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Abstract 

Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms (HABs) 

globally, leading to large scale fish kills that have severe ecological and economic implications. 

 

A HAB on the Norfolk Broads, U.K, in 2015 caused the deaths of thousands of fish. Using 

optical microscopy and 16S rRNA gene sequencing of water samples, P. parvum was shown to 

dominate the microbial community during the fish-kill. Using liquid chromatography-mass 

spectrometry (LC-MS), the ladder-frame polyether prymnesin-B1 was detected in natural 

water samples for the first time. Furthermore, prymnesin-B1 was detected in the gill tissue of a 

deceased pike (Exos lucius) taken from the site of the bloom; clearing up literature doubt on 

the biologically relevant toxins and their targets. 

 

Using microscopy, natural P. parvum populations from Hickling Broad were shown to be 

infected by a virus during the fish-kill. A new species of lytic virus that infects P. parvum was 

subsequently isolated, Prymnesium parvum DNA virus (PpDNAV-BW1). Morphological analysis 

and genome sequencing revealed PpDNAV-BW1 to belong to the Megaviridae family of algal 

viruses. We propose that viral lysis of P. parvum may act as a novel release mechanism for 

intracellular toxins. 

 

The sialic acid, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) has recently been 

shown to be important in viral infections of microalgae. LC-MS was used to demonstrate that 

P. parvum contains KDN. Candidate sequences for KDN biosynthesis from P. parvum were 

cloned and expressed and shown to produce cytidine monophosphate-activated KDN (CMP-

KDN). Using the newly characterized sequences in BLASTp analysis, we revealed that sialic acid 

biosynthesis is widespread amongst algae. 

 

Using bioinformatics, NDP-β-L-rhamnose biosynthesis was explored in P. parvum and across 

other algae. We propose that the haptophytes have acquired bacterial TDP-β-L-rhamnose 

biosynthetic genes from horizontal gene transfer and subsequently passed them on to some 

dinoflagellate species. Sugar-nucleotide profiling of two representative algae support this 

proposition. 
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TPWD   Texas Parks and Wildlife Department 

Tris   trisaminomethane 

UDP   uridine diphosphate 

UEA   University of East Anglia 

UER1   plant bifunctional rhamnose biosynthetic protein 

UGD   UDP-glucose 4,6-dehydratase 

UHPLC   ultra-high performance liquid chromatography 

VLP   virus-like particle 
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1.1 Introduction 

1.1.1 Harmful algal blooms 

Harmful algal blooms (HABs) are a rapid expansion of a phytoplankton population in an aquatic 

ecosystem [1]. Typically only involving one or a small number of phytoplankton species, these 

blooms are frequently harmful to the surrounding ecosystem either through production of 

algal toxins, mechanical damage to organisms, water hypoxia or other means [2]. Frequently, 

HABs cause damage to human and animal health, ecosystems, and aquatic organisms such as 

fish which in turn can cause significant economic damage. The frequency of HABs appears to 

have grown in recent years, and in turn there has been an increased focus from scientists and 

regulatory authorities to combat the negative impacts of HABs. Whilst the focus from 

governing bodies has been on mitigation or management, scientists have sought to investigate 

the causes of HABs and the toxin-producing species that cause them [3]. 
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1.1.2 Prymnesium parvum 

Commonly referred to as golden algae due to the fucoxanthin pigments contained in its 

chloroplasts, Prymnesium parvum is a unicellular, cosmopolitan, toxin-producing microalga 

belonging to the Haptophyta phyla. As a mixotroph, it can ingest dissolved organic matter 

(DOM) and feed on bacteria and protists in addition to obtaining energy through 

photosynthesis. Its successful cosmopolitan growth is in part due to the euryhaline nature of P. 

parvum, having been shown to tolerate water salinity levels ranging from 3 (just above 

freshwater) to 30 (sea water strength) practical salinity units (PSU) [4, 5].  

1.1.2.1 Phylogeny 

Although the phylogeny of protists is still undergoing rapid changes [6], Prymnesium parvum is 

currently classified as a member of the Chromista kingdom of life, Haptophyta phylum, 

Prymnesiophyceae class, Prymnesiales order and Prymnesiaceae family. As a member of the 

Haptophyta phylum, P. parvum is a close relative of the bloom-forming coccolithophore, 

Emiliania huxleyi, whose oceanic blooms are often so large that they can be seen from space 

[7]. Other members of the Prymnesiales, including Chrysochromulina, have previously been 

shown to form independent clades, with the Prymnesium genus occupying one independent 

clade and members of Haptolina forming a sister group to Prymnesium (Figure 1). This analysis 

by Edvardsen et al was based on a combination of nuclear 18S rRNA and partial 28S rRNA gene 

sequences, as well as plastid 16S rRNA ribosomal encoding DNA sequences [8].  
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Figure 1 – Phylogenetic tree of members of the Prymnesiales based on nuclear 18S rRNA, partial 28S 

rRNA and plastid 16S rRNA gene sequences.  Reprinted with permission from B. Edvardsen et al, 

European Journal of Phycology, 2011, 46(3), 202-228. Copyright 2011 Taylor & Francis. 

 

1.1.2.2 Morphology 

P. parvum is a unicellular microalga, ellipsoidal in shape, where the cell length is seen to range 

from 8-11 µm [9]. Unlike most toxin-producing microalgal blooms that are frequently referred 

to as “red-tide” blooms, P. parvum forms blooms that are golden in appearance due to the 

accessory pigment fucoxanthin in its chloroplasts (Figure 2B).  

 

Although it is common for motile microalgae to contain just a single flagellum, P. parvum 

contains 2 flagella and 1 haptonema (Figure 2A). Whilst the flagella are used for motility in the 

water column, it has been proposed that the haptonema is used for attachment of prey in the 
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phagocytic process, aiding the organism in mixotrophy [10]. The nucleus of the organism is 

found between chloroplasts that line the inside of the cell membrane. Unusually (and often 

used for phylogenetic characterization), is the presence of two layers of scales on the cell 

surface. Scales are found in two forms, with either extremely inflexed rims or not (Figure 2B). 

These features, as well as a 2:1 flagella:haptonema ratio, are often used for phylogenetic 

analysis [11]. 

 

 

Figure 2 – Fine morphology of Prymnesium parvum.  (A) P. parvum cell as observed by scanning 

electron microscopy (background digitally removed). Note the presence of 2 long flagella and a 

shorter haptonema. (B) 3 P. parvum cells observed by optical microscopy at 10,000x magnification 

showing the typical golden colour associated with blooms of the organism. (C) Scales of P. parvum 

observed by transmission electron microscopy (TEM) (scale bar represents 100 nm). 

1.1.2.3 Life cycle 

Current studies into the life cycle of P. parvum have resulted in ambiguous conclusions, with 

most theory being based on the work of Larsen et al in the 1990s [12, 13]. The current belief is 
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that, although P. parvum is eukaryotic, reproduction occurs via prokaryote-like binary fission, 

in a longitudinal manner, dividing approximately once per day [14].  

 

A heteromorphic life cycle has been proposed for P. parvum, with both haploid and diploid 

stages. It was previously believed that P. patelliferum was a different species to P. parvum but 

work by Larsen and Medlin showed that they are one species using molecular phylogenetic 

analysis [12]. Follow up work showed that P. parvum exists in both haploid and diploid life 

stages, whilst P. patelliferum is always haploid [13]. This confusion over species assignment 

was eventually resolved with a plethora of mating experiments between P. parvum and P. 

patelliferum in their different life stages, when the authors showed that P. patelliferum 

(haploid) was unable to produce P. parvum (diploid or haploid) but combinations of P. parvum 

surprisingly produced both haploid P. parvum and P. patelliferum [13]. A life cycle has 

therefore been proposed that shows meiosis of diploid P. parvum to form haploid P. parvum 

and P. patelliferum, and syngamy (the merging of two haploid cells) to form diploid P. parvum 

(Figure 3).  

 

Figure 3 – Proposed life cycle of P. parvum/P. patelliferum.  Redrawn from Larsen and Edvardsen, 

1998 [13]. 
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1.1.2.4 Geographic distribution of blooms 

Toxic blooms of P. parvum have been reported worldwide (Figure 4), highlighting the ability of 

what was once considered a marine organism to thrive in a range of climates [15]. The 

organism has subsequently been classed as being both euryhaline and eurythermal, with 

examples of strains showing wide optimal salinity ranges from 8-25 PSU [16]. Other work has 

also shown various strains to tolerate temperatures from 5-30 oC [5], but tolerance to 

temperatures as low as 2 oC has been reported [17]. P. parvum blooms frequently occur in 

temperate and subtropical regions in low salinity, brackish inland waterways. Cell densities in 

blooms of P. parvum have been known to reach as high as 2 x 105 cells ml-1, a figure only 10-

fold lower than typically found in lab grown conditions [18]. 

 

 

Figure 4 – Reported global distribution of P. parvum blooms.  Image reprinted under a Creative 

Commons Attribution 3.0 Unported (CC BY 3.0 - http://creativecommons.org/licenses/by/3.0/) from 

Manning, S. R.; La Clare, J. W., II. Prymnesins: Toxic Metabolites of the Golden Alga, Prymnesium 

parvum Carter (Haptophyta). Mar. Drugs 2010, 8, 678-704. Copyright 2010 by the authors; licensee 

Molecular Diversity Preservation International, Basel, Switzerland. 

 

Although there is debate as to when the first fish kill due to P. parvum occurred, the first 

recorded kill is believed to have been in the Netherlands and reported by Liebert et al in 1920 

[19]. Recorded kills due to the microalga on the Norfolk Broads, United Kingdom, started in 

1969 [20] although records from the area showed fish kills with similar coloured water and fish 

phenotypes as early as 1894 [21]. Shilo and Aschner reported instances of P. parvum fish kills 

in Denmark and the Netherlands in 1938 and went on to discuss the many problems Israel had 

experienced with deadly blooms in the late 1940s that have since continued [17]. However, 
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the implication of P. parvum in fish mortality is global, with reports of mass kills from Scotland 

[22], Norway [23], Germany [24], Finland [25], China [26] and the USA [27], where it is a 

particular problem to the Texas aquaculture industry [28]. Since the first recorded fish kill due 

to P. parvum in Texas in 1985, Texas Parks and Wildlife Department (TPWD) have estimated 

approximately 34 million fish deaths due to blooms of the alga, a loss economically estimated 

at $13,000,000 [28].  

1.1.3 Prymnesium parvum on the Norfolk Broads 

The Norfolk Broads is a low-lying area that was excavated for peat and fuel prior to the 14th 

century. Subsequent flooding of the area from the 13th century onwards meant work was 

stopped but the digging of channels for resources such as roofing materials continued. This led 

to the formation of 63 broads across Norfolk and Suffolk, connected by channels that exist 

today [21]. The Broads, their channels, and the surrounding marshland acts as a haven for rare 

wildlife, and results in the Norfolk Broads being Britain’s largest protected wetland, recently 

classified as a national park.  

 

Many of the 63 Broads that span Norfolk and Suffolk are traversable by boat, and this has 

created a thriving tourism industry in the area, fuelled by angling and boating activities. 

However, in recent years the area has been tormented with environmental issues such as 

saline incursions and eutrophication, but of particular concern is the frequent recurrence of P. 

parvum blooms that leads to massive losses in fish stocks. Mass fish mortalities since the 1960s 

have been associated with P. parvum, with blooms since then occurring almost annually, 

although with no obvious seasonality. Bales et al discussed particularly large fish kills in 1969 

and 1970, and smaller kills in 1973 and 1975 [20]. They claimed the older ecosystem, of 

particularly the Hicking Broad area and surrounding Upper Thurne area (Figure 5), changed 

from a largely charophyte-dominated state to phytoplankton-dominated by the mid-1970s. 

Their explanation for this was the sudden nesting of black-headed gulls (Larus ridibundus) and 

the resultant eutrophication brought about from gull guano. The gull guano was thought to 

have provided the necessary organic nutrients in the water for the microalgal species such as 

P. parvum to bloom. This theory was later supported by the observation that as the gulls 

dispersed the number of P. parvum cells declined.  
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Figure 5 – Hickling Broad and the Upper Thurne area of the Norfolk Broads.  Reprinted (adapted) with 

permission from P. Holdway et al, Freshwater Biology, 1978, 8, 295-311. Copyright 1977 John Wiley 

and Sons. 

 

As well as the severe environmental impact of P. parvum blooms which can leave broads 

completely devoid of fish, the mass fish mortality also damages the economy. A recent report 

by the Broads Authority estimated that the tourism industry of the Broads contributes around 

£550 million annually to the local economy, a sum that is largely made up by the angling and 

boating activities that the Broads offers [29]. The loss of fish stocks through toxic P. parvum 

blooms threatens this revenue as was seen in Spring 2015 when multiple blooms of P. parvum 

across the Upper Thurne system left waterways littered with the unsightly appearance of dead 

fish (Figure 6). This bloom is discussed in more detail in Chapter 2 of this thesis. 
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Figure 6 – Dead fish on the waterways on the Upper Thurne area of the Norfolk Broads.  Image 

captured by Martin Rejzek on 24th April 2015 during a toxic P. parvum bloom.  

 

1.1.4 Prymnesium parvum toxins 

Since P. parvum was first implicated in fish kills there has been debate on the toxic entity 

responsible, with some researchers suggesting it is a mixture of compounds rather than a 

single toxin [30]. It is generally believed, however, that the toxins produced by P. parvum are 

allelopathic, giving the organism a competitive advantage over other phytoplankton in the 

waterways [31]. The exact mechanism of the toxins in allelopathy is unknown, but inhibition of 

competitor growth, deterrence of grazers and lysis of prey are all strong possibilities. Despite 

the ambiguity, several toxic compounds have been extracted from P. parvum that include 

lipopolysaccharide-like compounds [32], proteolipid [33], galactoglycerolipids [34], fatty acid 

amides [35, 36], fatty acids [37], and the ladder-frame polyether prymnesins [38]. It is worth 

noting that some of these have seen been discredited by Blossom et al [39]. 

 

Because of the current ambiguity on the responsible toxin/s and the difficulty to measure 

these compounds analytically, toxicity assays are often performed on crude cell extracts using 

the erythrocyte lysis assay (ELA) technique [40]. This, however, is only a measure of 

intracellular toxicity so alternative assays also exist which measure extracellular toxicity and 

their effect on fish [41]. Although the exact whereabouts of P. parvum toxins and their mode 

of action is unknown, probably the most convincing work is by Remmel and Hambright who 
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proposed that toxins from P. parvum are intracellular and only released through contact with 

prey or by experimental procedures and natural causes of stress [42] (Figure 7).  

 

 

 

Figure 7 – Assessment of intracellular vs extracellular toxins by Remmel and Hambright.  Experiment 

was designed to utilise permeable membranes to separate P. parvum cells from fish. Fish only died 

when in direct contact with live cells (contact micropredation) or when cells were lysed and the 

filtrate could pass through 0.2 µm membranes. This suggests toxins are intracellular and only released 

by contact or through breakdown of algal cells. PFF = Prymnesium free filtrate. Reprinted with 

permission from Remmel and Hambright, Ecol. Lett, 2012, 15(2), 126-132. Copyright John Wiley and 

Sons. 

 

1.1.4.1 Fatty acids 

Fatty acids have been implicated in the ichthyotoxicity of phytoplankton, cyanobacteria, and 

some lower eukaryotes for years, where it is believed that they act as allelochemicals [37, 43]. 

Henrikson et al have studied the role of fatty acids in P. parvum toxicity in some depth, and 

proposed that the ladder-frame polyether prymnesin-1 and -2 were not the biologically 

relevant toxins in field samples collected from the U.S. nor from laboratory samples [37]. 

Instead, a cocktail of fatty acids was collected from cultures, in which it was found that the 

level of toxicity positively correlated with the degree of unsaturation of the organic 

compounds. Interestingly, the level of fatty acids in lab grown cultures was dramatically higher 



Chapter 1 

   Page | 34  

 

than in field collected samples, questioning the biological relevance of this class of compounds 

in P. parvum environmental toxicity. Despite this, Henrikson et al showed that stearidonic acid 

(Figure 8) isolated from P. parvum displayed a marked level of ichthyotoxicity, with LC50 values 

to fish of 21.9 ± 6.3 µM [37]. 

 

 

 

Figure 8 – Primary fatty acid implicated in P. parvum toxicity.Henrikson et al [37]. 

 

The method of toxicity of fatty acids to algae is believed to be via membrane disruption, as 

shown by fluctuation in K+ ion concentration in culture media when a mixture of cyanobacteria 

and chlorophytes were exposed to a solution of fatty acids; likely a result of K+ ions leaking out 

from a disrupted membrane [44]. Exposure to unsaturated fatty acids resulted in higher 

extracellular levels of K+ ions than exposure to saturated fatty acids, agreeing with other 

researchers that more unsaturated fatty acids are generally more toxic [42, 45].  

 

1.1.4.2 Fatty acid amides 

More recently, fatty acids amides (FAAs) have been implicated in P. parvum toxicity. Most of 

the work carried out in this area was by Bertin et al, who first showed the presence of FAAs in 

both lab and field cultures of P. parvum in 2012 [36]. In this work, seven primary FAAs were 

found from the toxic extracts of P. parvum, as well as one hydroxyamic acid (Figure 9). The 

group went on to show that, unlike fatty acids, these compounds accumulate to lethal levels in 

field cultures, and that an increase in pH and the presence of divalent cations increases the 

toxicity of the compounds [35].  
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Figure 9 – Primary fatty acid amides and hydroxyamic acid isolated from P. parvum.  Figure redrawn 

from Bertin et al, 2012 [36]. 

 

FAAs are abundant in nature [46] and there are previous examples of their isolation from 

microalgae and other marine organisms. Octadecanamide, as well as a suite of others, was 

isolated from the freshwater green alga, Rhizoclonium hieroglyphicum [47]. A particularly 

interesting class of compounds known as the malyngamides (derivatives of tetradecanoic acid) 

have been isolated from the cyanobacterium Lyngbya majuscula [48]. The unusual presence of 

a vinyl chloride in this natural product led to other researchers studying this organism, with 

Sitachitta et al later isolating grenadamide and its derivatives [49].  

 

It is, however, FAAs abundance in nature that led to speculation as to whether these are the 

primary toxins in P. parvum toxicity. As well as the marine organisms listed previously, FAAs 

are produced by plants and are often considered essential components of oils. Oleamide, a 

type of primary FAA, was first discovered to naturally occur in human serum by Arafat et al 

[50]. Oleamide and several of its primary FAA derivatives are known to induce sleep [51], a 

symptom that would explain the lethargic symptoms observed in fish during blooms.  

 

It was however the knowledge that oleamide and its derivatives are frequently used as slip 

agents in laboratory plastics [52] that made Blossom et al question the legitimacy of FAAs as 
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toxins of P. parvum [53]. The group could not detect oleamide in any of the 5 P. parvum strains 

examined, instead showing it could readily be extracted from laboratory plastics. 

1.1.4.3 Prymnesins 

In 1999 Igarashi et al reported isolation of two large, ladder-frame polyether toxins 

subsequently called prymnesin-1 and -2 [38]. In total, just 25 mg of the two compounds was 

isolated from 400 L of cell culture. The compounds were both shown to display haemolytic 

activity and to be ichthyotoxic at nanomolar concentrations, which for prymnesin-2 was shown 

to increase 100-fold from 300 nM to 3 nM in the presence of Ca2+ ions [54]. 

 

Structure elucidation of the two compounds showed them to be polycyclic polyether 

compounds with several unusual structural features (Figure 10). Firstly, both toxins are 

glycosylated; prymnesin-1 contains α-D-ribofuranose, α-L-arabinopyranose, and β-D-

galactofuranose. Galactofuranose is found widely in prokaryotes, but also exists amongst 

lower eukaryotes. Its absence in mammals or plants has made its biosynthetic pathway a 

potential drug target [55, 56]. Unlike prymnesin-1, prymnesin-2 is glycosylated at just one 

position, with the extremely uncommon α-L-xylofuranose. Although xylose is found extensively 

throughout nature, sugars in their furanose ring form are typically less common, with very few 

reports of xylofuranose in natural products [57]. The additional sugar moieties in prymnesin-1 

make it slightly more polar and it therefore elutes ahead of prymnesin-2 in reverse-phase 

chromatography [38].  

 

 

 

Figure 10 – Structure of prymnesin-1 and -2 first reported by Igarashi et al in 1996. 

 

As well as glycosylation, these compounds contain other unusual structural features including 

chlorine atoms, alkyne moieties, a single amine, and a cyclic polyether backbone believed to 

be polyketide-derived. This polyether backbone has been observed in other algal natural 

product toxins, namely the ladder-frame polyether toxins from dinoflagellates that include 
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brevetoxin, yessotoxin, ciguatoxin and maitotoxin. The prymnesins, however, are the first 

example of ladder-frame polyether toxins produced outside of the Dinophyceae. 

 

Although the toxicity of the prymnesins was unquestionable, the minute amounts produced in 

lab cultures and the fact that these compounds had never been detected in natural water 

samples led to speculation that they weren’t the toxins responsible for fish deaths. Following a 

14-year gap in literature reports of the toxins, Manning et al eventually reported on the 

detection of prymnesins-1 and -2 from lab cultures of P. parvum in 2013 [58], although there 

were still no reports of these compounds from natural water samples. However, it appears this 

inability to detect the prymnesins from both lab and natural samples may have been due to 

researchers looking for the wrong compounds; Rasmussen et al recently reported a 

chemodiversity of the prymnesins in 2016 when they identified numerous other types of 

prymnesins from different strains of P. parvum [59]. This new library of prymnesins had slight 

alterations in the structures of the toxins leading to different m/z values as observed by mass 

spectrometry.  

 

1.1.4.4 Ladder-frame polyether toxins 

Unicellular microalgae of the Dinoflagellata phylum are a diverse group of organisms that, like 

haptophytes, can thrive in both marine and more freshwater environments. Whilst some 

dinoflagellates are responsible for bioluminescence [60], others are known for forming toxic 

blooms often referred to as ‘red-tide’ blooms in which ladder-frame polyether toxins 

analogous to the prymnesins are frequently involved [61] (Figure 11). Because of the unique 

backbone that this family of toxins shares with the prymnesins, much speculation on the 

modes of action for the prymnesins is based on experimental data obtained for one or more of 

these dinoflagellate toxins. 

 

 

 



Chapter 1 

   Page | 38  

 

 

Figure 11 – Examples of other ladder-frame polyether toxins produced by dinoflagellates. 

 

Brevetoxin, produced by many dinoflagellates of the Karenia genus, is the leading toxin for 

neurotoxic shellfish poisoning, and thus the levels in shellfish are now regulated by law [62]. 

Since its first isolation from Karenia brevis (formerly Gymnodinium breve) [63, 64], brevetoxin 

and many analogues have been found in several other dinoflagellate species [65]. Ciguatoxin, 

produced by the dinoflagellate Gambeierdicus toxicus, accumulates in fish and if ingested by 

humans causes ciguatera fish poisoning, a non-fatal condition presenting similar symptoms to 

food poisoning [66]. Maitotoxin, also produced by G. toxicus, is the largest non-protein based 

secondary metabolite currently known. Its activation of Ca2+ channels results in a remarkable 

LD50 of just 50 ng/kg in mice [67]. Yessotoxins are believed to induce ER-stress, triggered by its 

action as a potential ribotoxin [68], which has led to yessotoxin and its analogues being an 

interest in the targeting of cancer cells that resist normal apoptosis processes.  

 

1.1.5 Factors affecting growth and toxicity 

Although HABs can involve the blooming of one or more species, P. parvum blooms are 

frequently dominated by this species alone, with very few other species reaching high cellular 

concentrations. This suggests toxins produced by P. parvum act in an allelopathic nature, as 
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the modest growth rate alone wouldn’t account for such a heterogeneous population [40]. 

Many environmental factors have been analysed for their effect on either growth of P. parvum 

or the toxicity of the organism. Whilst some correlations have been made, much work to date 

is largely inconclusive and the area remains a key research focus. 

1.1.5.1 Nutrients 

If the Prymnesium toxins are indeed allelopathic, one would expect production to be highest 

when nutrient levels are at their lowest; when the need for the organism to outcompete 

competitors is at its highest. This occurs during stationary phase of growth, when nutrients 

supplemented to the media have been largely consumed. Manning and La Claire [15] reported 

a reduction in ichthyotoxicity during the logarithmic growth phase when nutrient availability is 

high, compared to stationary phase when nutrient availability is low. This is further reinforced 

by work from Houdan et al who showed P. parvum cultures to be fatally toxic to Artemia sp. 

during stationary phase, but much less toxic during logarithmic phase [69]. Furthermore, work 

by others, in both lab cultures and field trials, has shown that in nutrient replete conditions 

toxicity is lowered or even non-existent [70, 71].  

1.1.5.2 Salinity 

P. parvum is euryhaline, meaning it can thrive in a range of salinities. There have been various 

reports suggesting that salinity has no impact on toxicity [5] but interestingly, Baker et al found 

toxicity to be at its highest at the extremities of salinity, when growth was limited [41]. This 

reinforces the idea that the toxins are allelopathic and possibly triggered as a stress response 

of the organism. 

1.1.5.3 pH 

A few studies have shown that some of the toxins released by P. parvum are ionisable, thus 

becoming increasingly more toxic as pH rises above 8.0 [72, 73]. In fact, a pH below 7 has been 

found to completely remove toxic properties, a study that was in agreement with findings that 

blooms of P. parvum occur between pH 7.2 to 9.3 [26]. Shilo also showed that whilst 

ichthyotoxicity rises as pH rises, hemolytic activity rises as pH falls; with cell lysis occurring as 

low as pH 5 [73]. Others reported water pH during blooms as high as 9.4 [25]. It was recently 

concluded that ichthyotoxicity occurs at a pH above 7, with maximum toxicity at pH 9 [15]. All 

these findings would suggest there is a strong correlation between pH and toxicity, in 

agreement with the idea that P. parvum toxins are ionisable. The basic amine on the polyether 

prymnesin-1 and -2 would support this argument. 
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1.1.5.4 Cofactors 

Even though toxic extracts of P. parvum have hemolytic activity, ichthyotoxicity has been 

shown to require co-factors to ‘activate’ the toxins [16, 74]. Shilo established early on that the 

presence of divalent cations significantly enhanced the toxicity of P. parvum extracts [75] and 

this was later confirmed by several groups that showed an increase in toxicity in the presence 

of Na2+, Ca2+ and Mg2+ ions [76]. This would agree with work on the polyether prymnesin 

toxins; when prymnesin-2 was first isolated Igarashi et al showed that it had an LD50 of 300 nM 

towards the minnow Tanichthys albonubes, but in the presence of Ca2+ this dropped to 3 nM 

[38]. This work would agree with the mode of action of other polyether natural products, such 

as monesin, that disrupt and influence the transport of ions across cell membranes [77]. These 

findings suggest a strong relationship between the presence of divalent cations and toxicity.  

 

1.1.5.5 Light 

P. parvum is known to grow best in moderate to low light conditions, but toxicity observations 

are often erratic. Larsen et al showed that 3 strains of P. parvum grew optimally at different 

light intensities, ranging from 65 µmol m-2s-1 for a strain from England, to 200 µmol m-2s-1 for 

an Australian strain [5]. In these cases, no relationship between toxicity and light exposure was 

observed. Other examples exist of strains that grow better in higher illumination, suggesting 

again an ability of the species to adapt to its environment [78]. Whilst some have debated that 

light plays a significant role on toxicity [79], others argue that there is no difference in light and 

dark grown cultures [80]. 

 

P. parvum is mixotrophic, meaning it can feed and acquire carbon in the absence of light. This 

may at first appear to suggest the organism doesn’t require light to produce toxins, however, if 

toxins play a role in mixotrophy the reverse argument could be justified. Parnas et al showed 

that a complete loss of ichthyotoxicity was observed when cultures were grown under 

constant illumination, but hemolytic activity was retained [78]. This further suggests that more 

than one toxin is involved, and may also suggest that the ichthyotoxins are degraded, 

inactivated, or not even produced during over-exposure to light.  

