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ABSTRACT 

 

Background 

Plaque erosion is responsible for 30–40% of ST-elevation myocardial infarction 

(STEMI) cases, but the underlying cause is unknown. Autopsy studies suggest that 

inflammatory infiltrates are less abundant in erosion compared to plaque rupture, 

which suggests that other pathological mechanisms are important. So far, different 

inflammatory profiles have not been demonstrated in vivo. 

 

Objectives 

We sought to characterise the inflammatory profiles of plaque rupture and plaque 

erosion in patients with STEMI undergoing primary percutaneous coronary 

intervention (PPCI). 

 

Methods 

Forty STEMI patients undergoing PPCI with less than six hours of chest pain were 

recruited in a single-centre observational study. Blood samples were taken from the 

infarct-related artery and a peripheral artery. Culprit plaques were imaged using 

optical coherence tomography (OCT) before PCI and classified by three blinded 

observers as ruptured fibrous cap (RFC) or intact fibrous cap (IFC). The expression 

profiles of 102 cytokines were measured using an array, and comparisons of the two 

pathological groups were performed using the Significance Analysis of Microarrays 

(SAM) methodology. Significant cytokines were validated with enzyme-linked 

immunosorbent assay (ELISA) and this was confirmed statistically using Wilcoxon 

rank-sum tests. Thrombectomy samples were analysed for differential mRNA 

expression using real-time polymerase chain reaction (RT-PCR). 

 

Results  

Twenty-three lesions were classified as RFC (58%), fifteen as IFC (38%) and two 

were undefined (4%). Overall, 12% (12/102) of cytokines were differentially 



 iii 

expressed in both coronary and peripheral plasma. We selected the most significant 

differences and confirmed that IFC was associated with preferential expression of 

epidermal growth factor (EGF) (coronary samples: SAM adjusted P < 0.001; ELISA 

IFC 7.42 vs RFC 6.63 log2 pg/ml, P = 0.036) and Thrombospondin-1 (TSP-1) 

(coronary samples: SAM adjusted P = 0.03; ELISA IFC 10.4 vs RFC 8.65 log2 

ng/ml, P = 0.0041). Interferon-inducible T-cell alpha chemoattractant (I-TAC) was 

preferentially expressed in RFC (coronary samples: SAM adjusted P <0.001; ELISA 

IFC 10.2 vs RFC 10.8 log2 pg/ml; P = 0.042). Thrombectomy mRNA demonstrated 

significantly elevated EGF expression in IFC (P = 0.0264) and I-TAC in RFC (P = 

0.0007), but no differences in expression of TSP-1. 

  

Conclusions 

Distinct inflammatory profiles for RFC and IFC are demonstrable in coronary 

plasma and thrombectomy specimens in STEMI patients. IFC is associated with 

elevated intracoronary EGF and TSP-1. These results may help to further understand 

the pathophysiology of plaque erosion and to potentially tailor future treatment 

strategies. 

(Chandran S, Watkins J, Abdul-Aziz A, Shafat M, Calvert PA, Bowles KM, et al. 

Inflammatory differences in plaque erosion and rupture in patients with ST-segment 

elevation myocardial infarction. J Am Heart Assoc. 2017 May 3;6(5).)		
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Chapter 1: Introduction 

1.1 Epidemiology of myocardial infarction 

Despite improvements in medical care, atherosclerotic cardiovascular disease 

remains a significant cause of morbidity and mortality worldwide. Cardiovascular 

disease causes 27% of all deaths in the UK, and coronary heart disease (CHD) itself 

is the UK’s single biggest cause of death, accounting for nearly 160,000 deaths per 

year (1). Acute myocardial infarction (AMI) is responsible for most deaths from 

coronary heart disease, with approximately 188,000 hospital admissions annually 

attributed to AMI in the UK every year (2). CHD is projected to remain a leading 

cause of mortality and morbidity, not only in affluent countries but also globally, for 

many years to come (3). The aetiology of CHD is multifactorial but the trilaminar 

arterial vessel wall is key to understanding the initiation and progression of 

atherosclerosis.  

 

1.2 The trilaminar arterial vessel wall 

The normal arterial wall consists of three distinct layers. The inner most layer – the 

tunica intima – comprises a single layer of squamous epithelium termed the 

endothelium, which lines the lumen, and a layer of connective tissue bound by the 

internal elastic lamina. The intima also comprises a proteoglycan layer interspersed 

with smooth muscle cells. The endothelial layer has many important functions as a 

barrier layer, as well as inhibition of thrombus formation, angiogenesis and the 

regulation of vascular tone and growth.  

The internal elastic lamina separates the tunica intima from the tunica media, the 

middle layer. The underlying tunica media contains circularly arranged multiple 

layers of vascular smooth muscle cells (VSMC). VSMCs permit changes in blood 

vessel diameter (vasoconstriction and vasodilatation) regulated by sympathetic 

vasomotor nerve fibres.  

The tunica adventitia is the outermost layer and is separated from the tunica media 

by the external elastic lamina. This layer consists of a layer of collagen-rich, loose 

connective tissue, fibroblasts and perivascular nerves. It also consists of the vasa 

vasorum, a microvasculature providing nutrients and oxygen to the arterial wall.    
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1.2.1 Atherosclerosis 

Atherosclerosis is a chronic disease of the large and medium-sized muscular arteries 

and is characterised by endothelial dysfunction, vascular inflammation and the build-

up of lipids, cholesterol, calcium and cellular debris within the intima of the vessel 

wall (4). The word atherosclerosis originates from the Greek ‘athero’, meaning gruel 

or wax and ‘sclerosis’, meaning hardening or induration. Pathologically, ‘athero’ 

refers to the core necrotic base and ‘sclerosis’ to the fibrous cap at the luminal edge 

of the atherosclerotic plaque (5). This is a dynamic process involving the progression 

of early lesions to advanced plaques that are responsible for the majority of acute 

ischaemic cardiovascular events (6). Systemic risk factors for atherosclerosis include 

genetic predisposition, hyperlipidaemia, hypertension, cigarette smoking, diabetes 

mellitus and chronic inflammatory conditions (7).  

 

1.2.2 Role of shear stress 

Although the entire arterial tree is exposed to the atherogenic effect of systemic risk 

factors, atherosclerotic lesions form at specific arterial loci and this is influenced by 

the points at which low- and high-oscillatory endothelial shear stresses (ESS) occur. 

Regions with low-oscillatory shear stresses appear to be more prone to 

atherosclerotic lesions and, conversely, regions of high-stress are relatively protected 

(8). Therefore, plaque tends to develop at specific sites in the arterial tree: at side-

branches, the outer wall of bifurcations and the inner curve of large arteries (9).  

 

1.2.3 Classification of atherosclerosis 

Initially, Stary et al. (10) classified atherosclerosis, proposing a classification of both 

early intimal lesions and more advanced atheromatous plaques, which led to the 

American Heart Association (AHA) classification, first published in 1994 and 

revised in 1995. This was modified by Virmani et al. (11) to take into account post 

mortem data of plaques responsible for sudden cardiac death and also the recognition 

from other studies (12) that plaque rupture was not the only mechanism responsible 

for coronary thrombosis (Table 1).  
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1.2.3.1 Intimal thickening and fatty streaks 

The earliest vascular change described microscopically was intimal thickening (AHA 

Type I lesion), which consists mainly of smooth muscle cells (SMCs) and the 

proteoglycan matrix with little or no infiltration of inflammatory cells. ‘Fatty streaks’ 

represent lesions composed primarily of foamy macrophages and, to a lesser extent, 

lipid-laden smooth muscle cells within the intima. This entity is considered by the 

AHA classification as the earliest lesion of atherosclerosis, although studies have 

shown that this is a reversible process with few progressive tendencies (13).  

 

1.2.3.2 Pathological intimal thickening 

The earliest progressive and potentially persisting lesions is pathologic intimal 

thickening (PIT, AHA Type III lesion). This lesion is characterised by the presence 

of SMCs interspersed within the extra cellular matrix (ECM) towards the lumen and 

areas of extracellular lipid accumulation with an absence of SMCs (lipid pool) close 

to the media. They are further divided into two groups based on the presence or 

absence of macrophage infiltration (PIT without macrophages and PIT with 

macrophages) (11). 

 

1.2.3.3 Fibroatheroma 

Fibroatheromas (AHA Type IV lesion) are characterised by a dense fibrous cap 

overlying a necrotic core, and this lesion is further divided into two different stages: 

early and late fibroatheromas (14). Early fibroatheroma is defined as a lesion 

consisting of macrophage infiltration in the lipid pool, forming focal areas of 

necrosis, with loss of proteoglycans. Late fibroatheroma consists of a necrotic core 

with discrete collections of cellular debris, an increase in free cholesterol crystals, 

and complete depletion of ECM (proteoglycans and collagen).  
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Table 1: Classification of atherosclerotic lesions (adapted from Stary et al. (10) and Virmani et al. 

(11)) AHA classification of atherosclerotic lesions 

 

1.3 Atherothrombosis 

Whilst most coronary artery plaques are asymptomatic, some cause obstruction with 

stable angina and others may become unstable leading to an acute coronary 

syndrome (ACS).   Patients with ACS present with unstable angina, acute myocardial 

infarction, with or without ST elevation, and sudden coronary death. Most of the 

acute coronary syndromes are believed to result from luminal coronary artery 

thrombosis with numerous autopsy studies conducted ascribing most fatal coronary 

events to a physical disruption of coronary arterial plaques (Figure 1) (15).  
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Figure 1: Atherosclerotic plaques with various presentations of coronary artery disease  

This figure illustrates lesion types at the plaque level in both cross sectional and longitudinal views. 

The top two images demonstrate an eccentric, positively remodelled atheromatous plaque in which the 

fibrous cap is thin and has ruptured, provoking thrombus formation. The middle two images 

demonstrate healing of disrupted atheromatous plaques. This healing process can encourage the 

development of a non-occlusive atheromatous, lipid-rich plaque to a stenotic, more fibrous, calcified 

plaque. The bottom two images illustrate a proteoglycan-rich plaque, in which superficial erosion of 

the intimal surface has caused an occlusive thrombus (reproduced from Libby et al. (15)). 
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1.4 Plaques underlying coronary thrombi 

Pathological studies of the thrombosed coronary artery attribute sudden death to 

three distinct morphologic entities: plaque rupture, plaque erosion and calcified 

nodules. The most frequent underlying mechanism of sudden coronary death from 

thrombi is from plaque rupture (55-65%), followed by erosions (30-35%) and most 

infrequently from calcified nodules (2-7%)(16). Each will be discussed in turn in 

greater detail. 

 

1.4.1 Plaque rupture 

Plaque rupture is the most common cause of fatal acute coronary syndromes (11). In 

a consensus statement by Schaar et al., plaque rupture was defined as a ‘structural 

defect (gap) in the fibrous cap that separates the lipid-rich necrotic core of a plaque 

from the lumen of the artery’ (Figure 2) (17). The fibrous cap consists mainly of type 

I collagen, with significant numbers of macrophages and lymphocytes, and with 

sparse distribution of smooth muscle cells. In spite of common belief that fibrous cap 

rupture occurs at its weakest point, which is commonly near shoulder regions, 

autopsy studies have used serial sections to demonstrate that a similar number of 

ruptures occur at the mid portion of the fibrous cap, particularly following exercise 

(18). Such plaques often, but not always, have thin fibrous caps (50–65 µm thick) 

(19). A disruption of the thin fibrous cap allows circulating cellular and non-cellular 

elements within the lumen of the artery to come into direct contact with the highly 

thrombogenic components of the necrotic core, and this contact results in thrombus 

formation. Focal calcification, or spotty calcification, is frequently observed in 

ruptured plaques, and is most commonly located towards the abluminal surface of 

the necrotic core (20).  
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Figure 2: Plaque rupture. Cross-sectional photomicrograph of a coronary artery showing plaque 

rupture  

A) An acute occlusive luminal thrombus characterised by a large necrotic core (NC) and thin fibrous 

cap. Note calcification near the NC base (arrows) and destruction of the medial wall. (B) (Red box 

within A) Higher magnification of the rupture site, demonstrating disruption of the thin fibrous cap 

(yellow arrows). (C) (Blue box within A) Higher magnification image of thrombus with cholesterol 

clefts, red cells and foamy macrophages (asterisks) (reproduced from Falk et al. (21)). 

 

1.4.2 Plaque erosion 

From the 1990’s, the term ‘plaque erosion’ was used to describe the process of 

coronary thrombosis without associated plaque rupture (22). Plaque erosion is the 

second most prevalent cause of thrombosis. The fibrous cap is not disrupted and the 

luminal surface beneath the thrombus lacks endothelium, macrophages and T-cell 

infiltrates. However, it is rich in proteoglycans and smooth muscle cells (23).By 

contrast with ruptured plaques, where the media is necrotic and often destroyed, 

plaque erosion has pathological intimal thickening and sometimes calcification with 

an intact media.  
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Figure 3: Plaque erosion. Cross-section of a coronary artery showing plaque erosion  

(A) A non-occlusive thrombus (Thr) is present on the surface of a plaque, consisting of pathological 

intimal thickening. There is no connection between the thrombus and the lipid pool (LP), and the 

media is intact. (B) Higher-magnification image of the red box in (A). Presence of thrombus and the 

underlying plaque, consisting of smooth muscle cells in a proteoglycan–collagen-rich matrix. (C) 

Another case of plaque erosion. The oldest layer of the plaque (black double arrow) is an organising 

thrombus and is being replaced by smooth muscle cells in a proteoglycan-rich matrix, and there is an 

overlying acute thrombus present in the lumen of varying ages (white and yellow double arrows) 

(reproduced from Falk et al. (21)). 

 

1.4.3 Calcified nodule 

The term ‘calcified nodule’ was introduced by Virmani et al. (11) to describe a rare 

type of coronary thrombosis not caused by plaque rupture but related to disruptive 

nodular calcifications protruding into the lumen (Figure 4). The calcified nodule is 

the least frequent cause of luminal thrombus, accounting for approximately 5% of 

acute thrombotic cases (11). It usually occurs in older individuals and in tortuous 

heavily calcified arteries. Calcified nodules are composed of fibrocalcific plaque 

with little or no underlying necrotic core and a luminal surface that is disrupted by 

nodules of dense calcium, with overlying thrombus. They have large plates of 

calcified matrix with surrounding areas of fibrosis, inflammation and neo-

vascularisation. The precise nature of this lesion remains poorly understood, 

although fragmentation of calcified plates is believed to be the aetiology of the 

nodular calcification. 
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Figure 4: Cross-section of the coronary artery showing the presence of calcified nodule  

Nodular calcifications (Ca++) are identified between sheets of calcification. (B) Higher-magnification 

image of the red box in (A). The nodular calcification is protruding into the lumen area with an 

overlying non-occlusive thrombus (reproduced from Falk et al. (21)). 

 

1.5 Risk factors for coronary thrombosis 

1.5.1 Vulnerable plaque 

The term vulnerable plaque has been used for plaques assumed to be at high risk of 

thrombosis (24). There is significant interest in the identification of these plaques 

prior to the occurrence of thrombosis since early detection could lead to research into 

preventative methods. Although recognised as a cause of thrombosis, calcified 

nodules are not thought of as high-risk lesions (25), leaving two major types of 

vulnerable plaque: rupture-prone and erosion-prone.  

 

1.5.2 Rupture-prone plaques 

Pathological and clinical studies have revealed that the atherosclerotic plaque type at 

the greatest risk of rupture is a thin-cap fibroatheroma (TCFA), characterised by a 

large necrotic core covered by a thin layer of fibrous cap (16). TCFA is recognised 

by its morphologic resemblance to a ruptured plaque. The main differences are the 

absence of a luminal thrombus, an intact thin fibrous cap, a smaller necrotic core, 

expansive remodelling, spotty calcification, less plaque burden, less luminal 

encroachment (mild stenosis by angiography) and fewer macrophages infiltrating the 
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thin fibrous caps (26). The thin fibrous cap is made up mostly of type I collagen and 

there is either an absence of, or only a few SMCs observed. The thin fibrous cap is 

traditionally defined as being <65µm thick, an indicator of plaque vulnerability (11).  

 

1.5.3 Erosion-prone plaques 

Erosion-prone plaques are very difficult to identify and are usually defined only by 

the thrombosed event. The surface endothelium is missing, but whether it has gone 

before or after thrombosis remains difficult to determine. No specific morphological 

features have been identified but, in general, eroded plaques with thrombosis are 

scarcely calcified, rarely associated with expansive remodelling, and only sparsely 

inflamed (11).  

 

1.5.4 Prospective detection of vulnerable plaques 

PROSPECT (Providing Regional Observations to Study Predictors of Events in the 

Coronary Tree) was a follow-up study of 697 patients treated with percutaneous 

coronary intervention after an ACS using multimodality imaging to identify 

vulnerable plaques (27). Using virtual histology-intravascular ultrasound (VH-

IVUS), the study was able to identify 595 TCFAs in non-culprit coronary arteries 

and found a three-fold increase in the risk of recurrent cardiovascular events in the 

subsequent three-year follow-up period. 

Similar observations were reported in the VIVA (VH-IVUS in Vulnerable 

Atherosclerosis) study (28). The purpose of this study was to determine whether 

TCFA identified by VH-IVUS are associated with major adverse cardiac events 

(MACCE) based on individual plaque or whole-patient analysis. One hundred and 

seventy patients with stable angina or troponin-positive acute coronary syndrome 

referred for percutaneous coronary intervention (PCI) were prospectively enrolled 

and underwent 3-vessel VH-IVUS pre-PCI and also post-PCI in the culprit vessel. 

Eighteen MACCE occurred in 16 patients over a median follow-up of 625 days; 

1,096 plaques were classified, and 19 lesions resulted in MACCE (13 non-culprit 

lesions and six culprit lesions). Non-culprit lesion factors associated with non-

restenotic MACCE included VHTCFA (hazard ratio [HR]: 7.53, p = 0.038) and 

plaque burden >70% (HR: 8.13, p = 0.011). VHTCFA (HR: 8.16, p = 0.007), plaque 
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burden >70% (HR: 7.48, p < 0.001), and minimum luminal area <4 mm2 (HR: 2.91, 

p = 0.036) were associated with total MACCE. Three-vessel non-calcified VH-IVUS 

TCFA was associated with non-restenotic total MACCE based on whole-patient 

analysis (HR: 1.79, p = 0.004). 

There are, however, some limitations to the concept of the vulnerable plaque. The 

predictive power of VH-IVUS-defined TCFA in the PROSPECT study suggests that 

imaging of the vulnerable plaque may have a limited specificity for the prediction of 

cardiovascular events. Although 595 TCFAs were identified by IVUS in 313 of 623 

patients, only 26 of these plaques were sites of subsequent events at three years, and 

almost all events were related to rehospitalisation for unstable or progressive angina.  

A further study of coronary plaque with VH-IVUS suggests that the plaque 

phenotype is dynamic, with 15 out of 20 of the TCFAs identified healing over a 12-

month follow-up period (29).  

Furthermore, post mortem data suggest that ruptured coronary plaques do not 

inevitably lead to clinical events. Eight per cent of coronary plaques that cause over 

50% diameter stenosis have evidence of old, healed plaque rupture with 

incorporation of thrombus into the atheroma (30). 

 

1.6 Mechanisms of plaque rupture 

1.6.1 Inflammation in atherosclerosis 

Vessel wall inflammation is thought to play a role in the pathological progression of 

atherosclerosis, in particular plaque destabilisation and rupture (see Figure 5) (31). 

The role of inflammatory processes in plaque erosion is less clear (32). 



 12 

 

Figure 5: Events that lead to atherosclerotic change and progression 

Hypercholesterolaemia is the trigger for the initiation of atherosclerosis. The monocyte migration and 

adherence to the endothelium is facilitated by the expression of vascular cell-adhesion molecule-1 

(VCAM-1), and selectins. Oxidisation and other modifications of low-density lipoprotein (LDL) 

induce the secretion of macrophage-chemotactic protein-1 (MCP-1). In the arterial intima, the 

monocytes undergo maturation into macrophages. Macrophages express scavenger receptors such as 

scavenger receptor A (SRA) and CD36, which facilitate the uptake of modified LDL and the 

conversion to foamy macrophages that are rich in cholesterol esters. Monocytes/macrophages 

proliferate in the presence of MCP-1 and macrophage colony stimulating factor (MCSF). 

Macrophages excrete matrix metalloproteinases (MMPs), which are further enhanced by the presence 

of reactive oxygen species (ROS), which then facilitate the breakdown of collagen to allow migration 

of cells within the plaque. Foamy macrophages infiltrate pathological intimal thickening (PIT) lesions 

and the lipid pool areas that are formed by the smooth muscle cell (SMC) apoptosis and proteoglycan 

accumulation. Aggregation of oxidised LDL and macrophage infiltration induces the conversion of 

the lipid pool to the necrotic core, and, within the necrotic core, macrophage death and defective 

efferocytosis (reproduced from Sakakura et al. (31)). 

 



 13 

1.6.2 Inflammation in atherosclerotic plaque progression 

Atherosclerosis occurs as a result of the deposition of low-density lipoproteins 

(LDL) within the arterial wall, where they bind to the extracellular proteoglycan-rich 

matrix, resulting in diffuse intimal thickening (33). LDL deposition in the intima 

eventually results in oxidation and increasing expression of adhesion molecules on 

the endoluminal surface (34). LDL oxidation is promoted in vitro by monocytes, 

endothelial cells and smooth muscle cells (35). Oxidised LDL induces dysfunctional 

endothelial cells to secrete macrophage-chemotactic protein 1 (MCP-1) to recruit 

circulating monocytes, which adhere to endothelial cells expressing vascular cell 

adhesion molecule-1 (VCAM-1) (36). Once inside the intima of the arterial wall, 

these inflammatory cells participate in and perpetuate a local inflammatory response. 

Macrophage colony-stimulating factor (M-CSF) also contributes to the 

differentiation of the blood monocyte into the macrophage foam cell (37).  

 

1.6.3 Endothelial activation and monocyte recruitment 

The first step in the initiation of monocyte recruitment is activation of the 

endothelium. Multiple factors may lead to endothelial damage and activation, 

including oxidative stress, hypercholesterolaemia, long-term hyperglycaemia, as well 

as increased plasma levels of both native and oxidised LDL (38). The endothelium 

normally releases nitric oxide; however, the presence of oxidised LDL reduces its 

activity (39). Platelets are also involved in the activation of the endothelium, by 

producing platelet factor 4 and P-selectin, which attract monocytes to the 

endothelium, forming monocyte–platelet aggregates (40). 

Once activated, endothelial cells overexpress chemokines (e.g. CCL5 and CCL2), as 

well as toll-like receptors (TLRs) and adhesion molecules (41). Blood monocytes are 

recruited to the activated/damaged endothelium. The expression of adhesion 

molecules, such P- and E-selectins, VCAM-1 and ICAM-1 facilitates an initial 

adhesion followed by the firm attachment of activated monocytes expressing 

reciprocal ligands such as Mac-1 and VLA-4 onto endothelial cells (42). 

The monocytes transmigrate across the endothelium via diapedesis to the 

subendothelial space. Junction adhesion molecules (JAM) -A and -C have been 

shown to be involved in the control of vascular permeability and thus leukocyte 
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transmigration across endothelial cell surfaces (43).  

 

1.6.4 Macrophage receptors 

In the subendothelial space, monocytes differentiate macrophages promoted by 

factors such as M-CSF. Macrophages express two types of receptor: scavenger 

receptors and toll-like receptors (TLR). Scavenger receptors such as scavenger 

receptor A (SRA) and CD36 facilitate the uptake of modified LDL and the 

conversion to foamy macrophages that are rich in cholesterol esters and free fatty 

acids (44). The lipid laden macrophages apoptose and become foam cells. They also 

stimulate an inflammatory response through the release of cytokines, growth factors, 

MMP, reactive oxygen species and tissue factor. In addition there is smooth muscle 

migration and proliferation across the intima. The result of these processes is a lesion 

with a lipid-rich atherosclerotic core and fibrous cap. The lipid-laden macrophages 

also release cytokines, growth factors, MMP, reactive oxygen species (ROS) and 

tissue factor, all perpetuating the inflammatory response and vascular remodelling 

(45). This also activates and attracts platelets, thus increasing plaque susceptibility to 

thrombus formation.  

TLRs are the most characterised members of the pattern recognition receptor family. 

TLRs recognise molecular patterns foreign to the body, including 

lipopolysaccharides, bacterial pathogens and oxidised lipoproteins (46). TLRs 

activate the proinflammatory transcription factor nuclear factor kappa-B (NFkB) and 

the mitogen-activated protein kinase (MAPK) pathway, resulting in the production of 

cytokines that augment local inflammation and smooth muscle cell proliferation (47). 

The main TLRs implicated in the atherosclerotic process are TLR2 and TLR4 (48). 

Lipopolysaccharides (LPS) induce the macrophage expression of MMP-9 via TLR4, 

while MMP-9 has been shown to degrade collagen fibrous caps, thus predisposing to 

plaque rupture (49). TLR4 was also increased systematically in patients following 

myocardial infarction (MI) and locally at sites of plaque rupture, yet suggesting that 

monocyte TLR4 has a role in plaque destabilisation and rupture (50). 
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1.6.5 Immune response by T-cells 

T-lymphocytes are also prompted via chemokines induced by interferon-γ to move 

into the intima (51). The initial activation of T-cells requires a strong stimulus 

delivered by dendritic cells or via memory T-cells (52). T-cell activation leads to the 

expression of CD40, which then binds to its CD40 receptor on the macrophage cell 

surface, resulting in increased macrophage expression of CD40 and TNF receptors 

that help to increase the level of macrophage activation as well as vascular 

endothelial cells and SMCs (52).  

As the inflammatory process continues, the activated leukocytes and macrophages 

release various cytokines, chemokines, growth-factors and disintegrins (listed in 

Figure 6), leading to the activation and proliferation of smooth muscle cells, lesion 

progression, and finally to the weakening of a vulnerable plaque by matrix 

degradation of its fibrous cap (53). 
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Figure 6: Markers of inflammation and plaque instability  

From foam cell to plaque rupture: IL = interleukin, TNF-α = tumour necrosis factor-α; MCP-1 = 

monocyte chemoattractant protein-1; sICAM = soluble intercellular adhesion molecule-1; sVCAM = 

soluble vascular cell adhesion molecule; oxLDL = oxidised low-density lipoprotein; Lp-PLA2 = 

lipoprotein-associated phospholipase A2; GPx-1 = glutathione peroxidase; MPO = myeloperoxidase; 

MMPs = matrix metalloproteinases; PlGF = placental growth factor; PAPP-A = pregnancy-associated 

plasma protein-A; sCD40L = soluble CD40 ligand; CRP = C-reactive protein; sPLA2 = secretory type 

II phospholipase A2; SAA = serum amyloid A; WBCC = white blood cell count (reproduced from 

Koenig et al. (53)). 

 

1.6.6 Inflammation and degradation of the fibrous cap 

Vascular smooth muscle cells (VSMCs) synthesise collagen, which gives tensile 

strength to the fibrous cap and protects it from rupture. Plaque inflammation, and 

specifically inflammatory macrophages in the shoulder regions of atherosclerotic 

plaques, release matrix metalloproteinases (MMPs) that degrade collagen, thereby 

contributing to the thinning and eventual disruption of the fibrous cap and exposure 

of the thrombogenic lipid core to the blood stream (54). In addition, activated T-cells 

secrete the cytokine interferon-γ, which inhibits the production of new interstitial 
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collagen, further contributing to the weakening of the fibrous cap. 

Interstitial collagen is usually very stable and resists degradation by most proteolytic 

enzymes, with MMPs being only a handful of proteinases capable of breaking down 

fibrillar collagen. MMPs are expressed by monocytes, macrophages, foam cells, mast 

cells and, to a lesser extent, VSMCs and endothelial cells. The various MMPs that 

are found in macrophage-rich regions include MMPs-1, -2, -3, -8, -9, -11, -12, -13, -

14 and -16. However, MMPs-1, -8 and -13 are overproduced by macrophages in 

advanced plaques and are thought to play a role in catalysing the initial breakdown of 

collagen (Figure 7) (15). T-cells also activate the macrophages in the intimal lesion 

by expressing CD40 ligand (CD154), which engages its cognate receptor (CD40) on 

the macrophage (55).  

MMP activity is inhibited by the tissue inhibitors of MMPs (TIMPs), which help to 

prevent excessive proteolytic activity. TIMPs are also regulated by T-cell-derived 

cytokines. In a study of human carotid plaques obtained at the time of carotid 

endarterectomy, Muller et al. (56) found that TIMP-3 expression was highest in 

stable plaques and low in vulnerable plaques, suggesting that this particular TIMP is 

down-regulated in vulnerable plaques.  

 

1.6.7 Alternative explanations for plaque rupture 

A weakened fibrous cap is clearly a key determinant in rendering plaques susceptible 

to rupture, but alone it is not enough to explain all instances of plaque rupture. A 

study by Ohayon et al. (57) investigated the change in plaque vulnerability as a 

function of necrotic core size and plaque morphology. Using idealised morphological 

models as references, 24 patients underwent IVUS imaging of non-ruptured plaques. 

They demonstrated that plaque instability risk is due to cap thickness, necrotic core 

thickness and the arterial remodelling index, combined. Plaque rupture might also be 

prompted by coronary vasospasm and punctate calcifications. Additional 

contributors to the triggering of plaque rupture may also include coronary vasospasm 

and punctate calcifications (15). 
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1.6.8 Thrombosis 

When the fibrous cap does eventually rupture, blood in the lumen of the artery comes 

into contact with thrombogenic material in the plaque’s lipid-rich necrotic core. 

Thrombosis then ensues, as described below:  

1. Blood enters the core of the plaque, activating platelets and the coagulation 

cascade. The resulting intraplaque mass is known as an intraplaque thrombus (58). 

This thrombus prevents the further entry of blood into the core.  

2. Fibrin accumulates over the intra-plaque thrombus. It becomes bigger and partially 

occludes the lumen. The flow and sheer force within the vessel will determine the 

size of the accumulating thrombus. As the thrombus is still exposed to blood flow, 

dislodged parts may result in distal emboli (59).  

3. Finally the thrombus enlarges sufficiently enough to completely occlude the 

vessel. This occurs as further fibrin and red blood cells mesh together on the external 

surface (60).  

 

 

 



 19 

 

Figure 7: Inflammatory Pathways Predisposing Coronary Arteries to Rupture and Thrombosis  

Bottom: A cross-section of an atheromatous plaque shows the central lipid core that contains 

macrophage foam cells (yellow) and T-cells (blue). The intima and media also contain arterial smooth 

muscle cells (red), which are the source of arterial collagen (depicted as triple helical coiled 

structures).  

Upper left: Activated T-cells (of the type 1 helper T-cell subtype) secrete cytokine interferon-γ, which 

inhibits the production of the new, interstitial collagen, required to repair and maintain the plaque’s 

protective fibrous cap.  

Upper right: The T-cells can also activate the macrophages in the intimal lesion by expressing CD40 

ligand (CD154), which engages its cognate receptor (CD40) on the phagocyte. This inflammatory 

signalling causes overproduction of interstitial collagenases (matrix metalloproteinases [MMPs] -1, -8 

and -13) that catalyse the initial rate-limiting step in collagen breakdown (reproduced from Libby 

(15)). 

 

1.7 Mechanisms in plaque erosion 

Despite the identification of plaque erosion as an important alternative mechanism 

for coronary thrombosis and a major cause of sudden death, its underlying 

pathophysiological mechanisms are not well understood. Whereas plaque rupture is 

thought to be an inflammatory process, as cells such as macrophages and 

lymphocytes that may induce apoptosis are prevalent in ruptured plaques, these same 
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cells are not as widespread in eroded plaques (16). In coronary thrombotic lesions 

caused by plaque erosion, there is an increase in smooth muscle and proteoglycan 

deposition, specifically containing more versican and the glycosaminoglycan, 

hyaluronan, and less biglycan (23). Therefore, a better understanding of the factors 

leading to plaque erosion is needed. The leading hypothesis for erosion suggests that 

endothelial denudation of an atherosclerotic plaque exposes thrombogenic 

extracellular matrix to the blood (61). The cause of this focal denudation is not 

known, but possibilities include vasospasm and high shearing flow (22) inducing 

endothelial apoptosis, leading to denudation of the intimal surface of the vessel. 

Durand et al. confirmed that endothelial loss could be sufficient to precipitate 

thrombus by inducing apoptosis with intravascular staurosporine in a rabbit model 

(62).  

 

1.7.1 Endothelial shear stress 

High laminar blood flow is a potent endogenous antiatherosclerotic factor, as 

illustrated by the focal distribution of atherosclerotic lesions in areas with low or 

turbulent flow (63). Studies have shown that endothelial cells cultured under static 

conditions undergo apoptosis, whereas normal levels of shear stress are protective 

(64). A study by Tricot et al. (65) examined 42 human carotid atherosclerotic 

plaques. Quantitative analysis of endothelial cell apoptosis in these plaques showed a 

systematic preferential occurrence of apoptosis in the downstream parts of plaques, 

where low flow and low shear stress prevail, in comparison with the upstream parts 

(18.8 ± 3.3% versus 2.7 ± 1.2%, respectively, P <0.001) (Figure 8). 
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Figure 8: Longitudinal section of a carotid plaque showing upstream and downstream parts  

Stenotic atherosclerotic plaques would be expected to experience significantly elevated shear stress on 

the upstream face of the plaque, modifying endothelial behaviour. Similarly, on the downstream 

surface of the plaque, the endothelium would be expected to experience disturbed flow, promoting 

higher rates of apoptosis (reproduced from Tricot et al. (65)). 

 

Campbell et al. (66) investigated whether local haemodynamics was associated with 

sites of plaque erosion. They generated 3D, patient-specific models of coronary 

arteries from biplane angiographic images in three human patients with plaque 

erosion diagnosed by optical coherence tomography (OCT). Using computational 

fluid dynamics, they simulated pulsatile blood flow and calculated both wall shear 

stress (WSS) and oscillatory shear index (OSI). Neither high nor low magnitudes of 

mean WSS were associated with sites of plaque erosion. OSI and local curvature 

were also not associated with erosion. Although the sample size was small, hence 

lowering the significance of the study, the data suggested that there was no 

significant association between erosion and shear stress. 

Another study by Campbell et al. (61) examined a total of 74 human coronary plaque 

specimens obtained at autopsy. Using histology-based, lesion-specific computational 

modelling techniques to calculate the distribution of stresses and strains in the walls 

of atherosclerotic plaques, they studied the spatial relationship between stress/strain 

and markers of inflammation. Consistent with previous studies, inflammatory 

markers were positively associated with increasing strain in specimens with rupture 
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and thin-cap fibroatheromas. Conversely, overall staining for inflammatory markers 

and apoptosis were significantly lower in erosion, and there was no relationship with 

mechanical strain. Samples with plaque erosion most closely resembled those with 

the stable phenotype. The data suggests that plaque erosion is a distinct 

pathophysiological process with a different aetiology. 

 

1.7.2 Apoptosis and detachment of endothelial cells 

Programmed cell death (apoptosis) and desquamation of luminal endothelial cells 

(ECs) exposing platelets and coagulation factors to the basement membrane provide 

two possible mechanisms of plaque erosion (Figure 9) (67).  

Apoptosis can lead to the detachment of ECs from the ECM in vivo, as described 

above (62). On the other hand, loss or weakening ECM contacts may provoke 

endothelial anoikis (apoptosis triggered by loss of cell contacts), most likely owing 

to the disruption of signals from focal adhesions to the protein kinase B (PKB/c-Akt) 

pathway (Figure 9) (68).  

 

Figure 9: Mechanisms that potentially contribute to endothelial erosion  

Normal or elevated shear stress activates adhesion of integrins, increasing survival signalling through 

AKT. Integrin adhesion can be reduced in low-shear environments, or via glyoxalation of collagens 

and modification of the subcellular matrix to include high proportions of hyaluronan, thereby 

diminishing AKT signalling. Activation of TLR 2 by hyaluronan may activate caspase 3, increasing 

apoptotic drive and pro-inflammatory signalling. Reactive oxygen species from cellular and 
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extracellular sources (e.g. cigarette smoke) scavenge nitric oxide, preventing the inhibition of 

activated caspases. Endothelial dysfunction may promote aberrant turnover basement membrane 

components, with endothelial and sub-endothelial cells increasing the production, or activation, of 

MMPs or other proteases contributing to an increase in subcellular protease activity (reproduced from 

White et al. (67)). 

 

A variety of factors have been shown to promote endothelial apoptosis in vitro or in 

vivo. These include depletion of growth/survival factors, such as VEGFA, or 

disruption of cell-to-cell contacts mediated by VE-cadherin, which interfere with 

signalling through the mitogen-activated protein kinase and c-Akt pathways (69). 

 

1.7.2.1 Endothelial cell apoptosis and Toll-like Receptor-2 (TLR2) 

A study by Quillard et al. (70) suggests that TLR2 ligation is a potential activator of 

endothelial apoptosis in vitro and in vivo. ECs exposed to TLR2 agonists or plated 

on hyaluronic acid (also a TLR2 ligand) in vitro showed increased apoptosis, 

measured by the rise in cleaved caspase 3 (the hallmark of apoptotic cells) and also 

cell detachment. The mechanisms involved in cell detachment involve increased 

matrix metalloproteinase activity, and downregulation of VE-cadherin complexes, 

disrupting cell junctions (67). It has been postulated that overproduction of active 

forms of non-fibrillar collagenases MMP-2 and MMP-9 and the activator of MMP-2, 

MMP-14, could sever the tethers between endothelial cells and the underlying 

basement membrane, facilitating their desquamation and consequent local 

thrombosis (71). 

 

1.7.2.2 Neutrophil extracellular traps (NETs) 

Once the endothelial cell has desquamated, the dying endothelial cell can release 

tissue factor that can accelerate the activity of factors VII and X to augment thrombin 

formation and ultimately the conversion of fibrinogen to fibrin, provoking 

thrombosis and coagulation. Exposure of the sub-endothelial matrix can provide a 

substrate for granulocyte adhesion, activation and degranulation. Granulocytes are a 

source of reactive oxygen species such as hypochlorous acid, HOCI, a product of 

myeloperoxidase (MPO). Dying granulocytes release DNA and histones contributing 
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to the formation of neutrophil extracellular traps (NETs) (72). Exposure of the sub-

endothelial extracellular matrix can activate platelets, causing them to degranulate 

and release pro-inflammatory mediators such as interleukin-6 and RANTES. 

