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COUPLING COUPLES WITH COPULAS: ANALYSIS

OF ASSORTATIVE MATCHING ON RISK ATTITUDE

Aristidis K. Nikoloulopoulos∗ Peter G. Moffatt†

Abstract

We investigate patterns of assortative matching on risk attitude, using self-reported (or-

dinal) data on risk attitudes for males and females within married couples, from the

German Socio-Economic Panel over the period 2004-2012. We apply a novel copula-based

bivariate panel ordinal model. Estimation is in two steps: firstly, a copula-based Markov

model is used to relate the marginal distribution of the response in different time periods,

separately for males and females; secondly, another copula is used to couple the males’

and females’ conditional (on the past) distributions. We find positive dependence, both in

the middle of the distribution, and in the joint tails, and we interpret this as positive as-

sortative matching (PAM). Hence we reject standard assortative matching theories based

on risk-sharing assumptions, and favour models based on alternative assumptions such as

the ability of agents to control income risk. We also find evidence of “assimilation”; that

is, PAM appearing to increase with years of marriage.

JEL classification: C33; C51; D81

Keywords: Copula models; Joint tail probabilities; Markov models; Panel ordinal data;

Risk-lovers/avoiders.

1 Introduction

In recent years, the Economic Theory literature has seen intense interest in the concept of

assortative matching on risk attitude, particularly when applied to the marriage market. One
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obvious reason for this interest is that the nature of this type of matching has profound impli-

cations for the relationship between individual decision making and household decision making

(see Browning et al. 2014). Much of this literature is based on risk-sharing arguments, which

amount to the substitutability of risk-bearing between individuals in an incomplete insurance

market: a risk-averse female is a demanding buyer of insurance, while a risk-seeking male is

a ready seller of it (Schulhofer-Wohl, 2006; Legros and Newman, 2007; Chiappori and Reny,

2016). This approach leads to the unambiguous prediction of negative assortative matching

(NAM): the most risk-averse male will match with the least risk-averse female; the second most

risk-averse male will match with the second least risk-averse female; and so on.

Against this background, a number of other theorists have demonstrated that the introduc-

tion of certain other model features can reverse the prediction to one of positive assortative

matching (PAM). For example, Li et al. (2013) propose a model in which agents can control

the risks to their incomes (by e.g. re-training, changing career or taking a second job). They

first show that if agents can only control the mean of the income distribution, the matching

formula contains only a risk-sharing effect which is negative, and NAM is predicted. However,

they then show that if agents can control both the mean and the variance, there is in addition

a risk-management effect which is positive, and if this term outweighs the risk-sharing effect,

PAM is predicted. The intuition underlying this prediction is that agents prefer similar part-

ners because of their aligned objectives in risk management. Gierlinger and Laczó (2017) find

that assortative matching behaviour depends on the level of commitment, with PAM arising

in a situation of limited commitment. The assumption of limited commitment must be seen

as highly plausible in the context of the marriage market, in which formal risk-sharing con-

tracts are typically not signed. Li et al. (2016) show that when risks are large compared with

individuals’ risk-free incomes, PAM may result.

Empirical and experimental evidence that is currently available is broadly favourable to

PAM. Bacon et al. (2014) used repeated data on married couples within the German Socio-

Economic Panel to investigate spousal correlation in risk attitude. They applied the bivariate

panel ordered probit model to the self-reported risk attitude data from this source. They

found that the individual-specific effects (in the risk attitude equation) for the two members

of a married couple, are positively correlated, and this was interpreted as evidence of PAM.

Evidence of PAM has also been found in factors that are known to determine risk attitude,

for example education, wages and wealth (Becker, 1974; Lam, 1988; Charles and Hurst, 2003),
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and also in factors relating to non-financial risk-taking such as smoking (Clark and Etilé, 2006).

Di Cagno et al. (2012) carry out experiments in which agents allocate their wealth among risky

lotteries and share winnings with their partners according to pre-committed rules. Again, evi-

dence of PAM is found: agents tend to choose partners with similar risk attitude to themselves.

Clearly this body of empirical evidence has important implications for the validity of each

of the various assortative matching theories cited above. Given this, it is imperative that the

econometric approaches used to establish such evidence are valid, and sufficiently flexible to

detect whatever patterns of assortative matching exist within the data. With this in mind,

in this paper we delve deeper into the investigation of assortative mating on risk attitude, by

applying the copula approach. The main advantage of the copula approach is that it can allow

a wide range of flexible tail dependence and asymmetry between the two variables (here male’s

and female’s risk attitude) under investigation.

It is this aspect of the copula approach that makes it particularly well-suited to the empirical

testing of some of the most recent assortative matching theories. This is because the theories

not only predict PAM, but go further than this, by predicting that PAM is stronger in particular

parts of the distribution of risk attitudes. For example, in the version of the model of Li et al.

(2013) in which agents can control both the mean and the variance of their income distribution,

highly risk averse agents are more strongly motivated to match with similar agents, hence

implying positive tail dependence in the joint distribution of risk aversion. This is a consequence

of risk aversion of the “household representative agent” becoming more sensitive to the choice

of a dissimilar partner when risk aversion increases. Even more recently, Chen et al. (2018)

have explored similar issues in the context of a principal-agent problem with moral hazard:

the agent can exert effort in risk reduction, but this effort is unobservable to the principal.