1.1.5.6 Temperature 

As well as being euryhaline P. parvum is also eurythermal, meaning it can grow in a wide range 

of temperatures and climates worldwide [26]. Furthermore, there is no strong correlation 

between the time of year and a toxic P. parvum bloom occurring. Both facts make it difficult to 
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correlate temperature to toxicity. However, in laboratory cultures, a recent study showed that 

the stability of toxic extracts from P. parvum is indeed affected by temperature [39]. Exotoxins 

were highly unstable, losing their lytic activity completely after 3 days when stored at -20 oC, or 

24 hours if stored at 4 oC. Conversely, intracellular toxins maintain toxicity if stored as a cell 

pellet at -20 oC, even after 90 days. The authors therefore suggested that intracellular toxins 

are either structurally different, or stored with protective vesicles [39]. Work on the effect of 

temperature on toxicity is inconclusive, although a general trend has been seen suggesting the 

instability of exotoxins of P. parvum.  

1.1.5.7 Viruses and grazers 

As well as the abiotic factors mentioned previously, viruses, grazers and other microbes have 

significant effects on the growth dynamics of algae in natural waters [81, 82]. The algal 

virology research field has boomed in recent years, with the discovery of Acanthamoeba 

polyphaga mimivirus in 2003 [83] bringing a new age in photosynthetic protist virology. It is 

widely accepted that algal viruses have significant effects on the control and regulation of algal 

population dynamics in ecosystems [84, 85], with viruses often responsible for sudden crashes 

in algal blooms. More recently, it has been found that viruses contribute significantly to global 

nutrient cycling [86, 87], with carbon shunting and even climate active gases such as 

dimethylsulfide (DMS) being released into the atmosphere because of viral lysis of algal 

blooms [88]. However, even though viruses have been isolated that infect toxin-producing 

algae [89], no studies have been undertaken showing how viruses impact toxicity of algal 

blooms. Prior to this thesis, no viruses had been isolated that infect P. parvum, although 

viruses infecting the non-toxic Prymnesium kappa have been isolated before [90]. 

 

Schwierzke et al showed using field experiments, that when viruses and grazers were removed 

via filtration, natural P. parvum populations increased [91]. They went on to show that grazers 

appeared to have a significant effect on P. parvum populations at the later stages of bloom 

development, and proposed that certain grazers are more resistant to P. parvum toxins than 

others. In particular, the rotifer Notholca laurentiae appeared to show a tolerance of P. 

parvum toxins that subsequently caused a bloom termination. This work, and other work by 

Roelke et al [92] appears to suggest that grazers exert a pressure on P. parvum that may result 

in termination of blooms if the grazing community shows tolerance to toxins produced by P. 

parvum.  

 



Chapter 1 

   Page | 42  

 

1.1.6 Current monitoring and management strategies 

The occurrence of HABs and algal toxins poses a severe threat to ecosystems, the economy 

and human health. There is therefore a great need to develop practical assays to detect toxins 

in both lab and field cultures. Currently animal bioassays are the detection method often used 

for algal toxins, although these come with a plethora of technical and ethical issues that must 

be overcome. On top of this, animal bioassays often take time: it is often the case that by the 

time toxin presence has been confirmed, fish populations are already devastated. Therefore, 

the emphasis in recent years has been to develop rapid, sensitive assays or management 

strategies that can be used in the field.  

1.1.6.1 qPCR based monitoring 

Although other methods do exist, the last decade has seen a boom in the number of molecular 

methods developed for the monitoring of toxic algal bloom species. Key advantages of 

methods such as quantitative real-time PCR include an unrivalled sensitivity and specificity 

[93]. qRT-PCR has been used to monitor many dinoflagellate species, but also haptophytes, 

diatoms and others. The Karenia genus that produces the polyether brevetoxins are one 

example of dinoflagellates with qRT-PCR assays established [94, 95], but assays for other toxin-

producing species including the raphidophyte Heterosigma also exist [96].  

 

qRT-PCR assays have also been applied to blooms of P. parvum with work by Galluzzi et al and 

Zamor et al proving successful in monitoring abundance of this organism [97, 98]. As is the 

case with all of these assays, however, incorporating them into regular monitoring programs 

remains key. 

1.1.6.2 Clay flocculants 

The use of clay flocculants has been widely used to mitigate HABs globally, and unlike many of 

the other methods is often used in larger water bodies [99]. However, like many of the 

described management methods, susceptibility to the clay varies between algal species. The 

use of clay on P. parvum was found to only be effective under certain conditions, and in most 

cases overall toxicity to aquatic organisms increased because of sediment toxicity brought 

about by the clay [100]. Although the use of clay has been shown to reduce algal cell numbers 

initially, after time cells and toxicity often return [101]. 
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1.1.6.3 Barley Straw 

The use of barley straw to control algal blooms is considered less environmentally damaging 

than alternative chemical approaches. Barley straw extract (BSE) is widely used as an inhibitor 

of algal growth [102, 103] although like clay, algal species often display a range of sensitivities 

to the extract. Treatment of ponds in which P. parvum was blooming with BSE showed no 

difference in toxicity to ponds that hadn’t undergone treatment [104]. Grover et al elaborated 

on this, showing BSE does not inhibit growth or ichthyotoxicity of P. parvum in laboratory 

cultures [105]. 

1.1.6.4 Algaecides 

Many strategies for the management of HABs involves the use of chemical algaecides, 

although their use in large water bodies is not usually feasible due to cost and availability of 

chemicals. Rodgers et al showed that out of three algaecides, Cutrine™-Plus (a copper-based 

algaecide) was the most effective at controlling P. parvum populations [106]. Tests in field 

populations showed that the algaecide was effective at controlling algal growth at 

concentrations non-toxic to fish, although like many other chemical algaecides, there is a risk 

of toxicity to other aquatic organisms. 

1.1.6.5 Hydrogen peroxide 

Although hydrogen peroxide had not been used prior to this thesis to combat P. parvum 

blooms, it has previously been used as a fast, effective management strategy to combat 

blooms of cyanobacteria. Cyanobacteria tend to be more sensitive to hydrogen peroxide than 

other eukaryotic phytoplankton [107], meaning even extremely low doses (~1 mg L-1) will 

alleviate the effects of cyanobacteria blooms. Doses of just 2.3 mg L-1 were enough to control a 

dense bloom of the cyanobacteria Planktothrix agardhii, where the bacterial and toxin content 

in the water dropped by 99% In just a few days [108]. 

 

Although eukaryotic phytoplankton have higher tolerances for the ROS produced by hydrogen 

peroxide, there are still numerous examples where hydrogen peroxide has been successfully 

used to mitigate algal blooms. In 2012, Burson et al successfully terminated a dense bloom of 

the toxic dinoflagellate Alexandrium ostenfeldii [109]. The authors showed that treatment of a 

creek with 50 mg L-1 hydrogen peroxide reduced the bloom by 99.8% and cleared the water 

body of toxins responsible for paralytic shellfish poisoning. Most importantly, even with these 

higher concentrations of hydrogen peroxide, the authors noted that there were very few 
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negative effects on macroinvertebrates and fish, and that the microbial community quickly re-

established itself after treatment was over.  

1.1.6.6 Relocation of affected fish 

Currently, one feasible but often time consuming strategy is the relocation of fish from toxic 

waters to safer waters. This was the case for the toxic bloom of P. parvum on the Norfolk 

Broads in 2015 when it was estimated ~600,000 fish were saved because of a mass relocation 

by the local environment agency and volunteers (Figure 12). Although an effective method, 

this method often costs a significant amount of money through the manpower required for 

such a task, so alternative management strategies are more desirable.  

 

 

Figure 12 – Members of the environment agency and volunteers moving fish from toxic waters to 

safer waters. Hickling Broad, 2015.  Image taken by Martin Rejzek. 
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1.2 Objectives and outline of the thesis 

Despite the efforts of the community to research how abiotic factors influence the toxicity of 

P. parvum blooms, at the time of starting my PhD there were still many unanswered questions. 

The work discussed in this thesis sought to shed light on some of the fundamental mechanisms 

that effect bloom toxicity and fill in gaps that still exist in the wider literature. The ladder-

frame polyether toxins known as the prymnesins are widely regarded as being the main toxic 

principles of P. parvum blooms, but the lack of detection of these compounds in natural water 

samples has made people question their significance. Furthermore, people are still unsure 

whether the main toxin responsible for fish deaths is intra or extracellular, and if it is 

intracellular - how it is released into the water?  

 

Chapter 2 of this thesis analyses a toxic algal bloom across the Upper Thurne system of the 

Norfolk Broads in 2015 and identifies P. parvum as the species responsible through a 

combination of genetic analysis and metabolite analysis. The ladder-frame polyether toxins, 

the prymnesins, were detected in natural water for the first time and in the gill cells of a 

deceased pike, clarifying much literature doubt on both the toxin responsible and that the 

biological target is the gill cells – as seen for other polyether toxins such as the brevetxoins. To 

combat the current lack of early warning systems for following Prymnesium abundance we 

then developed a sensitive qPCR assay for the algae and have since recorded the changes in P. 

parvum populations across Hickling Broad over a 2-year period. 

 

Samples taken during the toxic bloom of 2015 seemed to suggest the natural population of P. 

parvum was infected by an algal virus during the bloom. Chapter 3 analyses whole viral 

communities from Hickling Broad and goes on to describe the isolation and characterization of 

a new species of algal megavirus that infects P. parvum, Prymnesium parvum DNA virus 

(PpDNAV-BW1). The unexpected discovery of this virus led to a new hypothesis that algal 

viruses played important roles in toxic algal blooms – specifically that they may provide a 

release mechanism for intracellular algal toxins.  

 

Chapters 4 and 5 focus on the glycobiology of algae and their viruses. 2-keto-3-deoxy-D-

glycero-D-galacto-nononic acid (KDN) is an uncommon sialic acid that has recently been 

reported to be involved in the viral infection of the haptophyte Emiliania huxleyi by Emiliania 

huxleyi virus (EhV). Prior to this work however, algae were not believed to be producers of 

sialic acids. Chapter 4 conclusively shows that P. parvum contains the sialic acid KDN and goes 
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on to show through expression of candidate enzymes how KDN is biosynthesised. Follow up 

bioinformatic analysis using these newly characterized genes suggests that sialic acid 

biosynthesis is much more widespread amongst algae than previously thought. 

 

The 6-deoxy sugar, rhamnose, is an important monosaccharide found in structural 

polysaccharides, glycoproteins, and secondary metabolites across microbes, algae and plants. 

Furthermore, work in our group identified thymidine diphosphate (TDP) activated rhamnose as 

a key sugar in the viral infection process of P. parvum. Chapter 5 broadens the current 

literature knowledge about rhamnose biosynthesis using sugar nucleotide profiling techniques 

as well as a comprehensive bioinformatics analysis to show how algae produce UDP or TDP 

activated rhamnose, and where these biosynthetic capabilities evolved from.  

 

Utilising the new knowledge discussed in this thesis, Chapter 6 explores recent work that is 

now being carried out to combat blooms of P. parvum on the Norfolk Broads. The sequencing 

of Prymnesium parvum DNA virus has allowed us to expand our current qPCR analysis to follow 

seasonal virus populations on Hickling Broad. As well as this, recent field trials that I 

championed have shown that low doses of hydrogen peroxide (H2O2) may be an effective 

management strategy of these deadly blooms. As a result, work practices for HAB 

management on the Norfolk Broads are being rewritten by the Environment Agency. The work 

outlined in this thesis was very much serendipitous, and Figure 13 summarises the timeline of 

events during the 4 years. 

 

Figure 13 - Approximate timeline of results arising from this thesis. 
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2.1 Abstract 

Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, 

frequently leading to massive fish kills that have adverse ecological and economic impacts. The 

dramatic effects observed on fish are suspected to be due to the ladder-frame polyether toxins 

prymnesin-1 and -2, but a lack of confirmation of the presence of these compounds in 

environmental samples has resulted in significant ambiguity about the toxic entity. A fish-

killing bloom, suspected to be due to P. parvum, was reported in the Norfolk Broads, United 

Kingdom, in March 2015 at a site historically plagued by Prymnesium blooms. Here, we report 

confirmation that P. parvum dominated the microbial community during the bloom and show 

how the diversity of microbes changed after recovery of the system 18 months later. We also 

report, for the first time, the detection of the recently discovered prymnesin-B1 toxin [1] in 

natural water samples, and in gill tissue isolated from a dead pike (Esox lucius) taken from the 

site of the bloom. Following on from this work, we developed a sensitive quantitative real-time 

PCR assay for monitoring P. parvum and report algal population dynamics over a 20-month 

period on Hickling Broad.  
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2.2 Introduction 

The frequency and distribution of harmful algal blooms (HABs) worldwide has increased in 

recent years due to a combination of eutrophication and climate change issues, often leading 

to serious ecological and economic impacts on native fish populations. The diverse division of 

microalgae known as the haptophytes are no exception to this scenario. This phylum includes 

the bloom-forming coccolithore, Emiliania huxleyi, whose oceanic blooms are so large they can 

often be seen from space [2]. HABs are not just a coastal issue however; blooms of the toxin-

producing haptophyte, Prymnesium parvum, are more frequently associated with brackish, 

inland waters and aquaculture ponds, although this euryhaline cosmopolitan alga can be found 

in most water types worldwide [3]. The Norfolk Broads in East Anglia, England, have suffered 

from recurring fish-kills associated with P. parvum since the late 1960s [4], when a catastrophic 

bloom left many of the Broads almost completely devoid of fish. This was a devastating blow 

for the local economy of the area, which usually draws in tourists for the high-profile angling 

and boating activities that contribute over £500m annually to the Norfolk/Suffolk economy [5]. 

 

Ever since P. parvum was implicated in fish kills, there has been significant uncertainty about 

the toxic entities responsible for fish kills. A range of chemicals have been proposed to be 

involved in toxicity, including lipopolysaccharide-like compounds [6], galactoglycerolipids [7], 

fatty acid amides [8], fatty acids [9] and the ladder-frame polyether toxins prymnesin-1 and -2 

[10, 11] (Figure 14). Some of these have since been ruled out [12], and more recently, the 

general consensus that the ladder-frame polyether toxins, prymnesin-1 and -2, are the primary 

toxins has been questioned. This questioning has largely been a result of the inability of 

numerous research groups to detect the toxins in either laboratory or field samples. Detection 

of prymnesin-1 and -2 in vitro was achieved in 2013 [13] for the first time since the original 

isolation in 1996. Recently, Rasmussen et al [1] have shown a large structural diversity of the 

prymnesin toxins amongst different strains of Prymnesium, and this likely contributed 

significantly to the failure to detect these compounds previously. Prior to the study reported in 

this thesis, however, these structurally impressive secondary metabolites had never been 

detected in wild, environmental samples. 
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Figure 14 - Structure of prymnesin-1 and -2.  Toxins were first isolated by Igarashi et al in 1996 [11]. 

 

 

To add to the ambiguity surrounding the metabolites involved in toxicity, very little is known 

about how P. parvum blooms affect or are affected by the surrounding microbial community. 

For other algal blooms, it has been shown that bacterial community compositions change 

significantly as blooms peak and decay [14, 15]. These changes may be the result of toxins 

produced by the alga, but are also likely a result of nutrient availability, with many researchers 

showing that phytoplankton blooms provide a plethora of dissolved organic material (DOM), 

produced by photosynthesis, to heterotrophic bacterial populations [16, 17]. As well as the 

photosynthetic DOM produced during a bloom, bacteria are also able to utilise the DOM 

released by dead algal cells following the demise of a bloom. Some bacteria are more 

equipped to do this and will actively break down dead algal cells [18, 19].  

 

Monitoring for the onset of harmful algal blooms is one way to contribute to mitigating the 

drastic effects observed during toxic blooms. In recent years, molecular methods such as 

quantitative real-time PCR have been used to monitor toxin-producing algal species [20]. Some 

key examples of success lie with the dinoflagellates of the Karenia genus [21] and the 

raphidophyte Heterosigma sp. [22]. Efforts to monitor P. parvum using qRT-PCR have also 

found some success, with Galluzzi et al and Zamor et al showing how qRT-PCR can mirror and 

improve optical microscopy methods, which are currently the method of choice for monitoring 

P. parvum on the Norfolk Broads [23, 24]. 

 

In the present study, we explored the microbial composition on Hickling Broad during and 

after a harmful bloom in March 2015, and confirm that P. parvum dominated the brackish 

water microbiota during the mass fish mortality event. Ladder-frame polyether toxins 

produced by P. parvum were detected in natural water samples for the first time, and we were 

also able to detect these toxins in the gill cells of a dead pike at the site of the bloom; in 
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agreement with the speculated biological target as being the gill cell membranes [25]. 

Although a cocktail of toxins is still possible, these results strongly reinforce the suggested role 

of the polyether prymnesins in fish toxicity. Furthermore, we developed a sensitive qPCR-

based assay for monitoring P. parvum in natural waters, and suggest that this may be an 

effective way of predicting the onset of toxic blooms of the P. parvum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

   Page | 61  

 

2.3 Results 

2.3.1 Study site – fish kill March 2015 

The Norfolk Broads are a low-lying area of navigable lakes spanning Norfolk and Suffolk, 

connected to the River Waveney, Yare, Bure and its' two tributaries, the Ant and Thurne. 

Whilst algal blooms pose an issue across several of the 63 Broads, blooms of P. parvum are 

somewhat confined to the upper Thurne system, frequently posing issues to Hickling Broad 

and the surrounding area (Figure 15).  

 

 

 

Figure 15 – Location of the Upper Thurne area of the Norfolk Broads.  Reprinted (adapted) with 

permission from P. Holdway et al, Freshwater Biology, 1978, 8, 295-311. Copyright 1977 John Wiley 

and Sons. 
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To maintain consistent sampling, 11 regular sampling sites were set up on Hickling Broad as 

detailed in Figure 16. These sites were used for subsequent metabolite and genetic analysis of 

water samples. A relevant fish kill was first reported on 13th March 2015 when members of the 

public reported numerous distressed or dead fish across Hickling Broad. First inspection and 

water samples were taken on 17th March 2015, and locations of fish kills were recorded 

qualitatively: it was found that most fish deaths were confined to the Northwest of the Broad, 

closest to sampling sites 6 and 7, but spreading out as far as sample location 5 (Figure 16). 

 

 

Figure 16 – Aerial view of Hickling Broad and the 11 sampling sites developed during this research.  

Most fish deaths were observed on the Northwest area of the Broad as denoted by a coloured red 

area. Google earth. Hickling Broad, Norfolk, Norwich, United Kingdom. 52o44’12.76”N, 1o35’07.96”E, 

eye alt 2.79 km. Copyrights: Google 2015, Getmapping plc 2015.  

 

2.3.2 Optical microscopy of water samples 

Optical microscopy of water samples taken from locations 1-11 during the harmful bloom 

qualitatively identified P. parvum as the cause of the harmful bloom. Many algal cells observed 

fitted typical morphological characteristics of P. parvum [26, 27]; cells were golden yellow in 

appearance, approximately 10 µm long, ellipsoidal in shape and were motile with 2 flagella and 

a smaller more centrally located haptonema (Figure 17). 
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Figure 17 – Optical microscopy of P. parvum cells identified from water samples taken from Hickling 

Broad during a toxic algal bloom in March 2015.  Cells display typical characteristics of P. parvum with 

lengths of approximately 10 µm, a golden yellow colour, ellipsoidal shapes and 2 flagella and 1 

haptonema from one end of the cell. Scale bars are 7.5 µm.  

 

2.3.3 Genetic analysis of microbial community 

Water samples were taken from sample sites 1-11 on 17th March 2015 during a harmful 

bloom and then again during non-bloom conditions in September 2016. Bacterial and algal 

cells were pelleted by centrifugation and cell pellets were then provided to collaborating 

scientists at UEA (Dr Jennifer Pratscher) for nucleic acid extraction and sent to Mr DNA Lab 

(www.mrdnalab.com, Texas) for community analysis via 16S rRNA gene sequencing ( ).  

 

P. parvum made up a significantly larger percentage of the total microbial community during 

bloom conditions (up to 44% in location 9) compared to non-bloom conditions (up to 2% in 

location 6), suggesting that it was responsible for the toxic bloom in March 2015. A much more 

diverse range of bacteria and algae were observed under non-bloom conditions, including 

cyanobacteria such as Microcystis sp., indicating the significant effect of the bloom on the 

microbial community. Although subtle differences in abundance can be seen, community 

compositions are generally very similar from location to location. 
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Figure 18 - Community analysis of water samples taken during a harmful bloom (left) and under non-

bloom conditions (right).  Total DNA extracted from water samples was sequenced using 16S 

sequencing and relative abundance of transcripts in each sample is reported as a percentage of the 

total community at 11 different sampling locations (y-axis). Each coloured bar represents a different 

family of bacteria or algae. Orange coloured P. parvum bars are indicated at location 1 with a black 

hashed border. P. parvum made up to 44% in some sampling locations during bloom conditions 

(location 9), and only up to 2% in non-bloom conditions (location 6).  

 

Alongside P. parvum, the most dominant families observed during the harmful bloom in Spring 

2015 include the gram-negative Methyloversatilis genus of the Rhodocyclaceae family, the 

Marivita genus of the Rhodobacteraceae family, the Lewinella genus of the Saprospiraceae 

family, and other unassigned members of the Saprospiraceae family. Although this analysis is 

based on 16S rRNA gene sequencing and will therefore exclude a significant proportion of 

eukaryotes that may exist in a waterway, it is interesting to note that eukaryotes with plastid 

16S sequences are significantly less abundant than P. parvum when compared to prokaryotes, 

with all other major taxa found during the bloom being prokaryotic. Except for the 

Saprospiraceae family, the dominant families found in non-bloom conditions differ significantly 

from bloom conditions. Dominant families found under non-bloom conditions include the 

Pirellulaceae family, the Cytophagaceae family, and three dominant genera of cyanobacteria; 

Synechococcus, Pseudanabaena and Microcystis. These drastic changes to levels of 

cyanobacteria during non-bloom conditions warrant further investigation. 
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2.3.4 Detection of Prymnesin-1 & -2 in P. parvum 946/6 

Intra and extracellular extractions of prymnesin-1 and -2 were performed on P. parvum 946/6 

cultures. In general, crude prymnesins were extracted following a modified method of 

Manning et al [13] and analysed by LC-MS (Figure 19). Chromatograms were analysed for ions 

related to a range of prymnesin toxins [1]. An example of a typical isotope pattern seen for the 

aglycone form of both prymnesin toxins can be seen in Figure 20, where deconvolution of the 

m/z mass gives an error < 5 ppm. Prymnesin-1 and -2 could be found in both cell extracts and 

culture medium, and agreed well with fragments and adducts previously reported by Manning 

et al [13] (Table 1).  

 

 

 

 

Figure 19 – Workflow for the extraction of prymnesins from P. parvum.  Solvent conditions and 

extraction was followed as detailed by Manning and La Claire [13]. Image reprinted from Analytical 

Biochemistry, 442, 2, Shonna R. Manning and John W. La Claire II, Isolation of polyketides from 

Prymnesium parvum (Haptophyta) and their detection by liquid chromatography/mass spectrometry 

metabolic fingerprint analysis, 189-195, Copyright 2013, with permission from Elsevier.  



Chapter 2 

   Page | 66  

 

 

 

Figure 20 – Isotope pattern observed for aglycone form of the prymnesin toxins.  Distribution of 

signals agrees well with that expected for the chlorinated prymnesin toxins [13]. Calculation of the 

deconvoluted mass from the m/z value of 918.8890 gives an accurate mass within 5 ppm of the 

expected mass. 
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Table 1 - Masses identified for prymnesin-1 and -2 and their adducts from cellular and extracellular 

preparations.  Agly = aglycone form shared by both prymnesin-1 and -2. Masses highlighted red are 

those previously reported by Manning and La Claire [13]. Other masses reported represent novel 

masses with their suspected assignments. 

 

2.3.5 Detection of Prymnesin-B1 in natural water samples and fish gills 

For the detection of prymnesin toxins from water samples, 100 ml of water from locations 6 

and 7 were extracted and analysed by LC-MS. Chromatograms were analysed for ions relating 

to prymnesin-1 and -2, as well as recently discovered prymnesins outlined by Rasmussen et al 

[1].  Of the prymnesins previously identified by Igarashi et al and Rasmussen et al [1, 10], only 

prymnesin-B1 was detected in locations 6, 7 and in the gill cells of a deceased pike (Figure 

21Error! Reference source not found.). Isotope patterns matched those reported by 

Rasmussen et al (Figure 22), and although standards are not available retention times are in 

line with those previously reported for these toxins (elution at 70-80% acetonitrile under 

conditions reported by Manning and La Claire [13]). Toxins were not detectable in water 

samples taken in September 2016 under non-bloom conditions, suggesting high P. parvum cell 

counts correspond with detectable toxins in the waterways.  

m/z (2+) Deconvoluted mass Assignment 

882.90 1763.79 Prym(agly) -2HCl 

891.90 1781.79 Unknown 

900.90 1800.79 Prym(agly) - HCl 

918.90 1835.79 Prym(agly) 

948.90 1895.79 Prym(agly) +K +Na -2H 

957.90 1913.79 Prym(agly) - HCl + TFA 

966.90 1931.79 Prym2 - HCl 

984.90 1967.79 Prym2 

1014.93 2027.85 Unknown 

1023.96 2045.91 Prym2 -HCl + TFA 

1032.97 2063.93 Prym1 - Hexose - HCl 

1047.96 2093.91 Prym1 - Pentose - HCl 

1050.93 2099.85 Prym1 - Hexose 

1065.94 2129.87 Prym1 - Pentose 

1093.50 2184.99 Unknown 

1102.00 2201.99 Unknown 

1114.00 2225.99 Prym1 - HCl 

1123.50 2242.99 Prym1 - HCl +NH4 -H 

1131.98 2261.95 Prym1 

1140.50 2276.99 Prym1 + NH4 -H 
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Figure 21– Detection of prymnesin-B1 from natural water samples and gill tissue.  Extracted ion 

chromatograms (mass 828.896) for extracts prepared from water samples taken at location 6 & 7, and 

from the gill tissue of a dead pike taken from the site of the toxic-bloom. Peaks representing 

prymnesin-B1 are labelled. Earlier peaks found around 6 minutes retention time represent unrelated 

compounds.  
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Figure 22 - Diagnostic ions found for prymnesin-B1 show typical isotope patterns seen for the 

chlorinated prymnesin compounds [13].  The detection of 828.8963 represents the aglycone form of 

prymnesin-B1 and has < 0.2 ppm error when compared to 828.8965 as reported by Rasmussen et al 

[1]. The detection of 909.9246 represents the glycosylated form of prymnesin-B1 and has 3.18 ppm 

error when compared to the calculated mass of prymnesin-B1 of 909.9211. 
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2.3.6 Monitoring of P. parvum by quantitative real-time PCR 

To provide the local authorities (Environment Agency, Broads Authority) with a more sensitive 

monitoring method for P. parvum than optical microscopy, a quantitative real time PCR assay 

was developed. Using biweekly water samples taken from sampling locations 1 – 11 on 

Hickling Broad, seasonal populations dynamics were recorded for P. parvum specific ITS genes, 

using primers based on the work of Galluzzi et al and Zamor et al [23, 24].  

 

Contradictory previous work on the Norfolk Broads suggests that P. parvum blooms have no 

obvious seasonality [4], but our work suggests that blooms occur primarily in late spring to 

summer, with blooms of the organism in July-August 2016 and June to September in 2017 

(Figure 23). This may suggest a seasonality of HABs on the Norfolk Broads that correlates with 

temperature, light and other factors influenced by the seasons. Surprisingly though, these 

blooms did not reach the cell count levels observed in the Spring 2015 toxic bloom, where 

numbers reached more than 11,000,000 reads ml-1 at location 6 compared to ~1,950,000 reads 

ml-1 at the height of a non-toxic bloom in August 2016 (data not shown).  