Activated platelets also release plasminogen activator inhibitor-1 (PAI-1), a major 

inhibitor of endogenous fibrinolytic enzymes. PAI-1 can thus reduce fibrinolysis and 

increase clot stability (15).  

ECs exposed to TLR2 agonists also show modestly increased expression of the 

inflammatory markers, E-selectin, VCAM-1 and IL-8, which could also act together 

to recruit neutrophils (73). Examination of human carotid endarterectomy specimens 

ex vivo suggests that TLR2 and activated neutrophils expressing NETs co-localise 

with areas of endothelial denudation downstream of plaques (70). NETs can form a 

nidus for extension of thrombosis and entrapment of further blood leukocytes, 

amplifying the local inflammatory response. 

These studies illustrate the possible interaction between the endothelial dysfunction 

mediated by TLR-2 and neutrophil recruitment in provoking erosions, emphasising 

the two-way connection between adhesion and apoptosis of ECs. 

 

1.7.3 Myeloperoxidase in plaque erosion 

An in vitro study by Sugiyama et al. (74) looked at the relationship between 

macrophages at erosive sites of human coronary atheroma producing 

myeloperoxidase (MPO), an enzyme that produces hypochlorous acid (HOCL). They 

tested the hypothesis that HOCL affects endothelial viability and that it modifies 

thrombogenicity in the endothelium, thereby leading to superficial erosion and 

occlusive thrombosis. Their results demonstrated that MPO-positive macrophage-

derived HOCL in the subendothelium of the atheromata may initiate or propagate 

endothelial cell loss and local thrombosis in coronary arteries.  

Increased systemic levels of MPO were also demonstrated in patients with plaque 

erosion compared to plaque rupture in a small study of 25 patients with ACS (75). In 

addition, the density of myeloperoxidase-positive cells within thrombi overlying 

plaques in post mortem coronary specimens retrieved from sudden coronary death 

victims was significantly higher in lesions with erosion (n=11) than ruptures (n=11). 
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1.8 Thrombus aspiration 

The foremost therapeutic goal during the treatment of STEMI is to re-establish 

normal coronary blood follow. Treatment strategies for reperfusion therapy focus on 

dissolving, mechanically disrupting or surgically bypassing occlusive thrombus in 

the epicardial infarct-related artery. Primary percutaneous coronary intervention 

(PPCI) is recognised as the preferred treatment of STEMI, if logistically feasible, and 

has been proven to be a very effective method to restore patency of the infarct-

related artery (IRA) (76). However, even after epicardial arterial patency has been 

established, microvascular dysfunction with diminished myocardial perfusion is seen 

in a significant proportion of patients and has been associated with an increased 

infarct size, less recovery of left ventricular ejection fraction and increased mortality 

(77). 

The main two mechanisms for causing microvascular dysfunction are considered to 

be reperfusion injury and microvascular obstruction (MVO). Reperfusion injury 

refers to necrotic myocardium unable to be reperfused (78). MVO is caused by the 

embolisation of soft plaque and/or thrombotic material downstream, in the bed of the 

IRA. Studies emphasise mechanical disruption and fragmentation of the culprit 

lesion during PCI as the major cause (77). 

To overcome this clinical problem, the technique of thrombus aspiration is used, 

which involves passing a fine catheter over the coronary angioplasty wire and 

aspirating thrombus at the site of the lesion.  

 

1.8.1 Evidence for thrombus aspiration 

Although thrombus aspiration during PPCI for STEMI may improve microvascular 

reperfusion, its impact on clinical outcomes has yielded contrasting results. A recent 

meta-analysis by Jolly et al. (79) compared manual thrombectomy and PCI alone in 

patients with ST-segment-elevation myocardial infarction. Included were three large 

(n>1,000) controlled, randomised trials: TAPAS (Thrombus Aspiration During 

Percutaneous Coronary Intervention in Acute Myocardial Infarction); TASTE 

(Thrombus Aspiration in ST-Elevation Myocardial Infarction in Scandinavia); and 

TOTAL (Trial of Routine Aspiration Thrombectomy With PCI Versus PCI Alone in 

Patients With STEMI). They found that routine thrombus aspiration during PCI for 
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ST-segment-elevation myocardial infarction did not improve clinical outcomes. In 

the subgroup with high thrombus burden, thrombus aspiration was associated with 

fewer cardiovascular deaths and with more strokes or transient ischemic attacks. 

 

1.8.2 Thrombus yield 

Systematic thrombectomy yields thrombus samples for histopathological evaluation 

of intracoronary thrombi in PPCI cases. In the TAPAS trial, coronary thrombotic 

material was successfully retrieved in 72.9% of patients (80). A study by Kramer et 

al. (81) sought to establish the histopathological characteristics of material aspirated 

during PPCI in a STEMI population. Material could be aspirated in 74% of patients. 

Components of plaque were found in 395 of these patients (39%). Fresh thrombus 

was found in 577 of 959 patients (60%) compared to 382 patients (40%) with lytic or 

organised thrombi. These studies highlight the feasibility of obtaining thrombus 

samples in approximately two-thirds of patients undergoing PPCI for STEMI.  

 

1.8.3 Thrombus types 

Histological analysis of aspirated thrombi usually reveals a variety of thrombus 

types, which can be classified according to the accepted definitions of thrombus age 

(82): 

Fresh thrombus (<1 day old) is composed of platelet aggregates, erythrocytes, intact 

granulocytes and fibrin (Figure 10B).  

Lytic thrombus (1 to 5 days old) is characterised by areas of colliquation necrosis 

and karyorrhexis of granulocytes (Figure 10C). 

Organised thrombus (>5 days old) is characterised by the presence of smooth muscle 

cells, homogenous or hyaline fibrin and depositions of connective tissue and 

capillary vessel ingrowth (Figure 10D). 
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Figure 10: (A) Macroscopic appearance of aspirated thrombus after thrombectomy. (B) 

Microphotograph of a fresh thrombus (HE staining, ×400). *Nonhomogeneous fibrin, **leukocytes, 

†platelet aggregates. (C) Microphotograph of a lytic thrombus (HE staining, ×400). *Colliquative 

necrosis, †granulocytes with karyorrhexis. (D) Microphotograph of an organised thrombus (HE 

staining, ×400). *Endothelial cells, **erythrocytes, †hyaline and homogenised fibrin (reproduced 

from Carol et al. (83)). 

Rittersma et al. (82) studied the age of intracoronary thrombi, aspirated during 

angioplasty, in 211 consecutive patients with acute STEMI presenting within six 

hours. The aspirated material was histologically screened on thrombus and plaque 

components, and thrombus age was classified as fresh, lytic thrombus and organised 

thrombus. Thrombus was identified in 199 (95%) of 211 patients. In 12 patients 

(5%), only plaque components were identified, and in 85 patients (41%), both 

thrombus and plaque material were aspirated. 

Kramer et al. (81) performed a larger study of thrombus aspiration during PPCI in 

1,362 STEMI patients. Thrombus age was classified as above into fresh, lytic and 

organised. Components of plaque were found in 395 of these patients (39%). Fresh 

thrombus was found in 577 of 959 patients (60%), compared to 382 patients (40%) 

with lytic or organised thrombi.  

In both studies, at least 40% of patients presenting with STEMI had coronary 
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thrombus aged older than 24 hours and in some cases days or weeks old, indicating 

that plaque disruption and thrombus formation occur significantly earlier than the 

onset of symptoms in many patients. 

 

1.8.4 Coronary thrombus and plaque morphology 

Post mortem studies suggest that coronary thrombi may differ according to the 

underlying plaque pathology. Sato et al. (84) investigated the proportion of fibrin and 

platelets in the thrombi of ruptured and eroded coronary atherosclerotic plaques 

obtained from patients who had died of acute MI within three days of onset. They 

found that fibrin was more abundant than platelets in the thrombi of ruptured 

plaques, whereas platelets tended to be more abundant than fibrin in the thrombi of 

eroded plaques. 

In a different type of study, Kramer et al. (85) aimed to study the relationship 

between thrombus age (healing) and plaque morphology in sudden coronary death 

victims. The results showed that late-stage thrombi were present in 79 (69%) of the 

115 culprit plaques and that the majority of early thrombi (＜1 day) and lytic thrombi 

(1 to 3 days) were present in plaque ruptures compared with erosions, whereas the 

majority of thrombi in erosions were infiltrating (4 to 7 days) or healing (＞7 days). 

Moreover, women more frequently had erosions with a greater incidence of late-

stage thrombi (44 of 50, 88%) than ruptures (35 of 65, 54%, p ＜0.0001). 

Ferrante et al. (75) analysed the relationship between coronary plaque morphology 

and the density of MPO-positive cells within thrombi overlying plaques in 22 sudden 

coronary death victims. The results showed that the number of MPO-positive cells 

(neutrophils and some macrophages) within thrombi were significantly higher in the 

lesions with erosion (n=11) than in the lesions with rupture (n=11) (p = 0.0012). 

There have been more recent assessments of culprit plaque morphology using 

imaging modalities such as IVUS and OCT, and analysis of intracoronary thrombi in 

living patients.  

The OCTAVIA study (Mechanisms of Atherothrombosis and Vascular Response to 

Primary Percutaneous Coronary Intervention in Women Versus Men with Acute 

Myocardial Infarction) sought to assess, in vivo, sex differences in the 
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pathophysiology of STEMI using OCT to determine plaque morphology. It was 

found that there were no sex differences in the composition of aspirated thrombus 

(86).  

Saia et al. (87) evaluate the pathophysiological features and response to primary 

percutaneous coronary intervention (PCI) of non-ruptured/eroded plaque versus 

ruptured plaque as a cause of STEMI, again using OCT to determine plaque 

pathology. They also found that there were no significant differences in thrombus 

components and thrombus age between the plaque rupture and plaque erosion 

groups. 

In routine clinical practice, the thrombectomy specimen is not analysed and is 

usually discarded. Although the most recent studies have not shown any relationship 

between plaque morphology and thrombus type, there is clearly scope for 

undertaking further immunohistopathological assessment of thrombus specimens 

now that we have the technology to assess plaque morphology in vivo.  

 

1.9 Detection of plaque morphology 

1.9.1 Optical coherence tomography (OCT) 

OCT is an intravascular catheter-based imaging modality that uses infrared light to 

create cross-sectional images of the coronary arteries. It is recognised as the 

optimum modality for in vivo imaging of coronary arteries and enables visualisation 

of the vessel wall and related structures due to its ultra-high resolution (15µm). 

Compared to traditional intra-vascular ultrasound (IVUS), OCT has a ten-fold higher 

image resolution (Table 2). The first use of an OCT catheter for in vivo imaging of 

coronary arteries was in 1996 by Tearney et al. (88). 

Image acquisition requires blood to be transiently displaced with an intra-coronary 

injection of x-ray contrast, while the fibre optic lens is rapidly rotated and withdrawn 

through a transparent shaft. Tomographic images are reconstructed almost 

instantaneously.  
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Characteristic OCT IVUS 

Energy source Near-infrared light Ultrasound (20–45Mhz) 

Wave-length, µm 1.3 35–80 

Resolution, µm 15–20 (axial); 20–40 (lateral) 100–200 (axial); 200–300 
(lateral) 

Frame rate, frame/s 100–200 30 

Pull-back rate, mm/s 25 0.5–1 

Maximum scan diameter, mm 7 15 

Tissue penetration, mm 1–2.5 10 

Table 2: Characteristics of OCT vs IVUS (adapted from Prati et al. (89)). 

OCT can discriminate three layers of the coronary artery wall, demonstrating the 

intima as the signal-rich layer nearest the lumen, the media as the signal-poor middle 

layer, and the adventitia as the signal-rich layer surrounding the signal-poor layer of 

the media (Figure 11) (90). 

This advantage has seen OCT successfully applied to the assessment of 

atherosclerotic plaque, stent apposition and tissue coverage. 

 

Figure 11: Optical coherence tomography showing the trilaminar appearance of a normal coronary 

artery  

The muscular media is revealed as a low signal layer comprised between internal and external lamina 

(reproduced from Prati et al. (89)). 
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1.9.2 Limitations of OCT 

In coronary arteries, the high scattering of red blood cells causes significant signal 

attenuation (89) and blurring of the image when using optical imaging, thereby 

precluding visualisation of the related structures and underlying vessel wall. 

Consequently, blood must be displaced from the imaging field during OCT 

examination. This is achieved by flushing the vessel during image acquisition with 

either saline or contrast medium. Saline has a low viscosity and is not very effective 

at displacing blood. Using saline, therefore, requires an ‘occlusive technique’, which 

involves the simultaneous occlusion of the vessel with a balloon proximal to the 

lesion of interest during infusion. The ‘non-occlusive technique’ uses a flush of high-

viscosity contrast to displace blood during image acquisition. This method uses very 

small additional contrast volumes (10–14ml). 

A drawback remains when imaging large vessels, lesions near large side branches 

and in the aorto-ostial junction, where it is often difficult to obtain satisfactory image 

quality. 

Imaging depth is another limitation, with the new-generation frequency domain (FD) 

OCT systems limited to a scan diameter of 8–10mm inside the arterial wall in a 

blood-free environment. The imaging depth is further influenced by the amount of 

light penetration, which is dependent on the composition of the vessel wall and the 

optical properties (backscatter and attenuation) of the tissues (89). Backscattering 

refers to the amount of light waves reflected back in the direction from which they 

came, while attenuation describes the loss of signal intensity across the scan line. 

The limited penetration depth into the vessel wall can reduce the sensitivity of OCT 

for different plaque components. Fibrous and fibrocalcific tissues allow a high light 

penetration, whereas lipid-rich and macrophage accumulations attenuate OCT light 

significantly, resulting in limited penetration.  

 

1.9.3 Safety of OCT 

OCT is a safe procedure with an extremely low risk of complications. Image 

acquisition does not involve ionising radiation. The main safety concerns are vessel 

trauma due to passage of the catheter within an extremely tortuous vessel, additional 

x-ray contrast volume and procedural delay. In the PPCI setting, OCT can only be 
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performed following successful thrombectomy and re-established TIMI III flow, so 

that there is no delay to reperfusion or significant interference with the PPCI 

procedure (91).  

 

1.9.4 Plaque composition 

In comparison with histology, OCT has been demonstrated to be highly sensitive and 

specific for characterising different types of atherosclerotic plaques.  

Fibrous plaque is characterised by signal-rich, homogenous lesions, fibrocalcific 

plaque by well-delineated, signal-poor, sharp-border lesions, and lipid-rich plaques 

as signal-poor, diffuse-border lesions (Figure 12) (92). 
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Figure 12: OCT: histology correlation 

(A) Fibrotic plaque: characterised by high signal (high backscattering) and low attenuation (deep 

penetration). (B) Predominantly calcified plaque: calcified regions have a sharp border, low signal and 

low attenuation permitting deeper penetration. (C) Lipid-rich plaque: the lipid core has a diffuse 

border. High light attenuation results in poor tissue penetration (in contrast to calcified regions). 

‡Calcified region; *lipid core (reproduced from Rollins et al. (92)). 

 

A study by Yabushita et al. (93) aimed to establish objective OCT image criteria for 

atherosclerotic plaque characterisation. OCT images of 357 atherosclerotic arterial 

segments obtained at autopsy were correlated with histology. When compared to 

histological examination, OCT had a sensitivity and specificity of 71–79% and 97–

98% for fibrous plaques, 95–96% and 97% for fibrocalcific plaques, and 90–94.5% 

and 90–92% for lipid-rich plaques, respectively. Further, the inter-observer and intra-

observer reproducibility of OCT measurements were high (κ values of 0.88 and 0.91, 
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respectively). 

The high resolution of OCT provides more detailed structural information of the 

coronary artery wall and coronary atherosclerotic plaque composition compared with 

other imaging modalities. Kubo et al. (94) compared OCT, IVUS and coronary 

angioscopy (CAS) in 30 patients in acute myocardial infarction (AMI). They found 

that the incidence of plaque rupture observed by OCT was 73% and it was 

significantly higher than that by CAS (47%, p = 0.035) and IVUS (40%, p = 0.009). 

In addition, OCT was superior (23%) to CAS (3%, p = 0.022) and IVUS (0%, p = 

0.005) in the detection of plaque erosion. Intracoronary thrombus was observed in all 

cases by OCT and CAS, but only in 33% by IVUS (vs OCT, p <0.001). OCT was 

also the only modality that could estimate fibrous cap thickness. 

Kume et al. demonstrated that OCT might be able to distinguish between white and 

red thrombus (95). At histologic examination, red thrombus (Figure 13) appears as a 

dark-red mass protruding into the vessel lumen, consisting of mainly RBCs and 

fibrin, while white thrombus (Figure 14) can be observed as a willow-like structure 

composed of platelets and white blood cells (WBCs), with a small amount of RBCs 

(95). In this study, the researchers examined 108 coronary arterial segments of 40 

consecutive human cadavers and obtained OCT images of red and white thrombi. 

Red and white thrombi were found in 16 (17%) and 19 (18%) of the 108 arterial 

segments, respectively. Red thrombi were identified as high-backscattering structures 

inside the lumen of the artery, with signal-free shadowing in the OCT image, while 

white thrombi were identified as signal-rich, low-backscattering structures projecting 

into the lumen. There were no significant differences in peak intensity of OCT 

signals between red and white thrombi (130 ± 18 µm vs 145 ± 34 µm, p = 0.12). 

However, the !
!
 attenuation width of the signal intensity curve, which was defined as 

the distance from peak intensity to its !
!
 intensity, was significantly different between 

red and white thrombi (324 ± 50 µm vs 183 ± 42 µm, p = 0.0001), and the cut-off 

value of 250µm in the !
!
 width of signal intensity attenuation can differentiate white 

from red thrombi with a sensitivity of 90% and a specificity of 88%.  

It would, therefore, seem plausible that OCT could be helpful to identify the culprit 

lesion in ACS and might also provide additional information about the underlying 

causes that lead to coronary thrombosis. 
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Figure 13: Correlation between OCT images and histologic (haematoxylin and eosin stain) 

examinations of human coronary red thrombi obtained at autopsy  

OCT images of red thrombi are characterised as high-backscattering protrusions with signal-free 

shadowing (arrows) (reproduced from Kume et al. (95)). 
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Figure 14: Correlation between OCT images and histological (haematoxylin and eosin stain) 

examinations of human coronary white thrombi obtained at autopsy  

OCT images of white thrombi were visualised as signal-rich, low-backscattering projections (arrows) 

(reproduced from Kume et al. (95)). 

 

1.9.4.1 Fibroatheroma 

Fibroatheroma are the first distinguishable plaque consisting of a demarcated lipid-

rich necrotic core encapsulated by surrounding fibrous tissue. They can be further 

subdivided into the early and late stage. The early stage is characterised by 

macrophage infiltration into the lipid pool, together with focal loss of proteoglycans 

and collagen. In the late stage, discrete collections of cellular debris and increased 

amounts of free cholesterol exist, and the extracellular matrix is almost completely 

depleted. This stage can result in substantial luminal stenosis from episodes of 

intraplaque haemorrhage (11). OCT images of fibroatheroma are characterised by a 

superficial high backscattering bright signal (Figure 15), with pronounced signal 

attenuation of light in the deeper plaque regions (96).  
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Figure 15: OCT Fibroatheroma  

(A) Low OCT signal (yellow arrows) with poorly delineated borders and a cap (green arrow) 

characterise this fibroatheroma. (B) Signal-poor and poorly delineated regions can be seen in more 

than three quadrants circumferentially (yellow arrows) (reproduced from Tearney et al. (97)). 

 

1.9.4.2 Thin-cap fibroatheroma 

The TCFA, often referred to as a ‘vulnerable plaque’, is characterised by a large 

necrotic core encased by a thin fibrous cap. This is traditionally defined as being 

<65µm thick and is heavily infiltrated by macrophages, T-lymphocytes, but contains 

few smooth muscle cells (21). OCT can be used to measure fibrous cap thickness 

and, therefore, can be employed to identify TCFA using a threshold of 65µm, similar 

to the cut-off established by histopathology (89).  
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Figure 16: OCT Thin-cap fibroatheroma  

C. OCT thin-capped fibroatheroma (TCFA) lesion that shows regions with low backscattering (yellow 

arrows) and a thin fibrous cap (red arrow). (D) OCT-TCFA that shows low backscattering (yellow 

arrow) covered by a thin fibrous cap (red arrow) (reproduced from Tearney et al. (97)). 

 

1.9.4.3 Plaque rupture 

Ruptured plaques are distinguished from TCFA by the presence of a luminal 

thrombus overlying a thin, disrupted fibrous cap. The fibrous cap consists mainly of 

Type I collagen, with greater numbers of macrophages and lymphocytes than in 

TCFA and with a limited distribution of smooth muscle cells.  

Several OCT imaging studies have confirmed plaque rupture as the most frequent 

event-causing lesion identified in patients with ACS (19,98). Plaque rupture (Figure 

17) is characterised by the presence of fibrous cap discontinuity and cavity formation 

within the plaque, being detected on OCT in 50〜70% of culprit lesions of ACS 

(94). An important difference in the definition of plaque rupture by histology versus 

OCT is the presence of an intraplaque cavity. Whereas most contemporary imaging 

studies applied a definition of plaque rupture covering a disrupted thin fibrous cap 

along with an intraplaque cavity, the mandatory presence of an intraplaque cavity has 

not been reported in histopathology studies (96).  
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Figure 17: OCT plaque rupture  

Defined as a presence of fibrous cap discontinuity (white arrows) and a cavity formation (*) in the 

plaque (reproduced from Kubo et al. (99)). 

 

1.9.4.4 Plaque erosion 

Plaque erosion (Figure 18) is the second most prevalent cause of coronary 

thrombosis. OCT characterises plaque erosion by the presence of a thrombus, an 

irregular luminal surface and no evidence of cap rupture, or the presence of an intact 

fibrous cap (IFC) evaluated in multiple adjacent frames (97). The clinical utility of 

OCT in reliably distinguishing plaque erosion is reduced due to its limited axial 

resolution in detecting a disrupted endothelial monolayer. The presence of a luminal 

thrombus further amplifies the hindrance of light into deeper tissue regions of the 

underlying plaque, making a reliable judgement of plaque morphology extremely 

difficult in some cases. Clinical OCT studies have suggested that, in the setting of an 

acute coronary event, the presence of a luminal thrombus over an intact fibrous cap 

is indicative of plaque erosion (72). 
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Figure 18: OCT plaque erosion  

Erosion (arrowhead) is usually comprised of OCT evidence of thrombi (white arrows), an irregular 

luminal surface and no evidence of cap rupture evaluated in multiple adjacent frames (reproduced 

from Kubo et al. (99)). 

 

1.9.4.5 Calcified nodule 

A calcified nodule (Figure 19) is the least frequent cause of coronary thrombosis. 

OCT imaging defines these nodules as fibrous cap disruption over sites of calcified 

plaque characterised by protruding areas of calcification as well as superficial 

calcium deposition with substantive calcium accumulation proximal and/or distal to 

the lesion (101). However, by definition, calcified nodules have an overlying 

thrombus and disruption of the luminal surface, which helps to differentiate this type 

of plaque from nodular calcification, a more stable form of calcified plaque.  
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Figure 19: OCT calcified nodule  

Defined as a protrusion of a signal-poor or heterogenous region with a sharply delineated border 

(reproduced from Kubo et al. (101)). 

 

1.9.5 OCT in STEMI studies 

Intracoronary OCT has been established as the best modality for detailed analysis of 

plaque morphology, including discriminating between plaque rupture and erosion. 

Plaque rupture and erosion in the culprit lesions of patients with ACS can be defined 

as ‘ACS with Ruptured Fibrous caps (RFCs)’ or ‘ACS with Intact Fibrous Caps 

(IFC)’ (100).  

There have been a few studies in ACS that have directly compared RFC versus IFC 

using OCT and subsequently reported on the distinguishing features between the two 

pathologies.  

The OCTAVIA study assessed in vivo sex differences in the pathophysiology of 

STEMI (86). In this prospective, multi-centred study, 140 men and women with 

STEMI undergoing primary PCI were age matched. All patients were investigated 
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with intravascular OCT of the culprit artery, histopathology-immunohistochemistry 

of thrombus aspirates and serum biomarkers from a venous sample. The study found 

no significant differences in culprit plaque morphology and factors associated with 

coronary thrombosis between age-matched men and women.  

Saia et al. (87) focused on the comparison of patients presenting with IFC versus 

RFC at the culprit site of STEMI, representing a pre-specified analysis of the 

OCTAVIA trial. In this study, patients underwent OCT of the IRA before PCI, after 

everolimus-eluting stent implantation and at nine-month follow-up. Similarly, the 

histopathology-immunohistochemistry of thrombus aspirates and serum biomarkers 

were assessed at baseline. An IFC was observed at the culprit lesion site of one third 

of STEMIs. IFC compared to RFC presented more frequently with a patent IRA 

(56.2% vs 34.9%, p = 0.047), fewer lipid areas (lipid-rich areas: 75.0% vs 100%, p 

<0.001) and less residual thrombus (white thrombus: 0.41mm3 vs 1.52mm3, p = 

0.001; red thrombus: 0mm3 vs 0.29mm3, p = 0.001) before stenting. Both groups had 

similar clinical characteristics and biomarker profiles. The finding of the more patent 

IRA in this study is supported by the previous work done by Farb et al. (23). They 

compared the incidence and morphological characteristics of coronary thrombosis 

associated with plaque rupture versus thrombosis in eroded plaques without rupture 

in post mortem samples of 50 consecutive sudden cardiac death cases. They 

described a significant difference in the luminal percentage stenosis between the two 

groups. The mean percent luminal area stenosis was 78 ± 12% in plaque rupture and 

70 ± 11% in erosion cases (P <0.03). The evidence does, therefore, suggest that 

luminal patency, both post mortem and in vivo, are greater in plaque erosion 

compared to rupture.  

A study by Niccoli et al. (102) compared the prognostic value of RFC versus IFC in 

patients with ACS. The study comprised 139 consecutive ACS patients each of 

whom underwent coronary angiography followed by OCT imaging of the culprit 

lesion. They found no significant differences between clinical, angiographic, 

procedural or biomarker data between the two groups. However, they did 

demonstrate major adverse cardiac events (MACCE) occurring more frequently in 

RFC when compared to IFC (39% vs 14%, p = 0.001). This is further supported by a 

study by Yonetsu et al. (103) in which a total of 318 patients with ACS underwent 

OCT of a culprit lesion. Lesions were defined as RFC, IFC and those with massive 
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thrombus precluding plaque visualisation (MT group). Adverse cardiac event-free 

survival was significantly higher in the IFC group compared with the RFC and MT 

groups (log rank Χ2 = 8.87, p = 0.012). These two studies suggest that, in ACS 

patients, the underlying pathological coronary substrate has major prognostic value. 

Another study by Niccoli et al. (104) sought to investigate the biohumoral 

correlations between RFC and IFC groups in patients with ACS. They found that 

patients with RFC displayed a marked elevation of CRP and MMP-9 in comparison 

to IFC (OR 1.48, 95% CI 1.10–1.98, p = 0.009 and OR1.10, 95% CI 1.02–1.19, p = 

0.008) and patients presenting with IFC had higher levels of MPO compared to IFC 

(OR 1.04, 95% CI 1.01–1.05, p = 0.04). This supports the studies previously 

described, which have demonstrated increased MPO levels in sudden death patients 

with plaque erosion.  

 

1.9.6 Demographic characteristics of plaque erosion compared to rupture 

In addition to the underlying morphological differences between the two plaque 

types described above, differences in the demographics have also been observed. 

A higher rate of smoking has been observed in cases of endothelial erosion compared 

to plaque rupture (16). Smoking is known to induce endothelial dysfunction (105), 

which offers further insight into the mechanisms of endothelial erosion.  

Several studies have shown that a higher proportion of plaque erosions compared to 

plaque ruptures occurs in females compared to males (23, 85). This is consistent with 

data showing that fibroatheromas without lipid cores are most commonly found in 

women (106). Interestingly, however, the higher proportions of erosions are only true 

for females below the age of 50, where they account for the majority of coronary 

thrombotic events (107). Whether this reflects an active process precipitated by the 

effects of female sex hormones in premenopausal women or simply protection from 

plaque rupture is unknown.  

Obesity is also now well recognised as a chronic inflammatory process characterised 

by arterial wall inflammatory cell infiltration, cytokine production and cell death 

(108). There are limited studies that have been performed to investigate a potential 

association between obesity and plaque morphology. However, a recent study by De 

Rosa et al. using OCT, demonstrated a significant association of obesity with a thin 
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fibrous cap and with macrophage infiltration, in addition to increased plaque burden 

and the amount of lipid-rich plaque (109). Obese patients in this study therefore 

demonstrated an association with a phenotype more consistent with plaque rupture. 

 

1.10 Alternative treatment strategies for plaque erosion 

Prati et al. (91) demonstrated an alternative treatment strategy for patients with ACS 

and OCT-verified IFC. In a study of 31 patients who were identified as having an 

IFC-causing STEMI, based on clinical criteria, 40% of patients with subcritically 

occlusive plaque were treated with dual antiplatelet therapy without PCI and the 

remaining 60% of patients underwent angioplasty and stenting. At a median follow-

up of 753 days, all patients were asymptomatic, regardless of stent implantation. The 

current study suggests further research is indicated to identify a potential subgroup of 

patients that might not require stent implantation.  

A larger study by Jia et al. (110) aimed to assess whether patients with ACS caused 

by plaque erosion might only require anti-thrombotic therapy, therefore also 

potentially avoiding stent deployment. Patients diagnosed with plaque erosion by 

OCT and residual diameter stenosis <70% on coronary angiogram were treated with 

anti-thrombotic therapy without stenting. OCT was repeated at one month and 

thrombus volume was measured. The primary endpoint was >50% reduction of 

thrombus volume at one month compared with baseline. The secondary endpoint was 

a composite of cardiac death, recurrent ischaemia requiring revascularisation, stroke, 

and major bleeding. Among 405 ACS patients with analysable OCT images, plaque 

erosion was identified in 103 (25.4%) patients. Sixty patients enrolled and 55 

patients completed the one-month follow-up OCT. Forty-seven patients (47/60, 

78.3%; 95% confidence interval: 65.8–87.9%) met the primary endpoint, and 22 

patients had no visible thrombus at one month. Thrombus volume decreased from 3.7 

(1.3, 10.9) mm3 to 0.2 (0.0, 2.0) mm3 (P <0.001). Minimal flow area increased from 

1.7 (1.4, 2.4) mm2 to 2.1 (1.5, 3.8) mm2 (P = 0.002). One patient died of 

gastrointestinal bleeding, and another patient required repeat percutaneous coronary 

intervention. The rest of the patients remained asymptomatic. This study supports the 

preliminary evidence that conservative treatment with antithrombotic therapy 

without stenting may have a role for ACS patients presenting with plaque erosion. 
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1.11 Potential areas for research 

Research into the fundamental processes triggering plaque erosion is important as an 

improved understanding of this important pathological process may allow the 

development of new strategies for the prevention and treatment of myocardial 

infarction. For example, novel anti-inflammatory treatments such as canakinumab 

(111) may be more relevant to plaque rupture than plaque erosion. Preliminary data 

suggests that patients with IFC tend to have better long-term outcomes, less luminal 

stenosis, potential avoidance of stent deployment and expression of different 

biomarkers in comparison to RFC patients. OCT has also emerged as the key 

modality in helping us to distinguish between plaque morphologies in vivo and also 

to provide unique information about plaque composition, fibrous cap thickness, the 

presence or absence of macrophages and thrombus characteristics.  

The pathophysiology of plaque erosion is best studied in comparison to plaque 

rupture. The inflammatory differences between erosion and rupture seen at autopsy 

may be difficult to demonstrate in vivo due to the localised nature of coronary 

lesions and the secondary inflammatory changes in response to myocardial 

infarction. Thus far, clinical studies have examined a limited number of cytokines in 

peripheral plasma samples, and, apart from Niccoli et al. (104), have failed to reveal 

any significant differences (86,87). 

To the best of our knowledge, there are no studies that have determined plaque 

pathology by OCT within the first hours of the acute infarct and correlated this with 

molecular differences in coronary plasma proteins using array technology.  

We have, therefore, designed an observational study to compare the inflammatory 

profiles of plaque rupture and erosion using OCT to determine plaque morphology, 

thrombectomy to obtain coronary samples and cytokine arrays to screen a broad 

range of inflammatory mediators (the Plaque Erosion Pilot Study (PEPS)). We 

targeted patients presenting with short ischemic times in order to minimise the 

impact of secondary inflammatory changes. We also sought to explore the possibility 

that the inflammatory profile of intracoronary blood samples taken from the vicinity 

of the culprit lesion would be distinct from peripheral blood samples, and might 

reflect the underlying pathological substrate more closely. We hypothesised that 

differential cytokine expression would provide insights into the underlying cause of 
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plaque erosion, and would validate our methodology as an approach to studying the 

aetiology of plaque erosion. 

1.12 Hypotheses and Aims 

1.12.1 Hypotheses 

1. The primary hypothesis is that plaque rupture and plaque erosion are 

associated with differential expression of intra-coronary cytokines. 

2. The secondary hypothesis is that the coronary and peripheral circulations are 

associated with differential expression of cytokines. 

 

1.12.2 Aims 

1. The primary aim is to provide new insights into the possible mechanisms that 

lead to plaque erosion.  

2. The secondary aim is to understand more about the local culprit artery 

environment and compare this to the peripheral circulation. 

 

1.12.3 Study objectives 

1. To demonstrate the feasibility and utility of this combined methodology.  

2. To correlate expression of cytokines in coronary blood samples with plaque 

morphology during myocardial infarction by OCT.  

3. To compare expression of cytokines between the coronary and peripheral 

circulation during myocardial infarction. 
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Chapter 2: Methods 

2.1 Introduction 

This is a prospective observational study to assess the feasibility of studying the 

pathobiological differences between coronary atherosclerotic plaque rupture and 

plaque erosion and to correlate expression of cytokines with plaque morphology 

during myocardial infarction by OCT in patients presenting with STEMI.  

 

2.2 Ethics 

This thesis is based upon the study of patients recruited prospectively into the Plaque 

Erosion Pilot Study (PEPS) at Norfolk and Norwich University Hospital, UK. The 

study was given ethical approval by the Camden and Islington Research and Ethics 

committee (N° 14/LO/1901). Subsequently, the study was given full permission for 

research by the Norfolk and Norwich University Hospitals National Health Service 

Foundation Trust (Research and Development Reference Number: 2014CARD06L). 

 

2.3 Patient recruitment 

Patients were recruited following a diagnosis of STEMI based on a history of chest 

pain and characteristic ECG changes of ST elevation. All patients were treated at the 

Norfolk and Norwich University Hospital NHS Foundation Trust. Patients were 

identified in the community by East of England ambulance paramedics or by medical 

staff in the Accident and Emergency departments of Norfolk and Norwich University 

Hospital or nearby district general hospitals (James Paget University Hospital, Great 

Yarmouth and Queen Elizabeth Hospital, King’s Lynn). All of the patients were 

given 300mg of aspirin and 600mg of clopidogrel prior to arriving at the cardiac 

catheter laboratory of Norfolk and Norwich University Hospital for Primary 

Percutaneous Coronary Intervention (PPCI) for emergency treatment of the acute 

myocardial infarction.  

 

2.4 Eligibility 

Eligible patients included were those who presented: 
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1. Within six hours following the onset of pain  

2. With ST-segment elevation of >1 mm in at least two contiguous leads  

3. With new left bundle branch block, or true posterior myocardial infarction 

(MI) on the 12-lead electrocardiogram  

4. And who were able to give verbal assent for study participation. Written 

informed consent was given later. 

 

Exclusion criteria were: 

1. Cardiogenic shock prior to PPCI – defined as systolic blood pressure 

<90mmHg for 30 minutes with signs of tissue hypoperfusion (e.g. blood 

lactate >2mmol/L) or a requirement for vasoconstrictor medication (e.g. 

adrenaline) or mechanical support (e.g. intra-aortic balloon pump) 

2. STEMI due to stent thrombosis 

3. Patients who suffered cardiac arrest prior to hospitalisation, requiring 

mechanical ventilation 

4. Failed coronary thrombectomy (e.g. very tight stenosis or tortuosity) and 

therefore unable to collect intracoronary samples 

5. Failed OCT examination of the culprit lesion (inadequate flow, inability to 

pass OCT catheter) 

6. Patients with known severe renal impairment (eGFR <30ml/min/1.73m2) who 

were not on renal replacement therapy. 

 

2.5 Primary percutaneous coronary intervention (PPCI) 

All aspects of the PPCI procedure were at the discretion of the consultant 

cardiologist responsible for the patient’s procedure. Diagnostic coronary 

angiography was performed largely via the right radial artery or, in some 

circumstances, the right femoral artery through a 6 French (Fr) sheath following 

administration of 1% lignocaine for local anaesthesia. Peripheral arterial blood 

samples were aspirated from the sheath: 5ml was transferred to a heparinised tube 

(Fisher Scientific) for study purposes, and 10ml was collected for routine emergency 

blood tests (full blood count, urea and electrolytes, liver function tests, CRP, and 

troponin).  
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Coronary angiography was performed using diagnostic 5 Fr catheters to investigate 

the likely non-culprit artery(s) based on the presenting ECG. An appropriate 6 Fr 

guiding catheter was then used to identify the culprit artery, after which the patient 

was given weight-adjusted unfractionated heparin before the lesion was subsequently 

crossed with a suitable angioplasty wire (0.014 inch).  