They find that a highly risk-averse principal is willing to pay more than a less risk-averse

principal to avoid matching with a less risk-averse agent. In other words, PAM is expected to

be stronger at higher levels of risk aversion, once again implying positive tail dependence in the

joint distribution of risk aversion. The impact of moral hazard in matching problems is also

considered by Wang (2013).

Note that the copula approach is ideal for the empirical testing of the theories outlined in

the preceding paragraph, since it explicitly embodies the feature of tail dependence (Joe, 1993)

that is predicted by each of these theories. Note also that existing empirical approaches used

to investigate assortative matching, such as the random effects models used by Clark and Etilé
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(2006) and Bacon et al. (2014), are based on the normality assumption, and although mathe-

matically convenient, are constrained to tail independence. A further attraction of the copula

approach is that the richness of the dependence structure is being introduced without the

requirement of estimation of additional parameters.

We are also interested in whether and how this dependence structure changes with years of

marriage. A very interesting hypothesis is that of assimilation: a process by which attitudes

become more similar with years of marriage. Bacon et al. (2014) found evidence of spousal

correlation in risk attitude increasing with years of marriage, and Di Falco and Vieider (2017),

using a sample of Ethiopian married couples, find that assimilation is more important than

assortative matching in explaining risk attitudes. The hypothesis of assimilation will be inves-

tigated in this paper by estimating the copula model separately for different stages of marriage.

We will use a general copula construction, based on a set of bivariate copulas to jointly

model bivariate ordinal time-series responses with covariates. We call this the “joint copula-

based Markov model”. For the proposed model, we construct the joint distribution in terms of

three bivariate copulas. For each ordinal time series we consider a copula-based Markov model,

where a parametric copula family is used for the joint distribution of subsequent observations

and then we relate these ordinal time-series responses using another copula to couple their

conditional (on the past) distributions at each time point. Much is known about properties of

parametric bivariate copula families in terms of dependence and tail behavior. In this paper

we draw on this wealth of knowledge. The bivariate, or multinomial probit model, in the

biostatistics (Ashford and Sowden, 1970), psychometrics (Muthén, 1978), and econometrics

(Hausman and Wise, 1978) literature, is a simple example of the bivariate normal (BVN) copula

with univariate probit regressions as the marginals. Other choices of copulas are better if (a)

Yj ’s have more probability in joint upper or lower tail than would be expected with a discretized

BVN, or (b) Yj’s can be considered as discretized maxima/minima or mixtures of discretized

means rather than discretized means (Nikoloulopoulos and Joe, 2015). Copulas that arise from

extreme value theory have more probability in one joint tail (upper or lower) than expected

with a discretized BVN distribution or an BVN copula with discrete margins. It is also possible

that there can be more probability in both the joint upper and joint lower tail, compared with

discretized BVN models. This happens if the respondents consist of a “mixture” population

(e.g., different ethnicities). From the theory of elliptical distributions and copulas, it is known

that some scale mixtures of BVN have more dependence in the tails.
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Much is known about copulas. They have been used to great benefit in many areas

(e.g., insurance, finance and hydrology), but have only recently taken hold in econometric

research. So far in the Economics literature, the copula approach has been used to model

earnings, mobility, house prices, and measures of well-being (Dardanoni and Lambert, 2001;

Bonhomme and Robin, 2006, 2009; Zimmer, 2012, 2015; Decancq, 2014). To our knowledge,

our paper is the first application of the copula approach to an assortative matching problem.

The remainder of the paper proceeds as follows. Section 2 has a brief overview of relevant

copula theory. Section 3 introduces the joint copula-based Markov model for discrete ordi-

nal responses with covariates and discusses its relationship with existing models. Section 4

discusses suitable parametric families of copulas for the joint copula-based Markov model for

discrete ordinal responses with covariates. Estimation techniques and computational details are

provided in Section 5. Section 6 presents the applications of our methodology to assortative

mating using data from the German Socio-Economic Panel over the period 2004–2012. We

conclude with some discussion in Section 7.

2 Overview and relevant background for copulas

A copula is a multivariate cumulative distribution function (cdf) with uniform U(0, 1) margins

(Joe, 1997; Nelsen, 2006; Joe, 2014). If F is a bivariate cdf with univariate margins F1, F2, then

Sklar’s (1959) theorem implies that there is a copula C such that

F (y1, y2) = C
(

F1(y1), F2(y2)
)

. (1)

The copula is unique if F1, F2 are continuous, but not if some of the Fj have discrete components.

If F is continuous and (Y1, Y2) ∼ F , then the unique copula is the distribution of (U1, U2) =

(F1(Y1), F2(Y2)) leading to

C(u1, u2) = F
(

F−1
1 (u1), F

−1
2 (u2)

)

, 0 ≤ uj ≤ 1, j = 1, 2,

where F−1
j are inverse cdfs. In particular, if Φ2(·; ρ) is the BVN cdf with correlation ρ and

standard normal margins, and Φ is the univariate standard normal cdf, then the BVN copula

is

C(u1, u2) = Φ2

(

Φ−1(u1),Φ
−1(u2); ρ

)

.

The major advantage of copulas for dependence modelling is that the dependence structure may

be separated from the univariate margins; see, for example, Section 1.6 of Joe (1997). If C(·; θ)
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is a parametric family of copulas and Fj(·; ηj) is a parametric model for the jth univariate

margin, then

C
(

F1(y1; η1), F2(y2; η2); θ
)

is a bivariate parametric model with univariate margins F1, F2. For copula models, the variables

can be continuous or discrete (Nikoloulopoulos, 2013; Nikoloulopoulos and Joe, 2015).

