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Abstract satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using
the Weather Research and Forecasting model are used to understand how regional and large-scale
atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above
and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf
edge). El Nifo episodes are associated with an increase in surface melt but do not have a statistically
significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low
and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting,

although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the
continental shelf edge. The projected future increase in El Nifio episodes and positive SAM could

therefore increase the risk of disintegration of West Antarctic ice shelves.

Plain Language Summary Most of the floating ice shelves fringing the Amundsen Sea Embayment
(ASE) region of West Antarctica have undergone rapid thinning by basal melting in recent decades, resulting
in upstream acceleration of grounded ice and raising global sea levels. Recent climate model projections
suggest an intensification of austral summer melt over the ASE ice shelves by the end of the century due to
increasing summer air temperatures to magnitudes that caused the recent breakup of ice shelves in Antarctic
Peninsula. However, so far, the effect of regional and large-scale atmospheric variability on summertime
thinning of ASE ice shelves has not been quantified in a spatially explicit manner. Here we employ a
high-resolution regional model and satellite data to show that the location of Amundsen Sea Low, the
polarity of Southern Annular Mode, and the phase of El Nifio-Southern Oscillation are responsible for
pronounced changes in the zonal wind stress over the ASE continental shelf edge and temperatures above
the melting point over ASE ice shelves. Particularly, El Nifio events are associated with enhanced surface
melting over Pine Island and Thwaites Glaciers. The projected future increase in El Nifio episodes could
therefore increase the risk of disintegration of ASE ice shelves.

1. Introduction

The melting of glacial ice from West Antarctica is of critical concern to vulnerable coastal communities
around the world who are at long-term risk from the ensuing global sea level rise. The ice streams draining
into the Amundsen Sea (AS) Embayment (ASE) sector of West Antarctica have received much attention
recently (Scambos et al., 2017; Turner et al., 2017), as ice discharge has increased by 77% since 1973 due
to glacier acceleration and thinning (Mouginot et al., 2014). Pine Island and Thwaites Glaciers are two of
the major ice streams flowing into the ASE that are accelerating rapidly (Mouginot et al., 2014). These glaciers
and their catchment areas together contain enough ice to raise global sea level by approximately 1.2 m and
are currently contributing around 10% of the rate of global sea level rise (Shepherd et al., 2012). Concurrent
with these changes is the thinning of the fringing ice shelves, which act to buttress the flow of outlet glacier
ice (e.g., Dupont & Alley, 2005; Paolo et al., 2015; Pritchard et al., 2012; Reese et al., 2017).

The recent substantial grounding-line retreat and mass loss of ASE glaciers are/have been driven mainly by
melting below the ice shelves due to intrusions of relatively warm circumpolar deep water (CDW) along gla-
cial troughs that cross the AS continental shelf (Jenkins et al., 2016; Payne et al., 2004; Prichard et al., 2012).
The rate of delivery of CDW onto the continental shelf is partially controlled by the direction and magnitude
of zonal wind stress at the continental shelf edge, with westerly winds causing inflow of CDW onto the shelf
(Carvajal et al., 2013; Dutrieux et al., 2014; Jenkins et al., 2016; Thoma et al., 2008). Relatively low-magnitude
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surface melting during austral summer (December-January-February) has also been observed across ASE ice
shelves (Tedesco, 2009; Trusel et al., 2013). Both Pine Island and Thwaites Glaciers are susceptible to unstable
retreat of the grounding line due to the bedrock deepening inland and lying well below sea level (Rignot
et al, 2014).

Climate model projections suggest an intensification of summer surface melting over the ASE ice shelves by
the end of the century due to increasing air temperatures to magnitudes that caused the recent breakup of
ice shelves in the Antarctic Peninsula (Trusel et al.,, 2015). As the melting of ice shelves from both below and
above is strongly controlled (directly or indirectly) by the atmosphere, both processes could potentially work
synergistically in the future to increase the risk of catastrophic ice shelf disintegration, followed by the col-
lapse of the West Antarctic ice sheet (DeConto & Pollard, 2016; Reese et al., 2017; Ritz et al., 2015). A clearer
understanding of the drivers of interannual atmospheric variability affecting ASE ice shelves in the present-
day climate is therefore essential to assess the likelihood of future atmosphere-driven impacts.

