S(X))(D
T (X,Xr) + d(vr, Xr)),

min(Xl∈S(X))(D
T (X,Xl) + d(vl, Xl))+

min(Xr∈S(X))(D
P (X,Xr) + d(vr, Xr)),

min(Xl∈S(X))(D
P (X,Xl) + d(vl, Xl))+

min(Xr∈S(X))(D
T (X,Xr) + d(vr, Xr))
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The above can be used to solve the Small-Phylogeny for Syntenies
problem with dynamic programming. To do this, one can simply traverse T̃
in post-order, and apply the recurrences of Theorem 4 at each node encoun-
tered. We finish this section by analyzing the complexity of this algorithm. Let
n = |V (T̃ )| and let t be the number of gene families involved in the Small-
Phylogeny for Syntenies problem instance. For a node v ∈ V (T̃ ) and a
synteny X, there are O(2t) possible subsequences of X. The value of d(v,X)
thus depends on the O(2t) values for its left child vl and the O(2t) values for its
right child vr. If these are known, then d(v,X) can be computed in time O(t2t)
(it is straightforward to check that DT and DP can be computed in time O(t) -
we omit these details).

Let us now consider the number of possible entries in our dynamic program-
ming table. The possible syntenies for X correspond to the subsequences of a
topological sorting of an acyclic directed graph with t nodes (see supplementary
material). In the worst case, there are O(2t · t!) = O(2t log t+t) such syntenies. If
follows that there are at most O(n2t log t+t) entries in the dynamic programming
table, and each entry takes time O(t2t). It is known that if there are k possible
topological sortings in a directed acyclic graph, then they can be enumerated
in time O(k) [23] (it is worth noting however that counting the number of such
topological sortings in #P-complete [7]). Therefore, if t is not too large, then the
above recurrences can solve the small phylogeny problem relatively quickly, even
if n is large. Put differently, the Small-Phylogeny for Syntenies problem
is fixed-parameter tractable with respect to parameter t.

Corollary 1. The Small-Phylogeny for Syntenies problem can be solved
in time O(t2t log t+2tn), where t is the number of gene families present in the
input and n is the number of syntenies.

6 Application

6.1 Simulated datasets

The dynamic programming algorithm has been implemented in C++ 4 and
tested on balanced trees obtained from simulated evolutionary histories. Simu-
lations have been performed according to five parameters: t, the number of gene
families in the ancestral synteny; d, the maximum depth of the balanced tree;
pdupl, the probability for any given node to be a segmental duplication; ploss, the
probability for a loss to occur under any given node; plength, where the probabil-
ity for a loss to remove k genes is P (X = k) = (1− plength)k−1p1−klength, following
a geometric distribution.

Simulations yield Super-Reconciliations leading to fully labelled trees. The
input of the Super-Reconciliation algorithm is then obtained from those trees by
removing loss nodes and synteny information on the internal, non-root nodes.

4 The program and simulations are available at:
https://github.com/UdeM-LBIT/SuperReconciliation
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From an accuracy point of view (results not shown), as expected the larger
the density of duplication and loss events, the further is the simulated history
from a most parsimonious history, and thus from the inferred tree.

As for time-efficiency, values for inferring the Super-Reconciliation of a single
tree, aggregated over 500 simulations per value of t, the size of the ancestral
synteny (number of gene families), are given in Figure 2. Computations have
been done on the “Cedar” cluster of Compute Canada with 32 Intel 8160 CPUs
operating at 2.10 GHz. As expected, running time exponentially increases with
respect to parameter t. This prevented us from extending the simulations beyond
an ancestral synteny of size 14, for which the Super-Reconciliation of a single
tree of depth 5 required around 15 min. However, if the synteny size remains
fixed, running times increase polynomially with the size of the trees. As shown
by the right diagram of Figure 2, for an ancestral synteny of size 5, simulations
exhibit a running time of no more than few seconds for trees with depth up to
15, representing balanced trees with up to 215 leaves.

