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The Neural Correlates of Repeated Memory Encoding and Content Reinstatement 

 

Abstract 

 

The present thesis reports findings from experiments investigating the neural 

correlates of subsequent source memory performance, repetition and reinstatement of 

item and source information. Electrophysiological and haemodynamic response data 

were obtained in two experimental paradigms further investigating effects of 

encoding modality and encoding context. The primary aim was to identify how 

neural pattern similarity was influenced by changes to perceptual stimulus features 

or changes to encoding task instructions, with a particular focus on the role of pattern 

reactivation. The first set of experiments (Chapters 3 & 4) examined the effects of 

encoding modality on source memory processes and repetition during study and test 

phases. Representational similarity analysis of the fMRI data revealed modality-

independent and modality-dependent source memory effects, suggesting that 

reactivation of different stimulus features predicted source memory performance 

when stimuli are repeatedly presented. Overall, the results provide evidence for 

pattern reactivation to benefit source memory formation and retrieval. The second set 

of experiments (Chapters 5 & 6) investigated the effects of encoding items 

repeatedly in the same context or across multiple contexts. Pattern reactivation in the 

same task condition was shown to enhance source memory for the encoding context. 

However, lower levels of reactivation were associated with successful source 

memory performance when stimuli were associated with multiple contexts. Together 

with the EEG data, the results provide evidence for distinct mechanisms to underlie 

successful context encoding when items were either repeatedly encoded in the same 

context or in different contexts. Moreover, results from the EEG analyses suggested 

that repetition effects predict subsequent source memory performance when they 

occur in a similar time window as the late parietal component, which is commonly 

related to recollection. Taken together, the present research advances our 

understanding of repeated encoding of item and source memory information and 

leads to novel directions for future research.   
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Chapter 1 – General introduction: Neuroimaging studies of memory encoding 

and retrieval 

Over the course of our lifetime, we will constantly acquire new information, 

integrate such novel information into existing knowledge and retrieve it when 

necessary. However, not everything we learn will be remembered. Moreover, 

sometimes, we may remember that an event took place but cannot recollect specific 

details about the context it took place in, such as who told us a piece of information, 

where we heard about it or how we felt about it. The impact of our ability to 

correctly remember events and associated details is far-reaching. For instance, there 

may be no dramatic consequences when we go swimming in the sea in Norfolk, 

however, if we went on holidays to California and forgot about the time David 

Attenborough told us about frequent shark attacks at a nearby beach, we may put 

ourselves in a very dangerous situation. Being able to form, store and retrieve 

episodic memories is regarded as important for human survival (Tulving, 2002). 

Moreover, understanding how the healthy brain creates new memories to later 

retrieve them successfully may help to further understand the numerous clinical 

conditions associated with memory loss or impairment.  

 

1.1 Memory systems and processes  

The complexity of human memories is reflected in the multitude of different 

memory systems that have been proposed. A prominent taxonomy of memory 

systems broadly categorises long-term memory into declarative and procedural 

memories (e.g., Squire, 2004). The declarative memory system allows us to 

explicitly store and retrieve representations with conscious awareness, while the non-

declarative memory system is more concerned with implicit changes in behaviour 

encompassing procedural skills, conditioning and priming (see Milner, Squire, & 

Kandel, 1998). It has been suggested that clear-cut memory taxonomies, as proposed 

by the declarative/non-declarative distinction for example, are not capturing the vast 

complexity of memory systems and associated processing modes. The component 

process framework (Moscovitch, 1992), on the other hand, appears to be more 

consistent with evidence from functional neuroimaging. It proposes that multiple 

memory systems and processing modes lead to numerous different components that 

are involved in processing memories. Rather than attributing just one function to one 
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brain region, it focuses on the multiple functions and connections between brain 

regions that have been shown to be involved in different processes (Cabeza & 

Moscovitch, 2013). 

The present research is concerned with the formation and retrieval of 

declarative memories. Broadly speaking, declarative memories are sub-served by the 

medial temporal lobe (MTL) and stored in the neocortex (Milner et al., 1998). 

Declarative memories can be further divided into semantic and episodic memories 

(Tulving, 1972). Semantic memories include context-independent facts and general 

knowledge one holds about the world (Tulving, 2002). Episodic memories, on the 

other hand, represent personal past experiences and events that can be re-experienced 

(Schacter, Wagner, & Buckner, 2000; Tulving, 2002). Thus, an episodic memory 

includes additional information about an event, e.g., where or when it took place 

(Nyberg et al., 1996). These contextual details accompanying a particular event are 

the essence of episodic memory and the ability to re-experience events along with 

the retrieval of additional qualitative information is referred to as recollection 

(Tulving, 2002). However, sometimes a previously encountered item may also be 

recognised without the ability to recall any further details of the encoding episode, 

which is referred to as a familiarity judgement.  

 

1.2 How declarative memory is tested 

In addition to multiple memory systems, memory research may be concerned 

with different memory processes. Memories are the product of encoding, 

consolidation and retrieval of information. The present research is concerned with 

the encoding and retrieval of episodic memories. Neuroimaging research commonly 

employs subsequent memory paradigms to address questions relating to the encoding 

of episodic memories. In a subsequent memory paradigm, neural activity is recorded 

during a study phase, when relevant material is encoded while participants perform 

an encoding task, e.g., semantic categorization of the presented stimuli. In a 

subsequent test phase, retrieval of previously encoded material is probed. The 

behavioural results from the test phase allow us to sort the encoding trials into 

subsequently correct and incorrect item and source memory judgements (subsequent 

memory paradigm reviewed in Paller & Wagner, 2002). Resulting differences in 

neural activity between subsequently remembered and forgotten stimuli are termed 
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Dm effects or subsequent memory effects (Paller, Kutas, & Mayes, 1987). When 

neural activity is additionally recorded during the test phase, researchers can 

investigate both, encoding and retrieval of information. 

During the test phase, several properties of episodic memories can be probed. 

Most commonly, participants are asked to decide whether a stimulus has been 

presented before (old/new judgment) to measure item memory recognition, which 

can be achieved by recollection or familiarity. Therefore, in addition to assessing 

whether particpants are able to correctly recognise an item as old, there are various 

ways to assess episodic memory properties, whether it is by probing contextual 

details (recognition-source memory paradigm), associated awareness (remember-

know procedure) or degree of confidence associated with retrieval (reviewed in 

Diana, Yonelinas, & Ranganath, 2007). In a recognition-source memory paradigm, 

stimuli presented during the encoding phase are associated with different sources, 

i.e., contextual details that will later be probed in the test phase. In the subsequent 

test phase, participants are asked to make and old/new judgment followed by a 

source memory judgement, though the two questions assessing item and source 

memory have also been combined previously (e.g., Estrada-Manilla & Cansino, 

2012). Source memory tasks require the retrieval of specific, criterial information 

from the study phase (Johnson, Hashtroudi, & Lindsay, 1993). Such criterial 

information may concern perceptual (e.g., background colour), emotional (e.g., 

emotional thoughts during encoding), semantic (e.g., semantic category of an item) 

or spatial details from the study phase (e.g., spatial location on screen; Mitchell & 

Johnson, 2009). Research has shown that source memory is functionally distinct 

from item memory, which was suggested to be the result of additional reconstruction 

and decision-making processes taking place during source monitoring (Bröder & 

Meiser, 2007). Source memory, therefore, provides objective insights into qualitative 

characteristics or richness of a memory. The recognition-source memory paradigm is 

considered to be an objective measure of recollection, because it directly assesses 

source memory for contextual features that were acquired during the study phase. In 

signal detection theory, correct old judgements are referred to as hits, correct new 

judgements are termed correct rejections, old stimuli incorrectly judged as new are 

termed misses, and new stimuli incorrectly judged as old are false alarms (Banks, 

1970; Lockhart & Murdock, 1970). These terms will be used throughout this 

manuscript with a further division of hits into hits+, referring to correct item and 
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correct source memory, and hits-, referring to correct item but incorrect source 

memory judgements. 

An alternative, more subjective measure of recollection is the remember-

know (R-K) procedure (Tulving, 1985), where participants judge items presented at 

test as ‘remember’ (recollection), ‘know’ (familiarity) or new. It has been noted that 

the R-K procedure may assess memory strength, i.e., low and high 

familiarity/recollection rather than differentiating familiarity and recollection 

(Eldridge, Sarfatti, & Knowlton, 2002; Wixted, 2009). Furthermore, this procedure 

relies upon participants’ ability to accurately identify a memory as recollected or 

familiar (Voss & Paller, 2008b). This is in contrast with the recognition-source 

paradigm, where source memory is assessed objectively and controlled, criterial 

reinstatement can be measured. However, although correct source memory 

judgements reflect recollection, incorrect source judgements may not always reflect 

familiarity, as an untested aspect of the encoding episode may still be remembered 

(see Voss & Paller, 2017). Though there may be notable differences between the 

recognition-source memory paradigm and the R-K procedure, some have suggested 

that correct source memory judgements reflect recollection, while incorrect source 

judgements may rely more on familiarity processes (Squire, Wixted, & Clark, 2007). 

Therefore, although the present research employed a recognition-source paradigm, 

results from research using the R-K procedure will be taken into account in the 

following review of the literature.  

 

1.3 Repetition and memory 

The majority of research investigating subsequent memory effects has been 

carried out in the context of learning during a single study episode. A large amount 

of information we remember, however, has been experienced multiple times, 

whether we consciously rehearsed it or implicitly encountered the information 

repeatedly. The idea that rehearsal is associated with improved retention of 

information has been of interest to researchers and philosophers for over a century 

(Ebbinghaus, 1885/1964). Subsequent memory performance has frequently been 

shown to be improved by repeated encoding of information (e.g., Baddeley, 1978; 

Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Crowder, 1976; Davachi, Maril, & 

Wagner, 2001; Glenberg, Smith, & Green, 1977; Greene, 1987; Mechanic, 1964; 
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Opitz, 2010; Ranganath, Cohen, & Brozinsky, 2005; Reagh & Yassa, 2014; Van 

Strien, Hagenbeek, Stam, Rombouts, & Barkhof, 2005).  

The cognitive and neural mechanisms underlying repetition-related memory 

improvements have been proposed in a number of theoretical accounts. Two 

somewhat opposing theoretical accounts, initially based on behavioural results, are 

the reactivation view and the encoding variability view. The reactivation view 

proposes that repetition leads to reactivation of the memory, making the (cognitive 

and/or neural) representation more stable (Benjamin & Tullis, 2010; Thios & 

D’Agostino, 1976). Reactivation may occur during repeated encoding or the retrieval 

of information with the aim to generalise across previous, related experiences in 

order to react to an event appropriately (see Howard Eichenbaum, 2000). Along the 

same lines, some psychological theories aim to explain the role of reactivation 

during successful retrieval. Two such theories are the encoding specificity principle 

(Tulving, 1983; Tulving & Thomson, 1973) and the transfer-appropriate proessing 

account (Morris, Bransford, & Franks, 1977). Both theories imply that some form of 

reactivation has to take place between encoding and retrieval, as they suggest 

successful retrieval to be based on similar operations taking place during study and 

test (see also Kolers, 1973). The encoding variability view, on the other hand, posits 

that each stimulus presentation is uniquely encoded, leading to an increase in number 

and variety of retrieval cues and traces (Bower, 1972; Hintzman, 1986; Martin, 

1968; Nadel & Moscovitch, 1997). Encoding variability is based on studies 

demonstrating the beneficial effects of spaced learning when compared to massed 

learning, with the proposal that the longer the repetition lag, the more independent 

two events will be encoded as (e.g., Bray, Robbins, & Witcher, 1976). However, 

other behavioural experiments failed to report beneficial effects of encoding 

variability on memory retrieval (Postman & Knecht, 1983). 

As the proposed concepts of multiple traces and reactivation are difficult to 

observe in behavioural measures and may occur outside of the participant’s 

awareness (Levy & Wagner, 2013), theories that consider brain measures to explain 

psychological effects may provide further insights. One such theory is the 

complimentary learning systems (CLS) framework, which may also partly reconcile 

the discrepant proposals made by the reactivation view and the encoding variability 

view. The CLS account proposes that the hippocampus and neocortex play 

computationally and functionally distinct roles in memory processes (McClelland, 
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McNaughton, & O’Reilly, 1995; Norman & O’Reilly, 2003; O’Reilly & Norman, 

2002). It is proposed that the neocortex encodes semantic similarities between 

stimuli by creating general and overlapping representations. On the contrary, the 

hippocampus is suggested to extract unique episodic and contextual features by 

assigning distinct representations to each specific event despite any commonalities 

(Nadel & Moscovitch, 1997; Norman, 2010; O’Reilly, Bhattacharyya, Howard, & 

Ketz, 2014). While repetition has been shown to improve subsequent recognition 

memory, it was recently also demonstrated that repetition reduced participants’ 

ability to correctly reject similar lures (Reagh & Yassa, 2014). These results 

supported the competition trace theory (Yassa & Reagh, 2013), which suggests that 

repetition enhances item memory or familiarity at the cost of contextual details 

(source memory, recollection). Thus, repeated exposure to a stimulus may have 

differential effects on subsequent item and source memory performance. Early 

psychological accounts, such as the reactivation and encoding variability view, are 

too general to account for repetition to affect different forms of memory differently.  

Concurrently with improved subsequent memory performance, reaction times 

(RTs) to repeated stimuli tend to decrease (e.g., Ballesteros, Bischof, Goh, & Park, 

2013; Friedman, Ritter, & Snodgrass, 1996; Li, Guo, & Jiang, 2008; Ward, Chun, & 

Kuhl, 2013). Reductions in RTs are commonly referred to as repetition priming 

effects and have been attributed to decreases in cognitive demands and superior 

processing efficiency (Monsell, 1985; Scarborough, Cortese, & Scarborough, 1977). 

Repetition priming is typically achieved by repeated presentations of identical 

stimuli (perceptual repetition), but has also been reported when different exemplars 

were used (i.e., several different pictures of the same semantic concept, e.g., a tree), 

though priming effects were smaller in such conceptual repetitions (Biederman & 

Cooper, 1991; Cave, Bost, & Cobb, 1996; reviewed in Tulving & Schacter, 1990). 

Behavioural and neural repetition priming effects can be observed when stimuli are 

repeated immediately, within minutes, but also within hours, days or even weeks 

(Kolers, 1976; Mitchell, 2006; Van Turennout, Bielamowicz, & Martin, 2003; 

reviewed in Wiggs & Martin, 1998). While subsequent recognition memory is 

typically associated with explicit memory, repetition priming is usually thought to 

reflect implicit, automatic processes (see Henson, 2003; Tulving & Schacter, 1990). 

A large body of behavioural and lesion studies in healthy participants and amnesic 

patients suggests that repetition priming is dissociable from explicit memory 
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(Ballesteros & Reales, 2004; Fleischman, 2007; Gabrielili, Fleischman, Margaret 

Keane, Reminger, & Morrell, 1995; Graf, Squire, & Mandler, 1984; Rugg, Mark, et 

al., 1998; Squire, 2004; Warrington & Weiskrantz, 1974). Contrary to episodic 

memory performance, behavioural priming appears to be preserved in ageing 

(Ballesteros, González, Mayas, García-Rodríguez, & Reales, 2009; Caggiano, Jiang, 

& Parasuraman, 2006; Mitchell & Bruss, 2003; Wiggs, Weisberg, & Martin, 2006). 

Repetition priming, as a measure of implicit memory, and recognition-source 

memory, as a measure of explicit memory, can be tested in the same paradigm. 

Many neuroimaging studies have shown that the brain is sensitive to repetition 

(reviewed in Friedman et al., 1996; Henson, 2005), opening up the potential to 

investigate the neural underpinnings of repetition-related decreases in RTs as well as 

associated differences in item and source memory performance. Moreover, 

investigations of repetition and memory formation will provide further insights into 

the cognitive and neural mechanisms underlying memory formation under different 

encoding conditions and the relative benefits of repetition on different measures of 

memory, i.e., item and source memory. These insights can be directly linked to real 

world learning, for example, by comparing the benefits of learning in different 

contexts to mere repetition learning.  

 

1.4 Neuroimaging in memory research 

Before the advent of neuroimaging, understanding the roles of specific brain 

regions was largely based on patients with brain lesions and associated deficits in 

behaviour. For example, the case of K.C., who suffered from selective episodic 

memory impairment following extensive brain damage including bilateral 

hippocampal lesions (see Rosenbaum et al., 2005 for more details). While such case 

studies have provided considerable insights into human brain functions, the results 

are not necessarily generalisable. Findings from neuroimaging research have 

informed and furthered long-standing debates, advanced our knowledge of memory 

processes and enabled researchers to draw comparisons between human and non-

human research (see Brown, Staresina, & Wagner, 2015). For example, 

neuroimaging studies have provided support for dual-process models by indicating 

differences in the neural correlates of familiarity-based and recollection-based 

recognition memory (e.g., Curran, Tepe, & Piatt, 2006; Diana et al., 2007; H. 
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Eichenbaum, Yonelinas, & Ranganath, 2007). Although dual-process models are still 

highly contested in the literature, these results shed light on on-going debates 

sparked by behavioural data by furthering our understanding of the underlying neural 

processes.  

 

1.4.1 Electroencephalography 

Electroencephalography (EEG) is a non-invasive neuroimaging technique 

that measures changes in electrical potentials associated with discontinuities in 

extracellular ion concentrations. These typically reflect trans-membrane current 

flow, in particular, excitatory and inhibitory post-synaptic potentials. Scalp EEG 

does not measure activities from single neurons, instead, if a large sum of neurons 

receive excitatory or inhibitory post-synaptic potentials, the resulting currents can be 

measured in voltage changes by non-invasive scalp recordings (Luck, 2005). This 

makes EEG a direct measure of brain activity that can be used to investigate 

neurocognitive processes. The raw data from EEG recordings, however, are not 

suitable for those kinds of analyses as the neural signals relating to cognitive 

processes are practically impossible to isolate from the aggregation of neural activity 

making up the EEG signal (see Luck, 2014; Nieuwenhuis & De Rover, 2014). In the 

majority of experiments concerned with the electrophysiological correlates of 

cognitive processes, the experimenter is interested in identifying changes in brain 

activation relating to specific events occurring during the EEG recording (e.g., 

stimulus presentations). Averaging a large number of segments of the continuous 

EEG that are time-locked to such events will filter out noise and isolate the event-

related potentials (ERPs). ERPs may be made up of several components 

characterised by peaks and troughs. Each of these components then reflects the intra-

cortical currents picked up by the EEG in response to a specific event. Three features 

of ERP components potentially relevant to ERP researchers include the amplitude of 

the ERP waveform, the latency of the component and the scalp distribution 

(Johnson, 1992). These three features commonly constitute quantitative measures of 

neural activity, however, scalp distributions can also be indicative of qualitative 

aspects of the ERP at a specific time point (or averaged across a time window) and 

are often used to differentiate distinct neurocognitive processes (Michel et al., 2004). 

The latency of ERP components reflects the voltage peak and gives an estimate of 
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the timing when the activity occurred. More detailed descriptions and explanations 

of the ERP technique exist elsewhere (e.g., Handy, 2005; Luck & Kappenman, 

2011). Due to the inverse problem, the spatial resolution of EEG is relatively poor. 

Its strength lies in its very high temporal resolution. The ability to investigate the 

temporal dynamics underlying memory processes allows us to disentangle the 

various computations that may be involved in such processes (Voss & Paller, 2017; 

Wilding & Ranganath, 2012).  

 

1.4.2 Functional magnetic resonance imaging 

Magnetic resonance imaging (MRI) is another non-invasive neuroimaging 

method that is based on computerised analysis of the interaction between radio 

waves and magnetic fields generated by hydrogen atoms in body tissues and fluids. 

Detailed three-dimensional images are produced by varying the magnetic fields and 

radio waves. Functional MRI (fMRI) extends anatomical MRI by measuring regional 

cerebral blood flow as a proxy for cerebral function. More information regarding the 

underlying physics of MRI can be found elsewhere (e.g., Huettel, Song, & 

McCarthy, 2014). Research interested in cognitive processes typically employs fMRI 

to measure BOLD (blood oxygenation level dependent) fMRI responses. When brain 

regions become active, oxygenated haemoglobin and thereby magnetic 

susceptibility, increase, leading to a signal increase in the T2*-weighted MR image. 

As the BOLD measure is an indirect measure of neural activity, the temporal 

resolution of fMRI is much lower than for EEG. However, because we can overlay 

the BOLD measures with an anatomical MR image, the spatial resolution of fMRI 

data can be very high depending on the experimental design, the field of view and 

the strength of the scanner. Measuring blood flow as a proxy of neural activity, of 

course, also requires more caution with the interpretation of fMRI results (for details, 

see Logothetis, 2008; Logothetis & Wandell, 2004). In event-related designs, the 

BOLD response is most commonly modelled using a general linear model (GLM) to 

decompose the data into effects and error in order to obtain a statistic based on those 

parameter estimates. This method has been improved over the years and alternative 

ways of modelling the BOLD response have been developed (e.g., see Poldrack, 

Mumford, & Nichols, 2011). Functional neuroimaging, including fMRI and 

EEG/ERP investigations, has played a key role in developments and evaluations of 
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cognitive theories and allows us to investigate region-specific associations and 

dissociations in task-related brain activation (Cabeza & Moscovitch, 2013).  

 

1.5 Event-related potentials: Studies of episodic memory 

A large body of ERP experiments has investigated the ERP correlates of 

remembering and forgetting. The majority of those studies examined memory effects 

occurring during the test phase, including old/new effects. Relatively fewer 

investigations focused on subsequent memory effects occurring during the study 

phase. The two most prominently reported ERP components in declarative memory 

research are the late positive parietal component (LPC) and the FN400. The LPC 

occurs between 500 and 700 ms post stimulus onset and is characterised by a 

positive deflection in the EEG with maximum amplitudes over centro-parietal 

electrode sites. At test, it is sometimes also referred to as the parietal old/new effect 

(Rugg & Curran, 2007; Wilding & Ranganath, 2012).  The FN400 component is 

typically characterised by a negative deflection over frontal electrode sites that is 

observed between 300 to 500 ms after stimulus onset (Curran et al., 2006; Rugg & 

Curran, 2007). These two components are not only distinct in their scalp 

topographies and onset latencies, but also have functional differences supporting 

dual-process theories of recognition memory (Curran, 2000; Friedman & Johnson, 

2000; Rugg & Curran, 2007; reviewed in Yonelinas, 2002). The LPC has been 

repeatedly linked to episodic memory and recollection (Chen, Lithgow, Hemmerich, 

& Caplan, 2014; Duarte, Ranganath, Winward, Hayward, & Knight, 2004; Friedman 

& Johnson, 2000; Rugg & Curran, 2007; Wilding & Ranganath, 2012; Woodruff, 

Hayama, & Rugg, 2006; Yu & Rugg, 2010). The functional interpretation of the 

FN400, on the other hand, has been highly debated in the past. One line of research 

supports a role in familiarity-based recognition (e.g., Curran, 2000; Groh-Bordin, 

Zimmer, & Ecker, 2006). Another line of research associates the FN400 with 

semantic priming (e.g., Voss & Paller, 2009; Yovel & Paller, 2004), similar to 

another component, the centro-parietal N400 (Voss & Federmeier, 2011). The 

present investigations will focus on the LPC and FN400 components. Further ERPs 

that may be introduced as part of the literature review are the N400, generally 

associated with semantic processing and priming (reviewed in Kutas & Federmeier, 

2011) and the late posterior negativity (LPN), previously linked to action monitoring 
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processes during recognition-source decisions and to the retrieval of encoding-

related source information (see Johansson & Mecklinger, 2003; Mecklinger, 

Rosburg, & Johansson, 2016).  

Due to the spatial constraints of information derived from scalp EEG 

investigations, it is difficult to identify the brain regions that generate LPC and 

FN400 effects and directly compare those findings to fMRI research. Previous lesion 

studies showed that bilateral hippocampal lesions were associated with an absence of 

LPC along with amnesic symptoms (Addante, Ranganath, Olichney, & Yonelinas, 

2012; Düzel, Vargha-Khadem, Heinze, & Mishkin, 2001; Olichney et al., 2000). 

Intracranial recordings have also suggested a number of regions generating LPC 

effects, including various regions within the medial temporal lobe, e.g., 

parahippocampal gyrus, temporal pole, perirhinal and posterior cingulate cortices, as 

well as the ventro-lateral prefrontal cortex (Guillem, Rougier, & Claverie, 1999; 

Halgren et al., 1994). The FN400 is thought to be generated across several prefrontal 

regions and the right intraparietal sulcus; a suggestion largely based on functional 

parallels between commonly reported fMRI and ERP effects (Hoppstädter, Baeuchl, 

Diener, Flor, & Meyer, 2015; Yonelinas, Otten, Shaw, & Rugg, 2005). However, 

neuronal recordings in primates suggested that familiarity signals, thought to be 

reflected in FN400 amplitudes, may originate in ventro-medial prefrontal cortex, 

orbito-frontal and anterior cingulate cortex (Xiang & Brown, 2004), adding to 

proposals that FN400 effects may be generated across prefrontal brain regions. These 

reports illustrate that the neural generators of ERP components are likely diverse, 

much like the brain regions typically associated with robust memory-related effects, 

such as the old/new effect. Moreover, the EEG and fMRI literatures are not very well 

connected at this point. Therefore, all parallels drawn between the two imaging 

techniques within this thesis will remain speculative.  

 

1.5.1 Subsequent memory effects during a single encoding episode 

Early research investigating Dm effects consistently reported long-lasting 

positivity enhancements for hits when compared to misses (e.g., Fernández et al., 

1998; Friedman et al., 1996; Friedman & Trott, 2000; Mangels, Picton, & Craik, 

2001; Neville, Kutas, Chesney, & Schmidt, 1986; Paller et al., 1987; Paller, 

McCarthy, & Wood, 1988; Sanquist, Rohrbaugh, Syndulko, & Lindsley, 1980). 
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These Dm effects occur from around 300 ms post stimulus onset over parietal 

electrode sites, but have also been reported over frontal and central sites and are less 

often mapped to specific ERP components, such as the LPC and FN400 at test 

(reviewed in Friedman & Johnson, 2000; Paller & Wagner, 2002; Voss & Paller, 

2008b, 2017; Wagner, Koutstaal, & Schacter, 1999). Therefore, the terms early 

frontal or late parietal ERP may be used in this review to qualify encoding effects 

whenever the authors did not explicit refer to LPC or FN400 effects. Late parietal, or 

LPC, Dm effects have been consistently observed with subsequent hits eliciting 

more positive ERP waveforms than misses (Angel, Isingrini, Bouazzaoui, & Fay, 

2013; Griffin, DeWolf, Keinath, Liu, & Reder, 2013; Mangels, Manzi, & 

Summerfield, 2010; Wagner et al., 1999). Similarly, LPC amplitudes were more 

positive for subsequently recollected items compared to items that were given 

subsequent familiarity judgements (Voss & Paller, 2009; Yovel & Paller, 2004) and 

more positive for items subsequently recognised with high as opposed to low 

confidence (Mangels et al., 2010). In a study employing the recognition-source 

paradigm, more positive late parietal ERP waveforms were observed for faces, for 

which participants later also remembered the occupation (recollection), compared to 

faces that were judged as familiar or forgotten (Yovel & Paller, 2004). Parietal Dm 

effects have been suggested to reflect more elaborate encoding mechanisms (Yovel 

& Paller, 2004), as deeper, semantically richer processing during encoding has been 

linked to superior memory performance (Craik & Lockhart, 1972). As previously 

noted, the functional role of the FN400 component has been highly debated and 

support for its specific role in encoding is mixed (Curran, 2000; Voss & Paller, 

2009). For example, one study found an early (340 ms) frontal negative deflection to 

be more negative for subsequent recollection and familiarity judgements than misses 

(Mangels et al., 2001). In contrast, another study reported that an early (400 ms) 

frontal positive deflection had greater amplitudes for subsequent recollection and 

familiarity judgements than for subsequent misses (Duarte et al., 2004). Similar 

discrepancies have been found in research employing the source-recognition 

paradigm. Greater negative amplitudes over frontal sites were reported for 

subsequent hits+ judgements compared to hits- judgements (Cansino, Trejo-Morales, 

& Hernandez-Ramos, 2010), while larger positive amplitudes for hits+ than hits- 

judgements were reported in other studies (Angel et al., 2013; Cansino & Trejo-

Morales, 2008). Finally, a number of ERP experiments failed to detect any Dm 
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effects relating to subsequent familiarity/recollection judgements or source memory 

performance (Guo, Duan, Li, & Paller, 2006; Senkfor & Van Petten, 1998; Smith, 

1993). Overall, parietal Dm effects appear much more robust than frontal Dm 

effects. It is noteworthy that the above-cited research is highly heterogeneous in 

terms of study designs, specifically in terms of types of stimuli and encoding tasks 

that were employed. Several reviews of ERP research have highlighted the need for 

further research elucidating the influences of stimulus type and encoding context on 

Dm effects (e.g., Voss & Paller, 2008b; Wilding & Ranganath, 2012). While parietal 

Dm effects appear to be relatively robust, it may be that frontal ERP waveforms are 

highly affected by other factors, such as task difficulty or stimulus modality. 

Heterogeneity in experimental designs then makes it difficult to establish a clearer 

role for FN400-like Dm effects during encoding until possibly confounding effects 

have been identified. 

 

1.5.2 Memory and repetition 

ERP repetition effects have been reported as a wide-spread, positive-going 

deflection observed from 200 ms onwards with strongest effects around 400 – 600 

ms post-stimulus onset (Henson, Rylands, Ross, Vuilleumeir, & Rugg, 2004; Rugg 

& Doyle, 1994; Schendan & Kutas, 2003; Swick & Knight, 1997). Moreover, 

multiple stimulus presentations were shown to affect the LPC and N400 

differentially in that the LPC amplitude increases linearly with repetitions (Renoult, 

Wang, Calcagno, Prévost, & Debruille, 2012; Segalowitz, Van Roon, & Dywan, 

1997; Van Strien et al., 2005) while the N400 amplitude only increased from the first 

to second presentation but plateaued thereafter (Renoult et al., 2012). Early work on 

repetition priming suggested priming effects to be greater when stimuli are repeated 

in the same modality as opposed to presenting them in different modalities across 

repetitions (Clarke & Morton, 1983; Jacoby & Dallas, 1981; Kirsnert & Smith, 1974; 

Roediger & McDermott, 1993; Scarborough, Gerard, & Cortese, 1979). It was 

therefore concluded that repetition priming relied on consistency in presentation 

modality (Henderson, 1982), which is in line with proposals from the reactivation 

view (Thios & D’Agostino, 1976). More recently, it was shown that conceptual and 

perceptual priming were dissociable as perceptual priming effects were shown in 

frontal P170 amplitudes, while conceptual priming was indexed by amplitude 
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changes in the FN400, but only when stimuli (geometrical shapes) were rated as 

meaningful (Voss, Schendan, & Paller, 2010). Similar qualitative and quantitative 

ERP differences between perceptual (visual-visual) and conceptual (visual-auditory) 

priming were found between 200 and 400 ms post stimulus onset (unpublished, cited 

in Rugg & Allan, 1999). An experiment comparing ERPs to a measure of implicit 

memory, i.e., reductions in reaction times, and ERPs to a measure of explicit 

memory, i.e., recognition memory, reported that implicit memory processes were 

indexed by a positive deflection over occipito-parietal electrode sites beginning 

around 300 ms post stimulus onset. In contrast, explicit memory was reflected in a 

slightly later but more widely spread ERP effect (Paller & Gross, 1998), most likely 

reflecting the long-lasting positivity enhancement associated with Dm effects. 

The repetition-related increase in positivity over parietal electrode sites was 

further shown to correlate with subsequent memory performance (Griffin et al., 

2013; Groh-Bordin, Busch, Herrmann, & Zimmer, 2007; Olichney et al., 2000). 

Such increases in LPC amplitudes were interpreted as reflecting a graded increase in 

memory strength (Groh-Bordin et al., 2006; Van Strien et al., 2005) or the extraction 

of unique events (Renoult et al., 2012). Both interpretations are compatible with the 

association of the LPC with episodic memory and recollection. Furthermore, the 

observed repetition-related patterns during encoding were suggested to be 

reminiscent of old/new effects typically reported during the test phase (Griffin et al., 

2013). Evidence for an earlier, frontally distributed repetition effect relating to 

subsequent memory is, again, less convincing. A frontal Dm effect (300 – 500 ms) 

was found at the third stimulus presentation with more positive waveforms for 

subsequent hits than misses (Mangels et al., 2010). In another study, the FN400 was 

observed to be sensitive to repetition but this effect was not related to subsequent 

memory outcome (Griffin et al., 2013). Overall, the links between perceptual and 

conceptual repetitions and implicit and explicit memory processes remain somewhat 

unknown. As some research also reported main effects of repetition that did not 

interact with memory (Friedman et al., 1996), it may be that repetition occurs 

independently of subsequent memory performance or simply that some experimental 

designs as well as traditional averaging methods are not sensitive enough to detect 

the complex interactions between memory systems and repetitions.  
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1.5.3 Memory effects at test 

A large body of ERP research on memory processes has investigated the 

old/new effect during the test phase. This effect is characterised by more positive-

going ERP waveforms to old stimuli, i.e., stimuli previously presented during the 

study phase, than new stimuli, i.e., lures included in the old/new recognition memory 

test (reviewed in Johnson, 1995). In old/new paradigms, which also assess source 

memory, the LPC is consistently found to elicit more positive-going ERPs to hits+ 

judgements compared to correct rejections (Rugg, Schloerscheidt, & Mark, 1998; 

Wilding, 2000; Wilding & Rugg, 1996; Woroch & Gonsalves, 2010). Some studies 

further observed more positive waveforms for hits+ than hits- judgements (Addante, 

Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008; Mollison & 

Curran, 2012, experiment 1). These results have been further supported by patient 

studies that showed amnesic patients whose recollection is impaired also had 

reduced or even absent LPC amplitudes (Addante, Ranganath, Olichney, et al., 2012; 

Olichney et al., 2000, 2006). Similar to the LPC, FN400 waveforms are typically 

found to elicit more positive-going ERPs to hits+ judgements than correct rejections 

(Addante, Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008; Wilding, 

2000). In addition, fewer studies found the FN400 to be more positive for hits- 

judgements than correct rejections (Addante, Ranganath, & Yonelinas, 2012) as well 

as more positive-going FN400 waveforms for hits+ compared to hits- judgements 

(Addante, Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008). Such 

frontal source memory effects contradict the general notion that the FN400 is related 

to familiarity recognition judgements but not to recollection (see Curran et al., 2006 

for review). It is noteworthy that, similar to the study phase, FN400 effects appear 

less robust than LPC effects at test. The FN400 has sometimes been reported to be 

modulated by item memory but not by source memory (Mollison & Curran, 2012, 

experiment 2; Woroch & Gonsalves, 2010). Finally, some studies reported no FN400 

old/new effect (Cycowicz & Friedman, 2003; Cycowicz, Friedman, & Snodgrass, 

2001). This heterogeneity in frontal old/new effects has been suggested to be 

attributable to the degree to which item and source information can be unitised; in 

such cases, familiarity processes may be sufficient to lead to hits+ judgements 

(Diana, Van Den Boom, Yonelinas, & Ranganath, 2011; Mollison & Curran, 2012). 

Notably, very little attempt has been made so far, to link repetition-related changes 

in ERP amplitudes to psychological theories of memory formation. 
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ERPs measured at test have also been shown to be sensitive to the type of 

content that is being retrieved from the study phase. For example, in one ERP 

experiment, participants studied line drawings paired with either words, spatial 

locations or colours (Rösler, Heil, & Hennighausen, 1995). In a subsequent retrieval 

task, participants were only presented with the line drawings and asked to recall the 

associated information. Event-related slow waves, measured up to 6 seconds post-

stimulus onset, were found to differ qualitatively depending on the content the 

stimulus was previously paired with. Similar patterns emerged with other stimulus 

pairs, .e.g., words were paired with faces and spatial locations at study but cued only 

as words at test (Khader, Heil, & Rösler, 2005). The authors suggested those 

qualitative differences in scalp topographies to reflect differences in groups of cells 

that were activated by the reactivation of additional contextual content from an 

earlier study phase. However, research investigating traditional ERP components, 

such as the LPC and FN400, in paradigms manipulating encoding modality (visual 

vs. auditory) or encoding task (deep vs shallow) did not report such qualitative 

differences at test. Instead, ERPs were found to differ quantitatively in accordance 

with encoding task (Allan, Robb, & Rugg, 2000). Similarly, in a recognition-source 

memory paradigm, LPN amplitudes differed quantitatively relative to the content of 

the source that was retrieved (Mecklinger, Johansson, Parra, & Hanslmayr, 2007). 

Analogous content-specific retrieval effects were yielded for ERPs occurring from 

around 300 ms post stimulus onset in a R-K paradigm (Johnson, Minton, & Rugg, 

2008). Moreover, a recent EEG investigation used a classifier-based approach to 

investigate the time course of reinstatement-related processes (Johnson, Price, & 

Leiker, 2015). It was demonstrated that encoding-related reactivation processes 

during retrieval occurred in the LPC time window and that such reactivation was 

related to memory performance. Overall, since the LPC has repeatedly been linked to 

recollection, it could therefore be inferred that this recollection process holds further 

information about the encoding episode and may index reinstatement of source 

information.  

 

1.6 Haemodynamic responses: fMRI studies of episodic memory 

Functional MRI studies of episodic memory commonly focus on a number of 

core regions that make up the episodic recollection network (Cabeza, Ciaramelli, & 
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Moscovitch, 2012; Johnson & Rugg, 2007; King, de Chastelaine, Elward, Wang, & 

Rugg, 2015; Rugg & King, 2017; Rugg & Vilberg, 2013). This network includes 

MTL regions, the prefrontal cortex (PFC) and lateral parietal cortices. Much of the 

current interest in MTL regions was initially spurred by the case of Henry Molaison 

(HM), who was unable to remember new events after a resection of MTL structures, 

primarily including the hippocampi but also adjacent structures such as 

parahippocampal, perirhinal and entorhinal cortex (Corkin, 2013; Scoville & Milner, 

1957). In one of the first event-related fMRI Dm experiments, participants studied 

words in a scanned encoding phase and performed a recognition task shortly after the 

scan. Subsequent hits were found to be associated with more activation in left 

prefrontal and left temporal brain regions compared to subsequent misses (Wagner et 

al., 1998). In the same year, another study reported similar Dm effects but this time 

participants studied photographs of scenes and Dm effects were observed in right 

prefrontal and bilateral parahippocampal cortices (Brewer, Zhao, Desmond, Glover, 

& Gabrieli, 1998). Dm effects in MTL and PFC have been replicated numerous 

times (Blumenfeld & Ranganath, 2007; Fletcher, Stephenson, Carpenter, Donovan, 

& Bullmore, 2003; H. Kim, 2011; Persson & Söderlund, 2015; Spaniol et al., 2009). 

Well-established memory and learning theories, such as the CLS account, propose 

that the allocortical hippocampus plays a computationally and functionally distinct 

role from neocortical areas in memory encoding and recognition (McClelland et al., 

1995; Norman & O’Reilly, 2003; O’Reilly & Norman, 2002). More specifically, the 

neocortex is suggested to encode commonalities between stimuli and their semantic 

features by assigning overlapping, general representations. The hippocampus on the 

other hand, is suggested to extract specific contextual, episodic features and to create 

distinct representations even for seemingly similar events (Nadel & Moscovitch, 

1997; Norman, 2010; O’Reilly et al., 2014). The contributions of different brain 

regions in memory encoding and retrieval as well as differences between memory 

systems and processes involved during study and test can be further investigated 

with event-related fMRI research. 

 

1.6.1 Subsequent memory effects during a single encoding episode 

Numerous fMRI experiments have been carried out to identify brain regions 

in which Dm effects occur. While, MTL and PFC regions may be critically involved 
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in memory encoding, Dm effects are not exclusive to those two areas of the brain. 

For example, results from large meta-analyses have reported wide-spread positive 

Dm effects, i.e., activation is higher for subsequent hits than misses, in left inferior 

frontal cortex, medial temporal regions including the hippocampal formation, 

fusiform, premotor and posterior parietal cortices (Kim, 2011; Spaniol et al., 2009). 

Studies have also identified reversed Dm effects with misses being associated with 

higher mean activation than hits (Daselaar, Prince, & Cabeza, 2004; Kim, 2011; 

Otten & Rugg, 2001c). However, this does not necessarily imply that an increase in 

activation in regions showing reversed Dm effects contributes to forgetting but rather 

that certain regions deactivate to aid successful encoding by reallocating neural 

resources to other regions  (Daselaar et al., 2004). Brain areas showing such 

deactivations are often associated with the default-mode network, namely anterior 

and posterior midline cortex, superior frontal cortex, posterior cingulate cortex and 

temporo-parietal junction (Kim, 2011). 

Further divisions of hits into source memory performance or recollection and 

familiarity have often focused on MTL sub-regions separately. Those MTL sub-

regions include perirhinal and parahippocampal cortices and the hippocampal 

formation, which can be further sub-divided into dentate gyrus, hippocampus proper 

with its cornu ammonis (CA) fields, subicular complex and entorhinal cortex. 

Activation in the perirhinal cortex has been suggested to predict subsequent item 

memory, while activation of hippocampus is associated with subsequent recollection 

(see e.g., Davachi, 2006; Diana et al., 2007; Kensinger & Schacter, 2006; Mayes, 

Montaldi, & Migo, 2007; Ranganath et al., 2004). The hippocampus has been shown 

to exhibit greater mean activity for subsequent hits than misses (as outlined above), 

for subsequent remember than know responses (Diana et al., 2007; Otten, 2007; 

Ranganath et al., 2004; Uncapher & Rugg, 2005) and for subsequent hits+ than hits- 

judgements (Davachi, Mitchell, & Wagner, 2003; Kensinger & Schacter, 2006). The 

hippocampus has long been highlighted in the context of binding features of 

memories together into a coherent representation (Dudai, 2012; Josselyn, Köhler, & 

Frankland, 2015; Moscovitch, 1992; Moscovitch & Winocur, 1992; Tonegawa, 

Pignatelli, Roy, & Ryan, 2015), which appears particularly valuable in the context of 

recollection. These binding processes are suggested to be reliant on converging 

inputs from perirhinal and parahippocampal cortices to the hippocampus (see Brown 

et al., 2015). However, differences in mean activation relating to subsequent 
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recollection are not exclusive to MTL-regions either. In a recognition-source 

memory paradigm, positive subsequent source memory effects were also reported in 

left inferior frontal cortex (Duarte, Henson, & Graham, 2011). The authors further 

found reversed, i.e., negative, subsequent source effects in precuneus, posterior 

cingulate, intraparietal sulcus and bilateral posterior hippocampus though the 

hippocampal effects only reached statistical significance in region of interest (ROI) 

analyses. These areas are partially overlapping with those showing reversed item 

memory effects, except the hippocampus has typically been shown to be more 

activated for subsequent source hits compared to misses. The authors suggested that 

this reversed hippocampal source memory effect may reflect recollection of non-

criterial details among the subsequent hits- trials (Duarte et al., 2011) and pointed 

out that similar results have been yielded in other source and relational memory 

paradigms (Astur & Constable, 2004; Rekkas et al., 2005). Overall, the research 

examples highlight the longstanding roles of MTL and PFC in memory encoding, 

but recent research has placed additional emphasis on posterior parietal regions, such 

as the angular gyrus and precuneus, whose specific roles require further 

investigations. 