 

2.6 Thrombectomy 

Following successful passage of a coronary guide wire across the culprit lesion, a 

thrombus extraction catheter (either PRONTO®V3 or PRONTO®LP, Vascular 

Solutions, Minneapolis, USA) was advanced to the lesion site. Using the 30ml 

syringe, approximately 10–20mls of coronary aspirate was extracted and a filter 

basket (70 micron mesh) was used for filtering the thrombus from the blood. The 

coronary blood was then transferred into a separate 5ml heparinised tube. The 

thrombus collected in the filter basket was carefully transferred to a 1.5ml Eppendorf 

tube (SigmaAldrich). Approximately 1ml of Allprotect® Tissue Reagent (Qiagen, 

Hilden, Germany) was added to this for immediate stabilisation of DNA, RNA and 

proteins in the collected thrombus. 

If, due to technical reasons, passage of the thrombectomy catheter was difficult, 

predilation of the lesion with a small balloon (no greater than 2mm in diameter) was 

performed in order to facilitate thrombus aspiration.  

 

2.7 Optical coherence tomography (OCT) 

OCT pullback of the infarct-related artery (IRA) was then performed after 

thrombectomy but before PCI, using an ILUMIEN™ PCI Optimization™ OCT 

System (St Jude Medical, Inc. Minnesota, USA). This involved the passage of a 2.7 

Fr optical Dragonfly™ Duo OCT Imaging Catheter (St Jude) (Figure 1), along the 

coronary guide wire beyond the culprit lesion. Radiopaque markers at the distal tip, 

imaging lens and 50mm proximal to the lens of the catheter helped to align the OCT 

pullback to the region of interest.  

OCT image acquisition was then performed by injecting 10–14mls of x-ray contrast 

medium (Iohexol/Omnipaque, GE Healthcare, Wisconsin, USA) into the coronary 
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artery. During injection, the optical sensor is automatically withdrawn 54mm over 2 

seconds. The images and data obtained were then stored digitally on the OCT system 

for offline analysis.  

OCT was only performed after effective thrombus aspiration before stent placement, 

with re-established intracoronary TIMI II/III flow. If the OCT catheter could not 

cross the culprit lesion, predilation of the lesion with a small balloon (no greater than 

2mm in diameter) was permitted to facilitate image acquisition. Patients were 

excluded from the study if adequate images were unable to be obtained. 

 

 

Figure 20: Dragonfly™ Duo OCT Imaging Catheter, St Jude Medical 
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* indicates study specific procedures 

Figure 21: Schematic of study recruitment and methodology for plaque erosion  
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2.8 Sample preparation 

The peripheral and coronary blood samples were immediately put onto ice and 

transported in a polystyrene box to the haematology laboratory in the Bob Champion 

Research and Education Building, University of East Anglia. To ensure consistency, 

the samples were transported as soon as possible and no longer than 30 minutes 

following collection of the coronary aspirate. The blood samples were centrifuged at 

2500g for five minutes at room temperature. One millilitre of the resultant 

supernatant plasma was aspirated and transferred to a 1.5ml Eppendorf tube. 

Samples were then stored at -20°C.  

 

2.9 Consent 

Verbal assent for study participation was obtained prior to the PPCI procedure. 

Consent for study participation, sample retention and analysis was sought 

retrospectively. Written study information and a detailed explanation of the study 

were given to the patients within 12 hours of completion of the PPCI procedure. 

Within 24 hours of providing this information, a member of the study team 

approached the patients to obtain informed written consent. If patients had provided 

verbal assent but not subsequent written consent, they were not eligible to participate 

in the study. Patients were also made to understand that they were free to withdraw 

from the study at any point.  

Copies of the signed, informed written consent forms were given to the patient as 

well as filed in the patient’s clinical notes and Trial Master File. A copy of the 

consent form for sample retention and analysis was also sent to the Norfolk 

Biorepository for sample storage permission and to generate a unique identification 

code for each participant in lieu of a name to protect the subject’s identity. The 

original signed consent forms were stored in a specific study folder in a locked 

research office. 

Letters were sent to the patients’ General Practitioners outlining the study and 

confirming the patients’ participation once written consent was provided. 
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2.10 Baseline demographic and clinical data 

Baseline data about the study participants was collected following written consent 

and stored on a password-protected computer in the Norfolk and Norwich University 

Hospital cardiology research office. Data included age, gender, past cardiovascular 

history (previous myocardial infarctions, PCI procedures, or coronary artery bypass 

grafting, hypertension, hyperlipidaemia, stroke, transient ischaemic attack, peripheral 

vascular disease), smoking status, diabetes and chronic kidney disease.  

Clinical data specific to each patient’s presentation was also recorded, including time 

from symptom onset to cardiac catheterisation laboratory, door to balloon time, call 

to balloon time, Killip Class (I-IV), presence of anaemia and TIMI risk score. 

Results of routine inpatient investigations were also recorded, including post-MI 

echocardiography (left ventricular ejection fraction), full blood count (FBC), renal 

function, high sensitive troponin I and C-reactive protein (CRP).  

Post-MI echocardiography was carried out one day post MI by an experienced echo 

sonographer with British Society of Echo Accreditation to establish left ventricular 

ejection fraction (LV function). LV function is categorised into good or normal, 

mildly impaired, moderately impaired and severely impaired left ventricular systolic 

function based on the ejection fraction (EF). The EF is calculated using the Simpson 

biplane method (112). The Simpson method enables determination of the volume of 

the left ventricle. EF can be calculated by measuring the end-diastolic and end-

systolic volumes in both the apical four-chamber and two-chamber views using the 

following formula: 

EF = !"# !"#$%&'"( !"#$%&!!"# !"!#$%&' !"#$%&
!"# !"#$%&'"( !"#$%&

 x 100 

Normal values of EF are shown in the following table (113): 
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Good or Normal ≥55% 

Mild 45–54% 

Moderate 36–44% 

Severe ≤35% 

Table 3: Categorisation of LV function according to ejection fraction 

FBC was performed according to the established standard operating procedures in 

the haematology laboratory, and in accordance with the Sysmex-XE2100TM (Kobe, 

Japan) manufacturer’s instruction.  

The reference clinical biochemistry laboratory measured creatinine and CRP using 

the ARCHITECT c800 autoanalyser (Abbott Diagnostics, Maidenhead, UK) and 

absolute plasma cardiac troponin I (cTnI) concentrations using the ARCHITECT 

Troponin I STAT assay (Abbott Diagnostics, Maidenhead, UK).  

 

2.11 Angiographic and procedural data 

Angiographic and procedural data was recorded for each patient participating in the 

study. The parameters included the number of lesions treated, the infarct-related 

artery, the presence or absence of multivessel disease (>1 significantly diseased 

vessel was defined as ≥70% in luminal diameter stenosis), the presence or absence of 

pre-procedural thrombus, use of glycoprotein IIb/IIIa inhibitors, arterial access route 

(radial versus femoral), number of stents implanted, total number of stents implanted 

per patient, total stent length, use of direct stenting without predilatation, use of 

predilatation to facilitate OCT use, maximum balloon diameter, initial and final 

TIMI flow, procedural success, reference vessel diameter pre and post intervention, 

pre and post thrombectomy minimal luminal diameter and percentage stenosis (see 

section 2.14). 

 

2.12 Clinical outcomes 

Major adverse cardiac or cerebrovascular events (MACCE), including cardiac death, 

recurrent myocardial infarction, stroke, target-lesion revascularisation, and stent 

thrombosis, were assessed at three, six and 12 months. This information was 
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ascertained initially through the Trust Patient Administration System database to 

determine if any unexpected deaths or admissions had occurred, followed by 

telephone calls by the investigator to the patient directly. In some instances, patients 

would notify the research team directly if there were any concerns or hospital 

admissions. If information was not obtainable through the sources described above,   

the patient’s GP was contacted to establish more information. For any unexpected 

deaths in the community, the patient’s GP was contacted to ascertain more 

information including cause of death written on the death certificate. The electronic 

records from NNUH are linked to NHS digital and therefore an up to date status on 

mortality data was available. Adverse events and clinical endpoints were assessed 

from the time of verbal assent until the 12-month follow-up was completed.  

 

2.13 Quantitative coronary angiography 

Quantitative coronary angiography (QCA) was performed retrospectively after the 

PPCI procedure using the CAAS II analysis system (PIE Medical, Maastricht, The 

Netherlands). Coronary angiograms were analysed offline by two interventional 

cardiologists independently of each other. Before taking measurements, the guiding 

catheter was used for calibration to enable quantification of the vessel size as 

accurately as possible. The absolute diameter of the coronary artery could therefore 

be compared to the size of the guiding catheter. The specific parameters – reference 

vessel diameter (RVD), minimum luminal diameter (MLD) and diameter stenosis 

(DS) – were measured pre (TIMI 0/I flow) and post thrombectomy (TIMI III flow) in 

two orthogonal views. Reference vessel diameter (RVD) is defined as the luminal 

diameter of a comparable segment and in this case referred to the segment of the 

target vessel proximal to the lesion or occlusion. The reference vessel diameter was 

measured in millimetres as an average of the sum of the diameters in one left anterior 

oblique (LAO) view and right anterior oblique view (RAO). Minimum luminal 

diameter (MLD) is defined as the smallest measured luminal diameter across the site 

of the target lesion at which it is most severe. Diameter stenosis (DS) is calculated as 

MLD/RVD X 100% with the result expressed as a percentage.  
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We were unable to perform these measurements in six of the 40 PPCI cases as their 

procedures were done in a cardiac catheter laboratory without suitable QCA 

software.  

 

2.14 OCT analysis 

All OCT data were exported, after having been anonymised, onto a St Jude OCT 

Offline Review Workstation (ORW). Each OCT was analysed independently by two 

operators (based at NNUH) both of whom were blinded to other study data. The 

analysis was undertaken using previously standardised criteria (97) but using a 

systematic approach to ensure consistency. Specific measurements of OCT cross-

sectional images were performed with dedicated OCT system software (B.0.1, Light 

Lab Imaging). 

Steps: 

1. The first step for each OCT was to assess whether the lesion was 

interpretable. In some cases, excessive thrombus, very tight stenosis or 

indeed poor opacification of the vessel were factors that made some images 

very difficult to interpret.  

2. For each run, the region of interest was defined and marked with markers on 

the longitudinal run and this defined segment was measured in millimetres. 

3. To avoid ambiguity and reduce variable interpretations of pathology, OCT 

images were categorised into RFC, IFC/eroded plaque and undefined. RFC 

(Figure22a) was defined by the presence of a cavity formation in the plaque 

beginning at the luminal-intimal border with a clear discontinuity of the thin 

fibrous cap; IFC (Figure 22b) was defined by no evidence of cap rupture at 

the culprit site, evaluated in multiple adjacent frames, and the presence of 

thrombus on an irregular luminal surface (87). Plaque morphology was 

classed as undefined when OCT was unable to distinguish the lesion type 

because of an excess of thrombus obscuring the underlying structures, or 

where the images were simply too unclear to interpret.  

4. Culprit plaques were classified as fibrous, fibrocalcific or lipid-rich if these 

components were present in two or more quadrants of an OCT cross-section. 

Plaque composition could be two classifications if two adjacent quadrants 
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fulfilled the criteria for one plaque component and two adjacent criteria 

fulfilled the criteria for another component. Fibrocalcific plaques were 

identified as well-delineated, signal-poor regions with sharp borders; fibrous 

plaques as homogeneous, signal-rich regions with low attenuation; and lipid 

plaques as signal-poor regions with high attenuation and diffused borders 

(86). 

5. The proximal reference luminal area (PRLA) and distal reference luminal 

area (DRLA) were defined as the largest luminal areas within 5mm of the 

region of interest. The areas were measured three times for both reference 

points and the average of the three recorded. 

6. Within the lumen of the culprit plaque, the presence or absence of thrombus 

was recorded. 

7. If the presence of thrombus was recorded, this was identified as red, white or 

mixed thrombus. Red thrombus was identified as a high-backscattering 

protrusion inside the lumen of the artery, with signal-free shadowing in the 

OCT image, while white thrombi was identified as signal-rich, low-

backscattering structures projecting into the lumen. Mixed encompassed 

characteristics of both red and white thrombus in equal measure. 

8. Measurements were taken within the lesion of the culprit plaque with and 

without thrombus. Luminal area stenosis, minimal luminal diameter and 

maximal luminal area diameter were measured, yielding a total of six 

measurements. 

9. In ruptured plaques, minimum fibrous cap thickness was measured at the 

thinnest point of the remnant cap, whereas mean cap thickness was computed 

as the mean of three evenly distributed measurements along the fibrous cap.  
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Figure 22: Examples of atheromatous plaque pathology using optical coherence tomography 

a) Ruptured fibrous plaque: note the fibrous cap discontinuity (→), with cavity formation (*): ∧ wire 

shadow artefact. 

b) Intact fibrous plaque/eroded plaque: note the absence of fibrous cap discontinuity: ∧ wire shadow 

artefact. 

 

2.15 OCT consensus 

The anonymised raw OCT data was sent to an experienced independent operator at 

Birmingham University Hospitals for qualitative assessment of the culprit plaque. 

The operator was blinded to patient details and previous analyses. The operator was 

asked solely to categorise the plaque morphology of the 40 culprit plaques into RFC, 

IFC and undefined. The results of this interpretation were then compared with the 

initial analysis done at NNUH. In circumstances in which a consensus could not be 

reached with regard to classification of a culprit plaque, this then became categorised 

as undefined.  

 

2.16. Cytokine array 

The Proteome Profiler™ Human XL Cytokine Array Kit (R&D Systems, Abingdon, 

UK) ARY022 is a membrane-based antibody array used to simultaneously detect the 

relative expression and differences of 102 cytokines, chemokines and acute-phase 

proteins between samples. This particular kit was chosen since it is composed of 

cytokines, chemokines and adipokines, therefore encompassing a large range of 

proteins. Secondly, we had significant experience with this array kit in the Bob 

* 

^ 
^ 

a) b) 
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Champion Research and Education Centre, having done multiple arrays on acute 

myeloid leukaemia (AML) cells (114). Each kit was stored at 2°C in the 

haematology laboratory after purchase, with each array kit containing four 

membranes with 102 different cytokine antibodies. A complete list of the cytokines 

(with abbreviations) included on this array is found in section 3.0 of the Appendix. 

 

2.16.1 Principle of cytokine array 

Each of the 102-cytokine antibodies is spotted in duplicate on nitrocellulose 

membranes. Plasma samples are diluted and mixed with a cocktail of biotinylated 

detection antibodies. The sample/antibody mixture is then incubated with the array. 

Any cytokine/detection antibody complex present is bound by its cognate 

immobilised capture antibody on the membrane. Streptavidin-horseradish peroxidase 

and chemiluminescent detection reagents are added, and a signal is produced in 

proportion to the amount of cytokine bound (115) (Figure 23). Chemiluminescence is 

detected after a 10-minute exposure to x-ray film. Profiles of mean spot pixel density 

are created using a transmission-mode scanner and array capture spots are then 

quantified using imaging software. 

 

Figure 23: Schematic to demonstrate cytokine array methodology  

Reproduced from Ary, CN 2012: 16 Proteome Profiler Array (115). 
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2.16.2 Cytokine array experiment 

Coronary and peripheral arterial plasma samples were analysed using the Proteome 

Profiler™ Human XL Cytokine Array Kit (ARY022) as per the manufacturer’s 

instructions. Before commencing, all reagents including the plasma samples were 

brought to room temperature. Four plasma samples were used for each kit (four 

nitrocellulose membranes per kit), therefore enabling the testing of paired coronary 

and peripheral samples from two separate patients. The vial of detection antibody 

cocktail (lyophilised biotinylated antibodies) was reconstituted in 100µl of deionised 

water. The bottle of 40ml of 25x wash buffer concentrate was diluted into 960ml 

deionised water.  

Two millilitres of array buffer 6 was pipetted into each well of the four-well multi-

dish. Each nitrocellulose membrane was removed from between the protective sheets 

using flat-tip tweezers and placed in one well of the dish. The array number was kept 

facing upward. The membranes were then incubated for one hour on a rocking 

platform shaker to block non-specific bindings. While the arrays were blocking, 

patient samples were prepared by diluting 200µl of the plasma sample with 1.3ml of 

array buffer 6 to give a final volume of 1.5ml. After one hour of blocking, array 

buffer 6 was aspirated from the wells of the four-well multi-dish and the prepared 

samples were added. The four-well multi-dish was then incubated overnight at 2–8°C 

on a rocking platform with the lid on.  

The following day, each membrane was carefully removed and placed into individual 

plastic containers with 20ml of 1x wash buffer. The four-well multi-dish was rinsed 

with deionised water and dried thoroughly. Each membrane was washed with 1x 

wash buffer for 10 minutes on a rocking platform shaker, a total of three times. For 

each array, 30µL of detection antibody cocktail was added to 1.5ml of 1x array 

buffer 4/6. 1.5ml of the reconstituted detection antibody cocktail was pipetted into 

each well of the four-well multi-dish. Each membrane was then removed carefully 

from the wash container, returning the array to the four-well multi-dish containing 

the diluted detection antibody cocktail, and covered with the lid. This was then 

incubated for one hour on a rocking platform shaker.  

After incubation, the membranes were washed as before up to a total of three times, 

each for 10 minutes. The four-well multi-dish was again rinsed with deionised water 
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and dried thoroughly. Two millilitres of 1x streptavidin-HRP was pipetted into each 

well of the four-well multi-dish. Each membrane was again removed from its wash 

container and returned to the four-well multi-dish containing the 1x streptavidin-

HRP with the lid used to cover the wells. The dish was incubated for 30 minutes on a 

rocking platform. 

After incubation, each membrane was washed as before and blot-dried to allow 

excess wash buffer to drain off. Each membrane was then placed on the bottom sheet 

of a plastic sheet protector with the identification number facing up. One millilitre of 

the prepared chemi reagent mix (0.5ml of chemi reagent 1 and 0.5ml of chemi 

reagent 2) was pipetted evenly onto each membrane. The top sheet of the plastic 

sheet protector was used to carefully cover each membrane and gently smooth out 

any air bubbles to ensure the chemi reagent mix was spread evenly to all corners of 

each membrane. This was left to incubate for one minute. Paper towels were 

positioned on the top and sides of the plastic sheet protector containing the 

membranes and excess chemi reagent mix was squeezed out. Leaving membranes on 

the bottom plastic sheet protector and taking the top plastic protector off, the 

membranes were covered with plastic wrap to gently smooth out any air bubbles. 

Membranes were placed with the identification numbers facing up and imaged using 

the Chemdoc-It2 Imager, UVP (Figure 24). Array capture spots were then quantified 

using HL++ imaging software (Western Vision Software, Salt Lake City, UT, USA). 
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Figure 24: Representative membranes post-chemiluminiscent imaging demonstrating varying 

intensities of individual dots (cytokines) 

 

2.16.3 Cytokine data analysis 

Pixel intensities of individual dots captured using the Chemdoc-It2 Imager were 

quantified by densitometric analysis using HL ++ imaging software (Western Vision 

Software, Salt Lake City, UT, USA). The quantification tool in the software enabled 

a relative reading to be taken for each spot and the average of each pair was 

considered as the reading for each cytokine. Signals were normalised using internal, 

positive and negative controls included on the array. A value of approximately 

65,000 represented a spot intensity as demonstrated in the positive control, while a 

value of zero represented the spot intensity as seen in the negative control. The data 

was saved in a Microsoft Excel (version 14.7.1) spreadsheet for each patient. 

This process was done for a total of 40 patients (peripheral and coronary samples), 

using a total of 20 cytokine array kits.  
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2.17 Enzyme-linked immunosorbent assays (ELISA) 

ELISA was performed using Quantikine ELISA kits purchased from R&D Systems 

(Abingdon, UK) for EGF, TSP-1, BDNF, MIG, I-TAC, MMP-9, MPO, growth 

hormone and leptin (see Appendix). 

The rationale for selecting these cytokines for ELISA validation is described in the 

results section. 

 

2.17.1 Principle of Quantikine Sandwich ELISA methodology 

Quantikine sandwich ELISA kits are quantitative enzyme immunoassay kits used to 

detect and quantify specific proteins. The sandwich ELISAs use a pair of antibodies, 

as capture and detector, directed against two or more distinct epitopes on antigens. A 

capture antibody binds to its typical antigen, while a detector antibody linked to an 

enzyme provides detection and enhancement of the signal.  

The capture antibodies specific to the antigens are first coated on the microtiter plate. 

After coating, a series of dilutions of the antigens in the sample solution and antigen 

standard are added and captured by the antibodies on the plate. The bound antigens 

are subsequently detected by adding a specific amount of detector antibodies 

whereby the antigens become trapped and sandwiched between the capture and 

detector antibodies.  

Multiple washing steps are performed between each step in order to remove the 

excess or unbound proteins. As with other ELISAs, the bound antigen-antibody 

complexes are detected by the addition of the enzyme-conjugated secondary 

antibodies (second antibody that will bind specifically to the detector antibody), 

followed by incubation of the enzyme substrate (Figure 25). As a result, the 

colorimetric signal produced during the enzymatic reaction is proportional to the 

amount of enzyme-conjugate bound to the plate as measured with the ELISA plate 

reader. A direct relationship exists between the concentration of the antigen-antibody 

and the intensity of the signal (or colour). As the concentration of antigen in the 

sample increases, the colour becomes more intense.  
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Figure 25: Schematic to demonstrate sandwich ELISA (reproduced from Zhang et al. (116)).  

HRP – horseradish peroxidase, TMB – tetramethylbenzidine 

 

2.17.2 ELISA experiment 

The ELISA for MMP-9 was performed using the Human MMP-9 Quantikine ELISA 

kit (DMP900) as per the manufacturer’s instruction. This was representative of all 

the other ELISAs undertaken.  

Before commencing, all reagents, including the plasma samples, were brought to 

room temperature, with all samples, standards and controls assayed in duplicate. The 

bottle of 20ml of 25x wash buffer concentrate was diluted into 500ml of deionised 

water. MMP-9 standard was reconstituted with deionised water, producing a stock 

solution of 20ng/ml. With the stock solution, a dilution series using calibrator RD5-

10 diluent was made up. The undiluted standard 20ng/ml served as the high standard 

to the lowest standard of 0.313ng/ml. 100µL of assay diluent RD1-34 was added to 

each well of the 96-well plate microtitre (monoclonal antibody was already pre-

coated onto the plate). 100µL of standard, control or sample solution was then added 

to each well, covered with a plate sealer and then incubated at room temperature for 

two hours on a horizontal orbital microplate shaker. Each well was then aspirated 

and washed three times using 400µL of 25x wash buffer solution. After the last 

wash, the plate was inverted and blotted against clean paper towels to remove any 

remaining wash buffer. 200µL of human MMP-9 conjugate was then added to each 

well, covered with a plate sealer and incubated for one further hour on the shaker. 

Each well was again aspirated, washed and blotted as described above, followed by 
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the addition of 200µl of substrate solution to each well followed by 30 minutes of 

incubation at room temperature on the benchtop, protected from light using a black 

lid cover. 50µl of stop solution was then added to each well, turning the colour in the 

wells from blue to yellow. The optical density of each well was determined within 30 

minutes, using a microplate reader (Tecan, Infinite® 200 PRO) set at 450nm. Optical 

density readings were also determined at 570nm and these were subtracted from 

450nm to correct for optical imperfections in the plate. The readings were stored on a 

Microsoft Excel (version 14.7.1) spreadsheet for subsequent analysis.  

 

2.17.3 ELISA analysis 

Using the data stored on the Excel spreadsheet, a standard curve was constructed by 

plotting the mean absorbance for each standard on the y-axis against the 

concentration on the x-axis and a best fit curve was drawn through the points on the 

graph. The data was linearised by plotting the log of the cytokine concentrations 

versus the log of optical density and the best fit line was determined by regression 

analysis. The data was analysed using a four-parameter curve fit using software from 

www.elisaanalysis.com (see Figure 26).  

 

Figure 26: Dose response curve 

 

2.18 Thrombectomy analysis 

To confirm the expression data generated by cytokine array analysis, and validated 
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by ELISA, we performed a real-time polymerase chain reaction (RT-PCR) for EGF, 

TSP-1, I-TAC and MPO on the messenger RNA (mRNA) extracted from the 

thrombectomy specimens. 

 

2.18.1 RNA extraction 

Previously stored particulate matter was thawed and total RNA was extracted from 

homgenised thrombectomy specimens using the ReliaPrepTM RNA Cell Miniprep 

system (Promega, Southampton, UK) according to the manufacturer’s instructions.  

Frozen thrombectomy samples were placed in a sterile centrifuge tube containing 

200µl lysis buffer solution (LBA) + thioglycerol (TG). The lysis was followed by 

pipetting 7–10 times to shear the DNA using a P1000 pipette to homogenise and 

disrupt the nucleoprotein complexes.  

130µl of RNA dilution buffer (RDB) was added to each homogenate and vortexed 

for 10 seconds to mix, followed by centrifugation at 12,000rpm for two minutes. The 

cleared homogenate was carefully transferred to a clean 1.5ml tube, avoiding transfer 

of any pelleted material. 400µl of 100% isopropanol was added to each cleared 

homogenate and mixed by vortexing.  

For each sample, a ReliaPrepTM Minicolumn was placed into a collection tube. The 

homogenate was transferred to the minicolumn and centrifuged at 12,000rpm for 30 

seconds. The minicolumn was removed and the liquid in the collection tube 

discarded before replacing the minicolumn with the remaining homogenate back into 

the collection tube. 500µl of RNA wash solution (RWA) was added to each column 

and centrifuged at 12,000rpm for two minutes before discarding the collection tube 

and transferring the minicolumn into a 1.5ml elution tube. 40µl of nuclease-free 

water was added to each column and centrifuged at 12,000rpm for one minute. The 

minicolumn was discarded at this point. 

5µl of DNase I and 5µl DNase 10x buffer was transferred to each eluate, followed by 

incubation for five minutes at room temperature. 150µl of LBA solution + TG buffer 

was added to the DNase treatment tube, followed by the addition of 300µl of 95% 

ethanol to the mixture and vortexing for 10 seconds to mix. 
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500µl of this mixture was then transferred to a new minicolumn and collection tube 

assembly. This mixture was then centrifuged at 12,000rpm for 30 seconds with the 

liquid in the collection tube discarded after. The minicolumn was transferred to a 

new collection tube and 500µl of RWA was added to each column, followed by 

centrifugation at 12,000rpm for 30 seconds. The minicolumn was removed and the 

liquid in the collection tube discarded before replacing the minicolumn back into the 

collection tube. 500µl of RWA was again added to each column, followed by 

centrifugation at 12,000rpm for two minutes.  

The collection tube was discarded and the minicolumn transferred into a 1.5ml 

elution tube. 15µl of nuclease-free water was added to each column and centrifuged 

at 12,000rpm for one minute. The minicolumn was finally discarded and the elution 

tube capped. The elution tube with RNA was then stored at -70°C. 

 

2.18.2 cDNA synthesis 

For mRNA expression analysis, cDNA was synthesised from the total RNA using 

the Moline Murine Leukaemia Virus (MMLV) reverse transcriptase cDNA synthesis 

kit (PCR Biosystems, London, UK), as per the manufacturer’s guidelines.  

Reverse transcription was performed on a 96-well PCR plate (Thermo Scientific) and 

was prepared on ice. Total RNA was diluted into aliquots at 2ng/µl using nuclease-

free water. A master mix comprised of 5x cDNA synthesis mix (containing anchored 

oligo deoxy-thymidine (DT) complementary primers) 20x reverse transcriptase (RT), 

nuclease-free water and RNA was made up into a 20µl reaction (Table 4). 

 

Reagent Volume (µl) 

5x cDNA synthesis mix 4.0 

20x RTase 1.0 

Total RNA 2.5 

Deionised water (dH20) 12,5 

Table 4: Reverse transcription master mix used in cDNA synthesis reactions  
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Reverse transcription was performed at 42°C for 30 minutes to permit cDNA 

synthesis, followed by enzyme denaturation at 85°C for 10 minutes.  

The final cDNA products were stored at -20°C until required for RT-PCR. 

 

2.19 Quantitative real-time polymerase chain reaction 

2.19.1 The principle of RT-PCR 

Real-time PCR is based on the detection and quantification of fluorescence where the 

signal increases in direct proportion to the amount of PCR product in the reaction. 

The method quantitates the initial amount of the template specifically, sensitively 

and reproducibly, and is a preferred method over standard PCR that detects the 

amount of final amplified product by gel electrophoresis at the end-point. Real-time 

PCR monitors the fluorescence emitted during the reaction as an indicator of product 

accumulation during each PCR cycle (117).  

2.19.2 RT-PCR reaction 

RT-PCR was performed on the cDNA reverse transcribed from purified RNA, using 

SYBR Green technology (PCR Biosystems, London, UK) on a 384-well light cycler 

480 (Roche, Burgess Hill, UK). mRNA was analysed for EGF, MPO, I-TAC and 

TSP-1 expression and was normalised to either GADPH (glyceraldehyde 3-

phosphate dehydrogenase) or beta actin. Primer sequences were designed using 

KicqStart (Sigma Aldrich, UK). The sequence of primers is shown in Table 5.  

Protein Primers: Forward (F) and Reverse (R) 

β  actin F: 5’- gacgacatggagaaaatctg – 3’ 
R: 5’ – atgatctgggtcatcttctc – 3’ 

EGF F: 5’ – ggtggtgaagttgatctaaag – 3’ 
R: 5’ – tagcatgtgttgagattctg – 3’ 

GADPH F: 5’ – ctccttgttcgacagtcagcc – 3’ 
R: 5’ – gactccgaccttcaccttcc – 3’ 

I-TAC F: 5’ – ctacagttgttcaaggcttc – 3’ 
R: 5’ – cactttcactgcttttaccc – 3’ 
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MPO F: 5’ – ccatggaactcctatcctac – 3’ 

R: 5’ – ttgacttggacaacacattc – 3’ 

TSP-1 F: 5’ – gtgactgaagagaacaaagag – 3’ 

R: 5’ – cagctatcaacagtccattc – 3’ 

Table 5: Primers used in RT-PCR 

Reactions for each cytokine were performed using 384-well PCR plates. Each well 

contained a master mix of 10µl of 2x qPCRBIO Sybr Green Blue Mix, 0.8µl of 

diluted forward and reverse primer (1/20 dilution), 1µl cDNA mixed with 4µl dH2O 

and 3.4µl of dH2O. The plates were run using the SYBR Green detection system 

under the following cycle conditions: 95°C for two minutes (pre-amplification), 45 

cycles of 95°C for 15 seconds (amplification), 60°C for 10 seconds (annealing) and 

72°C for 10 seconds (extension).  

Using the comparative CT (cycle threshold) method, delta (d)-Ct values were 

determined by subtracting the Ct of the appropriate endogenous control (GADPH or 

β actin) from the Ct of the mRNA (EGF, MPO, I-TAC and TSP-1) in question.  

Two-sided Wilcoxon rank-sum tests were used to assess the significance of any 

difference between the Ct values of IFC and RFC cases for each cytokine. P-values 

below 0.05 were considered significant. dCt values for all of the analysable samples 

for the four cytokines normalised to GADPH and β actin are listed in the Appendix.  

 

2.20 Statistical analysis 

Continuous variables were reported as median and first to third quartiles. Categorical 

data were reported as numbers and relative percentages. Overall comparisons across 

groups were based on the non-parametric Wilcoxon rank-sum test for continuous 

variables and Fisher’s exact test for categorical variables. All p-values are two-sided. 

P-values less than 0.05 were considered significant unless otherwise stated. Power 

calculations were not undertaken since this was a pilot study with a limited number 

of patients, with the aim of generating preliminary data to plan for a larger study. 

Statistical analysis was performed using the Real Statistics Excel package 

(www.real-statistics.com).  
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2.21 Statistical analysis of cytokine arrays 

Intensities of the negative control of each sample were subtracted from the intensity 

of each cytokine-sample pair (118). To remove variation originating from systematic, 

technical biases rather than from biological differences between cytokines or 

samples, relative intensity values were quantile-normalised (119). Next, data were 

log2 transformed to allow for direct comparisons to be made between cytokines by 

homogenising their variances.  

Differential expression was assessed using the Significance Analysis of Microarrays 

(SAM) method (120) with the Benjamini–Hochberg procedure for multiple testing 

correction yielding q-values. The output of this included assignment to either a group 

comprising cytokines with an average expression higher in patients with plaque 

erosion or a group comprising cytokines with an average expression higher in 

patients with plaque rupture. A differential expression score (D-score) and average 

log2 fold change in expression were captured for each cytokine, in addition to a q-

value. 

For the meta-analysis approach, Stouffer’s z-score method was used to combine the 

q-values from the coronary and peripheral sample analyses. This was only deployed 

for cytokines that were assigned to the same plaque-defined group of cytokines in 

both the coronary and peripheral blood samples. Cytokines with assignments that 

were discordant were not included in the meta-analysis. 
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Chapter 3: Clinical results 

3.1 Baseline and angiographic characteristics 

Between 2 February and 14 October, 2015, 40 STEMI patients were recruited to the 

PEPS (Figure 27), representing approximately 30% of all potentially eligible 

patients. An additional five patients were not enrolled in the study due to unsuitable 

anatomy and the inability to obtain adequate OCT images. A fully identifiable culprit 

plaque was adjudicated (adjudication process described in methods section) in 38 

patients. Table 6 shows that RFC was identified in 23 (57.5%) patients and IFC in 15 

(37.5%). Two (5%) were undefined. Figure 28 shows examples of the culprit plaque 

morphology as visualised with OCT. 

There were no differences in baseline characteristics between patients with RFC and 

IFC except for age (65 [59.5 to 75] yrs RFC vs 60 [52 to 64.5] yrs IFC, p = 0.03) 

(Table 7). Both groups had very similar ischaemic times. Baseline echo 

characteristics (Table 8) did not show any significant differences between the 

groups: the majority of patients in both groups post STEMI had good left ventricular 

systolic function. 
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Figure 27: Study enrolment 

STEMI – ST segment myocardial infarction; OCT – optical coherence tomography; PPCI – primary 

percutaneous coronary intervention; RFC – ruptured fibrous cap; IFC – intact fibrous cap. 

Patients with STEMI < 6 hours 
N=45

Manual thrombectomy

Culprit vessel OCT before PPCI
N=43

40 patients recruited for study

OCT interpretation
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N=23

IFC
N=15

Undefined
N=2

Thrombus storageSerum for cytokine array

2 excluded-
Unsuitable anatomy

3 excluded – unable
to obtain suitable images
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K
ey num

ber 

First 
R

eview
er 

Second 
R

eview
er 

C
onsensus 

Pathology 

C
om

m
ents 

Sex 

Initial 
C

onsensus 

Final 
C

onsensus 

2279 Erosion Erosion Erosion   M Y  

6710 Erosion Erosion Erosion  M Y  

7191 Erosion Erosion Erosion   M Y  

7369 Erosion Erosion Erosion   M Y  

7775 Erosion Erosion Erosion  F Y  

7911 Erosion Erosion Erosion   M Y  

7816 Erosion Erosion Erosion  M Y  

 

8843 Erosion Erosion Erosion  F Y  

1022 Rupture Rupture Rupture   M Y  

1177 Rupture Rupture Rupture   F Y  

1309 Rupture Rupture Rupture   M Y  

1819 Rupture Rupture Rupture   M Y  

1845 Rupture Rupture Rupture   F Y  

2053 Rupture Rupture Rupture   F Y  

2058 Rupture Rupture Rupture   M Y  

3204 Rupture Rupture Rupture   M Y  

3460 Rupture Rupture Rupture   M Y  

3766 Rupture Rupture Rupture   M Y  

4872 Rupture Rupture Rupture   F Y  

5430 Rupture Rupture Rupture   M Y  
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5452 Rupture Rupture Rupture   F Y  

5670 Rupture Rupture Rupture   M Y  

6219 Rupture Rupture Rupture   M Y  

7600 Rupture Rupture Rupture   M Y  

8203 Rupture Rupture Rupture   M Y  

8258 Rupture Rupture Rupture   M Y  

8521 Rupture Rupture Rupture   F Y  

9802 Rupture Rupture Rupture  M Y  

8715 Rupture Rupture Rupture   M Y  

4201 Undefined Undefined Undefined Heavily 
calcified – 
unable to 
classify 

F Y  

6787 Undefined Undefined Undefined Unclassifiable M Y  

8053 Erosion Rupture Erosion Pre-dilated – 
no evidence 
of rupture 

M N Y 

1243 Erosion Undefined Erosion Intact fibrous 
cap, calcified 

M N Y 

1608 Erosion Undefined Erosion Pristine 
vessel, 
thrombus but 
no obvious 
rupture 

F N Y 

4027 Rupture  Undefined Erosion Intact cap – 
no evidence 
of rupture 

M N Y 

5266 Erosion Undefined Erosion Intact fibrous 
cap – clear 
OCT 
definition 

M N Y 
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6894 Erosion Undefined Erosion Pre-dilated – 
no evidence 
of rupture 

F N Y 

9989 Erosion Undefined Erosion Intact TCFA, 
with thrombus 

F N Y 

5660 Undefined Rupture Rupture Disruption of 
fibrous cap 

F N Y 

8437 Rupture Undefined Rupture Definite 
rupture 

M N Y 

Table 6: OCT culprit plaque morphology adjudication 

This table demonstrates the results of the adjudication process for all 40 patients by both 

interventional cardiologists. Two cases were not classifiable. Nine cases initially had different 

consensus, but after discussion, a final consensus was reached. Comments for these cases are included 

in the table to illustrate the reasons for the final consensus. 

 

 

Figure 28: Examples of ruptured and intact fibrous cap appearance using OCT from enrolled patients  

(A) Ruptured fibrous cap. * rupture cavity. > wire artefact. 

(B) Intact fibrous cap.* thrombus. > wire artefact. 