With real biological datasets, it is more likely to have to deal with large gene
families rather than large sets of gene families evolving in concert. Thus, the
increase in running time according to the size of the ancestral synteny is not
likely to be a bottleneck towards applying our Super-Reconciliation algorithm.
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Fig. 2. Time-efficiency of the algorithm with respect to the size of the ancestral synteny
(for d = 5) and the depth of the input tree (for t = 5), for pdupl = ploss = plength = 0.5.
Note that the leftmost graph uses a logarithmic scale.

6.2 The opioid system

The opioid receptors, important regulators of neurotransmission and reward
mechanisms in mammals, offer an interesting proof of concept, as correspond-
ing genes are present in clusters with conserved synteny in vertebrate genomes.
Three genes for the opioid receptors (OPR) were identified and named OPRD1
(delta), OPRK1 (kappa) and OPRM1 (mu). A fourth gene was later identified
(OPRL1) in rodents and human. In human, they are located on the four human
chromosomes 1, 6, 8 and 20.

Previous studies have considered the duplication scenario explaining the evo-
lution of the opioid receptor genes [10, 27, 28]. The main question was whether
observed paralogons arose from the two whole genome duplication events, often
called 1R and 2R, known to have occurred early in vertebrate evolution. By
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Fig. 3. (i) The four considered gene families. (ii) The considered species tree with the
corresponding clusters: 19 in total involving 24 genes from the OPR family (genes
named ‘a’), 17 from the NKAIN family (named ‘n’), 7 from the STMN family (named
‘s’) and 13 from the SRC-B family (named ‘h’). (iii) The Super-Reconciliation obtained
form individual gene trees (not shown), and the induced duplication and loss history.
Losses are indicated by red bars on the considered edges and duplications by rectangles.
Yellow stars indicate the location of the 1R and 2R whole genome duplication events.
Gene orders after removing duplicates (see text) are indicated on leaves, and chosen
gene orders for internal nodes are shown.

exploring regions surrounding the OPR genes in human, four syntenic regions,
containing genes from three other families (NKAIN, SRC-B and STMN) appar-
ently sharing a common history, were identified. From the analysis of individual
gene trees (Neighbor-joining and quartet-puzzling maximum likelihood trees),
conclusions associating the evolution of the opioid system related genes to the
1R and 2R events were drawn.

Here, we consider the same four gene families OPR, NKAIN, STMN and
SRC-B, and further extend the OPR family with two neuropeptide NPBWR
receptors, known to be closely related to the opioid receptors (Figure 3.(i)).
Protein sequences and gene orders were downloaded from the Ensembl database
(Release 92) 5 for the following five species: Homo sapiens, Mus musculus, Gallus
gallus, Lepisosteus oculatus (spotted gar) and Drosophila melanogaster . Gene
orders are given in Figure 3.(ii).

For each gene family, we built a multiple sequence alignments with ClustalW
[17] (Gonnet weight matrix and gap opening and extension penalties respectively
set to 10 and 0.2). Maximum likelihood gene trees were subsequently constructed
for each family using MEGA7 [18] (Jones-Taylor-Thornton substitution matrix
and uniform rates among sites). As some syntenies contained paralogs (multiple
copies from the same gene family, for example synteny H3 contains two ‘a’),
duplicates were removed in a way maximizing gene tree consistency. Although
gene trees were still inconsistent, the overall clustering of gene copies was pre-

5 https://useast.ensembl.org/index.html
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served among gene trees, and consistency could be attained after some local
adjustments, using the species tree as reference.

The obtained Super-Reconciliation is given in Figure 3.(iii). Notice however
that gene orders are far from being consistent. In fact, all considered genomes
are separated by a considerable evolutionary distance, and therefore, local re-
arrangements could have occurred along each lineage-specific branch. Choosing
the (h, s, a, n) order on every node of the tree and assuming rearrangements to
occur at terminal edges, i.e. after duplication and loss events, leads to a his-
tory of three duplications and two losses before the speciation of bony fish and
tetrapods, with two duplications correlating with the 1R and 2R tetraploidiza-
tion events. This result is in agreement with previous studies on the evolution
of the opioid receptor genes [10].