 

Blooms appear to rise and fall extremely fast, with blooms appearing to decline over 90% 

between 2-week sampling periods, which may suggest an unknown abiotic factor triggering 

bloom decline. Likewise, bloom progression appears to be rapid with periods between blooms 

(Jan 2016 – June 2016; Nov 2016 – May 2017) showing extremely low (but detectable) P. 

parvum abundance.  This may suggest specific environmental factors are able to trigger rapid 

bloom progression, and future work correlating our qPCR data with abiotic factors such as pH, 

temperature, nutrient levels may help to understand what is causing P. parvum blooms in this 

area. 

 

In agreement with the locality of fish deaths during the Spring 2015 bloom, P. parvum 

abundance seems to follow a trend to bloom to higher numbers at the north-west of Hickling 

Broad (Figure 16). Locations 5 and 6 appear to show consistently higher ITS reads during all 

blooms observed during this period, whilst location 9 appears to suffer less with P. parvum 

abundance (Figure 23). Other locations have sporadic data values, which may be improved by 

more regular sampling.  
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Figure 23 - Relative abundance of P. parvum on Hickling Broad across a 20-month period.  Abundance 

is based on qRT-PCR ITS reads. Blooms of P. parvum can be observed throughout the summer months 

(June – September) in both 2016 and 2017. Data produced by Dr Jennifer Pratscher (University of East 

Anglia). 
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2.4 Discussion 

This research was the result of an emergency circumstance in which a dense bloom of P. 

parvum resulted in the death of thousands of fish across the Upper Thurne area of the Norfolk 

Broads. More specifically, this toxic bloom threatened the native fish population on Hickling 

Broad, where it was estimated around 600,000 more fish were rescued by moving the fish to 

non-toxic waters. Previously, identification of blooms in the area relied on either anecdotal 

evidence or qualitative identification of P. parvum by optical microscopy. In this study, we 

showed using a combination of microscopy, genetic, and metabolite analysis that P. parvum 

was responsible for the toxic bloom. We showed that P. parvum dominated the microbial 

community during the bloom and that under non-bloom conditions, P. parvum represents a 

very small percentage of the microbial community. Moreover, we manage to detect the 

ladder-frame polyether prymnesins for the first time in natural water samples, and in the gill 

cells of a deceased pike. At the request of the local Environment Agency, we then developed a 

sensitive monitoring method for P. parvum based on quantitative real-time PCR, and use this 

to show P. parvum population dynamics over a 20-month period after the bloom occurred. 

Overall, these results confirm much literature doubt that the polyether prymnesin toxins are 

the relevant ichthytoxins and show that qPCR can be used as an effective monitoring tool for P. 

parvum in natural waters. 

 

Currently, the primary method for analysing P. parvum blooms on the Norfolk Broads is optical 

microscopy, which has proven unsuccessful largely due to the insensitive nature of cell 

counting by such methods. To conclusively show that this bloom was caused by P. parvum we 

used a combination of optical microscopy and genetic analysis. Our optical microscopy 

qualitatively confirmed P. parvum was the culprit, where a large percentage of cells observed 

fitted morphological traits used to identify the species [26, 27]. Follow up genetic analysis 

based on 16S rRNA gene sequencing showed that P. parvum dominated the microbial 

community at the 11 sampling locations on Hickling Broad during the bloom (Figure 18). This 

dominance of the microbial ecosystem would agree with many descriptions of harmful algal 

blooms that state they are a rapid expansion of a phytoplankton population that typically 

involves one or a small number of species [28, 29]. As expected, the abundance of P. parvum in 

non-bloom conditions was only up to ~1-2%. Interestingly, however, the number of other 

species observed during bloom conditions is lower, showing the marked effect that a P. 

parvum bloom has on other microbes. This would agree with work by many that claims toxins 

of P. parvum are allelopathic [30, 31], acting to reduce growth or kill off competing microbes. 
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Despite the efforts of many, the main responsible ichthyotoxins in P. parvum blooms are still 

debated, with claims of galactoglycerolipids [7], fatty acid amides [8, 32], fatty acids [9] and 

others [6, 33]. A further type of toxins, the ladder-frame polyether prymnesins, have gathered 

the most attention due to their potent ichthyotoxicity with LD50 values towards fish in the low 

nm range [10, 11]. Their significance has however been questioned, with researchers failing to 

report detection of the toxins in lab cultures from 1999 when they were first isolated to 2013 

when Manning and La Claire eventually reported a detailed extraction procedure for the toxins 

[13]. This was largely believed to be due to the small amounts produced by P. parvum, with 

Igarashi et al isolating only 25 mg from over 400 L of liquid culture [10]. More recently, 

Rasmussen et al reported on the discovery of a chemodiversity of the prymnesins, showing 

that different Prymnesium isolates produce slightly structurally modified versions of the toxins 

[1]. The authors go on to speculate that it is this, and not their low levels that has prevented 

the detection of these compounds previously. To shed light on this gap in knowledge we first 

showed that our lab strain of P. parvum (CCAP 946/6) produces the originally isolated forms of 

polyether prymnesin-1 and -2, with many of the fragments and adducts found by MS in 

agreement with those previously reported by Manning and La Claire (Table 1) [13]. Using a 

similar extraction and analysis method, we failed to detect prymnesin-1 and -2 in natural water 

samples, but instead were able to detect the recently reported prymnesin-B1 [1]. This would 

suggest that the P. parvum strain from the Norfolk Broads does not produce prymnesin-1 and -

2, but instead produces the structurally similar prymnesin-B1. This significant finding would 

agree with the argument by Rasmussen et al that the previous lack of detection of these toxins 

may be due to a yet incomplete catalogue of prymnesin m/z values. On top of this, and 

unsurprisingly, toxins were not detected in water samples under non-bloom conditions. 

Furthermore, we detected prymnesin-B1 in the gill cells of a deceased pike (Esox lucius). This 

would agree with the speculated biological target of the prymnesins as being the gill cell 

membranes [25].  

 

At the request of the local Environment Agency, we next sought to develop a sensitive 

monitoring method to follow P. parvum abundance in natural waters as a tool to predicting 

when a toxic bloom is likely to occur. The last decade has seen a boom in the use of molecular 

methods for this application, with particular success coming from the use of quantitative real-

time PCR which offers unrivalled sensitivity and specificity [20]. Some examples of success 

stories include the monitoring of toxin-producing dinoflagellates such as the Karenia genus 

[21, 34], but Galluzzi et al and Zamor et al have also shown their value for P. parvum blooms 
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[23, 24]. In this study, we combined primers from both Galluzzi et al and Zamor et al to 

produce a sensitive qRT-PCR assay to monitor abundance of P. parvum ITS genes. Taking water 

samples for analysis approximately every 2 weeks for a period of 20 months, we have shown 

that blooms of P. parvum vary in their timing and intensity, but appear to show some 

seasonality, with blooms occurring late Spring and throughout the Summer of 2016 and 2017. 

This would contradict the past findings that blooms of P. parvum appear to show no 

seasonality across the Norfolk Broads [4]; a finding that was based on optical microscopy 

alone. Blooms appear to start and reach their decline within 3-4 weeks, which somewhat 

reflects growth properties seen in laboratory culture. However, interestingly, the sharp 

declines in cell numbers seen for the P. parvum blooms in this dataset may implicate algal 

viruses or other protozoan grazers in bloom demise [35, 36].  

 

In conclusion, our results show that a toxic algal bloom on Hickling Broad in 2015 which caused 

the deaths of thousands of fish was caused by P. parvum. We show that the bloom was 

dominated by P. parvum alone, and that under non-bloom conditions P. parvum represents a 

small percentage of the microbial population. We detected the ladder-frame polyether 

prymnesin-B1 for the first time in natural water samples and in the gill cells of a deceased pike 

(Exos lucius). Finally, in an effort to combat future blooms of this organism across the Norfolk 

Broads, we developed a sensitive qRT-PCR assay and demonstrate how it can be used to 

monitor P. parvum population dynamics across a 20-month period. 
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2.5 Materials and Methods 

2.5.1 P. parvum culture conditions 

Prymnesium parvum (strain 946/6) was obtained from the Culture Collected of Algae and 

Protozoa (CCAP) (http://www.ccap.ac.uk/) and maintained in the recommended f/2 – Si 

media. Stock cultures were grown at 22 oC on a 14:10 light cycle with a light intensity of 100 

µmol.m-2.s-1 as previously described [37]. Under these conditions, 2-3 million cells ml-1 could be 

achieved by late log phase and 150 ml of culture at these cell densities were used for toxin 

extractions. 

2.5.2 Study site – fish kill March 2015 

A fish kill was first reported 13th March 2015 when members of the public contacted the 

environment agency concerned that several fish appeared to be in distress or dying on Hickling 

Broad, Norfolk. Hickling Broad represents an area of 122 hectares with average water depths 

just above 1 metre. To study the fish kill and likely algal bloom, sampling sites were set up to 

cover the majority of the Broad (Table 2). Water samples were collected from all sampling 

locations for toxin extractions on 17th March 2015 during a harmful bloom and then again 

during non-bloom conditions in September 2016. 

 

Sample Point Latitude Longitude 

1 52°43'46.91"N   1°35'57.05"E 

2 52°43'56.20"N   1°35'39.72"E 

3 52°44'4.66"N   1°35'23.75"E 

4 52°44'19.12"N   1°34'39.49"E 

5 52°44'29.04"N   1°34'17.54"E 

6 52°44'47.62"N   1°34'12.55"E 

7 52°44'48.02"N   1°34'21.73"E 

8 52°44'33.22"N   1°34'27.76"E 

9 52°44'19.97"N   1°33'57.14"E 

10 52°44'22.73"N   1°34'12.43"E 

11 52°44'31.74"N   1°34'2.94"E 

 

Table 2 – Coordinates of sampling locations set up on Hickling Broad, Norfolk. 

http://www.ccap.ac.uk/
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2.5.3 Optical microscopy 

Water samples taken from Hickling Broad during the toxic bloom were visually analysed for the 

presence of P. parvum cells by pipetting 5 µl of fresh water onto glass slides and analysing on a 

light microscope (DM6000, Leica). Cells of P. parvum were identified through observation of 

characteristic traits (cell size, ellipsoidal shape, golden yellow colour, and the presence of 2 

flagella and 1 haptonema).   

2.5.4 Genetic analysis of microbial community 

Water samples (100 ml) from each of sampling locations 1 – 11 (10 cm depth) were taken on 

17th March 2015 during a harmful bloom, and again on 6th September 2016 under non-bloom 

conditions. Water samples were centrifuged at 3000 x g to pellet algal and bacterial cells and 

the cell pellets were stored at -78 oC prior to analysis. For genetic analysis, cell pellets were 

then provided to collaborating environmental scientist (Dr Jennifer Pratscher, UEA) for cDNA 

and DNA extraction. In brief, nucleic acids were extracted from the water biomass pellets using 

an SDS-based protocol. The cell pellets were added to Eppendorf tubes containing Lysing 

Matrix E beads (MP Biomedicals) and mixed with 1 ml of SDS extraction buffer. Cells were 

lysed in a FastPrep bead-beating system for 45 s at 6 m∙s-1 and supernatants were 

subsequently extracted using phenol : chloroform : isoamyl alcohol (25:24:1) and chloroform : 

isoamyl alcohol (24:1). Nucleic acids were then precipitated with polyethylene glycol (PEG) 

6000 solution (20%) and dissolved in 100 µl of nuclease-free water. 16S rRNA gene amplicon 

sequencing (515F/806r primers) for microbial community analysis was conducted by MR DNA 

(Texas, USA) on Illumina HiSeq on the DNA samples from all sampling locations.  

2.5.5 Detection of Prymnesin-1 & -2 in P. parvum 946/6 

For the extraction of crude prymnesins from inside algal cells, the general procedure outlined 

by Manning et al [13] was followed.   

 

Cell pellets were lysed using cold acetone (4 oC) before being spun at 16,873 x g in a standard 

benchtop centrifuge. Chlorophyll containing supernatants were then removed. Acetone 

washes were repeated 2 more times. The resulting pellet was then extracted with MeOH and 

centrifuged as previously described. This was repeated a total of 3 times and the supernatants 

pooled after each round. The MeOH extraction procedure was then repeated with n-propanol 

and the supernatants were added to the MeOH supernatants. The resulting mixture was then 

dried under vacuo on a rotary evaporator and the remaining powder was re-suspended in 

water (~1-2ml). An equal volume of EtOAc was then added, and the solutions were mixed 
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using a vortex. The mixture was allowed to settle for 5 minutes on a bench, at which point the 

organic layer was removed. This defatting process was repeated a total of 3 times. The 

remaining aqueous layer was then loaded on a C18 cartridge (1 mg). The cartridge was washed 

at a flowrate of 1 ml min-1 with water for 5 column volumes, followed by washes with 20% n-

propanol and 45% n-propanol each at 5 column volumes. The prymnesins were finally eluted 

using 80% n-propanol. The cartridge eluent was dried under vacuo and crude toxin extracts 

stored at -20 oC. Detection was performed via LC-MS using a QTOF MS system with a nano-

spray ion source. Extracts were dissolved in an aqueous solution containing 0.1% TFA (mobile 

phase A). The analytes were resolved using mobile phase B (99.9% acetonitrile, 0.1% TFA) with 

an initial linear gradient from 2% to 50% acetonitrile over 10 minutes, followed by a second 

linear gradient from 50% to 90% acetonitrile over 30 minutes, on a C18 column.  

 

Chromatograms were queried for double charged molecular ions corresponding to the 

backbone of prymnesin-1 and -2 (m/z 919.88), and where found corresponding peaks were 

manually analysed for other diagnostic ions previously reported for prymnesin-1 and -2 by 

Manning et al [13]. All data analysis was performed using MassLynx™ software (Waters).  

2.5.6 Detection of Prymnesin-B1 in natural water samples and fish gills 

For the extraction of prymnesins from natural water samples, 100 ml of water taken from 

locations 6 and 7 was centrifuged at 3000 x g to pellet cells and debris. The resulting 

supernatant was then passed through a 0.45 µM filter to remove excess algal/bacterial cells 

and debris before being passed through a 1 mg C18 cartridge at a flow rate of 1 ml min-1 to 

load the organic prymnesins onto the column. The cartridge was then washed with 5 column 

volumes of water to remove salts, before elution of organic toxins was achieved with 10 

column volumes of 80% n-propanol. 

 

The column eluent was then dried under vacuum using a rotary evaporator and re-suspended 

in a 1:1 mixture of H2O:EtOAc (total volume 4 ml). The aqueous layer was subsequently 

defatted a total of 3 times by removal and re-addition of EtOAc, ensuring sufficient mixing of 

organic and aqueous layers each time. After removal of the last EtOAc, the remaining aqueous 

layer was dried under vacuum on a rotary evaporator. Dried extracts were re-suspended in 200 

µl 0.1% TFA (mobile phase A) before being subject to LC-MS as outlined in section 2.5.5. 

 

For the extraction of toxins from gill cells, a deceased pike (Esox Lucius) was taken from the 

site of the fish kill (close to sampling location 11) and the gill cells were removed by dissection 
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with a sharp scalpel (Figure 24). Gill cells (approximately 4 g) were ground in liquid nitrogen 

before being subject to an identical prymnesin extraction protocol as used for algal cells 

(Section 2.5.5).  

 

 

Figure 24 – A dead pike collected from the toxic P. parvum bloom (A), and a close-up of its gills (B). 

2.5.7 Monitoring P. parvum by quantitative real-time PCR 

Water samples were collected from sampling locations 1-11 on Hickling Broad approximately 

once every 2 weeks for a 20-month period. Samples (100 ml) were obtained from a 10 cm 

depth and pelleted by centrifugation (3000 x g). Nucleic acids were extracted following the 

protocol in section 2.5.4. The abundance of P. parvum specific ITS genes was quantified by 

qPCR using previously published primers PrymF [23] and PrymR-3 [24] (Table 3). All assays 

were performed in a StepOnePlus Real-Time PCR system (Applied Biosystems). Respective 

standards were used, and controls were ran with water instead of extracted nucleic acid 

samples.  

 

Primer name Sequence 5’ – 3’ Reference 

PrymF TGTCTGCCGTGGACTTAGTGCT Galluzzi et al [23] 

PrymR-3 ATGGCACAACGACTTGGT Zamor et al [24] 

Table 3 – List of primers used in this study. 
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3.1 Abstract 

Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms 

globally, leading to large-scale fish kills that have severe ecological and economic implications. 

For the model haptophyte, Emiliania huxleyi, it has been shown that large dsDNA viruses play 

an important role in regulating blooms and therefore biogeochemical cycling, but much less 

work has been done looking at viruses that infect P. parvum, or the role that these viruses may 

play in regulating harmful algal blooms. In this study, we report the isolation and 

characterization of a lytic nucleo-cytoplasmic large DNA virus (NCLDV) collected from the site 

of a harmful P. parvum bloom. In subsequent experiments, this virus was shown to infect 

cultures of Prymnesium sp. and showed phylogenetic similarity to the extended Megaviridae 

family of algal viruses. 
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3.2 Introduction 

The last two decades have seen a boom in the study of marine viruses and the role that they 

play in regulating both bacterial and unicellular eukaryote bloom dynamics [1,2]. Although 

phages and the bacteria that they infect have been studied for many years, the more recently 

discovered Acanthamoeba polyphaga mimivirus (APMV) and its Megaviridae relatives have 

brought about a new age in photosynthetic protist virology. It has recently been shown that 

dsDNA viruses infecting algae do not form monophyletic lineages [3], with divergence 

occurring even within the host division. A good example of this evolutionary divergence can be 

found in viruses that infect the coccolithophore Emiliania huxleyi (EhV) [4,5] and the 

prymnesiophyte Phaeocystis globosa (PgV) [6], which along with other algal viruses have been 

proposed to form an extended branch of the Megaviridae [7]. It is widely accepted that these 

viruses not only play a crucial role in ecosystem dynamics [8,9], but also contribute 

significantly to biogeochemical cycles [10,11]. A lesser studied impact, however, lies in the role 

that such viruses may play in the termination of toxic eukaryotic algal blooms. Lytic viruses 

that infect the toxic raphidophyte Heterosigma akashiwo have been extensively studied [12-

19] but, because of the elusive nature of H. akashwio toxicity to fish, none of these studies 

sought to investigate the role of viral infection on levels of algal toxicity. 

 

The toxin-producing haptophyte Prymnesium parvum forms dense blooms in marine, brackish 

and inland waters, devastating fish populations through the release of natural product toxins 

[20,21]. The haptophytes are a diverse division of microalgae that include the bloom-forming 

Emiliania huxleyi and Phaeocystis globosa, both of which play crucial roles in oceanic carbon 

and sulfur cycles [22,23]. Virus infection of these organisms has been studied in some detail, 

with the genome of the dsDNA Phaeocystis globosa virus (PgV-16T) being recently described 

[3]. From a metabolomics perspective, Phaeocystis pouchetti lysis by a strain-specific virus has 

been shown to cause substantial release of dimethyl sulphide and its major precursor 

dimethylsulphoniopropionate [24], an action that is believed to contribute significantly to the 

global sulfur cycle. Although much effort has gone into studying the relationship between E. 

huxleyi and its infecting viruses, viruses infecting toxin-producing algal species within the 

haptophyte family are much less well studied. These include the euryhaline species 

Prymnesium spp. and Chrysochromulina spp., whose blooms can often result in severe 

economic damage through loss of fish stocks [25,26]. Viruses that infect the non-toxic P. kappa 

have recently been described, but to date no viruses have been isolated and characterized that 
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infect the toxin-producing P. parvum species, even though Schwierzke et al have previously 

suggested a role for viruses in regulating natural P. parvum populations [27]. 

 

Hickling Broad is part of a network of broads that make up The Norfolk and Suffolk Broads, 

Britain’s largest protected wetland. As a hotspot for angling and boating activities, the tourism 

industry from the Broads contributes ~£500 million per year to the local economy [28]. 

However, since the mid-1960s, this area has been plagued by almost annual blooms of P. 

parvum, often leading to the losses of thousands of fish crucial for these activities [29]. In this 

study, we first show that natural P. parvum populations appear to be infected by viruses. 

Following this we show that communities of algal viruses exist in the Norfolk Broads and we 

subsequently isolated a novel lytic virus of P. parvum 946/6, Prymnesium parvum DNA virus 

BW1 (henceforth referred to as PpDNAV), from the site of a recent harmful bloom event of this 

species in Norfolk, England. We show that the virus has a typical narrow host range; using 

morphological characterisation and phylogenetics, we also show that the virus lies in the 

recently described clade of algal megaviruses.  
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3.3 Results 

3.3.1 Optical microscopy of natural P. parvum populations 

Water samples taken during a bloom of P. parvum in Spring 2015 were analysed visually for 

virally infected cells. Many cells observed showed signs of distress (non-motile, erratic flapping 

of flagella against the cell), and in most cases (Figure 25), virus-like particles could be observed 

in the cytoplasm of the algal cells. When left for a 4-hour period, these cells were seen to have 

undergone a cell lysis event typical of that seen for lytic algal viruses, with membrane blebbing 

and loss of motility preceding cell lysis. 

 

 

Figure 25 - A natural P. parvum cell from samples taken from Hickling Broad undergoing viral cell lysis.  

Images were taken throughout a 4 hour period and show (from left to right) a non-motile cell 

undergoing membrane blebbing before bursting and releasing the intracellular contents. Scale bar = 

10 µm. 

 

 

3.3.2 Isolation of whole viral communities 

Large volume (10 L) water samples taken from Hickling Broad, Norfolk, were subject to a viral 

isolation technique in which rounds of filtration were used to select for viruses from a mixture 

of organisms. Epifluorescence microscopy confirmed removal of most bacteria and algae 

(Figure 26), and concentration of small VLP size particles that strained positively with SYBR 

Green. 
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Figure 26 - Left; unfiltered water from Hickling Broad after treatment with SYBR Green and analysed 

using epifluorescence microscopy.  Red arrows indicate algae, white arrows indicate bacteria. Right; 

white arrows indicate bacteria; smaller green dots are likely individual virus particles. 

 

Filtered and concentrated viral communities were then subject to qualitative TEM analysis to 

investigate, by morphological analysis, the type of viruses present. As expected, the 

community contained a mixture of viruses including a mixture of bacteriophages (as observed 

by tail structures), ovoid-like viruses and icosahedral non-tailed viruses within the size range 

expected for algal viruses (Figure 27). 

 

 

Figure 27 - A mixed virus population prepared from samples taken from Hickling Broad.  A, B; 

icosahedral viruses, bacteriophages, larger ovoid shaped viruses. C; large ovoid-like VLPs. D; smaller 

bacteriophages. 
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An additional way to predict classification of algal viruses is based on their genome size. 

Therefore, viral communities were subject to pulsed field gel electrophoresis analysis (Figure 

28), so that genome sizes could be predicted. Virus-plugs were prepared by embedding 

concentrated viral lysate in agarose. These plugs were then subjected to enzymatic digestion 

to release nucleic acids before being loaded on gels. A range of distinct bands could be 

observed, representing a variety of genome sizes. Under these conditions several distinct 

bands could be seen within the expected range for the Phycodnaviridae family of algal viruses 

(160 – 560 kbp) [30]. 

 

 

Figure 28 - Pulsed-field gel electrophoresis (PFGE) analysis of a mixed virus community isolated from 

Hickling Broad.  Several distinct bands are visible from 48.5 kb to 291 kb. Ladder is Lambda ladder 

(Bio-Rad). 

 

3.3.3 Isolation of lytic virus particles 

PpDNAV isolation was conducted from water samples collected at Hickling Broad, Norfolk, 

England. Among four water samples from which viral lysates were prepared, lysis of P. parvum 

946/6 occurred with three samples (Figure 29). Transmission electron micrographs of the viral 

lysates showed that icosahedral VLPs were present in all three samples, but samples 1 and 2 

also contained significant levels of phage-like particles; we suspect that these were a result of 

infection with the low levels of bacteria that were present in the non-axenic P. parvum 946/6 
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cultures. To avoid further downstream separation of viruses, we chose to continue working 

with sample 4 only (sourced at Hickling Broad—52°44′19.12″ N, Long—1°34′39.49″ E), which 

appeared by TEM to be free of phages. After a triplicate dilution series, the resulting 

monoclonal viral lysate still lysed the host cells and TEM of thin-sectioned cells confirmed the 

presence of VLPs (Figure 30A,B); thereby fulfilling Koch’s postulates.  

 

 

 

Figure 29 – Viral cell lysis as seen by culture clearing.  (Top) control culture; (Bottom) ‘Cleared’ culture 

96 h post viral infection. 
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Figure 30 – Viral infection of P. parvum by PpDNAV observed by TEM.  (A) Thin-sections of healthy P. 

parvum 946/6 cells; (B) Thin-sections of P. parvum 946/6 48 h post infection. (C) Free Prymnesium 

parvum DNA virus (PpDNAV) particles in culture supernatant 72 h post infection. C:chloroplast; 

V:contractile vacuole; N:nucleus; S:scales; M:mitochondria, P:pyrenoid. 

3.3.4 Virus morphology, host range, and infectious properties 

Transmission electron microscopy of isolated and intracellular (thin sectioned) viruses revealed 

an icosahedral capsid with an average diameter of 221 nm (n = 71) (Figure 30). Although no 

external viral lipid membrane was evident, some viral particles showed an internal white ‘halo’ 

between the capsid and the DNA of PpDNAV, suggestive of the virus having an internal 

membrane. The presence of a viral factory or viroplasm [31] in the host cytoplasm, and in 

some cases an imperfect vertex or a tail-like structure were also observed (Figure 31 and 

Figure 32). As seen in Figure 30B, establishment of a viral factory in the host cytoplasm also 

results in a loss of the nuclear envelope and therefore loss of the nucleus. This was observed in 

the majority of infected cells examined at 48 h p.i.  
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Figure 31 - Electron micrographs of negatively stained PpDNAV particles.  A small number of particles 

appear to have a single imperfect vertex, likely representing a stargate structure (white arrow). 

 

 

 

Figure 32 - Electron micrographs of infected P. parvum 946/6 48 h p.i.  Left – Whole cell visually 

infected with many PpDNAV particles surrounding a viroplasm. Right – Magnified from left.  Both 

mature and immature particles can be observed. ‘Empty’ particles are denoted by a white arrow. 

Vp:viroplasm; C:chloroplast; V:contractile vacuole; M:mitochondria, P:pyrenoid. 

 

 

Fifteen different strains of Prymnesium were screened for sensitivity to PpDNAV (Table 4). 

PpDNAV was found to be sensitive to chloroform, whereby the chloroform-treated virus no 

longer caused lysis of P. parvum 946/6 (Figure 33). This supports the notion of a viral 

membrane in this system. 
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Figure 33 - Chloroform sensitivity assay.  Left to right – P. parvum 946/6 + f/2 media; P. parvum 946/6 

+ PpDNAV; P. parvum 946/6 + Chloroform treated PpDNAV; P. parvum 946/6 + Chloroform treated f/2 

media. 

 

The lytic cycle of the virus was explored to determine both the incubation period and eclipse 

period (Figure 34). At 48 h p.i., the cells had clearly lost mobility and sedimented at the base of 

the culture flask. Re-suspension of the cells by shaking led to similar cell counts as seen at 24 h 

p.i., as determined by Coulter counting. The time before symptoms of viral infection, the 

incubation period, was therefore judged to be 24 h. The eclipse period reflects the time 

between infection and appearance of mature virus particles within the host; as new mature 

virions were first observed 48 h p.i., the eclipse period was judged to be 24–48 h. At 72 h p.i., 

the onset of cell lysis had occurred. PpDNAV appeared to lyse >95% of host cells by 120 h p.i., 

whilst uninfected control cultures continued to grow over the full course of the experiment. 