3 A joint copula-based Markov model

For ease of exposition, let T be the dimension of a “panel” and n the number of clusters. The

theory can be extended to varying cluster sizes. Let p be the number of covariates, that is,

the dimension of a covariate vector x. Let Y ⋆ ∼ F be a latent variable, such that Y = y if

αy−1+xTβ ≤ Y ⋆ ≤ αy+xTβ, y = 1, . . . , K, where K is the number of categories of Y (without

loss of generality, assume α0 = −∞ and αK = ∞), and β is the p-dimensional regression vector.

From this definition, the response Y is assumed to have density

f(y;µ,γ) = F(αy + µ)− F(αy−1 + µ),

where µ = xTβ is a function of x and the p-dimensional regression vector β, and γ =

(α1, . . . , αK−1) is the q-dimensional vector of the univariate cutpoints (q = K − 1). Note

that F normal leads to the ordinal probit model for ordinal response, F logistic leads to the

ordinal cumulative logit model.

Suppose that data are (yitj,xitj), i = 1, ..., n, t = 1, . . . , T, j = 1, 2 where i is an index for

individuals or clusters, t is an index for the repeated measurements or within cluster measure-

ments, and j is an index for the gender: 1=male, 2=female. The univariate marginal model

for Yitj is fj(yitj ;µitj,γj) where µitj = x⊤
itjβj and γj of dimension qj be the vector of univariate

cutpoints. If for each t, Yi1j, . . . , YiT j are serially independent conditional on µitj , then the

log-likelihood for each gender is

ℓj =

n
∑

i=1

T
∑

t=1

log fj(yitj;µitj ,γj). (2)

If the ordinal data are observed in a time series sequence as above, then the ordinal regression

model can be adapted in two ways:

• add lagged variables as covariates;

• make use of time series models for stationary ordinal data.
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Here, we use the second of these. For dependent Yi1j , . . . , YiT j, estimation of βj and γj involves

copula-based Markov models (Joe, 1997, page 244) for ordinal time-series with covariates. The

joint distribution of adjacent observations is modelled through a parametric copula family from

which transition probabilities may be extracted. The advantages of using time-series models

are (Joe, 2015):

• The class of autocorrelation functions is much wider than those based on an ordered

probit with lagged dependent variables appearing as explanatory variables.

• Prediction in regressions with time dependent observations is simpler as they can be

formulated with or without the preceding observations.

• Serial dependence (positive or negative) can be modelled through suitable copula families.

• The conditional expectation is generally non-linear and a variety patterns are possible.

For extreme values of the variables, conditional expectation and variance are determined

by the tail behaviour of the copula family.

• Incorporating covariates in time-series models is more straightforward in univariate re-

gression models.

• It is straightforward to extend first-order Markov to higher orders.

• Likelihood inference is easy provided the copula family has relatively simple form.

Note in passing that Chen and Fan (2006) studied copula-based Markov models of continuous

response data.

The transition cdf of Ytj given Yt−1,j is

Fj|t(ytj|yt−1,j) = P (Ytj ≤ ytj |Yt−1,j = yt−1,j)

=
[

Cj|t

(

F (yt−1,j), F (ytj)
)

− Cj|t

(

F (yt−1,j − 1), F (ytj)
)

]

/f(yt−1,j),

and the transition probability mass function (pmf) is

fj|t(ytj |yt−1,j) = P (Ytj = ytj |Yt−1,j = yt−1,j) =
f(ytj, yt−1,j)

fj(yt−1,j)
,

where f(yt, yt−1) = Cj|t

(

F (yt), F (yt−1)
)

−Cj|t

(

F (yt − 1), F (yt−1)
)

−Cj|t

(

F (yt), F (yt−1 − 1)
)

+

Cj|t

(

F (yt − 1), F (yt−1 − 1)
)

. Then the log-likelihood for each gender is

ℓj|t =

n
∑

i=1

(

log fj(yi1j;µi1j ,γj) +

T
∑

t=2

log fj|t(yitj|yi,t−1,j;µitj, µi,t−1,j,γj)

)

. (3)
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The BVN copula is a special case, and this is called “autoregressive-to-anything” in Biller and Nelson

(2005) as acknowledged by Joe (2014). Other copulas would be useful for the transition prob-

ability if there is more clustering of consecutive large or small values than would be expected

with BVN.

Note in passing that even though parameter estimates from univariate analysis ignoring the

serial dependence remain consistent but they are inefficient (Liang and Zeger, 1986). When

using copula terms in the likelihood improves asymptotic efficiency over the independence

estimating equations (Prokhorov and Schmidt, 2009).

So far we treat the ordinal response of the males and the ordinal response of the females

separately as if they were independent. In the sequel, we novel propose to relate these responses

using a copula to couple their conditional (on the past) distributions at each time point. One

should perform the analysis not ignoring serial dependence. The valid copula practice is to first

fit univariate time series models to correct for serial dependence as above and in the sequel

join the conditional joint distributions of each time-series using a multivariate copula; see e.g.

Patton (2012).

