Metadata, citation and similar papers at core.ac.uk

Provided by University of East Anglia digital repository

Weil et al. BMC Bioinformatics (2018) 19:122
https://doi.org/10.1186/s12859-018-2128-z

BMC Bioinformatics

nQuire: a statistical framework for ploidy @ e
estimation using next generation sequencing

Clemens L. WeiR', Marina Pais?, Liliana M. Cano?3, Sophien Kamoun? and Hernan A. Burbano'”

Abstract

Background: Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpa-
thogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA
content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that
distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution
of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most
plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats.

Results: We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora
infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between
reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log-
likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using
these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster
assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally,
we show that nQuire can be used regionally to identify chromosomal aneuploidies.

Conclusions: nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire

is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or
ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in

the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.
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Background

Polyploidy, the presence of more than two complete sets of
chromosomes, can under certain circumstances acceler-
ate evolutionary adaptation by influencing the generation
and maintenance of genetic diversity [1, 2]. In addition,
polyploidy also poses short- and long-term challenges to
organismal fitness, which are associated with increased
nuclear and cellular volume, propensity to aneuploidy, and
disruption of gene expression regulation [3]. Interspecific
comparisons between eukaryotic genomes can identify
ancient polyploidization events. In contrast, more recent
polyploidization events result in intraspecific variation of
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ploidy and, in some cases, aneuploidy. The presence of
individuals of different ploidy in a population can hin-
der mating. Therefore, intraspecific ploidy variation tends
to occur - although not exclusively - in organisms that
have the capacity to reproduce asexually [4-6], are self-
compatible or perennial [7].

Although ploidy traditionally has been investigated by
measuring DNA content using flow cytometry [8], it can
also be inferred from next generation sequencing (NGS)
data either by examining k-mer distributions, or by assess-
ing the distribution of allele frequencies at biallelic single
nucleotide polymorphisms (SNPs) [4]. This methodol-
ogy has been used to estimate ploidy in newly assembled
genomes in order to identify the number of likely col-
lapsed haplotypes on a per-contig basis [9], as well as to
detect intraspecific variation of ploidy in the oomycete
Phytophthora infestans [4, 6] and in the Baker’s yeast Sac-
charomyces cerevisiae [5]. It also was successfully used for
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ploidy estimation in P infestans historic herbaria sam-
ples that are not suitable for flow cytometry, since they
do not contain intact nuclei [4]. The method assumes
that alleles present at biallelic SNPs occur at different
ratios for different ploidy levels, that is, 0.5/0.5 in diploids,
0.33/0.67 in triploids, and a mixture of 0.25/0.75 and
0.5/0.5 in tetraploids. These ratios hold true for recent
autopolyploids, as well as recent allopolyploids from het-
erozygous source genomes. To determine the ploidy level,
the distribution of biallelic SNPs can be inspected visu-
ally [10], and/or qualitatively compared with simulated
data [4]. However, this methodology does not provide
summary statistics that permit quantifying how well the
data fit the expected distributions, which is especially
critical when dealing with noisy distributions typical for
highly-repetitive genomes. An additional disadvantage of
this approach is that it is preceded by the identifica-
tion of variable sites (“SNP calling”), which is carried out
using methodologies that benefit from a previously known
ploidy level [11]. In a further development Gompert et al.
[12] used biallelic SNPs in a Bayesian statistical approach
to distinguish between ploidy levels from genotyping-by-
sequencing data. This method was primarily developed
for resequencing studies, where typically multiple indi-
viduals from populations with ploidy variation are geno-
typed, as it benefits from preexisting knowledge about the
ploidy levels that may be observed. Based on the posterior
probabilities emitted by the Bayesian model, this approach
separates samples into ploidy clusters, using dimension-
ality reduction methods such as PCA. Since it allows the
inclusion of training data of known ploidy, test samples
can be assigned a ploidy level if they belong to a cluster
that includes samples of known ploidy.

Here we present a statistical model that aims to distin-
guish between the distribution of base frequencies at vari-
able sites for diploids, triploids and tetraploids, directly
from read mappings to a reference genome. It models base
frequencies as a Gaussian Mixture Model (GMM), and
uses maximum likelihood to assess empirical data under
the assumptions of diploidy, triploidy and tetraploidy.
We evaluated the performance of our method for differ-
ent sequencing coverages using published genomes of S.
cerevisiae [5], and high-coverage genomes of P. infestans
produced for this study.