Both regional and large-scale climate variability influences the ASE (Scambos et al., 2017; Turner et al., 2017
for a review). The atmospheric circulation in this region is one of the most variable on Earth (Connolley, 1997),
largely as a result of variations in the depth and longitudinal location of the Amundsen Sea Low (ASL), which
is a climatological low pressure center located off the coast of West Antarctica (Coggins & McDonald, 2015;
Hosking et al., 2013; Nicolas & Bromwich, 2011). Although the mean position of the ASL is located over the
eastern AS/Bellingshausen Sea during summer, this season corresponds to the largest interannual variability
in longitude (Hosking et al., 2013). Important patterns of large-scale variability include the Southern Annular
Mode (SAM) and tropical forcing associated with El Nifio-Southern Oscillation (ENSO) activity (Clem et al.,
2017; Hosking et al., 2013; Nicolas et al, 2017). Note that strong SAM events are able to modulate the
ENSO teleconnection (Fogt & Bromwich, 2006).

In recent decades, the SAM has shifted toward its positive polarity in summer largely because of the Antarctic
ozone hole (Polvani, Previdi, & Deser, 2011). Continued increased emissions of greenhouse gases is likely to
keep it more often in its positive polarity throughout the 21st century, despite the anticipated Antarctic
ozone recovery partially offsetting this (Polvani, Waugh, et al., 2011). Climate model projections also suggest
that the mean position of the ASL during summer under the Representative Concentration Pathway experi-
ment 8.5 emissions scenario will shift westward toward the AS by the end of the 21st century (Hosking et al.,
2016). Modeling experiments additionally suggest a trend toward stronger and more frequent El Nifo
episodes during the 21st century (e.g., Cai et al., 2014; Power et al., 2013), along with an increase in ENSO
interannual variability (e.g., X.-T. Zheng et al., 2016).

The aim of this study is to demonstrate the influence of these drivers on ice shelf melt processes in the ASE
during summer. Our results will enable better prediction of how the glaciers draining into the ASE will evolve
over the coming decades and the possible impact on sea levels.

2. Materials and Methods

Although global atmospheric reanalysis products have been used previously to characterize the present-day
climate of the ASE (Jones et al., 2016), they are unable to resolve the relatively narrow ASE ice shelves (~50-km
width) due to their coarse grid spacing of 50-100 km. Moreover, due to the remoteness of the region,
there are no long-term in situ meteorological records. We overcame both of these deficiencies by produ-
cing a 35-year high-resolution hindcast for this region using an atmosphere-only model to dynamically
downscale the reanalysis data to a grid spacing of 15 km, which, as shown by Deb et al. (2016), has com-
parable skill to model output at 5-km spacing at coastal ASE sites.

The model uses the recommended configuration of version 3.5.1 of the polar modified Weather Research and
Forecasting model (known as “Polar WRF”; Bromwich et al., 2013) for the ASE described by Deb et al. (2016),
which realistically simulated the near-surface meteorological conditions over coastal sites during summer.
The physics selections include the WRF Single Moment 5-Class cloud microphysics scheme, the Mellor-
Yamada-Janjic boundary layer scheme, the Rapid Radiative Transfer Model for General Circulation Models,
and the Noah land surface model. The model outer domain encompasses the West Antarctic ice sheet and
a large part of the surrounding ocean at 45-km horizontal grid spacing, and the nested (one-way) inner
domain covers the ASE at 15-km grid spacing (see Figure 1a). Both domains have a model top of 50 hPa
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Figure 1. Map showing the model domain setup of the hindcast simulations. (a) The 45-km outer domain and the 15-km
inner nested domain, as well as the two sectors used to compute the “ASL-lon” index (indicated by the regions labeled “Box
1” and “Box 2"), the locations of the Amundsen Sea, Bellingshausen Sea, Marie Byrd Land, Ellsworth Land, ice shelves
(shaded in gray), and the coastal AWSs (solid black triangles) at Bear Peninsula (BP), Evans Knoll (EK), and Thurston Island
(TI). (b) Zoom in of the 15-km inner nested domain showing the locations of the Getz, Thwaites, Pine Island and Abbot Ice
Shelves (shaded in gray and enclosed by magenta boxes), the model topographic height based on the Bedmap2 data
set (solid gray contours), and the ocean bathymetry based on the ETOPO1 data set (gray shading over the ocean, m).