From Sklar (1959), there is a bivariate copula C12|t such that Pr(Yt1 ≤ yt1, Yt2 ≤ yt2) =

C12|t

(

F1|t(yt1|yt−1,1), F2|t(yt2|yt−1,2)
)

. Then it follows that the joint pmf is

f12|t(yt1, yt2) = (4)

C12|t

(

F1|t(yt1|yt−1,1), F2|t(yt2|yt−1,2)
)

− C12|t

(

F1|t(yt1 − 1|yt−1,1), F2|t(yt2|yt−1,2)
)

−

C12|t

(

F1|t(yt1|yt−1,1), F2|t(yt2 − 1|yt−1,2)
)

+ C12|t

(

F1|t(yt1 − 1|yt−1,1), F2|t(yt2 − 1|yt−1,2)
)

For the joint copula-based Markov model, we let C1|t, C2|t and C12|t be parametric bivariate

copulas, say with parameters θ1, θ2 and θ, respectively. For the set of all parameters, let

θ = {βj ,γj, θj , θ : j = 1, 2}. We model the joint distribution in terms of three bivariate

copulas. There is much known about properties of parametric bivariate copula families in

terms of dependence and tail behavior. Note that the copula Cj|t models the time-series for the

jth response and the copula C12|t links the ordinal response for males to the ordinal response

for females. Our general statistical model allows for selection of Cj|t and C12|t independently

among a variety of parametric copula families, i.e., there are no constraints in the choices of

parametric copulas {Cj|t, C12|t : j = 1, 2}.
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4 Choices of parametric families of copulas

In our candidate set, families that have different strengths of tail behaviour (see e.g., Nikoloulopoulos et al.

(2012); Nikoloulopoulos and Joe (2015)) are included. In the descriptions below, a bivariate

copula C is reflection symmetric if its density satisfies c(u1, u2) = c(1 − u1, 1 − u2) for all

0 ≤ u1, u2 ≤ 1. Otherwise, it is reflection asymmetric often with more probability in the joint

upper tail or joint lower tail. Upper tail dependencemeans that c(1−u, 1−u) = O(u−1) as u → 0

and lower tail dependencemeans that c(u, u) = O(u−1) as u → 0. If (U1, U2) ∼ C for a bivariate

copula C, then (1−U1, 1−U2) ∼ C1800 , where C1800(u1, u2) = u1+ u2− 1+C(1−u1, 1−u2) is

the survival (or rotated by 180 degrees) copula of C; this “reflection” of each uniform U(0, 1)

random variable about 1/2 changes the direction of tail asymmetry.

• Reflection symmetric copulas with tail independence satisfying C(u, u) = O(u2) and

C(1− u, 1− u) = O(u2) as u → 0, such as the Frank copula with cdf

C(u1, u2; θ) = −θ−1 log

{

1 +
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}

, θ ∈ (−∞,∞) \ {0}.

• Reflection asymmetric copula family with upper tail dependence, such as the Gumbel

extreme value copula with cdf

C(u1, u2; θ) = exp
[

−
{

(− log u1)
θ + (− log u2)

θ
}1/θ]

, θ ≥ 1.

The resulting model in this case has more probability in the joint upper tail compared to

the BVN copula. That is there is more dependence of large ordinal values that would be

expected with BVN.

• Reflection asymmetric copula family with lower tail dependence, such as the survival

Gumbel (s.Gumbel) copula with cdf

C(u1, u2; θ) = u1 + u2 − 1 + exp
[

−
{

(

− log(1− u1)
)θ

+
(

− log(1− u2)
)θ
}1/θ]

, θ ≥ 1.

The resulting model in this case has more probability in the joint lower tail compared to

the BVN copula. That is there is more dependence of small ordinal values that would be

expected with BVN.

• Copulas with reflection symmetric upper and lower tail dependence, such as the bivariate

Student tν copula with cdf

C(u1, u2; θ) = T2

(

T−1(u1; ν), T
−1(u2; ν); θ, ν

)

, −1 ≤ θ ≤ 1,
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where T (; ν) is the univariate Student t cdf with (non-integer) ν degrees of freedom,

and T2 is the cdf of a bivariate Student t distribution with ν degrees of freedom and

correlation parameter θ. A small value of ν, such as 1 ≤ ν ≤ 5, leads to a model with

more probabilities in the joint upper and joint lower tails compared to the BVN copula.

That is there is more dependence of large and small ordinal values than would be expected

with BVN.

To depict the concept of reflection symmetric (asymmetric) tail dependence (independence),

we plot contour plots of the corresponding copula densities with standard normal margins and

dependence parameters corresponding to Kendall’s τ value of 0.5 in Figure 1.
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3
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Figure 1: Contour plots of BVN, t2, Frank, Gumbel and s.Gumbel copulas with standard
normal margins and dependence parameters corresponding to Kendall’s τ value of 0.5.

For this paper, the above copula families are sufficient for the applications in Section 6,

since tail dependence is a property to consider when choosing amongst different families of

copulas and the concept of upper/lower tail dependence is one way to differentiate families.

Nikoloulopoulos and Karlis (2008) have shown that it is hard to choose a copula with similar

properties from real data, since copulas with similar (tail) dependence properties provide similar

fit. Note also that these copulas satisfy the conditions under which a copula function generates
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a stationary Markov chain that satisfies mixing conditions at a geometric rate (Chen et al.,

2009; Beare, 2010).

5 Estimation techniques and computational details

The log-likelihood of the joint copula-based Markov model is

ℓ12|t(θ) =

n
∑

i=1

(

log f12(yi11, yi12; θ) +

T
∑

t=2

log f12|t(yit1, yit2; θ)

)

. (5)

where f12|t(·) is given in (4) and

f12(y11, y12) =

C12|t

(

F1(y11), F2(y12)
)

− C12|t

(

F1(y11 − 1), F2(y12)
)

−

C12|t

(

F1(y11), F2(y12 − 1)
)

+ C12|t

(

F1(y11 − 1), F2(y12 − 1)
)

.