 



Chapter 3 

   Page | 93  

 

 

Figure 34 -  PpDNAV infection cycle propagated on P. parvum 946/6.  Graph shows the average 

number of algal cells in control cultures (squares) and PpDNAV infected cultures (circles). Error bars 

represent the standard error for triplicate cultures. 

 

3.3.5 Genome sequencing and phylogenetic analysis 

Predicted proteins from the initial genome assembly included the MCP1 protein (KY509047) 

and DNA polB (KY509048) which were used for phylogenetic analysis. The 525 aa sequence for 

MCP1 was found to have 91% sequence similarity to the major capsid protein 1 of Phaeocystis 

globosa virus (YP_008052475.1) and 84% similarity to MCP1 of Organic Lake Phycodnavirus 2 

(ADX06358.1) with E-values of 0.0 in each case. This alignment allowed construction of a 

phylogenetic tree (Figure 35) that shows clustering with other megaviruses, including PgV-16T. 

 

For DNA polB (KY509048), the 1281 aa sequence displayed 77% sequence similarity to DNA 

polB of PgV-16T (YP_008052566.1) and 64% similarity to DNA polB of Organic Lake 

phycodnavirus 2 (ADX06483.1). The resulting phylogenetic tree (Figure 36) shows a similar 

clustering of PpDNAV to the algal Megaviridae family, but also illustrates an obvious 

divergence between algal viruses that fall within the Megaviridae family and those that do not; 

with EhV-86 and Heterosigma akashiwo virus (HaV)-1 rightfully placed outside of the 

Megaviridae clade. 
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Figure 35 - Phylogenetic clustering of PpDNAV with other large algal Megaviridae.  Alignment was 

performed using the default settings of MAFFT [32], and the Neighbour-joining method (midpoint-

rooted) [33] was used to construct a tree from 28 viral MCP sequences using MEGA7 [34]. The final 

tree was based on 336 ungapped positions, 500 resampling permutations, and was collapsed for 

bootstrap values <50. The tree shows that PpDNAV clusters with the algal-infecting Megaviridae, 

separate to the Phycodnaviridae. 
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Figure 36 - Phylogenetic clustering of PpDNAV with other large algal Megaviridae.  Alignment was 

performed using the default settings of multiple sequence alignment software version 7 (MAFFT) [32], 

and the neighbour-joining method (midpoint-rooted) [33] was used to construct a tree from 19 viral 

DNA Polymerase Beta (polB) sequences using Molecular Evolutionary Genetics Analysis version 7.0 

(MEGA7) [34]. The final tree was based on 630 ungapped positions, 500 resampling permutations, and 

was collapsed for bootstrap values <50. The tree shows that PpDNAV clusters with the well-defined 

clade of Megaviridae and the algal-infecting Megaviridae (red), and not with the Phycodnaviridae 

(blue).  

 

A preliminary genome assembly of PpDNAV-BW1 was found to be 523 kbp, although this is 

expected to change slightly when the assembly is complete. Currently, the genome is spread 

over 56 contigs and its overall A+T content is 72.4%. GeneMark™ identified 332 putative 

protein-coding sequences from the genome, which were then subject to BLASTp analysis 

(cutoff E-value < 10-5) for manual annotation. Of the 332 genes, 273 (82%) shared highest 

homology to sequences from other viruses; 22 (7%) bacterial, 19 (6%) eukaryotic, 2 (1%) 

archaeal and 16 (5%) have no match to sequences in NCBI using these search settings (Figure 

37). 

 

Of the 273 sequences with highest homology to viral sequences, these are dominated by 

sequences found in the recently described Phaeocystis globosa Virus (PgV-16T) [3] (218, 80%). 
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Other viruses infecting the haptophyte Phaeocystis spp. share sequence homology, with 6 (2%) 

found with homology to PgV-12T, 2 (1%) found with homology to sequences from PgV-14T and 

2 (1%) found with homology to sequences from PpV. Unsurprisingly, sequences are also found 

that share highest homology to viruses infecting other haptophytes; 18 (7%) share highest 

homology to sequences from CeV and 21 (8%) share highest homology to OLPV which are 

speculated to infect haptophytes [3]. 2 (1%) sequences share highest homology to another 

megavirus infecting an amoeba, CroV, and 4 (1%) have sequences found in other viruses 

(Figure 37). 

 

 

 

Figure 37 – Database similarity of the translated genome of PpDNAV-BW1.  (Top) >75% of predicted 

proteins match those of viral sequences found in the NCBI NR protein database. (Bottom) Of the viral 

hits, >75% are most similar to proteins encoded in the genome of the recently described Phaeocystis 

globosa virus (PgV-16T). 
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3.4 Discussion 

Haptophytes are abundant in marine waters but can also thrive in brackish inland waters. 

Whilst a significant amount of work has been done on the marine dwelling coccolithophore 

Emiliania huxleyi and its associated viruses, little work has looked at the toxin-producing 

members of the haptophytes. In the present study, we first showed qualitative evidence that 

natural populations of P. parvum are infected by lytic viruses in the Norfolk Broads. We next 

examined the viral communities in Hickling Broad and showed morphological and genomic 

evidence for the presence of algal viruses. Subsequently, we then isolated and characterized a 

novel megavirus, PpDNAV, from brackish inland waters where harmful blooms of Prymnesium 

parvum frequently occur [29]. We showed that this lytic virus was able to infect P. parvum 

946/6, later expanded to five out of 15 Prymnesium strains tested. Morphological and 

phylogenetic analysis of two core dsDNA virus conserved genes suggests that this virus belongs 

to the extended Megaviridae family of algal-infecting viruses.  

 

Transmission electron microscopy of negatively stained virus particles from a lysed culture 

supernatant revealed icosahedral capsids with an average diameter of 221 nm. Many particles 

appeared to have one imperfect vertex, with some showing material protruding from what 

appeared to be a stargate [31] (Figure 31). These likely represent particles in an advanced 

stage of packing or unpacking genetic material [35], and suggested early on that PpDNAV lies 

in the extended Megaviridae branch of algal viruses. Thin sections of infected P. parvum 946/6 

cells showed evidence for a viroplasm as the site of replication, where empty capsids could be 

seen closer to the centre of the viroplasm (Figure 32). This further supported the inclusion of 

PpDNAV in the extended Megaviridae family [36]. The infectivity of PpDNAV is chloroform 

sensitive (Figure 33), and the lack of an obvious external lipid membrane observed by TEM 

may suggest that internal membrane/s are present; although chloroform sensitivity cannot 

always be used to confirm lipid membrane presence [37].  

 

New mature virions were first observed by electron microscopy at 48 h p.i., so the eclipse 

period of the virus in infected algal cells was estimated to be 24–48 h. At 48 h, the algal cell 

count as recorded by Coulter counting was still the same as at 24 h, but a complete 

sedimentation of cells had occurred, suggesting a loss in motility and a likely shutdown of 

important cellular processes. By 72 h, a rapid decline in cell abundance could be observed, 

showing that the loss of motility precedes the host lysis event, as is seen for some other 
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flagellated algae [18]. In its natural environment, this may lead to accumulation of viral 

particles at the sediment surface rather than dispersed in the water column.  

 

The algal host species specificity of PpDNAV was assessed against P. parvum 946/6, which had 

been kept in 7–8 PSU f/2 medium for two years, and 14 other Prymnesium strains which had 

been maintained in a full strength seawater medium. Initially, PpDNAV only infected P. parvum 

946/6, but after ~6 months of sub-culturing of the other 14 strains in 7–8 PSU f/2 medium, the 

host range broadened to five out of the 15 strains. We speculate that the change in salinity 

contributed to the change in sensitivity to PpDNAV; recent work by Nedbalová et al [38] 

suggests that a change in membrane lipid composition in different salinities may account for 

this situation. This somewhat less restricted host range is similar to that found for Haptolina 

ericina virus (HeV RF02), Prymnesium kappa virus (PkV RF01) and Prymnesium kappa virus (PkV 

RF02) [39]. Taken together, this suggested that PpDNAV was a member of the algal Megavirus 

family [40]. 

 

Phylogenetic analysis using sequences for MCP1 and DNA polB of PpDNAV confirmed 

morphological findings, showing that PpDNAV clusters amongst the algal viruses belonging to 

the Megaviridae family, such as PgV-16T [3,6], Chrysochromulina ericina virus (CeV) [41], 

Pyramimonas orientalis virus (PoV) [42] and the recently reassigned Aureococcus 

anophagefferens virus (AaV) [43]. With the exception of Emliania huxleyi virus (EhV-86), which 

appears to branch independently, the close clustering of viruses infecting haptophytes, as well 

as the chlorella viruses clustering together, supports the notion that viruses co-evolve with 

their hosts [6,43,44].  

 

The incomplete genome assembly of PpDNAV displays clear similarities to the genome recently 

described for Phaeocystis globosa virus (PgV-16T) [3]. The initial assembly was found to be 523 

Kbp with an A+T% of 72.4%; the genome of PgV-16T is 459,984-bp with an A+T% of 68%. The 

homology of genes found in the genome shares a similar pattern to that found for PgV-16T. 6% 

of PpDNAV genes share highest homology to eukaryotic genes whilst 6% of PgV-16T genes 

share highest homology to eukaryotic genes; 7% of PpDNAV genes are most homologous to 

bacterial genes compared to 8% of PgV-16T genes and ~1% of genes have highest similarity to 

archael genes in both viruses. Whilst PgV-16T has 44% of genes with no matches and PpDNAV 

only 5% with no match, this can be explained by the significant number of genes from PpDNAV 

that are now also found in PgV-16T since it's genome has been added to the NCBI database; 

80% of genes with highest sequence similarity to viral genes are most similar to PgV-16T genes. 
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The remaining 20% of viral genes are most similar to genes from other viruses infecting 

haptophytes, as is seen in PgV-16T. 

 

Of the algal viruses compared in this study, only HaV-1 is known to infect a toxin producing 

host [12-15]. However, the toxic metabolites responsible for bloom toxicity are not established 

in Heterosigma akashiwo, making studies of viral impact on toxicity difficult. On the other 

hand, reports of toxic P. parvum metabolites are numerous and include fatty acids [45], 

glycerolipids [46] and very large ladder-frame polyether toxins, known collectively as the 

prymnesins [21,47–49]. Reports of cases of toxic and non-toxic blooms of Prymnesium and 

other harmful algal species [29] has led to speculation that an ecological trigger exists for 

toxicity. While efforts have been made to associate nutrients, pH and other conditions to 

bloom toxicity [21], the identity of the full spectrum of toxicity-causing agents remains to be 

establshed; there may conceivably be a role for viral infection in Prymnesium cell lysis and 

hence toxin release. We now have the opportunity to use this alga–virus system in clearing up 

some of these unanswered questions. Further studies into the effect of viral infection and host 

algal cell lysis on toxic bloom events need to be explored in order to fully understand the 

underlying mechanisms behind production and release of toxins from Prymnesium. In addition, 

as further sequences of algal viruses become available, new opportunities will open up for 

accurate monitoring of viral population fluctuations with respect their host. Furthermore, the 

increase in characterized viruses will provide more information when analysing metagenomic 

data sets such as those generated by the Tara Oceans expedition [50,51]. Hence the discovery 

and characterization of PpDNAV in this study will aid this burgeoning field of scientific 

endeavour. 
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3.5 Materials and Methods 

3.5.1 Prymnesium parvum culture conditions 

For choice of host cell, P. parvum 946/6 was obtained from the Culture Collection of Algae and 

Protozoa (CCAP—www.ccap.ac.uk). The additional 14 strains used for host range screening 

were obtained from the Marine Biological Association Culture Collection 

(https://www.mba.ac.uk/culture-collection/). Batch cultures were maintained at 22 °C on a 

14:10 light cycle at 100 µmol·photons·m−2·s−1. Cultures were grown in f/2–Si medium at a 

salinity of 7–8 practical salinity unit (PSU). Under these conditions, cell densities of ~3 × 106 

cells·mL−1 could be achieved after 12–16 days of growth. 

3.5.2 Optical microscopy of natural P. parvum populations 

Small volume (100 ml) water samples taken during a toxic bloom of P. parvum were visually 

analysed for the presence of P. parvum cells by pipetting 5 µl of fresh broads water onto glass 

slides and analyzing on an optical microscope (DM6000, Leica). Cells of P. parvum were 

identified by looking for characteristic traits (cell size, ellipsoidal shape, 2 flagella and 1 

haptonema).  

3.5.3 Isolation and analysis of whole viral communities 

Large volume (10 L) water samples were taken from Hickling Broad, Norfolk, on 25th May 2015 

shortly following a harmful bloom of P. parvum. This was subject to filtration through 1L 0.22 

µm disposable filtration units (Nalgene™, ThermoFisher Sci, United Kingdom) to remove 

bacteria and algae before the filtrate was concentrated to 50 ml by tangential flow filtration 

against a 100 kDa mw-cutoff filter (Vivaflow™, Sartorius, United Kingdom). 

 

The resulting viral preparation was then stained with SYBR Green I according the method 

outlined by Patel et al [52] and stained particles were visualized using a Leica DM6000 

microscope with fitted filters for blue excitation and green emission. Viral communities pre-

and post filtration and concentration were visualized to confirm removal of bacteria and algae. 

Transmission electron microscopy (TEM) analysis was performed on whole viral communities 

as described in section 3.5.5.  

 

Viral agarose plugs were prepared and pulsed field gel electrophoresis (PFGE) was carried out 

according to the methods outlined by Johannessen et al [39]. In brief, viral preparations were 

pelleted by ultracentrifugation (150,000× g) before being re-suspended in SM buffer (0.1 M 
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NaCl, 8 mM MgSO4•7H2O, 50 mM Tris-HCl, 0.005% Glycerin). Molten agarose (1.5%) was then 

added to a 1:1 ratio and the lysate was drawn up a 1 ml syringe and allowed to solidify. Small 

plugs (1 cm) were cut away and incubated overnight in a lysis buffer (1 mg/ml proteinase K, 1% 

SDS, 250 mM EDTA, pH 8). Plugs were then loaded onto agarose gels (1%) with molecular 

weight markers (CHEF lambda ladder - BioRad). Gels were ran in 0.5 x TBE buffer (89 mM Tris-

NaOH, 89 mM boric acid, 2 mM EDTA, pH 8) at 6V for 18 hours at 14 oc. Pulses were set up to 

separate genomes up to 600 kbp (1-8 s separating genomes from 5-200 kbp, 20-40 s 

separating genomes from 50-600 kbp).   

3.5.4 Isolation of lytic virus particles 

PpDNAV was isolated from surface water samples taken at various locations on Hickling Broad, 

Norfolk, England on 9 February 2016. In brief, 4 × 100 mL water samples from various locations 

around the Broad were centrifuged at 3000× g and the supernatant subsequently filtered 

through 0.45 µm pore-size filters (Sartorius AG, Goettingen, Germany). The resulting solutions 

were then concentrated 100- to 200-fold using 100 kDa mw cut off spin filters (Amicon Ultra 

15, Merck Millipore, Watford, United Kingdom) to give 0.5 to 1 mL of viral concentrate, which 

was stored at 4 °C in the dark until use. Small volumes (0.2 mL) of concentrate from each 

location were added to 1.8 mL of exponentially growing cultures of P. parvum 946/6. Blank 

culture medium was used as a control. Cultures were visually inspected for signs of cell lysis 

(culture clearing) after 7–10 days where the control cultures continued to grow. Culture 

clearing was then followed up by Transmission Electron Microscopy (TEM) analysis of the 

culture lysates. Clonal populations of PpDNAV were obtained by taking the supernatant of a 

lysed culture, and exhaustively diluting with media. These diluted samples (0.2 mL) were 

added to 1.8 mL of an exponentially growing culture of P. parvum 946/6. The highest dilution 

that still produced cell lysis after seven days was taken through to the next round. This was 

repeated at least three times and resulted in a population of PpDNAV free of morphologically 

different viruses, as judged by TEM. 

3.5.5 Transmission electron microscopy 

For TEM analysis of virus-like particles (VLPs), 2 mL of viral preparations were filtered through 

0.45 µm filters and 10 µL of the filtrate was adsorbed onto a 400-mesh copper palladium grid 

with a carbon-coated pyroxylin support film before being negatively stained with 2% aqueous 

uranyl acetate [53]. The grids were viewed in a FEI Tecnai 20 transmission electron microscope 

(Eindhoven, The Netherlands) at 200 kV and digital TIFF images were taken with an AMT 

XR60B digital camera (Deben, Bury St Edmunds, UK). 
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For analysing intracellular VLPs, 1 mL of infected cultures of P. parvum 946/6 was taken at 24 

and 48 h post-infection (p.i.). These were centrifuged at 3000× g to pellet algal cells and the 

supernatant was discarded. The pellet was washed twice with sterile medium. The pelleted 

cells were then resuspended in 2.5% (v/v) aqueous glutaraldehyde solution and left overnight. 

This suspension was then centrifuged at 3000× g to pellet the algal cells. Half the volume of 

the supernatant was then discarded and an equal volume of warm (60 °C) low gelling 

temperature agarose (Sigma Aldrich, Haverhill, United Kingdom) was added, before 

resuspension of the cells and placing on ice to solidify. The solidified samples were then put 

into 2.5% (v/v) glutaraldehyde with 0.05 M sodium cacodylate, pH 7.3 [54] and left overnight. 

Using a Leica EM TP machine (Leica Microsystems, Cambridge, United Kingdom), the samples 

were washed in 0.05 M sodium cacodylate and then post-fixed with 1% (w/v) OsO4 in 0.05 M 

sodium cacodylate for 60 min at room temperature. After washing and dehydration with 

ethanol, the samples were gradually infiltrated with LR White resin (London Resin Company, 

London, United Kingdom) according to the manufacturer’s instructions. After polymerization, 

the resulting material was sectioned with a diamond knife using a Leica EM UC6 

ultramicrotome (Leica Microsystems). Ultrathin sections of approximately 90 nm were picked 

up on 200 mesh gold grids that had been coated in pyroxylin and carbon. The grids were then 

contrast-stained with 2% (w/v) uranyl acetate for 1 h and 1% (w/v) lead citrate for 1 min, 

washed in distilled water and air-dried. The grids were then viewed with a FEI Tecnai 20 

transmission electron microscope (Eindhoven, The Netherlands) at 200 kV and digital TIFF 

images were produced. 

 

3.5.6 Host specificity 

Fifteen different strains of Prymnesium were tested in triplicate for signs of cell lysis by 

PpDNAV using the infection methodology described above. Cell lysis, as observed by culture 

clearing, was documented for five of the 15 strains tested (Table 4).  
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Genus/species Strain code Lysis with PpDNAV 

Prymnesium parvum 946/6 + 

Prymnesium parvum 94A - 

Prymnesium parvum 94C + 

Prymnesium parvum 579 - 

Prymnesium patelliferum 527A + 

Prymnesium patelliferum 527C + 

Prymnesium patelliferum 527D - 

Prymnesium sp. 522 - 

Prymnesium sp. 569 - 

Prymnesium sp. 592 + 

Prymnesium sp. 593 - 

Prymnesium sp. 595 - 

Prymnesium sp. 596 - 

Prymnesium sp. 597 - 

Prymnesium sp. 598 - 

Table 4 - Host range of PpDNAV. + lysed culture, - culture not lysed. 

 

3.5.7 Infection cycle 

The lytic cycle of the PpDNAV was investigated by accurately recording algal cell abundance 

during an infection cycle. A late-log phase culture of P. parvum 946/6 was infected with 

PpDNAV (0.1% v/v) and triplicate aliquots (2 mL) were taken at various time points post 

infection (p.i.). These were diluted with 0.2 µm filtered seawater prior to counting using a 

Multisizer 3 Analyser (Beckman Coulter, High Wycombe, United Kingdom) fitted with a 100 µm 

aperture tube. The control culture continued to grow throughout the experiment, whilst the 

infected algal culture was lysed rapidly after 48 h.  

 

3.5.8 Chloroform sensitivity 

To test the virus sensitivity to chloroform, an adaptation of the method of Martínez Martínez 

et al was employed [55]. Briefly, 1 mL of 0.45 µm-filtered PpDNAV was added to an equivalent 

volume of chloroform and shaken vigorously for 5 min. The resulting mixture was then 

centrifuged at 4000× g in a benchtop centrifuge for 5 min to separate the organic and polar 

layers. The aqueous phase was transferred by pipetting to a clean microcentrifuge tube and 
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incubated at 37 °C for 1 h to remove residual chloroform. As a control, 1 mL of chloroform was 

added to 1 mL of f/2 medium. Chloroform-treated PpDNAV, chloroform-treated medium and 

untreated PpDNAV were added to P. parvum 946/6 as described above in the infectivity 

experiment protocol; signs of lysis, as judged by culture clearing, were recorded after one 

week.  

 

3.5.9 Viral DNA extraction, sequencing, and phylogenetic analyses 

For DNA extraction, 1 L of late log phase P. parvum 946/6 was infected with axenic PpDNAV 

(0.1% v/v). Lysis was allowed to occur over a period of five days, by which point almost all cells 

had been lysed. The culture was centrifuged at 6500× g to pellet cell debris, before being 

filtered through 0.22 µm filters to remove remaining cell debris or contaminating bacteria. The 

filtrate was incubated for 72 h with 100 μg/mL carbenicillin before being concentrated to 30 

mL using 100 kDa mw cut-off spin filters. Ultracentrifugation at 150,000× g was used to pellet 

viral particles, and these were re-suspended in 2 mL of ρ = 1.4 CsCl and layered onto a CsCl 

gradient which was resolved at 150,000× g for 18 h. Fractions from ρ = 1.3 to ρ = 1.4 were 

pooled and DNA extracted using a PureLink Viral RNA/DNA Kit, according to the 

manufacturer’s protocol. 

 

An amount of 1 µg of purified viral DNA was then sent to The Earlham Institute, UK, for 

Illumina MiSeq sequencing (Illumina, Inc., San Diego, CA, USA) and assembly. A single paired-

end (PE) library was prepared using a single lane of Illumina MiSeq to yield 250 bp paired end 

reads. The reads were then processed and trimmed using KAT (Kmer analysis toolkit) [56] and 

assembled using IDBA assembly tool [57]. The full set of assembled scaffolds was then aligned 

to NCBI nr/nt database using the diamond aligner [58] and sequences aligning to known 

Phycodnaviridae were filtered.  This output was then analysed using the MEGAN metagenomic 

analysis package [59] (v5.11.3) to give a filtered assembly. The initial assembly was then 

analysed using GeneMarkS [60] which identified 332 protein-coding sequences. BLASTp 

analysis was then performed against the National Center for Biotechnology Information (NCBI) 

GenBank nonredundant (nr) protein sequence database [61] to identify major capsid protein 

and DNA Pol B candidates. Nucleic acid and amino acid sequences for the major capsid protein 

(MCP) and DNA Polymerase B (DNA polB) were submitted to Genbank with the accession 

codes KY509047 and KY509048, respectively. 
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Phylogenetic analysis was performed using the obtained sequences for MCP and DNA polB, as 

well as other related sequences from previously discovered algal viruses, identified using 

BLASTp. These sequences were aligned using the default settings of multiple sequence 

alignment software version 7 (MAFFT) [37], and trees were constructed from the neighbour-

joining method [38] (midpoint-rooted) using Molecular Evolutionary Genetics Analysis version 

7.0 (MEGA7) [39]. 

 

An initial genome assembly was annotated by manually blasting protein-coding sequences 

identified by GeneMarkS against the NCBI non-redundant protein database [61]. Where 

sequences had hits with E-value < 10-5, the function and organism of the top hit was noted. 
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4.1 Abstract 

Sialic acids are a family of more than 50 structurally distinct acidic carbohydrates found on the 

surface of all vertebrate cells. Frequently, sialic acids terminate the branches of glycan chains 

found on the surface of cells, exposing them to a range of interactions with the surrounding 

environment. Because of this, sialic acids often play important roles in host:pathogen 

interactions.  The study of viruses that infect algae has boomed in recent years, but the 

molecular basis behind these viral infections remains unclear, with some speculation that sialic 

acids may play a role. However, the production of sialic acids by algae is largely unexplored. 

Here we report the de novo biosynthesis of the deaminated sialic acid, 2-keto-3-deoxy-D-

glycero-D-galacto-nononic acid (KDN), in the toxin-producing microalgae, Prymnesium parvum.  

Using biochemical methods we show that the alga contains CMP-KDN and that gene products 

of the algae convert Mannose-6-P to CMP-KDN; using bioinformatics we show that sialic acid 

biosynthesis is more widespread across the algae than previously thought, and may imply a 

key role for this acidic sugar in alga:virus infections. 
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4.2 Introduction 

Sialic acids are acidic nine-carbon carbohydrates that are found cross kingdom [1] including on 

the surface of all vertebrate cells [2]. Frequently, sialic acids take up the terminal position on a 

glycan, exposing cell-surface sialic acids to a whole range of cell-cell interactions [3]. These 

interactions are most often exploited through protein-ligand interactions, where the proteins 

in question are the well-studied family of sialic acid binding lectins, and the sialic acids are the 

target ligand.  Opportunistic pathogens, such as E. coli K1 or the influenza virus, often exploit 

this common biological interaction, where molecular mimicry can be used to evade host 

immunity, or recognition can be used to enhance virus binding [4, 5]. Alternatively, sialic acids 

can be modified in order to evade acquired immunity, and this has led to the discovery of over 

50 different naturally occurring sialic acids [2]. The most common sialic acid in humans is N-

acetyl neuraminic acid (Neu5Ac), first discovered by Klenk and Blix in the 1930s [6]. However 

other types of nine-carbon sialic acids also exist including the di-n-acetylated neuraminic acids, 

Pseudaminic acid and Legionaminic acid, as well as the deaminated neuraminic acid, 2-keto-3-

deoxy-D-glycero-D-galacto-nononic acid (KDN). 

 

KDN was first discovered in 1986 in rainbow trout eggs [7] but since has been observed in 

salmon eggs [8], amphibian eggs [9-11], other organs of fish [12], as well as pathogenic 

bacteria [13, 14]. Its presence has also been observed at varying levels in different types of 

mammalian tissues [15, 16], although its presence in humans has since been shown to be a 

result of promiscuous Neu5Ac biosynthesis [17]. More recently, reports of KDN biosynthesis 

have been observed in the human gut symbiont Bacteroides thetaiotaomicron [18] (Figure 38), 

and to our knowledge the first report of sialic acids in microalgae when Fulton et al discovered 

a KDN-linked sphingolipid in the lipid rafts of the haptophyte Emiliania huxleyi [19, 20]. 
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Figure 38 - Biosynthetic pathways of CMP-Neu5Ac in humans and bacteria (B&C, respectively) and 

CMP-KDN in B. thetaiotaomicron (A).  Pathways for sialic acid biosynthesis in B. thetaiotaomicron and 

humans follows phosphorylation/dephosphorylation steps whereas many bacteria (C) do not utilise 

phosphorylated sugars as the starting point of the pathway, therefore not needing an additional step 

for phosphate removal. 

 

The haptophytes are a widespread division of microalgae that play crucial roles in the ocean 

carbon and sulfur cycles [21, 22], but are also known to form blooms that are toxic to fish [23, 

24]. The toxin-producing species in this family mainly belong to the Prymnesium and 

Chrysochromulina genus, the most studied species being Prymnesium parvum; which is known 

to cause harmful blooms that result in mass fish mortalities due to the release of extracellular 

toxins [24-28]. P. parvum is cosmopolitan, with blooms causing economic disaster on all 

continents except the Antarctica [29]. In evolutionary terms, P. parvum and the haptophyte 

family are derived from the red algal plastid, which was known to have undergone a significant 

amount of horizontal gene transfer with bacteria [30]. This is supported by a P. parvum 

transcriptome from The Marine Microbial Eukaryote Transcriptome Sequencing Project 

(MMETSP) [31] that contains a plethora of both eukaryotic and prokaryotic genes that may aid 

the alga in allelopathy during nutrient limitation when competition is at its highest. Recent 
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work from our group has discovered a novel lytic virus that infects this alga and has been 

implicated in toxic blooms of this species [32].  