 

1.6.2 Memory and repetition 

When stimuli are repeatedly presented in event-related fMRI experiments, a 

regional decrease in mean activation has been observed across those repetitions 

(Epstein, Parker, & Feiler, 2008; Grill-Spector, Henson, & Martin, 2006; Henson, 

Shallice, & Dolan, 2000; Naccache & Dehaene, 2001; Stern et al., 1996). This is 

referred to as repetition suppression and thought to be the neural correlate of 

behavioural repetition priming (Epstein et al., 2008; Henson & Rugg, 2003; Schacter 

& Buckner, 1998; Wiggs & Martin, 1998). The degree of repetition suppression was 

found to correlate with implicit memory as measured in RTs (Ballesteros et al., 

2013; Ward et al., 2013). The effect typically occurs in brain regions implicated in 

perceptual or semantic processing (see Grill-Spector et al., 2006; Schacter, Wig, & 

Stevens, 2007). Similar to behavioural priming effects, repetition suppression has 

been attributed to decreases in cognitive demands and superior processing efficiency 

(Buckner et al., 1998; Grill-Spector et al., 2006; Henson & Rugg, 2003; Schacter et 

al., 2007; Wig, Grafton, Demos, & Kelley, 2005). Reductions in neural activity, 
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particularly in the hippocampus, have sometimes been reported as a linear decrease 

in activation across repetitions (Grill-Spector & Malach, 2001; Henson et al., 2000; 

Sayres & Grill-Spector, 2006; Suzuki, Johnson, & Rugg, 2011; Vannini, Hedden, 

Sullivan, & Sperling, 2013), however, this decrease plateaus after around six 

repetitions (Sayres & Grill-Spector, 2006). Furthermore, perceptual and conceptual 

priming were found to be dissociable in an experiment which showed that applying 

transcranial magnetic stimulation to the left frontal cortex was associated with 

decreases in behavioural and neural priming effects indexing conceptual priming, 

while neural priming effects in sensory areas remained unaffected (Wig et al., 2005). 

Although the interpretation of repetition suppression effects is still debated (Davis & 

Poldrack, 2013), it was suggested to reflect highly similar stimulus-processing or 

highly similar stimulus representations in the region where repetition suppression 

occurs (Bakker, Kirwan, Miller, & Stark, 2009; Lacy, Yassa, Stark, Muftuler, & 

Stark, 2011). Overall, it appears that repetition suppression is primarily related to 

implicit memory processes and reallocation of resources within the default-mode 

network as reflected in regional deactivations (see Vannini et al., 2013). 

In addition to repetition suppression, research has further reported repetition 

enhancement, which refers to an increase in activation across stimulus repetitions 

(reviewed in Segaert, Weber, de Lange, Petersson, & Hagoort, 2013). It has been 

suggested that repetition enhancement may reflect a number of neurophysiological 

mechanisms, including predictive coding (Friston, 2005) and the formation of 

novelty networks (Henson et al., 2000). Repetition enhancement has also been 

reported in the context of overlapping but distinct repetitions in associative memory 

tasks, potentially signalling stimulus novelty paired with higher integration demands 

(Zeithamova, Manthuruthil, & Preston, 2016). While it is less often reported than 

repetition suppression, repetition enhancement has also been associated with 

recognition processes, suggesting that voluntary or involuntary explicit retrieval may 

take place in implicit encoding tasks (Henson, 2003). This notion was strengthened 

by similar regions being implicated in repetition enhancement at study and memory 

retrieval at test (Kim, 2017; Korsnes & Magnussen, 2014; Schott et al., 2005). 

Repetition enhancement in the perirhinal cortex was found to predict subsequent 

memory (Heusser, Awipi, & Davachi, 2013). More evidence that repetition 

enhancement rather than suppression is related to explicit memory comes from 

reports of a relationship between parietal repetition-related increases in mean 
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activation and subsequent memory performance (Kremers et al., 2014; Vannini et al., 

2013). Together, these results suggest that repetition suppression is more likely to be 

associated with behavioural priming and implicit memory, while repetition 

enhancement effects have often been related to explicit memory performance. 

Repetition-related increases, however, are less well understood and not as commonly 

reported in the literature (Segaert et al., 2013). Few studies have made distinctions 

between perceptual and conceptual repetition enhancement effects (but see Heusser 

et al., 2013) and related those results to implicit and explicit measures of memory.  

 

1.6.3 Memory effects at test 

Research, including neuroimaging and lesion studies, has identified a 

network of brain regions central to recollection processes. This network is comprised 

of prefrontal, medial temporal and parietal areas, with the anterior PFC particularly 

involved in the monitoring and decision-making processes underlying successful 

retrieval of source information (reviewed in Mitchell & Johnson, 2009; Rugg & 

Vilberg, 2013; Simons, Garrison, & Johnson, 2017; Simons & Spiers, 2003). More 

specifically, hits+ judgements have been associated with higher activation than hits- 

judgements in left medial and ventromedial prefrontal and bilateral orbitofrontal 

cortices, angular gyrus, posterior cingulate/retrosplenial cortex, insula, superior and 

middle temporal gyri and bilateral hippocampus (Duarte et al., 2011; Thakral, Wang, 

& Rugg, 2015). However, previous reviews and meta-analyses have pointed to 

inconsistencies across the literature regarding memory effects at test, especially in 

MTL areas (Henson, 2005; Spaniol et al., 2009). Similar inconsistencies were also 

observed in the prefrontal cortex for source memory effects (Simons et al., 2017), 

with several studies not reporting any significant effects for old > new or hits+ > 

hits- contrasts (e.g., Henson, Cansino, Herron, Robb, & Rugg, 2003; Herron, 

Henson, & Rugg, 2004). Discordant prefrontal cortex results in source memory tasks 

have been suggested to be partly explained by the diversity of source information, 

especially internally and externally generated information, that is to be retrieved 

across different experiments (Simons et al., 2017; Simons, Owen, Fletcher, & 

Burgess, 2005). The absence of old/new effects in the MTL and, in particular the 

hippocampus, was proposed to reflect the encoding of new items during the test 

phase (Stark & Okado, 2003). Moreover, old/new effects were found to be weaker 
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than recollection/familiarity or source memory effects in regions that are part of the 

default network (Kim, 2016) as well as in the left prefrontal cortex (reviewed in 

Mitchell & Johnson, 2009). Weak old/new effects at test may therefore reflect 

potentially different hippocampal activation patterns that are either related to 

encoding of new items or to retrieval of old items. Analyses based on mean 

activation may not be sensitive enough to distinguish these two activation patterns. 

As outlined above, at encoding, the hippocampus’ role in binding contextual 

information together has been highlighted as vital for later successful retrieval. At 

test, it has been suggested that hippocampal activity varies with the amount of 

contextual detail that is retrieved (Rugg et al., 2012). This notion is in line with 

results showing greater activity in the hippocampus for recollection than familiarity 

judgements and for hits+ than hits- judgements (Duarte et al., 2011). However, it 

may also account for failures to observe such differences. A meta-analysis reported 

only subjective and not objective hippocampal recollection effects (Kim, 2016). 

Such findings may be attributed to one of the pitfalls of source memory paradigms: 

recollection of non-criterial details may take place during incorrect source 

judgements (Parks, 2007; Vilberg & Rugg, 2008; Yonelinas & Jacoby, 1996), which 

would be associated with higher hippocampal activation and in turn explain the 

absence of objective recollection/source memory effects in some cases.  

Similar to EEG research, fMRI investigations of mean activation during the 

test phase have examined the correlates of encoding-related reinstatement. The 

cortical reinstatement hypothesis proposes that cortical representations created 

during the study phase will be reactivated during retrieval, making reinstatement a 

critical process for successful memory performance (see Rugg, Johnson, Park, & 

Uncapher, 2008). Indeed, a number of fMRI experiments have shown encoding-

retrieval overlap, particularly in sensory regions (Danker & Anderson, 2010; Diana, 

Yonelinas, & Ranganath, 2013; Khader, Burke, Bien, Ranganath, & Rösler, 2005; 

Nyberg, Habib, Mcintosh, & Tulving, 2000; Wheeler, Petersen, & Buckner, 2000). 

While such investigations of content-specific reactivation, indexed by differences in 

mean activation, can inform us about general processes underlying recollection and 

retrieval of contextual information to some extent, they cannot elucidate the nature 

of item-specific pattern reinstatement. More recent examinations of reinstatement 

used multivariate analysis approaches (see Rugg & Vilberg, 2013), which have been 
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shown to be more sensitive to effects that cannot be examined with univariate 

analyses. These reinstatement effects will be discussed later in this chapter (1.7.2). 

 

1.7 Univariate and multivariate analyses 

The results introduced above are yielded with univariate statistical 

approaches. While univariate analyses can inform our understanding about changes 

in mean activation (of either ERP amplitudes or fMRI BOLD), multivariate 

statistical approaches (also referred to as multivoxel pattern analysis; MVPA) allow 

us to investigate distributed activation patterns across voxels or ROIs in relation to 

specific events or stimuli. It has been suggested that results from univariate whole-

brain analyses are sensitive to global task-engagement, while searchlight MVPA 

results can provide additional insights into distributed coding of information. 

Therewith, multivariate analyses led to the development of new research questions 

that could be addressed with those techniques (Haxby, 2001; Jimura & Poldrack, 

2012; Kriegeskorte & Bandettini, 2007; Norman, Polyn, Detre, & Haxby, 2006; 

Ward et al., 2013). MVPA is typically used in one of two forms, either as a 

classifier-based approach or as a pattern similarity approach. Classifier-based MVPA 

is based on machine learning algorithms for pattern classification. These algorithms 

aim to decode and differentiate between stimulus- or event-specific multivoxel 

patterns (Norman et al., 2006; Pereira, Mitchell, & Botvinick, 2009; Rissman & 

Wagner, 2012). Research included in the present manuscript employed the pattern 

similarity MVPA approach to primarily test hypotheses regarding processes of 

reactivation and multiple trace formation during memory encoding and retrieval. The 

pattern similarity approach is widely known as representational similarity analysis 

(RSA; Kriegeskorte, Mur, & Bandettini, 2008). RSA has been argued to allow us to 

test hypotheses regarding the neural mechanisms underlying successful memory 

formation and retrieval (e.g., Brown et al., 2015). In traditional RSA approaches a 

correlation coefficient, e.g., Pearson’s r, is computed across voxels and between 

events or stimuli of interest. This correlation coefficient is then used as an index of 

pattern similarity. RSA can help to distinguish brain regions based on their feature-

sensitivity. For example, regions displaying higher pattern similarity between a 

chocolate-coated pancake and a brown ball (likely reflecting overlapping features in 

2-dimensional shape and colour) than between the same pancake and a tub of Ben & 
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Jerry’s ice cream may be sensitive to visuo-perceptual stimulus features. On the 

other hand, regions that show more pattern similarity between the pancake and the 

ice cream tub than between the pancake and the brown ball may be more sensitive to 

conceptual features, i.e., both are deserts. Analogously, pattern similarity between 

two events may be interpreted as highly overlapping representations if the similarity 

index is high and distinguishing between two events when the similarity index is 

low. The same logic can then be applied to memory processes, as described in the 

following. So far, memory research has typically investigated how pattern similarity 

relates to memory performance.  

 

1.7.1 Repeated encoding, representational similarity and memory 

Psychological theories  have proposed different explanations for why 

repetition aids memory encoding (see Chapter 1.3). The reactivation view suggests 

that repetitions make memory representations more stable by reactivating the same 

memory (Benjamin & Tullis, 2010; Thios & D’Agostino, 1976). The encoding 

variability view proposes that a larger number of retrieval cues and traces is 

available when items are encoded uniquely (Bower, 1972; Hintzman, 1986; Martin, 

1968; Nadel & Moscovitch, 1997). Although these theories initially made 

predictions regarding underlying cognitive processes, they have since been extended 

to incorporate neural results and refine their predictions (e.g., Benjamin & Tullis, 

2010; Nadel & Moscovitch, 1997). Additionally, the CLS account proposes distinct 

roles for different brain regions in memory encoding, more specifically, the 

hippocampus extracts unique episodic features, while the neocortex generalises 

information to integrate overlapping features into a coherent representation 

(McClelland et al., 1995; Norman & O’Reilly, 2003; O’Reilly & Norman, 2002). 

One experiment employing RSA reported evidence in support of the CLS account 

(LaRocque et al., 2013). The authors computed similarity between items with respect 

to subsequent memory outcome. They found higher pattern similarity between items 

that were subsequently remembered compared to those subsequently forgotten in 

extra-hippocampal regions, namely perirhinal and parahippocampal cortices. 

However, in the hippocampus, more neural pattern dissimilarity between items was 

associated with better subsequent memory outcome. These results largely support 
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prevalent notions that the hippocampus encodes items by creating distinct 

representations while the MTL cortex encodes overlapping features between items.  

An alternative approach, using RSA to assess reactivation vs. multiple traces, 

is to investigate how similarity patterns change across repeated stimulus encoding. 

One study computed the similarity between repeated stimulus presentations and 

found that, overall, cortical similarity patterns were higher for subsequent hits 

compared to misses (Xue et al., 2010). Related results were yielded in a study that 

compared results from two distinct statistical approaches to investigating repetition-

related changes in BOLD signal, repetition suppression and RSA, in the light of 

implicit and explicit measures of memory (Ward et al., 2013). At study, participants 

made indoor/outdoor judgements to repeatedly presented scenes. Implicit memory, 

as measured by repetition priming, was associated with repetition suppression across 

prefrontal, parietal and occipito-temporal regions. Importantly, RSA results were not 

predictive of the level of repetition priming. The opposite results were shown for 

explicit memory. Explicit subsequent memory was related to similarity patterns 

across repetitions and although some of those effects were found in regions 

overlapping with those displaying repetition priming effects, repetition suppression 

did not predict explicit subsequent memory. Pattern similarity predicted subsequent 

memory most consistently across occipito-temporal regions. In a follow-up analysis 

of an already published dataset (Experiment 3, Xue et al., 2010), it was revealed that 

the distributed similarity patterns, which were previously reported to predict 

subsequent memory performance, correlated with fronto-parietal activation (Xue et 

al., 2013). The authors suggested that this activity enhances cortical pattern 

similarity by strengthening cortical representations, which eventually leads to richer 

input to MTL regions. RSA has also been used in conjunction with a source memory 

task (van den Honert, McCarthy, & Johnson, 2016) though the authors referred to it 

as mnemonic discrimination (participants had to discriminate whether two 

presentations at encoding were similar or identical). Occipito-temporal, hippocampal 

and parahippocampal pattern similarity between the first and second presentation 

was related to subsequent mnemonic discrimination of scenes. A similar effect was 

found for objects but only in the fusiform gyrus. These results were interpreted as 

evidence for reactivation mediated by the hippocampus to aid subsequent source 

memory (van den Honert et al., 2016). Reverse effects were found when participants 

encoded stimuli across different tasks. Pattern similarity in lateral occipital cortex 
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between the first and second presentation during the encoding phase was associated 

with poorer subsequent source memory performance (Kim, Norman, & Turk-

Browne, 2017). Generally, it appears effects of pattern similarity predicting 

subsequent memory are more widely distributed, i.e., reported across more ROIs, for 

stimuli that are perceptually richer, such as scenes. Furthermore, effects are most 

consistently reported in visuo-perceptual areas, which bears a question as to how 

much conceptual encoding of the stimulus is necessary to evoke such similarity 

patterns. Additionally, one limitation of most of the above studies examining neural 

similarity patterns across repeated encoding is that both, encoding modality and 

encoding task were held constant across repetitions, making it difficult to infer the 

contributions of perceptual and conceptual features to pattern similarity. 

 

1.7.2 Encoding-retrieval representational similarity and memory 

Another line of research has examined encoding-retrieval similarity (ERS) 

patterns. On one hand, investigating ERS patterns may be seen as a natural extension 

to looking at repeated encoding similarity, as the stimulus presentation at test could 

be considered a repetition in itself. However, it is important to consider that, unlike 

repeated encoding conditions, the test phase requires explicit retrieval of 

information. The motivation to investigate similarities between encoding- and 

retrieval-related processes is highlighted in numerous theoretical accounts. For 

example, the aforementioned encoding specificity principle (Tulving, 1983; Tulving 

& Thomson, 1973) and the transfer-appropriate processing account (Morris et al., 

1977), which imply that similar operations have to take place at study and test in 

order to successfully retrieve an item. Finally, the cortical reinstatement hypothesis 

proposes that the successful retrieval of episodic memories relies on reinstatement, 

implying that brain regions that were active during encoding are reactivated during 

retrieval (Nyberg et al., 2000; Rugg et al., 2008; Wheeler et al., 2000). While 

regional overlaps in mean activation between study and test phase have been 

reported (Johnson & Rugg, 2007; Persson & Nyberg, 2000), results from mass-

univariate analyses do not reflect pattern reinstatement of item-specific information.  

An investigation of ERS demonstrated higher pattern similarity, especially in 

occipito-temporal cortices, was associated with better memory performance 

(Ritchey, Wing, LaBar, & Cabeza, 2013). Furthermore, ERS predicted memory 
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performance in many regions of frontal, parietal and occipital cortices that did not 

show memory effects when using a univariate approach. The authors suggested that, 

compared to similarity across multiple encoding episodes (e.g., Xue et al., 2010), 

ERS is based on different tasks during the study and test phase. Therefore, 

similarities are likely to reflect item-specific perceptual or otherwise important 

mnemonic features occurring at successful encoding and retrieval. Furthermore, this 

study found that the relationship between cortical ERS and memory performance 

was mediated by the hippocampus (Ritchey et al., 2013). These results were 

interpreted as evidence that hippocampal-cortical interactions are important for 

successful retrieval. Another study investigated different levels of ERS (Wing, 

Ritchey, & Cabeza, 2015). The authors first computed item-level ERS by correlating 

patterns separately for each item and suggested that item-level ERS reflected 

reactivation of stimulus properties. Additionally, they also computed set-level ERS 

by correlating the pattern of each specific item with all the other items of the same 

memory category. Set-level ERS was suggested to index reactivation of more 

general information and processes that were shared between all stimuli of one 

category, e.g., all remembered stimuli. Finally, they also calculated the difference 

between item-level and set-level similarity, hereafter referred to as item-specific 

similarity, reflecting item-specific pattern reinstatement that was distinct from all 

other stimuli within the same category. Item-level similarity in occipito-temporal 

cortex increased with memory success. Additionally, ERS in posterior cingulate 

cortex was higher at the item- than the set-level, suggesting stimulus-specific 

representations to be stored in this region. Finally, ERS in ventrolateral PFC 

increased with memory success at both, the item- and the set-level. Computing item-

level and item-specific ERS appears to be indispensable as those indices provide 

additional stimulus-specific information rather than reflecting more general process 

as reflected in set-level similarity. However, it has also been pointed out that 

perceptual feature overlap between encoding and retrieval may partly drive such 

similarity patterns (Xiao et al., 2017). Xiao and colleagues (2017) demonstrated 

item-specific reinstatement in the parietal lobe in a design that controlled for such 

perceptual similarities, showing that conceptual reinstatement can be observed in the 

absence of overlapping perceptual features between encoding and retrieval. Though 

not the focus of the present research, it is important to mention that classifier-based 

approaches have repeatedly provided evidence for content-specific reinstatement 
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mediated by the hippocampus (Bosch, Jehee, Fernández, & Doeller, 2014; Gordon, 

Rissman, Kiani, & Wagner, 2014; Liang & Preston, 2017; Staresina, Henson, 

Kriegeskorte, & Alink, 2012). Moreover, the observed reinstatement patterns in 

MTL areas were predictive of source memory outcome (Liang & Preston, 2017). 

Notably, reinstatement was also reported when familiarity-based judgements were 

made, suggesting that processes of neural pattern reinstatement are not exclusive to 

recollection (Johnson, McDuff, Rugg, & Norman, 2009). Taken together, these 

results highlight again the complexity of memory processes reflected in the number 

of brain regions involved and the diversity of results, which, in turn, encourage 

further whole-brain searchlight analysis approaches in order to tie in those various 

accounts. Moreover, because the studies introduced here typically used the same 

stimuli at study and test, it is unclear whether ERS patterns reflect reinstatement of 

perceptual or conceptual information (Xiao et al., 2017). Finally, compared to item 

memory reinstatement, little is known about the relationship between pattern 

similarity indexing reinstatement of episodic contextual features and source memory 

performance. Employing a source memory measure in addition to an item memory 

measure will provide novel insights into the role of reactivation in recollection 

judgements. 

 

1.8 Aims and objectives of the present research 

The present research investigates the effects of repetition on subsequent 

memory performance as well as reinstatement of information from the encoding 

phase during the test phase. Electrophysiological and haemodynamic response data 

were obtained. Univariate and multivariate data analyses were conducted and, where 

appropriate, results are qualitatively related and discussed between the two 

experimental designs and the two neuroimaging approaches. The primary aim of the 

present investigations was to gain a richer understanding of the neural predictors of 

successful encoding and retrieval of episodic memories. To achieve that, this thesis 

investigates the relationship between memory performance and fMRI pattern 

reactivation between repeated encoding episodes and between encoding and 

retrieval. Previous research typically repeatedly presented the same perceptual 

stimuli and participants repeatedly performed the same encoding tasks. It is therefore 

not clear, how similarity patterns may be affected by changes to encoding modality 
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or task instructions. In two experimental designs, effects of encoding modality and 

encoding task on memory processes at study and test will be further examined. The 

here presented experiments will offer insights into cognitive and neural mechanisms 

underlying increases in memory performance during repeated encoding. In 

particular, this thesis is concerned with the effects of different encoding strategies on 

memory performance and underlying neural patterns predicting memory 

performance.  

In the first set of experiments, participants repeatedly encoded stimuli in one 

of three different encoding modality conditions: as pictures only, as words only and 

as pictures and words alternately. At test, participants performed item and source 

recognition tasks while stimuli were cued as words only. This design allowed 

investigations of modality-related subsequent memory effects as well as perceptual 

and conceptual repetition effects at study and reinstatement of encoding modality 

and modality-related memory effects at test. The results from this set of experiments 

(EEG data presented in Chapter 3, fMRI data presented in Chapter 4) will provide 

insights into the complex interactions between memory processes, repetition and 

encoding modality. Some heterogeneity in univariate results in the literature may be 

explained by systematically testing for modality-related memory effects in ERP and 

fMRI data. The multivariate analyses will further extend our knowledge with respect 

to the reactivation hypothesis and the multiple trace theory in that we will be able to 

evaluate the relative contributions of perceptual and conceptual similarity to 

reactivation patterns in a recognition-source paradigm. 

In the second set of experiments, participants repeatedly encoded stimuli 

under two different encoding task conditions: repeatedly performing the same task 

and performing a different task at each of the four encoding presentations. At test, 

participants performed item and source recognition tasks. This design allowed 

investigations of subsequent source memory and priming effects under two different 

task conditions at study as well as differences in encoding-retrieval similarity 

relating to encoding of stimuli in the same and in different contexts. Univariate 

analyses will test for repetition effects in the two different encoding task conditions. 

Multivariate analyses will provide insights into the role of reactivation in the 

formation of memory traces when different encoding operations are required at 

study. The results form this set of experiments will inform theoretical approaches to 
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repeated encoding and subsequent item and source memory, such as the reactivation 

view and encoding variability hypothesis.  
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Chapter 2 – General methods 

2.1 Participants  

Healthy adult participants, aged 18 – 35 years, were recruited through 

opportunity sampling including the School of Psychology’s paid participant panel 

mailing list and posters displayed on campus. Participants were right-handed, native 

English speakers with normal or corrected-to-normal vision. Exclusion criteria 

included a history of head injury with loss of consciousness longer than five minutes 

and other neurological or medical conditions known to compromise brain function. 

Participants could only take part in one of the four experiments to avoid familiarity 

with the experimental design, in particular, with the surprise memory test. Informed 

consent was obtained from all participants and this research was approved by the 

Research Ethics Board of the University of East Anglia. Participants were 

reimbursed for their time in accordance with the School of Psychology’s standard 

payment rates.  

 

2.2 Materials  

Experimental tasks were programmed and delivered through the stimulus 

presentation software Presentation 18.1. 

2.2.1 EEG  

The EEG recordings were obtained using a Brain Vision UK actiCAP system 

with 63 active electrodes embedded in an elastic nylon cap (10/10 system extended). 

An additional electrode was placed under the left eye in order to monitor vertical eye 

movements (lower electrooculogram; lEOG). Participants’ button presses throughout 

the task were made on a Black Box ToolKit response pad. For the experimental 

procedure, participants were seated in front of a computer screen, placed 1m from 

their eyes, on which instructions and experimental tasks were presented. 

2.2.2 fMRI  

Functional and anatomical MRI data were obtained with a 3 Tesla wide bore 

GE 750w MRI scanner. Stimuli and task instructions were presented on a screen via 

an AVOTEC silent vision projector. The screen was placed within the scanner, 

approximately 90cm from participants’ eyes. Behavioural responses were recorded 

with a Fiber Optic Response Device and logged with Presentation 18.1. Participants 
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wore earplugs to minimise scanner noise and head motion was reduced using foam 

pads. 

 

2.3 General task and procedure  

Participants were briefed and informed consent was obtained before the 

beginning of the experiment. For fMRI experiments, MRI safety was assessed prior 

to the scan. 

 

 

Figure 2.1. The subsequent recognition-source memory paradigm. 
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A subsequent memory paradigm assessing item and source memory was 

employed in all present experiments. Participants performed an incidental encoding 

task during a study phase, which was divided into four blocks/runs to allow for 

breaks in between. During the study phase, each stimulus was repeated four times. 

Stimuli were presented on screen for 1000 ms. In an ensuing test phase (divided into 

two blocks/runs), participants performed an old/new recognition task including 

confidence ratings and a source memory measure. Each phase was preceded by a 

short practice task. The subsequent recognition-source memory paradigm is 

displayed in Figure 2.1. 

 

2.4 Data acquisition and preprocessing  

2.4.1 EEG  

Continuous EEG data were recorded at a sampling rate of 500 Hz with FCz 

as reference and AFz as ground electrode. A connection impedance below 20 kΩ 

was assured for all electrodes before the beginning of the recording.  

The continuous EEG data were pre-processed offline using EEGLAB 

(Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck, 2014). All 

continuous EEG data were downsampled to 250 Hz. A high-pass filter with a cut-off 

at 1Hz was applied in preparation for independent component analysis (ICA). 

Research has shown that ICA yields best results when EEG data are high-pass 

filtered with a cut-off at 1Hz (Winkler, Debener, Muller, & Tangermann, 2015). 

Data were segmented into epochs of 2200 ms (from -200 ms to 2000 ms relative to 

stimulus onset). Data were manually screened and bad channels were removed along 

with noisy epochs in order to yield better ICA results. EEGLAB’s ICA 

decomposition algorithm runica (extended) was used to perform ICA on the 

downsampled, high-pass filtered and epoched data. The same raw data were then 

preprocessed again, this time a band-pass filter was applied with a half-amplitude 

cut-off at 0.1 and 40Hz, downsampling and epoching of the data remained the same. 

The previously calculated ICA weight matrix was then transferred from the first 

high-pass filtered dataset to this second dataset. Ocular artefacts (blinks and vertical 

eye movements) were identified based on scalp topographies and removed from the 

data. Previously excluded noisy channels were interpolated with a function 

implemented in EEGLAB to perform spherical interpolation. Trials containing 
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excessive artefacts were rejected using a step function (Luck, 2014) with the voltage 

threshold set to ± 100 µV in moving windows of 200 ms, with a window step of 50 

ms. EEG data were then re-referenced to an average reference and finally epochs 

were averaged to ERPs. 

 

2.4.2 fMRI 

Structural scanning started with a fast spin echo 3-plane localiser scan. To 

obtain a structural MRI, a 3D T1-weighted image was acquired using a gradient echo 

pulse sequence (BRAVO; brain volume imaging, a fast IR-prepared gradient echo 

sequence with high isotropic resolution). Slices were angled parallel to the falx 

cerebri, the centre of the field of view (FOV) was angled to AC-PC (TR = 7.25, TE 

= 2.55, flip angle = 9°, FOV = 230 mm2, matrix size = 256 x 256, slice thickness = 

0.9 mm, number of slices = 196). Functional scans acquired 2T*-weighted images 

using a gradient-echo, EPI sequence (TR = 2000 ms, TE = 28 ms, flip angle = 90°, 

FOV = 213 mm2, matrix size = 64 x 64, slice thickness = 3 mm, number of slices per 

volume = 35, number of volumes = 260 for encoding blocks, 318 for recognition 

blocks). In most cases, full brain coverage was not possible, so that the FOV was 

angled to primarily include the temporal and parietal lobes and prefrontal cortex (see 

Figure 2.2). 

 

 
Figure 2.2. Example of the field of view applied during functional MRI scans. 
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DICOM files were converted to nifti files using MRIcron software. Pre-

processing and statistical analyses were carried out using SPM12 (Wellcome Trust 

Center, London, UK, www.fil.ion.ucl.ac.uk), a toolbox implemented in Matlab (The 

Mathworks, Inc., Natick, MA, USA). The first six volumes acquired during each run 

were discarded from preprocessing and analyses. Functional images were slice-

timing corrected before spatial realignment as suggested for interleaved sequences 

(Ashburner et al., 2016). The reference slice for slice-timing correction was chosen 

based on neuroanatomy (spatial middle slice rather than temporal middle slice) to 

avoid the reference slice being in an “extreme” region. The parameters for spatial 

realignment were kept at default, i.e., relatively high quality (0.9), 4 mm sampling 

distance between points in the reference image, spatial smoothing with a 5 mm full-

width-half-maximum (FWHM) Gaussian kernel, images were registered to their 

mean, 6th degree B-Spline interpolation method, no wrapping, no differential 

weighting of voxels. Before coregistration, the origin of the anatomical image was 

set to the anterior commissure. Then the structural image was coregistered to the 

mean functional image. The coregistered structural data were segmented into grey 

and white matter, bias corrected and spatially normalised to Montreal Neurological 

Instutite (MNI) space by selecting forward deformation. Those deformation 

parameters were then used to spatially normalise all functional data and the bias 

corrected structural image, with images being sampled by a 6th degree B-Spline 

interpolation. Functional images were resampled to a voxel size of 3 mm3 (isotropic), 

the structural image was resampled to a voxel size of 1 mm3. These voxel sizes were 

closely matched with the original ones. Finally, the normalised images were 

smoothed using a 6 mm FWHM Gaussian kernel. 

For any ROI analyses that were conducted, ROIs were chosen from the 

Anatomic Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), masks 

were generated using the WFU Pickatlas (Maldjian, Laurienti, Kraft, & Burdette, 

2003) and resliced in SPM12.  
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2.5 Analysis  

2.5.1 EEG  

2.5.1.1 ERP analysis 

Planned ERP analyses were be conducted to investigate two ERP 

components, an early frontal FN400-like and a late parietal LPC-like ERP. The early 

frontal ERP was measured between 300 – 500 ms post stimulus onset at electrode 

sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4. The late parietal ERP was measured 

between 500 - 700 ms post stimulus onset at electrode sites P1/P2, P3/P4, P5/P6 and 

PO3/PO4. These two components of interest are illustrated in Figure 2.3. 

 

 
Figure 2.3. Two ERP components of interest to the present investigations: A 
frontal FN400-like component made up of electrodes sites within the orange circle 
and a parietal LPC-like component made up of electrode sites within the purple 
circle. 
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2.5.2 fMRI  

2.5.2.1Univariate analysis 

Statistical mass-univariate analyses were performed on the preprocessed and 

smoothed functional images in two stages. In a 1st-level analysis, neural activity was 

modelled as a delta function at the onset of each trial/stimulus. To model the BOLD 

response, these delta functions were convolved with the canonical haemodynamic 

response function (HRF). Customised masks were created for each participant based 

on the normalised mean functional image and normalised-segmented grey matter, 

white matter and cerebrospinal fluid, which were used as explicit within-brain masks 

during model estimation. Mean activation was modelled to the onset of the stimulus. 

This was the case during both, the study and test phase, although the test phase trials 

were longer, as participants first responded to an item recognition task and then to a 

source recognition task. Each condition of interest was modelled as a regressor in the 

GLM. Any trials that were not of interest were modelled in a nuisance regressor. 

Further regressors included the six movement parameters that were estimated during 

realignment to account for any remaining linear artefacts that were not corrected 

during realignment. Parameters for each regressor were estimated for each voxel by 

using a maximum-likelihood estimation with a temporal high-pass filter cut-off at 

128s (removing low-frequency drifts) and temporal autocorrelations across scans 

were modelled using the AR(1) process, an SPM built-in. Contrasts of parameters 

estimates for each regressor of interest and for each participant were included in 2nd-

level analyses. Finally, to remove between-subject variance, covariates that modelled 

the mean activation for each participant were included in the 2nd-level models. For 

any effect of interest, statistical parametric maps (SPMs) were created based on the 

T-statistics. Unless otherwise specified within the chapters, whole-brain analyses 

were conducted using the statistical methods implemented in SPM12. Contrasts of 

interest were thresholded at p < .001 and clusters significant at p < .001 

(uncorrected) or p < .05 (FWE-corrected) are reported. Experiment-specific GLM 

information and details on 2nd-level analyses will be outlined in the experimental 

chapters. 
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2.5.2.2 Multivariate analysis 

Similarity scores for RSA were calculated from the preprocessed, 

unsmoothed images. Customised masks were used as explicit within-brain masks 

during model estimation. Single-trial betas were estimated using the Least Squares – 

Separate (LSS) approach, where separate GLMs are estimated for each trial with a 

regressor for the trial of interest and a second regressor modelling all other trials (for 

more information see Mumford, Turner, Ashby, & Poldrack, 2012). The single-trial 

beta estimates were then submitted to ROI and searchlight RSAs. These RSAs 

computed the representational similarities between stimulus presentation pairs (see 

results sections for information on which presentation pairs were used). Beta values 

were extracted for every voxel, for each stimulus (i) at each of the four presentations 

(r) during the study phase Sir and the test phase Ti.  The single trial beta series were 

windsorised (SD = 3) and correlations were computed between the presentation pairs 

for each stimulus SirSir (encoding similarity) and between the study and test phase 

SirTi (ERS). Based on an identity matrix, item match and item mismatch similarities 

were calculated corresponding to item-level similarity and set-level similarity, 

respectively (see Wing et al., 2015). Item-level similarity was calculated by 

correlating the beta estimates corresponding to a stimulus at one presentation of the 

stimulus and another presentation of the stimulus. This measure of similarity reflects 

the degree to which stimulus properties are reactivated. Set-level similarity was 

calculated based on the correlations between a specific stimulus and all other stimuli 

in the same category (e.g., subsequent source hits). The resulting values were 

averaged at the voxel level to make up set-level similarity. Set-level similarity 

provides an index of more general information or processes that are shared between 

stimuli of the same category, e.g., all remembered stimuli. Additionally, the z-score 

difference between item match and item mismatch was calculated to obtained a 

measure of item-specific similarity reflecting item-specific pattern reactivation 

distinct from all other items within the same category. Similarity scores were 

represented by Fisher transformed Pearson correlation coefficients. For searchlight 

approaches, the resulting images containing the 3x3x3 voxel-wise similarity scores 

were smoothed using a 6 mm3 FWHM Gaussian kernel for whole-brain analyses. For 

2nd-level analyses of whole-brain RSA, statistical methods implemented in SPM12 

were used with the same thresholds as for univariate analyses. 
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Chapter 3 – Encoding modality, repetition and memory (EEG) 

 

3.1 Introduction 

Behavioural evidence suggests modality-dependent differences in memory 

performance with pictures being remembered better than words, termed the picture 

superiority effect (e.g. Shepard, 1967; Standing, Conezio, & Haber, 1970). Previous 

research on picture and word learning suggested that concepts in general activate a 

shared semantic store independent of the modality they are presented in (Caramazza, 

1996) but that words access more universal semantic information than pictures do 

(Durso & Johnson, 1979). In addition to behavioural evidence, a large body of 

research supports the notion of a largely shared semantic system, while physical 

features of pictures and words are processed differently by the brain (e.g., Grady, 

Mcintosh, Rajah, & Craik, 1998; Khateb, Pegna, Michel, Landis, & Annoni, 2002; 

Menard, Kosslyn, Thompson, Alpert, & Rauch, 1996; Starrfelt & Gerlach, 2007; 

Vandenberghe, Price, Wise, Josephs, & Frackowiak, 1996; Watson, Azizian, Berry, 

& Squires, 2005). If different operations are carried out by the brain simply in 

response to stimulus modality, it is conceivable that memory and repetition effects 

may differ depending on the modality stimuli are initially presented in, even if they 

represent the same concept, i.e., a picture of a tree and the written word ‘tree’. In the 

following part of this chapter introduction, research relating to effects of encoding 

modality, repetition and subsequent memory as well as reinstatement effects of 

encoding modality at test will be reviewed.  

Previous research has shown that ERPs measured during a continuous 

recognition task differed quantitatively and qualitatively depending on the modality 

stimuli were presented in, i.e., pictures and words (Berman, Friedman, & Cramer, 

1991). Pictures generally elicited larger mean amplitudes than words. Moreover, 

material-dependent effects of repetition lag were reported with lag effects only 

occurring in ERPs to word stimuli, suggesting at least partly distinct processes to 

underlie picture and word processing. However, the authors did not test for 

interactions between repetition (old vs. new) and encoding modality (Berman et al., 

1991). Another experiment compared ERPs to picture and word stimuli, measured 

during a recognition task (Khateb et al., 2002). ERPs were found to be similar for 

earlier components from 100 – 150 ms but differentiated the two modalities from 
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about 200 ms onwards. Picture stimuli were associated with more posterior 

activation, while words activated more left anterior and posterior areas. These results 

suggest modality-specific stimulus processing can be observed in ERPs and provide 

further evidence for processing differences between picture and word stimuli. 

As outlined in the general introduction, perceptual and conceptual repetition 

priming have been associated with dissociable ERP components (Rugg & Allan, 

1999; Voss et al., 2010). In a study investigating the effects of same and mixed 

modality encoding of picture and word stimuli, ERP amplitudes to pictures were 

generally found to be more positive than to words (Kazmerski & Friedman, 1997). 

At the second presentation, one group of participants performed an explicit 

recognition task while another group performed the same implicit semantic 

judgement task as at the first presentation. Stimuli were either repeated as pictures or 

words or their modality was changed resulting in four conditions: picture-picture, 

picture-word, word-word and word-picture. Decreases in RTs for implicit and 

explicit tests were significant when stimuli were repeated in the same modality but 

showed only weak trends of RT reductions in the changed modality conditions, 

indicating decreased priming effects. Items repeated in the same modality produced 

reliable old/new ERP effects irrespective of task. However, when the modality 

changed between the first and the second presentation, an old/new ERP effect was 

only observed when participants performed an explicit recognition task and when the 

modality changed from word to picture. Furthermore, the authors reported 

differences in scalp topographies during the explicit recognition task: items that were 

presented in the same modality again elicited ERPs with a more posterior 

distribution than those for which the modality was switched. It was concluded that 

quantitative and qualitative differences in perceptual and conceptual priming and 

modality-specific as well as modality-non-specific processes underlie the encoding 

and retrieval of pictures and words. Furthermore, the authors noted that transfer-

appropriate processing (Morris et al., 1977) and reactivation (Thios & D’Agostino, 

1976) accounts were insufficient to explain these results. (Kazmerski & Friedman, 

1997). A large number of reported ERP repetition effects were based on amplitude 

differences between old and new items at test or amplitude differences between the 

same items at study and test. However, these effects are likely contaminated by 

retrieval operations and differences in repetition effects occurring during implicit and 
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explicit tasks have been shown (Kazmerski & Friedman, 1997). Using a repeated 

incidental encoding paradigm followed by an explicit recognition task may be more 

effective to investigate repetition-related ERP differences. Additionally, the 

relationship between RT reductions and repetition-related ERP effects is not yet 

clear. In a study investigating the relationship between the P300 component and 

RTs, the authors highlighted the value of single-trial analyses in order to preserve 

some of the dynamic characteristics of ERP components that can be lost when using 

traditional averaging methods (Holm, Ranta-aho, Sallinen, Karjalainen, & Muller, 

2006). P300 amplitudes and latencies were shown to be related to RTs in that faster 

RTs were associated with larger P300 amplitudes but shorter latencies. However, 

this study was not concerned with testing these relationships within the context of 

repetition or subsequent explicit memory. Relating item-specific RT reductions to 

changes in amplitudes will likely give novel insights into the EEG correlates of 

repetition and elucidate on whether the relationship between repetition-related 

changes in EEG measures and RTs may also predict explicit memory. 

With respect to reinstatement during the test phase, multivariate frequency-

analyses of intracranial EEG recordings have successfully demonstrated 

reinstatement effects (Yaffe et al., 2014; Zhang et al., 2015). In ERP research, 

studies investigating the involvement of traditional ERP components, such as the 

LPC, have found quantitative differences (e.g., Allan et al., 2000). The effects of two 

encoding manipulations on ERP effects during a cued recall task were tested in two 

experiments: 1) effects of shallow and deep encoding tasks, 2) effects of visual and 

auditory stimulus encoding. Although quantitative differences in ERPs at test were 

displayed, the main focus of the paper was to test encoding-related differences in 

old/new effects rather than reinstatement of the encoding manipulation during test. 

Quantitative but not qualitative effects of both encoding manipulations on the 

old/new ERPs were reported (Allan et al., 2000). On the other hand, experiments 

examining long-lasting slow waves that were recorded for up to 6 seconds after 

stimulus onset have reported qualitative differences at test relating to encoding-

specific manipulations with no differences between study and test ERPs within the 

same modality (e.g. Khader, Heil, et al., 2005; Rösler et al., 1995). Those results 

suggest that encoding and retrieval operations overlap to a certain extent but those 

operations are modality-specific. Although content-dependent retrieval has been the 
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focus of many previous investigations (e.g., Johnson et al., 2008), the extent to 

which ERPs at test differ depending on study phase information and the 

interpretation of such reinstatement-like effects is not entirely clear at this point.  

The present experiment employed a subsequent memory paradigm with four 

spaced repetitions of each stimulus, followed by a surprise source-recognition task. 

Participants repeatedly studied stimuli presented in one of three encoding modality 

conditions: repeatedly presented as pictures (referred to in-text as Picture), 

repeatedly presented as words (referred to in-text as Word) or alternately presented 

as pictures and words (referred to in-text as Picture&word). At test, all stimuli were 

cued with words and participants made item memory judgements (old/new) and 

source memory judgements (previously learned as Picture, Word or Picture&word). 

This paradigm allowed investigations of the effects of perceptual and conceptual 

repetition, interactions between subsequent memory and encoding modality. Based 

on the literature, no strong predictions could be made regarding the directions of the 

interactions between subsequent source memory, repetition and encoding modality. 

Instead, the aim was to further investigate subsequent source memory and repetition 

effects during the study phase in the context of different encoding modalities. 

Furthermore, this paradigm allowed test phase investigations of reinstatement of 

picture stimuli at test in the absence of the original picture, i.e., when cued with the 

word. Based on the LPC’s role in episodic recollection at test (reviewed in Friedman 

& Johnson, 2000; Rugg & Curran, 2007; Wilding & Ranganath, 2012), LPC 

amplitudes are hypothesised to be sensitive to information relating to the encoding 

phase, i.e., LPC amplitudes may discriminate stimuli encoded in different modalities.  