The maximum likelihood (ML) estimates can be derived using the steps below:

1. For each j:

(a) At the first step the ℓj(βj ,γj) in (2) is maximized over the univariate marginal

parameters βj,γj assuming time independence.

(b) At the second step the ℓj|t(βj ,γj, θj) in (3) is maximized over the copula parameter

θj with univariate parameters βj ,γj fixed as estimated at the first step.

(c) At the third step the ℓj|t(βj,γj , θj) in (3) is maximized over both the univariate

parameters βj,γj and copula parameter θj with initial parameters the estimates for

the preceding steps.

2. At the fourth step the ℓ12|t(θ) in (5) is maximized over the copula parameter θ with all

the other parameters fixed as estimated at the preceding steps.

3. At the final step the ℓ12|t(θ) in (5) is maximized over θ with initial parameters the

estimates for the preceding steps.

In the steps above the Inference function of Margins method (Joe, 1997, 2005) is used to get

initial estimates.

Each of the estimated parameters can be obtained by using a quasi-Newton (Nash, 1990)

method applied to the log-likelihood. This numerical method requires only the objective func-

tion, i.e., the joint log-likelihood, while the gradients are computed numerically and the Hessian
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matrix of the second order derivatives is updated in each iteration. The standard errors (SEs)

of the ML estimates can be also obtained via the gradients and the Hessian computed numeri-

cally during the maximization process. Assuming that the usual regularity conditions (Serfling,

1980) for asymptotic maximum likelihood theory hold for the bivariate model as well as for its

margins we have that ML estimates are asymptotically normal. Therefore one can build Wald

tests to statistically judge the effect of any covariate.

6 Application to the German Socio-Economic Panel

Couples were followed during 2004–2012. Interviews were administered every 2 years between

2004 and 2008, and every year thereafter, resulting in 7 measurements per couple. We use the

2201 couples observed at all seven time points, although our methodology could be applied to

situations in which the cluster size T is non-constant.

The outcome variable in our analysis is the risk attitude question which is asked in each of

the seven survey years. The question is reproduced as follows:

How do you see yourself? Are you generally a person who is fully prepared to take

risks or do you try to avoid taking risks? Please tick a box on the scale, where 0

means “risk averse” and 10 means “fully prepared to take risks”

✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷

0 1 2 3 4 5 6 7 8 9 10

We also use a number of explanatory variables: number of children, log of household income,

age, age-squared and education level.

We fit the joint copula-based Markov model with BVN, Gumbel, s.Gumbel, and tν bivariate

linking copulas. For Student tν , choices of ν were 1, 2, . . . , 10. For the model we allow three dif-

ferent copula families, one for the male time-series, one for the female time-series and one to join

them. To make it easier to compare the dependence parameters, we convert the estimated pa-

rameters to Kendall’s τ ’s in (0, 1) via the relations τ = 2
π
arcsin θ, τ = 1+4θ−1

[

1
θ

∫ θ

0
t

et−1
dt− 1

]

,

and τ = 1− θ−1 for elliptical, Frank and Gumbel copulas in Hult and Lindskog (2002), Genest

(1987), and Genest and MacKay (1986), respectively. Note that Kendall’s τ only accounts for

the dependence dominated by the middle of the data, and it is expected to be similar amongst

different families of copulas. However, the tail dependence varies, as explained in Section 4, and
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is a property to consider when choosing amongst different families of copulas. For the model

with tν we summarize the choice of integer ν with the largest maximized log-likelihood.

Since the number of parameters is the same between the models, we use the log-likelihood

at estimates as a measure for goodness of fit between all the models. We further compute the

Vuong’s (1989) test to check if there is more probability in the joint tails than the one expected

via assuming a BVN copula to couple the conditional (on the past) distributions of male and

female ordinal time-series. The Vuong’s test is the sample version of the difference in Kullback-

Leibler divergence between two models and can be used to differentiate two parametric models

which could be non-nested. Assume that we have Models 1 and 2 with parametric densities

f
(1)
12|t and f

(2)
12|t with C12|t being the BVN copula and any other parametric family of copulas

with different tail properties, respectively; the best fit of Cj|t is used for the joint distribution

of subsequent observations for males and females. The sample version of the difference in

Kullback-Leibler divergence between two models with MLEs θ̂
(1)
, θ̂

(2)
is

D̄ =

N
∑

i=1

Di/N,

where Di = log

[

f
(2)
12|t

(

Y1,Y2;θ̂
(2)

)

f
(1)
12|t

(

Y1,Y2;θ̂
(1)

)

]

. Model 1 is the better fitting model if D̄ < 0, and Model 2 is

the better fitting model if D̄ > 0. Vuong (1989) has shown that asymptotically under the null

hypothesis H0 : ∆ = 0, i.e., Models 1 and 2 have the same parametric densities f (1) and f (2),

z0 =
√
ND̄/s

H0∼N (0, 1),

where s2 = 1
N−1

∑N
i=1(Di − D̄)2. For more details we refer the interested reader to Joe (2014);

Nikoloulopoulos (2015).