 

Research into algal viruses has boomed in the last two decades; brought about by the 

discovery of Acanthamoeba polyphaha mimivirus in 2003 [33]. They have since been shown to 

play crucial roles in ecosystem dynamics [34] and biogeochemical cycles [35], where large scale 

lysis of algal populations can lead to changes in nutrient cycles in water systems. Although the 

effect of algal viruses has been studied in some detail, the molecular mechanisms behind these 

infections remains poorly understood. Some examples have suggested algal viruses utilise 

mammalian virus infection strategies, hijacking autophagy pathways [36] and utilising host 

sialic acids in their infection process [19, 20].  

 

The recent reports by Fulton et al of a KDN-containing sphingolipid [19, 20] (Figure 39), the 

devastating effect of P. parvum on fish aquaculture [24], and the large genetic capacity of the 

haptophyte family made us question whether P. parvum, and more broadly the haptophytes, 

were capable of de novo sialic acid biosynthesis. Herein, we report a bioinformatics guided 

discovery of a biosynthetic pathway leading to cytidyl-activated KDN, as well as showing that 

multiple strains of Prymnesium all contain KDN. We show the nucleotide sugar, CMP-KDN, 

accumulates to significant levels in the cell. Moreover, using phylogenetic analysis we show 

that sialic acid biosynthesis is widespread amongst the haptophytes and dinoflagellates, 

members of the Alveolata phyla. Extending on this we show that biosynthesis of the 

structurally similar 2-keto-3-deoxyoctonic acid, KDO, is found scattered across algal groups. 

This work conclusively shows sialic acid biosynthesis in a unicellular eukaryote microalga and 

vastly expands the limited previous knowledge of the occurrence of this metabolic pathway in 

unicellular eukaryotes.  

 

 

 

 

Figure 39 – Putative structure of a KDN-containing sphingolipid.  Lipid originally isolated from the 

haptophyte, Emiliania huxleyi [19]. 
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4.3 Results 

4.3.1 DMB-HPLC analysis of sialic acids 

To first determine the presence and type of sialic acids in Prymnesium, 15 strains were 

screened using the fluorescent dye 1,2-diamino-4,5-methylenedioxybenzene (DMB). Each 

strain was subjected to mild acid hydrolysis with hydrochloric acid to release free sialic acids. 

Following removal of insoluble cell debris, the resulting supernatants were reacted with DMB, 

before the labelled mixtures were injected onto an LC-MS system with in-line fluorescence. 

Peaks aligning with the internal standard Neu5Ac were not found (Figure 40A) but peaks 

aligning with the internal standard KDN could be observed in all 15 strains (Figure 40B). The 

predicted peaks for KDN in strains of Prymnesium contained identical masses to those seen for 

the KDN internal standard (Figure 41) and aligned well with reported literature values for 

DMB-KDN adducts. Masses corresponding to the DMB-adducts of other sialic acids could not 

be observed in any of the strains upon manual inspection [37]. Taken together, these results 

strongly suggested Prymnesium strains can produce the deaminated sialic acid, KDN.  
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Figure 40 - DMB-HPLC labelling of sialic acids in 15 strains of Prymnesium.  (A) General scheme for 

DMB labelling of KDN. Yellow circle represents a fluorescent product. (B) Brown – KDO standard. Blue 

– Neu5Ac standard. Pink – KDN standard. P. parvum 946/6 contains peaks aligning with KDN/KDO and 

are confirmed to be KDN by subsequent m/s analysis (Figure 41). (C) Top – P. parvum strains. Middle – 

P. sp. strains. Bottom – P. patelliferum strains. Peaks around 2.6-3.2 minutes (Red hashed line) 

correspond to DMB-KDN and are confirmed by identification of corresponding DMB-KDN masses 

(Figure 41). Other peaks (Black hashed line) are unknown but do not relate to masses of any known 

DMB-sialic acid adducts or their acetylated derivatives. 
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Figure 41 – P. parvum 946/6 contains KDN.  Left – HPLC analysis of DMB-derivatized sialic acids from 

whole cell extracts of P. parvum show peaks aligning to KDN standards. Right – ESI-MS signals from 

peaks aligning with KDN match those of signals seen for KDN standards. 

 

4.3.2 Sugar nucleotide profiling of CMP-KDN 

Monosaccharides are frequently activated inside the cell by attachment to nucleotide-

phosphate bases. Whilst hexoses and pentoses are most commonly activated with uridine 

diphosphate (UDP), thymidine diphosphate (TDP), guanidine diphosphate (GDP) or adenine 

diphosphate (ADP), sialic acids are activated with cytidine monophosphate (CMP) [2]. 

Therefore, we next sought to establish the levels of intracellular CMP-KDN in Prymnesium 

parvum 946/6. Whole cells were extracted using ethanol in late-log phase using a modified 

method of Turnock et al [38]. Following a partitioning between water and butan-1-ol, the 

samples were then subjected to solid phase extraction (SPE) using EnviCarb graphitised carbon 

columns following previously established methods [39]. Based on work by Pabst et al [40], 

samples were then analysed and intracellular levels of CMP-KDN quantified using LC-MS/MS. A 

detailed protocol for the extraction and quantification of sugar nucleotides can be found in 

Rejzek et al [41]. 

 

CMP-KDN produced in this study was used as an internal standard to generate multiple 

reaction monitoring (MRM) transitions of the precursor and fragments and to determine 
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retention times. Where in doubt, co-injection of cell extracts with internal standards was used 

to confirm analyte identification. Using this methodology, a strong signal for CMP-KDN could 

be observed in extracts of P. parvum 946/6. Using peak area integration and by comparison 

with a second internal standard, GDP-α-D-Glc, levels of intracellular CMP-KDN were estimated 

to be 206.6 ± 72.1 pmol per gram of wet cell pellet (Table 5). Concentrations of the other sugar 

nucleotides used in this study for comparison were found to range between 71.2 ± 17.4 and 

328.2 ± 101.0 pmol per gram of cell pellet, showing that CMP-KDN makes up a key sugar 

nucleotide in P. parvum glycobiology. 

 

Sugar Nucleotide 

Species 

Relative Retention 

Time [min] 

MRM 

transitions 

Fragment Concentration 

[pmol/g of cell 

pellet] 

CMP-α-D-KDN 0.8 572 → 322 

572 → 97 

[NMP-H]- 

[H3PO4-H]- 

206.6 ± 72.1* 

UDP-α-D-Glc 1 565 → 323 

565 → 79 

[NMP-H]- 

[H3PO4-H3O]- 

328.2 ± 101.0* 

UDP-α-D-Gal 0.92 565 → 323 

565 → 159 

[NMP-H]- 

[H4P2O7-H3O]- 

71.2 ± 17.4* 

GDP-α-D-Glc 

(added internal 

standard) 

1.56 604 → 362 

604 → 241 

[NMP-H]- 

c[Glc-1-P-H-

H2O]- 

1540.0** 

Table 5 – Relative retention times and MRM transitions of sugar nucleotides.  Sugar nucleotides 

examined in this study (CMP-α-D-KDN) and others shown for comparison (UDP-α-D-Glc, UDP-α-D-Gal 

and internal standard GDP-α-D-Glc). *The data are mean of 3 biological replicates, ± indicates 

standard error. ** GDP-α-D-Glc (1540 pmol / g wet pellet) was added to enable quantification of other 

sugar nucleotides. 

 

4.3.3 Identification of putative CMP-KDN biosynthesis transcripts in 

P. parvum 

Protein sequences involved in CMP-KDN biosynthesis in B. thetaiotaomicron VPI-5482 [18] 

were used to identify transcripts from P. parvum with high sequence similarity. Subsequently, 

protein sequences from the P. paruvm transcriptome with high similarity to KDN-9-P synthase 

(CAMPEP_0191217894) and CMP-transferase (CAMPEP_0191219004) were identified. No 

sequences were found with high sequence similarity (E-values ≤ 1E-05) to the second enzyme of 
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the pathway, KDN-9-P phosphatase. Further analysis of the CMP-transferase sequence 

identified a putative transmembrane domain at the C-terminus of the protein. No sequence 

alignments corresponding to transmembrane domains were seen in the KDN-9-P synthase. 

 

4.3.4 Cloning and expression of P. parvum KDN-9-P synthase 

(CAMPEP_0191217894), B. thetaiotaomicron KDN-9-P 

phosphatase and P. parvum CMP-transferase 

(CAMPEP_0191219004) 

Sequences with high sequence similarity to KDN-9-P synthase and CMP-transferase from P. 

parvum (CAMPEP_0191217894, CAMPEP_0191219004), along with KDN-9-P phosphatase from 

B. thetaiotaomicron VPI-5482 (ExPASy accession number: Q8A712), were codon optimized for 

expression in E. coli and synthesized using IDT’s gBlock gene fragment service. Sequences were 

synthesized with In-Fusion™ cloning overhangs which meant they could be cloned directly into 

pOPINF without the need for any rounds of PCR amplification.  

 

KDN-9-P synthase expressed in high levels (24 mg/L of E. coli) (Figure 42), but caused problems 

following affinity chromatography. Purified protein showed a tendency to precipitate if left 

more than 2 days. This issue was resolved by including DTT (5 mM) into the protein lysis and 

extraction buffer, as well as diluting purified fractions after affinity chromatography.  

 

Figure 42 - SDS-PAGE analysis of KDN-9-P synthase expressed in E. coli BL21 Codon+.  Ladder = 

Precision Plus Protein™ Dual Color Ladder. Sol = soluble protein; FT = column flow through; E1-5 = 

elution fractions. 
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Although expression levels of B. thetaiotaomicron VPI-5482 KDN-9-P phosphatase were largely 

insoluble under these conditions, low milligram levels of soluble protein could be purified with 

no issues (Figure 43).  

 

 

Figure 43 - SDS-PAGE analysis of KDN-9-P phosphatase expressed in E. coli BL21 Codon+.  Ladder = 

Precision Plus Protein™ Dual Color Ladder. Insol = insoluble protein; Sol = soluble protein; E1 = elution 

fraction. 

 

Initial attempts to express full length CMP-transferase in E. coli were unsuccessful, resulting in 

insoluble protein of the expected mass. Further analysis of the sequence using Phobius 

identified a C-terminal transmembrane domain which was subsequently truncated using PCR 

before cloning and expression was re-attempted. Truncated CMP-transferase (AA 1-233) was 

cloned and expressed and resulted in good levels of soluble protein of the expected mass 

(Figure 44).   
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Figure 44 - SDS-PAGE analysis of CMP-transferase expressed in E. coli BL21 Codon+.  Ladder = Precision 

Plus Protein™ Dual Color Ladder. Sol = soluble protein; FT = column flow through; W1-2 = wash 

fractions; E1-2 = elution fractions. 

 

4.3.5 CAMPEP_0191217894 encodes a functional KDN-9-P synthase 

For characterization of CAMPEP_0191217894, a combination of 1H NMR, 31P NMR and ESI-MS 

were used. Based on sequence similarity to B. thetaiotaomicron VPI-5482 BT1714 [18], the 

reaction was anticipated to produce KDN-9-P from phosphoenol pyruvate (PEP) and mannose-

6-phosphate. Reaction solutions contained 38 µg of CAMPEP_0191217894, 2 mM MgCl2, 8 mM 

of PEP and 10 mM of mannose-6-phosphate, buffered in 50 mM HEPES (pD 7.5). Reactions 

were monitored at room temperature and overnight by 1H NMR, whereby formation of the 

axial and equatorial H3 protons could be easily followed (Figure 45). For 31P NMR, consumption 

of mannose-6-phosphate and PEP could be readily followed (Figure 46); coinciding with the 

depletion of these two peaks, formation of two new peaks representative of inorganic 

phosphate and KDN-9-P could be observed. As with 1H NMR values, 31P NMR values 

corresponding to KDN-9-P aligned well with previously published values [18]. 
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Figure 45 – Reaction catalysed by CAMPEP_0191217894 as followed by 1H NMR.  Reactions were 

monitored overnight by 1H NMR by following formation of axial and equatorial H3 protons on KDN-9-

P.  

 

 

 

Figure 46 - Reaction catalysed by CAMPEP_0191217894 as followed by 31P NMR.  Blue – Before 

enzyme addition; two signals representing mannose-6-P and PEP can be seen. Red – 1 hour after 

enzyme addition; two new signals representing KDN-9-P and Pi can be seen. Green – 12 hours after 

enzyme addition; Reaction completion as seen by consumption of all PEP. ESI-MS of the reaction 

products confirmed formation of KDN-9-P. 
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The specificity of the enzyme was then examined by screening with a range of alternative 

sugar substrates known to produce sialic acid products (Table 6). Reaction conditions were the 

same as previously described and sugar substrates were used in a slight excess to ensure that 

PEP consumption could be attributed to complete conversion by 31P NMR. ESI-MS of the 

reaction mixtures after 18 hours was carried out to look for the respective sialic acid products. 

In each case, conversion was only seen when mannose-6-P was used as the starting sugar 

substrate, which had gone to completion at the 18-hour time point. Masses attributed to other 

sialic acid products could not be detected in any reaction mixture, nor was any level of 

conversion observed by 31P NMR, suggesting a strong enzyme specificity for KDN-9-P 

production. 

 

 

Substrate Predicted Product 31P NMR conversion 

at 18 hr (%) 

ESI-MS presence of 

product at 18 hr 

Man-6-P KDN-9-P 100 Y 

ManNAc-6-P Neu5Ac-9-P 0 N 

Ara-5-P KDO-8-P 0 N 

Man KDN 0 N 

ManNAc Neu5Ac 0 N 

ManN Neu 0 N 

Ara KDO 0 N 

 

Table 6 – Specificity of KDN-9-P synthase for mannose-6-P as determined by 31P NMR and ESI-MS of 

the reaction mixture after 18 hours. 

 

In addition to following the enzymatic reaction progress by NMR and MS techniques, a 

colorimetric phosphate-release assay was employed (BioMol Green, Enzo) to establish kinetic 

parameters. This assay monitored the reaction by following release of the bi-product, 

inorganic phosphate. For determination of Km values for both PEP and mannose-6-P, reactions 

were set up to include 100 µM of one substrate whilst varying the concentration of the 

second. The steady state kinetic values determined at 25 oC using this method are kcat = 14.91 

min-1, Vmax = 30.41 ± 1.94 pmol min-1, (PEP)Km = 18.31 ± 1.83 µM (at 100 µM mannose-6-P) and 

(mannose-6-P)Km = 63.63 ± 10.51 µM (at 100 µM PEP) (Figure 47). 
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Figure 47 - Kinetic analysis of KDN-9-P synthase with PEP and mannose-6-P as substrates.  In each 

case, when one substrates concentration was varied (x-axis), the other was kept constant (100 µM). 

Values reported are the result of 3 repeats and standard error is shown where applicable.  

 

4.3.6 KDN-9-P phosphatase accepts the product of 

CAMPEP_0191217894 (KDN-9-P synthase) 

To further confirm the identity of the KDN-9-P synthase product and to generate substrate 

(KDN) for CMP-transferase, a coupled assay was employed utilizing both P. parvum KDN-9-P 

synthase and B. thetaiotaomicron VPI-5482 KDN-9-P phosphatase. KDN-9-P synthase was 

added to an excess of PEP and mannose-6-P and left for 3 hours to produce KDN-9-P and the 

bi-product, inorganic phosphate. KDN-9-P phosphatase was then added and the reaction was 

left for a further 3 hours. The loss of KDN-9-P after addition of KDN-9-P phosphatase by 31P 

NMR clearly showed that the product of KDN-9-P synthase is accepted by B. thetaiotaomicron 

VPI-5482 KDN-9-P phosphatase (Figure 48). 
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Figure 48 – 31P NMR time course showing KDN-9-P synthase and KDN-9-P phosphatase activity.  

Incubation of the reaction product of KDN-9-P synthase with KDN-9-P phosphatase from B. 

thetaiotaomicron VPI-5482 leads to consumption of KDN-9-P and thus produces more inorganic 

phosphate. 

 

4.3.7 CAMPEP_0191219004 encodes a functional CMP-transferase 

Following cleavage of phosphate from KDN-9-P to produce KDN, it was speculated that the last 

enzyme in the pathway would be a CMP-transferase to active KDN. For this reason, cytidine 5’-

triphosphatase (CTP) and KDN (Produced by KDN-9-P phosphatase or commercial – Sigma 

Aldrich, United Kingdom) were used as substrates in a buffered solution containing 100 mM 

Tris-HCl, pH 9.0, 10 mM MgCl2. Reactions were monitored at 25 oC by 31P NMR to follow 

reaction progress (Figure 49), where loss of signals for CTP and subsequent formation of 

signals for CMP-KDN and the bi-product PPi could be observed. When the reaction was seen to 

have gone to completion the product was purified by strong anion exchange (SAX), before 

being subjected to 1H NMR, 31P NMR, and ESI-MS analysis. All NMR values aligned well with 

reported literature values [18] and MS confirmed the expected identity of CMP-KDN. 
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Figure 49 - Reaction catalysed by CAMPEP_0191219004 (CMP-transferase).  Reactions were monitored 

over 120 minutes by 31P NMR. Blue (NE) shows 3 phosphorus signals from the starting material CTP. 

Over the 120-minute time course two new singlets appear for PPi (-5.37 ppm) and CMP-KDN (-4.61 

ppm). The reaction reaches near completion at this point (~98% by peak area integration). Spectrums 

are offset by 0.1 ppm for ease of visualization.  

 

4.3.8 Identification of sialic acid synthase and CMP-transferase 

genes across the algal groups 

To identify algal transcripts involved in sialic acid biosynthesis across the algal groups, BLASTp 

searches were carried out using newly discovered sequences for KDN-9-P synthase and CMP-

transferase from P. parvum as consensus sequences. BLASTp searches were performed against 

160 translated transcriptomes from MMETSP [31] or genomes from NCBI [42] where available.  

It was quickly noted that several other algae including the green alga Pyrammimonas parkae 

contained sequences with higher sequence similarity to KDO-8-P synthase. KDO-8-P synthase 

produces the structurally similar 2-keto-3-deoxyoctonic acid, KDO, and the enzyme is 

structurally distinct by sequence to sialic acid synthases that produce the C9 sialic acids KDN or 

Neu5Ac [43]. Therefore, the KDO-8-P synthase transcript (CAMPEP_0191499076) and CMP-

transferase transcript (CAMPEP_0191478336) from P. parkae were also used as consensus 

sequences to query the nucleic acid databases. 
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As expected, most species of algae that contained sequences with high sequence identity to 

either the C9-like sialic acid synthases or C8-like 2-keto-3-deoxyoctonic acid synthases also 

encoded CMP-transferases to active said sugars (Figure 50). Only 15 of 160 algal strains 

examined had one of the two parts of the pathway. Sequences involved in sialic acid or KDO 

biosynthesis could be found across most algal groups, except for the glaucophytes, excavates 

and rhizaria where only Chlorarachnion reptans contained sialic acid biosynthetic machinery. 

Of the 160 databases examined, 48 contained sequences with high sequence similarity to sialic 

acid synthases such as the KDN-9-P synthase from P. parvum. Of these 48, only 7 are found 

outside of the Haptophyta and Dinoflagellata phyla, with all but one haptophyte found to 

contain homologues to this enzyme. Homologues to KDO-8-P synthase are more scattered but 

appear to be particularly frequent in green algae and cryptophytes (46% and 53% abundant, 

respectively). Sequences for both KDO and C9 sialic acid synthesis appear to be mutually 

exclusive with some exceptions in the haptophytes.  
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Figure 50 - Coulson plot showing the distribution of sialic acid biosynthesis pathways in algae.  A total 

of 160 transcriptomes or genomes were analysed for the presence of C9 or C8 sialic acid synthases, as 

well as the corresponding CMP-transferase enzymes. Where a transcript was found for a given gene, a 

filled circle can be found. For C9 sialic acid synthases, circles are filled red. For C8 sialic acid synthases, 

circles are filled purple. For CMP-transferase genes, circles are filled blue. Where the same species is 

mentioned more than once, difference strains have been analysed. A full list of strains used in this 

study, as well as sources of transcriptome, genome and sequence identifiers can be found in 

Supplementary Material 1. 

 

4.3.9 Phylogenetic analysis of algal sialic acid biosynthesis 

machinery 

Maximum likelihood phylogenetic trees were constructed to compare sialic acid synthase/KDO 

synthase genes (Figure 51) and CMP-transferase genes (Figure 52) across the algal groups. 

Figure 51 shows that sequences with higher sequence identity to P. parvum KDN-9-P synthase 

(bottom clade on tree) do not form a monophyletic lineage with sequences more homologous 

to KDO-8-P synthase-like sequences. The clade with higher homology to KDN-9-P synthase 

from P. parvum is dominated by sequences from the Alveolata and Haptophyta, whilst 

sequences with higher homology to KDO-8-P synthase are scattered throughout the algal 

groups. CMP-transferase sequences show a similar trend (Figure 52), with a clade at the 

bottom half of the tree showing higher homology to the CMP-KDN synthase from P. parvum 

and a clade at the top showing higher homology to the CMP-transferase sequence from P. 

parkae (CAMPEP_0191478336). As with the sialic acid synthases, the former clade is 

dominated by transcripts from the Alveolata and Haptophyta, whilst the clade with higher 

homology to the CMP-transferase from P. parkae contains a mixture of algae from most 

groups examined. 
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Figure 51 - Phylogenetic clustering of sialic acid synthases across the algal groups.  Sequences with 

high homology to P. parvum KDN-9-P synthase (CAMPEP_0191217894) can be found on the bottom 

half of the tree. Sequences with higher homology to P. parkae KDO-8-P synthase 

(CAMPEP_0191499076) are found on the top half of the tree. Organisms with a star symbol contain 

two sequences in the tree. Alignment was performed using the default settings of MAFFT [44], and an 

unrooted maximum-liklihood phylogenetic tree was produced using 80 sequences. The tree was 

drawn using MEGA7 [45] and iTOL [46] and the final tree was based on 35 ungapped amino acid 

positions and 100 resampling permutations. Branches with bootstrap support >50% are labelled with 

a black circle.  
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Figure 52 - Phylogenetic clustering of CMP-transferases across the algal groups.  Sequences with high 

homology to P. parvum CMP-KDN synthase (CAMPEP_0191219004) can be found on the bottom half 

of the tree. Sequences with higher homology to P. parkae CMP-transferase (CAMPEP_0191478336) 

are found on the top half of the tree. Organisms with a star symbol contain two sequences in the tree. 

Alignment was performed using the default settings of MAFFT [44], and an unrooted maximum-

liklihood phylogenetic tree was produced using 74 sequences. The tree was drawn using MEGA7 [45] 

and iTOL [46] and the final tree was based on 66 ungapped amino acid positions and 100 resampling 

permutations. Branches with bootstrap support >50% are labelled with a black circle.  
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4.4 Discussion 

Whilst sialic acid biosynthesis has been explored in many kingdoms of life [1], the biosynthesis 

(or even presence) of sialic acids in algae is largely unknown. Here we provide the first 

biochemical and bioinformatic evidence that the toxin-producing microalgae, Prymnesium 

parvum, produces the de-aminated sialic acid, KDN, de novo. Liquid chromatography and mass 

spectrometry highlighted the presence of KDN in 15 different Prymnesium strains and 

independent LC-MS analysis identified CMP-KDN as the activated form of the sugar. This was 

supported by identification of sequences in a publicly available transcriptome P. parvum 

(MMETSP - Texoma1) which have high sequence identity to known KDN-9-P synthase and 

CMP-transferase genes. The corresponding proteins were successfully expressed in E. coli and 

synthesis of CMP-KDN from Man-6-P was shown. Using these sequences, 160 algal nucleic acid 

databases from MMETSP [31] or NCBI [42] were screened for sialic acid biosynthesis 

machinery. Sequences with homology to the structurally related KDO-8-P synthase were found 

scattered across the algal groups (Figure 50); sequences with similarity to the KDN-9-P 

synthase from P. parvum were abundant amongst the haptophytes and dinoflagellates. These 

bioinformatic findings are consistent with the little that is currently known about sialic acids or 

KDO in algae; KDO has been observed in the green alga Tetraselmis striata [47] and KDN 

observed in the haptophyte Emiliania huxleyi [20].  

 

Although a clear homolog of KDN-9-P phosphatase couldn't be found, the pathway is 

presumed to follow a phosphorylation/dephosphorylation pathway such as seen in B. theta 

[18] (Figure 38) as the KDN-9-P synthase does not convert mannose to KDN. This lack of KDN-

9-P phosphatase homolog is not surprising however; the functional redundancy of sugar 

phosphatases has been reported previously [48]. What is more surprising is the micromolar 

value observed for Km with respect to KDN-9-P synthase and its substrate, Man-6-P (Table 7). 

This low Michaelis Constant suggests that the sialic acid synthase from P. parvum has a higher 

affinity for its substrate than other previously studied sialic acid synthases do for their 

substrates, such as those observed in Table 7. This may in part be explained by the specificity 

P. parvum KDN-9-P synthase shows for Man-6-P (Table 6); a trait that is not observed in other 

sialic acid synthases that show some level of promiscuity [49]. Also surprising is the higher kcat 

value observed for this enzyme (14.91 min-1); most enzymes in this family have kcat values 

closer to 1 min-1 [18]. These ambiguities warrant further investigation. 
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Host Organism Substrate Km [mM] 

P. parvum (this study) Man-6-P 0.065 

B. thetaiotaomicron [18] Man-6-P 1.4 

H. sapiens [49] Man-6-P 2.62 

H. sapiens [49] ManNAc-6-P 1.04 

N. meningitidis [49] ManNAc 11.6 

C. jejuni [50] ManNAc 17.6 

Table 7 - Km values for sugar substrates used by KDN-9-P synthase in this study, and other previously 

characterized sialic acid synthase enzymes.  

 

Using the newly discovered sequences from P. parvum, 160 nucleic acid databases of other 

microalgae where screened for sialic acid or KDO biosynthetic machinery. Sequences with 

homology to genes involved in KDO biosynthesis were found spread across the algal groups, 

whilst sialic acid synthase homologs were found to be more confined to the Haptophyta and 

Alveolata phlya. Although there are exceptions, the biosynthesis of KDO and sialic acids 

appears to be mutually exclusive, suggesting these compounds may fill the role of one 

another; it has previously been suggested that genes involved in sialic acid biosynthesis have 

been "reinvented" from the KDO pathway, which share common ancestral genetic origins [1]. 

Some haptophytes contain both sialic acid and KDO biosynthetic machinery which may be a 

result of the extensive endosymbiotic gene transfer that has occurred within the algal groups 

[51]. Phylogenetic trees created to study the evolutionary distance between KDO/sialic acid 

synthases and CMP-transferases show similar traits. Both trees show two main groups of 

sequences, showing differences between the KDO and sialic acid pathways. One extra group 

exists for the sialic acid synthase tree (Figure 51) which contains solely haptophyte sequences. 

This group is more closely related to the KDO group of sequences, which may suggest these 

sequences are involved in the biosynthesis of alternative C8 or C7 structurally related 2-keto-3-

deoxyoctonic or heptonic acids [2]. 