 

3.2 Method 

3.2.1 Participants 

Thirty participants (16 women) were recruited. They were aged 18 to 34 

years (Mage = 21±4) and had completed an average of 15±2 years of education. Data 

from two participants were excluded from all behavioural and neurophysiological 

analyses due to technical faults during testing. Data from another three participants 

were excluded from EEG analyses only because of poor data quality. 
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3.2.2 Materials 

Stimuli presented throughout the study phase were pictures and written 

words of common objects and animals (e.g., doors, boat, monkey). A total of 288 

stimuli were selected from the Bank of Standardized Stimuli (BOSS) Phase II 

(Brodeur, Guérard, & Bouras, 2014). Stimuli were matched across all tasks and 

conditions in terms of frequency, familiarity, name agreement and letter length (see 

Table 1). Words were presented in white Courier New 36 font. Picture dimensions 

were 400x400 pixels. All stimuli were presented in the centre of a black background. 

In between the study and the test phase, participants performed a distractor task in 

the form of a trail-making task (see Appendix B).  

 

Table 3.1. Experiment 1 (EEG): Means (in bold) and standard deviations 
(italicised, in parentheses) of frequency, familiarity, name agreement and letter 
length of stimuli presented in study and test phase. 

 

 

3.2.3 Task & procedure 

During the study phase, a subset of 144 of the total of 288 selected stimuli 

were presented one-by-one. Participants were instructed to press one of two buttons 

on the four-button response device corresponding to whether they thought the 

presented object was typically found indoors or outdoors. Each stimulus was 

presented four times, once during each of the four encoding blocks, resulting in a 

total of 576 EEG encoding trials. Stimuli were presented in one of three modality 

conditions (with the same number of stimuli in each condition, i.e., 48): repeatedly 

as a picture (picture uni-modal), repeatedly as a word (word uni-modal) or 

alternately as a picture or a word (picture-word multi-modal). The average inter-trial 

interval (ITI) was 4100 ms. The experimental procedure is illustrated in Figure 3.4. 
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At the end of the encoding phase participants performed a trail-making distractor 

task. 

 

 
Figure 3.4. Experiment 1 (EEG): a) the experimental paradigm with four encoding 
presentations during the study phase, followed by the test phase, with b) trial timings 
displayed.  

 

In an incidental recognition-source memory test, all 144 old stimuli from the 

indoor/outdoor categorisation task were presented along with 144 new stimuli (the 

remaining half of the stimuli that had not been presented at study) from the same two 

semantic categories. All stimuli were presented as white written words in Courier 

New 36 font on black background. Participants were instructed to make an old/new 

item memory judgement by indicating whether they thought an object had been 

presented in the preceding study phase or not. Participants pressed one of four 

buttons on the response pad corresponding to the following responses: definitely old, 

perhaps old, perhaps new, and definitely new. Whenever responses indicated that an 

object had been shown during encoding, i.e., was old, a new screen appeared with a 

follow-up question assessing source memory by asking participants how the object 
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had been presented. The response options were picture, word, picture & word and I 

don’t know. Stimuli were presented for 1500 ms, followed by a fixation cross for 

1000 ms. Depending on participants’ old/new response, either a fixation cross or the 

source memory question appeared for 1500 ms. Another fixation cross of random 

duration (800 – 1200ms) then indicated the beginning of the next trial (average ITI = 

5000 ms). 

 

3.3 Results 

The repeated-measures design included three factors of interest at study and 

two at test: subsequent memory (hits+, hits-; behavioural analyses further include 

misses), repetition (presentation 1,2,3,4; only at study) and encoding modality (uni-

modal picture, uni-modal word, multi-modal picture&word). Hits+ trials were 

characterised as high confidence item hits followed by correct source memory. Hits- 

trials included hits in the old/new task, irrespective of confidence judgement, 

followed by an incorrect source memory response or no response, indicating the 

source could not be retrieved. High memory performance, as indicated by 

discriminability scores (see 3.3.1.2), meant that misses are only included in 

behavioural analyses and were excluded from neuroimaging analyses due to low trial 

counts. Because of a lack of low confidence responses, confidence was not included 

in further analyses. In the present experiment, participants’ responses to the item 

memory question indicated that they were more often highly confident of their 

response (M%HC = 89.93 ±16) than responding with low confidence (M%LC = 10.17 

±16), t27 = 12.748, p < .001.  

 

3.3.1 Behavioural results 

3.3.1.1 Reaction times at study 

RTs to the indoor/outdoor judgement task during the study phase are 

illustrated in Figure 3.5. RT data were analysed in a 3 x 3 x 4 repeated-measures 

ANOVA with the factors subsequent memory (hits+, hits-, misses), encoding 

modality (picture, word, picture&word) and presentation (1,2,3,4). Main effects of 

presentation, F3,66 = 68.976, p < .001 and modality, F2,44 = 9.188 p = .001 were 

found. RTs overall decreased with repetition, all p < .008. RTs to stimuli repeatedly 
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presented as pictures were significantly faster than to stimuli presented in either of 

the other two encoding modalities, all p < .016.  

 

 
Figure 3.5. Reaction times (in seconds) in experiment 1 (EEG) for all four 
presentations during the study phase, separately for subsequent memory 
performance and encoding modalities. Error bars denote standard error. 

 

3.3.1.2 Discriminability analysis 

Discriminability scores (d’) were calculated based on the frequencies of hits 

and false alarms. The normalised probabilities of overall hits and false alarms were 

compared in a paired-samples t-test. The t-test showed that participants’ performance 

in the recognition memory task was statistically significantly above chance, t24 = 

43.924, p < .001. Mean and standard deviations of d’ scores and percentages of hits 

and false alarms are illustrated in Table 3.2. Those individual d’ scores indicate that 

recognition memory performance was highest in the word uni-modal condition 

(verging on a ceiling effect) and lowest in the picture uni-modal condition. 
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Table 3.2. Experiment 1 (EEG): The mean d’ scores and mean % of Hits and 
False Alarms with standard deviations (in brackets) for overall memory 
performance and across the three modality conditions, picture only, word only 
and picture&word. 

 

 

3.3.1.3 Behavioural performance at test 

Frequencies of hits+, hits- and misses (memory performance) were analysed 

across modalities (picture uni-modal, word uni-modal, picture-word multi-modal) in 

a 3 x 3 repeated-measures analysis. Descriptive statistics of the data included in the 

analysis are displayed in Figure 3.6. The ANOVA revealed a main effect of memory 

performance, F2,48 = 116.500, p < .001 and an interaction between memory 

performance and encoding modality, F4,96 = 26.545, p < .001. Post-hoc tests revealed 

that all three levels of memory performance differed from each other in terms of 

frequencies, all p < .001. The majority of responses were hits+ judgements (correct 

item memory, correct source memory), followed by hits- judgements (correct item 

memory, incorrect source memory) and the least responses resulted in misses; all 

memory conditions differed from each other at p < .001. As illustrated in Figure 3.6, 

the picture-word alternated encoding condition was associated with the fewest hits+ 

responses compared to the two uni-modal encoding conditions, all p < .001. Hits- 

frequencies differed between all three encoding conditions, all p < .001. The 

alternated picture&word condition was associated with the most hits- judgements, 

followed by the word only encoding condition and the picture only condition 

resulted in the fewest hits- judgements. Picture only encoding was associated with 

significantly more misses than the other two encoding modalities, all p < .001.   
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Figure 3.6. Behavioural performance in experiment 1 (EEG). Mean percentages of 
the three levels of memory performance and encoding modality. Error bars denote 
standard errors. 

 

3.3.1.4 Reaction times at test 

RTs obtained during the test phase were analysed in two repeated-measures 

ANOVAs. First, RTs to the item memory (old/new) task were examined in a 3 x 3 

ANOVA with the factors memory performance and encoding modality. In a second 

analysis, RTs to the source memory task were analysed. In this 2 x 3 repeated-

measures ANOVA, the factors were memory performance (note, only two levels as 

misses were not followed up with a source memory question) and encoding 

modality.  

The analysis of item memory RTs revealed main effects of memory 

performance, F2,44 = 8.991, p = .003 and modality, F2,44 = 5.362, p = .008. Follow-up 

analyses revealed that RTs to misses were significantly slower than to hits+ 

judgements, p = .013, and to hits- judgements, p = .016. Furthermore, responses to 

stimuli previously presented in the picture&word multi-modal condition were 

significantly faster than to stimuli presented in the picture uni-modal condition 

during encoding, p = .014. 

The ANOVA on source memory RTs revealed a main effect of memory 

performance (hits+, hits-), F1,23 = 9.795, p = .005 with RTs to hits+ being faster than 

to hits- judgements.  
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3.3.2 ERP analysis 

Based on previous research, two ERP components were selected. The early 

frontal FN400-like ERP was measured between 300 – 500 ms post stimulus onset at 

electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4. The late parietal LPC-like ERP 

was measured between 500 - 700 ms post stimulus onset at electrode sites P1/P2, 

P3/P4, P5/P6 and PO3/PO4.  

ERP analyses at study focused on interactions between the factors subsequent 

source memory, repetition and encoding modality. Due to insufficient trial numbers 

across subsequent hits- judgements, it was not possible to analyse all three factors in 

one ANOVA. Therefore, a first analysis investigated effects of subsequent memory 

and repetition when collapsed across encoding modality. A second analysis was 

conducted to examine effects of subsequent memory and encoding modality when 

averaged across the presentation factor. A third analysis examined interactions 

between encoding modality and repetition only including subsequent hits+ trials. 

Further data-driven exploratory analyses were carried out in order to follow-up on 

repetition effects using mass-univariate and single-trial analyses (presented in 

3.3.2.2) and to further investigate quantitative and qualitative differences employing 

extensive univariate (presented in 3.3.2.4). 

Two ERP analyses were performed on ERPs measured during test. A first 

analysis combined the old/new effect with source memory, i.e., the factor memory 

had three levels (correct rejections, hits+, hits-). A second analysis looked at ERP 

differences at test due to encoding modality within hits+ judgements. Subsequently, 

data-driven exploratory analyses were carried out testing for the same effects as in 

the planned ERP analyses but across a wider range of time windows (presented in 

3.3.2.4). 

 

3.3.2.1 Study phase 

 

Subsequent memory and repetition 

Two separate 2 x 4 x 2 x 4 repeated-measures ANOVAs were conducted to 

investigate interactions between subsequent memory and multiple stimulus 

presentations. The factors included subsequent source memory (hits+, hits-), 

presentation (1,2,3,4), hemisphere (left, right) and electrode pair (see 3.3.1.2 for 
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details on electrode pairs). For the frontal component, a main effect of presentation 

was found to be significant, F3,72 = 9.491, p < .001 with mean amplitudes increasing 

in negativity across presentations. However, the interaction between subsequent 

source memory and presentation was non-significant, F3,72 = 0.484, p = .694 

(iluustrated in Figure 3.7a).  

Similar results were observed over parietal sites with a statistically significant 

main effect of presentation, F3,72 = 11.900, p < .001, reflecting a general increase in 

positivity across repetitions with mean amplitudes at presentation 1 being 

significantly less positive than all subsequent presentations, all p < .002. However, 

the interaction between subsequent source memory and presentation was non-

significant, F3,72 = 0.620, p = .113 (illustrated in Figure 3.7b).  

 

 
Figure 3.7. Experiment 1 (EEG): Grand average ERPs (N = 25) to presentations 1 
and 4 for subsequent hits+ and hits- judgements, illustrating the non-significant 
interactions between subsequent source memory and multiple stimulus 
presentations in a) the fronto-central component, measured between 300 – 500 ms, 
averaged across electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4 and b) the 
parietal component, measured between 500 – 700 ms, averaged across electrode 
sites P1/P2, P3/P4, P5/P6 and PO3/PO4. 

 

 

Subsequent memory and encoding modality 

Two separate 2 x 3 x 2 x 4 repeated-measures ANOVAs were conducted, one 

for each ERP component (FN400, LPC), with the factors subsequent memory (hits+, 

hits-), encoding modality (picture only, word only, picture&word), hemisphere (left, 

right) and electrode pair (see 3.3.1.2 for details on electrode pairs). For the early 

frontal component, the main effects of source memory and modality were both 
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significant, F1,24 = 6.689, p = .016 and F2,48 = 56.995, p < .001, respectively. 

However, the interaction between subsequent source memory and modality was non-

significant, F2,48 = 0.682, p = .510 (illustrated in Figure 3.8a). Subsequent hits+ 

judgements were found to elicit more positive waveforms than subsequent hits- 

judgements. ERPs to all three encoding modalities differed significantly from each 

other, all p < .001, with pictures eliciting the most negative ERPs and words eliciting 

the least negative ERPs.  

 

 

Figure 3.8. Experiment 1 (EEG): Grand average ERPs (N = 25) to subsequent hits+ 
and hits- judgements separately for the three encoding modality conditions, illustrating 
the non-significant interactions between subsequent source memory and encoding 
modality in a) the fronto-central component, measured between 300 – 500 ms, 
averaged across electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4 and b) the 
parietal component, measured between 500 – 700 ms, averaged across electrode sites 
P1/P2, P3/P4, P5/P6 and PO3/PO4. 

 

For the LPC-like parietal component, the repeated-measures ANOVA 

revealed a main effect of modality, F2,48 = 14.229, p < .001. Additionally, the main 

effect of subsequent source memory was nearing statistical significance, F1,24 = 

3.371, p = .079 with hits- judgements associated with more positive mean amplitudes 

than hits+ judgements. However, again, the interaction between subsequent source 

memory and encoding modality was non-significant, F2,48 = 1.259, p = .293 (see 

Figure 3.8b). Following up on the main effect of modality, it was revealed that ERPs 

to the uni-modal picture condition were more positive than both, stimuli presented as 

words only and stimuli alternately presented as pictures and words, p = .001, while 
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the latter two conditions did not differ from each other in terms of LPC mean 

amplitudes, p = .233.  

 

 
Figure 3.9. Experiment 1 (EEG): Grand average ERPs (N = 25) to presentations 1 and 
4, separately for the three encoding modality conditions, illustrating the non-
significant interactions between multiple stimulus presentations and encoding 
modality in a) the fronto-central component, measured between 300 – 500 ms, 
averaged across electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4 and b) the 
parietal component, measured between 500 – 700 ms, averaged across electrode sites 
P1/P2, P3/P4, P5/P6 and PO3/PO4. C) Topographic maps displaying the scalp 
distributions of the repetition effect (presentation 4 – presentation 1) separately for 
the three encoding modalities across 5 different time windows. 
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Encoding modality and repetition in successful item and source encoding 

Another two separate 3 x 4 x 2 x 4 repeated-measures ANOVAs were 

conducted to investigate interactions between encoding modality and multiple 

stimulus presentations only including trials associated with subsequent hits+ 

judgements. The factors included modality, presentation, hemisphere and electrode 

pair. For both, the frontal and parietal, components the interaction between 

presentation and encoding modality was non-significant, F6,144 = 1.249, p = .285 and 

F6,144 = 1.325, p = .250, respectively (see Figure 3.9a,b). The scalp topographies of 

the repetition effect, separately displayed for picture, word and picture&word 

encoding (see Figure 3.9c), suggest that a repetition effect occurs largely 

independent of encoding modality in the FN400 and LPC time windows. 

 

3.3.2.2 Exploratory single-trial analyses (follow-up repetition effect) 

ERP analyses indicated a widespread repetition effect occurring roughly 

between 300 – 600 ms. This effect appeared to be largely independent of subsequent 

source memory and encoding modality. However, previous research employing 

single-trial analyses have indicated that traditional averaging approaches may not be 

sensitive enough in order to detect any further interactions (Holm et al., 2006). In an 

attempt to further explore the quantitative and qualitative differences relating to 

repetition, a data-driven mass-univariate ERP approach (Groppe, Urbach, & Kutas, 

2011a) was employed to “isolate” the repetition effect. To detect reliable repetition 

effects ERPs to presentation 1 and presentation 4 were submitted to a repeated-

measures, two-tailed cluster-based permutation test. This approach is based on the 

cluster mass statistic (Bullmore et al., 1999; Maris & Oostenveld, 2007) with a 0.05 

family-wise alpha level. It was previously demonstrated that the cluster mass statistic 

provides good power for wide-spread ERP effects (Groppe, Urbach, & Kutas, 2011b; 

Maris & Oostenveld, 2007). A total of 201 data points measured between 200 and 

1000 ms from a frontal subset of 21 electrodes and a parietal subset of 21 electrodes 

was included in the analysis resulting in 8442 comparisons with 24 t-score degrees 

of freedom. 2,500 random permutations were performed. During each permutation, 

clusters were formed on the basis of significant t-scores (0.05 uncorrected). Adjacent 

time points were considered as temporal neighbours. The “mass” of a cluster is based 

on the sum of the t-scores with the most extreme cluster mass in each of the 8442 
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comparisons being used to estimate the distribution of the null hypothesis. The p-

value was acquired from the permutation cluster mass percentile ranking of each of 

the clusters assigned to each member in the cluster. A total of 11 negative clusters 

(Fp1, AF3, F1, F3, Fz, Fp2, AF4, AF8, F2, F4, F8), reflecting a decrease in mean 

amplitudes, and 9 positive clusters (CP1, P1, P3, PO3, CPz, Pz, CP2, P2, PO4), 

reflecting an increase in mean amplitudes, were found to be significant. A negative 

frontal and a positive parietal cluster were formed based on overlapping time points 

showing a repetition effect; the frontal effect was measured from 308 – 568 ms post 

stimulus onset and the parietal repetition effect was measured from 404 – 608 ms 

post stimulus onset. 

 

Positivity/negativity enhancement across repetitions 

Mean amplitudes were extracted for each single trial and separately for the 

positive and negative cluster. The aim of the first analysis was to investigate whether 

the repetition effects as reflected in positivity enhancement for the parietal cluster 

and negativity enhancement for the frontal cluster (reported in section 3.3.1.2.1) 

were related to repetitions of individual items. For each stimulus and each 

consecutive presentation pair (Presentation 1 and 2, Presentation 2 and 3, 

Presentation 3 and 4), positivity enhancement was calculated by subtracting the 

earlier from the later presentation. Analogously, negativity enhancement was 

calculated by subtracting the later from the earlier presentation. As a control value 

for enhancement, the same differences were calculated except that the amplitude 

values from the trial occurring right before the actual stimulus repetition were used. 

Paired-samples t-tests were used to test whether stimulus-related repetition effects 

differed from the control. The only enhancement effect that differed from the control 

enhancement value was in the positive cluster between presentation 1 and 2, t24 = 

0.125, p = .044. This result suggests that, apart from a novelty effect measured 

between the first and second presentation of a stimulus and only in the parietal 

cluster, the repetition effects reported in section 3.3.2.1 may not be directly related to 

repetition at the item-level. This parietal novelty effect did not discriminate 

subsequent hits+ and hits- judgements (positive cluster: t24 = -0.838, p = .410; 

negative cluster: t24 = -1.392, p  = .177). This is in line with the ERP results and 

indicates that these enhancement effects are largely independent of explicit 
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subsequent source memory and item-specific repetition with the exception of a 

novelty effect over parietal sites. Testing for modality-related differences in the 

observed parietal novelty effect revealed a trend, F2,48 = 3.125, p = .053, for the 

increase between presentation 1 and 2 to be highest in the picture&word encoding 

condition and lowest in the picture only encoding condition. 

 

Amplitude enhancement effects and implicit memory (RTs) 

To test whether amplitude enhancement effects were related to implicit 

memory, i.e., behavioural repetition priming effects as reflected in repetition-related 

decreases in RTs, the previously calculated differences in amplitude measures were 

correlated across trials with RT differences between the same consecutive 

presentation pairs. The resulting correlation coefficients for the frontal and the 

parietal cluster from each participant were submitted to one-sample t-tests. The 

results indicated that the extent of repetition priming was related to positivity 

enhancements across the parietal cluster, t24 = 12.856, p < .001, and to negativity 

enhancements across the frontal cluster, t24 = 4.186, p < .001. In both cases, higher 

amplitude enhancement was associated with a higher decrease in RT. These results 

are supportive of a relationship between repetition-related changes and implicit 

memory.  

 

3.3.2.3 Test phase 

Source memory 

Two separate 3 x 2 x 4 repeated-measures ANOVAs were conducted, one for 

each ERP component (FN400, LPC), with the factors memory (correct rejections, 

hits+, hits-), hemisphere and electrode pair. For the FN400, the ANOVA did not 

reveal a main effect of memory, F2,48 = 0.594, p = .516 (see Figure 3.10a). For the 

LPC, a main effect of memory was found F2,48 = 21.927, p < .001. Follow-up 

analyses, however, revealed that although hits+ and hits- judgements differed from 

correct rejections, p < .001, by eliciting more positive mean amplitudes, hits+ and 

hits- did not differ from each other, p = .850 (see Figure 3.10b). 
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Figure 3.10. Experiment 1 (EEG): Grand average ERPs (N = 25) to hits+, hits- and 
high confidence new judgements during the study phase in a) the fronto-central 
components, measured between 300 – 500 ms, averaged across electrode sites 
F1/F2, F3/F4, FC1/FC2 and FC3/FC4 and b) the parietal component, measured 
between 500 – 700 ms, averaged across electrode sites P1/P2, P3/P4, P5/P6 and 
PO3/PO4. 

 

Encoding modality at test 

Two separate 3 x 2 x 4 repeated-measures ANOVAs were conducted, one for 

each ERP component (FN400, LPC), with the factors encoding modality (uni-modal 

picture, uni-modal word, multi-modal picture&word), hemisphere and electrode pair. 

For the FN400, the ANOVA revealed a significant interaction between encoding 

modality and hemisphere, F2,48 = 3.475, p = .039 (illustrated in Figure 3.11a). 

Follow-up analyses showed that stimuli that were encoded repeatedly as pictures 

elicited more negative mean amplitudes in left compared to right hemisphere, p = 

.038. LPC mean amplitudes were found to differ between the encoding modalities, 

F2,48 = 5.666, p = .006. Stimuli previously presented repeatedly as pictures elicited 

significantly less positive ERPs than words, p = .041, and those presented in the 

multi-modal condition, p = .012 (see Figure 3.11b).  

 



SECTION 2 – Experimental Chapters 

 

59 
 

 
Figure 3.11. Experiment 1 (EEG): Grand average ERPs (N = 25) to the three 
encoding modalities, only including hits+ judgements, in a) the fronto-central 
component, measured between 300 – 500 ms, averaged across electrode sites 
F1/F2, F3/F4, FC1/FC2 and FC3/FC4 and b) the parietal component, measured 
between 500 – 700 ms, averaged across electrode sites P1/P2, P3/P4, P5/P6 and 
PO3/PO4. 

 

3.3.2.4 Exploratory ERP analyses 

Visual inspection of scalp maps and ERP waveforms indicated that some 

effects might have occurred outside of the hypothesised time windows. Therefore, 

the ANOVAs reported in section 3.3.1.2 were carried out for the same two electrode 

sets (frontal and parietal) across five time windows (300 – 500 ms, 500 – 700 ms, 

700 – 900 ms, 900 – 1200 ms, 1200 – 1500 ms). The results are presented in Table 

3.3.  

During the study phase, additional main effects of subsequent source memory 

were found in the time window 700 – 900 ms post stimulus onset. Generally, 

differences between subsequent hits+ and hits- judgements over frontal electrode 

sites showed that hits+ were associated with more positive waveforms than hits- 
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judgements. Over parietal electrode sites, the inverse effect was reported with ERPs 

to subsequent hits- judgements being more positive than hits+ judgements. The 

interactions between subsequent source memory and modality, occurring over 

parietal sites from 900 ms onwards, indicated that source effects may be easier 

detected when only pictures are presented at encoding compared to only words or 

multi-modal encoding. Analogously, the interaction between modality and repetition 

suggested that repetition effects were strongest in the picture only encoding 

condition.  

During the test phase, an additional old/new effect was found over left frontal 

electrode sites between 500 – 700 ms and between 900 – 1200 ms. Visual inspection 

of those ERPs suggests that the peak latency of the frontal component was later than 

in the predicted 300 – 500 ms time window. The LPC amplitudes did not 

discriminate between hits+ and hits- judgements as predicted, using the original 500 

– 700 ms time window (3.3.1.2.2). However, LPC mean amplitudes between 700 

and 900 ms post stimulus onset did discriminate between hits+, hits- and correct 

rejections, with hits+ eliciting the most positive ERP waveforms and correct 

rejections the least positive. This effect had  a standard left-parietal distribution (e.g., 

Rugg & Yonelinas, 2003). Additional effects relating to encoding modality were 

found as well, however, the strongest effect was reported in the hypothesised LPC 

time window. 

 

 
Figure 3.12. Topographic maps for data from experiment 1 (EEG) displaying the scalp 
distributions of the contrast between hits+ and hits- judgements (hits+ - hits-) at study 
and test. 
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3.4 Discussion 

In this experiment, EEG data were recorded during a study phase, with 

multiple presentations of stimuli in different modalities, and during a test phase, 

including a recognition-source memory test. During the study phase, interactions 

between subsequent source memory, repetition and encoding modality were 

examined. A repetition effect was found to be largely independent of subsequent 

source memory performance and encoding modality. At test, LPC amplitudes were 

predicted to be sensitive to source memory as well as to encoding modality. ERPs to 

correct item and source memory judgements were found to discriminate stimuli 

based on how they were previously encoded. 

 

Behavioural results 

Both item and source memory performance were nearing a ceiling effect. The 

absence of superior memory performance for stimuli presented as pictures as 

compared to words is most likely due to the use of words to cue memory at test in 

the present experiment. Previous research has highlighted the importance of 

encoding-retrieval interactions implicated in the picture superiority effect (McBride 

& Dosher, 2002). The “cue congruency effect” (Rugg et al., 2008) for words may 

indeed have cancelled the usual mnemonic advantage for pictures, consistent with 

the principle of transfer appropriate processing (Morris et al., 1977; Tulving & 

Thomson, 1973; Weldon & Roediger, 1987). However, RTs to pictures were found 

to be fastest at encoding. This suggests faster processing of picture stimuli and may 

therefore support the notion that word stimuli activate more concept-generic 

information than pictures do, thus processing time for words would be longer than 

for pictures (Durso & Johnson, 1979).  

 

ERP results 

Based on previous literature, mean amplitudes for a frontal component were 

measured between 300 – 500 ms post stimulus onset and mean amplitudes for a 

parietal component were measured between 500 – 700 ms. These components 

resembled the FN400 and LPC, which are frequently reported during recognition 

tasks (Curran, 2000; Friedman & Johnson, 2000), enabling investigations of 

commonly studied test ERPs during the study phase. Due to low frequencies of hits- 
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trials, the three factors of interest, source memory performance, encoding modality 

and presentation (only at study), could not all be analysed in one ANOVA. Thus, 

three separate analyses were performed including two of the factors and averaging 

across the third. Planned analyses did not reveal any meaningful interactions 

between the factors subsequent source memory, presentation and encoding modality. 

Exploratory single-trial analyses following up on the repetition-related ERP effects 

revealed that only a parietal novelty effect between presentations 1 and 2 was related 

to stimulus-specific repetition. Moreover, repetition-related changes at the single-

trial level were associated with implicit memory/repetition priming for a frontal and 

a parietal cluster. At test, a parietal old/new effect was observed, however, only a 

slightly later occurring parietal effect also discriminated hits+ and hits- judgements. 

Finally, during the test phase, evidence was found that ERPs to hits+ judgements 

differed based on encoding manipulations, potentially reflecting some form of 

reinstatement at test. 

 

Study phase – planned analyses 

At study, the planned analyses did not reveal any significant interactions 

between the factors. Moreover, only one main effect of subsequent source memory 

reached statistical significance, FN400 amplitudes to subsequent hits+ judgements 

elicited more positive waveforms than to subsequent hits- judgements. For the LPC-

like component, no main effect of source memory was significant in the predicted 

time window. However, a trend indicated that, especially for the picture only 

encoding condition, mean amplitudes were more positive for subsequent hits- than 

hits+ judgements. These results relating to main effects of subsequent source 

memory do not support a role for the frontal component in familiarity judgements 

and the parietal component in recollection (Curran, 2000; Groh-Bordin et al., 2006). 

The FN400 being more positive for hits+ than hits- judgements suggests that it is 

modulated by subsequent source memory performance. This is in line with previous 

research (Angel et al., 2013; Cansino & Trejo-Morales, 2008) indicating that FN400 

amplitudes may be modulated by subsequent source memory accuracy and not solely 

be associated with familiarity judgements. The absence of a statistically significant 

LPC effect discriminating subsequent hits+ and hits- judgements as well as the 

polarity of the observed trend are contrary to previous research (see Yovel & Paller, 
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2004). Weak or absent effects relating to source memory may be due to participants 

recollecting non-criterial contextual information, i.e., hits- judgements are potentially 

contaminated by recollection trials (Mulligan & Hirshman, 1997; Yonelinas & 

Jacoby, 1996). One important factor may be how source information itself is 

processed at encoding. In the present study, the encoding task did not require 

participants to pay attention to the source of the stimulus (encoding modality) which 

was later assessed in the source memory task at test. Results of studies using the 

recognition-source paradigm, in which participants were either aware of or focused 

their attention on source information, suggest that explicit attention to source during 

encoding can sometimes lead to more robust subsequent memory effects (Angel et 

al., 2013; Cansino & Trejo-Morales, 2008; Cansino et al., 2010). The interactions 

between the factors are potentially confounded by averaging across the third factor. 

For example, a main effect of subsequent source memory in FN400 amplitudes was 

only found when averaging across the presentation factor, but not in the analysis that 

averaged across the modality factor. This suggests that averaging across one factor, 

due to low trial counts, may have prevented a bigger picture from emerging. 

Moreover, it has been suggested that pictures of objects are verbalised to some extent 

(Persson & Söderlund, 2015), which may explain the absence of interactions 

between source memory and encoding modality.  

 

Exploratory single-trial analyses (repetition effects) 

Exploratory analyses of study phase data focused on the observed effect of 

presentation. Cluster-based mass-univariate analyses were performed to isolate the 

repetition effect, as measured by contrasting ERPs to the first and fourth 

presentation. Results indicated repetition-related ERP changes over frontal and 

parietal electrode sites. The frontal component was found to be sensitive to repetition 

between around 300 – 550 ms post stimulus onset, which largely overlaps with the 

hypothesised time window for the FN400. The parietal component was sensitive to 

repetition around 400 – 600 ms, which is slightly earlier than the here predicted LPC 

time window though not uncommon (see Curran et al., 2006). Mean amplitudes 

across those time points were extracted for each trial and averaged across electrode 

sites within the two clusters (negative frontal and positive parietal). Repetition-

related amplitude enhancements were calculated for each consecutive presentation 
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pair of each stimulus. Additionally, a control value was computed by calculating the 

same amplitude enhancement but for the trial occurring prior to the actual stimulus 

repetition. When comparing item-specific and control enhancement values, it was 

found that only the difference between first and second presentation over parietal 

electrode sites was directly related to the repetition of a stimulus. This raises the 

question what the observed increase in parietal positivity and frontal negativity in 

mean amplitudes is related to if not item repetition. Previous research has reported 

ERPs to be sensitive to repetition (Renoult et al., 2012; Rugg & Doyle, 1994; 

Segalowitz et al., 1997), a finding which was replicated in the present ERP analyses. 

However, these single-trial measures shed new insights into these repetition effects, 

suggesting that only a parietal novelty effect is related to stimulus-specific repetition. 

It may be that the general amplitude changes are associated with repeated task 

performance rather than item repetition. Moreover, the observed enhancement 

effects did not discriminate between subsequent hits+ and hits- judgements, 

suggesting the repetition effect to be independent of recollection. Future 

investigations should probe whether these effects are also independent of subsequent 

item memory. The frontal negativity and the parietal positivity enhancement were 

both related to implicit memory as measured by RTs. Existing fMRI research has 

already established a relationship between repetition suppression and implicit (RTs) 

and explicit (memory performance) memory processes at the individual stimulus 

level (van den Honert et al., 2016; Ward et al., 2013). However, this approach is not 

yet common to EEG research. The present finding will have to be replicated in future 

studies to establish its reliability and further investigate what underlies the repetition-

related ERP changes previously reported. While results from exploratory analyses 

have to be interpreted with caution, it was recently highlighted that data-driven 

approaches can help us to avoid tunnel-vision during data analysis (Paré & Quirk, 

2017), which is certainly reflected in the present results.  

 

Test phase – planned analyses 

At test, no FN400 source memory effects were observed in the hypothesised 

time window. As outlined in the general introduction (section 1.5.3), results relating 

to the FN400 are generally mixed with some research reporting ERP differences 

between hits and correct rejections (Addante, Ranganath, & Yonelinas, 2012; 
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Cansino & Trejo-Morales, 2008; Wilding, 2000) and others reporting source 

memory effects with amplitudes discriminating hits+ and hits- judgements (Addante, 

Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008). However, the 

absence of an old/new effect in the FN400 has also been reported (Cycowicz & 

Friedman, 2003; Cycowicz et al., 2001). Cycowicz and Friedman (2003) noted that 

the majority of previous studies reporting frontal recognition effects had employed 

word rather than picture stimuli. Additionally, and more relevant to the present 

paradigm, where concepts encoded as pictures were cued as words during the test 

phase, Kazmerski and Friedman (1997) reported modality-specific differences in 

scalp distributions of the old/new effect that were not observed when pictures were 

presented at study but cued with words at test. Therefore, the role of the FN400 is 

still unclear. Systematic testing of modality effects, as already carried out by 

Kazmerski and Friedman (1997), will have to be replicated in sufficiently powered 

designs to establish whether word stimuli elicit larger old/new FN400 effects than 

picture stimuli. LPC amplitudes to hits+ and hits- judgements differed from correct 

rejections, which is in line with a large body of research (Rugg, Schloerscheidt, et 

al., 1998; Wilding, 2000; Wilding & Rugg, 1996; Woroch & Gonsalves, 2010), 

adding to the robustness of the parietal old/new effect. However, LPC amplitudes in 

the 500 – 700 ms time window did not discriminate hits+ and hits- judgements as 

predicted based on the literature (Addante, Ranganath, & Yonelinas, 2012; Cansino 

& Trejo-Morales, 2008; Mollison & Curran, 2012, experiment 1). Discrepancies in 

paradigms may partly contribute to the absence of the source memory effect, because 

previous studies typically presented the same stimulus at study and test, whereas in 

the present research, perceptual features of the studied concept did not always 

overlap between the two phases, i.e., stimuli encoded as pictures only, were cued 

with words at test. In fact, the observed ERP differences at test relating to encoding 

modality suggest that ERPs to successful source recognition differed depending on 

encoding modality; stimuli encoded as pictures elicited less positive ERPs compared 

to stimuli encoded in the other two modalities This is in line with previous research 

(e.g., Allan et al., 2000), further suggesting that information from the study phase is 

reinstated at test and this reinstatement can be measured with ERPs. The direction of 

this effect is somewhat unexpected, as previous research would lead to the prediction 

that memories based on word stimuli may be associated with fewer perceptual details 
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than memories formed from viewing picture stimuli (Johnson, Kounios, & Nolde, 

1997). If more perceptual details are available, these can be retrieved by activating 

the visual cortex, thereby enhancing positivity over posterior electrode sites. When 

fewer perceptual details are available, participants may be required to retrieve more 

semantic and self-generated information relating to a stimulus, which may be 

reflected in more frontally distributed activation (Johnson et al., 1997). Moreover, it 

is conceivable that the encoding modality effect at test is reflecting a change in 

modality from study to test phase rather than true reinstatement. Further research is 

needed to test whether the reinstatement effects interact with source memory 

performance and to what extent they reflect encoding operations.  

 

Study and test phase – additional exploratory ERP analyses 

Exploratory ERP analyses were performed as the visualisations of the ERP 

waveforms indicated that some of the predicted effects might have occurred outside 

of the predicted time windows. Indeed, at study as well as at test, parietal amplitudes 

between 700 – 900 ms post stimulus onset discriminated between hits+ and hits- 

judgements, though these effects had opposite polarities at study and test. The LPC 

at study was found to be associated with more positive-going amplitudes for hits- 

than hits+, which is contrary to the predicted direction of this effect but in line with 

the trend observed in the planned LPC analyses in the 500 – 700 ms time window. 

However, this later, statistically significant effect was found during the up-phase of 

the LPC, while around the peak, a small and statistically non-significant effect 

indicated hits+ to be more positive than hits- trials. The later occurring interactions 

between source memory and modality at frontal sites and between modality and 

repetition at parietal sites largely reflected that effects were strongest in the picture 

only encoding modality. At test, an additional effect relating to source memory was 

also found over frontal electrode sites in the time windows 500 – 700 ms and 900 – 

1200 ms. Taken together, the exploratory ERP analyses revealed ERP differences 

relating to explicit source memory. These effects were observed during both, the 

study and test phase, and appear to be slightly later occurring than hypothesised. 

However, there are notable differences between the effects at study and test. First, at 

study ERPs to subsequent hits+ judgements were associated with less positive mean 

amplitudes than hits-, while the opposite was observed at test. Second, qualitative 
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differences appear in scalp topographies of these later source memory effects, with a 

centro-parietal topography at study and a more left-parietal at test.  

 

Overall, during the study phase, there appears to be an earlier occurring 

parietal component that is related to indirect memory measures (RTs) and novelty. 

An early frontal effect, potentially reflecting the FN400, was only related to RTs but 

not to novelty or item-specific repetition. Subsequent source memory effects are 

reported in a slightly later time window and not significant at the peak. The finding 

of an early component associated with an indirect memory measure and a later 

component associated with an explicit memory test is partly consistent with a 

previous ERP investigation of implicit and explicit memory processes (Paller, 

Hutson, Miller, & Boehm, 2003; Voss & Paller, 2008a). The finding that the parietal 

component was sensitive to item-specific novelty is reminiscent of an old/new effect, 

which in turn may indicate that some retrieval processes are taking place during the 

incidental encoding phase. However, the latencies differ between previously reported 

old/new effects and the here observed novelty effect at study, as the old/new effect 

typically occurs slightly later around 500 – 800 ms (Johnson, 1995). It is therefore 

likely that repetition shifts the peak forward, as previously reported (Renoult et al., 

2012). Subsequent memory effects may then be confounded by this, thus appearing 

somewhat different-looking than those reported from paradigms only involving a 

single presentation. This repetition effect being largely independent of encoding 

modality (especially in the alternated modality), is somewhat indicative of the 

finding that the repetition effect was also not bound to item-level repetition, but 

instead appeared to be more of a global effect of time course of the experiment. 

Previous research has reported modality-independent repetition effects (see Khader, 

Heil et al. 2005), however, to the author’s knowledge, none of those studies have 

investigated repetition at the item-specific level. 
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Chapter 4 – Encoding modality, repetition and memory (fMRI) 

 

4.1 Introduction 

A number of investigations of haemodynamic responses have reported 

material-dependant memory effects (e.g., Duarte et al., 2011; Kim, 2011; Persson & 

Söderlund, 2015). For example, one investigation probed material-dependent source 

memory effects by presenting participants with words, pictures of objects and 

pictures of scenes during study and test phase (Duarte et al., 2011). A number of 

regions displayed modality-independent source memory effects at study, including 

left inferior frontal cortex, posterior hippocampus, medial and lateral parietal cortices 

and left temporal gyrus. At test, modality-independent differences in mean activation 

for hits+ and hits- judgements was reported in left angular gyrus, posterior cingulate, 

retrosplenial cortex, temporal and frontal gyri, right superior occipital gyrus, bilateral 

anterior and posterior hippocampi, bilateral middle cingulate and right frontal gyrus. 

Modality-specific subsequent source memory effects were reported in left posterior 

inferior frontal gyrus, where subsequent source memory effects (hits+ > hits-) were 

greater for words than pictures of objects or scenes. An inverse effect of subsequent 

source memory (hits- > hits+) was found in left perirhinal cortex for pictures of 

objects but not words or pictures of scenes. Moreover, even though the hippocampus 

is generally expected to be modality-independent and functionally more involved in 

binding item and context information (H. Eichenbaum et al., 2007), Dm effects in 

the hippocampus were also reported to be greater for pictures of objects than for 

words (Kim, 2011). Additionally, stronger Dm effects were found for pictorial than 

verbal material in right fusiform cortex and for verbal compared to pictorial material 

in left inferior frontal cortex. Another meta-analysis has reported modality-specific 

differences in the hippocampus along its long-axis (anterior-posterior) as well as 

hemispheric differences (Persson & Söderlund, 2015). Encoding of verbal material, 

was related to higher activation in the left anterior hippocampus, while encoding of 

pictorial material was associated with elevated activation in right posterior 

hippocampus. Finally, the authors also tested effects of mixed modalities in the 

context of associative encoding. They found that multi-modal associative encoding 

recruited the right hippocampus more than uni-modal encoding of either pictures 

only or words only, while both, uni-modal word encoding and mixed modality 
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encoding was found to recruit the left anterior hippocampus as well. These results 

are suggestive of modality-dependent and –independent roles of the hippocampus 

(Persson & Söderlund, 2015) and, while the hippocampus takes on a domain-general 

role in encoding and retrieval of memories, the content of the material may be 

represented differentially within the hippocampi.   

Memory operations at test, appear less modality-dependent than at study. 

Meta-analysis results indicated that modality-specific effects in the hippocampus 

were less clearly differentiated than during study (Persson & Söderlund, 2015). 

Activation was generally found to be highest in posterior hippocampus and higher 

for pictures than words but the modality-dependent hippocampal hemispheric long-

axis dissociation reported at study was not shown at test (Persson & Söderlund, 

2015). Similarly, Duarte and colleagues (2011) reported no modality-dependent 

source memory effects at test. Overall, these results suggest that subsequent source 

memory effects are modality-specific in some brain regions but that retrieval 

operations are largely modality-independent. The absence of modality-dependent 

source effects at test was suggested to be explained by the nature of the source 

memory question, i.e., perceptual features of stimuli were non-criterial and may 

therefore not have been recollected.  

Similar to modality-specific subsequent source memory effects occurring in 

regions associated with the processing of modality-specific features (Duarte et al., 

2011), repetition suppression effects have been reported in regions specific to the 

processing of verbal/semantic material (e.g., Rossell, Price, & Nobre, 2003) or 

pictorial/visual material (e.g., Horner & Henson, 2008; Koutstaal et al., 2001). These 

reports are in contrast to the EEG results reported in Chapter 3, which found that 

repetition-related changes in mean amplitudes did not differ between the encoding 

modalities. Considering the diversity in proposed neural generators of the ERPs of 

interest (see section 1.5), especially the LPC, what is measured with scalp EEG may 

not reflect activation of specific brain regions as they have been reported in fMRI 

research. A meta-analysis including 137 neuroimaging studies reporting repetition 

suppression and enhancement effects, reported repetition suppression to words in left 

inferior frontal and fusiform areas (Kim, 2017). Pictures of objects were associated 

with repetition suppression in bilateral inferior frontal cortex and occipito-temporal 

regions. Additionally, across verbal and pictorial materials, repetition-related 
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increases were reported in frontal and parietal regions, which are typically associated 

with explicit memory retrieval (Blondin & Lepage, 2005; Kuperberg, 2004; Rossell 

et al., 2003). Previous research has shown conceptual and perceptual priming effects 

to be dissociable (Wig et al., 2005). One may expect conceptual priming effects to 

occur in regions related to semantic processing and conceptual feature integration. 