For these risk data, if a respondent reports the maximum (minimum) willingness to take

risk in year t, then it seems natural to expect them to report the maximum (minimum) in

year t − 1 and year t + 1 as well. That is, based on the data descriptions, we can expect a

priori that a model with Cj|t being the tν copulas might be plausible, as in this case the data

have more probability in the joint tails. Furthermore, since the sample is a mixture (males and

females) we can expect a priori that a tν copula to join the male and female time-series might

be plausible, as in this case the ordinal responses can be considered as mixtures of discretized

means.

Table 1 contains results from the copula-based Markov models for ordinal time series with

covariates for both males and females, where a parametric copula family Cj|t is used for the joint

13



distribution of subsequent observations estimated separately for males and females, using data

from all available years. On the evidence of the maximised log-likelihoods, it is clear that the tν

copula with a small ν is the best-fitting model for these data, and, there is a big improvement

over the “autoregressive-to-anything” (BVN copula-based Markov) model. In particular, we

find that the t4 copula is the best-fitting model for the male time series, while the t5 is the

best-fitting for female time series.

On this basis, these two copulas are chosen for the joint copula-based Markov model that

couples the two univariate ordinal time series. For the joint copula-based Markov model for

ordinal time series with covariates for both males and females, where a t4 and a t5 copula family

is used for the joint distribution of subsequent observations for males and females, once again,

a number of different copulas are tried to form the joint distribution of couple observations,

and the results from these joint models are presented in Table 2. This time, we find that the

t5 copula provides the best fit. In fact, from the Vuong’s statistic there is enough improvement

compared to the BVN copula to get a highly statistical significant difference (p-value< 0.001).

This result suggests some skewness to both upper and lower tail for the pair of male and female

risks.

In the final (double) column of Table 2, we provide estimates together with SEs for this

joint model. The coefficients associated with the explanatory variables lead us to the following

conclusions: for males, income has a strong positive effect on willingness to take risk; for females,

number of children has a negative effect, while education has a positive effect. Of course, it may

be that some of these explanatory variables are endogenous. It is well known that risk attitude

is a key determinant in the child-bearing decision (Schmidt, 2008), in the education decision

(Shaw, 1996), and also consequently in the determination of income. The significance of the

coefficients on these variables in our model must surely be partly explained by this reverse

causality. However, the fact that child-bearing and education appear important only in the

female equation, while income appears important only in the male equation is interesting and

calls for further investigation.

The estimate of Kendall’s τ appearing in the final column of Table 2 is 0.172 and this is

strongly significant. In fact, a joint copula-based Markov model leads to better inferences than

a copula-based Markov model with independence of males and females since the likelihood has

been improved by 728.3 = −59942.2−(−30445.4−30225.1). This indicates that there is strong

evidence of positive dependence between males and females in the middle of the distribution

14



Table 1: Estimated parameters, and joint log-likelihoods ℓj|t for the copula-based Markov models for ordinal time series with covariates for both
males and females, where a parametric copula family Cj|t is used for the joint distribution of subsequent observations for 2004–12 time period.

Cj|t BVN Frank Gumbel s.Gumbel t4 t5
Males Females Males Females Males Females Males Females Males Females

α1 -0.708 -1.381 -0.803 -1.257 -1.259 -1.839 -0.105 -1.143 -0.595 -1.507
α2 -0.244 -0.861 -0.296 -0.719 -0.754 -1.293 0.269 -0.704 -0.165 -1.010
α3 0.352 -0.249 0.317 -0.104 -0.130 -0.663 0.781 -0.147 0.401 -0.408
α4 0.818 0.258 0.780 0.390 0.349 -0.150 1.210 0.341 0.859 0.099
α5 1.126 0.600 1.077 0.721 0.661 0.191 1.505 0.681 1.166 0.444
α6 1.719 1.256 1.647 1.363 1.249 0.825 2.094 1.346 1.762 1.103
α7 2.116 1.664 2.034 1.773 1.630 1.201 2.497 1.765 2.160 1.508
α8 2.703 2.193 2.622 2.314 2.172 1.666 3.102 2.316 2.743 2.029
α9 3.478 2.867 3.402 3.013 2.845 2.224 3.907 3.028 3.494 2.680
α10 3.972 3.263 3.905 3.422 3.252 2.540 4.431 3.449 3.964 3.055

# children -0.013 -0.027 -0.011 -0.020 -0.002 -0.021 -0.007 -0.027 0.001 -0.024
log(HH income) 0.174 0.005 0.166 0.009 0.137 -0.009 0.192 0.005 0.172 0.001

Age -0.109 0.090 -0.104 0.124 -0.112 0.004 -0.074 0.106 -0.086 0.044
Age2 0.003 -0.012 0.004 -0.014 0.004 -0.004 0.000 -0.013 0.001 -0.008

Education 0.008 0.028 0.008 0.027 0.000 0.025 0.017 0.033 0.007 0.030
τj 0.308 0.289 0.347 0.322 0.336 0.314 0.334 0.307 0.334 0.309
ℓj|t -30734.0 -30434.6 -30605.8 -30335.6 -30552.8 -30332.9 -30694.0 -30407.5 -30445.4 -30225.1

Age and Age2 are scaled by factor 10−1 and 10−2 respectively.
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Table 2: Estimated parameters, their standard errors, joint log-likelihoods ℓ12|t, and Vuong’s statistics for the joint copula-based Markov models
for ordinal time series with covariates for both males and females, where a t4 and a t5 copula family is used for the joint distribution of
subsequent observations for males and females, respectively, and, an additional parametric copula family C12|t is used for the joint distribution
of couple observations for the 2004–12 time period.