Further analysis, using more genes and species, is required to provide a more
detailed scenario for the evolution of the opioid receptor genes. Our objective
here however, was not to verify a given hypothesis, but rather to provide a
proof of concept and explore the applicability and limitations of the proposed
reconciliation model on real data.

7 Conclusion

We have presented a natural extension of the DL reconciliation model, which
is the first effort towards the development of a unifying automated method for
reconciling a set of gene trees. It leads to a variety of problems requiring to be
analysed from a complexity and algorithmic point of view.

In contrast with the inference of tandem duplications, where gene orders is a
key information as created gene copies should be adjacent to the original ones,
order is not a central information for the Super-Reconciliation problem. In fact,
as chromosomal segments resulting from transposed duplications can be placed
anywhere in the genome, gene order in syntenies is not a required information
for the reconstruction of the supertree. However, labeling the supertree in a way
minimizing the number of segmental duplications and losses still requires the
knowledge of an ancestral gene order.

If, as we have considered in this paper, rearrangements are forbidden, then
a duplication and loss history does not always exist for a set of syntenies, as
the corresponding gene orders may be inconsistent. One solution would be to
minimally correct gene orders to ensure consistency, before applying the DL
Super-Reconciliation model. Alternatively, an ancestral gene order can be in-
ferred first, and all deviations from this order would be assumed to have occurred
at terminal edges. As it clearly appears from the opioid receptor genes example,
rearrangements could hardly be ignored.

A future extension of this work will be to minimize the segmental duplication
and loss events explaining the evolution of a set of syntenies evolving through
speciation and segmental duplication, loss and rearrangements. In other words,
we will infer gene orders leading to a most parsimonious history in terms of
duplications and losses. The disagreement between the observed gene order at
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leaves and inferred orders can then simply be explained from rearrangements
occurring after DL events. This is actually the approach we took to explain the
supertree in Figure 3. Other natural extensions of this work would be to account
for the possibility of paralogous genes inside synteny blocks and expand the
reconciliation model to horizontal gene transfers.
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Supplementary material

7.1 Consistency of gene orders

Given a set of gene families F = {Γ1, Γ2, · · · , Γt} organized into a set of syntenies
X , we define the precedence graph P as the directed graph with n vertices, each
corresponding to a gene family of F , such that a directed edge (i, j) between
two vertices i and j exists iff there is a synteny X = x1x2 · · ·xk of X containing
a gene in Γi preceding a gene in Γj , i.e. there is a pair 1 ≤ l1 < l2 ≤ k such that
xl1 ∈ Γi and xl2 ∈ Γj .

If P is acyclic, then P is a Directed Acyclic Graph (DAG). In this case, there
is a topological sorting for P, i.e. a linear ordering X of vertices such that for
every directed edge (i, j) in P, i precedes j in X. Verifying if a directed graph is
acyclic and finding a topological sorting of a DAG is a classical problem solvable
in linear time.

The following lemma gives necessary and sufficient conditions for a set of
syntenies to be order consistent and exhibits the set of possible ancestral synte-
nies.

Lemma 4 (Order consistency condition). Let F = {Γ1, Γ2, · · · , Γt} be a set
of gene families organized into a set X of syntenies. Then X is order consistent
iff the corresponding precedence graph P is acyclic. In this case, any topological
sorting for P is an order consistent ancestral synteny for X .

Proof. The first part of the lemma follows from the fact that a directed graph
has a topological sorting if and only if it is acyclic. The second part follows from
the fact that, for any topological sorting A for P and any synteny X of X , X is
a subsequence of A, and thus X can be obtained from A through losses. ut

The ancestral synteny A at the root of a Super-Reconciliation R(G, S) is an
order on F . Moreover, as the synteny at each internal node of R(G, S) is obtained
from A through losses, a synteny at each internal node of R(G, S) should be a
subsequence of A. More generally, for any two nodes v and v′ of R(G, S), where
v is an ancestor of v′, the synteny Y at v′ is a subsequence of the synteny X
at v.