and 30 vertical levels. Also used are spectral nudging (outer domain and wave numbers 1-5 only, from
approximately 1.5 km to the model top), high-resolution orography based on the Bedmap2 data set, and
meteorological forcing from ERA-Interim reanalysis (Dee et al, 2011). Additionally, the surface boundary
forcing of the model includes daily satellite observations of sea ice concentration (based on the 25-km
resolution Bootstrap data set; Comiso, 2000) and sea surface temperature (based on the 0.25° Advanced
Very High Resolution Radiometer data set; Casey et al,, 2010). Only model output at 15-km grid spacing
and hourly temporal resolution is analyzed in this study.

The hindcast was produced by running separate simulations for each of the summer months from December
1979 to February 2015 (with 24-hr spin up). Note that the monthly model output in this study is based on a
30-day model month for December and January and a 28-day model month for February (ending at 18 UTC of
the last day of each month). Along with Pine Island and Thwaites, a focus of this study is the Abbot and Getz
Ice Shelves (see Figure 1b for locations), which are selected both because of their relatively large areas and to
distinguish the impacts at different locations of the ASE, although Getz does show evidence of grounding line
retreat (Chuter et al., 2017). Note that Figure 1b additionally shows the bathymetry of the continental shelf,
based on the ETOPO1 data set (Amante & Eakins, 2009). The model representation of meteorological vari-
ables for each of the ice shelves is computed by averaging over all grid points within the boxes enclosing
them (see Figure 1b), excluding any ocean points.

Monthly temperature data from three coastal automatic weather stations (AWSs) at Bear Peninsula, Evans
Knoll, and Thurston Island (length of summer temperature records of 14, 11, and 8 months, respectively) were
collected to further assess the model representation temperature at 2 m (see Figure 1b for their locations). No
adjustment was made to account for the difference between the height of the AWS measurements (3 m) and
that of the model temperature. A statistical comparison between the monthly averaged model temperature
at 2 m and the monthly temperature records from the three AWSs demonstrated a significant correlation ran-
ging from 0.95 to 0.98, a bias ranging from around —0.02 to —1.04°C, and a root mean square error ranging
from 0.66 to 1.14°C (see supporting information Table S1 for details). These results confirm the findings of
Deb et al. (2016) that the setup of the Polar WRF deployed for this study is able to represent realistically sum-
mertime near-surface temperatures in the coastal ASE region.

In our hindcast, meltwater volume is simulated by the WRF Noah land surface model. Modeled melt days are
defined as days with cumulated meltwater volume >3 mm (note that the same value was also used by
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Lenaerts et al,, 2017, with the RACMO?2 regional model). The model results are compared with the number of
melt days estimated from satellite passive microwave measurements and defined as days with at least one
occurrence of surface melt. The satellite data have a grid spacing of 25 km and cover the same period as
the hindcast simulations. See Nicolas et al. (2017) for further details about the data and the algorithm used
to convert brightness temperatures into melted/nonmelted grid points.