Methods

Model and Implementation

We used base frequencies at variable sites with only
two bases segregating to distinguish between diploids,
triploids and tetraploids (Fig. 1a). For that, we imple-
mented a GMM that models the base frequency profiles as
a mixture of three Gaussian distributions (Fig. 1b), which
are scaled relative to each other. A log-likelihood can be
calculated following:
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n 3
logl = Z log Z O(,‘N (xi; W Uj)

=1 j=1

Here, n describes the numbers of data points and x;
describes the value of each data point (i.e. the base fre-
quencies). At sites with two bases segregating, we use the
frequencies of both bases to achieve symmetry in the fre-
quency distribution for triploids and tetraploids. ; and o;
are the parameters of the /™ of three Gaussian distribu-
tions N; that are scaled relative to each other through the
parameter o, with Z}Q’:l aj = 1.

This model allows for estimating the parameters of the
Gaussian mixture components, as well as their mixture
proportions, by maximizing the log-likelihood, either with
or without constraints on the possible parameter space.

The likelihood maximization of the GMM is imple-
mented through an Expectation-Maximization (EM)
algorithm (Fig. 1b).

During the EM, we make use of the latent variables Z;.
They represent the assignment of a data point to one of
the mixture components. In the E-step, we use the current
estimates for 1}, 0j and q; to calculate:

N (%3 14j, 95)
1N (6 1), 09)

P(Zi=jlxi) = =yz()

This probability is calculated for all x; and j € {1,2,3}
to form a n x 3 matrix, the columns of which represent
the probability of each data point belonging to either of
the three mixture components. From this matrix we can
calculate the column sum S; = Y7, vz, (), which repre-
sents the size of each mixture component. In the following
M-step, we update our estimates of 11, o; and a;:

NS
W = §Zyzi(1)xi

) i=1
~ 1 & 9
of = < Dzl (- )
] i=1

The log-likelihood is calculated after the M-step, and
the next E-step is initiated unless the log-likelihood has
changed by less then € = 0.01 from the previous M-step.

As shown above, the algorithm allows the estimation
of 1j, oj and «; simultaneously. Henceforth, we call this
setup the “free model” The log-likelihood of the free
model upon convergence represents the optimum under
the assumptions of the model.

We can also set certain parameters to fixed values and
forgo their update in the M-step. We use this to maximize
the log-likelihood under the expectation of diploidy (one
Gaussian with mean 0.5), triploidy (two Gaussians with
means 0.33 and 0.67) and tetraploidy (three Gaussians
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Fig. 1 Overview of the Gaussian Mixture Model (GMM) based method used by nQuire to estimate ploidy. We illustrate the workflow using a diploid
individual as an example. a After sequenced reads are mapped to a reference genome, base frequencies are calculated at variable sites where only
two bases are segregating. b The base frequencies are modeled using a GMM and the likelihood is maximized using an Expectation-Maximization
(EM) algorithm for both the free and the three fixed models (diploid, triploid and tetraploid). The maximized log-likelihoods (logL) are extracted for
subsequent model comparison. The curves show a possible final state of the GMM under the assumptions of each of the four models. € The Alogl
is calculated between the free model and each of the three fixed models (here represented as barplots). The fixed model with the smallest AlogL is

with means 0.25, 0.5 and 0.75), and call these the three
“fixed models”:

n

logLdiploid = Z logN (x;;0.5,0)
i=1

n 2
logLtriploid = Z log Z 05-N (xi5 Hj» Gf) ’
-1 =1
w; € {0.33,0.67}
n 3
l()z‘-f.'Ltetraploid = Z log Z 0.33-N (xi; M Gj) ’
=1 j=1
u;j € {0.25,0.5,0.75}

In these three models, we only estimate oj, while u;
and «; are fixed as shown above. Since all fixed models
are nested within the free model, it is possible to directly
compute the log-likelihood ratios, following:

AlogLgiploid = logLfree — logLaiploid
AlOthriploid = logLfree — lothriploid
AlOthetraploid = logLfree — lOthetraploid

The AlogLs describe the distance between each fixed
model and the best fit under the assumptions of the
GMM. A substantially lower AlogL of one fixed model
over the others supports the ploidy level described by this
fixed model (Fig. 1c). Therefore, we used AlogL as sum-
mary statistics where the minimum value supports a given
ploidy level.

Additionally, the GMM can be extended to a Gaussian
Mixture Model with Uniform noise component (GMMU),
by adding a uniform mixture component:

n 3
logL = Z log | aall(x;) + Z ajN (xi; s cr,')
i=1 j=1

The constraint on the mixture proportions then
becomes Z;}zl aj =1

The uniform noise component is used in our implemen-
tation to allow base-line noise removal (Additional file 1:
Figure S1). This can be useful when the Gaussian peaks
are observable but embedded in a basal noise, which could
be caused by highly repetitive genomes or low coverage.