Generally, research on conceptual priming of visually presented stimuli that required 

semantic processing during encoding has reported reductions in RTs and neural 

activation in occipito-temporal areas, e.g., fusiform and occipital gyri, and frontal 

cortices, e.g., lateral inferior PFC (Buckner et al., 1998; Grill-Spector et al., 1999; 

Henson, 2003; Koutstaal et al., 2001; Schacter & Buckner, 1998; Vuilleumier, 

Henson, Driver, & Dolan, 2002; Wig et al., 2005; Zago, Fenske, Aminoff, & Bar, 

2005). The occipito-temporal areas were shown to code perceptual stimulus 

representations, while frontal regions are implicated in retrieving semantic 

knowledge related to the encoding task (Bunzeck, Schütze, & Düzel, 2006; Daselaar, 

Veltman, Rombouts, Raaijmakers, Jeroen, & Jonker, 2005; Maccotta & Buckner, 

2004; reviewed in Schacter et al., 2007). However, in an experiment where stimuli 

were repeated in the same modality, i.e., repeatedly presented as spoken words, 

written words or pictures, or across those modalities, repetition suppression in the 

cross-modality condition was only reported in the perirhinal cortex (Heusser et al., 

2013).  

As introduced here, a large body of research has already addressed questions 

regarding modality-specific item and source memory effects. Similarly, perceptual 

and conceptual priming effects have been widely covered. However, how repetition 

suppression and enhancement effects of stimuli presented in different encoding 

modalities interact with subsequent source memory remains largely unknown.  

 

Representation Similarity Analysis 

Previous research has typically contrasted similarity patterns relating to 

subsequent item hits and misses (Ward et al., 2013; Xue et al., 2010) or ERS effects 

to item hits and misses (Ritchey et al., 2013; Wing et al., 2015). These studies 

showed that cortical pattern similarity was higher for items that were remembered 

than those that were forgotten; generally supporting that reactivation is critical in 

forming and retrieving memories. Based on the CLS framework, it may be suggested 
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that higher levels of reactivation reflect neocortical processes of creating more 

general representations of the items. However, when contrasting different levels of 

remembering, i.e., familiarity and recollection or source memory outcome, it may be 

critical for items to be encoded more uniquely and, therefore, items may be 

represented less similarly in order to later on retrieve additional details specific to the 

learning episode. Two recent investigations have contrasted source rather than item 

memory hits and misses and reported different roles for pattern reactivation in source 

memory formation (Kim et al., 2017; van den Honert et al., 2016). One study 

reported higher pattern similarity in lateral occipital cortex between encoding 

presentations to be associated with source memory misses rather than hits (Kim et 

al., 2017). Results from the other investigation found lateral occipital cortex 

similarity patterns to be higher for subsequent source hits than misses (van den 

Honert et al., 2016). The discrepancy in results may partly be explained by 

differences in experimental designs. In the first example, object stimuli were used 

and the source memory task prompted participants to retrieve details about the task 

they had performed during the first item presentation (Kim et al., 2017). The other 

study (van den Honert et al., 2016) included two experiments. Object stimuli were 

used in the first experiment, but effects were found to be much larger in the second 

experiment employing scenes. At test, a discrimination task assessed whether 

participants remembered that two stimuli were presented as identical stimuli or as 

different exemplars during the study phase (van den Honert et al., 2016). It may be 

that different task-related processes associated with a stimulus were represented less 

similarly, enabling subsequent retrieval of those task operations, while exemplar 

repetition led to some degree of reactivation, mediated by the hippocampus, as 

suggested by the authors (van den Honert et al., 2016). Additionally, neither of the 

two investigations included an item memory test, therefore, source misses may have 

been intermixed with item misses, making the interpretation of results more difficult. 

Further investigations into similarity patterns underlying subsequent source memory 

performance will be needed to understand how different regions represent items for 

which additional details can later be recollected.  

In addition to differences in pattern similarity associated with source memory 

outcomes, the present research is concerned with the effects of encoding stimuli in 

different modalities. Xue and colleagues (2010) reported pattern similarity results 
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from three different experiments. Across all experiments, they generally found 

cortical pattern similarity to be higher across encoding presentations for subsequent 

hits compared to misses. However, between experiments, the ROI results differed 

slightly, with face but not word stimuli showing effects in lateral occipital regions 

and word but not face stimuli resulting in subsequent memory effects in the left 

hippocampus and bilateral fusiform and middle temporal gyri. This is somewhat 

unsurprising, as some regions of interest will be more or less implicated in the 

processing of certain stimulus types in the first place. However, it also suggests that 

pattern similarity discriminating between subsequent hits and misses might be 

modality-specific in certain brain areas. It has previously been shown that activation 

patterns in lateral occipital cortex carry information about the visual content 

associated with a stimulus (e.g., Cichy, Chen, & Haynes, 2011; Eger, Ashburner, 

Haynes, Dolan, & Rees, 2008). Using a classifier-based MVPA approach, it was 

reported that structures within the temporal lobe contained information about the 

visual category stimuli fell into (faces or scenes) and moreover, higher classified-

based estimates were associated with superior subsequent memory performance 

(Kuhl, Rissman, & Wagner, 2012). Additionally, previous research provided 

evidence that multi-voxel patterns in the lateral parietal cortex, and in particular the 

angular gyrus, differentially represented stimulus categories, i.e., faces and scenes, 

and were predictive of objective vividness of events (Kuhl & Chun, 2014). At least 

one previous fMRI study employing RSA is central to probing the relationship 

between modality-specific encoding and memory. The authors investigated 

representational similarity patterns for the semantic category effects in word and 

picture stimuli with the aim of identifying modality-specific and modality-

independent semantic systems (Devereux, Clarke, Marouchos, & Tyler, 2013). 

Participants viewed words and pictures and performed a category-naming task. 

Model-based RSA revealed modality-independent effects of semantic category in 

left intraparietal sulcus, left angular gyrus and left posterior middle temporal gyrus. 

Modality-specific semantic processing effects were found in ventral temporal cortex 

for pictures and anterior middle temporal gyrus for words. A second model-free 

cluster-based approach extended those findings by showing that although semantic 

category effects occurred in the left middle temporal gyrus in both modalities, they 

differed across modalities (Devereux et al., 2013). Overall, these results strongly 
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suggest that the physical features of a stimulus impact similarity patterns differently 

in different regions, however, it is unclear in what ways pattern similarity will be 

affected by modality-changes across repetitions. Therefore, systematic comparisons 

of Dm effects in pattern similarity across different modalities, i.e., modality-

independent subsequent memory effects and modality-specific effects, will enhance 

the general understanding of how similarity patterns can predict subsequent memory 

performance. 

Finally, the present research is concerned with pattern reinstatement effects 

between the study and test phases. Using the representational similarity index as a 

proxy for pattern reactivation, reinstatement effects can be assessed using RSA. 

Research has demonstrated that patterns observed during encoding are later 

reactivated during successful retrieval, for example in ventral occipito-temporal 

cortex (Gordon et al., 2014; Kuhl & Chun, 2014; Kuhl, Rissman, Chun, & Wagner, 

2011), lateral parietal cortex (Kuhl & Chun, 2014) and for word-scene associations 

in parahippocampal cortex (Staresina et al., 2012). However, mere pattern 

reinstatement at retrieval does not tell us much about those patterns themselves, i.e., 

whether they represent perceptual, conceptual, item-specific or domain-general 

information. For example, word-scene associations led to parahippocampal 

reactivations but word-colour associations did not (Staresina et al., 2012). Kuhl and 

Chun (2014) reported that reinstatement patterns in the angular gyrus discriminated 

between individual items that were remembered. These findings indicate that the 

observed patterns may represent domain-specific information, item-specific 

information or more general retrieval operations depending on the region they are 

observed in. To avoid perceptual similarities between encoding and retrieval, Xiao 

and colleagues (2017) employed a paradigm in which participants encoded word-

scene associations, where each scene was paired with two different words and cued 

with only one of those words during a subsequent recognition test. They reported 

that items that were initially represented in ventral visual areas at encoding were 

reinstated in the frontoparietal cortex during the retrieval phase. These results were 

somewhat surprising in the light of theories proposing similar operations to take 

place at study and test (Kolers, 1973; Morris et al., 1977; Tulving, 1983; Tulving & 

Thomson, 1973). Experimental factors may have played a role in obtaining these 

findings, as participants were over-trained on the stimuli and tasks in a prescan 
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phase, therefore, the encoding-retrieval similarity in this study may be more 

appropriately interpreted as retrieval-retrieval similarity. The authors also 

implemented a slow event-related design, thus it cannot be precluded that item 

representations were not initially reactivated in the same areas at encoding. Overall, 

this study did raise concerns that pattern reinstatement may be confounded by the 

perceptual overlap of stimuli presented during the encoding and the recognition 

phase.  

 

The present fMRI experiment employed the same experimental design as the 

EEG investigation in Chapter 3, with only minor differences in total number of trials 

(see 4.2.2). A subsequent memory paradigm was used with four spaced repetitions of 

each stimulus, followed by a surprise source-recognition task. Participants repeatedly 

studied stimuli presented in one of three encoding modality conditions: repeatedly 

presented as pictures (referred to in-text as picture), repeatedly presented as words 

(referred to in-text as word) or alternately presented as pictures and words (referred 

to in-text as picture&word). At test, all stimuli were cued with words and 

participants made item memory judgements (old/new) and source memory 

judgements (previously learned as picture, word or picture&word). The present 

experiment was primarily designed to address differences in similarity patterns 

relating to source memory effects and encoding modality. Therefore, the univariate 

analyses will only be concerned with how conceptual and perceptual repetition 

effects may predict subsequent source memory and further investigate repetition 

suppression and enhancement. Additionally, results from control analyses will be 

presented, i.e., picture-word and hits+-hits- contrasts to assess the reliability of the 

data. Based on previous research (Grady et al., 1998; Vandenberghe et al., 1996), it 

is hypothesised that picture stimuli be associated with higher activation in occipito-

temporal regions when compared to word stimuli. Furthermore, at test, Duarte and 

colleagues (2011) demonstrated higher hippocampal activation for hits+ than hits- 

judgements, which was found to be modality-independent. Further regions where 

source memory effects may be expected are the medial prefrontal and retrosplenial 

cortices as well as superior and middle temporal gyri (Duarte et al., 2011; Thakral et 

al., 2015) as well as the wider recollection network (Cabeza et al., 2012; Johnson & 

Rugg, 2007; King et al., 2015; Rugg & King, 2017; Rugg & Vilberg, 2013). RSA is 
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predicted to reveal modality-independent source memory effects in regions that are 

part of the recollection network. In addition to modality-independent source memory 

effects, further modality-specific source memory effects are hypothesised to occur in 

regions implicated in processing of modality-specific features and in posterior 

parietal regions reflecting feature-integration processes in the alternated 

picture&word modality. Finally, picture reinstatement effects are predicted to be 

observed in occipito-temporal regions in the absence of pictorial information at test, 

when items are cued with words. 

 

4.2 Method 

4.2.1 Participants 

Twenty-five healthy adult volunteers (14 females), aged 18 to 35 years old 

(Mage = 22±3), with an average of 16±2 years of education were recruited. Data of 

seven participants were excluded from behavioural and fMRI analyses due to 

technical faults during scanning, resulting in N = 18 (9 females). 

 

4.2.2 Materials 

Stimuli presented throughout the study phase were pictures and written 

words of common objects and animals (e.g., doors, boat, monkey). A total of 240 

stimuli were selected from the 288 stimuli used in the EEG version of this 

experiment (see 3.2.2). Stimuli were selected from the Bank of Standardized Stimuli 

(BOSS) Phase II (Brodeur et al., 2014) and were matched across all tasks and 

conditions in terms of frequency, familiarity, name agreement and letter length (see 

Table 4.4). Words were presented in white Courier New 36 font. Picture dimensions 

were 400x400 pixels. All stimuli were presented in the centre of a black background.  

 

Table 4.4. Experiment 2 (fMRI): Means (in bold) and standard deviations 
(italicised, in parentheses) of frequency, familiarity, name agreement and  
letter length of stimuli presented in study and test phase. 
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4.2.3 Task & procedure 

During the study phase, half of the selected stimuli were presented one-by-

one. Participants were instructed to press one of two buttons on the four-button 

response device, corresponding to whether they thought the presented object was 

typically found indoors or outdoors. Each stimulus was presented four times, once 

during each of the four encoding runs, resulting in a total of 480 encoding trials. 

Stimuli were presented in one of three modality conditions (40 stimuli in each 

condition): repeatedly as a picture (picture uni-modal), repeatedly as a word (word 

uni-modal) or alternately as a picture or a word (picture&word multi-modal). The 

average inter-trial interval (ITI) in both experiments was 4100 ms. The experimental 

procedure is illustrated in Figure 4.13. At the end of the encoding phase, participants 

had a short break during which they could rest their eyes. 

In a surprise recognition-source memory test, all old stimuli from the 

indoor/outdoor categorisation task were presented along with new stimuli, made up 

of the remaining half of the stimuli set that had not been presented at study, from the 

same two semantic categories. Participants were instructed to make an old/new 

judgement (item memory) indicating whether they thought an object had been 

presented in the preceding study phase or not. Participants pressed one of four 

buttons on the response pad corresponding to the following responses: definitely old, 

perhaps old, perhaps new, and definitely new. Whenever responses indicated that an 

object had been shown during encoding, i.e., was old, a new screen appeared with a 

follow-up question assessing source memory by asking participants how the object 

had been presented. The response options were picture, word, picture & word and I 

don’t know. Stimuli were presented for 1500 ms, followed by a fixation cross for 

1000 ms. Depending on participants’ old/new response, either a fixation cross or the 



SECTION 2 – Experimental Chapters 

 

78 
 

source memory question appeared for 1500 ms. Another fixation cross of random 

duration (800 – 1200ms) then indicated the beginning of the next trial (average ITI = 

5000 ms). 

 

 

Figure 4.13. Experiment 2 (fMRI): a) the experimental paradigm with four encoding 
presentations during the study phase, followed by the test phase, with b) trial timings 
displayed.  

 

4.3 Results 

The repeated-measures design included three factors of interest at study and 

two at test: subsequent memory (hits+, hits-; behavioural analyses further include 

misses), repetition (presentation 1,2,3,4; only at study) and encoding modality (uni-

modal picture, uni-modal word, multi-modal picture&word). As in the EEG version 

(Chapter 3), hits+ trials were characterised as high confidence item hits followed by 

correct source memory. Hits- trials included hits in the old/new task, irrespective of 

confidence judgement, followed by an incorrect source memory response or no 

response, indicating the source could not be retrieved. High memory performance, as 

indicated by discriminability scores presented in a subsequent section (4.3.1.2), 
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meant that misses are only included in behavioural analyses and were excluded from 

neuroimaging analyses due to low trial counts. Because of a lack of low confidence 

responses, confidence was not included in further analyses. Participants’ responses to 

the item memory question indicated that they were more often highly confident of 

their response (M%HC = 91.81 ± 9) than responding with low confidence (M%LC = 

8.19 ± 9), t17 = 20.307, p < .001.  

 

4.3.1 Behavioural results 

4.3.1.1 Reaction times at study 

RTs to the indoor/outdoor judgement task during the study phase were 

analysed in a 3 x 3 x 4 repeated-measures ANOVA with the factors subsequent 

memory (hits+, hits-, misses), encoding modality (picture, word, picture&word) and 

presentation (1,2,3,4). Mean RTs are illustrated in Figure 4.14. RTs were not 

significantly different across the three levels of memory performance, F2,18 = 0.253, 

p = .780. Although the mean RTs presented in Figure 4.14 indicate a trend for RTs to 

decrease across presentations, this was not statistically significant after Greenhouse-

Geisser correction for violations of sphericity, F1,12 = 3.858, p = .066. However, a 

main effect of encoding modality was revealed, F1,12 = 8.141, p = .011. Participants 

responded significantly faster to stimuli presented as pictures only compared to 

stimuli presented as words only, p = .018, and to stimuli presented as pictures and 

words alternately, p = .002.  
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Figure 4.14. Reaction times (in seconds) in experiment 2 (fMRI) for all four 
presentations during the study phase, separately for subsequent memory performance 
and encoding modalities. Error bars denote standard error. 

 

4.3.1.2 Discriminability analysis 

Discriminability scores (d’) were calculated based on the frequencies of hits 

and false alarms. The normalised probabilities of overall hits and false alarms were 

compared in a paired-samples t-test. The t-test showed that participants’ performance 

in the recognition memory task was statistically significantly above chance, t17 = 

13.442, p < .001). Mean and standard deviations of d’ scores and percentages of hits 

and false alarms are illustrated in Table 4.5. Those individual d’ scores indicate that 

recognition memory performance was highest in the word uni-modal condition 

(verging on a ceiling effect) and lowest in the picture uni-modal condition.  

 

Table 4.5. Experiment 2 (fMRI): The mean d’ scores and mean % of Hits and 
False Alarms with standard deviations (italicised, in parentheses) for overall 
memory performance and across the three modality conditions, picture only, word 
only and picture&word. 
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4.3.1.3 Behavioural performance at test 

Frequencies of hits+, hits- and misses (memory performance) were analysed 

across modalities (picture uni-modal, word uni-modal, picture-word multi-modal) in 

a 3 x 3 repeated-measures analysis. Descriptive statistics of the data included in the 

analysis are displayed in Figure 4.15.  

 

 
Figure 4.15. Behavioural performance in experiment 2 (fMRI). Mean percentages 
of the three levels of memory performance and encoding modality. Error bars 
denote standard errors. 

 

The ANOVA revealed a main effect of memory, F1,23 = 107.288, p < .001 

and an interaction between memory performance and encoding modality, F2,41 = 

10.775, p < .001. Post-hoc tests revealed that all three levels of memory performance 

differed from each other in terms of frequencies, all p < .001. The majority of 

responses were hits+ judgements (correct item memory, correct source memory), 

followed by hits- judgements (correct item memory, incorrect source memory) and 

the least responses resulted in misses. This difference in memory was significant 

across all three levels of modality, p < .001, with the exception of the picture 

modality, where frequencies of hits- judgements and misses did not differ 

significantly, p = .744. As illustrated in Figure 4.15, the two uni-modal encoding 

conditions were associated with more hits+ judgements compared to the 

picture&word condition. This difference was only statistically significant for the 

word only encoding condition, p = .032. All three encoding modalities differed in 
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terms of frequencies of hits- judgements, all p < .016, with the picture&word 

condition being associated with the most hits- judgements and the picture only 

condition with the fewest hits- judgements. Finally, the picture only encoding 

condition was associated with more misses than the other two conditions, p < .001. 

 

4.3.1.4 Reaction times at test 

RTs obtained during the test phase were analysed in two repeated-measures 

ANOVAs. First, RTs to the item memory (old/new) task were examined in a 3 x 3 

ANOVA with the factors memory performance and encoding modality. In a second 

analysis, RTs to the source memory task were analysed. In this 2 x 3 repeated-

measures ANOVA, the factors were memory performance (note, only two levels, as 

misses were not followed up with a source memory question) and encoding 

modality.  

The ANOVA on item memory RTs revealed no statistically significant main 

effects or interactions, all p > .150.  

The ANOVA on source memory RTs revealed a main effect of memory 

performance (hits+, hits-), F1,17 = 14.755, p = .001 and a significant interaction 

between memory performance and encoding modality, F2,34 = 5.889, p = .006. RTs 

to hits+ judgements were significantly faster than to hits- judgements. This 

difference, however, was not significant in items that were presented as pictures at 

encoding, p = .674. 

 

4.3.2 fMRI mass-univariate results 

One GLM was constructed with 24 regressors of interest modelling the 

effects of source memory (hits+, hits-), presentation (1,2,3,4) and encoding modality 

(picture, word, picture&word). A nuisance regressor modelled all trials that were not 

included in main analyses, e.g., subsequent misses and low confidence correct source 

judgements. A first set of whole-brain results is centred around repetition-related 

changes in BOLD signals and their relationships with subsequent source memory 

and encoding modality. Two additional whole-brain contrasts of previously well-

established effects relating to differences between picture and word stimuli at study 

and between hits+ and hits- judgements at test are presented.  
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4.3.2.1 Study phase repetition effects 

In order to investigate repetition effects, 12 whole-brain contrasts modelling 

modality-specific repetition suppression and enhancement were created at a second 

level analysis. Repetition effects were modelled as a linear change (Grill-Spector & 

Malach, 2001; Henson et al., 2000; Sayres & Grill-Spector, 2006; Suzuki et al., 

2011; Vannini et al., 2013). Separate t-contrasts modelled linear changes, i.e., 

suppression and enhancement, across repetitions for the three encoding modalities, 

i.e., picture only priming, word only priming and picture-word priming. Additional t-

contrasts assessed whether the repetition-related changes were stronger for 

subsequent hits+ than hits- judgements. 

Results from whole-brain analyses are presented in Table 4.6. Both uni-

modal encoding conditions showed repetition suppression effects that did not differ 

depending on subsequent source memory performance. For the picture only 

encoding condition a statistically significant cluster was found in the left medial 

temporal lobe, including the left hippocampus and fusiform gyrus. Repetition 

suppression effects in the word only encoding condition were found in left pre- and 

postcentral gyri. Finally, the picture-word encoding condition was associated with 

repetition enhancement in inferior parietal regions, including the precuneus, which 

was higher for subsequent hits+ than hits- judgements, however, the small cluster did 

not survive FWE-corrections. 
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Table 4.6. Mass-univaraite results from experiment 2 (fMRI) illustrating the regions 
that show modality-specific repetition effects and interactions between repetition and 
subsequent source memory performance as measured during the study phase. 

 
Note. S = suppression, E = enhancement, L = left, R = right, BA = approximate Brodmann Area. 
MNI coordinates refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 
 

4.3.2.2 Control analyses 

Two control analyses were carried out to demonstrate the reliability of the 

data. The results for those whole-brain contrasts are presented in Table 4.7. First, 

during the study phase, the picture only and word only encoding conditions were 

contrasted to test the hypothesis that picture stimuli, relative to word stimuli, would 

activate the occipito-temporal cortex. Two large clusters were found in the predicted 

regions, one large cluster in right occipito-temporal regions and a second one in the 

left occipito-temporal areas. The second control analysis contrasted hits+ and hits- 

judgements at test and, as predicted, activation for hits+ judgements was higher than 

for hits- judgements within the recollection network, with four clusters being 

identified in left and right hemispheres. 



SECTION 2 – Experimental Chapters 

 

85 
 

 

Table 4.7. Mass-univariate control analyses (experiment 2, fMRI), constrasting 
mean activation to picture and word stimuli during the study phase and mean 
activation to hits+ and hits- judgements during the test phase. 

 
Note. S = suppression, E = enhancement, L = left, R = right, BA = approximate Brodmann Area. 
MNI coordinates refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 
 

 

4.3.3 Representational similarity analysis  

Pattern similarity was calculated for encoding similarity across repeated 

study episodes and for encoding-retrieval similarity (ERS). For encoding similarity, 

pattern similarity was computed between consecutive repetitions, i.e., Presentations 

1 & 2, Presentations 2 & 3 and Presentations 3 & 4, and the resulting similarity 

indices were averaged. For ERS, pattern similarity was calculated between each 

encoding presentation and the retrieval presentation, resulting in four similarity 

indices that were averaged (see Figure 4.16).  



SECTION 2 – Experimental Chapters 

 

86 
 

 
Figure 4.16. Encoding similiarty and encoding-retrieval similarity (ERS) in 
experiment 2 were computed by correlating beta values from the specified 
presentation pairs. 

 

A total of 18 ROIs were chosen from the automated anatomical labelling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002). With exceptions for the hippocampus 

and the fusiform gyrus, ROIs were bilateral to limit the number of multiple 

comparisons. Reasons for including separate left and right ROIs for the fusiform 

gyrus were that the visual word form area is located in the left fusiform gyrus only 

(L. Cohen et al., 2000; McCandliss, Cohen, & Dehaene, 2003), therefore, differences 

in picture and word encoding may not be bilateral. For the hippocampus previous 

research reported memory effects in left but not right hippocampus (Xue et al., 

2010). The 18 ROIs are presented in Table 4.8 along with references justifying their 

inclusion. ROI analyses were followed up with whole-brain searchlight analyses. 

One participant had to be excluded from RSAs, because of insufficient trial numbers 

in one condition, meaning that identity mismatch could not be calculated, resulting 

in N = 17. 
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Table 4.8. Regions of interest included in the representational similarity analyses 
performed on data from experiment 2 (fMRI), along with subsequently used 
abbreviations, hemisphere information and references for inclusion. 

 

 

Separate encoding similarity and ERS indices were computed for each of the 

six conditions (see Figure 4.17). Encoding similarity and ERS patterns were 

analysed for modality-independent subsequent source memory effects, modality-

specific subsequent source memory effects and effects of encoding modality, only 

including trials for which the source could later be retrieved, i.e., hits+. For each 

contrast, a measure of item-level similarity and a measure of item-specific similarity 

are reported (see 2.5.2.2 for details). Each contrast was analysed using paired-

samples t-tests. T-statistics and significance levels (uncorrected and FDR-corrected 

for the 18 ROIs) are reported.  
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Figure 4.17. Identity matrix displaying the six conditions included in analyses of data 
from experiment 2 (fMRI), for which similarity scores were calculated. Item-level 
and item-specific similarity are reported in the present investigation. 

 

4.3.3.1 Encoding similarity 

 

Effects of subsequent source memory 

Results for modality-independent and modality-specific differences in 

similarity patterns relating to subsequent source memory are reported in Table 4.9. 

Modality-independent subsequent source memory effects were found in the left 

hippocampus, right fusiform gyrus and middle and superior occipital gyri, though 

none of those effects survived FDR-correction. At the item-level, the hippocampus 

represented items, for which the source was later remembered, less similarly than 

those for which the item was remembered but the source could not be identified. The 

right fusiform gyrus, on the other hand, showed higher similarity for subsequent 

hits+ than hits- trials. This was found to be the case for item-level similarity as well 
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as for item-specific similarity, reflecting that subsequent hits+ items were 

represented more similarly to themselves than to other items of the same category 

compared to subsequent hits- trials. Similar item-specific similarity effects were also 

found in middle and superior occipital gyri. 

 

Table 4.9. Summary of t-statistics (experiment 2, fMRI) for multiple pairwise t-tests 
contrasting encoding similarity to subsequent hits+ and hits- judgements. 
 

 
 

A number of modality-specific subsequent source memory effects were 

reported, with some surviving FDR-correction. Item-specific similarity was higher 

for subsequent picture only hits+ than hits- trials in the middle occipital gyrus and a 

similar trend was observed in superior occipital and right fusiform gyri. These three 

regions were also found to represent word hits+ trials more similarly to themselves 

than to other word stimuli compared to subsequent hits- trials, along with the same 

trends in left fusiform and inferior temporal gyri. Notably, these effects in the 
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occipital regions were only found in the uni-modal encoding conditions and not 

when perceptual features changed across repetitions. Additional weaker modality-

specific effects emerged as well. The modality-independent effect in the left 

hippocampus was also found in the picture only encoding condition, possible driving 

the modality-independent effect. Finally, in the alternated picture&word condition, 

hits+ trials were found to be represented more similarly than hits- trials in the 

inferior frontal and temporal gyri at the item-level. Item-specific similarity was also 

higher for subsequent hits+ than hits- trials in inferior temporal and right fusiform 

gyri. 

Exploratory searchlight analyses did not reveal any additional effects for the 

contrasts displayed in Table 4.9. 

 

Effects of encoding modality 

In addition to modality-independent and –specific subsequent source memory 

effects, this research was concerned with the effects of encoding modality on 

similarity patterns. For this analysis, only subsequent hits+ trials were included to 

investigate effects of encoding modality in subsequent recollection judgements. 

Three contrasts contrasted each encoding modality with the other two: picture only 

compared to an average of word only and picture&word, word only compared to an 

average of picture only and picture&word and, finally, picture&word compared to an 

average of picture only and word only (uni-modal compared to multi-modal 

encoding). The results are presented in Table 4.10. 

Strong effects of higher similarity between presentations of items encoded as 

pictures only compared to the other two conditions were found in left and right 

fusiform, middle and superior occipital gyri as well as the cuneus at the item-level. 

Item-specific picture reinstatement was also observed in the middle occipital gyrus 

and trends showed in right fusiform and bilateral superior occipital gyri and the 

cuneus. Additionally, picture only items were represented less similarly than items 

encoded in the other two encoding conditions in angular and inferior parietal gyri at 

the item-level. The same effect was also observed in the middle temporal gyrus but 

did not survive multiple comparison corrections. Item-specific similarity in the 

angular gyrus was also lower for picture only trials than for trials in the other two 

conditions.  
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Items in the word only condition were represented less similarly than items 

encoded in the other two conditions in left and right fusiform gyri and the cuneus. 

However, these effects did not survive multiple comparisons and are likely reflecting 

the finding that pictures were represented more similarly in those regions. 

Contrasting stimuli presented in the multi-modal picture&word condition and 

those presented in the uni-modal conditions revealed strong item-level and item-

specific negative effects in left and right fusiform and bilateral middle and superior 

occipital gyri. These regions represented multi-modally encoded stimuli less 

similarly than uni-modally encoded stimuli. The inferior frontal and inferior parietal 

gyri, on the other hand, were observed to show higher item-level pattern similarity 

for the multi-modally encoded than the uni-modally encoded items, with the same 

trends also observed in angular and supramarginal gyri.  

 

Table 4.10. Summary of t-statistics (experiment 2, fMRI) for multiple pairwise t-
tests contrasting encoding modalities only including subsequent hits+ judgements. 
 

 
Exploratory searchlight analyses did not reveal any additional effects for the 

contrasts displayed in Table 4.10. 



SECTION 2 – Experimental Chapters 

 

92 
 

 

4.3.3.2 Encoding-retrieval similarity 

 

Effects of source memory 

Results for modality-independent and modality-specific differences in ERS 

patterns discriminating source memory are reported in Table 4.11. Modality-

independent source memory effects with higher item-level similarity for hits+ than 

hits- judgements were observed in precuneus, cuneus and superior occipital gyrus. 

The same trend was found in supramarginal, inferior parietal and left fusiform gyri, 

though these effects did not survive correction for multiple comparisons.  

 

Table 4.11. Summary of t-statistics (experiment 2, fMRI) for multiple pairwise t-tests 
contrasting encoding-retrieval similarity to subsequent hits+ and hits- judgements. 
 

 
 

Modality-specific ERS source memory effects were less pronounced than for 

encoding similarity and none survived multiple comparisons correction. A trend in 
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the precuneus suggested that pictures only hits+ judgements were represented more 

similarly (at the item-level) than hits- judgements. Source memory effects in the 

word only encoding condition were found in supramarginal and inferior parietal gyri 

and precuneus and cuneus, regions that already showed higher similarity between 

encoding and retrieval for modality-independent hits+ than hits- judgements. The 

mean ERS scores are displayed in Figure 4.18, showing that the modality-

independent ERS differences for hits+ and hits- judgements are not entirely driven 

by the word encoding condition, but rather, differences in hits+ and hits- ERS are 

observed across all three encoding modalities, though not statistically significant. 

 

 
Figure 4.18. Experiment 2 (fMRI): Mean encoding-retrieval similarity scores for 
modality-independent and modality-dependent hits+ and hits- judgements. 

 

Exploratory searchlight analyses revealed similar effects as the ROI analyses 

and two clusters were found to be significant even after FWE-correction that were 

not significant after multiple comparison corrections in the ROI analyses (displayed 

in Figure 4.19). For the item-level, modality-independent contrast between hits+ and 

hits- judgements, a cluster (k = 123) emerged in the right inferior parietal lobule with 

its peak voxel in the angular gyrus (MNI coordinates x = 48, y = -61, z = 29), p = 

.003 (FWE-corrected). A second significant cluster (k = 64) was found for the item-
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level, picture only encoding contrast between hits+ and hits- judgements within the 

cuneus and precuneus (peak voxel MNI coordinates x = 12, y = -76, z = 35), p = .048 

(FWE-corrected). Both these effects had been reported as trends in the ROI analyses 

but were shown to survive multiple comparison correction only in the searchlight 

analyses. 

 

 
Figure 4.19. Encoding-retrieval similarity searchlight source memory effects in 
experiment 2 (fMRI) for a hits+ > hits- contrast in a) modality-independent and b) 
picture only modality-specific searchlight analysis contrasts. Peak voxel threshold was 
at p < .001 uncorrected, cluster threshold at p < .05 FWE-corrected. 

 

Effects of encoding modality 

For the effects of encoding modality, only a t-contrast between picture only 

and word only encoding was of interest. The alternated picture&word encoding 

condition was omitted from these analyses, because ERS indices were computed by 

averaging across the four encoding-retrieval pairs (study 1 – test, study 2 – test, 

study 3 – test, study 4 – test), so that any ERS results relevant to this condition 

would only occur when looking at the encoding-retrieval pairs separately.   

The ROI analyses testing ERS effects for differences between items encoded 

as pictures only and items encoded as words only did not reveal any effects that 

survived FDR-correction. However, trends were observed at the item-level in the 

cuneus, t = 2.75, p < .05 (uncorrected), and superior occipital gyrus, t = 2.32, p < .05 
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(uncorrected), with picture only items being more similar than word only items, 

indicating reinstatement of pictorial information in the absence of the actual picture 

stimulus at test.  

Additional searchlight analyses revealed two clusters that were significant 

after FWE-correction (displayed in Figure 4.20). Both clusters were found for the 

item-level similarity contrast between picture only and word only encoding 

modalities with higher similarity for items repeatedly encoded as pictures than those 

repeatedly encoded as words. A larger cluster (k = 321) was found to be significant 

in the right occipital areas including parts of middle and superior occipital gyri and 

the cuneus (BA 19), p < .001 (FWE-corrected; peak voxel at MNI coordinates x = 

33, y = -37, z = -31). A slightly smaller cluster (k = 127) was found in the right 

inferior temporal lobe regions, p = .003 (FWE-corrected; peak voxel at MNI 

coordinates x = 18, y = -91, z = 23). 

 

 
Figure 4.20.Encoding-retrieval similarity searchlight results from experiment 2 
(fMRI), showing picture only encoding to be more similar than word only encoding 
in occipital and inferior temporal regions. Peak voxel threshold was at p < .001 
uncorrect, cluster threshold at p < .05 FWE-corrected.  
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4.4 Discussion 

Behavioural results were largely consistent with the behavioural results from 

the EEG experiment (discussed in 3.4.1). Item and source memory performance was 

generally high. The picture superiority effect was absent, as the picture only 

encoding condition was associated with more misses than the other two conditions. 

Finally, as reported in the EEG version of this experiment, RTs during the study 

phase were faster to picture only stimuli than to stimuli from the other two encoding 

modalities. 

 

4.4.1 fMRI mass-univariate analysis results 

Functional MRI data were analysed with respect to repetition-related changes 

in the three encoding modalities and whether those repetition effects predicted 

subsequent source memory performance. Repetition suppression effects were found 

in both uni-modal encoding conditions but they did not interact with subsequent 

source memory. For the alternated picture-word encoding condition, mean BOLD 

signal was found to increase with repetitions and this increase was higher in 

subsequent hits+ than hits- judgements. Additionally, control analyses supported the 

hypotheses with higher activation to picture than word stimuli in the predicted 

regions and higher activation to hits+ than hits- judgements at test in areas within the 

medial temporal lobe. 

In line with previous research (see Grill-Spector et al., 2006; Schacter et al., 

2007), repetition suppression effects were found in brain regions that are typically 

implicated in the processing of perceptual and semantic information. Word only 

repetition effects occurred in left pre- and post-central gyri, extending into inferior 

parietal and frontal gyri, respectively. Moreover, picture only repetition effects were 

observed in the medial temporal lobe, including the hippocampus and fusiform 

gyrus. Both modality-specific repetition suppression effects overlap with regions 

showing word- and picture-based repetition suppression identified by a recent meta-

analysis (H. Kim, 2017). These repetition suppression effects are likely reflecting 

enhanced semantic and perceptual processing efficiency (Buckner et al., 1998; Grill-

Spector et al., 2006; Henson & Rugg, 2003; Schacter et al., 2007; Wig et al., 2005). 

A repetition enhancement trend was only observed in the multi-modal picture-word 

encoding condition in posterior parietal regions with peak voxels in the precuneus. 
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This effect was stronger for subsequent hits+ than hits- trials. Previous research has 

more often reported a link between repetition enhancement and subsequent memory 

performance (Heusser et al., 2013; Kremers et al., 2014; van den Honert et al., 2016; 

Vannini et al., 2013) than a link between repetition suppression and subsequent 

memory performance (but see Xue et al., 2011). It appears that repetition 

enhancement effects are most likely observed during conceptual repetition, though 

they havealso  been reported in word repetition studies, probing semantic priming 

(reviewed in Segaert et al., 2013). For example, Heusser and colleagues (2003) 

reported repetition enhancement only in a cross-modal encoding condition and only 

this repetition enhancement effect was related to subsequent memory performance. 

Here, repetition enhancement effects were reported in inferior parietal regions, which 

are generally considered to a) be part of a wider episodic recollection network 

(Cabeza et al., 2012; J. D. Johnson & Rugg, 2007; King et al., 2015; Rugg & King, 

2017; Rugg & Vilberg, 2013) and b) involved in amodal, conceptual stimulus 

processing and multi-modal feature integration (Bonnici, Richter, Yazar, & Simons, 

2016; Chou, Chen, Wu, & Booth, 2009; Fairhall & Caramazza, 2013; Seghier, 

2013). Therefore, the subsequent source memory-dependent increase in mean 

activation in the multi-modal picture-word condition may reflect retrieval operations 

during the incidental encoding phase (H. Kim, 2017; Segaert et al., 2013), which 

facilitate later source memory recognition for the alternated picture&word condition. 

This interpretation is consistent with previous suggestions of the posterior parietal 

cortex being activated during the study phase and implicated in long-term memory 

formation (Elman, Rosner, Cohn-Sheehy, Cerreta, & Shimamura, 2013). Perhaps 

such retrieval operations were not necessary in order to subsequently recollect source 

information in the uni-modal encoding conditions. However, as repetition 

enhancement effects did not survive corrections for multiple comparisons, any 

interpretations of these effects are somewhat tentative until the effects have been 

replicated in hypothesis-driven future research. There is no obvious overlap between 

the here reported repetition effects and those observed during the scalp EEG 

recordings (presented in Chapter 3). However, as neither the fMRI repetition 

suppression effects nor the repetition-related changes in EEG amplitudes interacted 

with subsequent source memory performance, it may be suggested that changes in 

LPC and FN400 amplitudes are more likely reflecting repetition suppression than 
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enhancement. Therefore, fMRI repetition suppression and EEG repetition-related 

amplitude changes may be related to implicit rather than explicit measures of 

memory, as demonstrated in the EEG chapter (see Chapter 3) and existing fMRI 

literature (e.g., van den Honert et al., 2016; Ward et al., 2013). Additionally, the 

repetition suppression effects in the picture only encoding modality were mainly 

observed in MTL regions, which have previously been proposed to generate the LPC 

(Guillem et al., 1999; Halgren et al., 1994). However, a fundamental difference 

remains between the effects yielded with those two neuroimaging techniques: fMRI 

repetition suppression effects were shown to be modality-dependent, whereas the 

EEG effects did not interact with encoding modality. On that basis, it remains 

unclear whether repetition effects measured with EEG and fMRI reflect similar 

neural mechanisms. 

 

4.4.2 Representational similarity analysis  

Encoding similarity and ERS patterns were investigated to identify modality-

independent and modality-specific source memory effects as well as effects of 

encoding modality in hits+ trials. Due to low frequencies of misses, item memory 

contrasts were not considered. ROIs were chosen based on previous literature. 

Results from exploratory searchlight analyses were reported when those provided 

additional insights. Across multiple encoding presentations, item-specific pattern 

reinstatement in occipital regions was associated with superior source memory 

outcome, but only in the uni-modal encoding conditions (picture only, word only). 

Moreover, item-level and item-specific similarity patterns were higher for pictures 

compared to the other two encoding conditions in occipito-temporal regions but less 

similar in inferior parietal regions, including the angular gyrus. The inferior parietal 

gyrus was found to represent items encoded in the multi-modal picture&word 

condition more similarly across encoding when compared to the uni-modal encoding 

conditions. The reverse effects with lower pattern similarity for multi-modally 

compared to uni-modally encoded items were observed in occipito-temporal regions. 

Item-level ERS patterns were found to discriminate between hits+ and hits- 

judgements, with higher hits+ similarity in parietal and occipital regions. 

Reinstatement of pictorial information from the study phase in the absence of 

pictorial stimuli at test were shown at the item-level in occipital and right inferior 
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temporal lobes, however, this did not extend to item-specific pattern reinstatement. 

Additional trends, i.e., contrasts that were only significant before corrections for 

multiple comparisons, will be discussed. 

 

Encoding similarity – subsequent memory  

Strong subsequent source memory effects were found in middle and superior 

occipital gyri when items were encoded uni-modally. Subsequent source hits were 

associated with higher encoding similarity than items, which were recognised, but 

the source could not be retrieved. Higher pattern similarity likely reflects perceptual 

reinstatement of the same patterns across repeated encoding presentations and this 

reinstatement was stronger for subsequent hits+ than hits- judgements. This result is 

in line with a previous investigation into pattern similarity and source memory (van 

den Honert et al., 2016) and resembles previous findings for item memory similarity 

patterns (e.g., Ward et al., 2013; Xue et al., 2010). However, to the author’s 

knowledge, no previous research has demonstrated this subsequent source memory 

effect at the item-specific level, i.e., that for subsequent hits+ judgements items are 

more similarly represented to themselves than other items from the same category 

when compared to hits- judgements. In the present paradigm, participants had to later 

remember whether they encountered a concept repeatedly as a picture, repeatedly as 

a word or as both, pictures and words. In order to successfully retrieve the source, it 

is likely that the items had to be represented more similarly to themselves than to 

other items. Additionally, the early visual regions were expected to be sensitive to 

perceptual feature overlap (e.g., Ress & Heeger, 2003) and have previously been 

shown to represent items more similarly to themselves than to other items of the 

same category (Ritchey et al., 2013). Therefore, it is no surprise that this effect was 

significant only in the uni-modal encoding conditions. Moreover, these results 

provide evidence for the reactivation view (Benjamin & Tullis, 2010; Thios & 

D’Agostino, 1976) in that item-specific reactivation across repeated encoding 

support subsequent memory and more specifically subsequent source memory. 

Interestingly, a trend was observed in the right fusiform gyrus that, in addition to 

item-specific hits+ similarity being higher than item-specific hits- similarity in the 

uni-modal encoding conditions, this trend was also observed in the multi-modal 

picture&word condition. Research has indicated that the ventral temporal cortex, 
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including the fusiform gyrus, may be representing semantic information (Chao, 

Haxby, & Martin, 1999; Mechelli, Sartori, Orlandi, & Price, 2006). Moreover, a 

study on patients with semantic dementia has shown that the right anterior fusiform 

gyrus was implicated in associative semantic knowledge (Mion et al., 2010). Thus, 

this region may be important for organising item-specific semantic information, 

whilst also incorporating source information for later successful source retrieval. 