We defined an index based on the differences between summer mean sea level pressure averaged over a box
in the western AS region (to the west of 125°W; labeled “Box 1” in Figure 1a) and a box in the Bellingshausen
Sea (to the east of 110°W, labeled “Box 2"). The index (referred to as “ASL-lon” hereafter) represents a west-
ward (eastward) shift of the location of the ASL for negative (positive) values. In order to demonstrate the
influence of the longitudinal position of the ASL on the ice shelves, composites are constructed by dividing
the monthly model output into quartiles based on the ASL-lon index and examining the differences between
the lower and upper quartiles (containing 22 and 20 months, respectively), that is, westward minus eastward
location of the ASL. Similarly, to demonstrate the influence of the polarity of the SAM, the monthly model out-
put was divided into quartiles based on the SAM index, and the differences between the upper and lower
quartiles (containing 18 and 21 months, respectively) were examined, that is, positive SAM minus negative
SAM events. The SAM polarity was identified using the Marshal index (Marshall & National Center for
Atmospheric Research Staff, 2016). Note that to reduce any signal related to ENSO from the analysis, months
with strong ENSO variability are excluded, which are identified by sea surface temperature anomalies above
(below) a threshold of +1.5°C (—1.5°C) in the Nifio 3.4 region, computed from the HadISST1 data set (Rayner
et al., 2003). Finally, to investigate the influence of ENSO, differences are presented for El Nifio minus La Nifa
composites (containing 33 and 38 months, respectively), with El Nifio (La Nifia) episodes identified from sea
surface temperature anomalies above (below) the threshold of +0.5°C (—0.5°C) in the Nifio 3.4 region. El Nifio
and La Nina are opposite phases of ENSO.

3. Results

The composite differences in Figure 2 for westward minus eastward location of the ASL (upper panels) show a
marked zonal gradient in surface pressure, with lower pressures (exceeding —5 hPa) over the western AS and
higher pressures (exceeding 5 hPa) over the eastern AS/western Bellingshausen Sea. The pressure gradient is
linked to a marked strengthening of the meridional wind component at 10 m over the Southern Pacific
Ocean (by up to 4 m/s), resulting in an increase in the advection of warm maritime air toward West
Antarctica. The flow divides in the horizontal plane as it approaches the continent, with some flowing over
the Marie Byrd Land sector of West Antarctica. However, the majority deflects to the right and flows westward
over the western AS continental shelf edge due to a combination of the change in pressure gradient and low-
level blocking by the coastal orography (cf. Orr et al., 2004), that is, consistent with causing a reduction of
warm CDW onto the shelf near Getz. Supporting information Figure S1 shows that a westward (eastward)
location of the ASL is associated with, for example, an increase in the frequency of easterly (westerly) wind
events over the western Getz continental shelf break. Associated with the wind changes is an increase in tem-
perature at 2 m over West Antarctica, with the Getz Ice Shelf showing the largest warming (of around 1.8 K) of
all the ice shelves; although the strongest warming (of around 3 K) occurs over the continental interior (west
of around 110°W).

The composite differences for El Nifio minus La Nifia episodes in Figure 2 (middle panels) show a high-
pressure ridge over the AS (exceeding 4 hPa), which strengthens the westerly component of the wind
over the continental shelf edge, that is, consistent with causing an increase of warm CDW onto regions
of the continental shelf that include Pine Island, Thwaites, and Getz. However, the differences in wind
over the continental shelf are weak (less than 1 m/s), as well as not statistically significant. Supporting
information Figure S1 confirms that El Niflo episodes are associated with only a small increase (decrease)
in westerly (easterly) wind events over the eastern Getz continental shelf break, suggesting that the
actual influence on CDW upwelling is only marginal. Note that the differences in surface pressure
(although prominent) are also not statistically significant, which highlights the large variability associated
with ENSO. The enhanced flow transports relatively warm maritime air over the Getz, Pine Island, and
Thwaites Ice Shelves and extends deep into the Ellsworth Land sector of West Antarctica (Figure 2f).
This accounts for the increases in temperature at 2 m over these regions, with Thwaites and Pine
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Figure 2. Composite differences for austral summer of (a, d, and g) surface pressure (hPa), (b, e, and h) wind vectors at 10 m
(m/s), and (c, f, and i) temperature at 2 m (K) from the hindcast simulations. The upper panels (a-c) show results for
westward minus eastward location of Amundsen Sea Low. The middle panels (d-f) show results for El Nifio minus La Nifa
episodes. The lower panels (g-i) show Southern Annular Mode (SAM) positive minus SAM negative events. Solid
magenta contours and bold arrows show 90% significance level. Note that the maximum and minimum values of the color
bars vary, as do the reference wind arrows. The results for the Amundsen Sea Low location and SAM polarity exclude
months with strong ENSO variability.