 

There were no differences in baseline blood characteristics (Table 7). Radial access 

was used in almost every patient (97.4%). Angiographic and procedural findings 
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were similar between the two groups, except for the finding that there was 

significantly lower use of stents in the IFC group (18 (78%) RFC vs 9 (60%) IFC, p 

= 0.01) (Table 10). Differences in the number of stents implanted per patient (1.09 

[0.73] RFC vs 0.6 [0.63] IFC, p = 0.06) and total stent length (27 [22 to 38] vs 23 [17 

to 28], p = 0.06) did not reach statistical significance when comparing the two 

groups, but did also suggest a lower use of stents in the IFC group. Proportionally, 

there was a higher use of drug-coated balloon therapy in the IFC group (5 (21.7%) 

RFC vs 6 (40%) IFC), supporting the data that there was lower use of stents in the 

IFC group; although, again, this did not reach statistical significance. Baseline lesion 

severity was not significantly different between the two groups (% diameter stenosis 

100% RFC vs 100% IFC, p = 0.88). 
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 RFC (n=23) IFC (n=15) P value 

Age (years) 65 (59.5–75) 60 (52–64.5) 0.03 

Sex (males) 16 (69.6) 10 (66.7%) 1.00 

Hypertension 8 (34.8%) 3 (20%) 0.47 

Hyperlipidaemia 8 (34.8%) 4 (26.7%) 0.44 

Smoker 12 (52.2%) 8 (53.3%) 1.00 

Diabetes 0 (0%) 2 (13.3%) 0.15 

Previous MI 0 (0%) 0 (0%)  

Previous PCI 0 (0%) 0 (0%)  

Time onset to lab 
(mins) 

160 (125–207.5) 190 (145–247.5) 0.24 

Door to balloon 
time 

37 (29–61) 44 (29–46) 0.47 

Call to balloon 
time 

125 (95–147) 134 (99–142) 0.71 

Killip Class   0.15 

Class 1 23 (100%) 13 (86.7%)  

Class 2 0 (0%) 2 (13.3%)  

TIMI risk score 2 (1–4) 2 (1–2) 0.46 

Anaemia 0 (0%) 0 (0%) 1.00 

Table 7: Baseline characteristics 

Values are median (first to third quartile) or n (%). IFC – intact fibrous cap; MI – myocardial 

infarction; PCI – percutaneous coronary intervention; RFC – ruptured fibrous cap; TIMI – 

thrombolysis in myocardial infarction. 
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Echocardiographic 
LV function 

RFC IFC P value 

   0.87 

Good LV function 16 (69.6) 6 (40%)  

Mildly impaired 
LV function 

6 (26.1%) 4 (26.7%)  

Moderately 
impaired LV 
function 

1 (4.3%) 3 (20%)  

Severely impaired 
LV function 

0 (0%) 2 (13.3%)  

Table 8: Baseline echo characteristics post PCI 

Values are n (%) 

LV – left ventricular 
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 RFC (n=23) IFC (n=15) P value 

Hb (135–170g/L) 150 (140–154) 142 (135–152.5) 0.4 

Plts (150–410 
x109/L) 

252 (233–302.5) 331 (237.5–362.5) 0.09 

WCC (4.00–10.00 
x109/L) 

10.9 (8.7–14.1) 12.1 (10.3–16.3) 0.08 

Neu (2.0–7.0 x 
x109/L) 

7.42 (5.6–10.4) 8.81 (7.6–13.1) 0.07 

Lym (1.0–3.0 
x109/L) 

1.47 (1.2–2.2) 2.0 (1.8–2.5) 0.14 

Creatinine (59–
104 µmol/L) 

76 (69.5) 75 (65–81.5) 0.53 

CRP (0–10mg/dL) 3 (2–7.3) 8 (1.8–14) 0.3 

Troponin I (0–
34.3ng/L) 

7321 (851–2863.5) 26350 (5315–
39915.5) 

0.3 

Table 9: Baseline blood characteristics including normal ranges 

Values are median (first to third quartile) 

CRP – C-reactive protein; Hb – haemoglobin; Lym – lymphocytes; Neu – neutrophils; Plts – platelets; 

WCC – white cell count.  
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 RFC (n=23) IFC (n=15) P value 

Number of lesions 
treated 

  1.00 

1 22 (95.7%) 15 (100%)  

2 1 (4.3%) 0 (0%)  

Infarct-related 
artery 

  0.64 

LAD 7 (30.4%) 9 (60%)  

LCX 4 (17.4%) 2 (13.3%)  

RCA 12 (52.2%) 4 (26.7%)  

Multivessel disease 9 (39.1%) 4 (26.7%) 0.5 

Thrombectomy 23 (100%) 15 (100%) 1.00 

Gp2b3a use 9 (39.1%) 8 (53.3%) 0.51 

Radial access 23 (100%) 14 (93.3%) 0.39 

Dilatation pre-
OCT 

4 (17.4%) 5 (33%) 0.44 

Stents implanted 18 (78.3%) 9 (60%) 0.01 

Stents implanted 
per patient 

1.09 (0.73) 0.6 (0.63) 0.06 

Total stent length 
(mm) 

27 (22–38) 23 (17–28) 0.06 

Drug-coated 
balloon 

5 (21.7%) 6 (40%) 0.28 

Direct stenting 11 (47.8%) 5 (33.3%) 0.51 

Maximum 
balloon/stent 
diameter (mm) 

4 (3.375–4) 3.5 (3.125–3.875) 0.20 

Base TIMI flow   0.63 
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0 14 (60.9%) 10 (66.7%)  

1 0 (0%) 0 (0%)  

2 3 (13.3%) 3 (20%)  

3 6 (26.8%) 2 (13.3%)  

Final TIMI flow   0.82 

0 0 (0%) 0 (0%)  

1 1 (4.3%) 0 (0%)  

2 0 (0%) 0 (0%)  

3 22 (95.6%) 15 (100%)  

Procedural success 22 (95.6%) 15 (100%)  

QCA at baseline    

Reference vessel 
diameter (mm) 

3.28 (2.81–3.62) 3.17 (2.73–3.33) 0.44 

Minimal luminal 
diameter (mm) 

0 (0–0.97) 0 (0–0.84) 0.96 

Diameter stenosis 
(%) 

100 (75.6–100) 100 (75.2–100) 0.88 

QCA post-
thrombectomy 

   

Reference vessel 
diameter (mm) 

3.38 (2.85–3.76) 3.22 (2.58–3.49) 0.39 

Minimal luminal 
diameter 

1.1 (0.88–1.45) 0.94 (0.7–1.2) 0.40 

Diameter stenosis 66.5 (46.4–77.3) 68.8 (62.3–73.6) 0.75 

Table 10: Angiographic and procedural characteristics 

Values are median (first to third quartile) or n (%), except for stents implanted per patient, which is 

expressed as a mean (standard deviation) 



 82 

Gp2b3a – glycoproteinIIbIIIa; IFC – intact fibrous cap; LAD – left anterior descending; LCx – left 

circumflex; OCT – optical coherence tomography; PCI – percutaneous coronary intervention; QCA – 

quantitative coronary angiography; RCA – right coronary artery; RFC – ruptured fibrous cap. TIMI – 

thrombolysis in myocardial infarction. 
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3.2 OCT characteristics 

We next examined whether OCT analysis would reveal any differences in lesion 

structure between RFC and IFC (Table 11). We found significant differences for 

minimum cap thickness (40 [30 to 40] µm RFC vs 80 [70 to 95] µm IFC, p <0.001) 

and for mean cap thickness groups (52 [40 to 59] µm RFC vs 100 [99 to 134] µm 

IFC, p <0.001), demonstrating that cap thickness was significantly lower in the RFC 

group. There were no significant differences in other plaque parameters, though there 

was a trend towards a more fibrous phenotype in IFC (2 (8.7%) RFC vs 6 (40%) 

IFC). The residual thrombus burden after thrombectomy and thrombus type were 

similar between groups, with white thrombus and mixed thrombus predominating. 

Representative OCT images from patients enrolled have also been included in this 

section to further demonstrate plaque morphology and measurements obtained. 

Figures 29, 30 and 31 illustrate cases of RFC. In addition, Figures 30 and 31 

demonstrate lipid-rich and fibrocalcific characteristics. Figures 32, 33 and 34 

demonstrate IFC cases, with Figures 33 and 34 highlighting fibrocalcific and fibrous 

plaque characteristics. Figures 35 and 36 demonstrate luminal area measurements 

with and without thrombus in order to calculate area stenosis. Figure 37 

demonstrates minimum cap thickness measurement in an RFC case, and Figure 38 

demonstrates lesion length measurement.  

 

3.3 Clinical outcomes 

Twelve-month clinical outcome data (Table 12) reports only one death and one TIA 

occurring during follow-up. There were no statistical differences between the two 

groups. 
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 RFC (n=23) IFC (n=15) P value 

Residual 
thrombus 

19 (82.6%) 12 (80%) 1.00 

Minimum cap 
thickness (µm) 

40 (30–40) 80 (70–95) <0.001 

Mean cap 
thickness (µm) 

52 (40–59) 100 (99–134) <0.001 

Length of lesion 
(mm) 

11.3 (9.75–12.55) 11.4 (9.9–15.1) 0.82 

Plaque 
characteristics 

  0.93 

Fibrocalcific 1 (4.34%) 1 (4.34%)  

Fibrous 2 (8.7%) 6 (40%)  

Lipid-rich 20 (86.7%) 8 (53.3%)  

Area stenosis (%) 79.0 (52.5–83.1) 74.3 (70.4–77.1) 0.16 

Residual 
thrombus 
characteristics 

  0.54 

Red 1 (4) 1 (7)  

White 12 (52) 5 (33)  

Mixed 9 (39) 5 (33)  

None 1 (4) 4 (27)  

Table 11: Optical coherence tomography analysis 

Values are median (first to third quartile) or n (%). IFC – intact fibrous cap; RFC – ruptured fibrous 

cap. 
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Figure 29: Example of RFC showing disruption of fibrous cap and rupture cavity formation  

* rupture cavity 

 

Figure 30: Further example of RFC with lipid-rich characteristics – signal-poor regions with high 

attenuation and diffuse borders  

* rupture cavity 

* 

* 
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Figure 31: Example of RFC with lipid-rich and fibrocalcific characteristics  

Fibrocalcific plaques are identified as well-delineated, signal-poor regions with sharp borders.  

* rupture cavity. > fibrocalcific region. 

 

Figure 32: IFC example with intact fibrous cap and thrombus adherent to vessel wall  

* 

> 
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Figure 33: IFC with fibrocalcific characteristics 

> fibrocalcific region 

 

Figure 34: IFC with predominantly fibrous phenotype – homogenous, signal-rich with low 

attenuation 

> 
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Figure 35: An example of IFC case with luminal area measurement including thrombus 

 

 

Figure 36: Same IFC case with luminal area measurement excluding thrombus to calculate area 

stenosis 
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Figure 37: Measurement of minimum cap thickness in RFC case 

 

 

Figure 38: Assessment of lesion length 
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 RFC (n=23) IFC (n=15) P value 

6 months    

MACCE 1 (4.35%) 1 (6.67%) 1.00 

Death 1 (4.35%) 0 0.6 

Cardiac 0 0 1.00 

Non-cardiac 0 0 1.00 

Reinfarction 0 0 1.00 

Stroke 0 1 (6.67%) 0.39 

Stent thrombosis 0 0 1.00 

Target vessel 
revascularisation 

0 0 1.00 

12 months    

MACCE 1 (4.35%) 1 (6.67%) 1.00 

Death 1 (4.35%) 0 0.6 

Cardiac 0 0 1.00 

Non-cardiac 0 0 1.00 

Reinfarction 0 0 1.00 

Stroke 0 1 (6.67%) 0.39 

Stent thrombosis 0 0 1.00 

Target vessel 
revascularisation 

0 0 1.00 

Table 12: Clinical outcomes 

Values are n (%). MACCE – major adverse cardiac and cerebrovascular event  
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Chapter 4: Cytokine results 

4.1 Cytokine analysis 

The next stage of our study was to identify cytokines that were differentially 

expressed between RFC and IFC cases. Cytokine arrays on all the coronary and 

peripheral samples were performed, yielding mean spot pixel densities, which were 

then analysed. The SAM analysis was conducted for coronary and peripheral blood 

samples separately to determine preferential expression. Just under 40.2% (41/102) 

of cytokines were more highly expressed on average (only two cytokines 

demonstrating significantly higher expression (see below)) in IFC cases than in RFC 

cases for both coronary and peripheral samples. By contrast, 47.1% (48/102) were 

more highly expressed on average (10 cytokines demonstrating significantly higher 

expression (see below)) in RFC patients than in IFC patients for both coronary and 

peripheral samples (Figures 39 and 40). For the remaining cytokines (12.7% 

[13/102]), preferential expression was discordant between coronary and peripheral 

samples (Figures 39 and 40).  

Overall, there was high concordance of cytokines between coronary and peripheral 

samples (odds ratio = 46.03 [95% CI: 13.33 to 198.59], p <0.001) (Figure 40). 

The SAM methodology was also conducted to identify cytokines in each plaque 

morphology group that were differentially expressed between coronary and 

peripheral samples (Table 13). Within RFC cases, nine cytokines were more highly 

expressed in coronary samples and 11 in peripheral samples. Within IFC cases, 21 

cytokines were each expressed in both the coronary and peripheral circulations. 

Within the coronary samples, three cytokines – HGF, FGF-7 and IL-19 – were 

expressed in both the RFC and IFC groups. Similarly, within the peripheral samples, 

two cytokines – MIG and MIP-3α – were expressed in both the RFC and IFC groups. 

Epidermal growth factor (EGF) and thrombospondin-1 (TSP-1) were the only 

cytokines with significantly higher expression in IFC cases than in RFC cases in both 

coronary and peripheral samples (adjusted p <0.05) (Figure 41). The average log2 

fold change in expression was greater than 1.75 for both (Figure 41).  
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By contrast, 10 cytokines demonstrated significant preferential expression in patients 

with RFC for both coronary and peripheral samples, including MIG, I-TAC, MMP-9, 

aggrecan, lipocalin-2, IL-18/BPα, TFF3, complement factor D, RANTES and 

adiponectin (adjusted p <0.05) (Table 14). 

The full list of cytokines demonstrating preferential expression with associated q-

values, d-score and log fold changes are listed in sections 4.0 and 5.0 of the 

Appendix.  
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Figure 39: Heatmaps of the cytokines differentially expressed between the two plaque pathologies 

within coronary samples. Samples (columns) are sorted from left to right in ascending order within the 

IFC (left-hand panels) and RFC (right-hand panels) case groups. The cytokines (rows) are ordered 

from top to bottom by descending average fold change within the IFC-assigned cytokine group (top 

panels), the RFC-assigned group (middle panels) and the discordantly assigned group (bottom panels). 

Heatmap colours represent log2 expression values standardised across the data set. A legend that maps 

colour to standardised expression value is shown to the side of the heatmaps. The gold bars on the 

side of each heatmap indicate significant hits. 
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Figure 40: Heatmaps of the cytokines differentially expressed between the two plaque pathologies 

within peripheral samples as described above 
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Figure 41: Mosaic plot of concordance between preferential expression assignments for coronary 

samples (rows) and peripheral samples (columns). Odds ratio, 95% CI and p-value are reported for 

Fisher’s exact test.  

Figure 42: C Volcano plots of the log2 fold change of expression for all cytokines against the SAM 

differential expression score for the coronary (left plot) and peripheral (right plot) samples. Positive 

differential expression scores indicate an association to the group more highly expressed in RFC cases 

than in IFC cases, whereas negative D-scores represent an association to the group more highly 

expressed in IFC cases. Cytokines that were significantly associated with either plaque type (adjusted 

p <0.05; SAM) are coloured in gold, whereas non-significant associations are in grey. RFC – ruptured 

fibrous cap; IFC – intact fibrous cap. 
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Coronary RFC Peripheral RFC Coronary IFC Peripheral IFC 

HGF MIG HGF MIG 

FGF-7 IP-10 FGF-7 BDNF 

IL-1ra Leptin IL-3 IL-8 

Growth hormone MIP-3α IP-10 RAGE 

IL-19 IL-8 IL-1a Angiopoietin-1 

IL-4 BAFF Fas ligand Flt-3 ligand 

uPAR ST2 IL-2 G-CSF 

TARC TFF3 GM-CSF Adiponectin 

ICAM-1 Resistin Complement factor 
D 

IL-1ra 

 VEGF FGF basic MIP-3α 

 Relaxin-2 C5a MCP-1 

  EGF PAI-1 

  IL-19 Dkk-1 

  IFN-γ CD147 

  TGF-α PDGF-AA 

  Cystatin C Cripto-1 

  PDGF-AB/BB Chitinase 3-like 1 

  IGFBP-3 CD30 

  IL-10 DPPIV 

  CRP IL-5 

Table 13: Table summarising differential expression analysis between coronary and peripheral 

samples  

This highlights cytokines that are preferentially expressed in the coronary circulation and those that 

are preferentially expressed in the peripheral circulation when compared against each other.  
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HGF, FGF-7 and IL-19 were expressed in both the RFC and IFC groups within the coronary samples. 

MIG and MIP-3α were expressed in both the RFC and IFC groups within the peripheral samples. 

 

4.2 ELISA validation 

The cytokine array analysis identified two cytokines (EGF + TSP-1) demonstrating 

significantly higher expression in IFC cases in both the coronary and peripheral 

samples. By contrast, ten cytokines (MIG, I-TAC, MMP-9, aggrecan, lipocalin-2, IL-

18/BPα, TFF3, complement factor D, RANTES and adiponectin) demonstrated 

significant preferential expression in RFC cases for both coronary and peripheral 

samples. 

To validate the results of the cytokine array analysis, we performed ELISA on five of 

these twelve cytokines. We therefore sought to validate higher expressions of EGF 

and TSP-1 in the IFC group and MIG, I-TAC, MMP-9 within the RFC group. We 

also performed ELISA on BDNF since it demonstrated preferential expression for 

IFC within coronary samples and the scientific literature suggesting links to 

atherosclerosis and endothelial apoptosis (121). The ELISA for MPO was 

undertaken given the potential relevance to plaque erosion (122). To address the 

possibility of artefactually higher expression in one set of cases over the other, we 

additionally selected two cytokines that were not significantly differentially 

expressed and could, in essence, serve as negative controls: leptin and growth 

hormone.  

None of the negative controls exhibited any significant difference between IFC and 

RFC cases for both coronary and peripheral samples (p >0.05) (Figures 43, 44 and 

45). For EGF, we observed a significantly higher expression in both coronary and 

peripheral IFC samples as compared with RFC samples (p <0.05) (Figures 43, 44 

and 45). By contrast, for TSP-1, a significantly higher expression in IFC patients was 

only found for coronary samples (p = 0.0041). No significant differences were 

observed for MIG (p >0.05). I-TAC was the only cytokine that was significantly 

higher in RFC cases, albeit only for coronary samples (p = 0.042) (Figures 43, 44, 45 

and Table 14). 

A full list of the mean spot pixel densities for the cytokine arrays (arbitrary units – 

AU) and ELISA-calculated mean plasma concentrations (pg/mL or ng/mL) for each 
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cytokine validated are listed in the Appendix. This includes values for both the 

coronary and peripheral samples for the cytokine tested and separated into 

pathological adjudication for array and ELISA.  
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Figure 43: Plasma ELISA analysis 

Plasma titres according to plaque pathology and sample site for positively validated ELISAs – EGF, 

TSP-1 and I-TAC. Horizontal lines indicate median log2 values and interquartile ranges. Strip plots 

show the ELISA titre values between IFC and RFC cases for both the coronary and peripheral 

samples of 11 cytokines. P-values are computed using one-sided and two-sided Wilcoxon rank-sum 

tests. 
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Figure 44: Plasma titres according to plaque pathology and sample site for BDNF, growth hormone 

and leptin 
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Figure 45: Plasma titres according to plaque pathology and sample site for MIG, MMP-9, 

myeloperoxidase 
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Coronary IFC Coronary RFC Peripheral IFC Peripheral RFC 

BDNF MIG  EGF I-TAC 

EGF I-TAC TSP-1 MIP-3α 

TSP-1 MMP-9 CD40 ligand MIG 

ENA-78 Aggrecan  CD30 

 Lipocalin-2  Aggrecan 

 IL-18 BPα  MMP-9 

 Osteopontin  IL-18 BPα 

 TFF3  TFF3 

 Complement factor 
D 

 Complement factor 
D 

 Chitinase 3-like 1  RANTES 

 HGF  Lipocalin-2 

 TNF-α  Adiponectin 

 FGF-7   

 RANTES   

 Adiponectin   

Table 14: Summary of preferential expression of cytokines in both coronary and peripheral samples 

for either IFC or RFC from cytokine array analysis  

Cytokines highlighted as to whether ELISA validation was significant or not. 

RED = Significant in ELISA 

BLUE = Non-significant in ELISA 

Black = Not tested by ELISA 
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4.3 Thrombectomy RT-PCR analysis 

Thrombectomy yielded analysable samples in 18 RFC and 13 IFC cases. Expression 

of I-TAC mRNA was significantly increased in RFC samples compared to IFC (p = 

0.001), while the opposite was true of EGF expression (p = 0.0264). There were no 

differences in the expression of TSP-1 (p = 0.6505) or MPO (p = 0.2978) between 

groups (Figure 46). A full list of the dCT values of mRNA specimens normalised to 

GADPH or β actin are listed in the Appendix (section 9.0, Table 22). 

 

 

Figure 46: Relative mRNA expression in coronary thrombectomy specimens normalised to GAPDH  

Lower dCT values indicate higher expression. dCT – delta cycle threshold. 
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Chapter 5: Discussion  

5.1 Principal findings 

The principal findings from our study are: 

1) An IFC was present in the culprit lesion in fifteen patients (38%) of the 40 

cases of STEMI recruited to the PEPS study.  

2) Cytokine array data demonstrated 12 (12%) cytokines whose expression 

differed significantly between IFC and RFC. Two cytokines were 

preferentially expressed in IFC and 10 cytokines in RFC. 

3) We confirmed elevated EGF (coronary and peripheral samples) and TSP-1 

(coronary samples) in IFC, and elevated I-TAC (coronary samples) in RFC 

using ELISAs. 

4) These findings were replicated, with the exception of TSP-1, in the analysis 

of mRNA for EGF, I-TAC and TSP-1 expression from thrombectomy 

samples.  

 

5.2 Feasibility of the study 

An important objective was to demonstrate the utility and feasibility of our 

methodology. We targeted patients presenting with short ischaemic times in order to 

reflect the inflammatory process at the onset of the myocardial infarction and 

minimise the impact of secondary inflammatory changes.  

We successfully recruited our target of 40 patients to the study with no complications 

from performing OCT or delay in treatment as a result. Indeed, as a result of the 

patients being included in the PEPS study, OCT was frequently used as a further 

adjunct for PPCI to help size the vessel and therefore appropriately select the 

required balloon or stent.  

 

5.3 Clinical characteristics 

5.3.1 Baseline characteristics 

In our study, the incidence of IFC was 38%, while RFC was observed in 58%. These 

findings are consistent with post mortem data and other OCT studies (16,21,123), 
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which have previously described approximately two-thirds of cases of coronary 

thrombosis in STEMI patients due to plaque rupture and one-third secondary to 

plaque erosion. However, a recent study by Kajander et al. (124) evaluated 93 

patients undergoing OCT and thrombectomy as part of a prospective sub-study of the 

TOTAL (ThrOmbecTomy versus PCI ALone) trial. Culprit lesion morphology was 

assessable by OCT in 70/93 cases (75.3%). IFC was found in 31 (44.3%) patients, 

RFC in 34 (48.6%) and calcified nodule in five (7.1%). This suggests that the 

incidence of IFC is higher than previously reported.  

We found no differences in sex between the two groups, although autopsy studies 

have previously suggested that plaque erosion occurs more frequently in women than 

in men (21,23,125). 

We did find a statistical difference in age between the two groups, with patients in 

the IFC group being younger than those in the RFC group (RFC median age – 

65years, IFC median age – 60 years, p = 0.03). Studies by Arbustini et al. (average 

age 68 years in plaque rupture cases and 70 years in plaque erosion) (125) and Sato 

et al. (average age 70 years in plaque rupture cases and 68 years in plaque erosion) 

(84) describe similar age profiles to our study, with no significant difference in age 

between the two groups. Farb et al. (23) studied 50 cases of sudden cardiac death due 

to coronary artery thrombosis. The mean ages of men and women were similar (49 ± 

9 and 49 ± 13 years, respectively). They found the mean age at death was 53 ± 10 

years in plaque rupture cases versus 44 ± 7 years in eroded plaques without rupture 

(P = 0.02). Burke et al. (126) examined 51 cases of sudden coronary death in women. 

They also found an increased proportion of erosions responsible for coronary 

thrombotic events for women less than 50 years old (58 ± 12 years in plaque rupture 

cases and 45 ± 8 years in plaque erosion (p = 0.01)). Although both of these studies 

describe a younger cohort of patients compared to our study, the high proportion of 

erosions in premenopausal women might be due to an active process precipitated by 

the effects of oestrogen and progesterone.  

It should also be noted that the median ischaemic times were well below the cut-off 

of six hours, and there were no significant differences between the two groups, 

therefore fulfilling our aim of recruiting patients as early as possible.  
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There were no significant differences between the groups with regard to baseline 

echo and blood test characteristics. 

 

5.3.2 Angiographic characteristics 

There were no significant differences found in angiographic and procedural 

characteristics between the RFC and IFC groups.  

In almost every case, only the culprit artery was treated, with only one case of a 

second artery treated in the RFC group. The RCA was the most commonly treated 

artery in the RFC group and the LAD in the IFC group.  

Thrombectomy was performed in every patient in order to obtain a coronary sample 

from the vicinity of the culprit plaque and was a key requirement for satisfying entry 

into the study. Thrombectomy also served as a therapeutic strategy to mechanically 

dislodge the thrombus and re-establish TIMI 3 flow.  

Although we did not find any significant differences in the number of stents 

implanted per patient or stent length between the two groups, the results did suggest 

a lower use of stents in the IFC group. This would corroborate the findings from the 

studies by Prati et al. (91) and Souteyrand et al. (127), who respectively suggested an 

alternative treatment strategy for OCT-verified IFC in which non-obstructive lesions 

might be managed without stenting and that un-stented IFC plaques showed features 

suggesting partial incorporation of the deepest layers of thrombus in the plaque. The 

potential to avoid stent deployment in this group of patients could reflect the theory 

that luminal thrombosis in plaque erosion is secondary to apoptosis or endothelial 

degradation. Treatment with anti-platelet drugs may allow healing of the endothelial 

layer and therefore avoid the requirement for stents, reducing the risks of both early 

and late complications associated with stent implantation. Jia et al. (110) also 

demonstrated that, in ACS patients identified with plaque erosion using OCT, 

thrombus removal without stent implantation and effective anti-thrombotic therapy 

may be sufficient to restore coronary artery patency and allow healing of the 

endothelial layer. They also demonstrated a reduction in thrombus volume and an 

increase in minimal flow area with antithrombotic therapy alone. Possible 

explanations for the rationale behind the alternative treatment strategies can be 
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explained by the distinctive pathophysiology of plaque erosion compared to plaque 

rupture.  

Eroded plaques do not contain a large necrotic core but exhibit a proteoglycan-rich 

matrix and smooth muscle cells, which have less tissue factor and inflammation 

(macrophages and C-reactive protein), resulting in lower local thrombogenicity 

(84,85).  

The stenosis of a coronary artery lumen may not always be significant in eroded 

plaques. Farb et al. (23) demonstrated that plaque rupture was associated with an 

average area stenosis of 77%, whereas plaque erosion had an average 70% area 

stenosis (p <0.03) in the coronary arteries of post mortem sudden cardiac death 

patients. Kramer et al. (85) studied coronary lesions with thrombi (ruptures, n=65; 

erosions, n=50) from 111 sudden cardiac death victims. They demonstrated that 

plaque erosion (60%) had a higher incidence of <75% area stenosis when compared 

with plaque rupture (35.4%) (p = 0.02). Saia et al. (87), studied 140 STEMI patients 

with OCT of the IRA before PCI. They described an IFC presenting more frequently 

with a patent IRA when compared to an RFC (56.2% vs. 34.9%; p = 0.047). 

Kajander et al. (124) used OCT to compare stenosis severity between STEMI culprit 

lesions with IFC and those with RFC. They found contrasting results. Following 

thrombectomy, OCT demonstrated similar lumen area stenosis in IFC (79.3%) and 

PR (79.6%) (p = 0.88). Lumen area stenosis <50% was observed in none of the 

patients with RFC and in one patient with IFC.  

In our study, we were unable to demonstrate a difference between minimal luminal 

diameter and diameter stenosis using QCA or OCT analysis between the RFC and 

IFC groups.  

It is also worth mentioning that drug-coated balloons were used in some cases, 

instead of stents. This is primarily attributable to the preferred strategy of a specific 

interventionalist with the principle of trying to avoid the potential early and late 

sequelae of stent deployment.  
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5.3.3 OCT data 

OCT analysis revealed residual thrombus in the majority of cases, with no significant 

differences between the two groups. The thrombus types were also similar between 

the groups, with white thrombus the most common in both groups. This contrasts 

with the findings in other studies (87,102). Saia et al. (87) demonstrated in their 

study of 140 patients that IFC had residual thrombus less frequently compared to 

RFC before stent implantation (84.4% vs. 98.4%; p = 0.016). There was a significant 

difference in the presence of white thrombus between IFC and RFC (78.1% vs. 

98.4%; p = 0.002). Niccoli et al. (102) also demonstrated a significant difference 

between residual thrombus across IFC and RFC (56.1% vs. 75.6%; p = 0.05). In 

addition, there was a significant difference in the presence of white thrombus (96.6% 

vs. 29.2%) and red thrombus (3.4% vs .70.8%) between IFC and RFC (p <0.001).  

We found that the predominant plaque characteristic of both groups was lipid-rich, 

with 40% of the IFC cases also having a fibrous plaque phenotype. This would be in 

keeping with the thick fibrous cap model for plaque erosion and the lipid core 

representative of plaque rupture. We found differences for minimum and mean cap 

thicknesses between the two groups, with RFC having significantly smaller 

measurements. 

Some of these findings are consistent with the studies mentioned above, which also 

looked at plaque characteristics in their analysis (87, 102). Saia et al. (87) found that 

IFC had fewer lipid areas (75% vs. 100%; p <0.001) and more fibrotic areas (25.0% 

vs. 0.0%; p = 0.005) at the culprit site. They also found that RFC had a smaller mean 

fibrous cap thickness (171 µm vs. 203 µm; p = 0.002) and a minimal fibrous cap 

thickness (47 µm vs. 69 µm; p = 0.02). Niccoli et al. (102) found that patients with 

RFC had a lipid-rich plaque at the culprit lesion (70 (85.4%) vs. 31 (71.9%), p = 

0.001) compared with IFC patients. They also found that patients with RFC had a 

significantly thinner fibrous cap (76.2 µm vs. 87.0 µm; p = 0.04). 

Kajander et al. (124) compared plaque content between IFC and RFC in STEMI 

patients. They found that IFC had fewer quadrants with lipid plaque compared to 

RFC (28.16 vs. 39.12; p = 0.004). However, in both lesion types, lipid was the 

predominant plaque type (83.9% vs. 63.7% of diseased quadrants). They also found 
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the minimal fibrous cap thickness to be significantly less in RFC (62.05 µm vs 91.03 

µm; p <0.001).  

 

5.3.4 Clinical outcomes 

Clinical follow-up data revealed only one transient ischaemic attack and one death in 

our cohort of 40 patients. Our small data set and limited follow-up time makes it 

difficult to draw meaningful conclusions about long-term differences between the 

two groups, which is also alluded to in other studies (102,103). 

Niccoli et al. (102) followed up 139 ACS patients over an approximate three-year 

period. Eighty-two patients (59%) were categorised as having RFC and the 

remaining 37 (41%) patients with IFC. MACCE occurred more frequently in patients 

with RFC compared with those having IFC (39.0 vs. 14.0%; p <0.001). 

Yonetsu et al. (103) also sought to evaluate the morphological features and clinical 

outcomes of patients with ACS caused by lesions with RFC and IFC. 318 patients 

with ACS underwent OCT before PCI. Culprit lesions were categorised into 141 

RFCs and 131 IFCs, with 46 in an undefined group. 307 patients were followed for a 

median follow-up duration of 576 days. Adverse cardiac events were observed in 93 

patients (30.3%). Kaplan–Meier analysis demonstrated a significantly lower event 

rate in the IFC group compared with the RFC and undefined groups.  

Kajander et al. (124) showed a low MACCE rate in their OCT analysable data of 70 

patients and no difference between RFC and IFC (0 vs. 2, p = 0.22). There were two 

cases of recurrent myocardial infarction, which were in the IFC group. 

There were no complications arising from the OCT procedure in our study, further 

highlighting the safety of this procedure. 

 

5.4 Cytokine analysis 

An important objective of our study was to explore whether there was a difference in 

the expression of cytokines between the RFC and IFC groups in STEMI patients. 

Using our novel methodology and proteomic arrays, we were able to identify a 

number of cytokines displaying preferential expression for RFC and IFC within both 

the coronary and peripheral circulation. We selected BDNF, MMP-9, MIG, EGF, 
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TSP-1 and I-TAC for ELISA validation based on a combination of the strength of the 

log fold changes from the array analysis and background literature proposing a likely 

causative role. 

We confirmed elevated EGF and TSP-1 in IFC and elevated I-TAC in RFC using 

ELISAs. To put our results in context, the levels of EGF, TSP-1, I-TAC in IFC are 

approximately 14, 4.8, and 1.6 times higher, respectively, compared to median 

values in healthy volunteers reported in other studies (128–130). The values for RFC 

are approximately 8, 1.4 and 2.4 times higher, respectively.  

These observations could be interpreted as reflecting primary differences between 

the two different atherosclerotic pathologies or could simply reflect a secondary 

response to myocardial infarction.  

 

5.4.1 Positively validated ELISAs 

5.4.1.1 Epidermal growth factor (EGF) 

EGF is a common mitogenic growth factor that stimulates cell growth, proliferation 

and differentiation by binding to its receptor, EGFR, which in turn initiates 

intracellular signalling (131). The EGFR is widely studied in cancer biology, with 

EGFR antagonism by antibodies and receptor inhibitors having had numerous 

beneficial effects in patients with non-small-cell lung, colorectal and pancreatic 

cancers (132,133).  

Vascular remodelling plays a key role in the development of atherosclerosis and 

involves hypertrophy, hyperplasia, migration and phenotypic alterations of vascular 

smooth muscle cells (VSMCs). There is strong evidence that EGFR is critical in 

mediating vascular remodelling. All members of EGFR, as well as most of their 

ligands, are expressed by VSMCs (134).  

EGF is an SMC antigen, the effects of which can be enhanced by TGF-β, angiotensin 

II and IGF-1, and inhibited by HDL (135). EGF stimulation of the EGFR in VSMCs 

activates the mitogen-activated protein kinase (MAPK) pathway, and inhibits 

angiotensin II action (136). Although platelets are a putative source of EGF during 

atherogenesis, they lack protein biosynthetic capability, and are involved late in the 

atherogenic process. It is possible that EGF is synthesised in megakaryocytes and 
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stored in platelets, or that EGF is derived from some other source and is 

subsequently taken up by platelets (137). 

Studies have demonstrated the abolition of EGFR in vascular smooth muscle to be 

beneficial in treating animal models of hypertension and atherosclerosis (138).  

A study by Kagiyama et al. investigated the role of EGFR in hypertensive rats (139). 

They showed that antisense directed to EGFR demonstrated suppression of left 

ventricular hypertrophy in hypertensive rats infused with angiotensin II. This implies 

that EGFR plays a critical role in the development of LVH induced by angiotensin II. 

Chan et al. investigated the role of EGFR in an animal model of atherosclerosis 

(140). They induced arterial intimal hyperplasia in rat carotid arteries by the passage 

of a balloon catheter into the vessel. The animals were given a monoclonal blocking 

antibody to EGFR. Blocking the EGFR antibody inhibited medial SMC proliferation, 

indicating that activation of EGFR is important for induction of SMC proliferation 

and subsequent intimal thickening. 

Other observations have also suggested a potential role for EGFR signalling in 

atherosclerosis. The expression of the EGFR and its ligands (heparin-binding EGF 

(HB-EGF), betacellulin (BTC) and epiregulin (EREG)) are elevated in the vascular 

lesions of humans with atherosclerosis (137). In addition to vascular cells, infiltrating 

monocytes and macrophages are another important source of EGF-like ligands in 

atherosclerosis (137). Furthermore, plasma levels of HB-EGF are increased in 

patients with coronary artery disease and correlate with serum cholesterol (141).  

Increased EGF expression in IFC could be an important stimulus for VSMC 

proliferation and maintenance of a thick fibrous cap. Rattik et al. aimed to investigate 

whether plasma levels of EGF, heparin-binding EGF (HB-EGF) and platelet-derived 

growth factor correlated with plaque phenotype and incidence of acute coronary 

events (142). HB-EGF, EGF and platelet-derived growth factor were measured in 

plasma from 202 patients undergoing carotid endarterectomy and in 384 acute 

coronary event cases and 409 matched controls recruited from the Malmö Diet and 

Cancer cohort. Significant positive associations were found between the plasma 

levels of all three growth factors and the collagen and elastin contents of the removed 

plaques from the carotid arteries, indicating an association with a more fibrous 

phenotype in carotid arteries. Acute coronary event cases had lower levels of HB-
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EGF in plasma, whereas no significant differences were found for EGF and platelet-

derived growth factor. These findings suggest a clinically important role for smooth 

muscle cell growth factors in plaque stabilisation and protection against development 

of acute coronary events. We demonstrated significant expression of EGF in patients 

with IFC in both the coronary and peripheral samples. Our findings could also be 

consistent with EGF as a marker of a more fibrous thick-capped plaque. It is also 

plausible that elevated plasma levels of EGF may simply reflect release from 

granules of activated platelet. 

 

5.4.1.2 Thrombospondin-1 (TSP-1) 

The TSP family consists of five multidomain calcium-binding glycoproteins that act 

as regulators of cell–cell and cell–matrix associations (143). TSP-1 is a potent 

endogenous inhibitor of angiogenesis, and is expressed in endothelial cells, VSMC, 

vascular fibroblasts and platelets. Plasma concentration is low but is increased 

rapidly by the release of stored TSP-1 from platelet α-granules following platelet 

activation. 