However, because this effect did not survive multiple comparison corrections, it will 

have to be replicated in order to make stronger inferences about the role of the right 

fusiform gyrus in source memory encoding. 

Similar to the trend in the right fusiform gyrus, item-specific similarity in the 

inferior temporal gyrus and item-level similarity in inferior frontal and middle and 

superior temporal gyri and were higher for subsequent hits+ judgements than hits- 

judgements in the multi-modal picture&word condition, although these effects were 

not significant after correction for multiple comparisons. Inferior and middle 

temporal gyri have been proposed to represent concepts irrespective of the modality 

they are presented in (Fairhall & Caramazza, 2013), which in line with the ventral 

cortex representing semantic knowledge (Chao et al., 1999; Mechelli et al., 2006). It 

is therefore not surprising that these regions would be sensitive to conceptual 

repetition. In order for participants to later remember that they saw the concept in 

both modalities, some form of conceptual reinstatement may have been necessary, 

explaining why these similarity patterns were higher for subsequent hits+ than hits- 

judgements. Furthermore, the inferior frontal gyrus has been shown to be part of the 

semantic system (Binder, Desai, Graves, & Conant, 2009) and to be activated more 

when task difficulty increased (Binder, Medler, Desai, Conant, & Liebenthal, 2005; 

Desai, Conant, Waldron, & Binder, 2006; R. L. C. Mitchell, 2005). Though the 

explicit task was held constant in this experiment, the multi-modal picture&word 

encoding condition may have required additional conceptual integration in order to 

subsequently remember that the item was studied as both, a picture and a word. 

Finally, another interesting trend emerged in the left hippocampus. Item-level 

similarity was lower for subsequent hits+ than hits- judgements. This trend was 

observed in the modality-independent and the picture only encoding conditions, with 

the latter one possibly driving the modality-independent result. The finding of less 

similarity for hits+ than hits- judgements is in contrast to previous research on 
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similarity effects between subsequent item hits and misses (Xue et al., 2010). 

However, it may be that source memory information is represented differently to 

item memory. Although the hippocampus is proposed to bind information together 

(e.g., Josselyn et al., 2015; Moscovitch, 1992), thereby potentially creating more 

similar representations, this structure is also suggested to represent and extract 

unique encoding features (Nadel & Moscovitch, 1997; Norman, 2010; O’Reilly et 

al., 2014) and prevent interferences with past events (O’Reilly & McClelland, 1994). 

Previous research has indeed shown more hippocampal dissimilarity between items 

that were subsequently remembered (LaRocque et al., 2013). Moreover, recent 

research has shown that representations in the hippocampus only became more 

similar after a consolidation period of a week (Tompary & Davachi, 2017), 

highlighting that initial hippocampal representations are more dynamic and can be 

updated with each additional learning episode (Mack, Love, & Preston, 2016). 

Finally, the present result may also reflect hippocampal pattern separation signals 

that have previously been reported during encoding (Bakker et al., 2009; Chanales, 

Oza, Favila, & Kuhl, 2017; Leutgeb, Leutgeb, Moser, & Moser, 2007) and linked to 

memory performance (Favila, Chanales, & Kuhl, 2016; Karlsson Wirebring et al., 

2015).  

 

Encoding similarity – encoding modality  

Encoding similarity patterns clearly dissociated occipito-temporal and 

inferior parietal regions. Bilateral fusiform and occipital gyri as well as the 

precuneus showed strong sensitivity to stimuli repeatedly encoded as pictures but 

showed the reverse effect for stimuli encoded as pictures and words alternately. On 

the other hand, inferior parietal regions were found to be sensitive to feature 

integration across repetitions, i.e., the multi-modal encoding condition, but similarity 

patterns were found to be lower for the picture only encoding condition compared to 

the other two conditions. Occipito-temporal regions have been shown to be involved 

in the processing of perceptual features of pictorial stimuli (Grady et al., 1998; 

Vandenberghe et al., 1996), it is therefore not surprising that reactivation of pictures 

was higher compared to the other two conditions. Interestingly, these similarity 

patterns are shown to be disrupted when the perceptual but not conceptual features of 

the stimulus change between repetitions, as indicated by lower similarity in the 
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picture&word encoding conditions when compared to the two uni-modal conditions. 

While pattern similarity in occipital regions, across exemplar repetitions of scenes, 

has been shown to be relatively unaffected by small perceptual feature changes (van 

den Honert et al., 2016), this appears to not be the case for conceptual repetitions of 

items presented as pictures and words alternately. The picture&word multi-modal 

encoding effect observed in the inferior parietal gyrus, with the same trends shown in 

adjacent angular and supramarginal gyri, provides further evidence for a role of 

those parietal regions in the amodal integration of semantic features (Chou et al., 

2009; Devereux et al., 2013) or multi-modal feature integration (Bonnici et al., 2016; 

Yazar, Bergström, & Simons, 2017). The posterior parietal cortex has been 

suggested to act as a convergence zone by activation and binding episodic features, 

which are stored in different neocortical areas (Shimamura, 2011). A review on 

recent findings involving the ventral lateral parietal cortex, and in particular the 

angular gyrus, summarised that MVPA-based investigations have repeatedly 

demonstrated that this brain region represents categories of information differently 

and that the observed patterns can even distinguish between individual events (Rugg 

& King, 2017). Moreover, the angular gyrus’ sensitivity to multi-modal memories 

was previously shown during episodic retrieval (Bonnici et al., 2016), indicating that 

some form of retrieval was taking place during the study phase of the present 

repeated incidental encoding paradigm. Additionally, the angular gyrus was shown 

to represent object categories conceptually rather than modality-specifically (Fairhall 

& Caramazza, 2013). Taken together, the inferior parietal regions, including the 

angular and supramarginal gyri appear to integrate and represent semantic 

information about stimuli irrespective of perceptual features associated with different 

encoding modalities. The present findings indicate that pattern similarity in these 

regions increases when feature integration demands increase, consistent with 

previous research.  

 

ERS – source memory 

Item-level similarity between the study and test phases (ERS) was generally 

found to be higher for hits+ than hits- judgements. Moreover, with the exception of a 

few trends, this effect was largely modality-independent. This source memory effect 

was observed in the precuneus, cuneus and superior occipital gyrus with additional 
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trends, not surviving multiple comparison corrections, in left fusiform gyrus and 

bilateral supramarginal and inferior parietal gyri. However, additional searchlight 

analyses showed that the inferior parietal regions did show higher item-level 

similarity for hits+ than hits- judgements even after FWE-corrections. These results 

are generally in line with previous research on ERS patterns relating to item memory 

contrasts, i.e., comparing item memory hits and misses (Ritchey et al., 2013; Wing et 

al., 2015). Furthermore, the ERS results provide support for theoretical frameworks 

that suggest similar operations to take place during successful encoding and retrieval 

of information, such as the encoding specificity principle (Tulving, 1983; Tulving & 

Thomson, 1973) and the transfer-appropriate processing account (Morris et al., 

1977). However, the observed effects in inferior parietal regions may be specific to 

objective recollection, as decoding accuracy sometimes failed to discriminate 

between different subjective ratings of vividness or remembering (Kuhl & Chun, 

2014; Thakral, Wang, & Rugg, 2017). Moreover, source memory effects in ERS 

patterns were found to be largely modality-independent, which is surprising given 

that content-sensitive recollection has been demonstrated in univariate investigations 

during the test phase (J. D. Johnson & Rugg, 2007; Khader, Burke, et al., 2005; 

reviewed in Rugg et al., 2008). On the other hand, results from univariate fMRI 

analyses have also shown that differences in mean activation due to memory 

performance was largely modality-independent (Duarte et al., 2011; Persson & 

Söderlund, 2015). In contrast to those univariate investigations, however, the 

modality in which items were presented in the present study was not held constant 

across encoding and retrieval. It is possible that the ERS source memory effects 

presented here reflect conceptual recollection of items and their associated source, 

i.e., encoding modality, because conceptual recollection was encouraged by the 

present paradigm. This interpretation is consistent with the role of inferior parietal 

regions in conceptual, amodal item representation.  

An interesting trend in the precuneus indicated that item-level similarity was 

higher for hits+ than hits- judgements in the picture only encoding condition. As a 

reminder, in this condition, participants repeatedly studied pictures of items, which 

were cued with the corresponding word during the test phase, when participants 

made item and source judgements. The precuneus has previously been linked to 

memory-related imagery (Cavanna & Trimble, 2006; Fletcher et al., 1995) and 
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imagination. For example, when participants encoded words paired with either 

viewed or imagined pictures, activation of the precuneus during test was related to 

the retrieval of words previously paired with imagined pictures (Lundstrom et al., 

2003; Lundstrom, Ingvar, & Petersson, 2005), suggesting that participants re-

imagined or reinstated the picture from the study phase. However, a bar graph 

displaying the mean ERS indices for the cuneus, precuneus, supramarginal and 

inferior parietal gyri illustrated that ERS was higher for hits+ than hits- judgements 

across all modalities, indicating that the observed ERS effects were largely modality-

independent. 

 

ERS – encoding modality at test 

Finally, effects of encoding modality on ERS patterns were tested. The multi-

modal picture&word encoding condition was excluded from these contrasts, as the 

four encoding-retrieval pairs were averaged to obtain a single ERS index and thus, 

information relevant to that particular encoding condition would have been averaged 

over. Higher item-level ERS for items encoded as pictures compared to those 

encoded as words was revealed by searchlight analyses (in addition to weaker effects 

in the ROI analyses) in right occipital areas as well as right inferior temporal lobe 

regions. These results indicate that pictorial information from the study phase is 

reactivated during the test phase even in the absence of the original pictorial 

stimulus, which is only cued with its verbal counterpart at test. Rich pictorial 

information has previously been shown to be represented in occipito-temporal 

regions during remembering (e.g., Kensinger & Schacter, 2007; MacEvoy & 

Epstein, 2009, 2011; Wing et al., 2015). However, existing research on reinstatement 

has typically presented stimuli in the same modality during study and test phase 

(Kensinger & Schacter, 2007). Alternatively, participants were shown the same label 

at test that accompanied a scene during the study phase and explicitly asked to 

reactivate the scene rather than make item and source memory judgements (Wing et 

al., 2015). The unique experimental design of the present investigation required 

participants to retrieve information regarding perceptual stimulus features, i.e., 

pictorial information, when only prompted with the word for the concept. Thereby, 

excluding any perceptual overlap between study and test phase in the picture only 

encoding condition. Finally, in the present experiment, no statistically significant 
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reinstatement effects were observed at the item-specific level. Item-specific 

reactivation has previously been reported in early visuo-sensory regions (Bosch et 

al., 2014), however, item-specificity was simply calculated on a trial-by-trial basis, 

much like the item-level similarity in the present study, rather than comparing 

specific items to reactivation patterns of other but similar items. Moreover, the 

stimuli used in that experiment did not require any semantic processing and the to-

be-retrieved information was related to the orientation of a visual stimulus, i.e., the 

visual stimulus was presented at both encoding and retrieval. Item-specific 

reinstatement of pictorial information from the study phase may have taken place but 

the searchlight analysis lacked power and/or the ROIs were poorly defined to detect 

the effect. It is, however, also likely that the present results of item-level but not 

item-specific reinstatement indicate that more general picture information was 

reinstated. Indeed, a follow-up analysis of an identical contrast (similarity higher for 

items encoded as pictures only than those encoded as words only, only including 

hits+ judgements) but for set-level similarity revealed two clusters that largely 

overlapped with the item-level similarity results, adding further evidence that this 

reinstatement effect was not item-specific but reflecting instead reinstatement of 

general picture information. 

 

 Taken together, the univariate fMRI analyses revealed an interesting trend in 

posterior parietal regions: a linear increase in mean BOLD signal within the posterior 

parietal regions, indexing repetition enhancement, was observed in the multi-modal 

picture-word encoding condition and this linear increase was stronger in subsequent 

hits+ than hits- judgements. This effect was suggested to reflect necessary retrieval 

operations to take place during encoding in order to bind information together and 

subsequently be able to retrieve the associated source during the test phase. The 

effects of implicit and explicit retrieval during incidental encoding paradigms are 

highly debated (see Voss & Paller, 2008a) and further research will be needed to 

identify the degree of explicit retrieval operations taking place in these paradigms 

and their impact on subsequent item and source memory. These findings from 

univariate analyses inform past and future research concerning the neural correlates 

of repeated encoding and have given rise to novel research questions. The focus of 

this thesis, however, is to shed light on neural similarity patterns and reactivation 
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processes during memory formation and between memory formation and retrieval as 

assessed by RSA. Similarity analyses showed that item-specific pattern 

reinstatement across encoding episodes predicted subsequent source memory for uni-

modal encoding in the occipital gyri. Pattern similarity between encoding and 

retrieval was found to be less item-specific but instead item-level similarity patterns 

were higher across superior occipital and posterior parietal regions for hits+ than 

hits- judgements. When considering the effects of encoding modality in the context 

of correct source judgements, strong effects were found between all three encoding 

conditions. Across encoding presentations, occipito-temporal item-level and item-

specific pattern similarity was higher for pictures compared to the other two 

encoding conditions, word only and picture&word encoding, reflecting the picture-

sensitivity of these regions. Inferior parietal regions were found to represent items 

more similarly when they were alternately presented as pictures and words across the 

study phase compared to when they were encoded uni-modally. This result likely 

reflects conceptual processing and integration of overlapping semantic features. 

Finally, while ERS source memory effects appeared to be largely modality-

independent, evidence for reinstatement of pictorial information from the study 

phase was found in occipital and right inferior temporal regions. These effects 

generally support an important role for reactivation in source memory formation and 

retrieval. While reactivation across repeated encoding presentations was found to be 

item-specific in some cases, reinstatement was only reported at the item-level for 

ERS patterns, indicating the reactivation of individual items at retrieval was not 

higher than the reactivation of other items from the same category. 
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Chapter 5 – Encoding context, repetition and memory (EEG) 

 

5.1 Introduction 

A large body of research has shown that the nature of the encoding task 

affects subsequent memory performance (e.g., Fletcher et al., 2003; Friedman et al., 

1996; Paller & Kutas, 1992; Paller et al., 1987). These results were typically yielded 

when comparing semantic and non-semantic encoding task, generally supporting 

Craik and Lockhardt’s levels of processing framework (Craik & Lockhart, 1972), 

showing that deep/semantic encoding is associated with better memory performance 

than shallow/non-semantic encoding. Moreover, in the context of repetition, some 

early research on word repetition priming indicated that the task had to be kept 

constant in order to yield reliable repetition priming effects (Ratcliff, Hockley, & 

McKoon, 1985, Experiment 2), while others reported priming effects even across 

tasks (Clarke & Morton, 1983; Jacoby, 1983; Jacoby & Dallas, 1981; Scarborough et 

al., 1979). Another line of research has investigated the effects of retroactive 

interference by presenting stimuli in different contexts, e.g., different encoding tasks 

(e.g., Kim et al., 2017; Koen & Rugg, 2016). Retroactive interference is generally 

measured by employing an AB/AC paradigm (Postman & Underwood, 1973), where 

a stimulus A is first presented in a context B, followed by presenting A in another, 

interfering context C. These paradigms typically report worse context memory 

compared to stimuli that were presented only once, in a single context (Anderson & 

Neely, 1996; Hupbach, Gomez, Hardt, & Nadel, 2007; Kim et al., 2017; McGovern, 

1964). When the same stimulus is repeated in a different context, it is thought to 

reactivate the memory associated with the first context (McClelland et al., 1995; 

Norman & O’Reilly, 2003) and integrate the novel context in order to generalise 

across the two contexts (Richter, Chanales, & Kuhl, 2016; Schlichting & Preston, 

2015; Schlichting, Zeithamova, & Preston, 2014; Shohamy & Wagner, 2008; 

Zeithamova & Preston, 2010). This generalisation, facilitated by reactivation, then 

weakens subsequent context memory. These suggestions are in line with the 

competition trace theory (Yassa & Reagh, 2013), which suggests that repetition 

improves item memory or familiarity at the cost of episodic details, such as context 

memory. Contrary to the competition trace theory and the reactivation view, the 

multiple trace theory proposes that each stimulus presentation is encoded uniquely, 
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thereby providing multiple traces of the same items (Hintzman, 1986; Hintzman & 

Block, 1971; Nadel & Moscovitch, 1997), and enabling subsequent retrieval of 

episodic details. Taken together, it may be suggested that, when an item is encoded 

in different task contexts, either reactivation occurs, which is associated with worse 

context memory, or multiple traces are created facilitating superior context memory. 

This would mean that subsequent context memory could be predicted based on the 

underlying operations that take place during encoding. While research has 

investigated the effect of different encoding tasks on subsequent memory 

performance and on repetition effects, either separately or in an interference 

paradigm, very few studies have directly compared the behavioural and neural 

differences between repeatedly performing the same task and performing different 

tasks, i.e., encoding repeated stimuli in the same context or different contexts. Such a 

paradigm will allow a direct comparison between the reactivation hypothesis 

(McClelland et al., 1995) and the multiple trace theory (Nadel & Moscovitch, 1997). 

Participants will repeatedly encode one-half of a set of stimuli in the same context, 

which is hypothesised to involve reactivation. The other half of the stimuli will be 

encoded in different contexts, which is hypothesised to involve one of two different 

operations, reactivation or the creation of multiple traces. Reactivation is 

hypothesised to be associated with subsequent hits- judgements, while the creation 

of multiple traces is predicted to be associated with subsequent hits+ judgements. 

 

Event-related potentials 

ERP research investigating Dm effects in semantic and non-semantic 

encoding tasks have reported the difference between subsequent hits and misses to 

be larger in semantic encoding tasks (Friedman et al., 1996; Paller & Kutas, 1992; 

Paller et al., 1987; Sanquist et al., 1980). Others noted qualitative differences in Dm 

effects between semantic and non-semantic tasks (Otten & Rugg, 2001a). Dm effects 

occurred under both encoding instructions, however, the semantic task was 

associated with enhanced positivity Dm effects, while the non-semantic task led to 

Dm effects with less positivity for subsequent hits relative to misses. Moreover, 

repetition effects have been reported in a semantic encoding task but not in a non-

semantic task (Friedman et al., 1996). Taken together, differences relating to 

encoding tasks were generally interpreted to reflect different encoding orientations 
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being associated with differences in underlying neural processes that are engaged 

during study (Paller & Wagner, 2002). To the author’s knowledge, no previous ERP 

experiments have investigated the effects of repeatedly performing the same 

encoding task compared to performing different encoding tasks for the same 

stimulus. Rather than comparing the effects of different task instructions, this chapter 

is concerned with the effect of same and different task encoding on subsequent 

source memory and repetition. Additionally, in Chapter 3 (section 3.3.1.2.2), 

exploratory single-trial analyses revealed a repetition effect, which was largely 

independent of subsequent source memory and encoding modality. This repetition 

effect was shown to be related to item-repetition but only for a parietal cluster of 

electrodes and only between presentations 1 and 2. This chapter also aims to 

replicate those results and extend them to different encoding task conditions.  

ERPs measured from the test phase have also been shown to be sensitive to 

encoding task manipulations. For example, in a between-groups design, participants 

encoded pictures and words of objects and performed one of two encoding tasks 

(artist/function) depending on the group they were in (Johnson et al., 1997). At test, 

participants either performed an old/new recognition task or a source identification 

task, where they indicated whether they had studied the object as a picture or a word 

or not studied it at all (new). All stimuli were presented as words at test. During 

retrieval ERP mean amplitudes at frontal and parietal sites discriminated items 

according to how they were encoded during the study phase. These results were not 

directly mapped to FN400 and LPC effects, although it appears that an early negative 

frontal deflection around 450ms, reminiscent of the FN400, was associated with the 

artist task, while an early (onset around 300 ms) but longer-lasting parietal effect, 

possibly reflecting the LPC, was related to the function encoding task. These 

findings were interpreted to reflect that differential information relating to an item is 

distributed across the neocortex (Johnson et al., 1997). In another experiment 

(Johnson et al., 2008), participants encoded words under two different encoding 

tasks. In one task, they were presented with the word superimposed on a scene and 

the task was to image the item at a location within the scene. In another task, words 

were presented on a blank background and participants were asked to generate a 

sentence based on the word. At retrieval, an R-K test assessed recollection. 

Differential recollection effects were found for the two encoding tasks. Recollection 
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ERPs to items encoded in the sentence condition were associated with more positive 

waveforms over anterior electrode sites than ERPs to items encoded in the scene 

condition. This effect was observed from about 300 – 1000 ms post stimulus onset. 

From about 800 ms onwards, the same effect, with opposite polarity, was observed 

over posterior electrode sites. Because of the temporal overlap between the study 

content dependent effects and previously well-established recollection effects, 

namely, the LPC, these findings were suggested to reflect reinstatement of 

information from the study phase during recollection (Johnson et al., 2008). 

However, in a retroactive interference paradigm, it was reported that ERPs measured 

at test were not sensitive to the encoding conditions, i.e., no test ERP differences 

were reported for stimuli that were initially encoded in the retroactive interference 

condition compared to two control encoding conditions (Tendolkar, Doyle, & Rugg, 

1997). Taken together, it appears that the LPC at test is sensitive to the nature of the 

encoding task though perhaps not to retroactive interference.  

 

The present experiment employed a subsequent memory paradigm in which 

each stimulus, written names of famous people, was presented four times during 

encoding. Half of the stimuli were repeated under the same semantic encoding task 

instructions, while the other half was repeated across four different semantic 

encoding task instructions (“Is this person female?”, “Is this person currently active 

in show business?”, “Is this person British?” and “Do you like this person?”). 

Therefore, famous names were either repeatedly encoded in the same context or in 

distinct contexts. At test, participants performed an old/new judgement task, 

assessing item memory, followed by a source memory question probing participants’ 

memory for the encoding task they performed during the study phase. This 

experimental paradigm allows direct comparisons of the reactivation hypothesis and 

the encoding variability view when considering the behavioural data. Based on 

previous studies on retroactive interference, source memory is predicted to be worse 

for the different compared to the same encoding task condition. Moreover, to the 

author’s knowledge, a paradigm that directly compares the two types of repeated 

encoding has not been employed in ERP research. This experiment aims to establish 

and investigate the neural correlates of repeated memory encoding under the same or 

different encoding task instructions with respect to subsequent source memory 
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performance. Based on the behavioural accounts introduced in this chapter, 

repetition effects are predicted to differ between the two encoding task conditions. 

Moreover, ERPs to subsequent hits+ and hits- judgements are predicted to differ in 

the different encoding task condition. That is because same and different context 

encoding are hypothesised to engage different processes across repetitions but, 

furthermore, the process engaged during different task encoding is expected to 

predict subsequent source memory performance, with reactivation being associated 

with worse source/context memory. As reactivation during the different context 

encoding is predicted to be associated with worse source memory but potentially 

higher familiarity, the FN400 is predicted to reflect this process. At test, the LPC is 

typically associated with recollection. Furthermore, in Chapter 3 of the present 

manuscript, the LPC at test was modulated by encoding modality. Therefore, the 

LPC is hypothesised to be sensitive to the encoding task manipulation in the present 

paradigm. If the LPC indexes recollection and reinstatement of associated details, it 

may be that a larger amount of details, as would be the case for the different 

encoding task condition, will be reflected in larger LPC amplitudes. 

 

5.2 Method 

5.2.1 Participants 

Twenty-four right-handed adult volunteers (13 females) participated in the 

experiment. Participants were aged 18 to 25 years (Mage = 20 ±2) and had completed 

an average of 15±2 years of education. In addition to general inclusion criteria (see 

2.1), all participants were British, because stimuli were selected based on a 

behavioural pilot study only including British participants. Data from one participant 

were excluded from all analyses due to failing to follow task instructions. Data from 

another two participants were excluded from EEG analyses due to poor EEG data 

quality, resulting in 21 included participants (13 females). 

 

5.2.2 Materials 

Stimuli were a total of 288 (written) names of famous people (e.g., Keith 

Richards, Michelle Obama). Stimuli were selected from a total of 350 famous names 

based on a behavioural pilot study to identify the most well-known famous people 
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amongst a sample of participants with similar characteristics as the sample in the 

present experiment. Famous names were matched across all tasks and conditions in 

accordance with the four encoding tasks (gender, currently active in show business 

or not, British or not; see Table 5.12). During the study phase, half of the stimuli 

were repeatedly presented as written words in the centre of a black background. 

Words were presented in white Courier New 36 font. A personal memories 

questionnaire was administered upon completion of the test phase. The personal 

memories questionnaire (see Appendix C) required participants to rate the famous 

names presented during the study phase in terms of the amount and quality of 

personal memories they held for them, ranging from 0 (no personal memory) to 4 

(very vivid personal memories), with the instruction to leave the row blank if the 

participant did not know the famous person at all.  

 

Table 5.12. Frequencies of famous names stimuli, used in experiment 3 (EEG), 
referring to males/females, currently active in show business/not active, British/not 
British in the two encoding conditions (same/different context) and across study and 
test phase. 

 
 

5.2.3 Task & procedure 

In the study phase, participants performed four different categorisation tasks 

on the names they were presented with. At the beginning of each block, they were 

presented with a question they had to answer with regards to the stimuli. The four 

questions were “Is this person female?”, “Is this person currently active in show 

business?”, “Is this person British?” and “Do you like this person?”. Task order was 

pseudo-randomised across participants. Participants were encouraged to guess the 

answer in cases where they were not familiar with the famous name or when they did 

not know the answer. They were instructed to press one of two buttons 

corresponding to whether their answer to the question was “yes” or “no”. 
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Additionally, participants were encouraged to only blink when the word “blink” 

appeared on the screen. During the encoding phase, each stimulus was presented four 

times. Half of the stimuli were presented once in each of the four tasks (different task 

condition), the other half was presented repeatedly within only one of the four 

encoding tasks (same task condition). With four repetitions per stimulus this resulted 

in a total of 576 encoding trials. The average inter-trial interval (ITI) in both 

experiments was 4100 ms. The experimental procedure is illustrated in Figure 5.21. 

At the end of the encoding phase, participants performed a trail-making distractor 

task.  

During the test phase, participants performed an unexpected recognition-

source memory test. In this task, all old stimuli from the encoding phase were 

presented along with the remaining set of new stimuli. Both lists were matched in 

terms of gender, whether famous people were currently active in show business or 

not and whether they were British or not. All stimuli were presented as white written 

words in Courier New 36 font on black background. Participants gave an old/new 

response depending on whether or not they thought the name had been presented 

during the encoding phase. Participants were cued with a name and instructed to 

indicate whether this stimulus had been presented in any of the previous tasks by 

pressing one of eight buttons on the response pad corresponding to the following 

responses: “definitely old”, “perhaps old”, “perhaps new”, and “definitely new”. 

“Old” responses were followed by a source memory question asking participants in 

which task the famous name had been previously been categorised with the response 

options “all four tasks”, “gender task”, “show business task”, “British task”, “like 

task” and “I don’t know”. Stimuli were presented for 1500 ms, followed by a 

fixation cross for 1000 ms. Depending on participants’ old/new response, either a 

fixation cross appeared for 1500 ms or the source memory question appeared for 

1500 ms. Another fixation cross of random duration (800 – 1200ms, average ITI= 

5000 ms) then indicated the beginning of the next trial. 

Once participants had completed the recognition task, they filled in a 

personal memories questionnaire. The data form this questionnaire were not included 

in any subsequent analyses as the relevance of those data went beyond the scope of 

the present research. 
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Figure 5.21. Experiment 3 (EEG): a) The experimental paradigm with four encoding 
presentations of each stimulus during the study phase; participants encoded half of the 
stimuli in a different task condition, i.e., performing a different task at each 
presentation of the stimulus, the other half were encoded in a same task condition, i.e., 
participants repeatedly performed the same semantic encoding task; in a test phase, 
participants made old/new judgements followed by source judgements; b) trial timings. 

 

5.3 Results 

The repeated-measures design included three factors of interest at study and 

two at test: memory performance (hits+, hits-; behavioural analyses also include 

misses), repetition (presentation 1,2,3,4; only at study) and encoding context 

(different, same). Because of lower frequencies of hits+ judgements compared to 

Chapter 3, hits+ trials included all correct item and correct source judgements 

irrespective of confidence ratings. Hits- trials were characterised as old/new hits, 

irrespective of confidence rating, followed by an incorrect source memory response 

or no response, indicating the source could not be retrieved. As item memory 

performance was high, misses are only included in behavioural analyses. Because of 

a lack of low confidence responses, confidence was not included in further analyses. 

Participants’ responses to the item memory question indicated that they were more 

often highly confident of their response (M%HC = 96 ±8) than responding with low 

confidence (M%LC = 4 ±8), t20 = 26.912, p < .001. 
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5.3.1 Behavioural results 

5.3.1.1 Reaction times at study 

Reaction times during the study phase were analysed in a 3 x 2 x 4 repeated-

measures ANOVA with the factors memory performance (hits+, hits-, misses), 

encoding context (same, different) and presentation (1, 2, 3, 4). Reaction times are 

displayed in Figure 5.22. The ANOVA revealed main effects of encoding context 

F1,20 = 108.614, p < .001, and presentation, F2,36 = 20.152, p < .001. No statistically 

significant interactions involved subsequent memory performance. RTs under the 

same encoding task condition were faster than RTs under the different encoding task 

condition. Furthermore, RTs decreased across presentations (all p < .006 with the 

exception of presentation 3 and presentation 4, where this difference was non-

significant, p > .05).  

 

 

Figure 5.22. Reaction times (in seconds) in experiment 3 (EEG) for all four 
presentations during the study phase, separately for subsequent memory performance 
and encoding contexts. Error bars denote standard error. 

 

5.3.1.2 Discriminability analysis 

Discriminability scores (d’) were calculated based on the frequencies of hits 

and false alarms. The normalised probabilities of overall hits and false alarms were 

compared in a paired-samples t-test. The t-test showed that participants’ performance 
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in the recognition memory task was statistically significantly above chance, t20 = 

22.529, p < .001. Mean and standard deviations of d’ scores and percentages of hits 

and false alarms are illustrated in Table 5.13. Those individual d’ scores indicate that 

recognition memory performance was higher in the different encoding task condition 

(verging on a ceiling effect).  

 

Table 5.13. Experiment 3 (EEG): The mean d’ scores and mean % of Hits and 
False Alarms with standard deviations (italicized, in parentheses) for overall 
memory performance and across the two encoding conditions. 

 
 

5.3.1.3 Behavioural performance at test 

Frequencies of hits+, hits- and misses (memory performance) were analysed 

in terms of encoding context (same vs. different) in a 3 x 2 repeated-measures 

ANOVA. Descriptive statistics of the data included in the analysis are displayed in 

Figure 5.23. The ANOVA revealed a main effect of memory, F2.40 = 52.441, p < 

.001 and an interaction between memory performance and encoding context, F1,24 = 

29.551, p < .001. A post-hoc test revealed that all three levels of memory 

performance differed significantly from each other in terms of frequencies, all p < 

.002. The majority of responses resulted in hits- judgements (correct item memory, 

incorrect source memory), fewer responses resulted in hits+ judgements (correct 

item and correct source memory) and the least responses resulted in misses. 

Following up on the interaction between memory performance and encoding context 

showed that encoding under the same encoding task condition was associated with 

more hits+ judgements than the different encoding task condition, p < .001. The 

same encoding task condition was, however, also associated with more misses than 

the different encoding task condition, p < .001. Finally, the different encoding task 

condition was associated with more hits- judgements than the same encoding task 

condition, p < .001. 
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Figure 5.23. Behavioural performance in experiment 3 (EEG). Mean percentages 
and standard error of the three levels of memory performance (hits+, hits-, misses) 
and encoding context (same, different). Error bars denote standard errors. 

 

5.3.1.4 Reaction times at test 

RTs measures during the test phase were analysed in two separate repeated-

measures ANOVAs. First, RTs to the item memory (old/new) task were examined in 

a 3 x 2 ANOVA with the factors memory performance and encoding task condition. 

In a second analysis, RTs to the source memory task were analysed. In this 2 x 2 

repeated-measures ANOVA, the factors were memory performance (only two levels, 

as misses were not followed up with a source memory question) and encoding task 

condition. 

The ANOVA analysing item memory RTs at test revealed a main effect of 

encoding context, F1,20 = 15.444, p = .001. Item memory responses were made faster 

to items previously encoded under the different encoding task condition compared to 

the same encoding task condition. No main effect of memory performance on RTs 

was found for the item memory responses, F1,22 = 1.867, p = .186, however, simple 

effects analyses indicated that hits+ judgements to the old/new question were made 

faster than hits- judgements, p = .001.  

The ANOVA analysing RTs to the source memory question revealed main 

effects of source memory performance, F1,20 = 15.178, p = .001, and encoding 

context, F1,20 = 8.497, p = .009. Correct source responses were given faster than 
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incorrect source responses and as similar to item memory RTs, source memory 

responses were made faster to items previously encoded under the different encoding 

task condition compared to the same encoding task condition. 

 

5.3.2 ERP analysis 

Based on the literature, two ERP components were selected. The early frontal 

FN400-like EPR was measured between 300 -500 ms post stimulus onset at 

electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4. The late parietal LPC-like ERP 

was measured between 500 - 700 ms post stimulus onset at electrode sites P1/P2, 

P3/P4, P5/P6 and PO3/PO4. Additionally, the frontal and the parietal component 

were also measured between 700 – 900 ms, as exploratory analyses in Chapter 3 (see 

3.3.2.3) revealed effects related to explicit source memory performance in this time 

window. 

ERP analyses at study investigated the interactions between the factors 

subsequent source memory, repetition and encoding task condition. ERP analyses at 

test focused on main effects and interactions for the factors source memory and 

encoding task condition. Finally, single-trial analyses were performed to replicate the 

results from chapter 3 (3.3.2.2) in the present paradigm.  

ERP analyses were conducted at study and test and the results are presented 

in Table 5.14. Data from the study phase were analysed separately for the FN400 

between 300 – 500 ms, the LPC from 500 – 700 ms and for both, a frontal and a 

parietal component made up of the same electrodes as the FN400 and LPC, during a 

time window from 700 to 900 ms post stimulus onset. Data were submitted to 

separate 2 x 4 x 2 x 2 x 4 repeated-measures ANOVAs, with the factors subsequent 

source memory (hits+, hits-), presentation, (1,2,3,4), encoding task condition (same, 

different), hemisphere (left, right) and electrode pair. Measures during the test phase 

from the same components and time windows were submitted to ANOVAs 

investigating the old/new effect as well as effects of source memory and encoding 

task condition at test. First, separate 2 x 2 x 4 repeated-measures ANOVAs were 

carried out with the factors old/new (only high confidence trials included), 

hemisphere and electrode pair. To investigate main effects and interactions of the 

factors source memory and encoding task condition, data were also submitted to 

separate 2 x 2 x 2 x 4 repeated-measures ANOVAs, with the factors source memory 
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(hits+, hits-), encoding task condition (same, different), hemisphere (left, right) and 

electrode pair. 

Repeated-measures ANOVA results from study and test phase are presented 

in Table 5.14. 

 

5.3.2.1 Study phase ERP analyses 
 

Table 5.14. Experiment 3: ERP analysis results (F statistics and significance level) 
from repeated-measures ANOVAs at study and test phase. 

 
 

Frontal (300 – 500 ms) 

For the early frontal FN400-like component, the only significant effect was 

found for the interaction between presentation and encoding task condition. As 

illustrated in Figure 5.24a, in the same encoding task condition, the increase in 

negativity appears to be gradual across presentations with a significant difference 

between presentations 1 and 4, p = .008. In the different task condition, however, the 

first and third presentation were found to be more negative than the second 

presentation, p = .021, p = .009, respectively. Overall, Figure 5.24b indicates that 
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presentations 1 and 3 are more negative than presentations 2 and 4. Simple effects 

analyses also revealed a task difference at presentation 1, p = .031, which signifies 

that any interpretation of these encoding task-related differences in repetition effects 

will have to be made with caution. 

 

Parietal (500 – 700 ms) 

For the LPC-like component between 500 – 700 ms, a main effect of 

presentation as well as an interaction between encoding task condition and 

presentation were found to be statistically significant. The main effect of 

presentation reflected a linear increase in positivity across presentations with first 

presentation significantly less positive than subsequent presentations, all p < .008. 

Figure 5.24c displays the repetition effect in the same task condition and Figure 

5.24d presents the repetition effect in the different task condition. Although both 

encoding conditions display a linear increase in positivity, the main effect of 

presentation extends to the same task condition with presentation 1 being 

significantly less positive than subsequent presentations, all p < .002. For the 

different task condition only presentation 1 and presentation 4 differ statistically 

significantly from each, p = .019. As for the FN400, simple effects analyses also 

revealed the same difference between encoding tasks at presentation 1, p = .044. 

 

Frontal (700 – 900 ms) 

For the frontal component between 700 and 900 ms post stimulus onset, the 

repeated-measures ANOVA revealed a main effect of presentation and an interaction 

between encoding task condition and presentation. Following-up on the main effect 

of presentation revealed no statistically significant pairwise comparisons, all p > 

.064. Simple effects analyses, following up on the interaction, found an increase in 

negativity in the same task condition, though not as gradual as in the earlier FN400 

time window. Mean amplitudes at presentation 1 were less negative than at 

presentation 2, p = .012, and presentation 4, p = .004. This pattern is illustrated in 

Figure 5.24a. The pattern in the different task condition is less clear with 

presentations 1 and 3 differing from 2 and 4 by being associated with more negative 

mean amplitudes, all p < .003. This is illustrated in Figure 5.24b. As previously, a 

task difference was found at presentation 1 with the different task condition being 
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associated with more negative mean amplitudes than the same task condition, p  < 

.001. 

 

Parietal (700 – 900 ms) 

Finally, the parietal component between 700 and 900 ms was associated with 

interactions between encoding task condition and presentation as well as between 

subsequent source memory, presentation and hemisphere. Follow-up analyses on the 

interaction between encoding task condition and presentation revealed no clear 

repetition patterns, illustrated in Figure 5.24. In the same task condition, ERPs to 

presentation 4 were more positive than to presentations 1 and 3, p = .018 and p = 

.030, respectively. Additionally, presentation 2 elicited a more positive ERP 

waveform than presentation 1, p =.037. For the different task condition, presentation 

1 elicited the most positive ERP waveform, which were statistically significantly 

larger than those at presentation 2, p = .028. The two encoding task conditions also 

differed in mean amplitudes at presentation 1, p = .001. Simple effects analyses 

following up on the interaction between subsequent source memory, presentation 

and hemisphere revealed a trend, p = .071, for subsequent hits- judgements to be 

associated with more positive ERP waveforms than hits+ judgement but only at 

presentation 1 in left hemisphere electrodes, as illustrated in Figure 5.25.  
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Figure 5.24. Experiment 3 (EEG): Grand average ERPs (N = 21) to presentations 1, 
2, 3 and 4 in the same and different encoding task conditions in a) the fronto-central 
component, measured between 300 – 500 ms and 700 – 900 ms, averaged across 
electrode sites F1/F2, F3/F4, FC1/FC2 and FC3/FC4, d) the parietal component, 
measured between 500 – 700 ms and 700 – 900 ms, averaged across electrode sites 
P1/P2, P3/P4, P5/P6 and PO3/PO4 and e) scalp topographies of a contrast between 
mean amplitudes at Presentation 4 minus Presentation 1, separately for same and 
different context encoding. 
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Figure 5.25. Experiment 3 (EEG): Grand average ERPs (N = 21) to subsequent 
hits+ and hits- judgements at presentation 1, averaged over encoding contexts, 
illustrating the subsequent source memory effect, averaged across electrode sites 
P1, P3, P5 and PO3. 

 

5.3.2.2 Test phase ERP analyses 

Frontal (300 – 500 ms) 

During the test phase, the repeated-measures ANOVA on the FN400 data 

revealed an old/new effect that interacted with hemisphere as well as an interaction 

between encoding task, source memory and electrode pair. The old/new effect was 

found to only be statistically significant in the right hemisphere with old stimuli 

eliciting more negative waveforms than new stimuli, p = .039. Simple effects 

analyses, following up on the interaction between encoding task, source memory and 

electrode pair revealed no significant simple comparisons or meaningful trends 

(displayed in Figure 5.28a,b).  

Parietal (500 – 700 ms) 

For the LPC, the old/new effect was found to interact with hemisphere. 

Additionally, a main effect of encoding task was revealed along with a trend for the 

source memory effect, F1,20 = 3.463, p = .078. The old/new effect was significant in 

the left hemisphere, p < .001, with old stimuli eliciting more positive waveforms 

than new stimuli, illustrated in Figure 5.28c,d. The main effect of task was 

characterised by stimuli encoded in the different task condition being associated with 

more positive LPC mean amplitudes than those stimuli encoded in the same task 

condition (displayed in Figure 5.26a). Additionally, a trend was found for hits+ 
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judgements to elicit more positive LPC waveforms than hits- judgements, as 

illustrated in Figure 5.26b.  

 

 
Figure 5.26. Experiment 3 (EEG): Grand average ERPs (N = 21), illustrating LPC 
effects, measured between 500 – 700 ms, averaged across parietal electrode sites P1/P2, 
P3/P4, P5/P6, PO3/PO4, for a) the main effect of encoding context measured at test and 
b) a trend indicating a main effect of source memory. 

 

Frontal (700 – 900 ms) 

The frontal component in the late time window between 700 and 900 ms was 

associated with an interaction between old/new and hemisphere as well as an 

interaction between encoding task, source memory and electrodes (see Figure 5.27). 

Simple effects analyses following up on the interaction between encoding task, 

source memory and electrode showed a difference in encoding task condition but 

only in hits- trials. At electrode pairs F1/F2, FC1/FC2, FC3/FC4, stimuli encoded 

under the same task condition elicited more negative ERPs than stimuli encoded 

across different tasks, all p < .049. The old/new effect was significant in both 

hemispheres, p < .001, but qualitative differences were shown. In the left 

hemisphere, new stimuli were associated more negative waveforms than old stimuli, 

whereas in right hemisphere old stimuli elicited more negative waveforms than new 

stimuli. This is illustrated in Figure 5.28a,b.  
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Figure 5.27. Experiment 3 (EEG): Grand average ERPs (N = 21), illustrating the 
interaction between source memory performance, encoding task condition and 
electrode site, measured over frontal electrode sites, between 700 – 900 ms. 

 

Parietal ( 700 – 900 ms) 

No statistically significant main effects or interactions were revealed for the 

parietal component between 700 and 900 ms post stimulus onset.  
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Figure 5.28. Experiment 3 (EEG): Grand average ERPs (N = 21) to high confidence 
correct old and new judgements during the test phase in a) the left fronto-central 
component, measured between 300 – 500 ms, averaged across electrode sites F1, F3, 
FC1 and FC3, b) the right fronto-central component averaged across electrode sites 
F2, F4, FC2 and FC4, c) the left parietal component, measured between 500 – 700 ms, 
averaged across electrode sites P1, P3, P5 and PO3, d) the right parietal component, 
averaged across electrode sites PP2, P4, P6 and PO4 and e) scalp topographies of the 
contrast old (high confidence hits) minus new (high confidence correct rejections). 
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5.3.2.3 Single-trial analyses (study phase, repetition effects) 

In order to replicate the results from Chapter 3 (section 3.3.1.2.2) and expand 

those findings to different encoding task conditions, the same mass-univariate ERP 

approach (Groppe et al., 2011a) was applied to identify and isolate the repetition 

effect as observed in the planned analyses. Therefore, presentation 1 and 

presentation 4 were submitted to a repeated-measures, two-tailed cluster-based 

permutation test. As for the other EEG dataset, 201 data points were measured 

between 200 and 1000 ms from a subset of 21 frontal and 21 parietal electrode sites, 

which resulted in 8442 comparisons with 24 t-score degrees of freedom. 2500 

permutations were performed. No reliable frontal/negative cluster could be 

identified. A parietal/positive cluster, i.e., a positivity increase in mean amplitudes 

from presentation 1 to 4, was identified at electrode sites CP1, CP2, CP3, CP4, CP5, 

P1, P2, P3, CPz and Pz between 448 and 712 ms post stimulus onset.   