 

The importance of sialic acids in host:pathogen interactions is well documented [52], with a 

key example being the binding of the human Influenza virus to Neu5Ac residues on human 

epithelial cells [4]. More recently, viruses have been shown to play crucial roles in the 

population dynamics of algae [53], where they influence both ecosystem dynamics [34] and 

biogeochemical cycles [35]. The Emiliania huxleyi viruses (EhV) are probably the best studied of 

the algal viruses [54], and recently Fulton et al discovered key roles for a novel host sialic acid 
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lipid in viral infection of this alga [19, 20]. Although KDO had been reported in algae previously, 

C9 sialic acids were unknown to this group of organisms prior to this work. Our work 

conclusively demonstrates that the toxin producing microalgae, P. parvum, is capable of de 

novo KDN biosynthesis. The discovery of these new sequences was used to show that sialic 

acid biosynthesis occurs extensively throughout the haptophytes and dinoflagellates. This work 

was also able to highlight the distribution of biosynthetic genes for the structurally related 

KDO, across the algal groups. The widespread occurrence of these molecules and the ever-

increasing number of algal viruses being discovered suggests that sialic acids may have key 

roles to play in early eukaryote host-pathogen interactions. 
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4.5 Materials and methods 

4.5.1 Growth and maintenance of Prymnesium cultures 

Cultures of Prymnesium were grown in f/2 -Si medium (7-8 practical salinity units) at 22 oC on a 

14:10 light cycle as previously described [32]. Stock cultures were made axenic by treatment 

with Carbenicillin (100 µg/ml) as judged by optical microscopy. For metabolomic extractions, 

cells were harvested at late-log phase of growth which often represented ~2 – 3 x 106 cells ml-

1. A full list of strains used in this study can be seen below (Table 8).  

 

Strain 
Identifier Genus Species 

Date 
Collected 

Isolated 
by Area Collected 

94A Prymnesium parvum 1969 
R. 
Waters Pacific:  NE 

94C Prymnesium parvum Jan 1978 
J.C. 
Green Mediterranean Sea 

522 Prymnesium sp. 
   

527C Prymnesium patelliferum 1970 
R. 
Waters Pacific:  NE 

527A Prymnesium patelliferum Aug 69 
R. 
Waters Pacific:  NE 

527D Prymnesium patelliferum 
 

U. 
Tillmann North Sea 

569 Prymnesium sp. Jan 78 
J.C. 
Green 

Mediterranean Sea;  Libya, 
coastal 

579 Prymnesium parvum 
  

Irish Sea; Menai Straits 

592 Prymnesium sp. Jul 78 Hällfors Baltis Sea, Finland 

593 Prymnesium sp. Jul 78 Hällfors Baltis Sea, Finland 

595 Prymnesium sp. Jul 78 Hällfors Baltic Sea, Finland 

596 Prymnesium sp. Aug 78 Hällfors Baltic Sea, Finland 

597 Prymnesium sp. Jul 78 Hällfors Baltic Sea, Finland 

598 Prymnesium sp. Jul 78 
S & G 
Hällfors Baltic Sea, Finland 

946/6 Prymnesium parvum 1953 Droop 
Isle of Cumbrae, Scotland, 
UK 

 

Table 8- A complete list of strains of Prymnesium used in this study. 

4.5.2 DMB-HPLC analysis of sialic acids 

Free sialic acids were liberated from cells by re-suspending 10 ml of pelleted Prymnesium cells 

in hydrochloric acid (200 µl, 0.1 M) at 80 oC for 1 hour. Insoluble cell debris was then pelleted 

by centrifugation and soluble material as well as standards for KDN (Sigma Aldrich, Haverhill, 

UK) and Neu5Ac were then derivatized with DMB per the manufacturer’s instructions (Sialic 

acid fluorescence labelling kit, Clontech, Takara Bio Europe SAS, Saint-Germain-en-Laye, 

France). Control reactions were set up in parallel with HCl to act as a blank background. 
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Derivatized samples (7 µl) were then injected into a Nexera/Prominence UHPLC system 

(Shimadzu) equipped with an in-line fluorescence detector (excitation: 373 nm, emission: 448 

nm) and a LCMS-2020 single quadrupole MS set to scan between 100 – 600 m/z. Samples were 

ran on a Kinetex 2.6 µm EVO C18 100 Å LC column (50 x 2.1 mm). Buffer A was an aqueous 

MeOH, H2O buffer (7:93) and buffer B was an organic AcN, MeOH buffer (93:7). The gradient 

was set up so that fluorescent DMB-sialic acid adducts eluted within the first 10 mins and was 

set as follows: 0-10 min 5% B, 10-12.5 min 100% B, 12.5-15 min 5% B, 15-22 min 5% B. The 

samples were ran at a flow rate of 0.2 ml min-1 and peaks observed were compared to 

retention times of KDN, KDO and Neu5Ac standards. Previously reported mass values and 

relative retention times for sialic acids and their O-acetyl derivatives were also used for 

comparison [37]. 

 

4.5.3 Sugar nucleotide profiling of CMP-KDN 

Intracellular sugar nucleotides were extracted and analysed using previously published 

methods [41]. CMP-KDN was produced using commercial KDN (Sigma Aldrich, Haverhill, United 

Kingdom) and recombinant CMP-transferase produced in this study to act as an internal 

standard. Details of the enzymatic reaction conditions can be found in section 4.5.8 of this 

chapter. Other sugar nucleotides used in this study for comparison were UDP-α-D-Glc, UDP-α-

D-Gal, and GDP-α-D-Glc as an internal standard for quantification. Internal standard was used 

to find relative retention times and MRM transitions for CMP-KDN (Table 5). Co-injection of 

cell extracts with internal standards confirmed identity of peaks.  

 

4.5.4 Identification of putative CMP-KDN biosynthesis transcripts in 

P. parvum 

For the identification of transcripts involved in sialic acid biosynthesis from P. parvum, BLASTp 

[55] analysis was carried out against a publicly available transcriptome of P. parvum (Texoma1 

– Marine Microbial Eukaryote Transcriptome Sequencing Project, MMETSP [31]). Protein 

sequences involved in CMP-KDN biosynthesis from Bacteroidetes thetaiotaomicron VPI-5482 

[18] were used as consensus sequences (ExPASy accession numbers: Q8A712, Q8A711 and 

Q8A710). Any hits with E-values ≤ 1E-10 were then analysed manually for conserved domains 

before being assigned as a hit. Hits were subsequently analysed for transmembrane domains 

and signal peptides using the online tool Phobius [56] (http://phobius.sbc.su.se/).  

 

http://phobius.sbc.su.se/
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4.5.5 Cloning and expression of P. parvum KDN-9-P synthase and 

CMP-transferase 

Transcripts identified with high sequence similarity to KDN-9-P synthase 

(CAMPEP_0191217894) and CMP-transferase (CAMPEP_0191219004), along with KDN-9-P 

phosphatase from B. thetaiotaomicron VPI-5482 (ExPASy accession number: Q8A712), were 

codon optimized for expression in E. coli using IDTdna’s codon optimization software 

(https://www.idtdna.com/CodonOpt). The resulting sequences were then synthesized with 

overhangs for In-Fusion™ cloning into pOPINF vector [57] using IDT’s gBlock gene fragment 

synthesis service. A full list of sequences used in this study can be found in Supplementary 

Material 2.  

 

gBlock fragments were then cloned into pOPINF vectors using In-Fusion™ cloning kit (Clontech, 

UK) per the manufacturer’s instructions. The resulting plasmids were then transformed into 

Stellar competent cells, before being propagated and extracted (Miniprep kit, Qiagen, UK). 

Positively transformed plasmids were identified by size comparison to a non-transformed 

pOPINF control using gel electrophoresis. Plasmids containing the gBlock sequences were then 

finally transformed into BL21 CodonPlus™ (Agilent Technologies, Fisher Scientific, UK) for 

protein expression. For all proteins, 1L of E. coli cells were grown to an OD of 0.6 at 37 oC 

before being transferred to 18 oC for 1 hour. Induction was performed with 0.5 mM of IPTG 

and cells were left at 18 oC overnight. Proteins were extracted in the following buffer: 50 mM 

Tris-HCl pH 7.5, 0.5 M NaCl, 20 mM imidazole, protease inhibitor cocktail (Sigma) 1/100 v/v, 2 

mg DNase.  KDN-9-P synthase also required addition of 5 mM DTT to prevent precipitation of 

the enzyme due to oxidation. All proteins were purified using Nickel affinity chromatography, 

and fractions judged to be >95% pure by SDS-PAGE were pooled for further analysis.  

 

4.5.6 CAMPEP_0191217894 encodes a functional KDN-9-P synthase 

Reaction mixtures contained 38 µg of CAMPEP_0191217894, 2 mM MgCl2, 8 mM of 

phosphoenolpyruvate (PEP) and 10 mM of mannose-6-phosphate, buffered in 50 mM HEPES 

(pD 7.5). A no-enzyme control time point was taken prior to addition of enzyme. Once 

enzymes were added, time points were recorded for 1H and 31P NMR. 1H NMR signals 

representing H3-eq (~2.1 ppm) and H3-ax (~1.7 ppm) were monitored over the time course for 

formation of KDN-9-phosphate. 31P NMR was used to monitor reaction progress - loss of 

phosphate signal at -1 ppm representing PEP showed reaction completion. Once the reaction 

had reached completion, the resulting mixture was analysed by ESI-MS for the presence of 
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KDN-9-P mass. HRMS, ESI negative: calculated: 347.0385, found: 347.0394. A range of other 

sugars were screened as substrates using the same methodology. All sugar substrates were 

purchased from Sigma Aldrich UK or Carbosynth. 

 

To establish kinetic parameters, a colorimetric phosphate-release assay was employed (BioMol 

Green, Enzo). This assay followed reaction progress by monitoring realise of the bi-product of 

the reaction, inorganic phosphate. Reactions mixtures included a fixed concentration of one 

substrate (100 µM) whilst varying the other (3.125 µM, 6.25 µM, 12.5 µM, 25 µM, 50 µM, 100 

µM, 200 µM) in a buffered solution containing 50 mM HEPES (pH 7.5), 2 mM MgCl2 and 

CAMPEP_0191217894 (Final conc = 4.725 µg/ml). The steady state kinetic values determined 

at 25 oC using this method are kcat = 14.91 min-1, Vmax = 30.41 ± 1.94 pmol min-1, (PEP)Km = 18.31 

± 1.83 µM (at 100 µM mannose-6-P) and (mannose-6-P)Km = 63.63 ± 10.51 µM (at 100 µM PEP) 

(Figure 47). Values and graphs were produced using GraphPad Prism (Version 7). 

 

4.5.7 KDN-9-P phosphatase accepts the product of 

CAMPEP_0191217894 

A coupled assay was employed to confirm that the product of the KDN-9-P synthase enzyme 

was accepted by B. thetaiotaomicron VPI-5482 KDN-9-P phosphatase. Reaction conditions 

were essentially the same as described in section 4.5.6, but an excess of PEP was used with 

respect to Man-6-P (10 mM and 8 mM, respectively). A no enzyme 31P NMR time point was 

acquired before 38 µg of CAMPEP_0191217894 (KDN-9-P synthase) was added. The reaction 

was left for 3 hours at which point formation of KDN-9-P and inorganic phosphate was 

observed (Figure 48). KDN-9-P phosphatase from B. thetaiotaomicron VPI-5482 was then 

added to the reaction mixture (4 µg) and the reaction allowed to progress a further 3 hours. 

 

4.5.8 CAMPEP_0191219004 encodes a functional CMP-transferase 

Reaction mixtures contained 20 µg of CAMPEP_0191219004, 10 mM MgCl2, 8 mM of cytidine 

triphosphate (CTP) and 10 mM of commercial KDN (Sigma Aldrich, UK) buffered in 100 mM 

TRIS-HCl (pH 9). A 31P NMR no enzyme time point was taken before addition of 

CAMPEP_0191219004. The reaction was seen to go to completion when signals for CTP (-5.83 

ppm, doublet, -10.75 ppm, doublet, -19.38 ppm, triplet) had diminished. At this point, CMP-

KDN was purified using strong anion exchange as outlined in Wagstaff et al [58]. 1H NMR, 31P 

NMR and MS values aligned well with previously described literature [18, 59] (Figure 53). 1H 
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NMR (D2O) ppm: 7.9 (d, J = 7.5 Hz, 1H), 6.04 (d, J = 7.5 Hz, 1H), 5.91 (d, J = 4.5 Hz, 1H), 4.27 (m, 

1H), 4.22 (t, J = 4.8 Hz, 1H), 4.16 (d, J = 5.3 Hz, 3H), 4.01 (dd, J = 10 Hz, J = 1 Hz, 1H), 3.95 (ddd, J 

= 11.5 Hz, J = 9.4 Hz, J = 4.9 Hz, 1H), 3.85 (m, 2H), 3.72 – 3.45 (m, 16H, buffer protons and H-

5,7,8 of KDN), 2.36 (dd, J = 13 Hz, 1H), 1.52 (ddd, J = 14 Hz, J = 13.5 Hz, J = 5.7, 1H). 31P NMR 

(H2O) ppm: -4.61 (s). HRMS, ESI negative: calculated: 572.1129, found: 572.1135. 

 

 

Figure 53 – 1H NMR spectrum of CMP-KDN with proton assignments.  Impurities are from residual 

buffer that eluted off the SAX column. Only protons from C5, 7 and 8 are covered by buffer signals. 

4.5.9 Identification of sialic acid synthase and CMP-transferase 

genes across the algal groups 

KDN-9-P synthase (CAMPEP_0191217894) and CMP-transferase (CAMPEP_0191219004) 

protein sequences from P. parvum Texoma1 were used as consensus sequences in BLASTp 

analysis of other algal transcriptomes from the MMETSP database [31]. The green alga, 

Pyrammimonas parkae, was found to have low sequence identity homologues to both 

Prymnesium transcripts, instead displaying high sequence similarity to a characterized KDO-8-P 

synthase from Haemophilus influenzae and CMP-KDO synthase from Pseudomonas aeruginosa 

(44% sequence identity - PDB: 1O60_A and 41% sequence identity - PDB: 4XWI_A 

respectively). These new transcripts were used in addition to P. parvum's to query a total of 

160 nucleic acid databases from other algal groups. A full list of databases used can be found 

in Supplementary Material 1. Sequences displaying E-values ≤ 1E-10 were subject to manual 

inspection of conserved domains before being assigned as a hit. 
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4.5.10  Phylogenetic analysis of algal sialic acid biosynthesis 

machinery 

Two independent sets of algal sequences identified in BLASTp analysis (sialic acid synthases 

and CMP-transferases) were aligned using the default settings of MAFFT [44]. Maximum-

likelihood phylogenetic trees were constructed using MEGA7 [45] and drawn using iTOL [46].  
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4.7 Supplementary Material 

Kingdom Phylum Class Family Genus Species Strain Database and identifier Sequence 

         

GLAUCOPHYTES Glaucophyta Glaucocystophyceae Glaucosphaeraceae Cyanoptyche gloeocystis SAG4.97 MMETSP1086  

 Glaucophyta Glaucophyceae Gloeochaetaceae Gloeochaete wittrockiana SAG46.84 MMETSP1089  

         

GREEN ALGAE Chlorophyta Chlorodendrophyce
ae 

Chlorodendraceae Tetraselmis striata LANL1001 MMETSP0817, MMETSP0818, MMETSP0819, 
MMETSP0820 

 

 Chlorophyta Chlorophyceae Dunaliellaceae Dunaliella tertiolecta CCMP1320 MMETSP1126, MMETSP1127, MMETSP1128  

 Chlorophyta Chlorophyceae Chlamydomonadace
ae 

Chlamydomonas reinhardtii CC-503 cw92 mt+ https://www.ncbi.nlm.nih.gov/nuccore/15827
6217 

 

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. RCC472 MMETSP1084, MMETSP1387  

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. NEPCC29 MMETSP1386, MMETSP1082  

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. CCMP2099 MMETSP1390, MMETSP0802  

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas pusilla CCMP1545 https://www.ncbi.nlm.nih.gov/genome/?term
=txid564608[Organism:noexp] 

XP_003062615.1 

 Chlorophyta Mamiellophyceae Mamiellaceae Bathycoccus prasinos RC1105 https://www.ncbi.nlm.nih.gov/genome/12309 XP_007509032.1,  
XP_007511142 

 Chlorophyta Mamiellophyceae Mamiellaceae Ostreococcus tauri  https://www.ncbi.nlm.nih.gov/genome/373 OUS41656.1, 
XP_003083551.1 

 Chlorophyta Pyramimonadophyc
eae 

Halosphaeraceae Pyramimonas parkeae CCMP726 MMETSP0058, MMETSP0059 CAMPEP_0191499076, 
CAMPEP_0191478336 
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 Chlorophyta Trebouxiophyceae Chlorellaceae Auxenochlorella  protothecoid
es 

sp 0710 http://www.ncbi.nlm.nih.gov/genome?LinkNa
me=nuccore_genome&from_uid=667612142 

XP_011395670.1, 
XP_011396550.1 

 Chlorophyta Trebouxiophyceae Chlorellaceae Chlorella  variabilis NC64A https://www.ncbi.nlm.nih.gov/genome/694 XP_005845017.1, 
XP_005843072.1 

 Chlorophyta Unknown Unknown Picocystis salinarum CCMP1897 MMETSP1159, MMETSP0807 CAMPEP_0190741864, 
CAMPEP_0190748198 

         

RED ALGAE Rhodophyta Compsopogonophyc
eae 

Compsopogonaceae Compsopogon coeruleus SAG 36.94 MMETSP0312  

 Rhodophyta Compsopogonophyc
eae 

Erythrotrichiaceae Madagascaria erythrocladio
des 

CCMP3234 MMETSP1450 CAMPEP_0198335420, 
CAMPEP_0198324100 

 Rhodophyta Cyanidiophyceae Galdieriaceae Galdieria sulphuraria 074W http://www.ncbi.nlm.nih.gov/genome/405 XP_005706679.1, 
XP_005706001.1 

 Rhodophyta Florideophyceae Gigartinaceae Chondrus crispus Stackhouse http://www.ncbi.nlm.nih.gov/genome/12106  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Erythrolobus australicus CCMP3124 MMETSP1353  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Erythrolobus madagascare
nsis 

CCMP3276 MMETSP1354  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Timspurckia oligopyrenoid
es 

CCMP3278 MMETSP1172 CAMPEP_0182450842 

 Rhodophyta Rhodellophyceae Porphyridiaceae Porphyridium aerugineum SAG 1380-2 MMETSP0313  

 Rhodophyta Rhodellophyceae Rhodellaceae Rhodella maculata CCMP736 MMETSP0167, MMETSP0314 CAMPEP_0191526874, 
CAMPEP_0191530618 

 Rhodophyta Rhodellophyceae Stylonemataceae Rhodosorus marinus CCMP 769 MMETSP0011 CAMPEP_0113968256, 
CAMPEP_0113970242 

 Rhodophyta Rhodellophyceae Stylonemataceae Rhodosorus marinus UTEX LB 2760 MMETSP0315  

EXCAVATES Euglenozoa Euglenophyceae Eutreptiaceae Eutreptiella gymnastica NIES-381 MMETSP0039  
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 Euglenozoa Euglenophyceae Eutreptiaceae Eutreptiella gymnastica-
like 

CCMP1594 MMETSP0809, MMETSP0810, MMETSP0811  

 Euglenozoa Euglenophyceae Euglenaceae Euglena gracilis ?? ??  

RHIZARIA Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Chlorarachnion reptans CCCM449 MMETSP0109 CAMPEP_0114524360, 
CAMPEP_0114518112 

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Gymnochlora sp. CCMP2014 MMETSP0110  

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Lotharella oceanica CCMP622 MMETSP0040  

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Lotharella globosa CCCM811 MMETSP0111, MMETSP0112  

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Bigelowiella natans CCMP623 MMETSP1052  

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Bigelowiella natans CCMP 2755 MMETSP0045  

 Cercozoa Chlorarachniophyce
ae 

Chlorarachniaceae Bigelowiella natans CCMP1259 MMETSP1054  

CRYPTOPHYTES Cryptophyta Cryptophyceae Cryptomonadaceae Cryptomonas paramecium CCAP977/2a MMETSP0038 CAMPEP_0113666334, 
CAMPEP_0113694150 

 Cryptophyta Cryptophyceae Cryptomonadaceae Cryptomonas curvata CCAP979/52 MMETSP1050  

 Cryptophyta Cryptophyceae Geminigeraceae Geminigera cryophila CCMP2564 MMETSP0799 CAMPEP_0179434534, 
CAMPEP_0179449568 

 Cryptophyta Cryptophyceae Geminigeraceae Geminigera sp. Caron Lab Isolate MMETSP1102 CAMPEP_0173083546 

 Cryptophyta Cryptophyceae Geminigeraceae Guillardia theta CCMP 2712 MMETSP0046 CAMPEP_0113805578 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP439 MMETSP1041 CAMPEP_0172040998 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP1180 MMETSP1042  

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP441 MMETSP1043  

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis tepida CCMP443 MMETSP1355  

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis rufescens PCC563 MMETSP1357 CAMPEP_0173463728 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis viresens PCC157 MMETSP1356 CAMPEP_0173417114, 
CAMPEP_0173401560 
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 Cryptophyta Cryptophyceae Goniomonodaceae Goniomonas Pacifica CCMP1869 MMETSP0107, MMETSP0108 CAMPEP_0188542586, 
CAMPEP_0188462444 

 Cryptophyta Cryptophyceae Pyrenomonadaceae Rhodomonas salina CCMP1319 MMETSP1047 CAMPEP_0172107506 

 Cryptophyta Cryptophyceae Pyrenomonadaceae Rhodomonas sp. CCMP768 MMETSP1091, MMETSP1389  

 Cryptophyta Cryptophyceae Pyrenomonadaceae Rhodomonas abbreviata Caron Lab Isolate MMETSP1101 CAMPEP_0181320480 

HAPTOPHYTES Haptophyta Pavlovophyceae Pavlovaceae Pavlova gyrans CCMP608 MMETSP1466 CAMPEP_0206063936, 
CAMPEP_0206044920 

 Haptophyta Pavlovophyceae Pavlovaceae Pavlova lutheri RCC1537 MMETSP1463 CAMPEP_0205992236, 
CAMPEP_0205975006 

 Haptophyta Pavlovophyceae Pavlovaceae Pavlova sp. CCMP459 MMETSP1139, MMETSP1140, MMETSP1381 CAMPEP_0190501384, 
CAMPEP_0190500156, 
CAMPEP_0190493934 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromulina polylepis UIO037 MMETSP0286 CAMPEP_0115789522, 
CAMPEP_0115804416 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromulina polylepis CCMP1757 MMETSP0143, MMETSP0145, MMETSP0146, 
MMETSP0147 

CAMPEP_0193774398, 
CAMPEP_0193733264, 
CAMPEP_0193714344 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromulina rotalis UIO044 MMETSP0287 CAMPEP_0115848686, 
CAMPEP_0115849336 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromulina ericina CCMP281 MMETSP1096 CAMPEP_0181225404, 
CAMPEP_0181185074, 
CAMPEP_0181203974 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromulina brevifilum UTEX LB 985 MMETSP1094 CAMPEP_0174694040, 
CAMPEP_0174722522 

 Haptophyta Prymnesiophyceae Prymnesiaceae Prymnesium parvum Texoma1 MMETSP0006, MMETSP0007, MMETSP0008, 
MMETSP0815, MMETSP0814 

CAMPEP_0191217894, 
CAMPEP_0191219004 

 Haptophyta Prymnesiophyceae Noelaerhabdaceae Emiliania huxleyi 374 MMETSP1006, MMETSP1007, MMETSP1008, 
MMETSP1009 

CAMPEP_0187593462, 
CAMPEP_0187593926 

 Haptophyta Prymnesiophyceae Noelaerhabdaceae Emiliania huxleyi 379 MMETSP0994, MMETSP0995, MMETSP0996, 
MMETSP0997 

CAMPEP_0187638932, 
CAMPEP_0187642372 
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 Haptophyta Prymnesiophyceae Noelaerhabdaceae Emiliania huxleyi PLY M219 MMETSP1150, MMETSP1151, MMETSP1152, 
MMETSP1153 

CAMPEP_0187784104, 
CAMPEP_0187739266, 
CAMPEP_0187774796, 
CAMPEP_0187752722 

 Haptophyta Prymnesiophyceae Noelaerhabdaceae Emiliania huxleyi CCMP370 MMETSP1154, MMETSP1155, MMETSP1156, 
MMETSP1157 

CAMPEP_0187689422, 
CAMPEP_0187675512, 
CAMPEP_0187666690, 
CAMPEP_0187690812 

         

 Haptophyta Prymnesiophyceae Noelaerhabdaceae Gephyrocapsa oceanica RCC1303 MMETSP1363, MMETSP1364, MMETSP1365, 
MMETSP1366 

CAMPEP_0188186124, 
CAMPEP_0188175510, 
CAMPEP_0188184854,  

 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis sp. CCMP1324 MMETSP1129, MMETSP1130, MMETSP1131, 
MMETSP1132 

CAMPEP_0188822040, 
CAMPEP_0188824840,  

 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis sp CCMP1244 MMETSP1090, MMETSP1388 CAMPEP_0188737208, 
CAMPEP_0188802600, 
CAMPEP_0188741594 

 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis galbana CCMP1323 MMETSP0944, MMETSP0943, MMETSP0595 CAMPEP_0193653704, 
CAMPEP_0193664480, 
CAMPEP_0193650476 

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis Sp CCMP2710 MMETSP1162 CAMPEP_0118810330, 
CAMPEP_0118810770 

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis antarctica Caron Lab Isolate MMETSP1100 CAMPEP_0172966702, 
CAMPEP_0172994118 

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis antarctica CCMP1374 MMETSP1444 CAMPEP_0198171844, 
CAMPEP_0198162072 

 Haptophyta Prymnesiophyceae Pleurochrysidaceae Pleurochrysis carterae CCMP645 MMETSP1136, MMETSP1137, MMETSP1138 CAMPEP_0190795712, 
CAMPEP_0190762420, 
CAMPEP_0190796590 

STRAMENOPILES Ochrophyta Bacillariophyceae Amphipleuraceae Amphiprora sp. CCMP467 MMETSP0725, MMETSP0726, MMETSP0727, 
MMETSP0724 

 

 Ochrophyta Bacillariophyceae Catenulaceae Amphora coffeaeformis CCMP127 MMETSP0316, MMETSP0317, MMETSP0318  
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 Ochrophyta Bacillariophyceae Bacillariaceae Fragilariopsis kerguelensis L26-C5 MMETSP0733, MMETSP0734, MMETSP0735, 
MMETSP0736 

 

 Ochrophyta Bacillariophyceae Bacillariaceae Fragilariopsis kerguelensis L2-C3 MMETSP0906, MMETSP0907, MMETSP0908, 
MMETSP0909 

 

 Ochrophyta Bacillariophyceae Bacillariaceae Nitzschia punctata CCMP561 MMETSP0744, MMETSP0745, MMETSP0746, 
MMETSP0747 

 

 Ochrophyta Bacillariophyceae Bacillariaceae Pseudo-nitzschia australis 10249 10 AB MMETSP0139, MMETSP0142, MMETSP0140, 
MMETSP0141 

 

 Ochrophyta Bacillariophyceae Bacillariaceae Pseudo-nitzschia fraudulenta WWA7 MMETSP0850, MMETSP0851, MMETSP0852, 
MMETSP0853 

CAMPEP_0199821422, 
CAMPEP_0199816092 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros debilis MM31A-1 MMETSP0149, MMETSP0150  

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros neogracile CCMP1317 MMETSP0751, MMETSP0752, MMETSP0753, 
MMETSP0754 

CAMPEP_0200995064 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros curvisetus  MMETSP0716, MMETSP0717, MMETSP0718, 
MMETSP0719 

CAMPEP_0187051316, 
CAMPEP_0187072830 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros affinis CCMP159 MMETSP0088, MMETSP0090, MMETSP0091, 
MMETSP0092 

 

 Ochrophyta Bacillariophyceae Corethraceae Corethron pennatum L29A3 MMETSP0169, MMETSP0171  