C12|t BVN Frank Gumbel s.Gumbel t5
Males Females Males Females Males Females Males Females Males Females

α1 -0.611 -1.508 -0.601 -1.508 -0.595 -1.494 -0.687 -1.625 -0.612 (0.282) -1.507 (0.276)
α2 -0.171 -1.005 -0.168 -1.008 -0.158 -0.990 -0.245 -1.124 -0.164 (0.282) -0.999 (0.276)
α3 0.405 -0.399 0.404 -0.403 0.416 -0.383 0.327 -0.521 0.414 (0.282) -0.390 (0.276)
α4 0.868 0.107 0.867 0.103 0.879 0.125 0.786 -0.016 0.875 (0.283) 0.118 (0.276)
α5 1.176 0.451 1.175 0.445 1.188 0.468 1.093 0.328 1.183 (0.283) 0.460 (0.276)
α6 1.772 1.105 1.770 1.098 1.781 1.117 1.688 0.985 1.775 (0.283) 1.111 (0.276)
α7 2.169 1.506 2.165 1.501 2.174 1.511 2.086 1.391 2.169 (0.284) 1.509 (0.276)
α8 2.747 2.023 2.745 2.019 2.742 2.014 2.669 1.913 2.742 (0.284) 2.018 (0.277)
α9 3.488 2.669 3.494 2.669 3.461 2.638 3.420 2.567 3.475 (0.285) 2.652 (0.278)
α10 3.952 3.041 3.965 3.045 3.902 2.997 3.892 2.945 3.930 (0.287) 3.019 (0.280)

# children 0.002 -0.022 0.005 -0.021 0.001 -0.028 0.002 -0.023 0.003 (0.015) -0.028 (0.015)
log(HH income) 0.179 0.005 0.174 0.003 0.175 0.010 0.172 0.003 0.174 (0.022) 0.012 (0.021)

Age -0.109 0.033 -0.099 0.037 -0.088 0.024 -0.114 -0.003 -0.086 (0.074) 0.020 (0.074)
Age2 0.003 -0.007 0.002 -0.007 0.001 -0.007 0.004 -0.003 0.002 (0.006) -0.006 (0.007)

Education 0.006 0.029 0.007 0.029 0.007 0.030 0.005 0.027 0.005 (0.004) 0.027 (0.004)
τj 0.330 0.311 0.327 0.309 0.334 0.313 0.329 0.310 0.333 (0.006) 0.312 (0.006)
τ 0.171 0.176 0.160 0.173 0.172 (0.006)

ℓ12|t -60145.5 -60197.1 -60173.9 -59987.1 -59942.2
Vuong’s z0 p-value z0 p-value z0 p-value z0 p-value z0 p-value
test - -3.792 < 0.001 -1.817 0.069 8.536 < 0.001 7.831 < 0.001

Standard errors are shown in parentheses for the best fit; Age and Age2 are scaled by factor 10−1 and 10−2 respectively.
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(i.e. at normal levels of risk attitude). The fact that the best-fitting copula for the joint model

is t5 (instead of say, BVN) indicates that there is also positive tail dependence: risk-lovers are

particularly keen to match with other risk-lovers, and risk-avoiders with risk-avoiders. This is

confirmed by the Vuong’s statistic of 7.831 (p-value< 0.001) reported in the final row of Table

2, which establishes clear superiority of the t5 over the BVN.

Next, we have carried out estimation separately for two different time ranges: 2004–8 and

2009–12. Table 3 shows results from the univariate models using data from 2004–8 and 2009–12

separately, from which we conclude that the tν copula with a small ν provides the best-fitting

model for both univariate ordinal time-series in both time periods.

Table 3 also shows results from the joint models estimated with data from 2004–8 and 2009–

12 separately, and assuming the univariate models found to be the best-fitting as described

above. Comparing the results for the two time periods, we note two key differences. Firstly,

the estimate of Kendall’s τ rises from 0.146 in 2004–8 to 0.191 in 2009–12, and moreover, it may

be verified from the associated SEs that the two 95% confidence intervals do not overlap. Hence

we have evidence that Kendall’s τ rises with years of marriage. The second key difference is

that the best-fitting joint model for the 2004–8 data is t6, while the best-fitting joint model for

2009–12 is t5. There is a reduction of one in the degrees of freedom of the best-fitting tν copula.

Both of these differences between the results provide evidence that dependence increases with

years of marriage; both in the middle of the distribution, and in the joint tails.

At this point it is useful to recall that the sample used in this study is restricted to couples

observed in every year. Hence attrition (poorly-matched couples dropping out of the sample)

is not an issue. This means that the increase in dependence seen in the comparison of Tables

4 and 6 may be interpreted as clear evidence of “assimilation”: the two members of the couple

become more similar in terms of risk-attitude as their marriage progresses. This finding is in

agreement with those of Di Falco and Vieider (2017).

Of course, this effect could simply be a time effect. For example, the global financial crisis

occurred between our two sample ranges. Clearly this sort of event has the potential to influence

risk attitudes. However, it is less clear that this sort of event, and more generally the passage

of time, has the potential to change the dependence patterns in risk attitude between spouses.