TSP-1 has many modulatory effects on endothelial cell adhesion, motility, growth 

and apoptosis. It has been shown to inhibit the formation of focal adhesions by 

endothelial cells and disrupts endothelial cell focal adhesions, leading to cell 

detachment in vitro (144). TSP-1 inhibits endothelial cell proliferation (145) and can 

induce cellular quiescence (146) or apoptosis via CD36 signalling (147,148). 

Inhibitory effects on endothelial progenitor cell angiogenesis have also been 

described (149). 

TSP-1 inhibits NO production by endothelial cells by indirect inhibition of eNOS: 

this is mediated by disrupting the interaction of CD47 with vascular endothelial 

growth factor receptor 2 (VEGFR2), which reduces calmodulin-mediated activation 

of eNOS due to altered calcium transients (150). Reduced NO may contribute to 

endothelial dysfunction, impaired vasodilatation and a predisposition to vasospasm. 

In contrast to the effects on endothelial cells, TSP-1 enhances the proliferation and 

migration of vascular smooth muscle cells (151,152). VSMC proliferation in 

response to balloon angioplasty appears to be TSP-1 dependent and can be blocked 

by antibodies to CD47 and αIIbβ integrins (153–155).  
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TSP-1 also inhibits NO-stimulated activation of guanylyl cyclase in vascular smooth 

muscle cells, resulting in reduced cGMP levels and impaired vasodilatation. This is 

mediated via CD47 signalling (156).  

TSP-1 constitutes one-third of the protein in platelet α-granules, and is released 

during platelet activation. Although it is not essential for thrombosis, it plays an 

important role in potentiating platelet activation and stabilisation of platelet thrombi 

in high shear stress (157,158).  

There are, therefore, multiple aspects of atherosclerosis that could be explained by 

the effects of TSP-1 through inflammation, thrombosis, inhibition of angiogenesis, 

cell apoptosis, inhibition of nitric oxide and vasoconstriction. 

Genetic association studies have reported a variable association of myocardial 

infarction with polymorphisms of TSP-1, TSP-2 and TSP-4. A meta-analysis of 13 

studies involving 10,801 cases and 9,381 controls confirmed an association of the 

THBS-1 N700S polymorphism with coronary artery disease (heterozygote model: 

Odds Ratio (OR) = 1.14, 95% CI: 1.03-1.26; dominant model: OR = 1.13, 95% CI: 

1.00-1.29) (159). This study, however, did not distinguish between plaque erosion 

and rupture. A separate study of sudden death patients suggested that a single 

nucleotide polymorphism of the TSP-2 gene was decreased in plaque erosion 

compared to other forms of coronary artery disease (160).  

The literature, in addition to our demonstration of preferential expression of TSP-1 in 

the IFC group in the coronary sample, supports the theory that there is a potential 

relationship between TSP-1 and plaque erosion.  

 

5.4.1.3 Interferon-inducible T-cell alpha chemoattractant (I-TAC) 

Array analysis confirmed that multiple cytokines that are known to be important in 

plaque rupture were preferentially expressed in the RFC group. These included MIG, 

I-TAC, MMP-9, aggrecan, lipocalin-2, IL-18/BPα, TFF3, complement factor D, 

RANTES and adiponectin. It was not feasible to validate all of these cytokines with 

ELISA due to lack of sample and expense. We performed ELISAs on MIG, I-TAC 

and MMP-9. ELISA validation demonstrated the novel observation that I-TAC was 

the only cytokine that was significantly higher in coronary samples in RFC cases.  
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I-TAC is a chemokine that is significantly increased in response to interferon-γ and 

exclusively uses CXC chemokine receptor 3 (CXCR3) (161). Activated T-

lymphocytes accumulate early in atheroma formation and persist at sites of lesion 

growth and rupture, suggesting that they play an important role in the pathogenesis 

of atherosclerosis and plaque rupture (162). Studies have shown that I-TAC plays a 

key role in the recruitment and retention of activated T lymphocytes observed at sites 

of inflammation during atherogenesis (51). A study by Mach et al. (51) demonstrated 

increased expression of I-TAC by endothelial cells and macrophages within human 

atherosclerotic lesions in situ. 

A study by Kao et al. looked at CXCR3 chemokines as causative factors in transplant 

coronary artery disease (TCAD). Levels of I-TAC were found to be elevated in 

patients with severe TCAD compared with long-term survivors of transplantation 

without TCAD and with healthy volunteers who had not undergone transplantation 

(130). This supports our finding that I-TAC has a role in atherosclerotic heart 

disease. 

A study by Saxena et al. looked at the possible anti-fibrotic role of CXCR3 

signalling in myocardial infarction (163). They found that in reperfused mouse 

infarcts, expression of CXCL9 and CXC11/I-TAC was extremely low. Low levels of 

both of these CXCR3 ligands did not affect the scar size, geometric ventricular 

modelling, collagen deposition or systolic dysfunction of the infarcted heart. They 

did, however, find that the other ligand of CXCR3, CXCL10, was markedly induced 

in infarcted myocardium. CXCL10 is known to limit cardiac fibrosis by inhibiting 

growth-factor-mediated fibroblast migration. Their findings suggest that CXCR3 

signalling does not critically regulate cardiac remodelling and dysfunction following 

myocardial infarction, and the anti-fibrotic effects of CXCL10 in the healing infarct 

are CXCR3 independent.  

 

5.4.2 Negatively validated ELISAs 

5.4.2.1 Brain-derived neurotropic factor (BDNF) 

Brain-derived neurotrophic factor is a member of the neurotrophin family of proteins 

and has a favourable neuroprotective effect against oxygen-glucose deprivation 

(164). It is well recognised that BDNF specifically binds to the tropomyosin-related 
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kinase receptor B (TrkB) and further modulates downstream intracellular signalling 

pathways, thereby affecting the development and function of the nervous system 

(165). Endothelial cells lining the arteries and capillaries of the heart muscle also 

express BDNF and its receptor TrkB (166). Studies have reported that increased 

levels of exogenous and endogenous BDNF confer a protective effect on cerebral 

ischaemia (167). These concepts have extended the roles of BDNF to atherosclerosis 

and ischaemic heart disease. A study by Okada et al. reported that upregulation of 

BDNF protected against cardiac dysfunction post MI (168), while other studies have 

demonstrated that advanced atherosclerosis displays reduced circulating BDNF 

levels (121) and proposed that reduced BDNF levels improve post-MI survival and 

reduce left ventricular remodelling by attenuating inflammation and angiogenesis 

(169).  

It would, therefore, seem very reasonable to expect BDNF to have a role in the 

aetiology of ischaemic heart disease and specifically plaque erosion. We know that 

BDNF is expressed in the endothelium of coronary arteries and deficient levels have 

been proposed as a mechanism of endothelial apoptosis (170). Although our cytokine 

array analysis demonstrated preferential expression of BDNF in the IFC group from 

coronary samples, ELISA did not validate this.  

 

5.4.2.2 Matrix metalloproteinase-9 (MMP-9) 

Atherosclerotic plaques contain numerous macrophages, providing a prominent 

source of matrix metalloproteinases (MMPs). MMPs play a role in the degradation of 

the extracellular matrix (ECM) resulting in destabilisation of the atherosclerotic 

plaque.  

MMP-9 plays a key role in the degradation of ECM and plaque ruptures are 

associated with increased MMP-9 proteolytic activity (171). In the plaque, the major 

source for MMP-9 is macrophage-derived foam cells, and MMP-9 associates with 

the formation of a vulnerable thin fibrous cap (172). In a study by Gough et al., it 

was found that, in apolipoprotein E-null mice, MMP-9 levels were highly correlated 

with incidence of plaque rupture (173). An increase in systemic MMP-9 levels has 

also been shown to be highly correlated with cardiovascular mortality in patients 
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with atherosclerosis (174). These findings suggest deleterious effects of MMP-9 

overexpression on the progression of atherosclerosis.  

Higher MMP-9 levels also play an important role during the early stages of acute MI. 

MMP-9 levels increase as early as several minutes post MI and remain increased for 

the first week in many animal models of MI (175,176). The early increases in MMP-

9 levels post MI correlate with increased numbers of neutrophils, and later increase 

at days 2–4 with the infiltration of macrophages. These changes show an important 

role of MMP-9 at different stages of the inflammatory response.  

Given the extensive evidence base for the role of MMP-9 in atherosclerotic plaque 

rupture and MI, we sought to validate its expression with ELISA in our study. 

Cytokine array analysis identified preferential expression of MMP-9 in the RFC 

group within the coronary samples, but ELISA did not validate this finding. 

Although our study did not confirm this expression in our cohort of STEMI patients, 

the literature suggests that MMPs and indeed MMP-9 clearly have a role in 

atherosclerosis and degradation of the thin fibrous cap. Indeed, MMP levels might 

not correlate with MMP activity, which might also provide an explanation as to why 

we did not find elevated levels in our cohort. 

Within the original protocol, our initial aim was to analyse the coronary and 

peripheral samples for expression of more MMPs and analysis of thrombi to identify 

differences between plaque rupture and erosion. 

As described above, there is a substantial body of evidence implicating MMPs in the 

degradation of the fibrous cap (15) and, therefore, likely that there are differences in 

the spectrum of MMP expression between rupture and erosion. Unfortunately, due to 

time constraints, resources and limited samples, we were unable to perform cytokine 

array screening for more MMPs or histological/immunohistochemistry analysis on 

our retained samples and coronary thrombi. 

 

5.4.2.3 Monokine induced by gamma interferon (MIG) 

Chemokines are a group of small secreted proteins that exert their effects through 

seven transmembrane-domain G-protein-coupled receptors and are active as 

chemotactic factors and regulators of cell growth (177). 
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CXCL9/Mig is an IFN-γ-inducible chemokine produced mainly by dendritic cells, B- 

lymphocytes and macrophages (178). It perpetuates IFN-γ-producing immune 

responses by the recruitment of T-cells that selectively express its cognate receptor, 

CXCR3. IFN-γ is a proatherogenic cytokine that is expressed in arterial plaques 

(179) and by circulating T-cells in patients with coronary atherosclerosis (180). 

There are some studies in patients with myocarditis which report that CXCL9 is 

expressed in the heart during acute infection and remains upregulated in chronic 

infection (181,182).  

Very little is known about the relationship between CXCL9 and coronary artery 

disease, but, essentially, it plays a role in inflammation; it could, therefore, be 

postulated that this relationship may have a role in the inflammatory processes 

involved with plaque rupture. Indeed, CXCL9 was identified by cytokine analysis as 

showing preferential expression for RFC in the coronary and peripheral samples, 

suggesting that it may have a systemic role. However, this was not corroborated with 

the ELISA. 

 

5.4.3 Controls 

5.4.3.1 Myeloperoxidase (MPO) 

We did not find any association between MPO levels and plaque erosion. This was 

relatively surprising given previous studies demonstrating a role for MPO in erosion. 

MPO is an abundant leucocyte enzyme and is released on neutrophil activation. 

Serum levels of MPO in ACS patients are considered a marker of plaque 

vulnerability (183). A study by Ferrante et al. (122) showed increased systemic 

levels of MPO in patients with plaque erosion compared to plaque rupture in a small 

study of 25 patients with acute coronary syndromes. In addition, the density of MPO-

positive cells within thrombi retrieved from sudden death patients was significantly 

higher in lesions with erosion (n=11) than rupture (n=11). Niccoli et al. looked at 84 

patients presenting with ACS and stable angina, followed by OCT of the culprit 

coronary stenosis. They also found that patients presenting with plaque erosion 

presented with higher MPO levels (104). However, these findings are discordant 

with the study by Saia et al. (87). In their study of 140 STEMI patients, culprit 

plaque morphology was adjudicated in 97 patients. Patients with IFC and RFC had 
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similar serum inflammatory and platelet biomarkers. Specifically, there was no 

difference in MPO expression between the two groups.  

These discrepancies could reflect differences in the type of acute coronary syndrome, 

sample sites and timings of samples. The studies above reflect patients with sudden 

cardiac death, angina and STEMI. Our cohort is a small STEMI population and it 

might, therefore, be difficult to draw meaningful conclusions regarding the lack of 

MPO expression.  

 

5.5 Thrombectomy analysis 

To confirm and validate the data generated by cytokine array analysis and ELISA, 

we performed RT-PCR for EGF, TSP-1, I-TAC and MPO on messenger RNA 

extracted from the thrombectomy specimens. MPO was analysed given the previous 

literature demonstrating increased levels in plaque erosion cases.  

Thrombectomy yielded an analysable sample in 31 out of 38 (two patients were 

undefined) patient samples. Of these, 18 were RFC cases and 13 IFC. This retrieval 

of coronary thrombotic aspirate (81.5%) is higher than other studies, which have also 

sought to study the composition of the thrombus sample, with 72.9% in the TAPAS 

trial (n=1,080) and 74% in a study by Kramer et al. (n=1,362), respectively (81,184) 

– although our numbers are much smaller in comparison.  

Expression of I-TAC mRNA was significantly increased in RFC samples compared 

to IFC, while the opposite was true of EGF expression. There were no differences in 

the expression of TSP-1 or MPO between groups.  

Both EGF and TSP-1 are stored in platelet granules (185) and elevated plasma levels 

could reflect differences in thrombus composition and platelet activation (84,104). 

This possibility is supported by the concordance of EGF expression in plasma and 

thrombectomy samples. It is also possible that differences in thrombus type are not 

responsible for these findings. We did not observe significant differences in 

thrombus type on OCT, nor did the array analysis identify differences in other 

platelet-related molecules such as platelet factor 4 or platelet-derived growth factor. 

The discordance between TSP-1 expression in plasma and thrombectomy samples 

may, therefore, reflect local expression of TSP-1 within the coronary artery. 



 119 

Increased I-TAC mRNA in thrombectomy specimens could reflect expression by 

inflammatory cells trapped in thrombus, or aspirated atherosclerotic material. 

Post mortem studies had suggested that coronary thrombi might differ depending on 

the underlying plaque pathology. In thrombi associated with plaque erosion, platelets 

were found to be more abundant than fibrin (84), MPO positive cells more numerous 

(75) and the thrombi were found to be older (>4 days) (85). However, a study of 

thrombectomy samples from patients undergoing PPCI had failed to confirm these 

differences (87).  

 

5.6 Coronary versus peripheral circulation 

In addition to comparing RFC vs IFC within either the coronary or peripheral 

samples, we also were able to directly compare the coronary and peripheral 

circulations, to assess for differential cytokine expression between the two sampling 

pools.  

To reiterate our methodology, peripheral samples were arterial samples taken from 

the access route, which was almost exclusively the radial arterial sheath, and 

coronary samples were taken as close to the culprit lesion as possible by 

thrombectomy of the culprit artery. To be able to compare cytokine expression 

between two distinct sampling sites provides insight into the factors involved in a 

more systemic, general process as well as hopefully representing more localised 

interactions within the heart.  

Most studies that have looked to focus more clearly on the coronary vasculature have 

used selective coronary sinus (CS) catheterisation as a well-established method to 

reflect the coronary microenvironment (186). Though the venous system of the heart 

comprises variable anatomical branches, drainage is primarily via the CS into the 

right atrium (RA). In addition to electrophysiological mapping and pacing, the CS 

can be cannulated and used to study changes in flow, temperature and, more 

commonly, blood sampling. Limited studies do suggest that during regional 

ischaemic injury, sampling of CS blood does appear to define early and accurate 

measurements of myocardial metabolism in contrast with concomitant peripheral 

blood samples, which show no change (187).  
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The factors triggering coronary plaque destabilisation have traditionally been defined 

by peripheral blood sampling, which has defined a range of indices reflecting 

pathophysiological processes within the systemic circulation. Investigations using 

regional CS blood sampling have played an important role in providing a quantitative 

assessment of the various systems involved in the pathogenesis of ACS, including 

endogenous platelet activation (188) and thrombogenesis (189).  

CS sampling does have disadvantages, with the invasive nature of CS catheterisation 

carrying a risk of supraventricular arrhythmias and difficulty achieving a stable 

catheter position. In addition, activation of platelet and thrombin production remains 

a potential drawback (190). However, obtaining samples from the coronary artery 

appears to be an attractive alternative in qualifying the local environment, as it can 

be included in left-heart catheterisation or during PCI without the need for additional 

right-sided instrumentation.  

A study by Ko et al. (191) investigated the presence in STEMI patients of locally 

increased inflammatory factors in the culprit artery and compared this with samples 

taken from the peripheral arterial circulation – in this, the femoral artery. They found 

increased levels of soluble CD40 ligand, IL-6, serotonin, tissue factor and factor VII 

in the culprit coronary artery compared to those from the femoral artery. This study 

demonstrated the feasibility of obtaining blood from the coronary artery, similar to 

our study, by using a thrombectomy catheter and also highlighting differential 

expression in the coronary circulation confirmed with ELISA. 

Studies have also looked at circulating microRNAs (miRs) in transcoronary (between 

coronary sinus and aorta) settings. MiRs are small non-coding RNAs that control 

gene expression by binding to target mRNAs, thereby inducing mRNA degradation 

or repression of protein translation (192). Circulating miRs have been detected in the 

blood in cases of acute myocardial infarction (AMI) (193), and, specifically, miR-1, 

miR-133, miR-208a/b and miR-499 are predominantly increased in patients with 

ACS (194–196). Leistner et al. assessed coronary atherosclerotic plaque burden by 

OCT in patients with stable angina and measured the levels of circulating miRs 

across the CS and femoral arterial samples (197). They found that, in patients with a 

high incidence of TCFAs, there were significantly increased transcoronary gradients 

(aortic levels subtracted from CS) of miR-126-3p, miR-126-5p and miR-145-5p. 
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All of these studies indicate alternative methodologies and ways of quantifying 

transcoronary differences. In our specific study, we identified numerous cytokines in 

each plaque morphology group from within either the coronary or peripheral 

circulation. Subsequently, we identified HGF, FGF-7 and IL-19 as shared cytokines 

expressed in the both the RFC and IFC groups but from within the coronary sample, 

and, similarly, MIG and MIP-3α from the peripheral circulation. Wykrzykowska et 

al. also found up-regulation of HGF, FGF-7 and MIG in a pilot study (IBIS-1) 

undertaken to correlate coronary imaging with circulating biomarker expression in 

patients with stable angina, unstable angina and AMI (198).  

These cytokines were identified by cytokine array analysis, but we did not validate 

with ELISA due to lack of samples. However, the preliminary identification of these 

cytokines in the respective coronary and peripheral samples could be justified by 

their biological roles.  

 

5.6.1 Molecules preferentially expressed in coronary samples 

HGF has mitogenic and unique morphoregulatory functions, and is considered to act 

as a hepatotrophic and a renotrophic factor for regeneration of the liver and kidney 

subjected to various insults (199). Previous studies have shown that expression of 

HGF and its receptor, c-Met, are transiently up-regulated in the myocardium of 

developing hearts in mice (200) and HGF plasma levels are markedly elevated in 

patients with AMI (201). There is, therefore, evidence to explain why HGF might be 

locally upregulated in the coronary artery. Further support for higher local expression 

of HGF comes from the evidence that heparin is a potent inducer of HGF production. 

Matsumoto et al. showed that the addition of heparin to a culture of human 

embryonic lung fibroblasts increased the HGF concentration in the conditioned 

medium, in a dose-dependent manner (202). In our study, unfractionated heparin 

(UH) was administered after peripheral sampling and before coronary sampling. 

There is literature to suggest that the concentration of HGF is higher after 

administration of UH. A study by Seidel et al. (203) compared the levels of HGF 

after injections of unfractionated and low-molecular-weight heparin (LMWH) in 

healthy individuals. They found a significant increase in HGF from pre-treatment 

values, with the increase in HGF greater in individuals receiving UH than LMWH. 
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The timing of UH administration and literature supporting HGF concentrations with 

UH offers a plausible explanation for the increased levels of HGF in our study within 

the coronary circulation.  

FGF-7 plays an important role in the regulation of embryonic development, but 

perhaps relevant to our finding is that it is a heparin-binding protein (204), which 

might also be explained by the timing of the administration of heparin.  

IL-19 has recently been identified as an anti-inflammatory interleukin (205) and 

there is some evidence to suggest that it is mitogenic and chemotactic for endothelial 

cells (ECs) and can induce the angiogenic potential of ECs (206). Therefore, it might 

feasibly have a local role within the context of an acute inflammatory process. 

 

5.6.2 Molecules preferentially expressed in peripheral samples 

As described above, MIG/CXCL9 is an IFN-γ-inducible chemokine, with IFN-γ a 

proatherogenic cytokine expressed in atherosclerosis and arterial plaques. It is well 

described in this setting and therefore could very feasibly be a marker of systemic 

inflammation in the context of STEMI patients. 

MIP-3α/CCL-19 is a homeostatic chemokine and, via its receptor CCR7, is an 

important regulator of lymphocyte and dendritic cell trafficking during immune 

surveillance (207). There is limited data directly supporting the relationship between 

this chemokine and cardiac patients, but studies have implicated its expression in 

vascular inflammation in the skin of patients with systemic sclerosis (208).  

 

5.7 Study limitations 

The most obvious limitations of our study are the small sample size and the single-

centre design: larger studies would be required to validate our findings.  

In order to minimise disruption to the normal PPCI procedure, peripheral and 

coronary arterial blood samples were not taken simultaneously. Therefore, the time 

delay between sampling of both the peripheral and coronary samples was not 

recorded or controlled for. In addition, all of the coronary samples were taken after 

the administration of heparin, again representing a potential confounder of our 

results. This in particular might explain some of the differences we observed 
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between cytokines preferentially expressed in either the coronary or peripheral 

circulation.  

We were only able to validate a small number of the array findings with ELISAs due 

to limited plasma samples. Ideally, we would have performed ELISAs on all of the 

cytokines identified by array analysis, which might have confirmed further cytokines 

showing preferential expression to RFC or IFC, as well as being able to validate the 

transcoronary differences we observed. 

Out of the 7 cytokines tested with ELISA, only 3 were positively validated. It is 

important to validate arrays with cytokine specific ELISA as there is always the 

possibility of getting false positives with the array. Although the data sets derived 

from the arrays were complete, there is always the possibility of experimental user 

error, therefore justifying the use of ELISA to reduce human error as much as 

possible. The antibody array only detects relative expression and differences between 

samples. The density of chemoluminescence as quantified by imaging software 

determines the amount of expression for a particular antibody. ELISA is a more 

precise method for the detection and quantification of the specific protein. The array 

does not specifically quantify the amount of protein in a sample as opposed to 

ELISA. Another possibility for the differences seen could be that both the cytokine 

array and ELISA were not done simultaneously. ELISAs were only done after all of 

the cytokine arrays were completed. This would have meant that the samples were 

thawed initially for the cytokine array, refrozen and then thawed again for the 

ELISA. This process might have influenced the specific quantity of protein measured 

and detected by ELISA. Finally, the ELISA data did mostly mirror the array data, so 

although statistical significance was not achieved with all of the ELISAs, this could 

be purely down to the numbers derived and not reaching enough statistical 

significance with that particular test.  

Our study cohort did not represent the entire STEMI population. We had specific 

exclusion criteria to ensure we were only recruiting patients on whom it was safe to 

perform OCT while only slightly delaying the overall procedure time. Therefore, we 

were unable to include every STEMI patient; but, given the nature of the study, this 

was the only feasible, safe approach we could use. For example, patients presenting 

with cardiogenic shock were not included in the study, primarily for safety reasons. 

There also would have been some patients who did not even make it to hospital and 
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died before arrival. Had data from these patients been included, this might have also 

changed our results, as this would be incorporating a more representative STEMI 

population. In real terms however, this was a pilot study and it would not have been 

ethical or feasible to include the entire STEMI population. 

We had to exclude patients for whom we were unable to adequately perform 

thrombectomy or OCT, in addition to the patients we were unable to classify due to 

excess residual thrombus. Therefore, we eliminated patients from subsequent 

analysis that could have made our findings more generalisable, although this is a 

recognised problem in other OCT-based studies, with up to 25% of plaque 

morphology unclassifiable due to residual thrombus (86,87). 

It is also worth noting the small possibility that OCT/thrombectomy might traumatise 

the vessel and lead to misclassification of pathology. This issue affects the majority 

of studies in this field of research, and only a minority of patients do not require 

thrombectomy (209). In addition, our protocol permitted the use of a small 

predilatation balloon to facilitate OCT acquisition in cases in which sufficient TIMI 

flow had not been re-established, in keeping with other studies (102). Some studies 

had specifically excluded patients if thrombus aspiration alone had not established 

good coronary flow, in order to reduce the possibility of misclassification (87,209). 

Plaque erosion is essentially a histological diagnosis and, although our OCT findings 

classified morphologies, there was no pathological validation. True pathological 

validation is impossible because studying the samples post mortem of patients who 

had died from ACS is fundamentally very different from classifying in vivo those 

who have survived and have been treated with antithrombotics. The absence of 

endothelial cells is a key pathological criterion for plaque erosion, but OCT cannot 

detect endothelial cell loss. In conjunction with other OCT-based studies, the OCT 

definition of plaque erosion is based primarily on a diagnosis of exclusion requiring 

the absence of a fibrous cap rupture, and we have used the term IFC as a surrogate 

for this (97).  

Another limitation of our study was the omission of body mass index data.  During 

the PPCI procedure, weight was estimated but not routinely recorded. Height was not 

recorded in any of the patients meaning that there was no assessment of body mass 

index. Given the recent data suggesting that there is an association between obesity 
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and a vulnerable lipid rich plaque, it would have been worthwhile to see whether we 

could have found any similar associations. 

 

Although the assessment of left ventricular systolic function post myocardial 

infarction was not the main focus of our study, a further limitation was that there was 

no measure taken to investigate the intra and inter operator reproducibility between 

the different sonographers responsible for performing transthoracic 

echocardiography and reporting left ventricular function. If the study were repeated, 

ideally only one sonographer would be used to perform and report the 

echocardiograms for all of the patients recruited to reduce variability in assessment. 

 

Patients on immune modulating drugs e.g steroids, methotrexate or monoclonal 

antibody medications were not excluded from the study. The medications patients 

were taking prior to presenting with an acute STEMI were not recorded. This is a 

limitation of the study since pre-existing medications used for chronic inflammatory 

conditions might have affected the results and these patient samples, thereby 

potentially demonstrating a predilection for pro inflammatory cytokines on the 

arrays.  

 

In our study, we did not record an admission cholesterol level. This was primarily 

because it was felt that there was variation in cholesterol with an acute myocardial 

infarction and that this was not the key parameter we were addressing in our study. 

However, it might have been worthwhile to measure, record and compare baseline 

total cholesterol, LDL and HDL between plaque rupture and erosion to determine if 

there was any significant association with either pathology. Given that ruptured 

plaques are lipid-rich and eroded plaques tend to be more fibrous, there might have 

been an association between elevated cholesterol and plaque rupture. Similarly, the 

admission statin use for each patient recruited into the study was not recorded. 

Because of the increasing success of LDL-lowering therapies associated with statin 

use, one might expect a rise in the proportion of ACS caused by erosion. In our 

relatively small study, we may have been able to demonstrate possible associations 

between statin therapy and plaque erosions had we recorded statin use for each 

patient.  
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With regards to events adjudication, there was no independent, blinded, events 

adjudication committee. This is a limitation of the study and going forward, if the 

study was to be repeated, an independent blinded committee would be in place to 

review events and adjudicate whether any events that did occur during the follow-up 

phase were cardiac or non-cardiac. This would then act as a more robust measure to 

determine whether an event should be included in MACCE.  

 

5.8 Implications 

Our study has several unique features that distinguish it from previous studies. Our 

observations are novel and support the concept that different atherosclerotic 

pathologies may be associated with distinct intracoronary inflammatory profiles. 

We have demonstrated the feasibility of studying different plaque pathologies using 

intracoronary blood sampling, OCT and multiplex arrays to screen for molecular 

differences. The cytokines identified have been shown to be involved in mechanisms 

that make them plausible candidates for driving or facilitating plaque destabilisation. 

This supports the validity of our approach to studying potential triggers of plaque 

erosion and rupture.  

Large-scale proteomic studies would also be worthwhile now that we have 

demonstrated that our approaches to sample collection, intravascular imaging, 

cytokine arrays and ELISAs have been feasible and reproducible. Our methodology 

could also be extended to other ACS patients (NSTEMI/unstable angina). Both of 

these approaches might provide further validation of our findings, as well as 

allowing the identification of further novel biomarkers for plaque erosion or rupture. 

This may facilitate the ability to screen high-risk patients, as well as customisation of 

treatment according to the underlying pathology (91,210). 

We sampled coronary blood from the infarct-related artery, which appears to provide 

a more accurate reflection of the inflammatory processes within the culprit lesion 

compared to peripheral samples. We also demonstrated preferential expression of 

some cytokines for the coronary circulation, which might be explained by the timing 

of administration of heparin.  

However, it is worth noting that any future studies would have to refer to the latest 

European Society of Cardiology guidelines, which suggest that routine thrombus 
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aspiration is not recommended, except in the cases of large residual thrombus burden 

(211). This follows on from the safety concerns raised from the TOTAL trial, which 

demonstrated an increase in the risk of stroke when comparing routine aspiration 

thrombectomy with PCI versus PCI alone in STEMI patients (212). Patients would 

therefore have to be informed about the potential risks of thrombectomy prior to 

obtaining verbal assent whilst also explaining that it is not routine practice to 

perform thrombectomy anymore. This new guidance may affect patient recruitment 

in the future and the ability to perform a similar study. 

 

5.9 Future directions for research 

5.9.1 Endothelial cells 

The leading hypothesis for plaque erosion is endothelial cell loss of an 

atherosclerotic plaque, which thereby exposes a thrombogenic extracellular matrix to 

blood. The vascular endothelium is an interface between the blood stream and vessel 

wall. Any changes in this layer are believed to be of primary importance in the 

pathogenesis of atherosclerosis and in acute thrombosis. The balance of cell loss and 

cell replacement maintains the healthy, intact endothelium.  

Endothelial cell loss may be due to cell death (e.g. apoptosis, necrosis) or detachment 

of viable cells. Replacement is due to proliferation of differentiated endothelial cells 

as well as recruitment of endothelial progenitor cells (EPCs) and to sites of injury 

(213).  

Circulating apoptotic EPCs (CD34+, Annexin V+, 7-ADD-) are increased in ACS 

compared to healthy subjects and correlate with the burden of coronary atheroma 

(214). Prospective studies in stable coronary artery disease have shown that subjects 

with lower circulating EPC numbers generally have worse outcomes than those with 

higher EPC numbers (215,216).  

EMPs (CD31+, Annexin V+) have also been demonstrated in patients both with stable 

coronary disease and ACS (216–218), and levels correlate with cardiovascular 

outcomes, disease severity and endothelial dysfunction.  
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CECs are increased in many conditions associated with vascular injury, including 

myocardial infarction and unstable angina, but are not increased in stable coronary 

artery disease (219).  

Flow cytometry is an established methodology for identifying all three cell fragments 

– EPCs, EMPs and CECs, and determining cell counts in the studies mentioned 

above. 

Endothelial cell apoptosis is an attractive explanation for the disappearance of 

endothelial cells in plaque erosion. There is circumstantial evidence, including 

studies of chemically induced endothelial cell apoptosis in a rabbit femoral artery 

model, which results in vessel thrombosis and a histological appearance similar to 

plaque erosion (62,220). Using an endothelial marker, CD31, Quillard et al. (70) 

found that clusters of apoptotic endothelial cells were evident in smooth muscle 

(characteristic of erosion) rich atheromatous plaques in patients who had died after 

myocardial infarction.  

It therefore seems very plausible that all three cell types – EMPs, EPCs and CECs – 

are likely to be present in both plaque rupture and erosion, but it is not known 

whether there are any qualitative or quantitative differences.  

An extension of our study would therefore be to undertake a prospective 

observational study of endothelial cells using flow cytometry of blood samples from 

patients undergoing PPCI in a similar way to the PEPs study. The aim would then be 

to correlate these findings with plaque morphology to increase our understanding of 

the endothelium and, ultimately, plaque erosion. 

 

5.9.2 Thrombospondin-1  

We have demonstrated significantly increased levels of TSP-1 in the coronary 

circulation of patients with plaque erosion compared to rupture. Our data is purely 

observational and the significance of elevated TSP-1 in IFC is unclear. Proving a 

causal role requires additional evidence. TSP-1 has many modulatory roles within 

the endothelium but specifically has been shown to induce endothelial cell apoptosis 

in cultured cell and animal models (148,149). It would therefore seem sensible to 

pursue the investigation of TSP-1 in its potential role of plaque erosion.  
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Animal models where rapid atherosclerosis can develop are very useful for 

understanding this pathological process. Apolipoprotein E (Apo E) knockout mice 

show impaired clearing of plasma lipoproteins and develop atherosclerosis in a short 

time.  

We could therefore investigate the effect of TSP-1 infusion in Apo E mice to 

determine the time course of plasma levels achieved and also assess arterial histology 

with a particular emphasis on vascular structure and endothelial apoptosis. We could 

also apply the model of measuring endothelial cell fragments to see if there is a 

relationship between TSP-1 and, for example, circulating EPCs. Infusion of TSP-1 

might also affect the incidence of plaque morphologies such that we might see an 

increased frequency of plaque erosion, given that we think TSP-1 might primarily act 

on the endothelium. 

5.9.3 Multicentre work 

Subsequent to the publication of the work from this thesis, multicentre collaborations 

would be a logical step in helping to understand further about the aetiology of plaque 

erosion. Our methodology has been shown to be feasible and reproducible for a small 

cohort of patients. A larger cohort of patients from numerous centres would provide 

more robust data with which stronger inferences and conclusions could be drawn 

regarding preferential cytokine expression. Our method of cytokine arrays, followed 

by ELISA is reproducible but onerous. Using alternative techniques such as mass 

spectrometry might enable screening of a much larger range of cytokines. In 

addition, further work defining the influence of shear stress on the incidence of 

endothelial erosion in coronary arteries needs to be undertaken in order to try and 

understand the specific conditions in which erosion is likely to occur. Combining 

models of elevated and reduced shear stress in conjunction with mass spectrometry 

might yield more specific cytokines particular to plaque erosion.   
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Chapter 6: Conclusion 

We have demonstrated a significant difference in the cytokine profiles of RFC and 

IFC in vivo, including the novel findings that I-TAC is preferentially expressed in 

RFC and IFC is associated with elevated intracoronary EGF and TSP-1 levels. Some 

of these differences are also reflected in the mRNA analysis of thrombectomy 

samples. These results may help to further understand the pathophysiology of plaque 

erosion and potentially tailor future treatment strategies. Our results suggest that our 

methodology is a safe and feasible approach for studying the potential triggers of 

plaque erosion.  

We have achieved our primary objectives of demonstrating the utility, safety and 

feasibility of this combined methodology and correlating expression of cytokines 

with plaque morphology. As a result, we have improved our understanding of the 

pathophysiology of plaque erosion.  

Further work including larger trials is required to establish whether or not these 

differences play a causal role in the different pathologies, or simply reflect different 

secondary responses.  
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1.0 Research and ethics committee letter of approval 

 

 

 

 

 

A Research Ethics Committee established by the Health Research Authority 

 

 
NRES Committee London - Camden & Islington 

Room 001 
Jarrow Business Centre 

Rolling Mill Road 
Jarrow 

Tyne & Wear 
NE32 3DT 

 
Telephone: 0191 428 3476 

24 November 2014 
 
Dr Alisdair Ryding 
Norfolk and Norwich University Hospital NHS Foundation Trust 
Department of Cardiology 
Norfolk and Norwich University Hospital 
Level 3, East Block 
Norwich 
NR4 7UY 
 
Dear Dr Ryding 
 
Study title: Plaque Erosion Pilot Study: A single centre, prospective 

observational pilot study comparing the molecular 
biology of plaque rupture and plaque erosion in patients 
with ST elevation myocardial infarction undergoing 
Primary PCI. 

REC reference: 14/LO/1901 
IRAS project ID: 161361 
 
Thank you for your letter of 17 November 2014, responding to the Committee’s request for 
further information on the above research and submitting revised documentation. 
 
The further information has been considered on behalf of the Committee by the Chair and 
Committee Member, Dr Andy Petros. 
 
We plan to publish your research summary wording for the above study on the HRA website, 
together with your contact details. Publication will be no earlier than three months from the 
date of this opinion letter.  Should you wish to provide a substitute contact point, require 
further information, or wish to make a request to postpone publication, please contact the 
REC Assistant, Miss Donna Bennett, nrescommittee.london-camdenandislington@nhs.net. 
 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised, subject to the conditions specified below. 
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2.0 Patient information sheet and consent form 

 

 

Title: The PEP Study – Plaque Erosion Pilot Study 

PEPS: A single-centre, prospective observational pilot study comparing the 

molecular biology of plaque rupture and plaque erosion in patients with ST 

Elevation Myocardial Infarction undergoing primary PCI. 

Information sheet for PEP Study patients 

PART 1 

1. Invitation 

You are being invited to take part in a research study called ‘The PEP study’. Before you 

decide, it is important for you to know why the research is being done and what it will 

involve. Please take time to read the following information carefully. Feel free to discuss it 

with others if you wish.  

Part 1 tells you the purpose of this study and what will happen to you if you take part.  

Part 2 gives you more detailed information about the conduct of the study.  

Ask us if there is anything that is not clear or if you want more information. Take your time 

to decide if you wish to participate. 

2. Aim of the study 

The aim of this study is to investigate the different causes of heart attack.  

3. What is the purpose of the study? 

The study is being conducted in patients who have had a heart attack. We know that heart 

attacks are caused by the sudden blockage of an artery supplying blood to the heart. In most 

cases, the artery is furred up due to fatty material, known as atherosclerosis. In about two-

thirds of heart attacks, the fatty material suddenly bursts (known as plaque rupture) and this 

triggers a blood clot that blocks the artery.  

In the other one-third of cases, there appears to be a more subtle trigger for clotting/blockage 

(known as plaque erosion). Very little is known about the causes of this, and the purpose of 

this study is to improve our understanding. Eventually, this may help us to improve the 

treatment and prevention of heart attacks in the future. 
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4. Why have I been invited? 