Island showing the largest warming of all the ice shelves; however, the strongest warming (of around 2 K)
again occurs over the continental interior.

As expected, analogous results for composite differences for SAM positive minus SAM negative events in
Figure 2 (bottom panels) show a marked meridional gradient in surface pressure. This is associated with
strengthened northwesterly winds over the continental shelf edge that includes Pine Island, Thwaites, and
Abbot Ice Shelves, that is, associated with increased intrusions of CDW onto the continental shelf.
Supporting information Figure S1 shows that positive SAM events are associated with a noticeable reduction
in easterly wind events over the Pine Island continental shelf break compared to negative SAM events but
only a small increase in westerly wind events. Differences in wind speed and temperature over the ice
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Figure 3. Normalized probability distributions for austral summer of daily maximum temperature at 2 m for (a, e, and i) Getz, (b, f, and j) Thwaites, (¢, g, and k) Pine
Island, and (d, h, and |) Abbot Ice Shelves from the hindcast simulations. The upper panels (a—d) show results for the ASL located westward in Box 1 (solid red lines)
and eastward in Box 2 (solid blue lines). The middle panels (e-h) show results for El Nifio (solid red lines) and La Nifa (solid blue lines) episodes, for all months.
The lower panels (i-1) show results for SAM positive (solid blue lines) and SAM negative (solid red lines) events. The dashed line identifies the melting point (273.15 K).
The results for the ASL location and SAM polarity exclude months with strong El Nifo-Southern Oscillation variability. ASL = Amundsen Sea Low; SAM = Southern
Annular Mode.

shelves and continental interior are small and statistically insignificant, with the exception of a region of
isolated warming around Pine Island.

To investigate the impact on temperature extremes, Figure 3 shows the normalized probability distributions
of model daily maximum temperature at 2 m for each of the composites. The probability distributions for
both westward and eastward locations of the ASL (upper panels) are strongly negatively skewed, with the
highest peaks occurring between 272 and 273 K (with a probability of up to 25%). However, the impact of
ASL location on maximum temperatures above the melting point is minimal. Nevertheless, compared to
an eastward location of the ASL, a westward location broadly causes a decreased frequency in the occurrence
of temperatures in the range 260 to 268 K over the ice shelves, coupled with an increase in the range 268 to
273 K. This relationship is most apparent for the Getz Ice Shelf (to the west) and least apparent for the Abbot
Ice Shelf (to the east; cf. Figure 2c).
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threshold were relatively insensitive to the polarity of the SAM and long-
itudinal position of the ASL (Figure 3). Both model- and satellite-based
composite differences show a consistent pattern of longer melt duration
along the ASE coast during El Niflos compared to La Nifias. These results are consistent with the warmer con-
ditions over the entire region favored by El Nifios (Figure 2f) and the greater probability of temperatures
reaching 0°C under such conditions (Figure 3, middle panels). Some differences between Figures 4a and
4b can be ascribed to factors such as differences in horizontal resolution, temporal frequency, or liquid water
detection/simulation thresholds between model- and satellite-based estimates. Nonetheless, in both panels,
the increase is most marked over the Pine Island Ice Shelf, with an additional 14 days or more of melting con-
ditions in this area under El Nifio conditions. The increase is statistically significant over the Getz, Pine Island,
and Thwaites Ice Shelves in both model and satellite results but is only statistically significant over the Abbot
Ice Shelf in the model data. Note that examination of individual years showed that not all El Nifio episodes
resulted in surface melt (not shown).

Ice shelf surface melt is also influenced by precipitation, for example, via the accumulation of a layer of snow
that shields the underlying ice surface or rainfalling instead of snow. Results from the hindcast simulations
show that a westward shift of the ASL is associated with a widespread increase in precipitation over the
coastal sector of the ASE, but there is little sensitivity to ENSO or the polarity of the SAM (supporting
information Figure S2). These model results do not take into account the phase of precipitation, for which
further investigations are required.