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO103 MMETSP1002, MMETSP1005  

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO104 MMETSP1010, MMETSP1012, MMETSP1013  

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO105 MMETSP0998, MMETSP1001  

 Ochrophyta Bacillariophyceae Cymatosiraceae Extubocellulus spinifer CCMP396 MMETSP0699, MMETSP0697, MMETSP0698,   

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira rotula CCMP3096 MMETSP0403, MMETSP0404  
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 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira oceanica CCMP1005 MMETSP0970, MMETSP0971, MMETSP0972, 
MMETSP0973 

 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira weissflogii CCMP1010 MMETSP0898, MMETSP0899, MMETSP0900, MMETSP0901, MMETSP1407, 
MMETSP1408, MMETSP1405, MMETSP1406, MMETSP1415, MMETSP1416, 
MMETSP1417, MMETSP1418, MMETSP1419, MMETSP1420, MMETSP1421, 
MMETSP1422, MMETSP1409, MMETSP1410, MMETSP1411, MMETSP1412, 
MMETSP1413, MMETSP1414,  

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira antarctica CCMP982 MMETSP0902, MMETSP0903, MMETSP0904, 
MMETSP0905 

 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira weissflogii CCMP1336 MMETSP0878, MMETSP0879, MMETSP0880, 
MMETSP0881 

 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira rotula GSO102 MMETSP0910, MMETSP0911, MMETSP0912, 
MMETSP0913 

 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira gravida GMp14c1 MMETSP0492, MMETSP0493, MMETSP0494  

 Ochrophyta Bacillariophyceae Rhizosoleniaceae Proboscia alata PI-D3 MMETSP0174, MMETSP0176  

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema marinoi skelA MMETSP0920, MMETSP0918  

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema dohrnii SkelB MMETSP0562, MMETSP0563  

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema menzelii CCMP793 MMETSP0603, MMETSP0604  

 Ochrophyta Bacillariophyceae Fragilariaceae Asterionellopsis glacialis CCMP134 MMETSP0705, MMETSP0706, MMETSP0707, 
MMETSP0708 

 

 Ochrophyta Bacillariophyceae Thalassionematacea
e 

Thalassionema nitzschioides L26-B MMETSP0156, MMETSP0158  
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 Ochrophyta Bacillariophyceae Thalassionematacea
e 

Thalassiothrix antarctica L6-D1 MMETSP0152, MMETSP0154  

 Ochrophyta Chrysophyceae Synuraceae Paraphysomonas Imperforata PA2 MMETSP0103, MMETSP0104  

 Ochrophyta Chrysophyceae Dinobryaceae Dinobryon sp. UTEXLB2267 MMETSP0019, MMETSP0020, MMETSP0812  

 Ochrophyta Chrysophyceae Ochromonadaceae Ochromonas sp. CCMP1393 MMETSP0004, MMETSP0005  

 Ochrophyta Dictyochophyceae Pedinellaceae Pseudopedinella elastica CCMP716 MMETSP1068, MMETSP1097 CAMPEP_0191399824, 
CAMPEP_0191445174, 
CAMPEP_0191393194 

 Ochrophyta Dictyochophyceae Pedinellaceae Pteridomonas danica PT MMETSP0101, MMETSP0102  

 Ochrophyta Eustigmatophyceae Eustigmataceae Nannochloropis  gaditana B-31 http://www.ncbi.nlm.nih.gov/genome/11691?
genome_assembly_id=53301 

 

 Ochrophyta Pelagophyceae Pelagomonodaceae Aureococcus anophageffer
ens 

CCMP1850 MMETSP0914, MMETSP0915, MMETSP0916, 
MMETSP0917 

 

 Ochrophyta Pelagophyceae Sarcionochrysidacea
e 

Aureoumbra lagunensis CCMP1510 MMETSP0890, MMETSP0891, MMETSP0892, 
MMETSP0893 

CAMPEP_0186712708, 
CAMPEP_0186709398 

 Ochrophyta Pelagophyceae Pelagomonodaceae Pelagococcus subviridis CCMP1429 MMETSP0882, MMETSP0883, MMETSP0884, 
MMETSP0885 

CAMPEP_0190566250, 
CAMPEP_0190534626,  

 Ochrophyta Pelagophyceae Pelagomonodaceae Pelagomonas calceolata CCMP1756 MMETSP0888, MMETSP0889, MMETSP0886, 
MMETSP0887 

CAMPEP_0199710348, 
CAMPEP_0199707362 

 Ochrophyta Raphidophyceae Chattonellaceae Chattonella subsalsa CCMP2191 MMETSP0947, MMETSP0948, MMETSP0949, 
MMETSP0950 

 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP2393 MMETSP0292, MMETSP0294, MMETSP0295, 
MMETSP0296 

 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo NB MMETSP0416, MMETSP0414, MMETSP0415 CAMPEP_0200281528 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP3107 MMETSP0409, MMETSP0410, MMETSP0411  
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 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP 452 MMETSP0894, MMETSP0895, MMETSP0896, 
MMETSP0897 

 

 Ochrophyta Xanthophyceae Vaucheriaceae Vaucheria litorea CCMP2940 MMETSP0945, MMETSP0946  

 Labyrinthista Labyrinthulea Thraustochytriaceae Aplanochytrium sp PBS07 MMETSP0954, MMETSP0955, MMETSP0956, 
MMETSP0957 

CAMPEP_0200285312 

 Labyrinthista Labyrinthulea Thraustochytriaceae Aplanochytrium stocchinoi GSBS06 MMETSP1347, MMETSP1348, MMETSP1349, 
MMETSP1346 

CAMPEP_0200742152 

 Labyrinthista Labyrinthulea Thraustochytriidae Aurantiochytrium limacinum ATCCMYA-1381 MMETSP0959, MMETSP0960, MMETSP0961, 
MMETSP0958 

CAMPEP_0186630566, 
CAMPEP_0186630590 

 Labyrinthista Labyrinthulea Thraustochytriaceae Schizochytrium aggregatum ATCC28209 MMETSP0962, MMETSP0963, MMETSP0964, 
MMETSP0965 

CAMPEP_0191617876, 
CAMPEP_0191593346 

 Labyrinthista Labyrinthulea Thraustochytriaceae Thraustochytrium sp. LLF1b MMETSP0198, MMETSP0199 CAMPEP_0193125154 

ALVEOLATA Dinoflagellata Dinophyceae Gymnodiniaceae Amphidinium carterae CCMP1314 MMETSP0399, MMETSP0259, MMETSP0258, 
MMETSP0398C 

CAMPEP_0186418116, 
CAMPEP_0186410580 

 Dinoflagellata Dinophyceae Gymnodiniaceae Karenia brevis CCMP2229 MMETSP0027, MMETSP0029, MMETSP0030, 
MMETSP0031 

CAMPEP_0188924570, 
CAMPEP_0188846816 

 Dinoflagellata Dinophyceae Gymnodiniaceae Karenia brevis Wilson MMETSP0202, MMETSP0201, MMETSP0648, 
MMETSP0649 

CAMPEP_0189347872, 
CAMPEP_0189457996 

 Dinoflagellata Dinophyceae Gymnodiniaceae Karenia brevis SP3 MMETSP0527, MMETSP0528 CAMPEP_0189224940, 
CAMPEP_0189232232 

 Dinoflagellata Dinophyceae Gymnodiniaceae Karenia brevis SP1 MMETSP0573, MMETSP0574 CAMPEP_0189040674 

 Dinoflagellata Dinophyceae Gymnodiniaceae Karlodinium micrum CCMP2283 MMETSP1015, MMETSP1016, MMETSP1017 CAMPEP_0200829246, 
CAMPEP_0200797158 

 Dinoflagellata Dinophyceae Peridiniaceae Durinskia baltica CSIRO CS-38 MMETSP0117, MMETSP0116 CAMPEP_0199932972, 
CAMPEP_0199938892 
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 Dinoflagellata Dinophyceae Peridiniaceae Glenodinium foliaceum CCAP 1116/3 MMETSP0118, MMETSP0119 CAMPEP_0188250780, 
CAMPEP_0188433956, 
CAMPEP_0188276828 

 Dinoflagellata Dinophyceae Peridiniaceae Kryptoperidinium foliaceum CCMP 1326 MMETSP0121, MMETSP0120 CAMPEP_0189652728, 
CAMPEP_0189889440 

 Dinoflagellata Dinophyceae Peridiniaceae Peridinium aciculiferum PAER-2 MMETSP0370, MMETSP0371 CAMPEP_0190614556, 
CAMPEP_0190676276 

 Dinoflagellata Dinophyceae Peridiniaceae Scrippsiella trochoidea CCMP3099 MMETSP0270, MMETSP0271, MMETSP0272 CAMPEP_0192123156, 
CAMPEP_0192103400 

 Dinoflagellata Dinophyceae Peridiniaceae Scrippsiella Hangoei SHTV-5 MMETSP0359, MMETSP0360, MMETSP0361 CAMPEP_0191783558, 
CAMPEP_0191797954 

 Dinoflagellata Dinophyceae Peridiniaceae Scrippsiella hangoei-like SHHI-4 MMETSP0367, MMETSP0368, MMETSP0369 CAMPEP_0199299354, 
CAMPEP_0199190796 

 Dinoflagellata Dinophyceae Goniodomataceae Alexandrium monilatum CCMP3105 MMETSP0095, MMETSP0096, MMETSP0097, 
MMETSP0093 

CAMPEP_0200565566, 
CAMPEP_0200553256 

 Dinoflagellata Dinophyceae Goniodomataceae Alexandrium fundyense CCMP1719 MMETSP0196C, MMETSP0347 CAMPEP_0185987224 

 Dinoflagellata Dinophyceae Goniodomataceae Alexandrium tamarense CCMP1771 MMETSP0382, MMETSP0384, MMETSP0378, 
MMETSP0380 

CAMPEP_0186245008, 
CAMPEP_0186327612 

 Dinoflagellata Dinophyceae Unknown Azadinium spinosum 3D9 MMETSP1036, MMETSP1037, MMETSP1038 CAMPEP_0186815290, 
CAMPEP_0186817968 

 Dinoflagellata Dinophyceae Ceratiaceae Ceratium fusus PA161109 MMETSP1075, MMETSP1074 CAMPEP_0199430866, 
CAMPEP_0199436922 

 Dinoflagellata Dinophyceae Crypthecodiniacea Crypthecodinium cohnii Seligo MMETSP0323, MMETSP0325, MMETSP0326, 
MMETSP0324 

CAMPEP_0193892292, 
CAMPEP_0193855486 

 Dinoflagellata Dinophyceae Gonyaulacaceae Lingulodinium polyedra CCMP 1738 MMETSP1032, MMETSP1033, MMETSP1034, 
MMETSP1035 

CAMPEP_0190037028, 
CAMPEP_0190068998 

 Dinoflagellata Dinophyceae Oxyrrhinaceae Oxyrrhis marina CCMP1795 MMETSP0452_2, MMETSP0451_2C  

 Dinoflagellata Dinophyceae Oxyrrhinaceae Oxyrrhis marina Unknown MMETSP0468, MMETSP0469, MMETSP0470, 
MMETSP0471 

 

 Dinoflagellata Dinophyceae Oxyrrhinaceae Oxyrrhis marina LB1974 MMETSP1424, MMETSP1425, MMETSP1426  
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 Dinoflagellata Dinophyceae Prorocentraceae Prorocentrum minimum CCMP1329 MMETSP0053, MMETSP0055, MMETSP0057, 
MMETSP0056 

CAMPEP_0190910698, 
CAMPEP_0191025674 

 Dinoflagellata Dinophyceae Prorocentraceae Prorocentrum minimum CCMP2233 MMETSP0267, MMETSP0268, MMETSP0269 CAMPEP_0191110956, 
CAMPEP_0191181992 

 Dinoflagellata Dinophyceae Symbiodiniaceae Symbiodinium kawagutii CCMP2468 MMETSP0132_2, MMETSP0133_2, 
MMETSP0134_2, MMETSP0135_2 

 

 Dinoflagellata Dinophyceae Symbiodiniaceae Symbiodinium sp. CCMP2430 MMETSP1115, MMETSP1116, MMETSP1117  

 Dinoflagellata Dinophyceae Symbiodiniaceae Symbiodinium sp. Mp MMETSP1122, MMETSP1123, MMETSP1124, 
MMETSP1125 

 

 Dinoflagellata Dinophyceae Symbiodiniaceae Symbiodinium sp. C1 MMETSP1367, MMETSP1369  

 Dinoflagellata Dinophyceae Symbiodiniaceae Symbiodinium sp. C15 MMETSP1370, MMETSP1371  

 Ciliophora Colopdea Platyophryidae Platyophrya macrostoma WH MMETSP0127  

 Ciliophora Heterotrichea Climacostomidae Climacostomum virens Stock W-24 MMETSP1397  

 Ciliophora Oligohymenophorea Orchitophryidae Anophryoides haemophila AH6 MMETSP1018  

 Ciliophora Oligotrichea Ptychocylididae Favella taraikaensis Fe Narragansett 
Bay 

MMETSP0434, MMETSP0436 CAMPEP_0199855288 

 Ciliophora Spirotrichea Euplotidae Euplotes focardii TN1 MMETSP0205, MMETSP0206  

 Perkinsozoa Perkinsea Perkinsidae Perkinsus chesapeaki ATCC PRA-65 MMETSP0925, MMETSP0924C  

 Perkinsozoa Perkinsea Perkinsidae Perkinsus marinus ATCC 50439 MMETSP0923, MMETSP0922  

 

Supplementary Material 1 – Species examined in this study with their respective nucleic acid database identifiers and resulting sequence identifiers for KDN biosynthesis.
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Codon optimized KDN-9-P Synthase – E. coli 

ATG AGC GCC AAA AAA CAG AAA GTA GAC GCC GCT CCA GCG CCT ATT GTA TAT CAC GAA CCG AAA GTG ATG GCG 

GAG ATT GGA TGT AAC CAT ATG GGC GAT CTG GAA ATC GCA AAG GAG TTA CTG ACG CTG GCA AAA CAG GCG GGT 

GCA GAG TAT GGG AAA TTT CAG AAA CGG AAT CCA AAA GAA CTG CTT ACG GTG GAG CAG TAC GCG GCC CCA CAC 

CCG AAT CCG CGT AAT AGC TAT GGT GAT ACA TAT GGC GCG CAT CGC GAG TTT TTG GAG TTC ACT ATT GAG CAG CAT 

GCG GAA TTG AAG AAG CAC TGC GAG AAA ATT GGC TTA GGT TAC TCG TGT AGC GTA TGG GAC ATG ACT TCT GCG 

AAA GAA ATT GCG TCG ATT AAC CCG GAC CTG ATC AAA GTT GGC TCG CCC AGC AAC CAA CAT TGG GAG ATG CAG 

AAA ATC CTC CGT GAC GAA TAC AGC GGG GAC GTT CAC ATC TCC ACG GGT ATG ACT ACA AAA GAA GAA ATT GAG 

AAG ATC GTG CAA TTT TGG GAG GAG GGA AAA GGT GAT GCC AAA AAT CGG CTG GTA TTA TAT AAT TGC ACC AGC 

GGT TAT CCG GTC CCG TTT GAA GAT GTT TGC CTG CTG GAG CTC CGT GAA CTC CAC GCC CTG TAT GCT GGT CGC GTG 

AAG CAT TTA GGG TTC TCT GGG CAC CAC CTG GGT ATC GCC ATT GAT ATT GCA GCA TAT GCC CTC GGC GCC ACA TGG 

AAC GAA CGC CAT TTC ACC AAA GAT CGC ACT TGG AAA GGA ACA GAT CAT GCT GCG AGT CTG GAA CCA GCG GGC 

TTG AGC AAA CTG TGC CGT GAT CTG AAG GCG ACT TGG AAA TGC ATG AGC ACT AAG AAA ACC GAA ATC CTG CCG 

ATC GAA AGC GAG CAG CGC GCC AAG CTG AAA TGG GGT TGC TAT AAC GCT AGC AAA GTG GTG AAG TAA 

 

Modified KDN-9-P synthase with pOPIN overhangs and no start/stop codon ordered from IDT gBlock service: 

AAGTTCTGTTTCAGGGCCCG AGC GCC AAA AAA CAG AAA GTA GAC GCC GCT CCA GCG CCT ATT GTA TAT CAC GAA 

CCG AAA GTG ATG GCG GAG ATT GGA TGT AAC CAT ATG GGC GAT CTG GAA ATC GCA AAG GAG TTA CTG ACG CTG 

GCA AAA CAG GCG GGT GCA GAG TAT GGG AAA TTT CAG AAA CGG AAT CCA AAA GAA CTG CTT ACG GTG GAG CAG 

TAC GCG GCC CCA CAC CCG AAT CCG CGT AAT AGC TAT GGT GAT ACA TAT GGC GCG CAT CGC GAG TTT TTG GAG 

TTC ACT ATT GAG CAG CAT GCG GAA TTG AAG AAG CAC TGC GAG AAA ATT GGC TTA GGT TAC TCG TGT AGC GTA 

TGG GAC ATG ACT TCT GCG AAA GAA ATT GCG TCG ATT AAC CCG GAC CTG ATC AAA GTT GGC TCG CCC AGC AAC 

CAA CAT TGG GAG ATG CAG AAA ATC CTC CGT GAC GAA TAC AGC GGG GAC GTT CAC ATC TCC ACG GGT ATG ACT 

ACA AAA GAA GAA ATT GAG AAG ATC GTG CAA TTT TGG GAG GAG GGA AAA GGT GAT GCC AAA AAT CGG CTG GTA 

TTA TAT AAT TGC ACC AGC GGT TAT CCG GTC CCG TTT GAA GAT GTT TGC CTG CTG GAG CTC CGT GAA CTC CAC GCC 

CTG TAT GCT GGT CGC GTG AAG CAT TTA GGG TTC TCT GGG CAC CAC CTG GGT ATC GCC ATT GAT ATT GCA GCA TAT 

GCC CTC GGC GCC ACA TGG AAC GAA CGC CAT TTC ACC AAA GAT CGC ACT TGG AAA GGA ACA GAT CAT GCT GCG 

AGT CTG GAA CCA GCG GGC TTG AGC AAA CTG TGC CGT GAT CTG AAG GCG ACT TGG AAA TGC ATG AGC ACT AAG 

AAA ACC GAA ATC CTG CCG ATC GAA AGC GAG CAG CGC GCC AAG CTG AAA TGG GGT TGC TAT AAC GCT AGC AAA 

GTG GTG AAG TAAAGCTTTCTAGACCAT 

 

Codon optimized KDN-9-P phosphatase – E. coli 

ATGAAAGAAA TCAAATTGAT TCTGACCGAC ATCGATGGTG TTTGGACGGA CGGTGGAATG TTCTACGATC AGACGGGTAA 

CGAATGGAAA AAATTTAACA CTTCTGATTC TGCCGGTATT TTCTGGGCAC ATAACAAAGG AATTCCGGTG GGCATCCTGA 

CCGGAGAAAA GACGGAAATC GTCCGTCGCC GTGCGGAAAA ACTGAAGGTC GATTATCTGT TCCAAGGTGT AGTTGATAAA 

TTATCAGCGG CCGAGGAACT GTGCAACGAG CTTGGTATCA ATTTGGAACA GGTCGCCTAC ATTGGTGATG ATTTAAACGA 

TGCCAAACTT TTGAAACGCG TGGGTATCGC TGGTGTACCT GCGTCAGCGC CCTTCTACAT TCGTCGCCTG TCAACGATCT 

TTTTGGAAAA ACGGGGCGGC GAAGGTGTGT TTCGCGAATT TGTTGAAAAA GTTCTGGGTA TCAATCTGGA GGATTTTATT 

GCTGTCATCC AATG 

 

 

Modified KDN-9-P phosphatase with pOPIN overhangs and no start/stop codon: 
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AAGTTCTGTTTCAGGGCCCG AAAGAAA TCAAATTGAT TCTGACCGAC ATCGATGGTG TTTGGACGGA CGGTGGAATG 

TTCTACGATC AGACGGGTAA CGAATGGAAA AAATTTAACA CTTCTGATTC TGCCGGTATT TTCTGGGCAC ATAACAAAGG 

AATTCCGGTG GGCATCCTGA CCGGAGAAAA GACGGAAATC GTCCGTCGCC GTGCGGAAAA ACTGAAGGTC GATTATCTGT 

TCCAAGGTGT AGTTGATAAA TTATCAGCGG CCGAGGAACT GTGCAACGAG CTTGGTATCA ATTTGGAACA GGTCGCCTAC 

ATTGGTGATG ATTTAAACGA TGCCAAACTT TTGAAACGCG TGGGTATCGC TGGTGTACCT GCGTCAGCGC CCTTCTACAT 

TCGTCGCCTG TCAACGATCT TTTTGGAAAA ACGGGGCGGC GAAGGTGTGT TTCGCGAATT TGTTGAAAAA GTTCTGGGTA 

TCAATCTGGA GGATTTTATT GCTGTCATCC AA   TAAAGCTTTCTAGACCAT 

 

Codon optimized CMP-KDN synthase – E. coli 

ATG ACC GTT TGG CAT CCG GTA CCT GAG GTA CGT ATT GTA GCG GTA ATT CCG GCA CGT GGT GGC AGC GTT TCG 

ATT CCC CGG AAA AAC ATT AAG CCT CTG GCG GGC CGC CCG CTG ATC GAT TGG GTC ATC AAA CCG GCG CTG CAC 

TGC GGG ATT TTT ACC GAT GTA TAC GTG AGC ACC GAC GAT GAT GCT ATC GCG AGC GTC GCT GAA AAA TGT GGC 

GCC AAA GTG CAT CGG CGT GAT CCG GCC ACG GCG ACC GCT ACG GCC ACC ACC GAG TCT GCG CTG CTT GAC TTC 

GCG CAG TCA CAC GGT GAC TTT GAC GTA CTG TGT CTT ATT CAA GCA ACC TCC CCG TTT ATT ACC CCT CGC GAT CTG 

ATT AAC GGC TGG GAA TTA ATG CGC GCC ATG GAA GCC GAT AGC CTC GTA ACC GCG GTG CGT GCG CAT CGC TTC 

CTT TGG CAG GTT GAC AAA GAT ACA GGT CTT GCG AAA GCG AAA AAC TAT GAC CCA CTG AAA CGC CCG CGC CGT 

CAG GAC TGG GAT GGG GAA CTG GTG GAG AAT GGC GCT TTT TAC ATG ACC ACC AAA GCA TGC TTA GAG AAA CAT 

AAA TGT CGC CTC GGG GAA AAG ATG GTC CTG CTG GAG ATG GAA GAG CAT ACG TTT ACT GAA CTG GAT TCG TTA 

GTA GAC TGG CAG ATC GTG ACC AAT ATG ACC GAA AAT TAC GGT TAC TGG CCG CCG CGT AAC TGG GGT GAA GCC 

GCG TCC TCC TCA GCC CGT CCG GAC GCG GCC AAG ATC GTA TTG TGT GCG CTG GGC GTT CTG GCT CTG GGT CTG 

TCG ATT GGA CGT ATG AGC AAA TAA 

 

Modified CMP-KDN synthase with pOPIN overhangs and no start/stop codon: 

AAGTTCTGTTTCAGGGCCCG ACC GTT TGG CAT CCG GTA CCT GAG GTA CGT ATT GTA GCG GTA ATT CCG GCA CGT 

GGT GGC AGC GTT TCG ATT CCC CGG AAA AAC ATT AAG CCT CTG GCG GGC CGC CCG CTG ATC GAT TGG GTC ATC 

AAA CCG GCG CTG CAC TGC GGG ATT TTT ACC GAT GTA TAC GTG AGC ACC GAC GAT GAT GCT ATC GCG AGC GTC 

GCT GAA AAA TGT GGC GCC AAA GTG CAT CGG CGT GAT CCG GCC ACG GCG ACC GCT ACG GCC ACC ACC GAG TCT 

GCG CTG CTT GAC TTC GCG CAG TCA CAC GGT GAC TTT GAC GTA CTG TGT CTT ATT CAA GCA ACC TCC CCG TTT ATT 

ACC CCT CGC GAT CTG ATT AAC GGC TGG GAA TTA ATG CGC GCC ATG GAA GCC GAT AGC CTC GTA ACC GCG GTG 

CGT GCG CAT CGC TTC CTT TGG CAG GTT GAC AAA GAT ACA GGT CTT GCG AAA GCG AAA AAC TAT GAC CCA CTG 

AAA CGC CCG CGC CGT CAG GAC TGG GAT GGG GAA CTG GTG GAG AAT GGC GCT TTT TAC ATG ACC ACC AAA GCA 

TGC TTA GAG AAA CAT AAA TGT CGC CTC GGG GAA AAG ATG GTC CTG CTG GAG ATG GAA GAG CAT ACG TTT ACT 

GAA CTG GAT TCG TTA GTA GAC TGG CAG ATC GTG ACC AAT ATG ACC GAA AAT TAC GGT TAC TGG CCG CCG CGT 

AAC TGG GGT GAA GCC GCG TCC TCC TCA GCC CGT CCG GAC GCG GCC AAG ATC GTA TTG TGT GCG CTG GGC GTT 

CTG GCT CTG GGT CTG TCG ATT GGA CGT ATG AGC AAATAAAGCTTTCTAGACCAT 

 

 

 

Modified truncated CMP-KDN synthase with pOPIN overhangs and no start/stop codon ordered from IDT gBlock 

service: 

AAGTTCTGTTTCAGGGCCCG ACC GTT TGG CAT CCG GTA CCT GAG GTA CGT ATT GTA GCG GTA ATT CCG GCA CGT 

GGT GGC AGC GTT TCG ATT CCC CGG AAA AAC ATT AAG CCT CTG GCG GGC CGC CCG CTG ATC GAT TGG GTC ATC 

AAA CCG GCG CTG CAC TGC GGG ATT TTT ACC GAT GTA TAC GTG AGC ACC GAC GAT GAT GCT ATC GCG AGC GTC 
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GCT GAA AAA TGT GGC GCC AAA GTG CAT CGG CGT GAT CCG GCC ACG GCG ACC GCT ACG GCC ACC ACC GAG TCT 

GCG CTG CTT GAC TTC GCG CAG TCA CAC GGT GAC TTT GAC GTA CTG TGT CTT ATT CAA GCA ACC TCC CCG TTT ATT 

ACC CCT CGC GAT CTG ATT AAC GGC TGG GAA TTA ATG CGC GCC ATG GAA GCC GAT AGC CTC GTA ACC GCG GTG 

CGT GCG CAT CGC TTC CTT TGG CAG GTT GAC AAA GAT ACA GGT CTT GCG AAA GCG AAA AAC TAT GAC CCA CTG 

AAA CGC CCG CGC CGT CAG GAC TGG GAT GGG GAA CTG GTG GAG AAT GGC GCT TTT TAC ATG ACC ACC AAA GCA 

TGC TTA GAG AAA CAT AAA TGT CGC CTC GGG GAA AAG ATG GTC CTG CTG GAG ATG GAA GAG CAT ACG TTT ACT 

GAA CTG GAT TCG TTA GTA GAC TGG CAG ATC GTG ACC AAT ATG ACC GAA AAT TAC GGT TAC 

TGGTAAAGCTTTCTAGACCAT 

 

Supplementary Material 2 – Sequences used in this study for protein expression.  Underlined 

sequences are overhangs added to the protein sequences for direct cloning into pOPINF vectors using 

In-Fusion ™ cloning. 
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5.1 Abstract 

The 6-deoxy sugar, rhamnose, is an important monosaccharide found in structural 

polysaccharides, glycoproteins, and secondary metabolites across microbes, algae and plants. 