We are therefore led to believe that our assimilation explanation is the most plausible.
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Table 3: Estimated parameters and log-likelihoods for the best fitted copula-based Markov models and joint copula-based Markov models for
ordinal time series with covariates for both males and females for the 2004–8 and 2009–12 time periods. Standard errors are shown in the
parentheses for the joint fit.

2004–8 2009–12

Separate Joint Separate Joint
t4 t6 t4 t5 t5

Males Females Males Females Males Females Males Females

α1 -0.474 -1.312 -0.684 (0.369) -1.381 (0.363) -0.046 -0.771 -0.062 (0.423) -0.930 (0.411)
α2 0.177 -0.55 -0.024 (0.367) -0.616 (0.361) 0.35 -0.338 0.352 (0.423) -0.483 (0.411)
α3 0.814 0.119 0.615 (0.367) 0.053 (0.362) 0.9 0.233 0.919 (0.424) 0.101 (0.411)
α4 1.257 0.642 1.059 (0.367) 0.575 (0.362) 1.373 0.728 1.400 (0.424) 0.601 (0.411)
α5 1.581 1.008 1.382 (0.368) 0.938 (0.362) 1.666 1.055 1.696 (0.424) 0.928 (0.412)
α6 2.165 1.655 1.963 (0.368) 1.580 (0.362) 2.262 1.718 2.292 (0.425) 1.583 (0.412)
α7 2.547 2.049 2.342 (0.369) 1.969 (0.363) 2.669 2.133 2.693 (0.426) 1.989 (0.412)
α8 3.102 2.565 2.892 (0.370) 2.479 (0.364) 3.277 2.658 3.287 (0.426) 2.500 (0.413)
α9 3.862 3.208 3.640 (0.372) 3.113 (0.366) 4.027 3.313 4.016 (0.428) 3.136 (0.415)
α10 4.362 3.647 4.129 (0.374) 3.536 (0.370) 4.478 3.604 4.456 (0.431) 3.425 (0.418)

# children 0.006 -0.039 0.005 (0.019) -0.039 (0.019) 0.006 0.01 0.011 (0.022) -0.002 (0.022)
log(HH income) 0.207 0.051 0.203 (0.031) 0.061 (0.031) 0.18 -0.004 0.177 (0.029) 0.004 (0.028)

Age -0.071 0.059 -0.118 (0.100) 0.014 (0.097) 0.008 0.219 0.020 (0.113) 0.159 (0.114)
Age2 0.000 -0.009 0.005 (0.009) -0.005 (0.009) -0.004 -0.018 -0.005 (0.009) -0.014 (0.010)

Education 0.008 0.034 0.004 (0.006) 0.030 (0.006) 0.004 0.023 0.005 (0.005) 0.022 (0.006)
τj 0.308 0.266 0.314 (0.010) 0.279 (0.010) 0.365 0.355 0.360 (0.008) 0.352 (0.008)
τ - 0.146 (0.009) - 0.191 (0.008)

Log-likelihood -13244.7 -13062.8 -26078.4 -17356.6 -17198.8 -34074.5
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7 Discussion

Assortative matching is a concept of great interest to economists, as evidenced by the extensive

theoretical and empirical literatures devoted to it, dating back to Becker (1974). The econo-

metric modelling of assortative matching is clearly a setting in which the precise nature of the

dependence between two variables representing the relevant outcomes for the two members of

the couple, becomes the central focus of the analysis. The copula approach provides the ideal

framework for this sort of modelling, since it brings richness to the dependence structure. For

example, it allows the modelling of both joint tails and moreover allows a variety of types of

asymmetry in the dependence structure.

In applying the copula approach to the problem of assortative matching on risk attitude, we

have found evidence of PAM, in agreement with previous empirical work. However, the copula

approach has enabled us to find evidence of both centre dependence and tail dependence. That

is, over the entire range of of risk attitudes, there is a tendency for individuals to match with

other individuals with similar risk attitude, and this positive dependence is particularly marked

in the tails.

The evidence of PAM amounts to a rejection of standard assortative matching theories

based on risk-sharing assumptions, and the favouring models based on alternative assumptions

such as the ability of agents to control income risk, and limited commitment in the marriage

contract. Moreover, since we have found evidence of tail dependence, our results may be seen

to be consistent with the predictions of Li et al. (2013) and Chen et al. (2018), both of whom,

as mentioned in Section 1, predict tail dependence (at least in the risk-averse tail).

These conclusions have been arrived at using a novel model which we have labelled the

“joint copula-based Markov model”. The model consists of two stages. In the first stage, males

and females are considered separately, and a copula is used to model the joint distribution of

neighbouring (in time) outcomes for a given individual. The best fitting copulas thus found

are then combined using a third copula that couples the two conditional distributions at each

time point. In all three cases, the best-fitting copula is found to be a tν with a small ν, which

leads to a model with more probability in the joint upper and joint lower tails compared to the

BVN copula. This fact leads to the conclusion of positive dependence in the tails, and we have

found strong statistical evidence to confirm this, in the form of the Vuong’s statistic.

Having arrived at this conclusion, we then extended the analysis by applying the same two-
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stage procedure separately for the 2004-8 and 2009-12 data. The key results here were that

both middle and tail dependence were stronger in the second time range. We interpreted this

in terms of the phenomenon of “assimilation”: the two members of the couple become more

similar in risk attitude with the accumulation of years of marriage.

Our key conclusion is that the copula approach is very well-suited to the empirical inves-

tigation of assortative matching problems, and we look forward to discovering what sorts of

dependence structures are found when matching on something other than risk attitude.
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