7.2 NP-hardness of the Super-Reconciliation problem

We show here that finding a super-reconciliation that minimizes the number
of Dup, fLoss and pLoss events is NP-hard. We reduce the problem of cubic
3-edge-coloring to Super-Reconciliation. Given a graph G = (V,E) in
which each vertex has exactly 3 neighbors, the cubic 3-edge-coloring problem
asks whether there exists a proper coloring of E with 3 colors, i.e. a partition
of E into 3 sets {E1, E2, E3} such that for any vertex v ∈ V , the three edges
incident to v all belong to a different Ei set. Note that if such a coloring exists,
|E1| = |E2| = |E3| = |E|/3. This problem was shown to be NP-hard in [16].
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In what follows, for an integer k we will denote [k] = {1, 2, . . . , k}. The
father of a node v in a tree will be denoted p(v) (p for ‘parent’). Let G =
(V,E) be an instance of cubic 3-edge-coloring, and denote V = {v1, . . . , vn}.
The ordering of the vi vertices is not important, but must remain fixed for the
duration of the proof. To describe our corresponding Super-Reconciliation
instance, we first define the species tree S, which is illustrated in Figure 4. Let
S′ be a caterpillar on leafset V ∪ {α, β, γ} (here a caterpillar is a binary rooted
tree in which each internal node has at least one child that is a leaf), where
the leaves appear in the order (α, v1, v2, . . . , vn, β, γ) when traversing from the
deepest to the closest leaf to the root. The species α, β and γ are special species,
and the v1, . . . , vn species are those corresponding to V . For each i ∈ [n], denote
pi := p(vi), and p0 := α, pn+1 := p(β). To obtain S, for every i ∈ [n+ 1], graft a
large number of new leaves, say n10, on the branch pi−1pi. Thus there are now
n10 new internal nodes on the path between pi−1 to pi, and we denote this set
of n10 internal nodes as Wi, and the set of n10 newly inserted leaves as W leaf

i

(Figure 4 only shows 5 of the Wi and W leaf
i nodes, with W2 and W leaf

2 shown
explicitly). Note that S is a caterpillar with (n+ 1)n10 + n+ 3 leaves.
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Fig. 4. The species tree S constructed in our reduction and the main synteny tree
Tmain. The X leaf

i,j syntenies of Tmain refer to the leaves, not the internal nodes. The
black squares indicate duplications.

Now, denote E′ = {(vi, vj), (vj , vi) : {vi, vj} ∈ E}, where we think of E′ as
the set of edges E, but where each edge appears in both directions. We define
the set of syntenies

X = {Xγ} ∪ {Xαi , Xβi : 1 ≤ i ≤ 3} ∪ XE′ ∪
⋃

i∈[n+1]

⋃
j∈[3]

X leafi,j
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where XE′ = {Xij : (vi, vj) ∈ E′} and for each i ∈ [n + 1], j ∈ [3], X leafi,j is

a set of n10 syntenies that has exactly one synteny for each member of W leaf
i .

We put s(Xαi
) = α, s(Xβi

) = β for each 1 ≤ i ≤ 3, s(Xγ) = γ and s(Xij) = vi
for each (vi, vj) ∈ E′. Hence the first subscript of a Xij synteny indicates its
species. Thus each species has 3 syntenies, with the exception of γ which has
one. Observe that |XE′ | = 3n.

Instead of describing the set of input gene trees, we describe them as synteny
trees directly. We thus omit the usual tilde symbol, e.g. we write T instead of T̃
with the understanding that T is a synteny tree whose corresponding gene tree
has a unique gene at each of its leaves. There is one main synteny tree Tmain,
illustrated on Figure 4. To obtain it, for each j ∈ [3], define a tree T jmain as

the unique synteny tree on leafset {Xαj
, Xβj

} ∪
⋃
i∈[n+1] X

leaf
i,j that has only

speciations. Another way to view T jmain is that it is obtained by taking a copy
of S, by removing the v1, . . . , vn species and relabeling the species at the leaves
by the appropriate syntenies for the index j. The tree Tmain is then obtained by
joining the T jmain trees and Xγ as follows (using Newick notation):