4, Discussion and Conclusions

Many ASE ice shelves have experienced significant basal thinning over recent decades, potentially making
them susceptible to a higher risk of collapse due to increased surface melting in a warming climate. The cli-
mate of the ASE is strongly influenced by both local and large-scale variability, and a detailed understanding
of the effects of this variability on ice shelf melt processes is vital for assessing the likelihood of their future
disintegration. A configuration of Polar WRF optimized for the coastal ASE sector is used to investigate this
by producing a 35-year hindcast austral summer simulation at a sufficiently detailed resolution to capture
the local characteristics of the ice shelves and continental shelf edge.

The hindcast showed that temperatures above the melting point over ASE ice shelves are largely insensitive
to either the longitudinal location of the ASL or the polarity of the SAM, in both cases therefore having little
impact on surface melting. However, both of these drivers are responsible for pronounced changes in the
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zonal wind stress over the ASE continental shelf edge, which influences ice shelf stability by controlling
whether CDW can flow onto the continental shelf and reach the glaciers via glacial troughs (Carvajal et al.,
2013; Dutrieux et al., 2014; Jenkins et al., 2016; Thoma et al., 2008). An eastward shift of the ASL causes anom-
alous westerly winds over the continental shelf edge near Getz Ice Shelf, while positive SAM episodes cause
anomalous westerly winds over the sectors of the continental shelf edge that includes Pine Island, Thwaites,
and Abbot Ice Shelves, increasing the flow of warm CDW onto these regions of the continental shelf.

By contrast, the occurrence of El Nifio episodes causes a sharp increase in the likelihood of temperatures
exceeding the melting point, which is reflected in a substantial increase in surface melt over the ice shelves,
especially for Pine Island and Thwaites Ice Shelves. The importance of El Nifio to the meteorology of the West
Antarctic Ice Sheet is further evidenced by its role in the 2016 widespread and prolonged melt over the Ross
Ice Shelf (Nicolas et al., 2017). However, El Nifio episodes have only a small and statistically nonsignificant
impact on westerly winds over the continental shelf edge compared to La Nifia episodes. It is worth noting
that we have described the impact of ENSO variability in summer on summer atmospheric anomalies in
the ASE region; however, the findings from Clem et al. (2017) suggest that the latter could also be influenced
by ENSO variability in spring. It is further worth noting that the modulation of the influence of ENSO by SAM is
a major reason for why not all El Nifio episodes result in surface melt over the ice shelves; for example, the
high-latitude ENSO teleconnection is reduced in El Nifio/positive SAM combinations (Fogt & Bromwich,
2006). Other factors to consider are the timing of the ENSO variability during summer, as well as changes
in the location of the ENSO teleconnection pattern in the South Pacific (e.g., Wilson et al., 2016).

Model experiments suggest a higher frequency of positive SAM conditions by the end of the 21st century due
to climate change (e.g., F. Zheng et al., 2013), which would be conducive to increased basal-driven melting of
ASE ice shelves. Although limitations in climate models make projected changes in ENSO and associated tel-
econnections to the ASE uncertain (Bracegirdle et al,, 2014), such model experiments also suggest a trend
toward stronger and more frequent El Nifio episodes during the 21st century, which would result in increased
surface melting of ASE ice shelves. Although projections also suggest that the mean position of the ASL under
Representative Concentration Pathway experiment 8.5 during summer will shift westward by the end of the
21st century (Hosking et al., 2016), the shift is much smaller than the longitudinal differences considered here.

Our study suggests that ASE ice shelves could experience an intensification of melt in the future from both
above and below as a result of both regional and large-scale atmospheric changes, potentially increasing
the risk of their disintegration, which in turn could potentially trigger a collapse of the West Antarctic ice
sheet (DeConto & Pollard, 2016). To better understand this threat will require further detailed investigation
of the impacts of ENSO, the polarity of the SAM, and the depth/location of the ASL on ASE ice shelves.
Also necessary is improving the reliability of future projections, such as ENSO and its teleconnections, as well
as the response of the SAM to recovery of the Antarctic ozone hole and increased greenhouse gas emissions
(Polvani, Waugh, et al., 2011).
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