You have just suffered a heart attack, and an emergency procedure to unblock one of your 

heart arteries has been successfully performed. During this procedure the doctor removed a 

blood clot from the blocked artery as well as a small amount of blood. Normally, this is 

discarded, but in your case, we have stored the samples so that, with your permission, we can 

analyse these for specific molecules that we think might be important. In addition, we have 

taken very detailed pictures of the inside of one of your heart arteries using a special camera, 

so that we can work out what triggered the heart attack.  

5. Do I have to take part? 

No. Your participation in this study is entirely voluntary and you are under no pressure to 

take part. If you agree to enter the study and later change your mind, you may withdraw 

from the study at any time, without affecting your routine treatment or care in any way.  

6. What will happen to me if I take part? 

A member of the research team will talk to you about the study to see if you are interested in 

taking part. If you say yes, you will be provided with this patient information sheet, which 

you should read and discuss with your family and friends. If you are still interested in taking 

part you will be asked to give written consent about 24 hours later. Your blood samples and 

heart artery pictures from the procedure will then be retained and analysed for research 

purposes. 

Before you are discharged you will have a comprehensive medical history and clinical 

examination, blood tests to assess the degree of heart damage, electrocardiograms (ECG) and 

an echocardiogram, which are part of normal clinical practice.  

After you have been discharged home, a member of the research team will contact you on 

the telephone at intervals of three, six and twelve months to see how you are managing 

following your heart attack. Each telephone conversation will last for anything between five 

to fifteen minutes. We will discuss whether you have encountered any symptoms such as 

chest pain, shortness of breath or any other medical problems you may have encountered 

since your heart attack. If we cannot contact you for any reason, we may contact your GP for 

the same information. 

You will not need to re-attend the hospital after you have been discharged for the purposes 

of the research study. 
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7. Expenses and payments 

There are no payments for taking part in this study. You will not incur any expenses by 

participating in this study. 

8. What will I have to do?  

If you participate in this study, we will analyse your blood samples and heart artery pictures. 

You will not have to do anything, but we will contact you over the telephone for updates on 

your health. Apart from this, you will receive the same treatment as someone who has had 

similar treatment for a heart attack but is not participating in the study. 

9. What are the possible disadvantages and risks of taking part 

There are no obvious disadvantages or risks to taking part in this study.  

The emergency treatment that you have received is essentially the same as you would 

otherwise have received if you had not been in this study. The only differences are that more 

detailed pictures of your heart arteries were taken, and the blood clot/blood samples removed 

from your blocked artery have been saved for analysis. These procedures are often used as 

part of standard care in selected cases, and do not add any significant risk to the procedure 

with only a minor increase in your exposure to x-rays.  

No aspect of this study will compromise or delay your treatment. Also, it should not 

unnecessarily inconvenience you after discharge. 

10. What are the possible benefits of taking part? 

We cannot guarantee any personal benefit from participating in this study. However, if you 

participate in this study you will have the advantage that your health and your heart will be 

monitored more closely than patients who do not take part. 

By taking part in this study you will also be contributing to the improvement and 

understanding of patients who present with acute heart attacks. 

11. What if there is a problem?  

Any complaint about the way you have been treated during the study or any possible harm 

you might suffer will be addressed. (Further detailed information in Part 2.) 

12. Will my taking part in this study be kept confidential? 

Yes. All the information about your participation in this study will be kept confidential. The 

details are included in Part 2. 

Thank you for taking the time to read this. 

This completes Part 1 of the Information Sheet. 
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If the information in Part 1 has interested you and you are considering participating, 

please read the additional information in Part 2 before making a decision.  
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PART 2 

1. What if relevant new information becomes available? 

The study will be scrutinised by an independent data monitoring committee. Its role is to 

check that the study is run correctly and to ensure that patients remain safe. If this committee 

or the research doctors hear of relevant new information during the course of this study, they 

will tell you about it. If the study is stopped for any reason, we will tell you and arrange for 

your care to continue. 

2. What will happen if I don’t want to carry on with the study? 

If you wish us to stop collecting your medical information then we will do so. However, we 

will need to use the information collected up until the time that you decided to withdraw 

from the study, unless you tell us you want all your information withdrawn. 

3. What if there is a problem? 

If you are concerned about any aspect of this study, you should ask to speak to one of the 

researchers who will do their best to answer your questions.  

If you remain unhappy and wish to complain formally, you can do this through the NHS 

Complaints Procedure. Details can be obtained from the Patient Advice and Liaison Service 

(PALS) (01603 289036). 

If something goes wrong and you are harmed during the study due to someone’s negligence, 

then you may have grounds for a legal action for compensation against the hospital involved, 

but you may have to pay your legal costs. The normal NHS complaints mechanisms will still 

be available to you. 

NHS hospitals are unable to agree in advance to pay compensation for non-negligent harm 

(situations where no one can be blamed for what happened). However, NHS Trusts are able 

to consider offering an ex gratia payment in the case of a claim. 

4. Will my taking part in this study be kept confidential? 

All information that is collected about you during the course of this study will be kept 

strictly confidential according to the Data Protection Act 1998. Information on paper will be 

kept in locked filing cabinets and, where possible, behind security-coded, locked doors. 

Electronic information will be kept on computers that are protected by passwords.  

The electronic data we store for this study will be kept on a database. You will be assigned a 

unique study code in place of your name. Only members of the research team will have 
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access to your name and address from the study code, so that you can be contacted as part of 

the follow-up.  

Any information about you that leaves the hospital will be anonymous and anything that 

could identify you (name, date of birth, address, hospital number) will be removed and you 

will only be identified by a study code. When the study is reported to the funding body, 

published in medical journals or presented at conferences, it will not be possible to identify 

you personally. 

Representatives from regulatory authorities may need to look at your medical records and 

the data collected in the study to check that the study was carried out correctly. All will have 

a duty of confidentiality to you. 

6. What will happen to the results of the research study? 

Once the study is complete and analysed, the results will be submitted for publication in a 

scientific journal and presented at scientific conferences. Your confidentiality will be 

maintained and you will not be identified in any report or publication of this study. If you 

wish to see the results when they are published, let the researcher who obtains consent from 

you know and a copy of the results can be sent to you.  

7. Who is organising and funding the research? 

The research is organised and sponsored by Norfolk and Norwich University Hospitals NHS 

Trust.  

8. Who has reviewed the study? 

The study was reviewed by independent experts and has been given a favourable ethical 

opinion by the NRES Committee London – Camden and Islington Research Ethics 

Committee. It has been reviewed and gained Trust approval from Norfolk and Norwich 

University Hospital Research & Development Department. 

9. Further information and contact details  

If you have any questions about this study please contact: 

Co-investigator: Dr Sujay Chandran, Cardiology Research Fellow 

Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk 

NR 4 7UY. United Kingdom 

Local Principal Investigator contact details: Dr Alisdair Ryding 01603 387930 

Thank you for considering taking part in this study. 
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If you decide to participate, you will be asked to sign a consent form and will be given a 

copy of this information sheet and the consent form to keep. 
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Consent Form 

Study Title:  Plaque Erosion Pilot Study – PEP Study 

Study Number:  2014CARD06L 

Principal Investigator: Dr Alisdair Ryding 

 

 

Patient                                                                     CRF ID: 

name:                                                            

 

 

 Please read the following statements and put your initials in the 

box to show that you have read and understood them and that you 

agree with them. 

Please initial each 

box 

1 I confirm that I have read and understand the information sheet dated  

3 September 2014 for the above study. I have had the opportunity to 

consider the information, ask questions and have had these answered 

satisfactorily.  

 

2 I understand that my involvement is voluntary and that I am free to 

withdraw at any time, without giving any reason and without my 

medical care or legal rights being affected. 

 

3 I understand that relevant sections of any of my medical notes and 

data collected during the study may be looked at by responsible 

individuals from the Sponsor or authorised by the Sponsor, from 

regulatory authorities or from the NHS Trust, where it is relevant to 

my taking part in this research. I give permission for these individuals 

to have access to my records.  

 

4 I understand that a member of the research team will contact my GP 

informing them of my participation the study. 
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5 I understand that if I withdraw from the study early, or the study staff 

are unable to contact me, the study site (study doctor and/or staff) 

would like permission to make the following contacts.   

PLEASE TICK THE BOXES IF YOU AGREE: 

   The study site has my permission to contact me to collect 

information or to review publically available records (if available 

and allowed by local law) on how I am doing at what would have 

been the end of the study. 

    The study site has my permission to contact my GP (General 

Practitioner) who will review my medical records and tell the 

study staff how I am doing at what would have been the end of 

the study. 

       

6 In the event that I withdraw from the study early, I understand that the 

information collected about me cannot and will not be used in the 

study.  

 

 

To be filled in by the patient 

 

I agree to take part in the above study 

 

 

 

 

 

Your name Date 

(Day/Month/Year) 

   e.g. 14/July/2006) 

Signature 
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To be filled in by the person obtaining consent (investigator) 

 

I confirm that I have explained the nature, purposes and possible effects of the research study to the 

person whose name is printed above. They agreed to take part by signing and dating above. 

 

 

 

 

Name of Investigator  

(or person obtaining consent if 

different from Investigator) 

Date 

(Day/Month/Year) 

   e.g. 14/July/2006) 

Signature 

 

Impartial Witness 

At least one impartial witness is mandatory when the patient is unable to read or write. An impartial 

witness must be present during the entire informed consent discussion. 

 

I confirm that the information in the consent form was accurately explained to, and apparently 

understood by, the patient, and that consent was freely given by the patient. 

 

 

 

 

Name of Impartial Witness 

 
Date 

(Day/Month/Year) 

   e.g. 14/July/2006) 

Signature 
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Instructions to Study Staff 

• File one copy in the patient’s notes 

• File one copy in the trial folder 

• Give one copy to the patient 
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3.0 List of cytokines from Proteome Profiler™ Human XL Cytokine Array Kit 

(R&D Systems, Abingdon, UK) ARY022  

Adiponectin/Acrp30  

Aggrecan  

Angiogenin  

Angiopoietin-1  

Angiopoietin-2  

BAFF/BLyS/TNFSF13B – B-cell activating factor/B lymphocyte stimulator/tumor 

necrosis factor ligand SuperFamily member 13B  

BDNF – Brain-derived neurotrophic factor  

C5a – Complement factor 5a  

CCL2/MCP-1 – CC chemokine ligand 2/monocyte chemoattractant protein-1 

CCL3/CCL4 (MIP-1α/ MIP-1β) – CC chemokine ligand 3/chemokine ligand 4 

(macrophage inflammatory protein-1α/macrophage inflammatory protein 1β 

CCL5/RANTES – CC chemokine ligand 5/regulated on activation normal T-cell 

expressed and secreted  

CCL7/MCP-3 – CC chemokine ligand 7/monocyte chemoattractant protein-3 

CCL17/TARC – CC chemokine ligand 17/thymus-and activation-regulated 

chemokine  

CCL19/MIP-3β – CC chemokine ligand 19/macrophage inflammatory protein-3β 

CCL20/MIP-3α – CC chemokine ligand 20/macrophage inflammatory protein-3α 

CD14 - Cluster of differentiation 14  

CD30/TNFRSF8 – Cluster of differentiation 30/tumour necrosis factor ligand 

SuperFamily member 8  

CD40 Ligand/TNFSF5 – Cluster of differentiation 40/tumour necrosis factor ligand 

SuperFamily member 5  

Chitinase 3-like 1, Complement Factor D, CRP – C-reactive protein, Cripto-1 

CXCL1/GROa – CXC chemokine ligand 1/growth-regulated protein α  



169 
 

 

CXCL4/PF4 – CXC chemokine ligand 4/platelet factor 4  

CXCL5/ENA-78 – CXC chemokine ligand 5/epithelial neutrophil-activating peptide-

78  

CXCL8/IL-8 CXC chemokine ligand 8/interleukin-8  

CXCL9/MIG – CXC chemokine ligand 9/monokine induced by interferon-gamma 

CXCL10/IP-10 – CXC chemokine ligand 10/interferon gamma-induced protein 10 

CXCL11/ I-TAC – CXC chemokine ligand 11/interferon-inducible T-cell alpha 

chemoattractant  

CXCL12/SDF-1a - CXC chemokine ligand 12/stromal cell-derived factor 1 cystatin C  

Dkk-1 – Dickkopf-related protein-1  

DPPIV/CD26 – Dipeptidyl peptidase 4/cluster of differentiation 26  

EGF – Epidermal growth factor  

Endoglin/CD105 – Cluster of differentiation 105  

EMMPRIN/CD147 – Extracellular matrix metalloproteinase inducer/cluster of 

differentiation 147  

Fas Ligand/TNFSF6 - Tumour necrosis factor ligand SuperFamily member 6  

FGF basic – Fibroblast growth factor basic  

KGF/FGF-7 – Keratinocyte growth factor/fibroblast growth factor-19  

FGF-19 – Fibroblast growth factor-19,  

Flt-3 Ligand – Fms-related tyrosine kinase 3 ligand  

G-CSF – Granulocyte-colony stimulating factor  

GDF-15 – Growth differentiation factor-15  

GM-CSF – Granulocyte-macrophage colony-stimulating factor  

Growth hormone  

HGF – Hepatocyte growth factor  

ICAM-1/CD54 – Intercellular adhesion molecule-1/cluster of differentiation 54 
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IFN-γ – Interferon-γ  

IGFBP-2 – Insulin-like growth factor binding protein-2  

IGFBP-3 – Insulin-like growth factor binding protein-3  

IL-1α /IL-1F1 – Interleukin-1α  

IL-1β/IL-1F2 – Interleukin-1β  

IL-1ra/IL-1F3 – Interleukin-1 receptor antagonist  

IL-2 – Interleukin-2  

IL-3 – Interleukin-3 

IL-4 – Interleukin-4  

IL-5 – Interleukin-5  

IL-6 – Interleukin-6 

IL-10 – Interleukin-10  

IL-11 – Interleukin-11  

IL-12 p70 – Interleukin-12  

IL-13 – Interleukin-13  

IL-15 – Interleukin-15  

IL-16 – Interleukin-16  

IL-17A – Interleukin-17A 

IL-18 BPα – Interleukin-18 binding protein α  

IL-19 – Interleukin-19  

IL-22 – Interleukin-22  

IL-23 – Interleukin-23  

IL-24 – Interleukin-24 

IL-27 – Interleukin-27  

IL-31 – Interleukin-31  
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IL-32a/β/γ – Interleukin-32α/β/γ  

IL-33 – Interleukin-33  

IL-34 – Interleukin-34  

Kallikrein 3/ PSA – Prostate-specific antigen  

Leptin  

LIF – Leukaemia inhibitory factor  

Lipocalin-2/NGAL – Neutrophil gelatinase-associated lipocalin  

M-CSF – Macrophage colony stimulating factor  

MIF – Macrophage migration inhibitory factor  

MMP-9 – Matrix metalloproteinase-9  

Myeloperoxidase  

Osteopontin  

PDGF-AA – Platelet-derived growth factor-AA  

PDGF-AB/BB – Platelet-derived growth factor –AB/BB  

Pentraxin 3/TSG-14 – Tumour necrosis factor stimulating gene-14  

RAGE – Receptor for advanced glycation endproducts  

RBP4 – Retinol binding protein 4 

Relaxin-2  

Resistin  

Serpin E1/PAI-1 – Plasmin activator inhibitor type 1  

SHBG – Sex hormone binding globulin  

ST2/IL-1 R4 – Interleukin-1 receptor-like 4  

TFF3 – Trefoil factor 3  

TfR – Transferrin receptor  

TGF-α – Transforming growth factor-α  
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TSP-1 - Thrombospondin-1  

TNF-α – Tumour necrosis factor-α 

uPAR – Urokinase-type plasminogen activator receptor  

VEGF – Vascular endothelial growth factor  

Vitamin D BP – Vitamin D binding protein 
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4.0 Table 1: Cytokines within peripheral samples demonstrating preferential 

expression 
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EGF -2.87 -0.88 0.31 1.84 0.00 30.34 12.64 11.76 Erosion 

Thrombospondin-1 -2.11 -0.94 0.45 1.92 4.31 28.94 14.07 13.12 Erosion 

CD40 ligand -2.25 -0.46 0.20 1.38 4.31 28.63 12.07 11.61 Erosion 

ENA-78 -1.58 -0.39 0.25 1.31 10.78 35.67 13.75 13.35 Erosion 

IL-24 -1.73 -0.36 0.21 1.29 10.78 32.26 10.30 9.94 Erosion 

IL-11 -1.85 -0.34 0.18 1.26 10.78 30.53 11.09 10.75 Erosion 

Angiopoietin-2 -1.56 -0.33 0.21 1.26 10.78 36.11 11.54 11.21 Erosion 

MIF -1.78 -0.26 0.15 1.20 10.78 31.55 13.87 13.61 Erosion 

Endoglin -1.37 -0.26 0.19 1.20 10.78 41.69 14.79 14.53 Erosion 

Leptin -1.16 -0.68 0.59 1.61 25.61 50.31 13.55 12.86 Erosion 

BDNF -0.99 -0.49 0.49 1.40 25.61 57.66 12.79 12.30 Erosion 

Dkk-1 -1.23 -0.33 0.27 1.26 25.61 47.20 10.76 10.44 Erosion 

IFN-? -1.24 -0.30 0.24 1.23 25.61 46.61 10.48 10.18 Erosion 

DPPIV -1.10 -0.30 0.27 1.23 25.61 52.83 14.84 14.54 Erosion 

IL-31 -1.24 -0.29 0.23 1.22 25.61 46.91 9.64 9.35 Erosion 

LIF -1.17 -0.28 0.24 1.21 25.61 49.88 9.93 9.66 Erosion 
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IL-10 -1.07 -0.27 0.26 1.21 25.61 54.20 10.26 9.99 Erosion 

MCP-3 -1.29 -0.24 0.19 1.18 25.61 44.71 9.76 9.53 Erosion 

IL-1a -0.92 -0.22 0.23 1.16 29.79 60.94 10.44 10.22 Erosion 

TGF-a -0.97 -0.21 0.22 1.16 29.79 58.89 9.81 9.59 Erosion 

Serpin E1 -0.89 -0.18 0.20 1.13 29.79 62.64 15.42 15.23 Erosion 

MIP-3a -0.82 -0.18 0.22 1.13 29.79 65.86 9.58 9.40 Erosion 

IL-6 -0.86 -0.18 0.20 1.13 29.79 63.89 10.72 10.55 Erosion 

IL-27 -0.81 -0.17 0.21 1.13 29.79 66.47 10.58 10.41 Erosion 

PDGF-AA -0.84 -0.17 0.20 1.12 29.79 64.82 15.04 14.87 Erosion 

FGF-19 -0.82 -0.17 0.20 1.12 29.79 66.09 12.45 12.28 Erosion 

IL-13 -0.80 -0.16 0.20 1.12 29.79 67.09 9.47 9.31 Erosion 

IL-32a/ÃŸ/? -0.85 -0.15 0.18 1.11 29.79 64.63 10.12 9.97 Erosion 

Angiogenin -0.81 -0.10 0.12 1.07 29.79 66.22 15.51 15.41 Erosion 

IL-1ÃŸ -0.73 -0.17 0.23 1.12 30.84 69.93 9.87 9.71 Erosion 

MIP-1a/MIP-1ÃŸ -0.70 -0.16 0.23 1.12 31.86 71.54 9.18 9.02 Erosion 

Myeloperoxidase -0.62 -0.21 0.33 1.15 33.33 74.87 10.66 10.45 Erosion 

IL-15 -0.59 -0.16 0.28 1.12 34.77 76.59 9.68 9.52 Erosion 

PDGF-AB/BB -0.54 -0.13 0.25 1.10 36.16 78.73 14.59 14.46 Erosion 
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BAFF -0.48 -0.14 0.30 1.10 47.22 81.36 13.39 13.25 Erosion 

IP-10 -0.40 -0.12 0.29 1.09 49.38 84.40 10.32 10.20 Erosion 

G-CSF -0.41 -0.11 0.27 1.08 49.38 84.17 9.51 9.40 Erosion 

IL-1ra -0.37 -0.12 0.32 1.08 51.43 85.93 10.31 10.19 Erosion 

IL-4 -0.34 -0.08 0.23 1.06 52.42 87.15 10.83 10.76 Erosion 

TARC -0.30 -0.08 0.28 1.06 54.57 88.74 11.77 11.69 Erosion 

GRO-a -0.29 -0.06 0.22 1.05 54.57 89.09 10.51 10.45 Erosion 

IL-33 -0.25 -0.05 0.21 1.04 56.71 90.51 9.50 9.45 Erosion 

GDF-15 -0.22 -0.06 0.28 1.04 57.60 91.46 13.79 13.72 Erosion 

IL-23 -0.20 -0.05 0.25 1.03 58.38 92.39 9.62 9.57 Erosion 

RAGE -0.16 -0.04 0.23 1.03 60.70 93.49 11.05 11.02 Erosion 

M-CSF -0.14 -0.03 0.22 1.02 60.70 93.95 10.35 10.32 Erosion 

IL-34 -0.11 -0.03 0.24 1.02 61.40 94.65 8.99 8.97 Erosion 

IL-5 -0.08 -0.02 0.28 1.01 61.47 95.37 8.94 8.92 Erosion 

Cripto-1 -0.07 -0.01 0.21 1.01 61.47 95.45 9.82 9.80 Erosion 

I-TAC 2.80 0.76 0.27 1.69 0.00 20.12 11.29 12.04 Rupture 

MIP-3ÃŸ 2.09 0.60 0.29 1.52 0.00 23.61 10.51 11.12 Rupture 

MIG 1.82 0.54 0.29 1.45 0.00 34.11 10.50 11.04 Rupture 
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CD30 1.85 0.47 0.26 1.39 0.00 32.68 10.27 10.74 Rupture 

Aggrecan 1.91 0.46 0.24 1.37 0.00 29.80 13.98 14.44 Rupture 

MMP-9 2.00 0.42 0.21 1.34 0.00 26.42 13.49 13.91 Rupture 

IL-18 BPa 1.81 0.37 0.20 1.29 0.00 34.45 11.85 12.21 Rupture 

TFF3 1.87 0.29 0.15 1.22 0.00 31.68 13.47 13.76 Rupture 

Complement Factor 

D 

1.86 0.24 0.13 1.18 0.00 31.94 14.67 14.91 Rupture 

RANTES 1.64 0.28 0.17 1.22 4.98 42.39 14.68 14.97 Rupture 

Lipocalin-2 1.63 0.23 0.14 1.17 4.98 42.79 14.88 15.11 Rupture 

Adiponectin 1.73 0.23 0.13 1.17 4.98 38.07 15.02 15.26 Rupture 

MCP-1 1.42 0.29 0.21 1.23 7.19 51.44 11.70 11.99 Rupture 

Osteopontin 1.44 0.22 0.16 1.17 7.19 50.78 13.70 13.93 Rupture 

Chitinase 3-like 1 1.51 0.21 0.14 1.15 7.19 48.08 15.29 15.50 Rupture 

IL-2 1.28 0.38 0.30 1.30 10.78 56.41 9.53 9.90 Rupture 

Resistin 1.28 0.35 0.27 1.28 10.78 56.20 12.75 13.10 Rupture 

TfR 1.26 0.25 0.19 1.19 10.78 56.83 11.59 11.83 Rupture 

IL-3 1.11 0.30 0.27 1.23 15.62 61.66 8.79 9.09 Rupture 

CD14 1.09 0.19 0.17 1.14 15.62 62.41 13.00 13.19 Rupture 
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GM-CSF 1.03 0.19 0.18 1.14 15.62 64.32 10.38 10.57 Rupture 

Cystatin C 1.10 0.17 0.15 1.12 15.62 61.93 14.25 14.42 Rupture 

ST2 0.94 0.26 0.28 1.20 17.97 67.43 12.91 13.18 Rupture 

Fas Ligand 0.92 0.23 0.25 1.17 17.97 68.46 10.74 10.97 Rupture 

IL-19 0.93 0.23 0.25 1.17 17.97 67.92 9.86 10.09 Rupture 

Relaxin-2 1.00 0.21 0.22 1.16 17.97 65.54 10.27 10.48 Rupture 

uPAR 0.94 0.20 0.21 1.15 17.97 67.49 11.81 12.01 Rupture 

IL-17A 0.93 0.17 0.18 1.12 17.97 68.02 12.41 12.58 Rupture 

Kallikrein 3 0.85 0.28 0.33 1.21 20.99 71.11 10.51 10.79 Rupture 

TNF-alpha 0.78 0.36 0.45 1.28 25.61 73.61 10.57 10.93 Rupture 

ICAM-1 0.77 0.15 0.20 1.11 25.61 74.01 14.37 14.52 Rupture 

Complement 

Component C5/C5a 

0.73 0.12 0.16 1.08 25.61 75.66 13.51 13.62 Rupture 

C-Reactive Protein 0.76 0.08 0.11 1.06 25.61 74.53 15.51 15.59 Rupture 

IGFBP-3 0.68 0.11 0.16 1.08 29.79 77.70 13.96 14.07 Rupture 

FGF basic 0.47 0.11 0.24 1.08 47.22 85.78 11.38 11.49 Rupture 

EMMPRIN 0.43 0.09 0.20 1.06 47.22 87.15 13.89 13.98 Rupture 

VEGF 0.40 0.09 0.22 1.06 47.22 88.50 10.05 10.14 Rupture 
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Vitamin D BP 0.45 0.06 0.13 1.04 47.22 86.45 15.36 15.41 Rupture 

RBP4 0.39 0.05 0.12 1.03 47.22 88.80 15.78 15.83 Rupture 

SHBG 0.33 0.04 0.14 1.03 51.43 90.86 14.30 14.35 Rupture 

FGF-7 0.26 0.07 0.27 1.05 54.57 92.87 9.72 9.79 Rupture 

Flt-3 Ligand 0.23 0.06 0.28 1.05 54.57 93.81 10.48 10.54 Rupture 

IGFBP-2 0.27 0.04 0.16 1.03 54.57 92.76 13.94 13.99 Rupture 

HGF 0.18 0.09 0.52 1.07 56.71 94.85 11.50 11.59 Rupture 

Angiopoietin-1 0.17 0.05 0.29 1.03 56.71 95.08 11.98 12.03 Rupture 

IL-12 p70 0.16 0.03 0.21 1.02 56.71 95.19 10.00 10.04 Rupture 

PF4 0.19 0.02 0.13 1.02 56.71 94.66 15.41 15.44 Rupture 

Growth Hormone 0.14 0.07 0.55 1.05 57.60 95.60 11.53 11.61 Rupture 

Pentraxin-3 0.07 0.01 0.19 1.01 59.89 96.23 11.50 11.52 Rupture 

SDF-1a 0.09 0.01 0.17 1.01 59.89 96.15 12.29 12.31 Rupture 

IL-22 0.05 0.01 0.26 1.01 60.70 96.33 11.10 11.11 Rupture 

IL-8 0.03 0.01 0.21 1.01 60.70 96.33 10.00 10.01 Rupture 

IL-16 0.03 0.01 0.22 1.00 60.70 96.33 9.46 9.46 Rupture 
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5.0 Table 2: Cytokines within coronary samples demonstrating preferential 

expression 
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BDNF -2.65 -1.06 0.40 2.08 0.00 33.72 13.30 12.25 Erosion 

EGF -3.66 -0.99 0.27 1.99 0.00 33.51 12.70 11.72 Erosion 

Thrombospondin-1 -2.08 -0.96 0.46 1.94 3.05 35.04 13.98 13.02 Erosion 

ENA-78 -2.18 -0.53 0.24 1.44 3.05 34.55 13.67 13.14 Erosion 

IL-24 -1.94 -0.42 0.22 1.34 7.16 36.25 10.26 9.83 Erosion 

IL-10 -1.69 -0.39 0.23 1.31 7.16 40.48 10.27 9.88 Erosion 

PDGF-AA -1.81 -0.37 0.21 1.29 7.16 38.18 15.07 14.70 Erosion 

Dkk-1 -1.56 -0.34 0.22 1.27 7.16 43.22 10.82 10.48 Erosion 

IL-11 -1.61 -0.30 0.19 1.23 7.16 42.09 10.94 10.64 Erosion 

Leptin -1.33 -0.81 0.61 1.75 9.41 48.55 13.20 12.39 Erosion 

Myeloperoxidase -1.28 -0.35 0.27 1.27 9.41 49.74 10.51 10.16 Erosion 

Angiopoietin-1 -1.42 -0.34 0.24 1.27 9.41 46.48 12.14 11.79 Erosion 

PDGF-AB/BB -1.35 -0.34 0.25 1.26 9.41 48.04 14.62 14.28 Erosion 

Serpin E1 -1.53 -0.33 0.22 1.26 9.41 44.02 15.48 15.14 Erosion 

FGF-19 -1.39 -0.32 0.23 1.25 9.41 47.28 12.45 12.13 Erosion 

IFN-? -1.38 -0.30 0.22 1.23 9.41 47.32 10.53 10.23 Erosion 

Angiopoietin-2 -1.29 -0.26 0.20 1.20 9.41 49.57 11.48 11.22 Erosion 
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BAFF -1.11 -0.36 0.33 1.28 16.81 54.05 13.29 12.93 Erosion 

DPPIV -1.13 -0.30 0.27 1.23 16.81 53.51 14.85 14.55 Erosion 

IL-1a -1.10 -0.27 0.25 1.21 16.81 54.35 10.61 10.34 Erosion 

Endoglin -1.07 -0.21 0.20 1.16 16.81 55.00 14.69 14.48 Erosion 

IL-31 -0.89 -0.22 0.24 1.16 27.87 60.24 9.56 9.34 Erosion 

TARC -0.76 -0.22 0.28 1.16 34.12 65.08 11.65 11.43 Erosion 

IL-27 -0.81 -0.17 0.21 1.13 34.12 63.02 10.46 10.29 Erosion 

TGF-a -0.81 -0.17 0.21 1.12 34.12 63.22 9.84 9.67 Erosion 

CD40 ligand -0.66 -0.16 0.24 1.12 37.31 68.93 11.89 11.73 Erosion 

IL-13 -0.70 -0.16 0.22 1.11 37.31 67.13 9.41 9.25 Erosion 

IL-4 -0.67 -0.15 0.23 1.11 37.31 68.61 10.62 10.47 Erosion 

IL-19 -0.64 -0.15 0.23 1.11 37.31 69.62 9.92 9.77 Erosion 

IL-32a/ÃŸ/? -0.64 -0.12 0.18 1.08 37.31 69.58 9.88 9.76 Erosion 

MCP-3 -0.56 -0.12 0.21 1.08 41.18 72.97 9.62 9.50 Erosion 

IL-22 -0.46 -0.11 0.25 1.08 43.14 76.82 11.09 10.98 Erosion 

MIP-1a/MIP-1ÃŸ -0.44 -0.11 0.26 1.08 43.14 77.50 9.14 9.03 Erosion 

Flt-3 Ligand -0.48 -0.11 0.23 1.08 43.14 75.98 10.63 10.52 Erosion 

LIF -0.43 -0.09 0.21 1.07 43.14 77.60 9.59 9.49 Erosion 

GDF-15 -0.35 -0.10 0.28 1.07 47.66 80.35 13.78 13.69 Erosion 
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G-CSF -0.35 -0.09 0.25 1.06 47.66 80.30 9.62 9.53 Erosion 

GRO-a -0.29 -0.07 0.23 1.05 47.66 81.95 10.39 10.32 Erosion 

IL-33 -0.34 -0.06 0.17 1.04 47.66 80.78 9.33 9.28 Erosion 

MIF -0.30 -0.05 0.17 1.04 47.66 81.63 13.70 13.64 Erosion 

Angiogenin -0.29 -0.03 0.11 1.02 47.66 82.05 15.49 15.46 Erosion 

RAGE -0.15 -0.04 0.26 1.03 52.01 84.72 11.22 11.19 Erosion 

IL-15 -0.14 -0.03 0.24 1.02 52.01 84.78 9.62 9.59 Erosion 

IL-1ÃŸ -0.16 -0.03 0.19 1.02 52.01 84.56 9.75 9.72 Erosion 

IL-34 -0.10 -0.02 0.24 1.02 52.01 85.19 8.96 8.94 Erosion 

Pentraxin-3 -0.09 -0.02 0.19 1.01 52.01 85.26 11.47 11.45 Erosion 

MIG 2.36 0.84 0.36 1.80 0.00 19.86 11.62 12.46 Rupture 

I-TAC 2.29 0.59 0.26 1.51 0.00 20.22 11.27 11.86 Rupture 

MMP-9 2.03 0.44 0.22 1.36 0.00 21.86 13.43 13.88 Rupture 

Aggrecan 1.81 0.41 0.23 1.33 0.00 23.93 13.95 14.36 Rupture 

Lipocalin-2 2.70 0.38 0.14 1.30 0.00 17.57 14.70 15.08 Rupture 

IL-18 BPa 1.95 0.31 0.16 1.24 0.00 22.51 11.74 12.05 Rupture 

Osteopontin 1.95 0.29 0.15 1.22 0.00 22.51 13.55 13.84 Rupture 

TFF3 1.97 0.28 0.14 1.22 0.00 22.33 13.31 13.59 Rupture 

Complement Factor D 1.80 0.23 0.13 1.17 0.00 24.01 14.76 14.99 Rupture 
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Chitinase 3-like 1 1.74 0.21 0.12 1.16 0.00 24.73 15.31 15.53 Rupture 

HGF 1.57 0.79 0.50 1.73 3.05 27.52 13.89 14.68 Rupture 

TNF-alpha 1.48 0.54 0.36 1.45 3.05 29.46 10.41 10.94 Rupture 

FGF-7 1.56 0.39 0.25 1.31 3.05 27.79 10.30 10.69 Rupture 

RANTES 1.62 0.27 0.17 1.21 3.05 26.56 14.67 14.94 Rupture 

Adiponectin 1.61 0.20 0.12 1.15 3.05 26.76 15.12 15.31 Rupture 

Resistin 1.45 0.33 0.23 1.26 7.16 30.21 12.53 12.86 Rupture 

TfR 1.40 0.31 0.22 1.24 7.16 31.67 11.45 11.76 Rupture 

CD14 1.46 0.26 0.18 1.20 7.16 30.01 12.99 13.25 Rupture 

IP-10 1.03 0.36 0.35 1.28 14.64 46.21 10.55 10.91 Rupture 

CD30 1.09 0.26 0.24 1.20 14.64 43.13 10.28 10.54 Rupture 

IL-2 0.95 0.24 0.25 1.18 14.64 50.02 9.67 9.91 Rupture 

uPAR 1.09 0.20 0.18 1.15 14.64 43.13 11.56 11.76 Rupture 

IL-16 1.08 0.20 0.19 1.15 14.64 43.75 9.29 9.49 Rupture 

Relaxin-2 0.95 0.18 0.19 1.14 14.64 49.93 10.09 10.28 Rupture 

IL-12 p70 0.96 0.17 0.18 1.13 14.64 49.56 9.79 9.97 Rupture 

Cystatin C 1.09 0.17 0.15 1.12 14.64 43.15 14.28 14.45 Rupture 

IGFBP-2 0.86 0.13 0.15 1.10 14.64 55.24 13.89 14.02 Rupture 

SHBG 0.95 0.12 0.13 1.09 14.64 50.01 14.16 14.29 Rupture 
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C-Reactive Protein 1.16 0.11 0.09 1.08 14.64 39.97 15.52 15.62 Rupture 

IL-1ra 0.74 0.24 0.32 1.18 20.59 61.82 10.39 10.63 Rupture 

ST2 0.79 0.21 0.27 1.16 20.59 58.78 12.72 12.93 Rupture 

MIP-3ÃŸ 0.77 0.17 0.22 1.13 20.59 60.11 10.59 10.76 Rupture 

GM-CSF 0.69 0.14 0.20 1.10 20.59 64.37 10.48 10.61 Rupture 

SDF-1a 0.77 0.13 0.17 1.10 20.59 59.75 12.04 12.17 Rupture 

Complement Component 

C5/C5a 

0.77 0.12 0.16 1.09 20.59 59.74 13.58 13.70 Rupture 

IGFBP-3 0.80 0.12 0.15 1.09 20.59 58.54 13.98 14.10 Rupture 

RBP4 0.67 0.08 0.11 1.05 20.59 65.35 15.74 15.82 Rupture 

Kallikrein 3 0.57 0.18 0.32 1.14 24.88 70.40 10.46 10.65 Rupture 

FGF basic 0.62 0.17 0.28 1.13 24.88 68.09 11.46 11.63 Rupture 

Fas Ligand 0.59 0.14 0.24 1.10 24.88 69.22 10.89 11.03 Rupture 

ICAM-1 0.57 0.12 0.21 1.09 24.88 70.55 14.24 14.36 Rupture 

VEGF 0.55 0.12 0.21 1.08 24.88 71.10 9.80 9.91 Rupture 

IL-17A 0.53 0.11 0.20 1.08 24.88 72.19 12.33 12.43 Rupture 

EMMPRIN 0.42 0.08 0.19 1.06 31.96 76.67 13.93 14.01 Rupture 

MIP-3a 0.41 0.07 0.18 1.05 31.96 77.15 9.45 9.52 Rupture 

IL-8 0.37 0.11 0.30 1.08 34.12 78.53 10.24 10.35 Rupture 
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Vitamin D BP 0.33 0.06 0.19 1.04 37.31 79.77 15.27 15.33 Rupture 

M-CSF 0.29 0.06 0.19 1.04 37.31 80.84 10.13 10.18 Rupture 

MCP-1 0.23 0.05 0.21 1.03 41.18 82.48 11.76 11.81 Rupture 

IL-23 0.13 0.02 0.17 1.02 47.66 84.30 9.56 9.58 Rupture 

Growth Hormone 0.07 0.04 0.55 1.03 48.93 85.03 11.14 11.18 Rupture 

IL-3 0.07 0.02 0.25 1.01 48.93 85.04 9.05 9.07 Rupture 

IL-5 0.05 0.02 0.33 1.01 48.93 85.19 8.95 8.97 Rupture 

Cripto-1 0.06 0.01 0.20 1.01 48.93 85.13 9.84 9.86 Rupture 

IL-6 0.04 0.01 0.21 1.01 48.93 85.27 10.66 10.67 Rupture 

PF4 0.05 0.01 0.11 1.00 48.93 85.18 15.42 15.43 Rupture 
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6.0 Tables of mean spot pixel densities for cytokine arrays (Arbitrary units – 