Tmain = (((T 1
main, T

2
main), T 3

main), Xγ)

Note that Tmain has 2 duplication nodes. We will call d1 and d2 the two
children of the lower duplication, and d3 the other duplication child (see Fig-
ure 4). The rough idea behind our reduction is that Tmain has 3 subtrees that
each contain a synteny from each species, except v1, . . . , vn. These appear as
losses in each T jmain subtree. However, in X we have three syntenies for each
species v1, . . . , vn, just enough to “fill-up” these losses. The main goal in our
construction is to make this complete “fill-up” of the losses possible if and only
if G is 3-colorable by making each T jmain subtree represent a color. We will build
additional input trees to realize this idea.

We have another synteny tree T ′main defined as:

T ′main = (((Xα1
, Xα2

), Xα3
), Xγ)

Note that T ′main does not provide any new information on the structure of a
supertree, but will play a role later in the gene ordering in the syntenies.

Then for each vi ∈ V , let vj , vk, vl be the neighbors of vi and let

Tijk = (((Xij , Xji), (Xik, Xki)), Xγ)

Tijl = (((Xij , Xji), (Xil, Xli)), Xγ)

Tikl = (((Xik, Xki), (Xil, Xli)), Xγ)

For notational convenience, for all i, j, k we will say that Tijk = Tikj , i.e.
both refer to the same tree. Note that for every edge vivj ∈ E, Xij occurs in
exactly 4 trees (in 2 trees of the form Tijk and 2 trees of the form Tjik). The set
of synteny trees/families G contains Tmain, T

′
main and all the Tijk trees.
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It only remains to define the given gene orders for the extant syntenies X . We
will define these orders as strings on alphabet G directly. For X ∈ X , let t(X)
be the set of synteny trees of G that X appears in. Observe that Xγ appears
in every synteny tree, and thus there is only one possible ancestral sequence
of genes. In other words, the Xγ synteny is a string Z over alphabet G, and
the order of every other synteny X is the subsequence of Z for the characters
t(X). We let Z be any string that begins with Tmain and ends with T ′main. This
completes the construction of our Super-Reconciliation instance.

We show that G admits a proper 3-edge coloring if and only if our instance
formed by S,G and order Z admits a Super-Reconciliation of total cost at most
3(n+ 1)n10 + 15n+ 8.

(⇒) For the first direction, suppose that G admits a proper 3-edge coloring.
Let E1, E2, E3 be the underlying partition of the edges into 3 color classes. Let
D1, D2 and D3 be the subtrees of Tmain rooted at d1, d2 and d3, respectively.
Notice that for each l ∈ [3], the set {s(X) : X ∈ L(Dl)} is equal to L(S)\V . We
“fill-up” each Dl subtree with a leaf from a synteny that belongs to vj for every
vj ∈ V . More precisely, for each l ∈ [3] and each vi ∈ V , let vivj be the edge of
El that is incident to vi. We graft the corresponding synteny Xij (from species
vi) onto Dl on the branch that makes its parent a speciation (this location is
unique). Call T the synteny tree resulting from these graftings. In this manner,
every Dl subtree has exactly one synteny from every vi species. Moreover, every
synteny gets grafted onto T , no new duplications are created and T has no full
losses. It is not difficult to verify that the resulting tree displays all input trees
(the Tijk trees are displayed because two Xij and Xji syntenies will be grafted
under the same Dl subtree, and this subtree is different from where Xik and Xki

get inserted into, since vivj and vivk belong to a different El set).
Our tree T has 2 duplications and no full losses. To count partial losses, we

assign the string Z to every internal node. Let X be any leaf of T that belongs
to a species in W leaf

i for some i ∈ {1, . . . , n+1}. The X synteny only appears in
Tmain and T ′main, so because Z starts with Tmain and ends with T ′main, we may
add a single partial loss on the branch from X to its parent. This amounts to
3(n+1)n10 segmental losses. The syntenies Xαi

and Xβi
can be handled similarly

with a single loss on the branch to their parent. As i ∈ {1, 2, 3}, this amounts to
6 losses. The Xγ leaf does not incur any losses. As for a synteny Xij ∈ XE′ , recall
that Xij appears in at most 4 gene families. This can be handled by using at
most 5 segmental losses on the path between Xij and its parent. As |XE′ | = 3n,
this adds at most 15n losses. In total, we the total cost is 3(n+ 1)n10 + 15n+ 8,
which is conveniently the number that we predicted.