 

Positivity enhancement across repetitions 

Mean amplitudes were extracted for each single trial. The aim of the first 

analysis was to replicate the finding that only the parietal repetition effect between 

presentations 1 and 2 was related to item-specific repetition. For each stimulus and 

each consecutive presentation pair (Presentation 1 and 2, Presentation 2 and 3, 

Presentation 3 and 4), positivity enhancement was calculated by subtracting the 

earlier from the later presentation. A control value for enhancement was computed 

by calculating the same differences except that the amplitude values from the trial 

occurring right before the actual stimulus repetition were used. Paired-samples t-tests 

were used to test whether stimulus-related repetition effects differed from the 

control. Positivity enhancement was found to be significantly larger than in the 

control condition between presentation 1 and 2 but only in the same task condition, 

t20 = 4.971, p < .001. Additionally, positivity enhancement in subsequent hits+ 

judgements, t20 = 3.017, p = .007, and in the same task condition, t20 = 5.559, p < 

.001, were found to be larger than the control enhancement values. Based on those 

findings, direct comparisons between the conditions (subsequent hits+ vs hits- trials, 

same vs different task) were carried out for the overall enhancement and the 

enhancement between presentation 1 and 2. For the contrast between hits+ and hits-, 

an overall enhancement effect indicated that hits+ were associated with more 
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increase than hits-, t20 = 2.150, p = .044. A similar trend was observed between 

presentation 1 and 2, t20 = 1.760, p = .094. The difference between same and 

different task condition indicated that the same task was associated with a larger 

increase than the different task condition, though this was only statistically 

significant between presentation 1 and 2, t20 = 2.506, p = .021, but not for the overall 

effect across all consecutive presentation pairs, t20 = 1.707, p = .103.  

 

Amplitude enhancement effects and implicit memory (RTs) 

To replicate the finding that item-specific positivity enhancement is related to 

decreases in RTs (section 3.3.1.2.2), the amplitude differences between consecutive 

presentation pairs calculated for the previous analysis were correlated across trials 

with differences in RTs between consecutive presentation pairs. The correlation 

coefficients obtained for each participant were then submitted to a one-sample t-test, 

which showed that the relationship between positivity enhancement and RT 

decreases across repetitions was statistically significant, t20 = 5.439, p < .001.  

 

Control analysis: LPC enhancement and repetition lag 

Due to methodological constraints in the present experimental paradigm, the 

same task condition was always associated with shorter repetition lags than the 

different encoding task condition. While this systematic bias cannot be entirely 

controlled for, correlations between amplitude enhancement and repetition lag were 

computed from the single-trial data to assess whether changes in mean amplitudes 

were associated with differences in repetition lag. For each participant, mean 

increase in LPC amplitudes between repetitions was correlated with repetition lag. 

The correlation coefficients were then submitted to a one-sample t-test. The 

correlations between LPC enhancement and repetition lag were not significantly 

different from zero, t1,20 = .424, p = .676. This result indicates that differences in 

repetition lag were not associated with differences in repetition enhancement as 

observed in the parietal cluster between 448 and 712 ms post stimulus onset.   

 

5.4 Discussion 

The present experiment investigated the effects of two different encoding 

task conditions on subsequent memory performance and repetition. Participants 
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repeatedly encoded items either in the same context, i.e., same encoding task 

instructions or in different contexts, i.e., different encoding task instructions. From 

theories regarding the mechanisms underlying different encoding strategies, 

differences between those two encoding task conditions were hypothesised. It was 

proposed that same task encoding would be associated with the reactivation of the 

same item and contextual cues across repetitions, leading to superior source memory 

for the encoding context. In the different task condition, however, subsequent source 

memory performance was expected to be lower than in the same task condition, 

because of those same reactivation processes leading to interference. Therefore, two 

different mechanisms were proposed to underlie encoding in the different task 

condition and these mechanisms would predict subsequent source memory. While 

behavioural data generally supported our predictions, the EEG data presented in this 

chapter only partly support the hypotheses regarding reactivation and multiple traces 

in the different encoding task condition. Those are more appropriately addressed in 

the following chapter, Chapter 6, as RSA is often used as a measure of reactivation. 

Finally, while the differences between encoding task conditions are interpreted as 

arising from repeatedly encoding stimuli under the same or different task 

instructions, one confounding factor is important to keep in mind. Due to 

methodological constraints in the present paradigm, stimuli repeated in the same task 

condition were associated with shorter repetition lags and were therefore repeated 

closer in time to each other than stimuli that were repeated in different task 

condition. A control analysis indicated that differences in repetition lag did not relate 

to differences in mean amplitude enhancement across repetitions.  

 

5.4.1 Behavioural results 

Most judgements during the recognition-source task led to hits- judgements, 

followed by hits+ judgements and the fewest responses resulted in misses. 

Furthermore, an interaction was shown between the three levels of memory 

performance and the encoding context condition. Encoding stimuli in the different 

context condition was associated with fewer hits+ judgements, more hits- 

judgements and fewer misses than encoding stimuli in the same context condition. 

The pattern of this interaction suggests that encoding items in different contexts may 

lead to superior item memory performance than repeatedly encoding items in the 
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same context; however, this comes at a decrement of additional details that can be 

remembered. This is in line with results from retroactive interference paradigms 

(Anderson & Neely, 1996; Hupbach et al., 2007; Kim et al., 2017), suggesting that 

items were more likely to be generalised across contexts at the cost of contextual 

source information. Interestingly, the different encoding task condition was not only 

associated with worse source memory as predicted by retroactive interference, it was 

also associated with better item memory, i.e., more hits- judgements and fewer 

misses than the same encoding task condition. This suggests that encoding stimuli in 

different contexts compared to mere repetition in the same context, strengthens item 

memory, which supports the encoding variability view (Bower, 1972; Hintzman, 

1986; Martin, 1968; Nadel & Moscovitch, 1997). During the study phase, RTs were 

found to index repetition priming by decreasing across multiple presentations. 

Moreover, RTs to stimuli encoded in the same task condition were faster than RTs to 

stimuli encoded in the different task condition, indicating shorter processing time in 

the same task condition than the different encoding task condition. The reverse effect 

was observed during the test phase. RTs to both, item and source memory, questions 

were revealed to be faster to stimuli encoded in the different task condition 

compared to stimuli encoded in the same task condition. Finally, RTs resulting in 

hits+ judgements were faster than those resulting in hits- judgements. The 

behavioural results provide support for the hypothesis that the encoding of stimuli in 

different contexts is associated with better item memory at the cost of contextual 

details. 

 

5.4.2 ERP results 

Mean amplitudes for an early frontal FN400-like component (300 – 500 ms), 

a parietal LPC-like component (500 – 700 ms), a late frontal component (700 – 900 

ms) and a later LPC-like component (700 – 900 ms) were extracted and analysed. 

Note that the LPC is commonly measured in 200 ms time windows within the 400 – 

900 ms range (see Rugg & Curran, 2007), therefore, both of the chosen time 

windows are likely to reflect an LPC. The later, and especially for a frontal 

component less typical time window, was chosen based on the ERP results presented 

in Chapter 3.3.1.2., as effects relating to explicit memory performance were found to 

occur somewhat later than in the predicted time windows, while repetition effects 



SECTION 2 – Experimental Chapters 

 

131 
 

appeared to occur earlier. ERP analyses at study revealed interactions between 

encoding task condition and presentation in all time windows and components. 

However, as will be discussed, any interpretations are tentative as the two encoding 

task conditions were also found to differ at presentation 1, suggesting the two 

repetition effects might not be directly comparable. In the later time window, LPC 

amplitudes were found to discriminate subsequent source memory performance but 

only at presentation 1 and only in the left hemisphere. During the test phase a right-

hemispheric FN400 old/new effect, a left-hemispheric LPC old/new effect and a late 

frontal old/new effect were revealed. Additionally, the LPC at test was found to 

discriminate old stimuli according to their associated encoding task condition (same 

or different task) and a trend was shown for LPC amplitudes to differ quantitatively 

for hits+ and hits- judgements. Finally, single-trial analyses revealed item-repetition 

effects in a parietal cluster between 448 – 712 ms post-stimulus onset between 

presentation 1 and 2 and only in the same task condition. Item-specific repetition 

enhancement of LPC amplitudes was higher for subsequent hits+ trials compared to 

hits- trials. Item-related repetition priming, as reflected in RT reductions, was 

associated with amplitude increases in positivity across presentations, replicating the 

results from section 3.3.1.2.2.  

 

Study phase – ERP analyses 

During the study phase, only one effect was related to subsequent source 

memory performance. In the LPC-like component, between 500 and 700 ms post 

stimulus onset, subsequent hits- judgements elicited more positive ERP waveforms 

than subsequent hits+ judgements but only at the first presentation and only in the 

left hemisphere. This is in line with quantitative differences relating to episodic 

recollection at test (reviewed in Friedman & Johnson, 2000; Rugg & Curran, 2007; 

Wilding & Ranganath, 2012) and has previously also been reported during the study 

phase in experiments investigating subsequent source memory (Groh-Bordin et al., 

2006; Yovel & Paller, 2004). The finding that this effect only occurred in the left 

hemisphere is consistent with reports of a late left parietal component related to 

old/new as well as recollection judgements (e.g., Rugg & Yonelinas, 2003). In 

Chapter 3, it was speculated that multiple repetitions during encoding might change 

the characteristics of the typically observed Dm effects, which is reflected in this 
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effect only occurring at the first presentation in the present investigation. However, 

despite overlaps in time window and electrode sites with well-established 

recollection effects at test, here, the direction of the effect indicated a qualitative 

difference from this recollection effect (e.g., Yovel & Paller, 2004). Unlike the 

typically reported LPC effect relating to episodic recollection, subsequent hits- 

judgements elicited more positive mean amplitudes than subsequent hits+ 

judgements in the present investigation. A similar effect, with the same direction, 

was reported in Chapter 3. Taken together, while LPC mean amplitudes at study and 

at test appear to discriminate source memory performance, the qualitative 

differences, as indexed by opposite directions of this effect at study and test, warrant 

further research into the ERP correlates of source memory encoding and retrieval. It 

remains to be determined to which extent LPC source memory effects overlap 

between study and test phase.  

In addition to the subsequent source memory effect observed over parietal 

electrode sites from 500 – 700 ms, an interaction between encoding context and 

repetition was reported in both components and time windows. LPC-like mean 

amplitudes between 500 – 700 ms post stimulus onset were shown to increase in 

positivity across repetitions in both encoding conditions. Here, the interaction 

reflected a much more gradual increase in the different encoding task condition, with 

only presentations 1 and 4 differing statistically significantly from each other. The 

same encoding task condition was associated with a strong novelty effect between 

presentations 1 and 2 and only small, non-significant increases in positivity 

thereafter. Analogously, for the early frontal FN400-like component repeated 

encoding in the same context was associated with a gradual increase in negativity. 

However, the repetition pattern observed in the different task condition was 

somewhat surprising in that presentations 1 and 3 were associated with more 

negative mean amplitudes than presentation 2 and 4. Moreover, all of the interactions 

between encoding context and repetition were reported along with a task difference 

at presentation 1. This finding signals that the repetition effects associated with the 

two encoding task conditions may not be directly comparable. The differences in 

repetition effects between encoding task conditions may be partly explained by 

differences in repetition lag between the two conditions. However, that does not 

account for the task difference at presentation 1 and would affect the repetitions but 
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not the first presentation of a stimulus. Gradual increases in parietal positivity and 

frontal negativity have been reported in previous studies (Renoult et al., 2012; Van 

Strien et al., 2005) including the present thesis (see Chapter 3.3.2.1). However, the 

pattern relating to repetitions in the different context conditions, observed in an 

FN400-like component, may indicate an effect of different task instructions. 

Although all encoding task instructions required some form of semantic elaboration, 

the gender task, for example, may have involved less elaboration than judging 

whether a famous person was currently active in show business or not. ERP 

differences have been observed between semantic and non-semantic tasks (Friedman 

et al., 1996; Otten & Rugg, 2001a; Paller & Kutas, 1992; Paller et al., 1987; Sanquist 

et al., 1980), which likely extends to different levels of depth of semantic elaboration 

required by the encoding task (Craik & Lockhart, 1972). The pseudo-randomisation 

applied to the task order in the present experimental design presented tasks either in 

the order 1, 2, 3, 4 or 3, 4, 1, 2 (1 = gender task, 2 = show business task, 3 = British 

task, 4 = like task). In the same task condition, stimuli were repeated in either one of 

the four tasks, thus averaging tasks to investigate repetition effects would likely 

diminish any possible effects relating to the different task instructions. For the 

different task condition, however, the present results observed in the FN400 

component would suggest task-related differences that distinguish the gender and the 

British task from the show business and the like task. Notably, such potential effects 

are not reflected in LPC mean amplitudes at study. Although interactions between 

encoding task condition and repetition were predicted based on behavioural 

hypotheses, there was no indication of a difference between subsequent hits+ and 

hits- trials in the different task condition, as reflected by ERP mean amplitudes. Due 

to the methodological confounds discussed here, how repeated stimulus encoding in 

different contexts affects ERP mean amplitudes is not entirely clear. However, these 

results encourage further research into how different levels of semantic elaboration 

potentially affect mean amplitudes. Using a paradigm with well-controlled semantic 

encoding tasks, presenting stimuli repeatedly in same and different contexts, with 

same repetition lags in both conditions, will lead to further, more interpretable 

insights into the ERP correlates of encoding variability.  
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Test phase – ERP analyses 

During the test phase, frontal and parietal old/new effects were reported for 

the early and later time window. LPC mean amplitudes were found to differentiate 

stimuli that were initially encoded in the same context from those encoded in 

different contexts. Additionally, a trend was observed for LPC amplitudes to be more 

positive for hits+ than hits- judgements. In the traditional FN400 time window, an 

old/new effect was observed in the right hemisphere, with old stimuli eliciting more 

negative waveforms than new stimuli. For the LPC, measured between 500 and 700 

ms post stimulus onset, left-hemispheric mean amplitudes to old stimuli were found 

to be more positive than to correct rejections. Both these results are in line with a 

large body of previous research reporting an early right frontal and a late left parietal 

old/new effect (reviewed in Friedman & Johnson, 2000; Paller & Wagner, 2002; 

Voss & Paller, 2008b, 2017; Wagner et al., 1999; Wilding & Ranganath, 2012). 

More surprisingly, an interaction between old/new and hemisphere was observed in 

the frontal component during the later time window, between 700 – 900 ms. This 

interaction reflected a qualitative difference in the old/new effect between left and 

right hemisphere. Larger negative deflections in the left hemisphere were associated 

with high confidence correct rejections (i.e., new stimuli), while larger negative 

deflections in the right hemisphere were elicited by stimuli correctly judged as old 

with high confidence. Generally, FN400 amplitudes between 300 – 500 ms have 

been shown to be more negative-going for correct rejections compared to hits 

(Addante, Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008; Mollison 

& Curran, 2012; Wilding, 2000), which is in line with the waveforms observed over 

left-hemispheric electrode sites, although this old/new effect was not statistically 

significant in the early time window. For a later frontal ERP (around 800 – 1500 

ms), mean amplitudes have been reported to be more negative to correct rejections 

than hits (Cansino & Trejo-Morales, 2008; Wilding, 1999; Wilding & Rugg, 1996, 

1997), supporting the presence of a later frontal component distinguishing old and 

new stimuli. This is consistent with the patterns observed over left frontal electrode 

sites. However, the nature of this interaction between old/new and hemisphere 

remains unexplained. Because of those qualitative differences between the 

hemispheres, it may be suggested that different neural processes contribute to the 

old/new effect observed in left and right hemisphere. 
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The LPC at test has previously been associated with episodic recollection 

(e.g., Friedman & Johnson, 2000; Rugg & Curran, 2007). Similar to previous studies 

(Addante, Ranganath, & Yonelinas, 2012; Cansino & Trejo-Morales, 2008; Mollison 

& Curran, 2012, experiment 1), the present investigation observed LPC amplitudes 

to hits+ judgements to be more positive-going than to hits- judgements (although this 

effect was only a trend and did not reach statistical significance). In addition to the 

LPC’s role in recollection, it has also been reported to reflect reinstatement of 

information from the study phase during recollection (Johnson et al., 2008). 

Therefore, LPC amplitudes were hypothesised to be sensitive to the two different 

encoding task conditions. In the present experiment, positive parietal deflections, 

measured between 500 to 700 ms post stimulus onset, were observed to be larger for 

stimuli, which were initially encoded across different contexts compared to stimuli, 

which were encoded repeatedly in the same context. While such an effect may 

indicate the reinstatement of processes or information relating to the study phase, it 

is noteworthy that the main effect of encoding task, measured at test, did not 

interaction with source memory performance. In Chapter 3, LPC amplitudes at test 

were shown to differ based on the modality stimuli were encoded in. However, due 

to low hits- frequencies, it was not possible to look at an interaction between source 

memory performance and encoding modality at test. Instead, only recollected, i.e., 

hits+ judgements, were included in the analysis. Both these findings provide support 

for LPC amplitudes to reflect distinct information from the encoding phase, but it is 

not clear yet, whether those differences index reinstatement. However, previous 

investigations of reinstatement have suggested that recollection may not be necessary 

for reinstatement, as reinstatement processes were also observed during familiarity 

judgements (e.g., Johnson et al., 2009). Another interesting aspect of this result was 

that stimuli encoded in the different task condition elicited larger LPC amplitudes 

than those repeatedly encoded in the same context. LPC amplitudes have previously 

been suggested to index the amount of available episodic details, as it was shown to 

reflect the number of correct source judgements in a graded fashion (Wilding, 2000). 

Therefore, the LPC difference between the two encoding task conditions, as 

observed in the present experiment, may reflect the larger amount of retrieval cues, 

and thereby associated information, in the different encoding task condition 

compared to the same task condition.  
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Exploratory single-trial analyses (repetition effects) 

Single-trial analyses were carried out on data from the study phase, in order 

to replicate the results from Chapter 3. The only reliable repetition effect that could 

be identified occurred in a parietal electrode cluster, showing an increase in 

positivity across presentations between around 450 to 700 ms post stimulus onset. 

The absence of a reliable repetition effect at frontal electrode sites is also reflected in 

the unexpected patterns in ERP results. Single-trial mean amplitudes were extracted 

in this parietal cluster and repetition-related amplitude enhancements were calculated 

for each consecutive presentation pair of each stimulus. As in Chapter 3, a control 

enhancement value was computed by calculating the repetition enhancement for each 

stimulus but this time using the trial that occurred immediately before the item 

repetition. When comparing item-specific and control enhancement values, it was 

found that only the difference between first and second presentation over parietal 

electrode sites was related to stimulus-specific repetition. However, this was only 

found in the same task condition and did not extend to the different encoding task 

condition. This generally indicates that repetition effects may occur independently of 

encoding modality, as shown in Chapter 3, but are dependant on encoding context 

(same vs different). Moreover, overall (i.e., averaged over all presentation pairs) 

positivity enhancement was shown to differ from the control enhancement and 

overall enhancement in subsequent hits+ judgements was found to differ from the 

control value. This indicates that positivity enhancement in the same task condition 

and positivity enhancement in subsequent hits+ judgements indexed item-specific 

repetition. These results are partly in line with the results from Chapter 3, i.e., item-

specific repetition occurred between presentations 1 and 2, when participants 

repeatedly performed the same task. However, it further extends those results to all 

presentation pairs in the same encoding task condition and in subsequent hits+ 

judgements. One possibility for these discrepancies is that the repetition effect in 

Chapter 3 occurred earlier than the subsequent source memory effect, whereas in the 

present experiment, the timing of repetition and explicit memory effects overlap 

more. These results encouraged direct comparisons of subsequent source memory 

performance as well as the two encoding task conditions. Those comparisons showed 

that item-specific positivity enhancement was higher for the same than the different 
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encoding task condition between presentations 1 and 2. Moreover, subsequent hits+ 

judgements were overall found to be associated with larger item-specific positivity 

enhancements across this parietal cluster than subsequent hits- judgements. Taken 

together, these results suggest that single-trial positivity enhancement is only related 

to item-repetition in the same encoding task condition, providing further support that 

the neural mechanisms underlying same and different task encoding differ. 

Moreover, subsequent source memory performance could be predicted based on 

single-trial repetition enhancement occurring in a similar time window and electrode 

sites as the LPC, typically measured at test. This results is somewhat reminiscent of 

previous ERP research, showing that a repetition-related increase in positivity over 

parietal electrode sites further correlated with subsequent memory performance 

(Griffin et al., 2013; Groh-Bordin et al., 2007; Olichney et al., 2000). The authors 

suggested this increase to index increases in memory strength (Groh-Bordin et al., 

2006; Van Strien et al., 2005), which is consistent with the proposed behavioural 

benefits of repeated encoding (e.g., Crowder, 1976; Glenberg et al., 1977; Opitz, 

2010) and the LPC’s association with episodic memory.  Additionally, item-specific 

amplitude enhancements across repetitions were found to be related to decreases in 

RTs across item-repetitions, as demonstrated in Chapter 3 and previous fMRI 

research (van den Honert et al., 2016; Ward et al., 2013).  

 

Overall, the two encoding task conditions were associated with differences in 

memory performance as well as with distinct ERP correlates. The behavioural data 

provides strong support for the hypothesis that repeated encoding across different 

contexts improves item memory at the cost of context memory. ERP analyses 

revealed distinct repetition effects for same and different task encoding. Although 

patterns for the FN400 were less clear, LPC amplitudes were shown to be sensitive 

to repetition in both encoding task conditions. LPC waveforms to different task 

encoding reflected a more gradual increase in mean amplitudes, while the repetitions 

in the same task were particularly sensitive to a novelty effect between presentation 

1 and 2. Furthermore, item-specific parietal repetition enhancement effects were 

found to only be reliable in the same encoding task condition. Interestingly, these 

item-specific repetition-related increases were also shown to predict subsequent 

source memory in the time window and electrode sites typically associated with an 
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LPC when measured at test. Finally, further evidence was provided for the LPC at 

test to be modulated by information from the study phase, possibly reflecting 

reinstatement effects. 
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Chapter 6 – Encoding context, repetition and memory (fMRI) 

 

6.1 Introduction 

The present fMRI experiment is concerned with similar questions as the EEG 

experiment presented in Chapter 5. From behavioural theories and data, it was 

hypothesised that repeated stimulus encoding in same and different context encoding 

conditions are associated with dissociable underlying mechanisms. It was proposed 

that repeatedly encoding a stimulus in the same context was associated with 

reactivation of the same item and context, thereby strengthening the memory. This 

proposal is largely in line with the reactivation view (Benjamin & Tullis, 2010; 

Thios & D’Agostino, 1976) and a large body of literature corroborating the notion 

that neural reactivation is associated with superior subsequent memory performance 

(e.g., Levy & Wagner, 2013; Staresina, Alink, Kriegeskorte, & Henson, 2013; van 

den Honert et al., 2016; Xue et al., 2010). However, comparatively little is known 

about the mechanisms supporting memory formation when stimuli are repeatedly 

encoded in different contexts. The encoding variability view and multiple trace 

theory (Hintzman, 1986; Hintzman & Block, 1971; Nadel & Moscovitch, 1997) 

suggest that item memory is strengthened by creating unique traces for each stimulus 

presentation, leading to a larger variety in retrieval cues. Retroactive interference 

paradigms have generally shown that source memory is worsened when stimuli are 

repeatedly presented in different contexts (Anderson & Neely, 1996; Hupbach et al., 

2007; Kim et al., 2017; McGovern, 1964). However, that sheds little light on 

mechanisms involved when the different contexts are successfully encoded. 

Therefore, it was predicted that different neural mechanisms underlie memory 

encoding in a different encoding task condition. It was suggested that either 

reactivation occurs, which is associated with worse context memory, or that multiple 

traces are created facilitating superior context memory. Subsequent source memory 

performance can then be predicted based on the cognitive and neural operations 

involved during different context encoding. Questions regarding the underlying 

degree of reactivation can be directly assessed by using RSA to compute pattern 

similarity as an index of reactivation.  
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Mass-univariate fMRI investigations 

Similar to ERP research, fMRI research has established dissociable correlates 

of semantic and non-semantic encoding (e.g., Fletcher et al., 2003; Otten & Rugg, 

2001b). In the study by Fletcher and colleagues (2003), semantic encoding, relative 

to non-semantic encoding, was shown to be associated with greater mean activation 

in left lateral PFC as well as left MTL. Non-semantic encoding, on the other hand, 

was associated with greater activity in right medial PFC. Another experiment 

reported non-semantic, successful encoding during a syllable judgement task to be 

associated with higher activations in bilateral intraparietal sulcus and fusiform gyrus 

as well as right PFC and left occipital gyrus (Otten & Rugg, 2001b). These examples 

illustrate that activation predicting subsequent memory performance is further 

influenced by the encoding task. More specifically, mean activation is influenced by 

whether a semantic or a non-semantic encoding task is employed, as signaled by 

activation in different brain networks predicting later memory. These findings have 

also been extended to subsequent source memory contrasts, with task-independent 

subsequent source memory effects in ventral extrastriate visual cortex while task-

dependent effects showed a double-dissociation within posterior regions (Park, 

Uncapher, & Rugg, 2008). Namely, the semantic animacy task was associated with 

subsequent source memory effects in left middle occipital and fusiform gyri, left 

cuneus and right superior temporal gyrus. The non-semantic syllable judgement task, 

on the other hand, was found to show subsequent source memory effect in right 

inferior occipital and temporal gyri (Park et al., 2008). However, rather than 

comparing two different classes of encoding tasks, to the author’s knowledge, no 

univariate fMRI investigations have examined the effects of repeatedly encoding 

stimuli in the same or different semantic encoding tasks. The paucity of such 

research may partly be explained by the notion that questions regarding reactivation 

may be more appropriately assessed by investigating distributed neural patterns, i.e., 

employing multivariate approaches, rather than examinations of mean activation (see 

Rissman & Wagner, 2012). However, given the relative novelty of the present 

experimental paradigm, differences in mean activation between the two encoding 

task conditions as well as underlying repetition-related changes might provide 

additional insights into same and different context encoding. The EEG results 

presented in chapter 5 indicated interactions between encoding condition and 
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repetition, which was interpreted as reflecting distinct mechanisms underlying 

stimulus encoding in the two conditions. From the EEG and fMRI results relating to 

encoding modality (chapter 3 and 4), it was speculated that EEG repetition effects 

are more likely to reflect repetition suppression than enhancement, because, like 

repetition suppression, they did not predict subsequent source memory performance. 

However, the EEG repetition effects in chapter 5 did predict subsequent source 

memory performance. LPC amplitudes enhancement across repetitions was stronger 

for subsequent hits+ than hits- judgements. Therefore, it may be hypothesised that 

fMRI repetition suppression predicts subsequent source memory outcome in this 

particular design.  

 

Representation Similarity Analysis 

Evidence from studies investigating pattern similarity across repeated 

encoding in different contexts has resulted in mixed support of the reactivation view 

and the multiple trace theory, with the majority of studies, however, demonstrating 

evidence for reactivation. For example, it was demonstrated that pattern similarity 

for items, which were repeated in different contexts, correlated with subsequent 

recognition memory performance (Lohnas & Davachi, 2017). Higher similarity in 

right dorsolateral PFC, right fusiform gyrus, right anterior hippocampus and 

posterior medial cortex was associated with higher hit rates during the test phase. 

Moreover, for subsequently recognised stimuli, repeated in the different task 

condition, pattern similarity in these regions was higher compared to stimuli, which 

were repeated in a same task condition. This finding also extended to bilateral 

perirhinal regions, although there was no correlation with hit rates observed here. 

Importantly, while these results provide valuable insights into same and different 

task encoding, the authors did not contrast hits and misses or different states of 

remembering, i.e., source memory outcome or remembering and knowing. In a 

similar experiment, participants encoded items in different encoding contexts (Do et 

al., 2016). Items were sorted according to subsequent memory performance, which 

corresponded to correct source, when participants were able to recollect both tasks 

that were performed during encoding, partially forgotten, i.e., participants 

remembered studying the item but could only recollect one task, and completely 

forgotten, when items were judged as new. Subsequent correct source judgements 
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were then compared to the other two memory conditions. Higher pattern similarity 

was reported for subsequent recollection in left inferior parietal lobule, bilateral 

dorsolateral occipital cortex and right fusiform gyrus. The authors suggested that 

those findings reflected reactivation of memory representations that was not 

influenced by the context variability between the encoding episodes. Contrary to 

predictions based on the reactivation hypothesis, a study employing a retroactive 

interference paradigm reported higher pattern similarity between item repetitions in 

lateral occipital cortex to be associated with worse source memory for the task the 

items were encoded in (Kim et al., 2017). It was suggested that reactivation of items 

occurring in different contexts, as reflected in higher pattern similarity in lateral 

occipital cortex, impairs subsequent context memory. Although not discussed by the 

authors, the results observed in the lateral occipital cortex may suggest that another 

process, such as multiple traces for multiple encoding episodes, is related to 

subsequent correct context memory. Taken together, these results indicated that 

different task encoding might be associated with reactivation. However, none of the 

previous studies has directly compared subsequent hits+ and hits- judgements within 

a same task condition and a different task condition. 

Moreover, to the author’s knowledge, no previous research has addressed 

differences in same and different task encoding in the context of encoding-retrieval 

similarity, i.e., reinstatement. Univariate investigations have shown that successful 

recollection of items that were initially studied in different encoding tasks relied on 

the core recollection network irrespective of the encoding that was previously 

performed (Johnson, Suzuki, & Rugg, 2013). In addition to that, task-dependent 

reinstatement effects were observed outside of this recollection network and were 

shown to overlap with task-dependent mean activation measured during the study 

phase. These results suggest that both, content-independent recollection and content-

specific reinstatement operate to facilitate successful episodic retrieval (Johnson et 

al., 2013). However, as previously emphasised, measures of mean activation are less 

suitable than RSA for investigations of reactivation and reinstatement. Showing 

overlaps in mean activation between study and test does not extend to idiosyncratic 

patterns representing single items and is typically regarded a less sensitive measure 

compared to similarity patterns (Jimura & Poldrack, 2012).  
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The present fMRI experiment employed the same experimental design as the 

EEG experiment presented in Chapter 5, with slight modifications due to practical 

constraints, including a slightly lower number of stimuli included and omitting the 

distractor task. A subsequent memory paradigm was used with four spaced 

repetitions of each stimulus, followed by a surprise source-recognition task. 

Participants studied each stimulus four times. Stimuli were studied in one of two 

encoding context conditions: repeatedly performing the same encoding task (referred 

to in-text as same context or same encoding task condition) or performing a different 

encoding task at each presentation of the stimulus (referred to in-text as different 

context or different encoding task condition). At test, participants made item memory 

judgements (old/new), followed by source memory judgements relating to encoding 

context (‘which encoding task?’). The present experimental procedure was primarily 

designed to address differences in similarity patterns relating source memory effects 

when stimuli are either repeated in the same context or repeated in differing contexts. 

Behavioural results are expected to replicate the findings presented in Chapter 5, i.e., 

same relative to different context encoding is hypothesised to be associated with 

more hits+ judgements but fewer hits- judgements (more item misses). Due to the 

relative novelty of the present experimental design, mass-univariate whole-brain 

analyses are performed investigating mean activation in the two encoding task 

conditions. Additionally, the univariate analyses are concerned with repetition-

related changes in same and different context encoding and whether these changes 

predict subsequent source memory performance. RSA is predicted to reveal distinct 

source memory effects for the two encoding task conditions. Based on the theoretical 

hypothesis proposed in Chapter 5 and reiterated here, an interaction between 

encoding task condition and subsequent source memory would be expected. In the 

same encoding task condition, the degree of reactivation is predicted to be higher for 

subsequent hits+ than hits- judgements. In the different encoding task condition, on 

the other hand, higher levels of reactivation are hypothesised to imply more 

generalisation across contexts and therefore be associated with subsequent hits- 

judgements. Analogous patterns of results are predicted for ERS patterns, in that the 

retrieval of a single context relies on reactivation/reinstatement of study phase 

information, whereas the retrieval of multiple contexts relies on more complex 

reinstatement processes. Due to conflicting results reported in the very few studies 
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investigating questions regarding same and different context encoding, no region-

specific hypotheses were made. Instead, ROI analyses were conducted in previously 

selected regions (see Table 6.19), followed by whole-brain searchlight analyses. 

 

6.2 Method 

6.2.1 Participants 

Twenty British healthy adult volunteers (12 females) were recruited. 

Participants were aged 18 to 36 years old (Mage = 24 ±6), with an average of 16 ±3 

years of education. Data of one participant were excluded due to technical faults 

during scanning and data from another two participants were excluded due to 

excessive movement during the scan, resulting in N = 17 (10 females).  

 

6.2.2 Materials 

Stimuli were a subset of 240 stimuli chosen from the 288 names of famous 

people (e.g., Keith Richards, Michelle Obama) used in the EEG version of this 

experiment. Famous names were matched across all tasks and conditions in 

accordance with the four encoding tasks (gender, currently active in show business 

or not, British or not; see Table 6.15). During the study phase, half of the stimuli 

were repeatedly presented as written words in white Courier New 36 font, in the 

centre of a black background.  

 

Table 6.15. Experiment 4 (fMRI): Number of stimuli per condition, referring to 
males/females, currently active in show business/not active, British/not British in the 
two encoding conditions (same/different context) and across study and test phase. 
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6.2.3 Task & procedure 

In the study phase, participants performed four different categorisation tasks. 

At the beginning of each block, they were presented with a question they had to 

answer about the famous names. The four questions were “Is this person female?”, 

“Is this person currently active in show business?”, “Is this person British?” and “Do 

you like this person?”. Task order was pseudo-randomised across participants. 

Participants were encouraged to guess the answer in cases where they were not 

familiar with the famous name or when they did not know the answer. Participants 

were instructed to press one of two buttons corresponding to whether their answer to 

the question was “yes” or “no”. During the encoding phase, each stimulus was 

presented four times. Half of the stimuli were presented once in each of the four 

tasks (different context), the other half was presented repeatedly within only one of 

the four encoding tasks (same context). With four repetitions per stimulus this 

resulted in a total of 480 encoding trials in the fMRI experiment. The average inter-

trial interval (ITI) was 4100 ms. The experimental procedure is illustrated in Figure 

6.29. At the end of the encoding phase, participants had a short break during which 

they could rest their eyes.  

During the test phase, participants performed an unexpected recognition-

source memory test. In this task, all old stimuli from the encoding phase were 

presented along with the remaining set of new stimuli. Both lists were matched in 

terms of gender, whether famous people were currently active in show business or 

not and whether they were British or not. All stimuli were presented as white written 

words in Courier New 36 font on black background. Participants gave an old/new 

response depending on whether or not they thought the name had been presented 

during the encoding stage. Participants were presented with a name and instructed to 

indicate whether this name had been presented in any of the previous tasks by 

pressing one of four buttons on the response pad corresponding to the following 

responses: “definitely old”, “perhaps old”, “perhaps new”, and “definitely new”. 

“Old” responses were followed by a source memory question asking participants in 

which task the famous name had previously been categorised with the response 

options “all four tasks”, “gender task”, “show business task”, “British task”, “like 

task” and “I don’t know”. Stimuli were presented for 1500 ms, followed by a 

fixation cross for 1000 ms. Depending on the participants’ old/new response, either a 
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fixation cross or the source memory question appeared for 1500 ms. Another fixation 

cross of random duration (800 – 1200 ms, average ITI= 5000 ms) then indicated the 

beginning of the next trial. 

Once participants had completed the recognition task, they filled in a 

personal memories questionnaire. As for the EEG version of this experimental 

design, data form this questionnaire were not included in any subsequent analyses, as 

the relevance of those data went beyond the scope of the present research. 

 

 

Figure 6.29. Experiment 4 (fMRI): a) The experimental paradigm with four 
encoding presentations of each stimulus during the study phase; participants encoded 
half of the stimuli in a different task condition, i.e., performing a different task at 
each presentation of the stimulus, the other half were encoded in a same task 
condition, i.e., participants repeatedly performed the same semantic encoding task; in 
a test phase, participants made old/new judgements followed by source judgements; 
b) trial timings. 

 

6.3 Results 

The repeated-measures design included three factors of interest at study and 

two at test: subsequent memory (hits+, hits-; behavioural analyses also include 

misses), repetition (presentation 1,2,3,4; only at study) and encoding context 

(different, same). Hits+ trials included all correct item and correct source memory 

judgements irrespective of confidence ratings. Hits- trials were characterised as 
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old/new hits followed by an incorrect source memory response or no response, 

indicating the source could not be retrieved. Participants’ responses to the item 

memory question indicated that they were more often highly confident of their 

response (M%HC = 95 ±5) than responding with low confidence (M%LC = 5 ±5), t16 = 

38.392, p < .001. Therefore, confidence judgements were not included in any of the 

analyses. 

 

 

6.3.1 Behavioural results 

6.3.1.1 Reaction times at study 

RTs during the encoding phase were analysed in a 3 x 2 x 4 repeated-

measures ANOVA with the factors memory performance (hits+, hits-, misses), 

encoding condition (same task, different task) and presentation (1, 2, 3, 4). No 

differences in RTs were found that related to subsequent memory performance. The 

ANOVA revealed main effects of encoding context, F1,13 = 44.333, p < .001, and 

presentation, F3,39 = 4.348, p = .010. Follow-up analyses revealed that RTs were 

faster to stimuli encoded in the same context compared to those encoded in different 

contexts (see Figure 6.30). RTs were also found to overall decrease across 

presentations, but this difference was only statistically significant between 

presentation 1 and 3 (p = .049). Although the interaction between presentation and 

encoding context was statistically non-significant after Greenhouse-Geisser 

correction for sphericity violations, p = .062, the reaction times displayed in Figure 

6.30 indicate that repetition priming only occurred in the same encoding task 

condition.  
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Figure 6.30. Reaction times (in seconds) in experiment 4 (fMRI) for all four 
presentations during the study phase, separately for subsequent memory 
performance and encoding contexts. Error bars denote standard error. 

 

6.3.1.2 Discriminability analysis 

Discriminability scores were calculated and normalised probabilities of 

overall hits and false alarms were compared in a paired-samples t-test. The t-test 

showed that participants’ performance in the recognition memory task was above 

chance, t16 = 17.180, p < .001. Mean and standard deviations of d’ scores and 

percentages of hits and false alarms are displayed in Table 6.16. Those individual d’ 

scores indicate that recognition memory performance was higher in the different 

encoding task condition. 

 

Table 6.16. Experiment 4 (fMRI): The mean d’ scores and mean % of Hits and 
False Alarms with standard deviations (in brackets) for overall memory 
performance and across the three modality conditions, picture only, word only 
and picture&word. 
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6.3.1.3 Behavioural performance at test 

Frequencies of hits+, hits- and misses (memory performance) were analysed 

in terms of encoding task condition (same, different) in a 3 x 2 repeated-measures 

ANOVA. Descriptive statistics are displayed in Figure 6.31. The ANOVA revealed a 

main effect of memory, F2,32 = 33.543, p < .001 and an interaction between memory 

performance and encoding context, F2,32 = 3.602, p = .039. A post-hoc test revealed 

that all three levels of memory performance differed from each other in terms of 

frequencies, all p < .015. The majority of responses resulted in hits- judgements 

(correct item memory, incorrect source memory), fewer responses resulted in hits+ 

judgements (correct item and correct source memory) and the least responses 

resulted in misses. Following up on the interaction between memory performance 

and encoding context showed that encoding under the different encoding task 

condition was associated with more hits- judgements than the same encoding task 

condition, p = .038. The same encoding task condition was associated with more 

misses than the different encoding task condition, p < .001.  

 
Figure 6.31. The mean percentages and standard error of the three levels of 
memory performance (hits+, hits-, misses) and encoding context (different, same).  

 

6.3.1.4 Reaction times at test 

RTs measures during the test phase were analysed in two separate repeated-

measures ANOVAs. First, RTs to the item memory (old/new) task were examined in 

a 3 x 2 ANOVA with the factors memory performance and encoding task condition. 

In a second analysis, RTs to the source memory task were analysed. In this 2 x 2 
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repeated-measures ANOVA, the factors were memory performance (only two levels 

because misses were not followed up with a source memory question) and encoding 

task condition. 

The ANOVA analysing item memory RTs revealed no significant main 

effects or interactions. However, to follow-up the RT results from the EEG 

experiment presented in Chapter 5, two trends were observed for RTs to be faster to 

stimuli encoded in the different task condition than the same task condition, p = .077, 

and for RTs to hits+ judgements to be faster than to hits- judgements, p = .094. 

The ANOVA analysing RTs to the source memory question revealed a main 

effect of source memory performance, F1,16 = 18.484, p = .001. Correct source 

responses were given faster than incorrect source responses. Additionally, a trend 

was revealed for RTs to stimuli encoded in the same task condition to be faster than 

RTs to stimuli encoded in the different task condition, F1,16 = 4.142, p = .059. 

 

6.3.2 fMRI mass-univariate analysis 

One GLM was constructed with 16 regressors of interest modelling the 

effects of source memory (hits+, hits-), presentation (1,2,3,4) and encoding context 

(different, same) during the study phase. A nuisance regressor modelled all trials, 

which were not included in the analyses, i.e., subsequent misses. Two sets of whole-

brain investigations were carried out. The first analysis was concerned with effects 

of encoding task condition irrespective of repetition and subsequent source memory 

performance. The second set of analyses examined repetition-related changes in 

mean activation for the two encoding task conditions separately and whether such 

changes interacted with subsequent source memory performance. 

 

6.3.2.1 Effects of encoding task condition 

Because of the novelty of the present experimental design, differences 

between the same and different context encoding conditions during the study phase 

were examined irrespective of subsequent source memory performance and 

repetition in a first instance. Two whole-brain t-contrasts modelled these differences 

to identify brain regions in which mean activation was either higher for the same 

encoding task condition than the different encoding task condition or vice versa.  
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The results form those two t-contrasts are presented in Table 6.17. Encoding 

stimuli repeatedly in the same context compared to different contexts was associated 

with higher mean activation in bilateral inferior parietal gyri and right precueneus. 

Additional trends in the same direction were observed in right inferior and middle 

frontal gyri and the middle temporal gyrus, however, these clusters did not survive 

FWE-corrections. Different context encoding, on the other hand, was found to be 

associated with higher levels of mean activation in left frontal regions, including 

inferior, middle and orbito-frontal gyri, and bilateral precuneus compared to same 

context encoding. Additional trends in the same direction were reported in the right 

angular gyrus and left medial temporal lobe, including the fusiform gyrus extending 

into the hippocampus, but did not survive multiple comparison corrections. 