AU)           

Table 3: Array data for BDNF  

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

1619.81 34882.7 10611.21 625.96 22387.3 6584.81 

2900.17 7953.29 11809.96 3198.86 3106.48 11850.66 

14412.46 7474.32  7397.75 2138.67  

6313.98 4950.92  62597.48 2467.05  

2261.5 27665.25  1927.61 15541.2  

1084.91 24715.14  2064.87 27184.01  

15995.32 951.16  17955.76 557.99  

19724.66 10074.41  36269.89 4876.81  

9124.26 8611.12  8436.85 4238.2  

11342.13 8184.71  10837.17 4414.36  

5074.6 6354.13  3657.79 3100.11  

4365.72 1857.12  4056.15 2117.43  

334.23 2885.64  223.08 2814.95  

2916.09 48498.59  1920.4 61561.85  

1823.58 27293.94  1419.39 62653.56  

2005.26   1042.42   
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2242.82   2522.41   

142.2   285.92   

6510.73   4337.81   

4212.31   1722.9   

7934.75   5129.92   

7934.98   5272.96   

6559.58   7361.38   

Units – AU 
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Table 4: Array data for EGF 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

2326.81 9272.93 3550.51 1361.29 7232.25 3869.76 

3772.61 4522.81 4045.41 4502.77 2865.22 7440.79 

2862.49 4163.73  2600.15 2451.77  

3007.71 1620.87  12221.79 1369.51  

2266.21 32054.28  2406.92 19868.02  

1581.47 20553.85  2187.31 19380.51  

3908.14 556.53  4691.3 303.68  

5438.94 2697.65  8546.47 2591.55  

8485.33 11124.82  11108.86 7330.25  

9479.08 4501.11  8373.49 5991.25  

3934.28 6266.03  3317 3907.67  

2522.89 3213.84  1145.95 3404.23  

397.81 3204.68  287.38 2887.97  

1150.81 23602.6  767.13 31159.27  

794.9 4823.03  992.4 39510.35  

507.36   593.2   

2196.52   2445.85   

125.54   291.08   
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4296.46   2706.76   

4003.94   1030.4   

5363.12   2590.27   

9712.49   6273.17   

7711.31   8543.58   

Units – AU 
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Table 5: Array data for growth hormone 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

1295.41 -27.49 1431.87 1751.43 0 2959.93 

2337.51 -32.26 6636.22 2004.95 0 19481.59 

2689.24 22107.31  2117.76 31403.07  

624.31 166.86  813.15 221.56  

2589.72 3345.95  3376.93 3403.58  

4419.59 36846.44  2659.92 29909.37  

1574.57 157.07  4534.97 126.72  

5040.98 2608.95  8425.94 2550.31  

12629.46 3859.59  17101.87 3626.55  

9770.6 3135.81  14421.06 4336.64  

744.45 5061.06  488.56 4011.19  

946.59 1366.53  1439.8 3832.81  

601.02 7922.73  469.29 10757.1  

225.22 696.87  455.43 1393.84  

3576.55 403.03  6817.9 1709.58  

219.55   307.78   

245.74   1686.36   

-23.8   304.63   
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8595.15   960.98   

1146.91   1275.05   

2360.49   2616.01   

29282.67   24200.11   

2027.7   2753.97   

Units – AU 
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Table 6: Array data for I-TAC 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

2769.5 3929.57 4972.33 2629.14 2267.23 13536.88 

5542.18 689.09 2405.83 8372.38 407.14 3507.24 

1696.11 1942.51  1709.71 1503.3  

2099.4 917.68  5292.45 565.95  

1961.26 6077.83  1987.2 4652.25  

1420.99 3128.27  2828.07 2966.16  

4258.77 599.54  8403.77 255.66  

9634.59 2694.57  11102.02 2566.6  

5335.2 4203.71  5099.78 4271.09  

4514.21 4371.79  3239.86 4315.52  

7335.61 2377.67  7413.57 1497.87  

6227.13 912.46  4598.52 1691.41  

1135.43 2670.21  874.45 2860.09  

1701.07 2462.83  1372.99 2162.06  

1686.48 330.99  1796.62 5211.31  

1290.08   1874.63   

2188.8   2462.8   

443.19   1158.11   
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8222.57   2739.51   

1882.37   780.54   

5025.32   4966.05   

6617.63   3987.87   

5169.16   4257.22   

Units – AU 
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Table 7: Array data for leptin 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

964.36 22648.9 2171.05 760.78 21506.17 3578.29 

6439.48 62565.64 417.99 10258.45 64598.21 405.85 

1200.5 6484.07  1418.95 8263.95  

8736.71 396.55  17406.63 610.86  

2245.11 60337.31  2195.63 60264.58  

1305.41 6957.84  2630.87 7532.96  

3255.23 681.02  5291.62 1136.07  

62196.88 2559.21  63964.47 2488.17  

5382.79 48973.89  5004.79 48165.9  

15995.39 7726.82  22520.5 23675.66  

8559.84 9788.26  11180.98 8926.56  

1847.45 417.99  2365.87 405.85  

677.65 6459.81  1047.43 8663.79  

2866.77 62466.85  5303.3 62185.14  

2171.05 62635.38  3578.29 62564.12  

6482.07   10446.84   

2463.5   4459.29   

1772.7   6685.71   
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7839.14   3533.62   

4087.96   4086.77   

2708.76   3564.83   

5609.5   3146.09   

20884.45   50485.65   

Units – AU 
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Table 8: Array data for MIG 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

6135.87 9798.82 7343.11 1148.68 0 3229.3 

6036.23 9757.27 2311.18 1401.08 0 1024.2 

3805.21 3634.98  1213.1 1206.8  

3777.42 636.01  14081.69 156.24  

4002.06 10501.55  953.44 3378.76  

652.43 2454.92  4394.25 6962.06  

4435.54 1418.71  1416.42 198.58  

17581.2 6223.13  3462.04 1068.13  

7292.04 4450.08  3463.08 3490.26  

5372.56 3883.64  2215.72 1577.84  

11921.69 2943.74  3776.57 806.78  

7876.05 1255.6  1600.26 732.32  

1602.16 2891.81  148.36 2808.32  

2452.12 1394.28  257.27 2865.7  

2112.33 272.43  459.12 6589.06  

2484.21   224.11   

2492.27   605.93   

596.11   229.96   
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7805.03   4313.94   

2922.44   505.57   

7959.36   2728.25   

6182.64   1982.71   

6357.29   2969.62   

Units – AU 
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Table 9: Array data for MMP-9 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

14528.18 16842.64 15607.43 13139.94 26058.18 18557.57 

15528.38 30635.46 10025.58 26663.69 28935.68 19003.05 

22519.34 20023.77  16890.95 19649.23  

14238.92 4118.79  14969.37 4474.22  

19133.94 25411.66  15720.05 29006.91  

18490.28 34471.46  19206.19 26986.91  

17221.47 4327.05  19245.15 2431.89  

15246.75 7989.08  17249.65 6011.31  

17613.9 8483.97  16640.38 8510.19  

24714.01 11876.43  19562.98 9367.94  

11724.75 4744.85  10907.21 3423.36  

18619.38 3696.76  16550.59 8851.63  

5264.44 8921.48  3931.53 8144.92  

6004.41 8824.01  5910.08 10386.98  

4239.39 3529.85  5541.76 12647.78  

2029.91   4550.15   

6732.89   7546.45   

2341.96   4148.85   
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18480.58   8159.34   

11445.79   8107.75   

7903.1   13433.78   

21315.71   13287.5   

21963.2   27658.39   

Units – AU 
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Table 10: Array data for MPO 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

1306.07 206.18 925.85 215.27 36.12 622.52 

380.27 -32.26 636.5 947.8 405.08 1297.15 

1572.03 1055.11  1603.51 832.16  

444 230.53  1410.1 154.67  

697.62 5610.64  516.25 3219.13  

672.17 2718.72  727.45 4757.67  

386.06 608.27  941.39 193.31  

681.33 785.03  719.79 152.6  

3641 4118.03  2860.48 4044.52  

2840.23 894.8  22857.44 2468.54  

1011.99 1020.73  731.08 933.34  

1552.57 666.34  1105.04 1082.85  

334.02 2848.43  194.17 2840.89  

172.93 1740.9  184.41 5160.4  

162.47 748.83  143.91 4181.84  

105.05   62.01   

-14.93   1079.91   

16.28   164.28   
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1256.58   229.44   

975.47   488.65   

2641.2   2531.37   

4053.44   3176.12   

4192.22   4635.62   

Units – AU 
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Table 11: Array data for TSP-1 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

8257.4 9241.64 6054.08 5114.97 12195.22 6701.52 

7136.03 6862.71 3052.92 9445.47 6413.61 5367.53 

5603.82 6862.57  4301.36 5594.82  

3526.71 2281.59  8937.88 1624.18  

6453.15 59975.95  5192.5 56975.7  

4506.43 59256.93  6475.84 59909.15  

6108.54 1520.53  6293.87 707.35  

5512.13 2632.09  6231.38 2573.12  

56102.85 40504.06  55441.48 31267.32  

49974.52 29624.28  51469.16 33089.75  

7927.83 22357.72  6054.97 16762.2  

7335.13 14580.73  5927.34 21266.9  

1139.1 27464.6  788.79 30974.9  

1956.74 34900.9  1466.08 48785.6  

1480.92 12229.03  1832.24 43450.82  

630.75   1105.9   

2429.5   2542.53   

339   1044.95   
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5646.12   3384.68   

4321.67   2897.46   

37550.13   38972.28   

60441.75   49551.61   

58379.57   60568.34   

Units – AU 
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7.0 Tables of ELISA calculated mean plasma concentrations (pg/mL or ng/mL) 

Table 12: ELISA data for BDNF 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

1455.37 8736.55 2964.35 865.31 7952.3 3695.82 

4763.24  16209.65 5070.37  13351.1 

4591.71 1044.48  5331.57 542.13  

2136.77 27131.24  23361.29 12653.77  

5720.46   5265.46   

1079.75 4357.33  1293.79 9860.33  

11405.85 1308.89  Invalid 

Result 

4234.85  

15925.6 5865.95  20877.48 18239.24  

1210.02   9135.94   

4785.39 2084.04  8137 4153.8  

5669.31   3991.35   

 4150.93   5015.8  

1579.75 1492.72  4279.1 3086.61  

9539.01   7018.89   

2498.23   3926.14   

10325.19   4443.13   
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950.96   5784.48   

1478.11   4994.7   

4610.18   10602.97   

2107.23   6028.6   

2605.86   6814.87   

1269.24   4598.89   

1357.94   3150.85   

Units - pg/mL 
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Table 13: ELISA data for EGF 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

13.575 177.875 96.5625 11.25 286.3875 68.6625 

104.5125 166.375 478.0625 40.025 186.775 236.3375 

99.1375 82.2875  55.775 54.1875  

Invalid 

Result 

216.475  452.825 149.7125  

62.425 171.8375  58.5 94.4125  

46.4875 70.3625  14.5625 156.025  

165.1625 46.4875  Invalid 

Result 

96.675  

210.6125 171.825  339.1125 228.3625  

82.9625 177.875  33.75 83.3875  

77.325 66.025  78.475 62.7625  

197.0125 331.2875  71.9 132.825  

Invalid 

Result 

142.3125  42.6 81.7875  

Invalid 

Result 

81.95  35.2875 69.75  

118.8875 510.2125  123.7625 91.0875  

72.4875 919.55  29.1625 254.4625  
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249   84.475   

Invalid 

Result 

  88.875   

17.7875   46.275   

117.5875   143.8375   

154.0875   106.875   

196.9125   25.4875   

53.4625   81.9125   

38.7   49.7625   

Units – pg/mL 
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Table 14: ELISA data for growth hormone 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

Invalid 

Result 

Invalid 

Result 

Invalid 

Result 

450.496 145.064 216.512 

Invalid 

Result 

Invalid 

Result 

2606.345 251.91 608.34 4923.846 

Invalid 

Result 

2283.07  1157.05 5448.648  

Invalid 

Result 

Invalid 

Result 

 200.164 31.648  

Invalid 

Result 

Invalid 

Result 

 1043.576 215.086  

289.605 3683.62  1204.72 5259.304  

Invalid 

Result 

Invalid 

Result 

 Invalid 

Result 

197.468  

Invalid 

Result 

Invalid 

Result 

 1213.394 951.84  

1287.565 Invalid 

Result 

 2433.512 482.26  

585.585 151.745  1885.174 833.89  

Invalid 1889.61  Invalid 2938.49  
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Result Result 

Invalid 

Result 

701.415  473.258 1673.792  

Invalid 

Result 

2642.71  896.03 4408.366  

Invalid 

Result 

Invalid 

Result 

 166.298 499.122  

1848.4 Invalid 

Result 

 3472.87 249.95  

Invalid 

Result 

  346.172   

Invalid 

Result 

  352.764   

356.915   218.66   

1442.39   356.074   

219.445   619.582   

Invalid 

Result 

  886.912   

2805.85   5115.456   

Invalid 

Result 

  286.124   

Units – pg/mL 
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Table 15: ELISA data for I-TAC 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

115.716 1607.456 2555.94 127.672 290.22 439.78 

877.132  1526.46 216.38  943.086 

2122.368 1319.64  90.572 250.76  

2236.496 1001.338  Invalid 

Result 

100.272  

1494.022   200.684   

1692.73 1034.612  34.822 243.89  

Invalid 

Result 

1322.498  Invalid 

Result 

927.956  

941.468 260.7  324.1 214.924  

1231.414   109.858   

2070.426 1599.668  Invalid 

Result 

360.784  

2513.242   637.798   

 674.112   545.888  

253.616 666.42  305.448 642.242  

1469.642   478.326   

1530.758   788.308   

1861.306   807.742   
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500.044   251.184   

843.282   312.15   

1801.202   931.394   

1826.04   817.032   

1799.044   1680.53   

1896.428   1182.008   

2150.958   1023.402   

Units – pg/mL 
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Table 16: ELISA data for leptin  

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

2785.9 15475.6 7094.6 2366.6 19246.8 11398.9 

13995.3 56922.8 Invalid 

Result 

13100.5 52387.2 Invalid 

Result 

2288 9510.8  617.7 6515.5  

17637.1 4516.4  32946.1 4160.9  

6592.2 27087.2  8207.4 31814.3  

3683.9 1466.1  5387 2067.6  

3485.3 4343.6  Invalid 

Result 

8075.4  

88382.5 3732.6  88446.8 6071.4  

2010.1 18766.4  1245.3 23398.8  

6247.6 5330.7  6228.7 12685.5  

15146.6 6544.3  13887.1 5919.3  

1676.2 Invalid 

Result 

 2956.9 Invalid 

Result 

 

5912.9 5532.4  5006.8 8427  

6164.6 21781.9  15830 24392.2  

7094.6 22903.9  11398.9 6433.3  
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39691.6   32836.7   

7738.5   14562.8   

51625   39056.2   

8782.7   11311.5   

5893.7   10503   

1876.6   6514.4   

1417.8   4647   

6303.8   12336.5   

Units – pg/mL 
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Table 17: ELISA data for MIG 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

20.462 159.476 144.84 26.121 78.093 152.226 

Invalid 

Result 

 101.013 Invalid 

Result 

 65.277 

40.896 90.998  47.23 125.886  

200.445 Invalid 

Result 

 98.425 25.049  

112.05 70.301  92.614 50.226  

76.921 84.388  103.06 47.988  

Invalid 

Result 

140.425  Invalid 

Result 

117.863  

211.715 103.06  133.239 Invalid 

Result 

 

Invalid 

Result 

162.426  66.551 128.203  

Invalid 

Result 

199.661  45.692 124.954  

354.941 Invalid 

Result 

 260.976 Invalid 

Result 

 

128.664 Invalid 

Result 

  Invalid 

Result 

 

51.689 23.949  44.125 Invalid  
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Result 

97.904 176.081  84.388 Invalid 

Result 

 

144.401 359.278  148.768 40.067  

164.52   140.869   

47.23   Invalid 

Result 

  

30.186   12.118   

174.446   134.146   

118.819   48.741   

172.395   159.053   

209.01   60.708   

180.147   62.687   

Units – pg/mL 
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Table 18: ELISA data for MMP-9 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

31.6 25.3 29.25 62.1 140.1 89.05 

86.75 168.15 225.4 206.35 206.65 1040.8 

182.1 96.45  584.45 101.85  

86.45 53.6  23.25 79.15  

101.85 47.8  150.6 98.7  

164.3 59.95  193.45 86.75  

124.1 114.3  Invalid 

Result 

162.8  

183 216.9  116.45 119.55  

63.2 44.15  40.85 267.4  

135.9 138.9  110.6 266.75  

20 32.1  41.3 71.3  

98.05 91  271.85 1112  

140.4 57.75  121.7 92.3  

42.1 70.25  187.8 317.95  

42.95 89.7  160.4 305.15  

53.2   161.3   

367.35   144   
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148.8   245.1   

106.25   314.9   

60.65   199.75   

41.7   118.95   

92.6   276.35   

114.95   447.3   

Units – ng/mL  
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Table 19: ELISA data for MPO 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

386 288.1 391.15 Invalid 

Result 

40.75 101.6 

702.4 609.65 718.95 104.75 118.2 Invalid 

Result 

500.65 356.35  611.7 143.9  

984.9 181.8  482.5 30.85  

712.5 445.75  101.15 14.8  

431.1 266.26  213.75 193.15  

362.45 242.5  Invalid 

Result 

86.85  

559.95 532.55  124.35 82.25  

298.6 310.35  48.25 74  

489.75 191.15  149.7 90.8  

423.95 349.15  67.65 35.35  

617.2 237.2  163.3 957  

665.3 354.6  137.15 99.7  

1.9 804.75  162 165.05  

242.6 557.9  100.05 110.3  

27.45   155.9   
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388.15   104.15   

382.75   69.95   

466.35   479.7   

282.55   96.8   

282.5   149.4   

279.25   77.9   

169.25   158.9   

Units - ng/mL 
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Table 20: ELISA data for TSP-1 

Coronary 

rupture 

Coronary 

erosion 

Coronary 

undecided 

Peripheral 

rupture 

Peripheral 

erosion 

Peripheral 

undecided 

282.3 1046.5 420.78 789.72 2053.14 1187.1 

687.34  7963.98 1419.96  9697.78 

483.08 166.96  1634.46 1216.12  

89.7 3684.64  7829.98 3185.7  

374.82   1509.8   

303.96 469.94  516.66 2708.26  

4439.38 293.3  Invalid 

Result 

742.6  

570.58 1140.38  4567.64 6156.98  

295.54   3201.76   

201 4680.72  2559.82 2619.64  

401.52   1018.92   

 2680.62   1113.46  

104.14 1578.5  1233.4 1256.06  

795.9   2166.64   

613.26   1118.42   

2143.08   1352.02   

290.56   2373.72   
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359.42   1488.78   

689   4938.58   

1183.34   2856.54   

2837.86   1676.54   

366.3   998.38   

1442.12   1030.24   

Units – ng/mL  
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8.0 Table 21: Cytokines within erosion cases demonstrating preferential 

expression for coronary or peripheral circulation 
CY

TO
KI
N
E	

D
	S
CO

RE
	

N
U
M
ER

AT
O
R(

R)
	

D
EN

O
M
IN
AT

O
R	
(S
+S
0)
	

FO
LD

	
CH

AN
G
E	

Q
	V
AL

U
E	

LO
CA

L	
FD

R	

CE
	

EX
PR

ES
SI
O
N
	

PE
	

EX
PR

ES
SI
O
N
	

RE
G
U
LA

TI
O
N
	

HGF	 2.69	 2.39	 0.89	 5.25	 0.00	 100.0

0	

11.50	 13.89	 CE	

FGF-7	 2.90	 0.58	 0.20	 1.50	 0.00	 100.0

0	

9.72	 10.30	 CE	

IL-3	 1.29	 0.26	 0.20	 1.20	 0.00	 100.0

0	

8.79	 9.05	 CE	

IP-10	 0.90	 0.23	 0.26	 1.17	 0.00	 100.0

0	

10.32	 10.55	 CE	

IL-1A	 1.08	 0.17	 0.16	 1.12	 0.00	 100.0

0	

10.44	 10.61	 CE	

FAS	LIGAND	 0.81	 0.15	 0.19	 1.11	 0.00	 100.0

0	

10.74	 10.89	 CE	

IL-2	 1.08	 0.14	 0.13	 1.11	 0.00	 100.0

0	

9.53	 9.67	 CE	

GM-CSF	 0.61	 0.09	 0.15	 1.07	 0.00	 100.0

0	

10.38	 10.48	 CE	

COMPLEMENT	

FACTOR	D	

1.16	 0.09	 0.08	 1.06	 0.00	 100.0

0	

14.67	 14.76	 CE	

FGF	BASIC	 0.40	 0.08	 0.20	 1.06	 0.00	 100.0

0	

11.38	 11.46	 CE	

COMPLEMENT	

COMPONENT	

C5/C5A	

0.74	 0.07	 0.09	 1.05	 0.00	 100.0

0	

13.51	 13.58	 CE	
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EGF	 0.43	 0.06	 0.14	 1.04	 0.00	 100.0

0	

12.64	 12.70	 CE	

IL-19	 0.31	 0.06	 0.18	 1.04	 0.00	 100.0

0	

9.86	 9.92	 CE	

IFN-?	 0.28	 0.04	 0.15	 1.03	 0.00	 100.0

0	

10.48	 10.53	 CE	

TGF-A	 0.25	 0.04	 0.15	 1.03	 0.00	 100.0

0	

9.81	 9.84	 CE	

CYSTATIN	C	 0.40	 0.03	 0.08	 1.02	 0.00	 100.0

0	

14.25	 14.28	 CE	

PDGF-AB/BB	 0.21	 0.03	 0.12	 1.02	 0.00	 100.0

0	

14.59	 14.62	 CE	

IGFBP-3	 0.20	 0.02	 0.09	 1.01	 0.00	 100.0

0	

13.96	 13.98	 CE	

IL-10	 0.06	 0.01	 0.17	 1.01	 0.00	 99.25	 10.26	 10.27	 CE	

C-REACTIVE	

PROTEIN	

0.12	 0.01	 0.06	 1.01	 0.00	 100.0

0	

15.51	 15.52	 CE	

PF4	 0.07	 0.01	 0.08	 1.00	 0.00	 99.31	 15.41	 15.42	 CE	

GROWTH	

HORMONE	

-2.31	 -0.39	 0.17	 1.31	 8.43	 40.35	 11.53	 11.14	 CE	

IL-32A/ÃŸ/?	 -1.98	 -0.24	 0.12	 1.18	 8.43	 44.00	 10.12	 9.88	 CE	

LIPOCALIN-2	 -2.18	 -0.17	 0.08	 1.13	 8.43	 42.01	 14.88	 14.70	 CE	

MIF	 -2.36	 -0.17	 0.07	 1.12	 8.43	 39.56	 13.87	 13.70	 CE	
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LEPTIN	 -1.78	 -0.35	 0.20	 1.27	 14.05	 45.05	 13.55	 13.20	 CE	

SDF-1A	 -1.67	 -0.25	 0.15	 1.19	 14.05	 45.63	 12.29	 12.04	 CE	

RESISTIN	 -1.76	 -0.22	 0.13	 1.17	 14.05	 45.14	 12.75	 12.53	 CE	

OSTEOPONTIN	 -1.57	 -0.16	 0.10	 1.11	 14.05	 46.48	 13.70	 13.55	 CE	

IL-12	P70	 -1.32	 -0.21	 0.16	 1.16	 24.09	 51.44	 10.00	 9.79	 CE	

SHBG	 -1.44	 -0.14	 0.10	 1.10	 24.09	 48.67	 14.30	 14.16	 CE	

ENDOGLIN	 -1.36	 -0.09	 0.07	 1.07	 24.09	 50.28	 14.79	 14.69	 CE	

CD40	LIGAND	 -0.96	 -0.18	 0.19	 1.13	 30.11	 63.51	 12.07	 11.89	 CE	

IL-27	 -0.98	 -0.12	 0.13	 1.09	 30.11	 62.70	 10.58	 10.46	 CE	

MCP-3	 -0.78	 -0.15	 0.19	 1.11	 41.08	 71.03	 9.76	 9.62	 CE	

MIP-3A	 -0.83	 -0.13	 0.15	 1.09	 41.08	 68.91	 9.58	 9.45	 CE	

IL-18	BPA	 -0.74	 -0.11	 0.15	 1.08	 41.08	 72.79	 11.85	 11.74	 CE	

THROMBOSPONDIN

-1	

-0.85	 -0.09	 0.11	 1.06	 41.08	 68.23	 14.07	 13.98	 CE	

ENA-78	 -0.64	 -0.08	 0.12	 1.06	 41.08	 77.29	 13.75	 13.67	 CE	

TNF-ALPHA	 -0.58	 -0.16	 0.28	 1.12	 48.44	 79.92	 10.57	 10.41	 CE	

IL-1ÃŸ	 -0.51	 -0.12	 0.24	 1.09	 48.44	 82.78	 9.87	 9.75	 CE	

IL-6	 -0.54	 -0.06	 0.11	 1.04	 48.44	 81.53	 10.72	 10.66	 CE	

IL-23	 -0.46	 -0.06	 0.13	 1.04	 48.44	 84.44	 9.62	 9.56	 CE	

MMP-9	 -0.34	 -0.06	 0.17	 1.04	 52.90	 88.36	 13.49	 13.43	 CE	
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KALLIKREIN	3	 -0.39	 -0.04	 0.11	 1.03	 52.90	 86.59	 10.51	 10.46	 CE	

IL-15	 -0.21	 -0.06	 0.31	 1.04	 56.72	 92.20	 9.68	 9.62	 CE	

MIP-1A/MIP-1ÃŸ	 -0.20	 -0.04	 0.18	 1.03	 56.72	 92.25	 9.18	 9.14	 CE	

PENTRAXIN-3	 -0.24	 -0.03	 0.13	 1.02	 56.72	 91.33	 11.50	 11.47	 CE	

I-TAC	 -0.12	 -0.02	 0.17	 1.01	 56.72	 94.69	 11.29	 11.27	 CE	

RANTES	 -0.22	 -0.02	 0.07	 1.01	 56.72	 91.77	 14.68	 14.67	 CE	

IL-22	 -0.05	 -0.01	 0.24	 1.01	 56.72	 96.56	 11.10	 11.09	 CE	

MIG	 2.83	 1.12	 0.39	 2.17	 0.00	 100.0

0	

10.50	 11.62	 PE	

BDNF	 2.91	 0.51	 0.18	 1.43	 0.00	 100.0

0	

12.79	 13.30	 PE	

IL-8	 0.71	 0.23	 0.33	 1.18	 0.00	 100.0

0	

10.00	 10.24	 PE	

RAGE	 0.93	 0.17	 0.18	 1.13	 0.00	 100.0

0	

11.05	 11.22	 PE	

ANGIOPOIETIN-1	 0.97	 0.15	 0.16	 1.11	 0.00	 100.0

0	

11.98	 12.14	 PE	

FLT-3	LIGAND	 0.82	 0.15	 0.18	 1.11	 0.00	 100.0

0	

10.48	 10.63	 PE	

G-CSF	 0.71	 0.11	 0.15	 1.08	 0.00	 100.0

0	

9.51	 9.62	 PE	

ADIPONECTIN	 1.28	 0.09	 0.07	 1.07	 0.00	 100.0

0	

15.02	 15.12	 PE	
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IL-1RA	 0.35	 0.08	 0.23	 1.06	 0.00	 100.0

0	

10.31	 10.39	 PE	

MIP-3ÃŸ	 0.34	 0.07	 0.22	 1.05	 0.00	 100.0

0	

10.51	 10.59	 PE	

MCP-1	 0.45	 0.06	 0.14	 1.05	 0.00	 100.0

0	

11.70	 11.76	 PE	

SERPIN	E1	 0.57	 0.06	 0.11	 1.04	 0.00	 100.0

0	

15.42	 15.48	 PE	

DKK-1	 0.45	 0.05	 0.12	 1.04	 0.00	 100.0

0	

10.76	 10.82	 PE	

EMMPRIN	 0.41	 0.04	 0.10	 1.03	 0.00	 100.0

0	

13.89	 13.93	 PE	

PDGF-AA	 0.34	 0.04	 0.10	 1.02	 0.00	 100.0

0	

15.04	 15.07	 PE	

CRIPTO-1	 0.16	 0.03	 0.18	 1.02	 0.00	 100.0

0	

9.82	 9.84	 PE	

CHITINASE	3-LIKE	1	 0.35	 0.02	 0.07	 1.02	 0.00	 100.0

0	

15.29	 15.31	 PE	

CD30	 0.06	 0.01	 0.21	 1.01	 0.00	 99.27	 10.27	 10.28	 PE	

DPPIV	 0.15	 0.01	 0.07	 1.01	 0.00	 100.0

0	

14.84	 14.85	 PE	

IL-5	 0.03	 0.01	 0.18	 1.00	 0.00	 98.54	 8.94	 8.95	 PE	

FGF-19	 0.03	 0.00	 0.12	 1.00	 0.00	 98.44	 12.45	 12.45	 PE	
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UPAR	 -2.22	 -0.25	 0.11	 1.19	 8.43	 41.50	 11.81	 11.56	 PE	

ST2	 -2.08	 -0.20	 0.09	 1.15	 8.43	 43.12	 12.91	 12.72	 PE	

LIF	 -1.38	 -0.35	 0.25	 1.27	 24.09	 49.92	 9.93	 9.59	 PE	

IL-4	 -1.45	 -0.21	 0.15	 1.16	 24.09	 48.33	 10.83	 10.62	 PE	

TFF3	 -1.43	 -0.16	 0.11	 1.12	 24.09	 48.77	 13.47	 13.31	 PE	

IL-11	 -1.21	 -0.15	 0.12	 1.11	 24.09	 54.37	 11.09	 10.94	 PE	

ICAM-1	 -1.25	 -0.13	 0.10	 1.09	 24.09	 53.30	 14.37	 14.24	 PE	

VITAMIN	D	BP	 -1.34	 -0.09	 0.07	 1.06	 24.09	 50.78	 15.36	 15.27	 PE	

VEGF	 -1.09	 -0.25	 0.23	 1.19	 28.10	 58.23	 10.05	 9.80	 PE	

M-CSF	 -1.10	 -0.23	 0.21	 1.17	 28.10	 58.07	 10.35	 10.13	 PE	

IL-33	 -1.12	 -0.17	 0.15	 1.12	 28.10	 57.19	 9.50	 9.33	 PE	

TFR	 -1.11	 -0.13	 0.12	 1.10	 28.10	 57.58	 11.59	 11.45	 PE	

IL-16	 -1.04	 -0.17	 0.16	 1.12	 30.11	 60.19	 9.46	 9.29	 PE	

TARC	 -0.93	 -0.12	 0.13	 1.09	 30.11	 64.44	 11.77	 11.65	 PE	

RELAXIN-2	 -0.81	 -0.18	 0.22	 1.13	 41.08	 70.05	 10.27	 10.09	 PE	

MYELOPEROXIDASE	 -0.74	 -0.14	 0.19	 1.10	 41.08	 73.11	 10.66	 10.51	 PE	

GRO-A	 -0.77	 -0.12	 0.16	 1.09	 41.08	 71.72	 10.51	 10.39	 PE	

IL-17A	 -0.78	 -0.08	 0.11	 1.06	 41.08	 71.34	 12.41	 12.33	 PE	

IGFBP-2	 -0.67	 -0.06	 0.08	 1.04	 41.08	 75.98	 13.94	 13.89	 PE	
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BAFF	 -0.52	 -0.10	 0.20	 1.07	 48.44	 82.20	 13.39	 13.29	 PE	

IL-31	 -0.45	 -0.08	 0.17	 1.06	 48.44	 84.67	 9.64	 9.56	 PE	

ANGIOPOIETIN-2	 -0.61	 -0.06	 0.10	 1.04	 48.44	 78.87	 11.54	 11.48	 PE	

RBP4	 -0.56	 -0.04	 0.07	 1.03	 48.44	 80.61	 15.78	 15.74	 PE	

IL-13	 -0.40	 -0.06	 0.15	 1.04	 52.90	 86.54	 9.47	 9.41	 PE	

IL-24	 -0.28	 -0.05	 0.16	 1.03	 56.72	 90.18	 10.30	 10.26	 PE	

AGGRECAN	 -0.33	 -0.04	 0.11	 1.03	 56.72	 88.68	 13.98	 13.95	 PE	

IL-34	 -0.14	 -0.03	 0.20	 1.02	 56.72	 94.09	 8.99	 8.96	 PE	

ANGIOGENIN	 -0.30	 -0.02	 0.06	 1.01	 56.72	 89.37	 15.51	 15.49	 PE	

CD14	 -0.15	 -0.01	 0.08	 1.01	 56.72	 93.81	 13.00	 12.99	 PE	

GDF-15	 -0.05	 -0.01	 0.10	 1.00	 56.72	 96.37	 13.79	 13.78	 PE	
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9.0 Table 22: Cytokines within rupture cases demonstrating preferential 

expression for coronary or peripheral circulation 
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HGF	 7.58	 3.09	 0.41	 8.49	 0.00	 72.23	 11.59	 14.68	 CR	

FGF-7	 4.46	 0.90	 0.20	 1.87	 0.00	 72.34	 9.79	 10.69	 CR	

IL-1ra	 2.49	 0.44	 0.18	 1.35	 0.00	 70.62	 10.19	 10.63	 CR	

Growth	Hormone	 -2.20	 -0.42	 0.19	 1.34	 0.00	 18.08	 11.61	 11.18	 CR	

IL-19	 -2.94	 -0.32	 0.11	 1.25	 0.00	 13.88	 10.09	 9.77	 CR	

IL-4	 -2.68	 -0.29	 0.11	 1.22	 0.00	 14.46	 10.76	 10.47	 CR	

uPAR	 -2.53	 -0.25	 0.10	 1.19	 0.00	 15.11	 12.01	 11.76	 CR	

TARC	 -2.11	 -0.25	 0.12	 1.19	 3.30	 19.49	 11.69	 11.43	 CR	

ICAM-1	 -2.16	 -0.16	 0.07	 1.12	 3.30	 18.63	 14.52	 14.36	 CR	

Angiopoietin-1	 -1.47	 -0.24	 0.16	 1.18	 5.70	 36.17	 12.03	 11.79	 CR	

IL-32a/ÃŸ/?	 -1.67	 -0.20	 0.12	 1.15	 5.70	 29.51	 9.97	 9.76	 CR	

MCP-1	 -1.56	 -0.18	 0.12	 1.14	 5.70	 32.82	 11.99	 11.81	 CR	

LIF	 -1.48	 -0.16	 0.11	 1.12	 5.70	 35.74	 9.66	 9.49	 CR	

ENA-78	 -1.24	 -0.22	 0.18	 1.16	 13.21	 45.06	 13.35	 13.14	 CR	

PDGF-AB/BB	 -1.17	 -0.18	 0.15	 1.13	 13.21	 47.95	 14.46	 14.28	 CR	

PDGF-AA	 -1.26	 -0.17	 0.13	 1.13	 13.21	 43.92	 14.87	 14.70	 CR	

IL-17A	 -1.20	 -0.14	 0.12	 1.10	 13.21	 46.47	 12.58	 12.43	 CR	

Kallikrein	3	 -1.32	 -0.14	 0.11	 1.10	 13.21	 41.86	 10.79	 10.65	 CR	

SDF-1a	 -1.40	 -0.13	 0.10	 1.10	 13.21	 38.52	 12.31	 12.17	 CR	
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IL-27	 -1.06	 -0.13	 0.12	 1.09	 13.21	 52.24	 10.41	 10.29	 CR	

Thrombospondin-1	 -1.31	 -0.10	 0.08	 1.07	 13.21	 42.05	 13.12	 13.02	 CR	

Aggrecan	 -1.29	 -0.09	 0.07	 1.06	 13.21	 42.89	 14.44	 14.36	 CR	

Serpin	E1	 -0.95	 -0.09	 0.09	 1.06	 17.11	 57.02	 15.23	 15.14	 CR	

IL-10	 -0.78	 -0.11	 0.14	 1.08	 19.10	 63.85	 9.99	 9.88	 CR	

SHBG	 -0.90	 -0.06	 0.06	 1.04	 19.10	 58.86	 14.35	 14.29	 CR	

TfR	 -0.59	 -0.07	 0.11	 1.05	 27.89	 70.84	 11.83	 11.76	 CR	

IL-13	 -0.36	 -0.05	 0.15	 1.04	 36.33	 77.89	 9.31	 9.25	 CR	

EGF	 -0.34	 -0.05	 0.14	 1.03	 36.33	 78.46	 11.76	 11.72	 CR	

MMP-9	 -0.27	 -0.03	 0.11	 1.02	 36.33	 80.10	 13.91	 13.88	 CR	

IL-3	 -0.17	 -0.03	 0.16	 1.02	 36.33	 82.35	 9.09	 9.07	 CR	

Flt-3	Ligand	 -0.13	 -0.02	 0.19	 1.02	 36.33	 83.03	 10.54	 10.52	 CR	

MCP-3	 -0.17	 -0.02	 0.14	 1.02	 36.33	 82.25	 9.53	 9.50	 CR	

IL-31	 -0.04	 -0.01	 0.19	 1.01	 36.33	 84.33	 9.35	 9.34	 CR	

RAGE	 1.57	 0.17	 0.11	 1.12	 38.95	 75.46	 11.02	 11.19	 CR	

Complement	Factor	D	 1.28	 0.08	 0.06	 1.05	 41.48	 78.52	 14.91	 14.99	 CR	

G-CSF	 0.89	 0.13	 0.14	 1.09	 43.20	 82.85	 9.40	 9.53	 CR	

IL-6	 0.93	 0.12	 0.13	 1.09	 43.20	 82.47	 10.55	 10.67	 CR	

IL-1a	 0.89	 0.11	 0.13	 1.08	 43.20	 82.94	 10.22	 10.34	 CR	

Fas	Ligand	 0.58	 0.06	 0.11	 1.05	 43.20	 85.72	 10.97	 11.03	 CR	

CD14	 0.65	 0.06	 0.10	 1.04	 43.20	 85.15	 13.19	 13.25	 CR	
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Cripto-1	 0.38	 0.06	 0.15	 1.04	 43.20	 86.66	 9.80	 9.86	 CR	