Multivariate Gaussian clustering

To cluster samples in three dimensions based on the
normalized maximized log-likelihoods of the three fixed
models, we used the mclust5 package [13] of the R pro-
gramming language [14]. This package utilizes mixtures
of multivariate Gaussian distributions to detect clusters in
an arbitrary number of dimensions. mclust5 allows to set
constraints on the volume, shape and orientation of each
mixture component, by varying features of their covari-
ance matrix either within each sample, or for all samples at
once. For the analysis displayed in Fig. 4, we used clusters
of equal volume, but varying shape and orientation. This
configuration represented the data the best, as assessed by
the recovery of ploidy levels from cluster assignments.

Phytophthora infestans libraries

The two benchmarking libraries from P infestans were
generated according to the protocol by Meyer and Kircher
[15] from DNA extracted from lab cultures [16]. These
libraries were sequenced to high coverage on an Illumina
HiSeq 3000 machine in paired end 150 bp mode. This
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Table 1 Samples of Saccharomyces cerevisiae and Phytophthora
infestans used to evaluate and benchmark nQuire

Sample Ploidy — Species Cov.?  Alogly, Alogls,  Aloglay,
CBS7837  2n S.cerev. 116 6319 35721 23033
CBS2919  3n S.cerev. 111 33614 920 29347
CBS9564  4n S.cerev. 101 37003 22971 6429
99189 2n P.infes. 210 119218 369682 293194
88069 3n P.infes. 368 599933 42717 390002

@Average per-base coverage. The smallest AlogL for each sample is highlighted in
bold

sequencing data is available at the European Nucleotide
Archive (ENA) under study number PRJEB20998.

Results

Performance

nQuire directly processes BAM files [17] and is designed
to be efficient in memory usage and runtime. To process a
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1GB S. cerevisiae BAM file (100x coverage), nQuire needs
70 s to build appropriate data structures, 6 s to run the
models and calculate the maximum likelihood estimates,
and uses a maximum of 8 Mb of RAM, whereas for pro-
cessing a 10GB P, infestans BAM file (100x coverage) it
needs 760 s, 100 s and 60 Mb of RAM, respectively. These
benchmarks were performed on a single core of a Intel®
Core™ i5-4670 CPU on a system with 16Gb of DDR3-1600
RAM and an SSD.

Analysis of individual samples

We evaluate nQuire’s performance using three S. cere-
visiae samples at 100x coverage, which represent each
of the three ploidy levels evaluated by the model, as
well as two P infestans samples, one diploid and one
triploid, at 210x and 368x coverage, respectively. The
AlogL of each of the fixed models to the free model
at full coverage is shown in Table 1. At those cover-
ages, the AlogL of the best model is more than two
times closer to the free model than the second best.
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Fig. 2 Evaluation and benchmarking of nQuire using Saccharomyces cerevisiae. Distribution of base frequencies at variable sites where only two
bases are segregating for a diploid (a), triploid (b) and tetraploid (c) sample. The barplots depict the AlogL of all fixed models for the diploid (d),
triploid (e) and tetraploid (f) sample (also presented in Table 1). The plots depict the change of AlogL of all fixed models as a function of genome
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Additionally, it coincides in all samples with the ploidy
level inferred by visually inspecting the empirical distri-
butions of base frequencies at full coverage (Figs. 2a-c
and 3a-b).

Coverage dependence

To investigate the impact of coverage on the performance
of the GMM, we downsampled mapped reads from the
S. cerevisiae (Fig. 2g-i) and P, infestans (Fig. 3e-f) strains
shown in Table 1 to different coverage levels. In all cases
the AlogLs of the two improper models increases with
increasing coverage. In contrast, the AlogL of the best
model stabilizes at low coverage and doesn’t increase
further as coverage increases. The coverage at which
the AlogL of the best model is stable will be different
for genomes of different size and complexity, as shown

in the difference between the two organisms used for
benchmarking.

Analysis of population samples

In cases where multiple samples are sequenced simulta-
neously, it might be impractical to assess ploidy in each
sample individually. In these cases, we propose to use
maximized log-likelihoods of the three fixed models, nor-
malized by that of the free model, to cluster samples into
ploidy groups. The rationale is that within one species,
the relative likelihoods of the fixed models will be sim-
ilar within each ploidy level. As a proof of concept, we
applied this to all di-, tri- and tetraploids from the S. cere-
visiae test set [5], and clustered the samples into three
groups in three dimensions using multivariate Gaussian
clustering (see “Methods” section). The sample set was
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manually scored for ploidy, and the overlap between clus-
ters and manually assessed ploidy level was calculated
(Fig. 4). Running nQuire on raw data showed high recov-
ery of ploidy level (93%, Fig. 4a), which was further
improved through our denoising implementation utilizing
the GMMU (96%, Fig. 4b).