 

 

Table 6.17. Mass-univariate study phase analyses (experiment 4, fMRI), contrasting 
the two encoding task conditions, same and different context encoding, averaged 
over subsequent hits+ and hits- judgements and over presentations. 

 
Note. L = left, R = right, B = bilateral, BA = approximate Brodmann Area. MNI coordinates 
refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 
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6.3.2.2 Study phase repetition effects 

In addition to effects of encoding task condition, the present mass-univariate 

analyses were concerned with repetition suppression and enhancement effects in the 

two encoding task conditions and how these related to subsequent source memory 

performance. To investigate these effects, eight whole-brain t-contrasts were created 

at a 2nd-level analysis. Similar to Chapter 4, repetition was modelled as a linear 

change (Grill-Spector & Malach, 2001; Henson et al., 2000; Sayres & Grill-Spector, 

2006; Suzuki et al., 2011; Vannini et al., 2013). Four t-contrasts assessed whether 

repetition suppression and/or enhancement effects were observed in either of the two 

encoding task conditions. Further t-contrasts modelled differences in repetition-

related changes due to subsequent source memory performance. 

As outlined in Table 6.18, the majority of repetition-related effects, i.e., 

repetition suppression and enhancement, were observed in the same encoding task 

condition. Repetition enhancement effects were found in the left hemisphere in 

superior and inferior parietal gyri and the precuneus along with trends in the 

postcentral and middle temporal gyri. Repetition suppression effects relating to same 

context encoding were reported in the right pars opercularis division of the inferior 

frontal gyrus, left insula and right cuneus. Additional trends of repetition suppression 

were observed in bilateral pars triangularis divisions of the inferior frontal gyrus, 

bilateral fusiform gyri and left cingulate gyrus. Moreover, within the same encoding 

task condition, subsequent hits+ compared to hits- judgements were associated with 

more repetition enhancement in left postcentral and middle temporal gyri and right 

precueneus/posterior cingulate, though the latter effect was only a trend that did not 

survive corrections for multiple comparisons. On the other hand, subsequent hits+ 

compared to hits- judgements within same context encoding were also associated 

with higher repetition suppression in the left inferior frontal gyrus and a similar trend 

in the right central sulcus. Repetition-related changes in the different encoding task 

condition did not survive FWE-corrections, however, a number of trends were 

observed. Stimuli encoded in different contexts were associated with decreases in 

mean activation, i.e., repetition suppression, in left insula, right thalamus, left 

postcentral and inferior occipital gyri and in the posterior hippocampus. While no 

main effects of repetition enhancement were found in the different context encoding 
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condition, a trend indicated repetition enhancement to be higher for subsequent hits+ 

compared to hits- judgements in the left mid cingulate cortex.  

 

Table 6.18. Mass-univariate results from experiment 4 (fMRI) illustrating regions 
that show encoding-context specific repetitions effects and interactions between 
repetition-related changes and subsequent source memory performance, measured 
during the study phase. 

 
Note. L = left, R = right, B = bilateral, BA = approximate Brodmann Area. MNI 
coordinates refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 
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6.3.3 Representational similarity analysis  

Pattern similarity was calculated for encoding similarity across repeated 

study episodes (encoding similarity) and for encoding-retrieval similarity (ERS). In 

Chapter 4, encoding similarity was computed only between consecutive presentation 

pairs, because of the alternating nature of the picture&word modality condition. In 

the present investigation, encoding similarity was computed between all possible 

encoding presentation pairs, i.e., Presentations 1 & 2, Presentations 1 & 3, 

Presentations 1 & 4, Presentations 2 & 3, Presentations 2 & 4 and Presentations 3 & 

4 (see Figure 6.32). ERS patterns were calculated between each encoding 

presentation and the retrieval presentation. This resulted in six encoding similarity 

indices that were averaged and four ERS indices, which were also averaged. 

 

 
Figure 6.32. Encoding similarity and encoding-retrieval similarity (ERS) in 
experiment 4 were computed by correlating beta values from the specified 
presentation pairs. 

 

Six ROIs were chosen from the AAL atlas (Tzourio-Mazoyer et al., 2002) 

based on previous research addressing similar research questions (see Table 6.19 for 

information on ROIs and justification for inclusion). ROI analyses were followed up 

with whole-brain searchlight analyses.  
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Table 6.19. Regions of interest for the representational similarity analyses 
performed on data from experiment 4 (fMRI), detailing subsequently used 
abbreviations, included hemisphere and references for inclusion. 

 
 

Separate encoding similarity and ERS indices were computed for each of the 

four conditions (illustrated in Figure 6.33). As already addressed in Chapter 5, the 

present experimental design was associated with a methodological confound in that 

repetitions in the same context were always associated with shorter repetition lags 

than repetitions in different contexts. Precisely, in this fMRI investigation, same task 

repetitions occurred within the same runs, whereas different task repetitions occurred 

between runs. This meant that encoding similarity patterns for same and different 

task encoding could not be contrasted, as between-run similarity would be associated 

with more variability and, therefore, lower similarity scores than within-run 

similarity. However, bearing in mind that due to this confound similarity patterns 

will be lower in the different task condition than the same task condition, this 

confound does not affect differences in pattern similarity due to source memory 

performance within the encoding task conditions. Moreover, this confound will also 

not affect the interaction between source memory performance and encoding task 

condition. Such an interaction directly tests the hypothesis that in the same task 

condition, hits+ judgements are associated with more reactivation than hits- 

judgements; while in the different task condition, hits- judgements are associated 

with higher levels of reactivation than hits+ judgements. Therefore, encoding 

similarity and ERS patterns were analysed for source memory effects, separately in 

the two encoding task conditions, as well as for the interaction between encoding 

task condition and source memory performance. The source memory effects were 

assessed separately for same and different task encoding performing paired samples 

t-tests. The interaction was tested with a repeated-measures ANOVA with the factors 

source memory (hits+, hits-) and encoding context (same, different). Resulting         
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t-statistics for source memory contrasts and F-statistics for the interactions as well as 

significance levels (uncorrected and FDR-corrected for the six ROIs) are reported.  

In Chapter 4, two different measures of similarity were reported: item-level 

and item-specific similarity. This was to test the hypothesis that item-specific 

pictorial information would be reinstated during the test phase in the absence of the 

picture stimulus. However, item-specific reactivation not of interest to the present 

hypothesis. Instead, item-level and set-level similarity will reported. To recap, item-

level similarity is computed by correlating the beta values for each individual item at 

one presentation with itself at another presentation, reflecting the degree to which 

stimulus properties are reactivated. Set-level similarity is calculated by correlating an 

item at one presentation with all other stimuli of the same category at another 

presentation, indexing reactivation of more general information or processes that are 

shared between stimuli of the same category, e.g., all same task hits+ judgements.  

 

 
Figure 6.33. Identity matrix displaying the four conditions for which similarity 
scores were calculated in experiment 4 (fMRI). Item-level and set-level similarity 
are reported in the present investigation. 
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6.3.3.1 Encoding similarity 

Results relating to statistically significant subsequent source memory effects, 

separately in the two encoding task conditions, as well as interactions between 

encoding task condition and source memory performance are reported in Table 6.20. 

Significant subsequent source memory effects were only found in the same encoding 

task condition. At the item-level, pattern similarity in the precuneus was higher for 

subsequent hits+ than hits- judgements. The same trend was observed in the right 

middle frontal gyrus, but this effect did not survive FDR-corrections. Set-level 

similarity in the right hippocampus was higher for subsequent hits+ compared to 

hits- trials, with the same trend (not surviving multiple comparison corrections) in 

the right fusiform gyrus. The interaction between subsequent source memory 

performance and encoding task condition was found to be significant in the 

precuneus, though only before corrections for multiple comparisons. Figure 6.34 

displays the mean encoding similarity scores (Fisher transformed, item-level 

similarity).  

 

Table 6.20. Summary of encoding similarity results across regions of interest 
(experiment 4, fMRI) from pairwise t-tests contrasting encoding similarity to 
subsequent hits+ and hits- judgements and repeated-measures ANOVAs testing for 
interactions between subsequent source memory performance and encoding task 
condition. 

 
Note. T-statistics are reported for the same task source memory contrast and the different 
task source memory contrast. A positive t-statistic denotes subsequent hits+ judgements 
were associated with higher pattern similarity than subsequent hits- judgements, a negative t-
statistic reflects the opposite direction. F-statistics are reported for the interaction (df = 
1,16).  
* statistically significant (p uncorrected) 
** statistically significant (p FDR-corrected). 
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Figure 6.34.Experiment 4 (fMRI): Mean encoding item-level similarity scores for 
subsequent hits+ and hits- judgements separately displayed for the two encoding 
conditions across the six ROIs. Error bars denote standard errors. 

 
 
The contrasts used in the ROI analyses were then also submitted to 

exploratory whole-brain searchlight analyses. The results are presented in Table 

6.21. In the same encoding task condition, subsequent hits+ judgements were 

associated with higher item-level similarity than subsequent hits- judgements in the 

middle cingulate cortex. A similar trend was observed in the right inferior parietal 

lobe. For the same contrast, set-level similarity was also found to be higher for 

subsequent hits+ than hits- judgements in ventromedial prefrontal cortex, left 

posterior cingulate cortex. Additional trends, although not surviving multiple 

comparison corrections, were observed in the left middle frontal gyrus, the right 

fusiform gyrus and the left middle cingulate cortex. No statistically significant 

subsequent source memory effects were revealed in the different encoding task 

condition. However, an interaction was found in the left posterior cingulate cortex, 

which only survived FWE-corrections at the set-level. The direction of this 

interaction was as predicted by the hypotheses. Figure 6.35 illustrates the statistically 

significant interaction in the posterior cingulate cortex. Set-level similarity in the 

same task condition is shown to be higher for subsequent hits+ than hits- 

judgements, while the opposite direction is observed in the different task condition. 
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Table 6.21. Summary of searchlight encoding similarity analysis results (experiment 
4, fMRI). 

 
Note. L = left, R = right, B = bilateral, BA = approximate Brodmann Area. MNI coordinates 
refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 

 
 
 

 
Figure 6.35. Experiment 4 (fMRI): set-level similarity indices in the posterior 
cingulate cortex. 
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6.3.3.2 Encoding-retrieval similarity 

Results relating to statistically significant source memory effects, separately 

in the two encoding task conditions, as well as interactions between encoding task 

condition and source memory performance are reported in Table 6.22. Main effects 

of source memory performance did not survive corrections for multiple comparisons. 

However, in the same encoding task condition, trends were observed for hits+ 

judgements to be associated with higher item-level similarity than hits- judgements 

in right hippocampus, precuneus and superior occipital gyrus. Additionally, set-level 

similarity in the right fusiform gyrus was higher for hits+ than hits- judgements. 

Conversely, in the different encoding task condition, a trend was observed in the 

superior occipital gyrus for hits- judgements to be associated with higher item-level 

similarity than hits+ judgements. At the item-level, significant interactions between 

source memory performance and encoding task condition were observed in the 

precuneus and superior occipital gyrus. This interaction was also found to be 

significant in the right middle frontal gyrus before FDR-corrections. At the set-level, 

an interaction was observed in the superior occipital gyrus, although this did not 

survive multiple comparison corrections. Means of item-level ERS scores are 

displayed in Figure 6.36, illustrating the significant interactions to be in the predicted 

direction. 

 

Table 6.22. Summary of encoding-retrieval similarity results (experiment 4, fMRI) 
from pairwise t-tests contrasting encoding similarity to hits+ and hits- judgements 
and repeated-measures ANOVAs testing for interactions between subsequent source 
memory performance and encoding task condition. 

 
Note. T-statistics are reported for the same task source memory contrast and the different 
task source memory contrast. A positive t-statistic denotes hits+ judgements were associated 
with higher pattern similarity than hits- judgements, a negative t-statistic reflects the 
opposite direction. F-statistics are reported for the interaction (df = 1,16).  
* statistically significant (p uncorrected) 
** statistically significant (p FDR-corrected). 
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Figure 6.36. Experiment 4 (fMRI): Mean encoding-retrieval item-level similarity 
scores for hits+ and hits- judgements separately displayed for the two encoding 
conditions across the six ROIs. Error bars denote standard errors. 

 
The same contrasts that were investigated in the ROI analyses were then also 

submitted to exploratory whole-brain searchlight analyses. The results are presented 

in Table 6.23. The searchlight analysis revealed trends indicating source memory 

effects in the same task condition, which did not survive FWE-corrections. Higher 

levels of item-level similarity in the right middle occipital gyrus and the cuneus were 

associated with hits+ judgements when compared to hits- judgements. A similar 

trend was observed for set-level similarity in the left middle temporal gyrus. In the 

different task condition, item- and set-level similarity in the ventromedial prefrontal 

cortex was found to be higher for hits- judgements than hits+ judgements. The 

interaction between source memory performance and encoding task condition was 

found to be significant at item- and set-level in the right inferior parietal gyrus, 

extending into the precentral gyrus. The item-level interaction in this right parietal 

region is illustrated in Figure 6.37, showing that ERS was higher for hits+ than hits- 

judgements in the same task condition but lower for hits+ than hits- judgements in 

the different task condition. A similar item-level trend was observed in the cuneus. 
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Table 6.23. Summary of searchlight encoding-retrieval similarity analysis results 
(experiment 4, fMRI). 

 
Note. L = left, R = right, B = bilateral, BA = approximate Brodmann Area. MNI coordinates 
refer to peak voxel coordinates. 
* pcluster < 0.05 (uncorrected) 
** pcluster < 0.05 (FWE-corrected) 
† ppeak < 0.001 (uncorrected) 
†† ppeak < 0.05 (FWE-corrected) 

 
 

 
Figure 6.37. Experiment 4 (fMRI): item-level similarity indices in the right inferior 
parietal/precentral gyri. 
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6.4 Discussion 

The present experiment investigated differences in neural similarity patterns 

relating source memory effects when stimuli are either repeated in the same context 

or repeatedly encoded in differing contexts. Behavioural results showed that 

different task encoding, when compared to same task encoding, was associated with 

better item memory but poorer source memory performance. Univariate analyses of 

the functional MRI data revealed repetition-related changes in mean activation that 

occurred in different regions and were differentially associated with subsequent 

source memory performance depending on the encoding task condition. Neural 

pattern similarity was assessed using RSA. The results supported the hypothesis that 

higher levels of pattern reactivation are associated with superior source memory 

performance when stimuli are repeatedly encoded in the same context. In the 

different encoding task condition, pattern reactivation in frontal and parietal regions 

was lower for subsequent hits+ than hits- judgements. These findings suggest that 

not reactivation but potentially the creation of multiple traces underlies the 

successful encoding and retrieval of context memory. 

 

Behavioural results supported the hypothesis that the different encoding task 

condition was associated with fewer misses, i.e., superior item memory, but also 

with more hits- judgements, i.e., worse source memory, than the same encoding task 

condition. These results largely replicate the memory performance results observed 

in the EEG version of this experiment (Chapter 5). An interaction between memory 

performance and encoding task condition was reported in both experiments. These 

results add to existing body of research from retroactive interference paradigms 

(Anderson & Neely, 1996; Hupbach et al., 2007; G. Kim et al., 2017). This line of 

research has indicated that stimulus occurrence in multiple contexts may cause 

interference, resulting in higher levels of generalisation at the cost of contextual 

source information. In addition to weaker source memory performance, participants 

were also less likely to forget the stimulus itself, when it was encoded in differing 

contexts, suggesting that encoding variability is associated with better item memory 

(Bower, 1972; Hintzman, 1986; Nadel & Moscovitch, 1997). In addition to memory 

performance, RTs measured in the present experiment revealed an interesting 

pattern. Reaction times measured during the study phase suggested that repetition 
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priming only occurred in the same context condition, as RTs to repeated stimuli did 

not gradually decrease in the different task condition. This is in line with previous 

research reporting no reliable repetition priming effects when words were repeated in 

different contexts (Ratcliff et al., 1985 Experiment 2), although contradictory results 

have been observed (Clarke & Morton, 1983; Jacoby, 1983; Jacoby & Dallas, 1981; 

Scarborough et al., 1979). Finally, in Chapter 5, RTs at test were found to be faster 

for stimuli encoded in the different task condition and for hits+ judgements. Similar 

trends were also reported in the present investigation, potentially indicating that 

items encoded in the different task condition and items corresponding to hits+ 

judgements could be more efficiently retrieved. Overall, the behavioural results 

provide additional support for the notion that encoding variability is associated with 

stronger item memory but worse performance in a source memory task requiring the 

retrieval of varying encoding contexts.    

 

6.4.1 fMRI mass-univariate analysis results 

Functional MRI data were examined to identify the neural correlates of same 

and different context encoding. BOLD signal change corresponding to same and 

different task encoding was observed in a number of frontal and parietal regions. 

Additionally, data were analysed with respect to repetition-related changes in either 

of the two encoding task conditions. Repetition enhancement and suppression effects 

were reported in the same encoding task condition, with enhancement in postcentral 

gyrus, middle temporal gyrus and precuneus, as well as, repetition suppression in 

inferior frontal gyrus predicting subsequent source memory performance. The 

different task condition was only associated with statistically significant repetition 

suppression effects, however, a trend was shown for repetition enhancement in the 

midcingulate cortex to predict subsequent source memory performance. 

Because of the relative novelty of the present experimental design, a primary 

aim for univariate analyses was to contrast mean activation to same and different 

task encoding, when averaged over subsequent source memory performance and 

repetitions. In the same task condition, relative to the different task condition, mean 

activation was found to be higher in bilateral inferior parietal gyri and right 

precuneus. Additional trends of the same contrast were observed in right inferior 

frontal, middle frontal and middle temporal gyri. As those regions have been 
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reported to exhibit general repetition enhancement effects (H. Kim, 2017), these 

effects may reflect repetition enhancement as observed in the same task condition of 

the present research. The reverse contrast showed higher mean activation to different 

compared to same task encoding in left middle and inferior frontal gyri, left medial 

orbito-frontal cortex, bilateral angular gyrus (though stronger in left hemisphere) and 

bilateral precuneus. Trends of the same contrast were reported in the left fusiform 

gyrus and hippocampus. Left lateral inferior frontal and parietal regions, including 

the angular gyrus and precuneus, have previously been associated with the 

integration of semantic features (Binder et al., 2009; Chou et al., 2009; Fairhall & 

Caramazza, 2013) and the generation of associative memories (Lundstrom et al., 

2005). Moreover, the left inferior frontal gyrus has been associated with implicit 

semantic feature selection (Grindrod, Bilenko, Myers, & Blumstein, 2008) 

Therefore, increased mean activation in those regions during different task encoding 

may reflect processes of integration of semantic features and updating of contextual 

information. With regards to activation in the left medial orbito-frontal cortex, 

patients with lesions in limbic areas, including this medial frontal region, have 

previously been shown to have difficulty distinguishing currently relevant 

information from currently irrelevant information that was previously acquired 

(Schnider & Ptak, 1999). Therefore, it was suggested that the medial orbito-frontal 

cortex was important for suppressing irrelevant contextual information. Support for a 

role of the orbito-frontal cortex in temporal context encoding and retrieval was 

reported in an experiment involving healthy participants as well as patients with 

focal orbito-frontal lesions (Duarte, Henson, Knight, Emery, & Graham, 2010). 

However, this study emphasised that the orbito-frontal cortex was especially 

involved in temporal context encoding, while no such association was found for the 

encoding of spatial context. The present results suggest that this region may also be 

implicated when stimuli are encoded in varying contexts. Taken together, it appears 

that distinct brain regions are involved during the two encoding task conditions, 

adding to the hypothesis that the neural processes underlying same and different 

context encoding differ. 

A second set of whole-brain analyses was concerned with repetition effects, 

measured separately for the two encoding conditions and whether repetition-related 

changes in mean activation predicted subsequent source memory performance. In the 
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same encoding task condition, several brain regions were found to show repetition 

enhancement and suppression effects. Repetition enhancement was observed in left 

lateral parietal regions, including superior and inferior parietal gyri and the 

precuneus. Additional trends were observed in the left postcentral and middle 

temporal gyri. More interesting to the present investigation was that another contrast 

revealed repetition enhancement in some of those regions, namely the left postcentral 

and middle temporal gyri, to be higher for subsequent hits+ than hits- judgements. 

Repetition enhancement effects have previously been associated with subsequent 

memory performance (Segaert et al., 2013) and explicit retrieval during incidental 

encoding (Kim, 2017). Therefore, these results may suggest that explicit retrieval, as 

indexed by repetition enhancement in left postcentral and middle temporal gyri, may 

have facilitated subsequent retrieval of the associated encoding context. Repetition 

suppression effects were found in the inferior frontal gyrus, the left insula and the 

right cuneus, with additional trends of repetition suppression observed in bilateral 

fusiform and left cingulate gyri. Interestingly, the repetition suppression effect in left 

inferior frontal gyrus further predicted subsequent source memory performance. 

Decreases in mean activation across repetitions were stronger for subsequent hits+ 

than hits- judgements. Repetition suppression is not commonly associated with 

subsequent memory performance (Kim, 2017; Segaert et al., 2013). One study found 

that reduced repetition suppression was associated with superior memory 

performance (Xue et al., 2011), indicating that repetition suppression may be related 

to forgetting rather than remembering. In the present experiment, higher repetition 

suppression in left inferior frontal gyrus for subsequent correct source memory 

judgements may indicate that information relating to items repeated in the same 

context was easily integrated and, therefore, associated with repetition suppression. 

This is consistent with the left inferior frontal gyrus being implicated in the selection 

of competing features (Grindrod et al., 2008). In that same context, repetitions 

require lower levels of semantic feature integration and are associated with less 

competition, which may then be indexed by repetition suppression. While the 

association between repetition suppression and subsequent source memory 

performance is difficult to interpret within the fMRI literature, the results are 

consistent with the speculative hypothesis based on the EEG repetition effects 

presented in Chapter 5. Both, fMRI and EEG repetition effects, only occurred in the 
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same task encoding condition and repetition effects were stronger for subsequent 

hits+ than hits- judgements. Interestingly, previous studies combining ERPs with 

PET or fMRI have linked the LPC to left inferior frontal regions (Düzel, Picton, et 

al., 2001; Matsumoto, Iidaka, Haneda, Okada, & Sadato, 2005). However, it is also 

important to point out that EEG repetition effects observed in single-trial analyses 

only occurred between the first and second stimulus presentation, while fMRI 

repetition suppression here was modelled across all four presentations. Moreover, 

from a statistical point of view, the fMRI mass-univariate results are more closely 

related to the ERP than the single-trial EEG analyses. Thus, while some exciting 

parallels were observed, adding to the tentative prediction that repetition-related 

EEG amplitude changes may reflect similar neural processes as repetition 

suppression observed in fMRI, these hypotheses will have to be further tested in 

hypothesis-driven experiments. 

In the different encoding task condition, no repetition effects survived 

multiple comparison corrections. However, a few notable trends were observed. 

Repetition suppression was observed in the left insula, right thalamus, left 

postcentral and inferior occipital gyri and the left posterior hippocampus. More 

interesting to the present investigation, however, repetition enhancement was found 

to be higher for subsequent hits+ than hits- judgements in the left midcingulate 

cortex. To the authors knowledge, the midcingulate cortex is rarely considered in 

relation to memory. However, the finding that repetition enhancement effects are 

stronger for subsequent hits+ than hits- judgements adds to a growing body of 

research, including the present research, suggesting that neural repetition 

enhancement predicts subsequent (source) memory performance (e.g., Heusser et al., 

2013; Kremers et al., 2014; van den Honert et al., 2016; Vannini et al., 2013). Fewer 

and smaller repetition effects were reported in the different task condition compared 

to the same encoding task condition. This may partly be explained by the different 

task repetitions occurring in different runs. As between-run signal-to-noise ratio is 

higher, associated statistical power would be expected to be lower. However, 

previous research has also shown that repetition suppression interacts with repetition 

lag in that repetitions occurring closer in time to each other produce larger repetition 

suppression effects (Barron, Garvert, & Behrens, 2016; Xue et al., 2011). In the 

present experiment, same task repetitions were always associated with fewer 
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intervening trials than different task repetitions. Finally though, the RTs measured in 

this experiment, indicated that repetition priming only occurred in the same task 

condition. As repetition suppression is thought to be the neural correlate of repetition 

priming (Ballesteros et al., 2013; Ward et al., 2013), this may explain the absence of 

significant repetition suppression effects in the different task condition. Overall, it 

appears that repetition-related changes are easier to detect when stimuli are repeated 

in the same context. Moreover, the present results supported a relationship between 

repetition enhancement and subsequent source memory performance. 

 

6.4.2 Representational Similarity Analysis 

Neural similarity patterns relating to encoding similarity and encoding-

retrieval similarity (ERS) were examined to test the hypothesis that similarity 

patterns to encoding task condition interact with source memory performance. 

Reactivation, as indexed in higher pattern similarity, is beneficial for source memory 

when items are repeatedly encoded in the same context. However, when items are 

repeatedly encoded in different contexts, reactivation was predicted to facilitate 

generalisation of contextual information, which would result in poorer source 

memory for the contexts the items were initially encoded in. ROI analyses were 

performed in the right middle frontal gyrus, right hippocampus, right fusiform gyrus, 

bilateral middle occipital gyrus, bilateral superior occipital gyrus and bilateral 

precuneus. Exploratory searchlight analyses were carried out and revealed 

complementary results. Two measures of similarity were in the focus of these 

analyses: item-level and set-level similarity. Item-level similarity is thought to reflect 

reactivations of stimulus properties, while set-level similarity indexes reactivations 

of more general processes and information that is shared between all stimuli within a 

particular category, e.g., different task, hits+ judgements. Results from RSA 

presented in this chapter supported this theoretical hypothesis. For encoding 

similarity, an interaction was reported in the left posterior cingulate cortex and the 

precuneus. For ERS, this interaction between encoding task condition and source 

memory performance was observed in the precuneus, superior occipital gyrus and 

the right inferior parietal gyrus. These results provide fundamental support for the 

differential role of reactivation in different encoding strategies, namely mere 

repetition and encoding variability. 
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Encoding similarity 

Subsequent source memory effects for encoding similarity, i.e., similarity 

between repeated encoding presentations, were only found in the same encoding task 

condition. Higher levels of item-level similarity in the precuneus were associated 

with superior subsequent source memory performance. A similar trend was observed 

in the middle frontal gyrus. Searchlight analyses revealed an additional effect in the 

bilateral midcingulate cortex and a trend for higher levels of item-level reactivation 

for subsequent hits+ than hits- judgements in the right inferior temporal lobe. The 

results suggests that items, which are represented more similarly across same context 

repetitions, are associated with superior source memory performance. Such a results 

is consistent with a large body of research supporting the reactivation view 

(Benjamin & Tullis, 2010; Thios & D’Agostino, 1976), which posits that 

reactivation of the same patterns facilitates successful memory encoding (van den 

Honert et al., 2016; Ward et al., 2013; Xue et al., 2010). At the set-level, same task 

encoding subsequent hits+ trials, encoded in the same task condition, were found to 

be more similar to each other than subsequent hits- trials in the right hippocampus 

with a similar trend observed in the right fusiform gyrus. Searchlight analyses 

revealed additional effects of this contrast in bilateral ventromedial prefrontal cortex, 

left posterior cingulate cortex and trends in left lateral middle frontal gyrus and 

midcingulate cortex. The set-level results for the same encoding task condition, 

suggest that items, for which the source can subsequently be retrieved, are more 

similarly represented to each other than items, for which the source cannot be 

retrieved later on. This indicates that processes and features, which are shared 

between subsequent hits+ judgements, are reactivated during same context 

repetitions. Both, the hippocampus and the ventromedial prefrontal cortex, have 

consistently been implicated in memory encoding and consolidation (e.g., 

Blumenfeld & Ranganath, 2007; Bonnici et al., 2012; Fletcher et al., 2003; Kim, 

2011; Persson & Söderlund, 2015; Spaniol et al., 2009). More recent investigations 

have also focused on posterior parietal regions, such as the precuneus and poster 

cingulate cortex (see Gilmore, Nelson, & McDermott, 2015; Rugg & King, 2017; 

Sestieri, Shulman, & Corbetta, 2017). In the present research, the precuneus was 

found to represent subsequent hits+ judgements more similarly at the item-level than 
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subsequent hits- judgements. At the set-level, subsequent hits+ compared to hits- 

judgements were represented more similarly to each other, suggesting that the right 

hippocampus, bilateral ventromedial prefrontal cortex and left posterior cingulate 

cortex are implicated in certain operations that are important for subsequent source 

memory retrieval. This interpretation is consistent with the notion that the 

hippocampus and posterior parietal regions bind contextual features to form a 

coherent memory representation to be stored in neocortical regions (H. Eichenbaum 

et al., 2007; Josselyn et al., 2015; Moscovitch & Winocur, 1992; Shimamura, 2011). 

Although no statistically significant effects of subsequent source memory 

were reported in the different encoding task condition, evidence was found for an 

interaction. This interaction reflected higher pattern similarity in the same task 

condition to be associated with subsequent hits+ trials with the opposite direction in 

the different encoding task condition. This interaction was found to be significant at 

the set-level, with additional trends observed for item-level similarity. At the set 

level, the interaction in the left posterior cingulate cortex indicated that items 

resulting in subsequent hits+ judgements in the same task condition were more 

similar to each other. Items resulting in subsequent hits+ judgements in the different 

task condition were less similar to each other, when compared to subsequent hits- 

judgements. This finding suggests that stimuli repeatedly encoded in the same task 

instructions were more similarly represented to each other when the source could 

subsequently be retrieved. However, for stimuli encoded in different contexts, higher 

similarity between stimuli was associated with subsequent hits- judgements. This 

finding supports the prediction that higher levels of generalisation were associated 

with worse subsequent source memory performance. It further indicates that the 

processes underlying successful encoding of different contexts were more different 

between items, potentially providing support for the encoding variability view and 

the multiple trace theory (Bower, 1972; Hintzman, 1986; Martin, 1968; Nadel & 

Moscovitch, 1997). At the item-level, this interaction was observed in ROI analyses 

in the precuneus but did not survive corrections for multiple comparisons. Additional 

support for this interaction was found in searchlight analyses in the left posterior 

cingulate cortex, although again, not surviving multiple comparison corrections. 

Previous research has shown that pattern similarity in the posterior cingulate cortex 

was related to the amount of details that could later on be recalled (Bird, Keidel, Ing, 
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Horner, & Burgess, 2015). The authors suggested that reinstatement in those 

posterior midline structures facilitated consolidation of complex events, which are, 

however, becoming more generic and somewhat less episodic through this 

consolidation process. The present results extend this hypothesis by adding that 

different context encoding is associated with lower pattern similarity in order to 

preserve unique contextual details. However, as the contrast between subsequent 

hits+ and hits- judgements was not significant in the different task condition, the 

interpretation remains somewhat speculative and requires further testing. 

Nonetheless, these findings are consistent with previous research, showing that 

reactivation of shared item features, possibly indexing generalisation, was associated 

with worse source memory for the encoding task (Kim et al., 2017). 

 

Encoding-retrieval similarity  

Source memory effects for encoding-retrieval similarity were generally in a 

similar direction as those observed for similarity between encoding presentations. In 

the same task condition, differences in pattern similarity relating to source memory 

performance did not survive multiple comparison corrections. However, trends were 

observed for item-level ERS to be higher for hits+ than hits- judgements in the right 

hippocampus, bilateral precuneus and superior occipital gyrus. Additional trends 

were observed in bilateral cuneus and right middle occipital gyrus. This indicates 

that successful source memory retrieval for items repeatedly encoded in the same 

context is associated with higher levels of reactivation of stimulus properties during 

the test phase when compared to unsuccessful source memory retrieval. This is in 

line with previous ERS results, suggesting pattern reactivation or reinstatement at 

test to enhance memory performance (Liang & Preston, 2017; Ritchey et al., 2013; 

Wing et al., 2015). Trends were also observed in the same task condition for set-

level similarity to be higher for hits+ than hits- judgements in the right fusiform 

gyrus and the left middle temporal gyrus. These results indicate that, in the same 

encoding task condition, the features and processes underlying encoding-retrieval 

operations are more similar for hits+ than hits- judgements. Together with the same 

task item-level results, this provides further support for theoretical accounts, which 

propose that successful retrieval relies on similar operations taking place during the 

study and test phase, i.e., the encoding specificity principle (Tulving, 1983; Tulving 
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& Thomson, 1973) and the transfer-appropriate processing account (Morris et al., 

1977).  

In the different task condition, the source memory effects indicated lower 

similarity for hits+ than hits- judgements. At the item-level, this effect was reported 

in bilateral ventromedial prefrontal cortex with a similar trend observed in bilateral 

superior occipital gyrus. Similarly, different task set-level similarity was lower for 

hits+ than hits- judgements in the ventromedial prefrontal cortex, although this effect 

did not survive corrections for multiple comparisons. The ventromedial prefrontal 

cortex was suggested to be implicated in memory-guided decision-making (see 

Hebscher & Gilboa, 2016). It may be suggested that lower levels of ERS for hits+ 

than hits- judgements reflect the multiple traces that are available for an item, which 

was encoded in different contexts. Additionally, interactions reflecting the 

hypothesised direction of results were found to be significant at item- and set-level. 

At the item-level, this interaction was reported in bilateral precuneus and superior 

occipital gyrus with an additional trend in right middle frontal gyrus. Furthermore, 

searchlight analyses found the interaction to be significant in the right inferior 

parietal gyrus, extending into the precentral gyrus and an additional trend in the 

bilateral cuneus, extending into precuneus. These interactions suggest that successful 

source retrieval in the same context encoding condition was associated with higher 

levels of reactivation of stimulus properties between encoding and retrieval. On the 

other hand, successful retrieval in the different context encoding condition was 

associated with lower levels of reactivation of those stimulus-related patterns. 

Finally, set-level interactions did not survive multiple comparison corrections, but 

trends were observed in the bilateral superior occipital gyrus. Searchlight analyses 

also revealed significant interactions in right lateral inferior parietal gyrus, extending 

into precentral gyrus. Taken together, these interaction results may give rise to 

extending existing theoretical accounts. The transfer-appropriate processing 

framework (Morris et al., 1977), for example, does not account for the possibility 

that encoding operations may differ if stimuli are repeated in different contexts. If 

several different encoding operations were performed, the operations at retrieval may 

be predicted to reflect a blend of those encoding operations, however, this will likely 

involve generalisation, which is associated with a decrement in episodic details.  
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In conclusion, the present results provide support for the notion that same and 

different context encoding are supported by distinct mechanisms. Mere repetition of 

an item in the same context strengthens item and source memory by reactivation. 

When items are repeatedly encoded in different contexts, reactivation appears to 

promote generalisation at the cost of contextual features. Another mechanism, 

possibly the creation of multiple unique memory traces, underlies the successful 

encoding of multiple contexts, i.e., the extract of unique contextual features. Similar 

results were found for pattern similarity between encoding and retrieval. When only 

one context was present at encoding, reactivation or reinstatement of the same 

patterns during the test phase was associated with successful retrieval of this context. 

However, when an item was initially encoded in different contexts, higher ERS was 

associated with worse source memory performance. It was speculated that the 

observed lower levels of ERS for correct context retrieval might index the multiple 

traces that were available for the item. These results will have to be replicated in a 

hypothesis-driven design with a particular emphasis on ventromedial prefrontal and 

posterior cingulate cortex. The behavioural results indicated that different context 

encoding was associated with better item, but worse source memory, than same 

context encoding. Previous research had largely focused on the mechanisms 

underlying the forgetting of episodic details, with less emphasis on the mechanisms 

underlying successful context encoding. It is noteworthy that, although 

generalisation in the context of different task encoding was associated with worse 

source memory, such processes of abstraction and generalisation can often be very 

useful, as it has been suggested to be the basis of semantic knowledge (e.g., Binder 

& Desai, 2011; Cermak, 1984). In other words, while contextual information is 

sometimes important to be remembered, the creation of a more coherent, semantic 

memory is critical for making memory-guided decisions and future inferences. 
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Chapter 7 -  General Discussion and Conclusion 

 

7.1 Chapter overview 

The present research examined the effects of repetition on subsequent source 

memory performance and reinstatement of item and source information during the 

test phase. Electrophysiological and haemodynamic response data were collected. 

The primary aim of this research was to investigate fMRI pattern similarity between 

repeated encoding episodes and between encoding and retrieval. The majority of 

previous research presented the same stimuli repeatedly with the same encoding task 

instructions. This thesis aimed to identify how pattern similarity was influenced by 

changes to perceptual stimulus features or by changes to encoding task instructions. 

An additional aim was to establish the neural correlates of repeated encoding and 

reinstatement of source memory information. The present chapter will summarise the 

main results from four neuroimaging experiments and discuss the methodological 

concerns as well as theoretical implications and directions for future research.  

 

7.2 Summary of results 

7.2.1 Chapters 3 & 4: Encoding Modality 

The experiments presented in Chapters 3 and 4 employed a similar 

experimental paradigm to test the effects of encoding modality and repetition on 

subsequent memory performance. Furthermore, this first set of experiments 

investigated reinstatement of encoding modality during the test phase. During the 

study phase, participants repeatedly encoded stimuli in three different encoding 

modality conditions. Stimuli were either repeatedly presented as pictures, repeatedly 

presented as words or the same concept was alternately presented as a picture or a 

word. During the test phase, all previously presented stimuli, along with the same 

number of new stimuli were presented as written words. Participants performed an 

old/new judgement task, assessing item memory, followed by a source memory task, 

assessing source memory for the modality in which stimuli were encoded during the 

study phase. This design allowed investigations of perceptual and conceptual 

repetitions, i.e., uni-modal picture or word encoding and multi-modal picture&word 

encoding, respectively. Moreover, reinstatement of pictorial information relating to a 
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stimulus encoded as a picture, but cued with a word at test, could be examined in the 

absence of pictorial information during the test phase. 

Behavioural results were largely consistent across the EEG and fMRI 

versions of this experimental paradigm. Item and source memory performance were 

close to a ceiling effect, resulting in too few misses to be included in neuroimaging 

analyses. Source memory performance was lower in the multi-modal encoding 

condition compared to the two uni-modal encoding conditions. The most item misses 

occurred in the picture-only encoding condition, which was likely because picture 

stimuli were cued with the corresponding written word in the test phase. As 

behavioural data were not the focus of the present paradigm, these will not be further 

discussed in this section.  

Data from the EEG experiment presented in Chapter 3 were analysed using 

the event-related potential (ERP) technique. Two ERP components, namely the late 

positive potential (LPC) and the FN400, were measured during the study and test 

phase. The LPC is commonly associated with episodic memory recollection (e.g., 

Friedman & Johnson, 2000; Rugg & Curran, 2007; Wilding & Ranganath, 2012), 

while the FN400 has been proposed to play a role in familiarity judgements or 

semantic priming (e.g., Curran, 2000; Groh-Bordin et al., 2006; Yovel & Paller, 

2004). Planned analyses were performed to test for interactions between subsequent 

source memory performance, repetition and encoding modality. No such interactions 

were revealed during the study phase. However, the analyses revealed a repetition 

effect during encoding, which appeared to be largely independent of subsequent 

source memory performance and encoding modality. To further investigate this 

repetition effect single-trial analyses were carried out. These analyses suggested that 

only a novelty effect, measured over parietal electrode sites, between the first and 

second presentation of a stimulus, was related to item-specific stimulus repetition. 

Moreover, single-trial analyses revealed that mean amplitudes measured during the 

time window of the repetition effect (around 300 – 550 ms post stimulus onset) 

correlated with an implicit measure of memory, reaction times. In other words, the 

more the voltage amplitudes increased in positivity over parietal sites between 

presentation 1 and 2 at encoding, the greater was the reduction in reaction times. In 

addition to this earlier occurring repetition effect, exploratory ERP analyses 

including a wider range of time windows for the LPC and FN400, revealed a later 

occurring (700 – 900 ms) parietal subsequent source memory effect. The data from 
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the study phase suggested that stimulus repetition may shift the peak of the LPC 

forward, consistent with previous research (Renoult et al., 2012), which, in turn, may 

confound subsequent source memory effects that occur slightly later during the 

downhill slope rather than at the time of the peak. More importantly, the finding of a 

repetition effect only reflecting item-specific repetition at parietal sites between 

presentations 1 and 2, gives rise to the question what previously reported ERP 

repetition effects reflect if not item-specific repetition (Henson et al., 2004; Rugg & 

Doyle, 1994; Schendan & Kutas, 2003; Swick & Knight, 1997). Finally, during the 

test phase, LPC amplitudes to hits+ judgements differed based on encoding 

modality. This effect was suggested to indicate reinstatement of encoding modality 

during the test phase.  

The fMRI data collected for this experimental paradigm were analysed using 

univariate and multivariate approaches, with a focus on multivariate representation 

similarity analyses. Univariate whole-brain analyses were conducted to examine 

repetition-related linear changes in mean activation within each one of the encoding 

modalities. Repetition suppression effects were found in the uni-modal encoding 

modalities (picture only, word only), indicating enhanced processing efficiency 

across repetitions (Buckner et al., 1998; Grill-Spector et al., 2006; Henson & Rugg, 

2003; Schacter et al., 2007; Wig et al., 2005). However, these effects did not predict 

subsequent source memory performance. In the alternated picture&word encoding 

modality, a trend was observed that indicated that repetition enhancement was 

stronger in subsequent hits+ (high confidence correct item and correct source 

memory) than hits- (correct item but incorrect source memory) judgements. These 

increases in mean activation across repetitions were observed in inferior parietal 

regions, suggesting that they may reflect retrieval operations taking place during 

incidental encoding (Kim, 2017; Segaert et al., 2013). Such explicit retrieval may 

have contributed towards subsequent source memory success.   

The main objective for the fMRI experiment was to assess differences in 

neural similarity patterns relating to source memory outcome and encoding modality. 

Across repeated encoding episodes, item-specific pattern reactivation in occipital 

gyri predicted subsequent source memory performance for stimuli encoded uni-

modally. These patterns are in line with a large body of research suggesting that 

reactivation aids memory formation (e.g., van den Honert et al., 2016; Ward et al., 

2013; Xue et al., 2010). For the multi-modal encoding condition, a trend indicated 



SECTION 3 – General Discussion 

178 
 

that subsequent hits+ judgements were associated with higher pattern similarity in 

inferior frontal and middle and superior temporal gyri. These regions were suggested 

to integrate stimulus features into conceptual, amodal representations (see Binder et 

al., 2009; Fairhall & Caramazza, 2013). An interesting trend was observed in the left 

hippocampus, suggesting pattern similarity to be lower for subsequent hits+ than 

hits- judgements. It was speculated that such a trend might reflect pattern separation 

signals (Favila et al., 2016; Karlsson Wirebring et al., 2015) and the extraction of 

unique encoding features between repetitions (Nadel & Moscovitch, 1997; Norman, 

2010; O’Reilly et al., 2014), however, this effect remains to be replicated. Between 

encoding and retrieval, pattern similarity in superior occipital and posterior parietal 

regions was reported to be higher for hits+ than hits- judgements. Those source 

memory effects were found to be largely modality-independent. The findings are 

consistent with previous research contrasting pattern similarity for hits and misses 

(Ritchey et al., 2013; Wing et al., 2015). In addition to pattern similarity related to 

source memory performance, effects of encoding modality were considered, only 

including stimuli associated with hits+ judgements. Across repeated encoding 

presentations, occipital similarity patterns were higher for the uni-modal picture 

encoding condition compared to the other two encoding modalities. This was 

suggested to index that those regions were sensitive to processing visuo-perceptual 

information of picture stimuli. In contrast, inferior parietal regions represented items, 

which were alternately encoded as pictures and words, more similarly than stimuli in 

the uni-modal encoding modalities. This pattern of results may reflect conceptual 

processing and the integration of perceptual features into a coherent semantic 

representation (Bonnici et al., 2016; Devereux et al., 2013; Shimamura, 2011; Yazar 

et al., 2017). Finally, occipito-temporal encoding-retrieval similarity patterns 

indicated that pictorial information was reinstated during the test phase when 

concepts were cued with the corresponding word. However, this reinstatement effect 

did not extend to the stimulus-specific level. Therefore, this result may reflect 

processes underlying retrieval of more general source information related to pictorial 

stimuli from the study phase.  