(⇐) For the converse direction, let T be a supertree for G on leafset X that
yields a reconciliation of cost at most 3(n + 1)n10 + 15n + 8. We assume that
each internal node is assigned a gene family sequence that is a subsequence of Z.

Note that T can be seen as a tree obtained by starting with Tmain, then
grafting some subtrees T1, . . . Tr successively onto some branches of Tmain. To
see this, let T ′ be the tree obtained from T by deleting every node that does
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not have a descendant in L(Tmain). Then T ′ is the same tree as Tmain, but with
some nodes of degree 2 denoted t1, . . . , tr (excluding the root) that consist of the
locations where the T1, . . . , Tr trees were grafted (note that the roots of Tmain
and T must be the same due to Xγ). For each i ∈ [r], we will assume that the
root of Ti was grafted onto Tmain under ti, i.e. r(Ti) is a child of the node ti.
Note that {L(T1), . . . ,L(Tr)} forms a partition of X \L(Tmain). Under the above
view of T , we will think of a node x of Tmain as also a node of T , whether x is
internal or leaf.

We show how to obtain a proper edge coloring of G. The proof is divided
into a series of Claims, the first one showing that every leaf in a W leaf

i must
incur a segmental loss.

Claim 1 Let X ∈ X leafi,j be a synteny for which s(X) ∈ W leaf
i for some i ∈

[n + 1] and j ∈ [3]. Moreover let pX be the parent of X in Tmain. Then in T ,
there is either a duplication or a partial loss on the path from pX to X.

Proof. Let Zp be the gene family string assigned at pX . Observe that in T , the
pX node has a descendant Xαi for some i ∈ [3]. The family Xαi appears in the
trees Tmain and T ′main, implying that both these families are in Zp. Since X only
appears in Tmain, the T ′main character from Zp must be lost on the path from
pX to X, either by a duplication or partial segmental loss. ut

As a consequence of Claim 1, there are at least 3(n + 1)n10 duplications
and/or partial segmental losses in T . Our strategy is the following: we will show
that if the Xij syntenies are not setup to “fill up” every hole in the d1, d2 and d3
subtrees of T as in our solution for the converse direction, then there must be at
least n10 full losses in T (as opposed to partial losses). As these were not counted
in Claim 1, this would imply that T has 3(n+1)n10+n10 > 3(n+1)n10+15n+8
losses, a contradiction. Recall that we view T as a obtained from Tmain by
grafting subtrees T1, . . . , Tr on nodes t1, . . . , tr that were inserted on branches
of Tmain. We next show that the trees that get grafted onto Tmain to obtain T
all consist of syntenies from a single species.

Claim 2 Let Xij ∈ XE′ , and let Th be the tree grafted onto Tmain that contains
Xij. If Th has another leaf Xkl ∈ XE′ , then k = i.

Proof. Suppose instead that k 6= i. Then vi = s(Xij) 6= s(Xkl) = vk. We then
have s(r(Th)) ≥ lcaS(vi, vk). Assume without loss of generality that k > i.

Observe that Th cannot contain any leaf with a species in W leaf
i+1 , because all

syntenies with a species in W leaf
i+1 are already in Tmain. However, the path from

s(r(Th)) to vi in S contains the set of nodes Wi+1 (because k > i), where
|Wi+1| = n10. By the definition of reconciliation, each node in Wi+1 must have
at least one corresponding node in Th on the path between r(Th) and Xij , all of

which must have a child that is a full loss in a node in W leaf
i+1 . It follows that T

has at least n10 additional losses, a contradiction. ut
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Recall that Tmain (and hence T ) has two duplication nodes with children
d1, d2 and d3. Ignoring Xγ , these three nodes partition the leaves of Tmain into
3 subsets. These will correspond to our edge colors. Towards this goal, for a
synteny Xij ∈ XE′ , we will say that Xij is of color 1 (respectively color 2 and 3)
if it is a descendant of d1 (respectively of d2 and d3). Note that Xij has at most
one color, but may have none - which we prove to not be the case.