IFN-?	 0.33	 0.05	 0.13	 1.03	 43.20	 86.74	 10.18	 10.23	 CR	

IL-5	 0.24	 0.04	 0.18	 1.03	 43.20	 86.65	 8.92	 8.97	 CR	

MIF	 0.39	 0.04	 0.09	 1.03	 43.20	 86.65	 13.61	 13.64	 CR	

Chitinase	3-like	1	 0.66	 0.03	 0.05	 1.02	 43.20	 85.10	 15.50	 15.53	 CR	

EMMPRIN	 0.39	 0.03	 0.08	 1.02	 43.20	 86.65	 13.98	 14.01	 CR	

IGFBP-3	 0.31	 0.03	 0.09	 1.02	 43.20	 86.74	 14.07	 14.10	 CR	

TNF-alpha	 0.06	 0.02	 0.26	 1.01	 43.20	 85.57	 10.93	 10.94	 CR	

IL-23	 0.07	 0.01	 0.17	 1.01	 43.20	 85.69	 9.57	 9.58	 CR	

Angiopoietin-2	 0.07	 0.01	 0.11	 1.01	 43.20	 85.68	 11.21	 11.22	 CR	

IL-2	 0.03	 0.00	 0.14	 1.00	 43.20	 85.26	 9.90	 9.91	 CR	

MIG	 5.20	 1.42	 0.27	 2.68	 0.00	 73.33	 11.04	 12.46	 PR	

IP-10	 3.21	 0.71	 0.22	 1.64	 0.00	 70.44	 10.20	 10.91	 PR	

Leptin	 -4.01	 -0.47	 0.12	 1.39	 0.00	 14.30	 12.86	 12.39	 PR	

MIP-3ÃŸ	 -2.75	 -0.36	 0.13	 1.28	 0.00	 14.25	 11.12	 10.76	 PR	

IL-8	 2.81	 0.34	 0.12	 1.26	 0.00	 70.24	 10.01	 10.35	 PR	

BAFF	 -2.69	 -0.32	 0.12	 1.25	 0.00	 14.42	 13.25	 12.93	 PR	

ST2	 -4.13	 -0.25	 0.06	 1.19	 0.00	 14.40	 13.18	 12.93	 PR	

TFF3	 -2.43	 -0.16	 0.07	 1.12	 0.00	 15.80	 13.76	 13.59	 PR	

Resistin	 -2.06	 -0.24	 0.12	 1.18	 3.30	 20.27	 13.10	 12.86	 PR	

VEGF	 -1.97	 -0.23	 0.11	 1.17	 3.30	 21.87	 10.14	 9.91	 PR	
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Relaxin-2	 -1.86	 -0.21	 0.11	 1.15	 3.30	 24.38	 10.48	 10.28	 PR	

I-TAC	 -1.71	 -0.18	 0.11	 1.13	 5.70	 28.13	 12.04	 11.86	 PR	

IL-18	BPa	 -1.58	 -0.17	 0.10	 1.12	 5.70	 32.17	 12.21	 12.05	 PR	

Myeloperoxidase	 -1.22	 -0.29	 0.23	 1.22	 13.21	 45.72	 10.45	 10.16	 PR	

IL-33	 -1.37	 -0.17	 0.13	 1.13	 13.21	 39.61	 9.45	 9.28	 PR	

FGF-19	 -1.32	 -0.15	 0.12	 1.11	 13.21	 41.79	 12.28	 12.13	 PR	

M-CSF	 -1.12	 -0.14	 0.13	 1.10	 13.21	 49.93	 10.32	 10.18	 PR	

IL-11	 -1.08	 -0.12	 0.11	 1.08	 13.21	 51.70	 10.75	 10.64	 PR	

Osteopontin	 -1.25	 -0.09	 0.07	 1.06	 13.21	 44.60	 13.93	 13.84	 PR	

CD30	 -1.05	 -0.20	 0.19	 1.15	 17.11	 53.01	 10.74	 10.54	 PR	

IL-22	 -1.02	 -0.14	 0.14	 1.10	 17.11	 54.07	 11.11	 10.98	 PR	

GRO-a	 -0.88	 -0.13	 0.14	 1.09	 19.10	 59.68	 10.45	 10.32	 PR	

Vitamin	D	BP	 -0.78	 -0.09	 0.11	 1.06	 19.10	 63.97	 15.41	 15.33	 PR	

Endoglin	 -0.74	 -0.05	 0.07	 1.03	 19.10	 65.29	 14.53	 14.48	 PR	

IL-24	 -0.68	 -0.11	 0.16	 1.08	 27.89	 67.80	 9.94	 9.83	 PR	

IL-12	p70	 -0.62	 -0.07	 0.12	 1.05	 27.89	 69.74	 10.04	 9.97	 PR	

Pentraxin-3	 -0.60	 -0.06	 0.10	 1.04	 27.89	 70.41	 11.52	 11.45	 PR	

GDF-15	 -0.60	 -0.04	 0.06	 1.03	 27.89	 70.49	 13.72	 13.69	 PR	

Lipocalin-2	 -0.49	 -0.03	 0.06	 1.02	 31.37	 74.16	 15.11	 15.08	 PR	

RANTES	 -0.49	 -0.03	 0.05	 1.02	 31.37	 74.25	 14.97	 14.94	 PR	

BDNF	 -0.33	 -0.06	 0.17	 1.04	 36.33	 78.57	 12.30	 12.25	 PR	
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IL-34	 -0.15	 -0.02	 0.16	 1.02	 36.33	 82.61	 8.97	 8.94	 PR	

PF4	 -0.24	 -0.01	 0.06	 1.01	 36.33	 80.89	 15.44	 15.43	 PR	

RBP4	 -0.15	 -0.01	 0.04	 1.00	 36.33	 82.56	 15.83	 15.82	 PR	

FGF	basic	 0.69	 0.14	 0.20	 1.10	 43.20	 84.82	 11.49	 11.63	 PR	

CD40	ligand	 1.09	 0.12	 0.11	 1.09	 43.20	 80.71	 11.61	 11.73	 PR	

MIP-3a	 0.84	 0.12	 0.14	 1.09	 43.20	 83.36	 9.40	 9.52	 PR	

TGF-a	 0.58	 0.08	 0.14	 1.06	 43.20	 85.70	 9.59	 9.67	 PR	

Complement	 Component	

C5/C5a	

1.02	 0.07	 0.07	 1.05	 43.20	 81.48	 13.62	 13.70	 PR	

IL-15	 0.36	 0.06	 0.18	 1.05	 43.20	 86.71	 9.52	 9.59	 PR	

Adiponectin	 1.09	 0.06	 0.05	 1.04	 43.20	 80.66	 15.26	 15.31	 PR	

Angiogenin	 0.80	 0.05	 0.06	 1.03	 43.20	 83.79	 15.41	 15.46	 PR	

GM-CSF	 0.38	 0.04	 0.12	 1.03	 43.20	 86.68	 10.57	 10.61	 PR	

Dkk-1	 0.30	 0.04	 0.14	 1.03	 43.20	 86.74	 10.44	 10.48	 PR	

IGFBP-2	 0.50	 0.03	 0.07	 1.02	 43.20	 86.20	 13.99	 14.02	 PR	

Cystatin	C	 0.44	 0.03	 0.07	 1.02	 43.20	 86.50	 14.42	 14.45	 PR	

C-Reactive	Protein	 0.68	 0.03	 0.04	 1.02	 43.20	 84.90	 15.59	 15.62	 PR	

IL-16	 0.20	 0.03	 0.13	 1.02	 43.20	 86.52	 9.46	 9.49	 PR	

IL-1ÃŸ	 0.10	 0.01	 0.12	 1.01	 43.20	 85.94	 9.71	 9.72	 PR	

MIP-1a/MIP-1ÃŸ	 0.05	 0.01	 0.18	 1.01	 43.20	 85.45	 9.02	 9.03	 PR	

DPPIV	 0.06	 0.01	 0.10	 1.00	 43.20	 85.55	 14.54	 14.55	 PR	
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10.0 Table 23: dCT values of mRNA specimens normalised to GADPH or β  actin 

Plaque	Morphology	 B-Actin	 GADPH	

	 I-TAC	 EGFb	 MPO	 TSP1	 I-TAC	 EGFb	 MPOa	 TSP1	

RFC	 11.875	 10.575	 14.57	 2.03	 9.08	 7.78	 11.93	 -0.92	

RFC	 12.525	 12.165	 13.875	 7.285	 11.02	 10.66	 12.37	 5.78	

RFC	 14.02	 	 13.61	 4.775	 9.45	 	 9.04	 0.205	

RFC	 	 8.955	 	 5.82	 	 2.935	 	 -0.2	

RFC	 17.36	 11.285	 16.435	 4.27	 12.37	 6.295	 11.445	 -0.72	

RFC	 17.25	 11.085	 14.58	 4.945	 12.29	 5.99	 9.485	 -0.15	

RFC	 17.325	 10.575	 13.775	 5.2	 11.635	 4.885	 8.085	 -0.49	

RFC	 13.72	 10.93	 15.295	 4.93	 8.78	 5.99	 10.355	 -0.01	

RFC	 16.67	 14.11	 15.38	 5.545	 11.96	 9.4	 10.81	 0.835	

RFC	 14.46	 10.835	 14.02	 3.695	 9.535	 5.91	 9.08	 -1.23	

RFC	 15.92	 11.815	 14.535	 5.25	 10.32	 6.645	 9.365	 0.08	

RFC	 12.945	 15	 17.18	 6.245	 8.67	 10.725	 13.37	 1.97	

RFC	 15.615	 12.15	 15.9	 6.65	 11.595	 8.13	 12.03	 2.63	

RFC	 15.48	 12.08	 13.58	 4.55	 12.01	 8.61	 10.35	 1.08	

RFC	 14.27	 9.19	 	 3.85	 9.25	 3.9	 	 -1.44	

RFC	 14.45	 10.725	 15.555	 3.49	 11.025	 7.3	 12.13	 0.065	

RFC	 13.805	 9.695	 17.04	 2.91	 11.13	 7.02	 14.365	 0.235	

RFC	 12.815	 	  4.955	 10.665	 	  2.805	

	         
IFC	 	 11.265	 	 5.325	 	 5.02	 	 -0.92	
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IFC	 16.28	 12.1	 16.51	 5.185	 13.56	 9.37	 13.79	 2.455	

IFC	 18.475	 9.32	 14.99	 5.295	 13.275	 4.12	 9.66	 0.095	

IFC	 18.16	 9.34	 	 5.645	 12.56	 3.81	 	 0.115	

IFC	 	 8.525	 14.57	 5.305	 	 2.66	 8.63	 -0.56	

IFC	 	 8.735	 	 5.68	 	 3.6	 	 0.545	

IFC	 15.125	 	 13.5	 7.115	 12.225	 	 10.73	 4.215	

IFC	 	 11.73	 14.315	 2.915	 	 6.95	 9.535	 -1.865	

IFC	 20.99	 10.79	 	 5.28	 16.24	 6.04	 	 0.53	

IFC	 20.65	 9.09	 14.45	 4.535	 14.91	 3.57	 8.71	 -0.985	

IFC	 	   5.775	 	   0.025	

IFC	 	 9.605	 14.57	 4.395	 	 4.37	 9.3	 -0.84	

IFC	 14.825	 9.215	 12.925	 2.67	 11.755	 6.145	 9.855	 -0.4	
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Inflammatory Differences in Plaque Erosion and Rupture in Patients
With ST-Segment Elevation Myocardial Infarction
Sujay Chandran, BSc, MBBS, MRCP; Johnathan Watkins, MA, PhD; Amina Abdul-Aziz, BSc, MRes; Manar Shafat, BSc, MSc;
Patrick A. Calvert, BM, BCh, MA, PhD, MRCP, FACC; Kristian M. Bowles, MBBS, PhD, FRCP, FRCPath; Marcus D. Flather, MBBS, FRCP;
Stuart A. Rushworth, BSc, PhD;* Alisdair D. Ryding, MB ChB, MRCP, PhD*

Background-—Plaque erosion causes 30% of ST-segment elevation myocardial infarctions, but the underlying cause is unknown.
Inflammatory infiltrates are less abundant in erosion compared with rupture in autopsy studies. We hypothesized that erosion and
rupture are associated with significant differences in intracoronary cytokines in vivo.

Methods and Results-—Forty ST-segment elevation myocardial infarction patients with <6 hours of chest pain were classified as
ruptured fibrous cap (RFC) or intact fibrous cap (IFC) using optical coherence tomography. Plasma samples from the infarct-related
artery and a peripheral artery were analyzed for expression of 102 cytokines using arrays; results were confirmed with ELISA.
Thrombectomy samples were analyzed for differential mRNA expression using quantitative real-time polymerase chain reaction.
Twenty-three lesions were classified as RFC (58%), 15 as IFC (38%), and 2 were undefined (4%). In addition, 12% (12 of 102) of
cytokines were differentially expressed in both coronary and peripheral plasma. I-TAC was preferentially expressed in RFC
(significance analysis of microarrays adjusted P<0.001; ELISA IFC 10.2 versus RFC 10.8 log2 pg/mL; P=0.042). IFC was
associated with preferential expression of epidermal growth factor (significance analysis of microarrays adjusted P<0.001; ELISA
IFC 7.42 versus RFC 6.63 log2 pg/mL, P=0.036) and thrombospondin 1 (significance analysis of microarrays adjusted P=0.03;
ELISA IFC 10.4 versus RFC 8.65 log2 ng/mL, P=0.0041). Thrombectomy mRNA showed elevated I-TAC in RFC (P=0.0007)
epidermal growth factor expression in IFC (P=0.0264) but no differences in expression of thrombospondin 1.

Conclusions-—These results demonstrate differential intracoronary cytokine expression in RFC and IFC. Elevated thrombospondin
1 and epidermal growth factor may play an etiological role in erosion. ( J Am Heart Assoc. 2017;6:e005868. DOI: 10.1161/
JAHA.117.005868.)

Key Words: coronary artery disease • erosion • inflammation • myocardial infarction • optical coherence tomography
• thrombospondin 1

P laque erosion is a major cause of ST-segment elevation
myocardial infarction (STEMI), accounting for �30% to

40% of cases,1–3 yet little is known about the triggers for this
pathological process, in contrast to a more detailed

understanding of the complex inflammatory processes leading
to atherosclerotic plaque rupture.4 There is increasing interest
in plaque erosion, and tailored treatments for this pathology
are being tested.5

Autopsy studies suggest that markers of inflammation are
significantly lower in plaque erosion compared with plaque
rupture, with sparse infiltration of macrophages and T
lymphocytes within the vessel wall.6,7 Other studies, however,
have suggested an important role for neutrophil infiltrates at
sites of plaque erosion.8 Demonstrating inflammatory profiles
of patients that are concordant with autopsy data is important
to validate clinical research aiming to identify the triggers of
plaque erosion. Nevertheless, evidence that inflammatory
differences between erosion and rupture are detectable in
patients at the time of myocardial infarction is contradic-
tory.9–11 We designed a study to optimize the assessment of
intracoronary inflammation in patients with STEMI by using
multiplex arrays to screen a wide range of inflammatory
mediators in plasma samples taken from the culprit vessel.
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We hypothesized that differential cytokine expression would
provide insights into the underlying cause of plaque erosion
and could validate our methodology as an approach to
studying the etiology of plaque erosion.

Methods

Study Design and Population
We prospectively enrolled consecutive patients undergoing
primary percutaneous coronary intervention for STEMI at the
Norfolk and Norwich University Hospital. All patients provided
written informed consent, and the study was approved by the
local ethics committee. Eligible patients included those
presenting within 6 hours of the onset of pain, with
ST-segment elevation of >1 mm in at least 2 contiguous
leads, new left bundle-branch block, or true posterior
myocardial infarction on the 12-lead ECG. Exclusion criteria
were mechanical ventilation, cardiogenic shock, stent throm-
bosis, failed thrombectomy, renal insufficiency (estimated
glomerular filtration rate <30 mL/min per 1.73 m2) and failed
optical coherence tomography (OCT) imaging of the culprit
lesion. All patients received prehospital aspirin 300 mg and
clopidogrel 600 mg. All aspects of the primary percutaneous
coronary intervention procedure were at the discretion of the
interventionalist responsible for the patient’s procedure.
Gentle predilatation (≤2.0 mm) was permitted to facilitate
passage of the OCT catheter.

Blood and Thrombectomy Samples
Thrombectomy was performed in all patients (Pronto catheter;
Aquilant International), and aspirates were filtered to separate
particulate matter (thrombus with or without plaque frag-
ments) and blood. Particulate matter was stored in Allprotect
tissue reagent (Qiagen GmbH) at �70°C. Coronary and
peripheral plasma were stored at �70°C.

Clinical and Angiographic Data
Baseline demographics, patient characteristics, angiographic
data, procedural details, and clinical outcomes up to
12 months were recorded for each patient. Quantitative
coronary angiography was performed using the Quantitative
Vascular Analysis package (Siemens) by 2 independent
operators.

Optical Coherence Tomography
OCT of the culprit lesion was performed after thrombectomy
using a Frequency Domain OCT System (C7-XRTM OCT
Intravascular Imaging System; St Jude Medical). OCT images

were anonymized and analyzed on a St Jude OCT Offline
Review Workstation by 3 independent observers (S.C., P.C.,
and A.R.) blinded to other data. Established definitions of
plaque pathology (ruptured fibrous cap [RFC] and intact
fibrous cap [IFC]), plaque constituents and thrombus types
were used.11,12 Discordant results were resolved by consen-
sus or categorized as undefined. Measurements were per-
formed with dedicated OCT system software (B.0.1; Light Lab
Imaging). Minimum fibrous cap thickness was measured at
the thinnest point of the cap, whereas mean cap thickness
was computed as the mean of 3 evenly distributed measure-
ments along the fibrous cap.

Cytokine Arrays
Coronary and peripheral arterial plasma samples were
analyzed using the Proteome Profiler Human XL Cytokine
Array Kit (ARY022; R&D Systems), according to the manufac-
turer’s instructions. Quantification of cytokine optical densi-
ties were obtained with the HLImage++ software (Western
Vision).

ELISA
ELISAs for epidermal growth factor (EGF; DEG00; R&D
Systems), interferon-inducible T-cell alpha chemoattractant
(I-TAC; DCX110; R&D Systems), monokine induced by
c-interferon (DCX900; R&D Systems), myeloperoxidase
(DMYE00B; R&D Systems), and thrombospondin 1 (TSP-1;
DTSP10; R&D Systems) were performed according to the
manufacturer’s instructions.

Thrombectomy Analysis
Total RNA was extracted from homogenized thrombectomy
specimens using the ReliaPrep RNA extraction kit (Promega).
Reverse transcription was performed using a cDNA synthesis
Kit (PCR Biosystems). Relative quantitative real-time poly-
merase chain reaction used SYBR green technology (PCR
Biosystems) on cDNA reverse transcribed from purified RNA.
After preamplification (95°C for 2 minutes), the PCRs were
amplified for 45 cycles (95°C for 15 seconds, 60°C for
10 seconds, and 72°C for 10 seconds) on a 384-well
LightCycler 480 (Roche). mRNA was analyzed for EGF,
myeloperoxidase, I-TAC, and TSP1 expression and normalized
to GAPDH or b-actin mRNA expression using the comparative
cycle threshold method. Primer sequences were designed
using KicqStart (Sigma-Aldrich).

Primer sequences for quantitative real-time polymerase
chain reaction were as follows (forward/reverse): b-actin,
gacgacatggagaaaatctg/atgatctgggtcatcttctc; EGF, ggtggtga
agttgatctaaag/tagcatgtgttgagattctg; GAPDH, ctccttgttcgacagt
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cagcc/gactccgaccttcaccttcc; I-TAC, ctacagttgttcaaggcttc/cac
tttcactgcttttaccc; myeloperoxidase, ccatggaactcctatcctac/ttg
acttggacaacacattc; TSP-1, gtgactgaagagaacaaagag/cagctatca
acagtccattc.

Cytokine Array Analysis
Intensities of the negative control of each sample were
subtracted from the intensity of each cytokine-sample pair,13

and relative intensity values were quantile-normalized.14 To
allow for direct comparisons to be made between cytokines,
values were log2 transformed. Differential expression was
assessed using the significance analysis of microarrays
method,15 with P values corrected for multiple testing using
the Benjamini–Hochberg procedure.16 The output of this
included assignment to either a group comprising cytokines

with an average expression higher in patients with IFC or a
group comprising cytokines with an average expression
higher in patients with RFC. Significance analysis of
microarrays was conducted for coronary and peripheral
blood samples separately. A differential expression score (D-
score) and average log2 fold change in expression were
captured for each cytokine in addition to the adjusted P
value. Analyses were performed in the R statistical language
environment, version 3.1.2, using several Bioconductor
packages.17

Statistical Analysis
Continuous variables were reported as median and first to
third quartiles. Categorical data were reported as numbers
and relative percentages. Overall comparisons across groups

Patients with STEMI <6 hours 
n=45

Manual thrombectomy

Culprit vessel OCT before PPCI
n=43

40 patients recruited for study

OCT interpretation

RFC
n=23

IFC
n=15

Undefined
n=2

Thrombus storageSerum for cytokine array

2 excluded-
Unsuitable anatomy

3 excluded – unable
to obtain suitable images

Figure 1. Study enrollment. IFC indicates intact fibrous cap; OCT, optical coherence tomography; PPCI, primary percutaneous coronary
intervention; RFC, ruptured fibrous cap; STEMI, ST-segment elevation myocardial infarction.
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were based on the nonparametric Wilcoxon rank sum test for
continuous variables and the Fisher exact test for categorical
variables. All P values are 2-sided. P values were corrected for
multiple testing using the Benjamini–Hochberg procedure.16

Adjusted P values <0.05 were considered significant unless
otherwise stated.

Results

Baseline and Angiographic Characteristics
Between February 2, 2015, and October 14, 2015, 40 STEMI
patients were recruited into the Plaque Erosion Pilot Study
(Figure 1), representing �30% of all potentially eligible

BA

>

*
*

>

*

*

Figure 2. Ruptured and intact fibrous cap appearance using optical coherence tomography. A, Ruptured
fibrous cap. *Rupture cavity. >Wire artifact. B, Intact fibrous cap.*Thrombus. >Wire artifact.

Table 1. Baseline Characteristics

RFC (n=23) IFC (n=15) P Value
Adjusted
P Value

Age, y 65 (59.5–75) 60 (52–64.5) 0.03 0.36

Sex (male) 16 (69.6) 10 (66.7%) 1.00 1.00

Hypertension 8 (34.8%) 3 (20%) 0.47 0.71

Hyperlipidemia 8 (34.8%) 4 (26.7%) 0.44 0.71

Smoker 12 (52.2%) 8 (53.3%0 1.00 1.00

Diabetes mellitus 0 (0%) 2 (13.3%) 0.15 0.60

Previous MI 0 (0%) 0 (0%) . . . . . .

Previous PCI 0 (0%) 0 (0%) . . . . . .

Symptom onset to lab, minutes 160 (125–207.5) 190 (145–247.5) 0.24 0.71

Door to balloon time, minutes 37 (29–61) 44 (29–46) 0.47 0.71

Call to balloon time, minutes 125 (95–147) 134 (99–142) 0.71 0.95

Killip class 0.15 0.60

Class 1 23 (100%) 13 (86.7%)

Class 2 0 (0%) 2 (13.3%)

TIMI risk score 2 (1–4) 2 (1–2) 0.46 0.71

Anemia 0 (0%) 0 (0%) 1.00 1.00

Values are median (first to third quartile) or n (%). Both unadjusted and Benjamini–Hochberg-adjusted P values are shown. IFC indicates intact fibrous cap; MI, myocardial infarction; PCI,
percutaneous coronary intervention; RFC, ruptured fibrous cap; TIMI, Thrombolysis in Myocardial Infarction.
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patients. An additional 5 patients were not enrolled in
the study because of unsuitable anatomy and inability to
obtain adequate OCT images. A fully identifiable culprit plaque
was adjudicated in 38 patients, with RFC identified in 23

(57.5%) and IFC in 15 (37.5%); 2 (5%) were undefined
(Figure 2).

There were no differences in baseline characteristics
between patients with RFC and IFC (Table 1). Both groups

Table 2. Angiographic and Procedural Characteristics

RFC (n=23) IFC (n=15) P Value
Adjusted
P Value

Number of lesions treated 1.00 1.00

1 22 (95.7%) 15 (100%)

2 1 (4.3%) 0 (0%)

Infarct related artery 0.64 0.94

LAD 7 (30.4%) 9 (60%)

LCX 4 (17.4%) 2 (13.3%)

RCA 12 (52.2%) 4 (26.7%)

Multivessel disease 9 (39.1%) 4 (26.7%) 0.5 0.88

Thrombectomy 23 (100%) 15 (100%) 1.00 1.00

Gp2b3a use 9 (39.1%) 8 (53.3%) 0.51 0.88

Radial access 23 (100%) 14 (93.3%) 0.39 0.88

Stent used 18 (78.3%) 8 (53.3%) 0.16 0.88

Total stent length, mm 27 (22–38) 23 (17–28) 0.06 0.88

Drug coated balloon angioplasty 5 (21.7%) 6 (40%) 0.28 0.88

Direct stenting 11 (47.8%) 5 (33.3%) 0.51 0.88

Maximum balloon/stent diameter, mm 4 (3.375–4) 3.5 (3.125–3.875) 0.20 0.88

Base TIMI flow 0.63 0.94

0 14 (60.9%) 10 (66.7%)

1 0 (0%) 0 (0%)

2 3 (13.3%) 3 (20%)

3 6 (26.8%) 2 (13.3%)

Final TIMI flow 0.82 1.00

0 0 (0%) 0 (0%)

1 1 (4.3%) 0 (0%)

2 0 (0%) 0 (0%)

3 22 (95.6%) 15 (100%)

Procedural success 22 (95.6%) 15 (100%)

QCA at baseline

Reference vessel diameter, mm 3.28 (2.81–3.62) 3.17 (2.73–3.33) 0.44 0.88

Minimal luminal diameter, mm 0 (0–0.97) 0 (0–0.84) 0.96 1.00

Diameter stenosis (%) 100 (75.6–100) 100 (75.2–100) 0.88 1.00

QCA after thrombectomy

Reference vessel diameter, mm 3.38 (2.85–3.76) 3.22 (2.58–3.49) 0.39 0.88

Minimal luminal diameter 1.1 (0.88–1.45) 0.94 (0.7–1.2) 0.40 0.88

Diameter stenosis 66.5 (46.4–77.3) 68.8 (62.3–73.6) 0.75 1.00

Values are median (first to third quartile) or n (%). Both unadjusted and Benjamini–Hochberg-adjusted P values are shown. Gp2b3a indicates glycoproteinIIbIIIa; IFC, intact fibrous cap; LAD,
left anterior descending; LCX, left circumflex; QCA, quantitative coronary angiography; RCA, right coronary artery; RFC, ruptured fibrous cap; TIMI, Thrombolysis in Myocardial Infarction.

DOI: 10.1161/JAHA.117.005868 Journal of the American Heart Association 5

Inflammation in Plaque Erosion Chandran et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

 by guest on M
ay 17, 2017

http://jaha.ahajournals.org/
D

ow
nloaded from

 

http://jaha.ahajournals.org/


had very similar ischemic times and angiographic findings.
Although there was lower use of stents in the IFC group, this
result was nonsignificant (78.3% RFC versus 53.3% IFC,
adjusted P=0.88) (Table 2).

Optical Coherence Tomography Data
Cap thickness was significantly lower in the RFC group
(minimum cap thickness: RFC 40 lm [range 30–40 lm]
versus IFC 80 lm [range 70–95 lm], adjusted P=0.006: mean
cap thickness RFC 52 lm [range 40–59 lm] versus IFC 100
lm [range 99–134 lm], adjusted P=0.006) (Table 3). There
were no significant differences in other plaque parameters,
although there was a trend toward a more fibrous phenotype
in IFC. The residual thrombus burden after thrombectomy and
thrombus types were similar between groups, with white
thrombus and mixed thrombus predominating (Table 3).

Clinical Outcomes
At 12 months, 1 death occurred in the RFC group and 1
transient ischemic attack in the IFC group, with no statistical
differences between the 2 groups.

Cytokine Analysis
Just under 40.2% (41 of 102) of cytokines were more highly
expressed on average in patients with IFC than RFC for both
coronary and peripheral samples. By contrast, 47.1% (48 of
102) were more highly expressed on average in RFC patients
than in IFC patients for both coronary and peripheral samples

(Figure 3A and 3B). For the remaining cytokines (12.7%, 13 of
102), preferential expression was discordant between coro-
nary and peripheral samples (Figure 3A and 3B). Despite this,
the preferential expressions of cytokines (higher in either RFC
or IFC) were, for the most part, consistent between coronary
and peripheral samples (odds ratio 46.03, 95% CI 13.33–
198.59, P<0.001) (Figure 3B).

EGF and TSP-1 were the only molecules with significantly
higher expression in IFC patients than in RFC patients in
both coronary and peripheral samples (adjusted P<0.05)
(Figure 3C). The average log2 fold change in expression was
>1.75 for both (Figure 3C). By contrast, 10 molecules
demonstrated significant preferential expression in patients
with RFC for both coronary and peripheral samples,
including monokine induced by c-interferon, I-TAC, matrix
metalloproteinase-9 (MMP-9), aggrecan, lipocalin 2, inter-
leukin 18 binding protein, trefoil factor 3, complement
factor D, RANTES, and adiponectin (adjusted P<0.05)
(Figure 3C).

ELISA Validation
For each lesion group, we selected 2 cytokines with
significant differential expression in both coronary and
peripheral data sets and an average log2 fold change of at
least 1.5 (Figure 3C). Therefore, we sought to orthogonally
validate higher expressions of EGF and TSP-1 among IFC
cases and monokine induced by c-interferon and I-TAC among
rupture cases using ELISA. ELISA for myeloperoxidase was
also undertaken, given the potential relevance to plaque
erosion.

Table 3. OCT Analysis

RFC (n=23) IFC (n=15) P Value
Adjusted
P Value

Minimum cap thickness, lm 40 (30–40) 80 (70–95) <0.001 0.006

Mean cap thickness, lm 52 (40–59) 100 (99–134) <0.001 0.006

Length of lesion, mm 11.3 (9.75–12.55) 11.4 (9.9–15.1) 0.82 1

Plaque characteristics 0.93 1

Fibrocalcific 1 (4.34%) 1 (4.34%)

Fibrous 2 (8.7%) 6 (40%)

Lipid-rich 20 (86.7%) 8 (53.3%)

Area stenosis (%) 79.0 (52.5–83.1) 74.3 (70.4–77.1) 0.16 0.64

Residual thrombus characteristics 0.54 1

Red 1 (4) 1 (7)

White 12 (52) 5 (33)

Mixed 9 (39) 5 (33)

None 1 (4) 4 (27)

Values are median (first to third quartile) or n (%). Both unadjusted and Benjamini–Hochberg-adjusted P values are shown. IFC indicates intact fibrous cap; RFC, ruptured fibrous cap.
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EGF expression was significantly higher in both coronary
and peripheral IFC samples compared with RFC samples
(P<0.05) (Figure 4). By contrast, TSP-1 was significantly
higher only in IFC coronary samples (P=0.0041), and I-TAC
was significantly higher only in RFC coronary samples
(P=0.042) (Figure 4). No significant differences were
observed for monokine induced by c-interferon or myeloper-
oxidase expression between IFC and RFC cases for coronary
or peripheral samples (P>0.05).

Thrombectomy Quantitative Real-Time
Polymerase Chain Reaction Analysis
Thrombectomy yielded an analyzable sample in 18 RFC and
13 IFC cases. Expression of I-TAC mRNA was significantly

increased in RFC samples compared with IFC (P=0.0007),
whereas the opposite was true of EGF expression (P=0.0264).
There were no differences in the expression of TSP-1 or
myeloperoxidase between groups (P>0.05) (Figure 5).

Discussion
We detected multiple differences in the inflammatory profiles
of IFC and RFC in patients with STEMI, using cytokine arrays.
We confirmed elevated EGF and TSP-1 in IFC and elevated
I-TAC in RFC using ELISAs. Most of these differences were
demonstrable only in coronary plasma samples. In addition,
we demonstrated that these findings were replicated, with the
exception of TSP-1, in analysis of mRNA in thrombectomy
samples. These observations are new and support the
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samples, cytokines are stratified by color: IFC-high cytokines in orange and RFC-high cytokines in blue. Odds ratio, 95% CI, and P value are
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microarrays differential expression score for the coronary (left plot) and peripheral (right plot) samples. Positive differential expression scores
indicate an association to the group more highly expressed in RFC cases than in IFC cases, whereas negative D-scores represent an association
to the group more highly expressed in IFC cases. Cytokines that were significantly associated with either plaque type (adjusted P<0.05;
significance analysis of microarrays) are colored in gold, whereas nonsignificant associations are in grey. BDNF indicates brain-derived
neurotrophic factor; EGF, epidermal growth factor; HGF, hepatocyte growth factor; IFC, intact fibrous cap; I-TAC, interferon-inducible T cell alpha
chemoattractant; MIG, monokine induced by c-interferon; MIP-3a, macrophage inflammatory protein 3a; MMP-9, matrix metalloprotein 9; MPO,
myeloperoxidase; RFC, ruptured fibrous cap; TNFa, tumor necrosis factor a; TSP-1, thrombospondin 1.
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concept that different atherosclerotic pathologies may be
associated with distinct intracoronary inflammatory profiles.

Previous comparative studies of inflammation in plaque
erosion and rupture have yielded conflicting results. Some
reports suggest significant elevation of myeloperoxidase in
erosion,9,10 and elevated high-sensitivity C-reactive protein
and matrix metalloproteinase 9 in rupture.10 In contrast other
studies have not found any difference in the levels of
myeloperoxidase, thromboxane B2, eosinophilic cationic pro-
tein,11 or high-sensitivity C-reactive protein.2,11,18 Our study is
unique in that we sampled both coronary and peripheral
arterial plasma, screened a much larger range of inflammatory

molecules, and enrolled only patients with short ischemic
times presenting with STEMI.

To put our results in context, the levels of EGF, TSP-1, and
I-TAC in IFC are �14-, 4.8-, and 1.6-fold higher, respectively,
compared with median values in healthy volunteers reported
in other studies.19–21 The respective values for RFC are �8-,
1.4- and 2.4-fold higher.

The significance of elevated EGF and TSP-1 in IFC
compared with RFC is unclear. Both EGF and TSP-1 are
stored in platelet granules,22 and elevated plasma levels may
simply reflect differences in thrombus composition and
platelet activation.3,10,23 This possibility is supported by the
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concordance of EGF expression in plasma and thrombectomy
samples. It is also possible that differences in thrombus type
are not responsible for these findings. We did not observe
significant differences in thrombus type on OCT, nor did the
array analysis identify differences in other platelet-related
molecules such as platelet factor 4 or platelet-derived growth
factor (unpublished data). The discordance between TSP-1
expression in plasma and thrombectomy samples may reflect
local expression of TSP-1 within the coronary artery.

TSP-1 has complex biological effects that may be relevant
to plaque erosion. It is a matricellular glycoprotein that is
expressed in platelets, vascular smooth muscle cells,
endothelial cells, and vascular fibroblasts and is present in
the extracellular matrix of vessels.24 It impairs endothelial cell
adhesion, motility, growth, and survival25–27 and stabilizes
thrombi.28 Interestingly a polymorphism of the gene encoding
TSP-2 has been associated with plaque erosion in a cohort of
patients with sudden death.29 Studies of TSP-1 and TSP-2
expression in autopsy specimens might clarify whether TSPs
are relevant to plaque erosion.

Array analysis confirmed that multiple molecules thought
to be important in plaque rupture were preferentially
expressed in the RFC group, including matrix metallopro-
teinase 9, lipocalin 2, and RANTES.30–32 We also confirmed

significantly increased I-TAC/CXCL11 in coronary plasma
samples in RFC, which is a new finding. I-TAC plays a key
role in the recruitment and retention of activated T lympho-
cytes at sites of inflammation during atherogenesis and is
known to be expressed by neovascular endothelial cells and
macrophages in the shoulder regions of advanced atheroscle-
rotic lesions.33 We do not know whether increased I-TAC
mRNA in thrombectomy specimens reflects expression by
inflammatory cells trapped in thrombus or aspirated
atherosclerotic material.

Implications
We demonstrated the feasibility of studying different plaque
pathologies using intracoronary blood sampling, OCT, and
multiplex arrays to screen for molecular differences. The
cytokines identified have been shown to be involved in
mechanisms that make them plausible candidates for driving
or facilitating plaque destabilization. This supports the validity
of our approach to studying potential triggers of plaque
erosion and rupture. Larger studies might refine the identi-
fication of novel biomarkers for such lesions and facilitate the
customization of treatment according to the underlying
pathology.5
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Study Limitations
This is a single-center study, and larger studies are required to
confirm our findings. To minimize disruption to the normal
primary percutaneous coronary intervention procedure,
peripheral and coronary arterial blood samples were not
taken simultaneously. We were able to validate only a small
number of the array findings with ELISAs because of limited
plasma samples. In common with other studies,3,10,34 predi-
latation was permitted before OCT and could have led to
misclassification of pathology. We have used IFC as an OCT
surrogate for plaque erosion, but direct histological confirma-
tion is not possible.12

Conclusions
We demonstrated significant differences in the inflammatory
profiles of RFC and IFC in patients with STEMI, using cytokine
arrays. Novel findings include elevated intracoronary EGF and
TSP-1 with IFC and elevated intracoronary I-TAC with RFC.
Some of the differences are also reflected in mRNA analysis of
thrombectomy samples. These results may help to further
understand the pathophysiology of plaque erosion and to
potentially tailor future treatment strategies.
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