Detection of Aneuploidies

Recent polyploidization is often associated with aneuploi-
dies. To be able to detect those, nQuire allows to split the
analysis of a sample by regions defined in BED format.
We used this to reanalyze the sample YJM466 from the S.
cerevisiae test set [5]. This sample had been shown to be
triploid on whole genome level, but tetraploid for chro-
mosome 6 and diploid for chromosome 9. The AlogLs
for the three fixed models individually calculated for each
of the 16 chromosomes of S. cerevisiae confirmed this
observation (Fig. 5).

A natural extension of analyzing the genome by chro-
mosomes is to use sliding windows to detect possible tran-
sitions between ploidies in aneuploid individuals. We used
the three S. cerevisiae datasets shown in Table 1 at their
full coverage to benchmark the number of randomly sam-
pled positions needed to accurately assign ploidy (Fig. 6).
For these test samples, 100-200 random sites at 100x cov-
erage are enough to correctly assign ploidy based on the
AlogL. However, this will vary for regions of the genome
with different complexity and repetitiveness.

Discussion
In addition to nucleotide and structural variation, certain
organisms can also vary intraspecifically in their ploidy
level, which constitutes another source of variation that
selection might act upon. Using NGS data our method
permits assessment of ploidy variation from data that is
usually generated for variant detection. In contrast to pre-
vious methods that visually analyze the distributions of
SNPs at biallelic heterozygous sites [4, 6, 10], we quanti-
tatively distinguish between different ploidy levels based
on the distribution of base frequencies at variable sites,
using relative differences in likelihoods. In comparison
to the approach proposed by Gompert and Mock [12],
nQuire avoids the requirement of high quality SNP calls.
The higher level of noise in the data resulting from this
is accounted for by using Gaussian distributions. They
approximate a binomial process, but are impacted less
by the effects of high coverage outliers, which arise for
example from misalignments of paralogous sequences
(Additional file 1: Figure S2). Additionally, nQuire is a
Linux command line tool that uses standard file formats
as input and handles large genomes at high coverage
efficiently.

In all test cases, triploids were the easiest to distin-
guish, most likely caused by the lack of probability density
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around 0.5 compared to the other two models. While
diploids and tetraploids are more difficult to tease apart,
our results on coverage dependence show that at sufficient
coverage, the data fits the true model much better than
either of the two alternatives (Fig. 2g-i). For cases where
the Gaussian peaks were largely overlapped by uniform
noise, we extended our free model to include a uniform
component, whose mixture proportion can be used - after
likelihood maximization - for base-line removal. We show
that this procedure improves the recovery of the true
ploidy level when samples are clustered based on max-
imized likelihoods under the assumptions of the fixed
models (Fig. 4b). We also show that few high quality
positions are enough to estimate the correct ploidy level
(Fig. 6). Such high quality positions can be selected by
using stringent filtering criteria. Several filters are imple-
mented in nQuire directly, thus no pre-processing of the
BAM file (after duplicate removal) is necessary. They
include minimum and maximum coverage, as well as map-
ping quality and base frequency filters. The default values
of these filters have been configured to fit most applica-
tions. The exact coverage and number of positions needed
for a reliable estimation of ploidy will however depend on
the complexity and repetitiveness of the genome. Addi-
tionally, it is possible to obtain high quality positions by
using BED files to define regions of low repetitiveness,
where base frequencies can be more confidently assessed.

Conclusion

We present nQuire, a statistical approach to distinguish
diploids, triploids and tetraploids of recent evolutionary
origin based on the distribution of base frequencies at
variable sites. The method facilitates analysis of ploidy
in single samples, and we demonstrate how to apply it
to population scale data, when available. nQuire can also
interact with BED files, to limit the analysis to certain
sequence features, or divide it by regions of the genome,
for example to detect aneuploidies. Our approach will be
useful to assess intraspecific variation in ploidy from both
historic and modern samples, as well as in experimental
evolution experiments.

Additional file

Additional file 1: Supplementary figures addressing the effect of
denoising, as well as the effect of high coverage outliers on the likelihood
of Gaussian and binomial mixtures. (PDF 144 kb)
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