Claim 3 For each synteny Xij ∈ XE′ , Xij has a unique color.

Proof. Suppose otherwise that there is some Xij that has no color. Let Th be
the subtree grafted onto Tmain that contains Xij , with th the parent of r(Th).
Since Xij has no color, it follows that th must be an ancestor of d1, d2, d3 or Xγ

(all or some of these cases can hold simultaneously). In all cases, it is easy to
see that s(th) ≥ lcaS(α, β). Moreover by Claim 2, Th has only leaves from the vi
species. It follows that on the path from th to Xij , there is a loss for each node
in Wi+1. Once again, this incurs n10 additional losses, a contradiction. ut

We then show that syntenies from the same species get distinct colors, owing
to the Tijk trees.

Claim 4 Let Xij , Xik ∈ XE′ be two distinct syntenies from the same species vi.
Then Xij and Xik do not have the same color.

Proof. Suppose that Xij and Xik have color 1, without loss of generality. Let
Ti′ , Tj′ and Tk′ be the subtrees grafted onto Tmain that contain Xij , Xji and
Xik, respectively (where ti′ , tj′ , tk′ are the parents of r(Ti′), r(Tj′), r(Tk′), re-
spectively). By Claim 2, we know that Ti′ 6= Tj′ 6= Tk′ , although Ti′ = Tk′ is
possible. Recall that we have the tree Tijk = (((Xij , Xji), (Xik, Xki)), Xγ) in
the input. Since T displays Tijk, this implies that tk′ cannot be a descendant of
lcaT (ti′ , tj′), and therefore Ti′ 6= Tk′ . Also, because Xik is of color 1, tk′ must
be a descendant of d1. Thus tk′ is either (1) an ancestor of lcaT (ti′ , tj′), or (2)

tk′ is on the path between a leaf w ∈ X leafl,1 and its parent p(w) in Tmain, where
l ∈ {1, . . . , n + 1}. In case (1), the only way that T can display Tijk is if Xki

belongs to Tk′ , along with Xik. This contradicts Claim 2. In case (2), let Tk′′ be
the subtree grafted on Tmain that contains Xki. Due to the Tijk tree, tk′′ must
also be on the path between w and p(w). Thus in the subtree of T rooted at
lcaT (Xik, Xki), there is at most one leaf other than Xik and Xki (namely w).
This subtree must contain at least n10 − 1 losses, either for the Wk+1 nodes if
i > k, or the Wi+1 nodes if k > i. We reach the same contradiction. ut

It only remains to show that edge colors are consistent between their two
directions.

Claim 5 Let Xij , Xji ∈ XE′ . Then Xij , Xji have the same color.

Proof. Let vk, vl be the neighbors of vi other than vj . Suppose that Xij and
Xji do not have the same color. If one of Xij or Xji is of color 3 and the other
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of color 1 or 2, then because of the Tijk tree in the input, Xik and Xki cannot
be a descendant of any of d1, d2 or d3. Hence they have no color, contradicting
Claim 3. So we may assume that Xij and Xji are of color 1 and 2 (not necessarily
respectively). Again because of the Tijk tree, Xik and Xki must be of color 3.
And because of the Tijl tree, Xil and Xli must also be of color 3. But then, Xik

and Xil are both of color 3, contradicting Claim 4. ut

We can now color the edges of E as follows: color vivj with color c ∈ {1, 2, 3}
if and only if Xij and Xji have color c. By Claim 3 and Claim 5, each edge
gets assigned a unique color. Two adjacent edges vivj and vivk get assigned the
colors of Xij and Xik. By Claim 4, Xij and Xik have different colors. It follows
that the edge coloring is proper, concluding the proof.