Taken together, the results reported in Chapters 3 and 4 provided novel 

insights into the mechanisms underlying repeated encoding of stimuli and retrieval 

of source memory information. Most notably, pattern similarity results were shown 

to be affected by the modality stimuli were encoded in, indicating that in addition to 
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modality-independent source memory effects, different regions were implicated in 

source memory encoding depending on the encoding modality. Apart from a trend in 

the hippocampus, the results generally support the reactivation view (Benjamin & 

Tullis, 2010; Thios & D’Agostino, 1976) and the cortical reinstatement hypothesis 

by showing that higher pattern similarity, indexing reactivation, was related to 

source memory success. The EEG measures appeared to be less influenced by 

encoding modalities, especially the observed repetition effects. However, data from 

the test phase indicated that reinstatement of information from the study phase is 

reflected in LPC mean amplitudes at test. When interpreting the fMRI repetition 

suppression results in the light of the repetition-related EEG amplitudes changes, it 

was suggested that EEG repetition effects were more likely to reflect fMRI repetition 

suppression than enhancement. Consistent with the fMRI repetition suppression 

results presented in Chapter 4 and existing fMRI research (van den Honert et al., 

2016; Ward et al., 2013), the EEG effects also did not predict subsequent source 

memory performance, but were linked to RTs as a measure of implicit memory. 

 

7.2.2 Chapters 5 & 6 

Chapters 5 and 6 include an EEG and an fMRI experiment using a similar 

experimental paradigm. These two experiments set out to test theoretical hypotheses 

regarding the neural correlates of repeated stimulus encoding in either the same or 

different contexts. Additionally, reinstatement effects relating to the encoding task 

conditions were examined. During a study phase, participants repeatedly encoded 

famous people’s names in two encoding task conditions. Stimuli were either 

repeatedly encoded in the same context, i.e., participants performed the same 

encoding task at each repetition, or stimuli were repeatedly encoded in differing 

contexts, i.e., participants performed a different encoding task at each of the four 

stimulus presentations. During the test phase, participants performed an old/new 

judgement task, assessing item memory, followed by a source memory task, 

assessing source memory for the context/encoding task instructions under which the 

name was previously encoded. This paradigm allowed the direct comparison of two 

different encoding strategies: mere repetition and encoding variability and could, 

therefore, provide valuable insights into theoretical frameworks of repeated encoding 

and memory enhancement. Based on previous research and existing theoretical 
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accounts, it was hypothesised that distinct processes underlie successful source 

memory encoding, when stimuli are either repeatedly encoded in the same context or 

in different contexts. Same context encoding was predicted to be associated with 

higher levels of reactivation, when the source was subsequently retrieved. In the 

different context condition, reactivation was proposed to interfere with subsequent 

retrieval of multiple contexts. Therefore, subsequent hits+ judgements were 

hypothesised to be associated with lower levels of reactivation, especially in fronto-

parietal regions implicated in semantic integration and generalisation processes.  

The behavioural data from both, the EEG and the fMRI version, revealed that 

same compared to different context encoding was associated with superior source 

memory but lower frequencies of correct item memory, as reflected in more misses 

in the same task condition. These results were in line with previous research 

employing retroactivate interference paradigms (Anderson & Neely, 1996; Hupbach 

et al., 2007; Kim et al., 2017), which suggested that items repeated in different 

contexts were likely to be generalised by forming a more stable, coherent memory 

representation. Moreover, superior item memory in the different task condition 

generally provides support for the encoding variability view, which proposes that 

context variability promotes the creation of multiple traces, resulting in a larger 

variety of retrieval cues and, thereby, enhancing item memory performance (Bower, 

1972; Hintzman, 1986; Martin, 1968; Nadel & Moscovitch, 1997). The EEG data 

provided insights into dissociable mechanisms underlying same and different context 

encoding as well as differences during the test phase relating to encoding context 

condition. Multivariate fMRI analyses then allowed us to test the hypotheses 

regarding differences in reactivation underlying successful source memory formation 

and retrieval in the same and different context encoding conditions.  

EEG data presented in Chapter 5 were analysed using the ERP technique as 

well as a single-trial approach. Mean amplitudes were extracted for an early frontal 

FN400 component (300 – 500 ms), a later (700 – 900 ms) frontal component, which 

showed sensitivity to subsequent memory performance in Chapter 3 (3.3.1.2) as well 

as for two LPC time windows (500 – 700 ms, 700 – 900 ms). ERP analyses revealed 

interactions between encoding context condition and repetition, indicating that 

repetition effects differed for the two encoding task conditions. This supports the 

notion of distinct underlying mechanisms of same and different context encoding. 

Patterns corresponding to the frontal component were less clear and require further 
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investigations. LPC amplitudes, on the other hand, were shown to discriminate same 

context repetitions between the first and second presentation, indicating a novelty 

effect, while different context repetitions were reflected in a more gradual increase in 

mean amplitudes. Replicating the single-trial analyses from Chapter 3, a reliable 

repetition effect could only be identified over parietal electrode sites between around 

450 – 700 ms post stimulus onset. When comparing item-specific repetition to a 

control measure, item-specific repetition only occurred in the same encoding task 

condition between presentation 1 and 2, which is largely consistent with findings 

from Chapter 3. However, in the experiment reported in Chapter 5, item-specific 

repetition-related increases were also shown to predict subsequent source memory 

performance. The time window for the repetition effect in this experiment (450 – 700 

ms) overlaps more with the typical LPC time window, i.e., repetition occured later 

here than in Chapter 3. Therefore, it appears that whether repetition and subsequent 

source memory performance interact could depend on the timing of the repetition 

effect. Finally, LPC ERP waveforms at test were shown to be modulated by the 

encoding context condition, potentially reflecting reinstatement effects. As LPC 

amplitudes at test were larger for items encoded in varying contexts compared to the 

same encoding task condition, this difference may reflect the increased amount of 

retrieval cues and associated information available for items repeatedly encoded in 

different contexts (Wilding, 2000). 

The fMRI data presented in Chapter 6 was analysed with univariate and 

multivariate approaches, with an emphasis on the representational similarity 

analyses, which directly assessed reactivation to test the theoretical hypotheses 

outlined above. Univariate whole-brain contrasts examined the main effects of same 

and different task encoding and how repetition effects within the two encoding task 

conditions interacted with subsequent source memory performance. Differences in 

mean activation to same and different task encoding were found across frontal and 

parietal regions. Higher mean activation to same relative to different context 

encoding was observed in inferior parietal brain regions. These effects seemed to 

overlap with repetition enhancement effects observed in the same encoding task 

condition. The different task condition was associated with higher mean activation in 

frontal regions and the angular gyrus. These effects were suggested to reflect the 

selection and integration of semantic features (Binder et al., 2009; Fairhall & 

Caramazza, 2013; Grindrod et al., 2008). Moreover, the results provided support for 
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distinct brain regions to be implicated when stimuli are either repeatedly encoded in 

the same context or across different contexts. A second set of whole-brain analyses 

was performed to investigate repetition effects in the two encoding conditions. In the 

same encoding task condition, repetition enhancement was found to be stronger for 

subsequent hits+ than hits- judgements in left lateral postcentral and middle temporal 

gyri. These effects may reflect that some form of explicit retrieval took place during 

the incidental encoding phase (Kim, 2017; Segaert et al., 2013). Moreover, repetition 

suppression in the left inferior frontal gyrus predicted subsequent source memory 

performance. Consistent with this regions role in the selection of competing features 

(Grindrod et al., 2008), this effect was suggested to reflect facilitated integration of 

contextual information when items were repeatedly studied in the same context. The 

repetition suppression effect in the left inferior frontal gyrus predicting subsequent 

source memory performance was reminiscent of the EEG repetition effect reported 

in Chapter 5, as both predicted subsequent source memory performance and previous 

research has drawn links between the left parietal ERP and the left inferior frontal 

gyrus (Düzel, Picton, et al., 2001; Matsumoto et al., 2005). In line with predictions 

made from the EEG and fMRI repetition effects reported in Chapters 3 and 4, this 

may suggest a link between fMRI repetition suppression and reported amplitude 

changes in scalp EEG. However, as this hypothesis was beyond the scope of the 

present thesis, the predictions remain purely speculative until replicated in 

hypothesis-driven future research. In the different task condition, only a trend was 

observed, which indicated that repetition enhancement was stronger for subsequent 

hits+ than hits- judgements in the midcingulate cortex. This provided further 

evidence for an association between repetition enhancement and subsequent memory 

performance.  

The primary aim of the present experimental paradigm was to test the 

hypothesis that reactivation differentially predicted subsequent source memory for 

the two encoding task conditions. Successful compared to unsuccessful 

context/source encoding in the same task condition was predicted to be associated 

with higher levels of reactivation across repetitions. Conversely, in the different task 

condition, successful compared to unsuccessful context encoding was proposed to be 

associated with lower levels of reactivation. Similar results were expected for 

encoding-retrieval similarity. The representational similarity analysis results 

provided support for these predictions. Across encoding repetitions, higher pattern 
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similarity, indexing higher levels of reactivation, was associated with superior source 

memory performance for items that were repeatedly encoded in the same context. In 

posterior cingulate cortex and precuneus, interactions between encoding task 

condition and subsequent source memory performance indicated that pattern 

similarity was higher for subsequent hits- than hits+ judgements. The interaction 

suggested that different mechanisms underlie successful context encoding in the 

same and different encoding task condition, namely pattern reactivation and the 

creation of multiple traces, respectively. Similar findings were reported for similarity 

patterns between encoding and retrieval. When items were repeatedly encoded in the 

same context, occipito-temporal pattern reactivation or reinstatement was reported to 

be higher for hits+ than hits- judgements (although these trends did not survive 

multiple comparison corrections). In the different task condition, higher encoding-

retrieval similarity was found to be associated with worse source memory 

performance, especially in the ventromedial prefrontal cortex. Interactions also 

revealed similar patterns of results in right lateral parietal regions. This effect was 

suggested to reflect the multiple traces that were created during encoding and now 

available during the retrieval of any particular item. These results support various 

theoretical accounts that may initially appear to be somewhat opposing. For 

example, the results from the same task condition support the reactivation view 

(Benjamin & Tullis, 2010) as well as the transfer-appropriate processing account and 

cortical reinstatement hypothesis (Morris et al., 1977). Results from the different task 

condition, on the other hand, support predictions from the multiple trace theory 

(Nadel & Moscovitch, 1997).  

Taken together, the findings reported in Chapters 5 and 6 provide support for 

distinct neural operations to facilitate context encoding when using different 

encoding strategies, namely mere repetition or repetition in different contexts. 

Furthermore, comparing the fMRI mass-univarite repetition effects with the EEG 

repetition effects provided further preliminary support for an association between 

fMRI repetition suppression and the observed repetition-related EEG amplitude 

changes. Although somewhat preliminary at this stage, if replicated, the here 

presented RSA results may lead to a novel theoretical framework, which integrates a 

number of existing theoretical accounts to further our understanding of the 

complexities of memory encoding and retrieval (as discussed in 7.4). Such a 

framework would extend the transfer-appropriate processing and cortical 



SECTION 3 – General Discussion 

184 
 

reinstatement hypothesis (Morris et al., 1977) by integrating that, when different 

encoding operations are performed across multiple encoding episodes, this will also 

affect retrieval processes, as reflected in lower encoding-retrieval pattern similarity. 

 

7.3 Methodological limitations and concerns 

For the present research, a recognition-source memory paradigm was 

employed. This type of paradigm allows the researcher to objectively assess 

recollection, i.e., the retrieval of a particular item along with associated, episodic 

details (Tulving, 2002). Source memory judgements require participants to retrieve 

specific, criterial information relating to the study phase (Johnson et al., 1993). 

Therefore, correct source memory judgements provide us with a measure of 

recollection. However, incorrect source memory judgements can sometimes be more 

difficult to interpret. Typically, declarative memory research makes a distinction 

between recollection and familiarity (e.g., Curran et al., 2006; Diana et al., 2007; H. 

Eichenbaum et al., 2007), as often assessed with a remember-know (R-K) paradigm 

(Tulving, 1985). However, incorrect source judgements do not necessarily reflect 

familiarity judgements, because participants may still be able to remember details 

from the encoding episode, which were not assessed by the source memory task (see 

Voss & Paller, 2017). Therefore, recollection of non-criterial episodic information 

may occur during incorrect source memory judgements (Mulligan & Hirshman, 

1997; Yonelinas & Jacoby, 1996). This issue has been raised in the context of 

neuroimaging studies and may explain weak or non-significant source memory 

effects in some paradigms. For example, when contrasting hippocampal activation to 

source memory hits and source memory misses, trials, during which participants 

were able to recollect non-criterial details, may also be associated with higher 

activation leading to the absence of source memory effects (Parks, 2007; Vilberg & 

Rugg, 2008) or even reversed effects (see Astur & Constable, 2004; Duarte et al., 

2011; Rekkas et al., 2005). However, it has also been suggested that incorrect source 

memory judgements rely more on familiarity processes than correct judgements 

(Squire et al., 2007). For the present research questions, a source memory paradigm 

was chosen over the alternative approach, namely, the R-K procedure, in order to 

assess recollection objectively and test for pattern reinstatement relating to criterial 

information.  
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 Overall, memory performance, especially item memory performance, was 

very high across all experiments, most likely due to the use of multiple encoding 

presentations. While memory research generally aims for above chance memory 

performance to limit the number of guesses, in the present research, the number of 

misses was too low to be included in any of the neuroimaging analyses. As the main 

objective was to further our understanding of pattern similarity in relation to memory 

processes, being able to contrast hits and misses in addition to contrasting source 

memory outcome, would have allowed some replications of previous research (e.g., 

Ritchey et al., 2013; Ward et al., 2013; Wing et al., 2015; Xue et al., 2010). Such 

replications would increase the validity of the novel findings surrounding source 

memory and encoding modality or encoding context condition, presented in this 

thesis. Moreover, a number of the present findings were revealed in exploratory 

analyses. Therefore, those research findings will have to be replicated in order to 

reach more reliable interpretations and stronger conclusions. Exploratory, data-

driven analyses have long been claimed to be important to discover trends in the data 

that may otherwise be ignored and can lead to the development of novel research 

questions (Hoaglin, Mosteller, & Tukey, 1983; Loftus, 1993; Tukey, 1980). 

Furthermore, in neuroimaging research, exploratory approaches, such as searchlight 

analyses have become widely integrated and, when performed and interpreted 

cautiously, provide a tool to understand complex neural patterns and relate those to 

cognition (Cohen et al., 2017; Etzel, Zacks, & Braver, 2013). 

7.3.1 Chapters 3 & 4 

The behavioural data presented in Chapters 3 and 4 showed that not only 

item memory but also source memory performance was very high. Therefore, not 

only misses had to be excluded, but also for the EEG experiment, hits- judgements 

could not be further divided into the three encoding modalities due to low trial 

counts. Therefore, it was not possible to analyse ERPs with respect to all three 

factors of interest during the study phase, i.e., subsequent source memory 

performance, repetition and encoding modality. Instead, several analyses were 

carried out, always averaging across one factor, testing for interactions between the 

remaining two factors. The results from these analyses revealed a main effect of 

subsequent source memory but only when averaging across the repetition factor and 

not when averaged over the modality factor. This result indicates that averaging over 
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one of the factors affected the obtained results. Furthermore, generally low trial 

counts result in lower statistical power. Psychological and neuroscience research has 

often been criticised for underpowered research, mostly due to small sample sizes 

but also because of multiple statistical comparisons aiming to test several hypotheses 

(Button et al., 2013; Maxwell, 2004; Poldrack et al., 2017). The present research is 

no exception to this, however, limited time and funding resources often make it 

impossible to meet the gold standard. 

Moreover, in the experimental design used for experiment 1 and 2, some 

items were presented as pictures during the study phase but then cued with words 

during the recognition task. It could be argued that this constitutes an unfair 

comparison between the encoding modalities. However, this set of experiments did 

not investigate whether picture or word stimuli were better remembered, instead one 

of the aims was to test the hypothesis that reinstatement of pictorial information 

could be observed during the test phase when the concept was cued with a word, i.e., 

without the picture. Additionally, when choosing the stimuli from the Bank of 

Standardized Stimuli (BOSS) Phase II (Brodeur et al., 2014), only concepts with 

more than 70% name agreement were included.   

 

7.3.2 Chapters 5 & 6 

The main limitation of the experimental design used in experiments 3 and 4 

(presented in Chapters 5 and 6) was that stimuli repeated in the same task condition 

were always repeated in the same block/run. Stimuli repeated in different contexts 

were repeated once per block/run. This created a systematic difference in repetition 

lag between the two encoding task conditions, whereby same task encoding was 

associated with shorter repetition lags than different task encoding. Although a 

control analysis (reported in 5.3.2.3) indicated that LPC amplitudes were not related 

to repetition lag, this consistent bias between the two conditions cannot be entirely 

controlled for in statistical analyses. Therefore, any differences between the two 

encoding task conditions may have arisen because of a difference in repetition lag 

rather than encoding context. However, there are a number of reasons to assume that 

the effect of lag was minimal. Previous research has shown that the effect of 

repetition lag on ERPs and haemodynamic responses was mainly quantitative and 

not qualitative (Henson et al., 2004), therefore, repetition lag is unlikely to explain 
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the findings, which suggest distinct mechanisms to be involved in same and different 

task encoding. Moreover, research has demonstrated that lag effects are much more 

prevalent and have greater magnitudes when comparing immediate and distant 

repetitions (e.g., Henson, 2003; Renoult, Brodeur, & Debruille, 2010). In the present 

experimental design, study repetitions were typically spaced by multiple trials (i.e., 

EEG repetition lags: MSameTask = 29 ±1, MDifferentTask = 144 ±2; fMRI repetition lags: 

MSameTask = 24 ±1, MDifferentTask = 120 ±2). A knock-on effect of the limitation 

concerning this experimental design was that pattern similarity was highly affected 

by stimuli being either repeated within a run or across runs. Within-run pattern 

similarity was obviously going to be higher than across-run pattern similarity. 

Therefore, the two conditions could not directly be compared. However, this should 

not have affected the source memory contrasts within encoding conditions, nor the 

interactions showing opposite patterns for the two encoding conditions in relation to 

source memory performance.  

In the discussion of Chapter 5, another issue was raised relating to the 

pseudo-randomisation of task order used in this experiment. In the different task 

condition, over frontal electrode sites, a repetition effect emerged that suggested 

presentations 1 and 3 to be associated with more frontal negativity compared to 

presentations 2 and 4. As previous research (e.g., Renoult et al., 2012; Van Strien et 

al., 2005), including Chapter 3 of the present thesis, has typically reported gradual 

increases in frontal negativity, it was speculated that the frontal repetition pattern 

reported in Chapter 5 may have been related to the way that task order was pseudo-

randomised. This pseudo-randomisation meant that tasks were either presented in the 

order of 1, 2, 3, 4 or 3, 4, 1, 2 (1 = gender task, 2 = show business task, 3 = British 

task, 4 = like task). It was suggested that this frontal repetition pattern might reflect 

that, although all tasks required some form of semantic elaboration, the level of 

difficulty or processing depth required by tasks 1 and 3 may have been different 

from tasks 2 and 4. Additional analyses of task accuracy and RTs are presented in 

Appendix A and indicated that accuracies were higher in task 1 (gender) and task 3 

(British) compared to task 2 (show business) in both experiments. Furthermore, RTs 

for responses in task 2 were slower compared to task 1 and 3. Together, these 

behavioural results suggest that task 2 was more difficult. Therefore, it is likely that 

the FN400 is less sensitive to repetition than it is to task difficulty and the level of 

required semantic elaboration. However, no such patterns were observed for the LPC 
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and different levels of processing depth should not have affected pattern reactivation 

of individual items in the RSA. 

 

7.4 Theoretical implications 

The present research provided novel insights into repeated encoding and 

retrieval of source memory information. The results support a range of prominent 

theories of memory formation and retrieval. Most notably, the findings also provide 

influential support for pattern reactivation to have differential effects on source 

memory performance depending on whether material is encoded in the same or 

different contexts. Therefore, this evidence potentially prompts an extension of 

existing theories.  

7.4.1 EEG investigations  

Taken together, the EEG data presented in Chapters 3 and 5, revealed 

repetition and reinstatement effects. In Chapter 3, the results indicated that an early 

occurring repetition effect was independent of subsequent source memory and 

encoding modality. In contrast, the repetition effect reported in Chapter 5 was 

observed in a slightly later time window, which largely overlapped with the timing 

of the LPC. This repetition effect was further shown to predict subsequent source 

memory performance, consistent with the role of the LPC in episodic memory 

recollection (e.g., Friedman & Johnson, 2000; Rugg & Curran, 2007; Wilding & 

Ranganath, 2012). It therefore appears that the timing of the repetition effect 

determines whether it is related to subsequent source memory performance. This 

finding may explain why some research failed to demonstrated a link between ERP 

repetition effects and subsequent memory performance (e.g., Friedman et al., 1996), 

i.e., the repetition effect may have occurred earlier and therefore independently of 

memory processes, perhaps due to lower encoding task demands.  

In both EEG investigations, the repetition enhancement in parietal positivity 

was related to decreases in reaction times, i.e., repetition priming. This indicates that 

irrespective of the timing of a parietal repetition effect, it is associated with an 

implicit measure of memory. In other words, the link between repetition and implicit 

memory would be more stable over time than the link between repetition and 

expliciti memory. Future research could focus on the latency of repetition effects and 

test the hypothesis that early repetition is only associated with implicit memory and 
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occurs independently of explicit memory processes. Repetition effects occurring 

during the LPC time window, on the other hand, reflect implicit and explicit memory 

processes. Furthermore, future investigations should aim to examine what influences 

the latencies of repetition effects. It may be that the degree of semantic elaboration 

and episodic associations required by the encoding task, shift the latency of 

repetition effects. In the present research, participants either performed an 

indoor/outdoor judgement task or made semantic or personal judgements about 

famous people; the experiment in which famous people were judged is likely 

associated with deeper semantic and episodic stimulus processing. Single-trial 

analyses during the study phase suggested that the observed parietal repetition 

effects were only related to item-specific repetition between the first and second 

stimulus presentation, which was consistent across both EEG experiments. This 

result led to an interesting new research question concerning ERP repetition effects 

that occur after the second presentation. It may be that these repetition effects do not 

index item-specific repetition but rather repeated task performance in an ongoing 

experiment. This hypothesis remains to be tested. However, the parietal effects 

observed in these two experiments provided support for the LPC to index novelty. 

With the aim to draw potential parallels between the EEG and fMRI repetition 

effects, it was suggested that repetition-related changes in parietal EEG amplitudes 

may reflect fMRI repetition suppression rather than enhancement. Generally, 

because of the robustness of neural repetition effects, a repetition paradigm may 

provide an appropriate way of assessing similarities between EEG and fMRI results 

in future research. As the comparisons between those neuroimaging techniques was 

not the primary aim of this research, the here proposed hypotheses will have to be 

taken as speculative. While performing the same statistical tests may facilitate 

comparison between the results, it is often not appropriate or even feasible to do so, 

because scalp EEG data are inherently different from fMRI data. In order not to 

undermine the relative contribution of each technique (i.e., temporal resolution for 

EEG and spatial resolution for fMRI), the two resulting measures have to be treated 

as different. However, it is also important to highlight the need for increased 

integration of EEG and fMRI results in order to obtain a more comprehensive 

understanding of the complex mechanisms underlying repeated episodic memory 

encoding. 
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The EEG results for a frontal FN400 component did not particularly inform 

ongoing debates regarding its functional interpretation. In Chapter 3, FN400 mean 

amplitudes at study were shown to be modulated by repetition, potentially 

supporting the FN400 being associated with semantic priming (Voss & Paller, 2009; 

Yovel & Paller, 2004). However, the single-trial analyses indicated that this priming 

effect was not item specific. In Chapter 5, when stimuli were encoded in different 

contexts, the FN400 ERP repetition effect showed an unexplained pattern and no 

reliable frontally distributed repetition-related changes could be identified with 

mass-univariate analyses. It was speculated that the observed patterns, which were 

initially attributed to repetition, might instead reflect differences in semantic 

processing depth during the different tasks. Previous research indicated that FN400 

amplitudes were sensitive to conceptual priming, but only when stimuli were rated as 

meaningful by the participants (Voss et al., 2010). Considering the heterogeneity of 

FN400 results in subsequent memory paradigms, it appears that this component may 

be modulated by a cognitive process that is typically not accounted for. Future 

research may investigate the impact of different depths of semantic elaboration 

and/or subjective meaning of stimulus and context on FN400 amplitudes. 

Finally, in both EEG experiments, LPC amplitudes at test were shown to be 

sensitive to information associated with the study phase. This may indicate the 

reinstatement of such study phase information, i.e., encoding modality or encoding 

context. However, differences in ERP amplitudes do not truly reflect pattern 

reinstatement as they are merely based on mean activations rather than distributed 

patterns. Nonetheless, because of the vast amount of evidence supporting the LPC’s 

role in recollection-based memory judgements (Chen et al., 2014; Duarte et al., 

2004; Friedman & Johnson, 2000; Rugg & Curran, 2007; Wilding & Ranganath, 

2012; Woodruff et al., 2006; Yu & Rugg, 2010), it is plausible that LPC amplitudes 

could be modulated by the content that is recollected. In Chapter 5, LPC amplitudes 

were shown to be larger for stimuli that were previously associated with multiple 

contexts compared to stimuli that were repeatedly encoded in only a single context. 

This was interpreted as indexing a larger amount of retrieval cues or associated 

information, in line with previous suggestions that LPC amplitudes are sensitive to 

the amount of episodic detail that is recollected (see Wilding, 2000). With respect to 

reinstatement during the test phase, multivariate frequency-analyses of intracranial 

EEG recordings have successfully demonstrated reinstatement effects (Yaffe et al., 
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2014; Zhang et al., 2015). However, those investigations typically involve pre-

surgical patients and, therefore, generalisability to healthy populations is unclear. 

Future research may expand these LPC findings of content-sensitivity to pattern 

reinstatement by measuring spatio-temporal pattern similarity between encoding and 

retrieval. To the author’s knowledge, only one study so far, has examined spatio-

temporal EEG patterns in the context of memory formation (Lu, Wang, Chen, & 

Xue, 2015). It was reported that higher pattern similarity across repetitions was 

associated with superior episodic memory outcome, in line with previous fMRI 

research results (e.g., Ward et al., 2013; Xue et al., 2010). However, due to the 

novelty of using RSA for EEG data (i.e., the absence of well-define preprocessing 

and analysis pipelines) and the low trial counts in the present EEG experiments, the 

present thesis does not report any EEG RSA findings.  

 

7.4.2 fMRI investigations 

The mass-univariate fMRI investigations presented in Chapter 4 and 6 were 

primarily concerned with the effects of subsequent source memory performance and 

encoding modality or encoding context condition on repetition-related changes in 

mean activation. Both fMRI experiments provided support for an association 

between repetition enhancement effects and explicit memory processes. More 

precisely, repetition enhancement was found to be stronger for subsequent hits+ than 

hits- judgements. These enhancement effects were primarily observed in regions that 

are typically associated with semantic feature integration and representing items 

amodally (Binder et al., 2009; Fairhall & Caramazza, 2013; Grindrod et al., 2008), as 

well as regions that are part of a wider memory network (Cabeza et al., 2012; 

Johnson & Rugg, 2007; Kim, 2011; Rugg & King, 2017). It was therefore suggested 

that repetition enhancement effects reflected explicit retrieval during incidental 

encoding (Kim, 2017; Segaert et al., 2013) and that these explicit retrieval processes 

during the study phase contributed to successful source retrieval during the test 

phase. While repetition suppression was reported to be independent of subsequent 

source memory judgements in Chapter 4, in Chapter 6, repetition suppression in the 

left inferior frontal gyrus was found to be stronger for subsequent hits+ than hits- 

judgements when items were repeatedly studied in the same context. It was 

suggested that this effect may index decreasing levels of feature selection (Grindrod 
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et al., 2008), because the context in which the item was encoded remained stable 

across repetitions. Generally, a vast amount of research reporting repetition-related 

changes in mean activation exists in the literature, however, the interpretation of 

such repetition effects is still debated (see Davis & Poldrack, 2013; Segaert et al., 

2013). Because repetition is associated with increases in memory performance, it can 

be difficult to contrast hits and misses. Future research should aim to further our 

understanding of repetition-related changes in brain activity, which went beyond the 

scope of the present research. However, in order to understand how the brain 

processes repeated items in relation to subsequent memory performance, more 

conclusive interpretations of repetition suppression and enhancement effects need to 

be reached. 

The primary aim of the present research was to investigate how the 

relationship between pattern similarity and source memory performance is 

influenced by encoding modality or encoding context. Using RSA, the first fMRI 

investigation (Chapter 4) focused on contrasting pattern similarity for hits+ and hits- 

judgements in a modality-independent context as well as within three different 

encoding modalities. Across repeated encoding presentations, the results supported 

the reactivation view (Benjamin & Tullis, 2010; Thios & D’Agostino, 1976), by 

showing that higher pattern similarity was generally associated with superior 

subsequent source memory. Interestingly, pattern similarity in occipital gyri 

predicted subsequent source memory in the uni-modal conditions, while pattern 

similarity in frontal and temporal gyri predicted source memory performance in the 

multi-modal encoding condition. Similarity patterns in occipital gyri were thought to 

reflect reactivation of stimulus-specific perceptual features, while similarity in 

frontal and temporal gyri was suggested to index feature integration through 

reactivation of conceptual features (Binder et al., 2009; Fairhall & Caramazza, 

2013). This indicates that reactivation of different stimulus properties may have 

contributed to successful source memory formation. Moreover, when successful 

source memory encoding, i.e., subsequent hits+ judgements, was compared across 

the different encoding modalities, occipital-temporal pattern similarity was found to 

reflect processing of visuo-perceptual information of stimuli repeatedly encoded as 

pictures. Inferior parietal regions, on the other hand, represented items alternately 

encoded as pictures and words more similarly, which was interpreted as indexing 

conceptual processing and feature integration in regions corresponding to semantic 
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processing (Bonnici et al., 2016; Devereux et al., 2013; Shimamura, 2011; Yazar et 

al., 2017). Finally, ERS patterns relating to source memory performance were found 

to be largely independent of encoding modality. Higher ERS for hits+ than hits- 

judgements was reported in superior occipital and posterior parietal regions, which is 

consistent with previous research (e.g., Ritchey et al., 2013; Wing et al., 2015). 

Moreover, evidence was provided for the reinstatement of pictorial information 

during the test phase when items encoded as pictures were cued with the 

corresponding word. Those results support not only the reactivation view, but also 

theories proposing similar processes to take place during encoding and retrieval, 

such as the encoding specificity principle (Tulving, 1983; Tulving & Thomson, 

1973), the transfer-appropriate processing account (Morris et al., 1977) and the 

cortical reinstatement hypothesis (Nyberg et al., 2000; Rugg et al., 2008; Wheeler et 

al., 2000). 

A second fMRI investigation (Chapter 6) was concerned with the effects of 

encoding context condition on similarity patterns. Theoretical accounts, initially 

based on behavioural data, suggested that repetition-related improvements in 

memory performance underlie either reactivation (Thios & D’Agostino, 1976) or 

encoding variability (Hintzman, 1986; Hintzman & Block, 1971). Research 

employing retroactive interference paradigms showed that context memory is 

impaired when the same item is repeated in multiple contexts. The behavioural 

results reported in Chapters 5 and 6 largely support this notion, as different task 

encoding was associated with worse source memory (Anderson & Neely, 1996; 

Hupbach et al., 2007; G. Kim et al., 2017; McGovern, 1964). However, different as 

compared to same task encoding was also associated with superior item memory, 

providing some support for the encoding variability view (Hintzman, 1986; 

Hintzman & Block, 1971). It was suggested that stimulus repetition in a different 

context, reactivates the memory associated with the first context (McClelland et al., 

1995; Norman & O’Reilly, 2003) in order to integrate the novel context by 

generalising across the two (Richter et al., 2016; Schlichting & Preston, 2015; 

Schlichting et al., 2014; Shohamy & Wagner, 2008; Zeithamova & Preston, 2010). 

This interpretation could explain superior item memory as well as worse source 

memory to be associated with different context encoding. However, no explanation 

has been put forward for the successful encoding of contextual information during 

different context encoding. In the present research, reactivation was predicted to 
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enhance source memory in the same task condition, but hinder successful source 

encoding in the different task condition. The RSA results generally supported these 

predictions. Interactions between source memory performance and encoding task 

condition indicated that pattern similarity in the same task condition was higher for 

hits+ than hits- judgements, consistent with previous research (e.g., van den Honert 

et al., 2016) and supporting the reactivation view (Benjamin & Tullis, 2010; Thios & 

D’Agostino, 1976). However, in the different task condition, similarity was lower for 

hits+ than hits- judgements. Across encoding presentations, this interaction was 

reported in the posterior cingulate cortex and the precuneus. It was suggested that 

reactivation was associated with worse context memory, indicating that another 

mechanism, potentially the creation of multiple traces (Nadel & Moscovitch, 1997), 

is associated with successful context encoding. Similar patterns of results were 

observed for encoding-retrieval similarity. Interactions in lateral parietal regions, 

superior occipital gyri and precuneus revealed higher levels of reactivation to be 

associated with superior source memory in the same task condition but worse source 

memory in the different task condition. Additionally, encoding-retrieval pattern 

similarity to items encoded in multiple contexts was lower for hits+ than hits- 

judgements in the ventromedial prefrontal cortex. These findings partly supported a 

variety of theoretical accounts, but also indicate that those existing frameworks 

should be further developed to incorporate the present findings in one 

comprehensive theory. For example, the results relating to different task encoding 

largely support the multiple trace theory, but similar to the CLS account (McClelland 

et al., 1995; Norman & O’Reilly, 2003; O’Reilly & Norman, 2002), this framework 

suggests that it is mainly the hippocampus that is involved extracting unique 

episodic and contextual features by assigning distinct representations to each event 

(Nadel & Moscovitch, 1997; Norman, 2010; O’Reilly et al., 2014). Here, evidence 

was provided for posterior parietal regions to be engaged in similar processes, by 

representing items associated with multiple contexts less similarly when the context 

is successfully encoded. Furthermore, the results from Chapters 4 and 6 consistently 

supported an important role for reactivation in memory formation and retrieval.  

Because same and different task encoding was shown to be associated with 

differential item and source memory outcomes as well as different levels of pattern 

reactivation, future theoretical accounts should aim to incorporate the relative 

benefits of item and context encoding and how these processes are supported or 
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hindered by reactivation. Moreover, because of the relative novelty of the 

experimental design employed in experiments 3 and 4, the results will have to be 

replicated to reach stronger conclusions. The key findings from the present research 

also have potentially far-reaching real world implications, as they provide insights 

into two different encoding strategies, i.e., mere repetition and encoding variability. 

Future research may investigate how behavioural strategies can enhance or hinder 

neural reactivation in order to optimise memory performance. Moreover, a paradigm 

with more balanced frequencies of hits+ and hits- judgements as well as misses, will 

likely provide additional insights into the role of reactivation in item memory 

encoding and retrieval. The present results have led to exciting new research 

questions, showing that generalisation and neural reactivation inhibit multiple 

context encoding. However, it is important to remember that generalisation across 

contexts is also often useful for memory formation (e.g., Binder & Desai, 2011; 

Cermak, 1984).  

7.4.3 Lay summary of theoretical implications 

We have known for a long time now that repeated learning typically leads to 

better memory performance. Despite numerous theoretical frameworks, it remains 

largely unclear how repetition boosts memory performance. Two different 

explanations of how repetitions improves our memory have been put forward: 1) 

repetitions cause the initial memory to be reactivated, which makes it more stable, 2) 

each repetition is encoded as a unique event, therefore, we have more ways of 

accessing a memory compared to when it is only encoded once. These theories have 

developed over time to integrate relevant behavioural, cognitive and neural results. 

The present research was designed to test the predictions from those theoretical 

accounts during different forms of repeated learning, for example, when presented 

with an object either repeatedly as a picture, repeatedly as a word or as both 

alternatively, or if we repeated a to-be-learnt stimulus in the same context or in 

different contexts. Objective measures of memory performance and brain activation 

were obtained during experiments in which participants repeatedly learned different 

stimuli followed by a memory test. We probed different types of memories: 1) 

participants’ memory for the stimulus they had previously learned, termed item 

memory, and 2) their memory for additional details relating to the learning event, 

such as whether a stimulus was a picture or a word or whether they had learnt in one 
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or multiple contexts, termed source memory. Generally, our results indicated that 

memory performance was improved when brain activation patterns were reactivated 

across repetitions, including during the test phase when memories were retrieved. 

We did find that those pattern reactivations occurred in different brain regions 

depending on whether a stimulus was presented as a picture or word or both. This 

indicates that different brain regions are involved during the learning of different 

kinds of stimuli, but they appear to perform a similar mechanism – reactivation – in 

order to boost memory performance. Additionally, when participants remembered 

that they previously encountered the picture of an object, despite being probed with 

the correspding word during the memory test, the brain reactivated the patterns 

relating to the pictures presented during the learning phase. One exception to this 

general finding of reactivation supporting memory was observed when participants 

learnt stimuli in different contexts. Here, higher brain pattern reactivation was 

associated with poorer source memory, i.e., memory for the contexts a stimulus was 

studied in. This may be explained, because reactivation leads to higher levels of 

generalisation across repeated events, which typically makes us remember the gist 

better but at the cost of additional information specific to either one of the times we 

encountered the event. Finally, if the time it takes for the brain to process and display 

repetition-related changes overlaps with the time at which memory-related processes 

occur, it may be easier for us to predict subsequent memory performance from brain 

measures. Overall, our results suggested that mere repetition was associated with 

better source memory performance but repeatedly learning something in different 

contexts improves our memory of the actual stimulus and these two outcomes are 

supported by different underlying brainc mechanisms.  

 

7.5 General conclusion 

To summarise, the research presented in this thesis examined the neural 

correlates of different repeated encoding conditions in relation to subsequent source 

memory performance as well as reinstatement effects observed during the test phase. 

A particular emphasise was placed in the role of pattern reactivation in source 

memory formation and retrieval.  

The results generally supported theories of reactivation and reinstatement, as 

it was shown that higher pattern similarity, indexing higher levels of reactivation, 
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was associated with superior source memory performance. Pattern reactivation was 

found to predict source memory in different regions, depending on the modality 

stimuli were encoded in. Reactivation of different stimulus features was suggested to 

predict source memory performance when stimuli were repeated perceptually or 

conceptually. However, when items were encoded in different contexts, lower levels 

of reactivation across repeated encoding and between encoding and retrieval were 

associated with superior source memory performance. These results were mostly 

obtained in posterior midline and lateral parietal regions but also in the ventromedial 

prefrontal cortex. The findings indicated that two different mechanism underlie 

successful context encoding when stimuli are either repeatedly encoded in the same 

context or associated with multiple contexts, namely pattern reactivation and the 

creation of multiple traces, respectively. Moreover, the EEG results suggested that 

the timing of a repetition effect indicates whether it predicts subsequent source 

memory performance. The present findings have furthered our understanding of 

repeated encoding of item and source memory information and developed novel 

questions and directions for future research.  
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Appendices 

Appendix A – Encoding task accuracy and reaction times (experiments 3 

and 4) 

 

Chapter 5: Encoding task accuracy and reaction times  

While the remainder of the manuscript is primarily concerned with the effects 

of encoding conditions (same vs. different encoding context), in this section, 

differences in behavioural performance across the four encoding tasks (gender, show 

business, British, like) are analysed. First, frequencies of correct answers to the 

gender, show business and British task were compared in a repeated-measures 

ANOVA with the factor task. The main effect of task was significant, F1,27 = 24.984, 

p < .001, with most of the correct responses made in the gender task (M = 91% ± 

15), followed by the British task (M = 80% ± 9) and the least correct responses were 

given to the show business question (M = 69% ± 10). Although participants 

responded to the question whether they liked the famous person more often with 

‘yes’ (M = 58% ± 17) than with ‘no’ (M = 42% ± 17), this difference was not 

statistically significant, t20 = 2.039, p = .055. 

RTs to the three tasks (gender, show business, British) were analysed in 

terms of correct and incorrect responses. A 3 x 2 repeated-measures ANOVA 

revealed a main effect of task, F2,38 = 6.821, p = .003, and a main effect of task 

accuracy, F1,19 = 11.500, p = .003. Follow-up analyses revealed that RTs to the show 

business task were slower than RTs to both, the gender task, p = .021, and the British 

task, p = .037. Correct responses were also given faster than incorrect responses. A 

paired samples t-test revealed that ‘yes’ responses were made faster than ‘no’ 

responses in the like task, t20 = 2.449, p = .024.  

 

Chapter 6: Encoding task accuracy and reaction times 

As in the EEG version of this experiment, this section is only concerned with 

effects across behavioural performance in the four encoding tasks (gender, show 

business, British, like). First, frequencies of correct responses were compared across 

tasks in a one-way repeated-measures ANOVA with three levels (gender, show 

business, British). This ANOVA revealed a main effect of task, F2,32 = 52.513, p < 

.001, with all three tasks differing in terms of correct responses, all p < .001. The 
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most correct responses were given in the gender task, followed by the British task 

and the least correct responses were made in the show business task. A paired-

samples t-test was carried out on the frequencies of like and dislike responses made 

in the like task. No statistically significant differences were found, t16 = 1.766, p = 

.096, with a tendency for more like (M = 58 ±19) than dislike responses (M = 42 

±19).  

RTs to the three tasks were analysed in terms of correct and incorrect 

responses. A 3 x 2 repeated-measures ANOVA revealed a main effects of task, F2,32 

= 7.186, p = .003, and task performance, F1,16 = 6.666, p = .020. Follow-up analyses 

revealed that RTs to the gender task were faster than RTs to both, the show business 

task, p = .026, and the British task, p = .027. Correct responses were also given faster 

than incorrect responses. No statistically significant differences were found in RTs 

for ‘yes’ and ‘no’ responses in the like task, t16 = 0.736, p = .472. 
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Appendix B – Trail-making task 

The researcher instructed participants to draw a lines to connect the numbers in 

ascending order. This task was merely a distractor task. 
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The researcher instructed participants to draw lines to connect the circles in an 

ascending patterns, but with the added task of alternating between the numbers and 

letters (i.e., 1-A-2-B-3-C, etc.). 
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Appendix C – Personal memories questionnaire 
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Appendix D – Information sheet, consent form, debrief (EEG) 
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Appendix E – Information sheet, consent form, debrief (fMRI) 
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