The activated sources of L-rhamnose for carbohydrate polymer synthesis are the sugar 

nucleotides, thymidine 5’-diphospho-β-L-rhamnose (TDP-β-L-Rha) or uridine 5’-diphospho-β-L-

rhamnose (UDP-β-L-Rha). Whilst the biosynthesis of these two sugar nucleotides has been 

studied in some detail in bacteria and plants, no work yet has looked at the production of   L-

rhamnose in algae. In this work we broaden the current literature knowledge surrounding L-

rhamnose biosynthesis using sugar nucleotide profiling techniques as well as a comprehensive 

bioinformatics analysis to show how algae produce UDP or TDP activated rhamnose. Taking 

our findings, we propose a likely evolutionary history of rhamnose biosynthesis across the algal 

groups.  
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5.2 Introduction 

The 6-deoxy sugar rhamnose (Rha) is found in glycoproteins, structural polysaccharides and 

secondary metabolites across the microbes, algae and plants, but is absent in the animals. 

Most commonly found as the L enantiomer, L-Rha is present in the capsules or cell walls of 

bacteria [1, 2], fungi [3], and plants [4]; it is also present in the lesser-studied glycans of viruses 

[5]. Previous work has also found L-Rha in fungal and bacterial glycans that play crucial roles in 

host-pathogen interactions [6, 7]. Due to the absence of L-Rha biosynthesis capability in 

animals, and the essentiality of this sugar for virulence of numerous pathogens, the 

biosynthetic microbial pathway for L-Rha production has drawn interest as a potential 

therapeutic target [8, 9]. 

 

The activated sources of L-Rha for carbohydrate polymer biosynthesis are thymidine 5’-

diphospho-β-L-rhamnose (TDP-β-L-Rha) or uridine 5’-diphospho-β-L-rhamnose (UDP-β-L-Rha), 

which are produced biosynthetically from thymidine 5’-diphospho-α-D-glucose (TDP-α-D-Glc) 

or uridine 5’-diphospho-α-D-glucose (UDP-α-D-Glc), respectively (Figure 54). In bacteria, many 

examples have shown that TDP-β-L-Rha is produced from TDP-α-D-Glc by the action of three 

independent enzymes [10]; RmlB (a 4,6-dehydratase), RmlC (a 3,5-epimerase) and RmlD (a 4-

reductase). RmlB, in particular, is a central player in the biosynthesis of glycosylated natural 

products: its’ product, TDP-6-deoxy-L-lyxo-hexulose, is subject to numerous enzymatic 

processes that produce diverse sugar nucleotide products [11, 12]. The Rml enzymes have 

been studied in some detail, with crystal structures of all three having been solved [13-15]. 

More recently, enzymes from plants [16, 17], fungi [6] and even viruses [18] have been shown 

to synthesise UDP-β-L-Rha from UDP-α-D-Glc. These enzymes are structurally distinct from 

their bacterial orthologues, with multiple enzymatic activities found on individual proteins. For 

plants, the dehydratase, epimerase and reductase activities are often found on one large 

protein (RHM) [16], but there are also instances of the three enzymatic activities being shared 

over two proteins (UGD/UER1) [19]. Fungi and viruses also contain homologs of the 

bifunctional epimerase-reductase UER1 plant system, often showing substrate specificity for 

the uridine activated sugars over the thymidine alternatives [6, 18].  
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Figure 54 - Biosynthesis of NDP-β-L-Rha in bacteria, fungi, viruses and plants.  In bacteria, three 

independent enzymes catalyse dehydration, epimerization and reduction steps to yield TDP-β-L-Rha – 

RmlB, RmlC and RmlD, respectively. In plants, fungi and viruses these three enzymatic activities are 

found on multi-functional enzymes. UER1 from Arabadopsis thaliana has been shown to be 

bifunctional and contain both 3,5-epimerase and 4-reductase activities. RHM proteins from A. 

thaliana has been shown to catalyse both of the previous steps, including the initial 4,6-dehydration 

step to form the keto-sugar. 

 

 

Although the biosynthesis of L-Rha has been studied in some detail in bacteria, fungi and 

plants, previously no work has been done looking at the biosynthesis of L-Rha in the diverse 

algal groups, even though its presence has been noted in structural polysaccharides of 

macroalgae [20], and in the surface glycans and pellicle of the green microalgae Euglena 

gracilis [21-23]. Recent work by O'Neill et al identified L-Rha catabolic genes in E. gracilis but 

didn't explore the metabolism of L-Rha in any detail [24]. Evolutionarily distinct algae derived 

from the red algal plastid have also been found to contain L-Rha, with early work identifying 
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the sugar in cell preparations from the haptophytes Isochrysis galbana and Prymnesium 

parvum [25]. Furthermore, independent research carried out in our research group has 

identified a potential role for TDP-β-L-Rha in viral infection of P. parvum, showing a drastic 

increase in levels of the sugar nucleotide during viral infection (Figure 55). 

 

 

Figure 55 – Evidence for the involvement of TDP-β-L-Rha in viral infection of P. parvum.  The 

abundance of 8 sugar nucleotides (x-axis) was monitored in control cultures (blue) and cultures 

infected by Prymnesium parvum DNA virus (blue). A significant increase of TDP-β-L-Rha, UDP-GlcNAc, 

and UDP-Glc was observed in cultures 48 hours post infection. 

 

Despite the reported occurrence of L-Rha in the algae, it is not known how algae produce L-

Rha, which nucleotides they use to activate L-Rha, or how and where algae acquired their L-

Rha biosynthetic machinery in evolutionary terms. To increase understanding of L-Rha 

biosynthesis in algae we had three main objectives in this work: (1) to evaluate the occurrence 

of enzymes involved in L-Rha across the algal groups, using previously characterized bacterial 

and plant enzymes known to be involved in L-Rha biosynthesis; (2) to analyse the evolution of 

the algal pathways with respect to previously characterized bacterial and plant pathways; and 

(3) to discover whether algae activate cytosolic L-Rha using thymidine diphosphate (TDP) or 

uridine diphosphate (UDP). By mining recently available algal transcriptomes and genomes we 

show that algal L-Rha biosynthesis is closely related to other eukaryotic pathways, with 

exceptions in the haptophytes, fucoxanthin-containing dinoflagellates and rhizarians. By 

profiling intracellular sugar-nucleotides of a representative euglenid, Euglena gracilis, and 
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haptophyte, Prymnesium parvum, we support our bioinformatic findings by showing a 

preference for TDP-activated L-Rha in P. parvum, and UDP-activated L-Rha in E. gracilis. Using 

these findings, we evaluate potential routes for the evolution of the NDP-β-L-Rha pathway in 

the algae. 
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5.3 Results 

Algae are photosynthetic eukaryotic organisms belonging to a wide range of taxonomic 

groups.  They arose following endosymbiotic acquisition of a cyanobacterium by a 

heterotrophic protist [26, 27]. This led to the emergence of the glaucophyte, red algal and 

green algal lineages by a process referred to as the primary endosymbiosis event. Other 

eukaryotic lineages including the cryptophytes, alveolates (e.g. dinoflagellates), stramenopiles, 

haptophytes, euglenids and chlorarachniophytes subsequently obtained their plastids through 

a secondary endosymbiosis event. The euglenid and chlorarachniophyte plastids are of green 

algal origin, whilst the cryptophyte, alveolate, stramenopile and haptophyte (collectively 

termed CASH) plastids are believed to be of red algal origin [27]. This has since been followed 

by tertiary endosymbiosis events in the Dinoflagellata phylum, whereby the dinoflagellates 

have replaced their peridinin-containing plastids with plastids of other algae [28]. One such 

example of this is the acquisition of the fucoxanthin-containing haptophyte plastid by the 

Gymnodiniaceae family of dinoflagellates [29, 30]. With each endosymbiosis event, a massive 

amount of lateral gene transfer occurred from the engulfed symbiont to the host nuclear 

genome by a process known as endosymbiotic gene transfer (EGT). This in turn has led to the 

enormous genetic and therefore physiological diversity observed in the algal groups [31]. 

 

5.3.1 Distribution of L-Rha biosynthetic genes in algae 

In order to identify algal transcripts involved in NDP-β-L-Rha biosynthesis, BLAST searches were 

performed using reference sequences from bacteria and plants known to be involved in these 

pathways. BLASTp searches were carried out against the putative proteins assembled and 

translated from the algal transcriptomes and genomes using protein sequences for RmlC 

(NP_217982.1), UER1 (NP_564806.1) and RHM (NP_177978.1). We found that in most 

instances the bacterial pathway (represented by RmlC or RmlC/D Fusion) and the plant 

pathway (represented by UER1 or RHM) were mutually exclusive, with the exception of 15 

dinoflagellates found in the Alveolata superphylum (Figure 56). In general, our findings suggest 

a larger support for the eukaryotic pathway amongst algal groups than the bacterial pathway. 

 

For the algae derived from primary endosymbiosis (i.e. glaucophytes, red algae and green 

algae), no homologs of bacterial RmlC were found. Of the two glaucophyte transcriptomes 

examined in this study, both contained one homolog of UER1, suggesting a plant-like 

biosynthesis of L-Rha in this phylum. Of the green algae examined, six out of thirteen 
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contained a UER1 homolog, and six of the remaining seven contained a homolog of the 

trifunctional RHM. No hits were observed for one Micromonas sp. strain examined. The lack of 

bacterial RmlC homologs and abundance of plant UER1 or RHM homologs would also support 

a plant-like biosynthesis of L-Rha in this taxonomic group. Of the eleven red algae examined, 

only three contained homologs to UER1, with no homologs to RmlC or RHM being observed, 

which may suggest a large-scale loss of L-Rha biosynthesis in this group. 

 

Amongst algae derived from secondary endosymbiosis with a green algal symbiont (i.e. 

excavates and rhizarians), two out of three excavates examined contained UER1 homologs, 

with no instances of RmlC homologs. No hits were observed for Eutreptiella gymnastica. This 

suggests a plant-like L-Rha biosynthesis pathway again, although a larger sample size would be 

more desirable. In Rhizaria, an unexpected recurrent transcript was found that was a fusion 

between bacterial RmlC and plant UER1. Of the seven rhizarians examined, six contained this 

RmlC/UER1 putative fusion protein. In addition to this transcript, Gymnochlora sp. also 

contained a standalone UER1 homolog, and one strain of Bigelowiella natans also contained a 

standalone RmlC homolog. No hits for L-Rha biosynthesis were found for Chlorarachnion 

reptans. Rhizaria therefore appear to combine both bacterial and plant-like machinery for L-

Rha biosynthesis. 

 

Amongst algae derived from secondary endosymbiosis with a red-alga (i.e. CASH), the 

cryptophytes largely contain UER1 homologs, with fifteen out of sixteen examined containing a 

UER1 homolog. Of these fifteen, Rhodomonas abbreviata also contains an RmlC homolog, and 

Rhodomonas salina also contains a homolog of an RmlC/D fusion. Proteomonas sulcata 

contains no hits for L-Rha biosynthesis. The abundance of UER1 homologs and lack of RmlC 

homologs in this group would suggest a plant-like biosynthesis of L-Rha in the cryptophytes. Of 

the twenty-two haptophytes examined, only 2 contained homologs to either UER1 or RHM. 

Unexpectedly, seventeen of the twenty-two examined contained a putative fusion protein 

between bacterial RmlC and RmlD. No hits were found for L-Rha biosynthesis in Pavlova 

lutheri, Pavlova sp., one strain of Chrysochromulina polyepsis and Phaeocystis sp.. Taken 

together, this suggests a bacterial-like pathway for L-Rha biosynthesis in the haptophytes. The 

stramenopiles displayed a similar pattern to the cryptophytes, with forty-three of the fifty-one 

strains examined containing a homolog to UER1. Of these forty-three Amphiprora sp. and 

Chaetoceros neogracile also contained an RmlC/D fusion homolog, and Asterionellopsis 

glacialis and Pseudopedinella elastica also contained a standalone RmlC homolog. Pseudo-

nitzschia fraudulenta contained only a standalone RmlC homolog, and seven strains examined 
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contained no hits to known L-Rha biosynthetic enzymes. This consistent abundance of UER1 

homologs would also support a plant-like L-Rha biosynthesis pathway in the stramenopiles. 

Unlike the other groups, a clear mix of bacterial and plant-like L-Rha biosynthesis machinery is 

observed for the alveolates. Of the thirty-eight strains examined, twenty-nine had homologs to 

UER1, RHM, or both, suggesting plant-like pathways are present consistently in this 

superphylum. However, bacterial pathways also appear to be consistently present, with 

sixteen out of thirty-eight strains having a homolog to either standalone RmlC or an RmlC/D 

fusion. Interestingly, six out of six dinoflagellates examined from the Gymnodiniaceae family 

(Amphidinium, Karenia and Karlodinium genera) all contained an RmlC/D fusion; the possible 

origin of this fusion protein is discussed later. The dinoflagellates, which make up a subgroup 

of the alveolates, represent a phylum that has undergone extensive endosymbiosis events, and 

this may explain the abundance of both bacterial and plant-like L-Rha biosynthesis pathways in 

this group. 

 

To conclude, these findings suggest that most algae use exclusively the plant-like pathway for 

L-Rha biosynthesis. One exception is the haptophytes, which appear to exclusively use the 

bacterial pathway. The rhizaria also differ, with the appearance of a fusion between bacterial 

RmlC and plant UER1. And finally, some members of the Alveolata, such as the 

Gymnodiniaceae family, which in addition to the plant-like pathway, contain the bacterial 

pathway. 
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Figure 56 - Coulson plot showing the distribution of L-Rha biosynthesis pathways in algae.  A total of 

163 transcriptomes or genomes were analysed for the presence of NDP-β-L-Rha biosynthesis genes 

from bacterial (RmlC) or plant (UER1 or RHM) pathways. Where a transcript was identified for a given 

gene, a filled circle can be found. For bacterial pathways (i.e. RmlC or RmlC/D fusion) circles are filled 

red. For plant pathways (i.e. UER1 or RHM) circles are filled blue. When a fusion of bacterial RmlC and 

plant UER1 is observed, circles are filled purple. Multiple mention of the same species name means 

that different strains have been analysed. For a full list of transcriptome, genome and corresponding 

sequence identifiers, along with strains used in this study, refer to Supplementary Material 3. 

 

5.3.2 Phylogenetic analysis and evolutionary implications 

 A maximum likelihood tree of representative RmlC, RmlC/D, UER1, and RHM homologs 

was constructed using previously acquired algal sequences, along with sequences from 

bacteria and plants. Bacterial sequences, including RmlC/D fusions, clearly do not form 

monophyletic lineages with plant-like UER1 or RHM sequences (Figure 57).  Some eukaryotic 

lineages including the haptophytes and fucoxanthin-containing dinoflagellates (i.e. 

Gymnodiniaceae) contain RmlC/D fusions that branch with bacterial RmlC or RmlC/D 

sequences (shown in red). UER1 or RHM homologs from other algal groups including the 

cryptophytes, alveolates (peridinin-containing dinoflagellates), stramenopiles, excavates, 

glaucophytes, green algae and red algae branch with plant sequences from Arabidopsis 

thaliana and Brassica napus. Relationships between major taxonomic groups within the plant-

like part of the tree (blue) are poorly resolved (bootstrap values > 50% shown), but 

dinoflagellates can be seen scattered throughout, likely due to their complex evolution which 

has involved multiple endosymbiotic events.  
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Figure 57 - Phylogenetic clustering of NDP-β-L-Rha biosynthetic machinery.  Protein sequences with 

homology to bacterial RmlC are highlighted in red, whilst sequences with homology to plant UER1 or 

RHM are highlighted blue. Alignment was performed using the default settings of MAFFT [32], and an 

unrooted maximum-likelihood phylogenetic tree was produced using 122 sequences from algae, 

bacteria and plants. The tree was drawn using MEGA7 [33]. The final tree was based on 135 ungapped 

amino acid positions, 100 resampling permutations and only branches with bootstrap support >50% 

are labelled. A detailed list of sequences used to create this tree can be found in Supplementary 

Material 3. 

 

5.3.3 Sugar nucleotide profiling 

We next sought to examine the presence and the levels of TDP- and/or UDP-β-L-Rha in the 

haptophyte, P. parvum, and the euglenid, E. gracilis. Our bioinformatics based analysis had 

suggested that P. parvum contained the bacterial pathway for L-Rha biosynthesis, likely 

utilizing TDP as the activating nucleoside diphosphate; whilst E. gracilis appeared to contain 

the plant pathway for L-Rha biosynthesis, likely utilizing UDP adducts. We also looked at the 

presence of TDP- and/or UDP-α-D-Glc, the likely biosynthetic precursors of the corresponding 

L-Rha derivatives. As neither TDP-β-L-Rha or UDP-β-L-Rha were commercially available at the 
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time of this study, these two compounds were chemically synthesized and kindly provided by 

Martin Rejzek for use as authentic standards for LC-MS/MS experiments. 

 

5.3.4 Quantification of intracellular levels of NDP-β-L-Rha in algal cells 

Axenic cultures of algal cells were grown under sterile conditions, at 22 oC, and on a 14-on:10-

off light cycle. The cells were harvested between mid to late-log phase and at the same time of 

day to avoid differences in sugar nucleotide levels due to the differences in growth phase. For 

E. gracilis, this represented ~6 days of growth, whilst for P. parvum late-log phase was usually 

achieved after ~14 days of growth. Cold ethanol (70%)  was used to bring about cell lysis and to 

extract the target metabolites under very mild conditions [34], thus minimising degradation of 

the labile sugar nucleotides. Moreover, ethanol efficiently precipitates and inactivates 

cytosolic enzymes and prevents undesired enzymatic degradation. The samples were 

subjected to solid phase extraction (SPE) using EnviCarb graphitised carbon column [35] 

followed by LC-MS/MS based on a method by Pabst et al [36]. Authentic standards of sugar 

nucleotides were used to generate MRM transitions and to determine retention times. Where 

in doubt, co-injection of samples with standards was used to further confirm analyte 

identification. Internal standards [guanosine 5′-diphospho-α-D-glucose (GDP-α-D-Glc) for P. 

parvum, uridine 5′-diphospho-2-acetamido-2-deoxy-α-D-glucuronic acid (UDP-α-D-GlcNAcA) for 

E. gracilis, were used for quantification and allowed direct comparison of relative sugar 

nucleotide levels between E. gracilis and P. parvum (Figure 58).  
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Figure 58 - Assessment of levels of TDP or UDP-activated glucose and L-Rha in E. gracilis and P. 

parvum.  Concentrations of Top) TDP-α-D-Glc and UDP-α-D-Glc, Bottom) TDP-β-L-Rha and UDP-β-L-Rha. 

 

LC-MS/MS results from biological triplicate show target NDP-sugars ranging from low pmol to 

mid nmol levels per gram of algal cells (Figure 58). E. gracilis contains approximately 4-fold 

more UDP-α-D-Glc than TDP-α-D-Glc, at the mid nmol range. Whilst levels of both TDP-α-D-Glc 

and UDP-α-D-Glc were lower in P. parvum at the low to high pmol range, levels of TDP-α-D-Glc 

were significantly lower, with UDP-α-D-Glc ~82 fold more abundant in P. parvum. These results 

appeared to have little correlation with the levels of activated L-Rha; E. gracilis contained 

approximately 262 times more UDP-β-L-Rha than TDP-β-L-Rha and P. parvum contained almost 

6 times more TDP-β-L-Rha than UDP-β-L-Rha. For both organisms, levels of activated L-Rha 

ranged from 24 pmol to 6.3 nmol/g pellet.  These results support our bioinformatic analysis, 

which indicates a bacterial-like L-Rha biosynthesis pathway in P. parvum and a plant-like L-Rha 

biosynthesis pathway in E. gracilis.  
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5.4 Discussion 

The biosynthesis of L-Rha has been well described for bacteria [37], fungi [6, 38], plants [16, 

17], and even viruses [18], so it is surprising that no effort has been previously made to 

decipher L-Rha biosynthetic pathways in algae, a previously reported source of L-Rha [20, 21, 

25]. To fill this gap in knowledge, we examined the distribution of the bacterial RmlC enzyme 

and the plant UER1 and RHM enzymes across the algal groups. For this analysis 163 

transcriptomes from MMETSP [39] or genomes from NCBI were used that represented a 

diverse mixture of all algal groups. RmlC was chosen as it is the only enzyme specific to the L-

Rha pathway, with RmlB and RmlD paralogues found in alternative sugar nucleotide 

biosynthetic pathways [11, 40]. It is important to note that for this analysis, lack of transcripts 

could be due to lack of expression under the experimental growth conditions and doesn’t 

necessarily equate to lack of gene in the genome of the organism. Equally with genomic 

analysis, lack of genes could be due to insufficient read depth.  

 

We discovered that most algal groups utilize primarily a plant-like biosynthesis of L-Rha, with 

transcripts for UER1 and RHM identified throughout the glaucophytes, red algae, green algae, 

excavates, cryptophytes, alveolates and stramenopiles. In contrast, we found that the 

haptophytes show very little evidence for plant-like L-Rha biosynthesis, and instead operate a 

bacterial-like Rml biosynthesis pathway, with transcripts for a fusion of RmlC and RmlD 

abundant throughout. This fusion protein may represent a good example of gene fusion in 

early eukaryotes as discussed by Yin et al [41]. The Rhizaria are also an exception, with an 

unexpected fusion between bacterial RmlC and plant UER1 found throughout. The biochemical 

function of this fusion is unknown, but it is conceivable that the Rhizaria replaced redundant 

3,5-epimerase functionality of UER1 with the corresponding epimerase functionality of 

bacterial RmlC. Although individual instances of bacterial RmlC homologs are found scattered 

across all algal groups, they appear to be more apparent in the Alveolata, with sixteen out of 

thirty-eight strains examined containing a homolog of either RmlC or an RmlC/D fusion. In 

addition, transcripts corresponding to the trifunctional RHM are more abundant in this 

superphylum. Interestingly, like the haptophytes, the Gymnodiniaceae family of dinoflagellates 

all contain RmlC/D fusions. This increased genetic diversity in the Alveolata could be due to the 

presence of tertiary or even quaternary endosymbiosis events found in the Dinoflagellata 

phylum [42].   
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5.4.1 Phylogenetic analysis and evolutionary implications 

To investigate the evolutionary origin of both the plant-like UER1/RHM sequences and 

bacterial RmlC sequences, a maximum likelihood phylogenetic tree was constructed (Figure 

57). The tree shows a clear divergence between bacterial- and plant-like pathways, with the 

haptophyte and fucoxanthin-containing dinoflagellate RmlC/D sequences branching with the 

corresponding bacterial sequences. All other groups of algae appear to have the plant-like 

UER1 or RHM machinery. This broad distribution of UER1 or RHM-like sequences would 

support an ancient evolutionary origin of this gene. On the other hand, the RmlC/D fusion is 

only observed consistently in the haptophytes and Gymnodiniaceae, and branches closely with 

bacterial sequences. This would suggest a bacterial origin of these sequences and may suggest 

a case of horizontal gene transfer (HGT) in the haptophytes or Gymnodiniaceae; although we 

cannot discount the possibility that this gene was present in the last common eukaryotic 

ancestor and subsequently lost in all other groups of algae (however unlikely this may be). The 

tree also shows that RmlC/D sequences from Gymnodiniaceae branch more closely with the 

haptophytes than bacteria. This suggests that one instance of HGT occurred to eukaryotes, 

rather than two independent instances to the haptophytes and Gymnodiniaceae. Given that 

the Gymnodiniaceae plastids are known to have come from tertiary endosymbiosis with 

haptophytes [29, 30], it seems likely that endosymbiotic gene transfer (EGT) of RmlC/D from 

haptophytes to this family of dinoflagellates has occurred. The additional presence of the 

UER1/RHM biosynthetic machinery in the Gymnodiniaceae supports the previous two 

propositions. The absence of the plant-like machinery in the haptophytes would suggest the 

loss of plant-like machinery sometime after secondary endosymbiosis. The acquisition of the 

bacterial Rml pathway may have occurred to replace the lost plant-like pathway, or 

alternatively if the bacterial pathway was acquired before UER1/RHM gene loss then gene loss 

of the plant-like pathway may be explained by genome reduction in this group.  

 

Figure 57 also shows a close branching of sequences from the Rhizaria with the plant L-Rha 

biosynthetic pathway, even though all sequences from the Rhizaria contain a C-terminal RmlC 

fusion. The absence of RmlC in any green algae examined in this study would suggest that an 

independent HGT event occurred that incorporated RmlC into the genome of the Rhizaria after 

secondary endosymbiosis. We cannot, however, discount the possibility that the green algal 

symbiont had obtained this RmlC via HGT prior to secondary endosymbiosis, and passed it 

onto the Rhizaria via EGT. These evolutionary propositions are illustrated below (Figure 59). 
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Figure 59 - A proposed evolutionary model of NDP-β-L-Rha biosynthesis in photosynthetic eukaryotes.  

The presence of the plant-like UER1 or RHM machinery is denoted by a blue box under the group 

name. The presence of bacterial RmlC or RmlC/D is denoted by a red box under the group name. The 

presence of a bacterial RmlC and plant UER1 fusion is denoted by a purple box under the group. A 

dashed red arrow indicates a likely horizontal gene transfer acquisition of a bacterial gene.  A – 

Primary endosymbiosis between a heterotrophic protist host and cyanobacterial symbiont, leading to 

emergence of red algae, glaucophytes and green algae. B – Secondary endosymbiosis between a 

heterotrophic protist host and common red algal ancestor leading to the CASH group of algae; Two 
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separate endosymbiosis events with different green algae leading to the Excavates and 

Chlorarachniophytes. C – Example tertiary endosymbiosis event between a peridin dinoflagellate host 

and a haptophyte symbiont leading to the fucoxanthin-containing dinoflagellates (Gymnodiniaceae). 

Nuclei are represented by a brown circular shape; Mitochondria are represented by purple outlined 

ovals; Plastids are coloured according to their algal origin (i.e. red if derived from a red alga, green if 

derived from green algae).  The colours of the cytoplasm in algae derived from secondary or tertiary 

endosymbiosis are coloured roughly per the scheme seen in Figure 56. 

 

5.4.2 Quantification of glucose and rhamnose sugar nucleotides in E. 

gracilis and P. parvum 

Two representative algae, P. parvum and E. gracilis, were selected to validate our 

bioinformatics findings. P. parvum is a haptophyte that was found in these studies to encode 

the bacterial RmlC/D pathway for L-Rha biosynthesis, whilst E. gracilis was found to encode the 

plant UER1 pathway. Given that enzymes of the bacterial pathway have been shown to exhibit 

some level of in vitro specificity for TDP-β-L-Rha formation [43, 44], we expected that P. 

parvum might contain higher levels of TDP-β-L-Rha than the UDP adduct. Conversely, as UER1 

or RHM homologs of the plant pathway have been shown to exhibit some in vitro specificity 

for UDP activated L-Rha production [16, 18], we also expected that E. gracilis might contain 

higher levels of UDP-β-L-Rha than the TDP adduct. To evaluate these prospects, we set out to 

quantify the intracellular levels of NDP-β-L-Rha metabolites in the two-algal species.  

 

Whilst UDP-α-D-Glc and TDP-α-D-Glc are commercially available, UDP-β-L-Rha and TDP-β-L-Rha 

were not. Instead, Martin Rejzek (Research Assistant – Rob Field group) kindly provided these 

compounds which had been chemically synthesized prior to this study. 

  

As with other porous graphitic carbon sugar nucleotide profiling methods [36], the more 

hydrophobic nature of the thymidine with respect to uridine led to good separation of the 

corresponding TDP- and UDP-sugar species. More importantly though, separation was also 

achieved for L-Rha and glucose species bearing the same nucleotide base. One possibility for 

the difference in choice of activating base between the two algae was that the availability of 

the starting compound for the L-Rha biosynthetic pathways, either UDP-α-D-Glc or TDP-α-D-

Glc. For this reason, we also investigated the levels of these two sugar nucleotides. E. gracilis 

was found to have ~4 times more UDP-α-D-Glc than TDP-α-D-Glc, whilst P. parvum contained 

approximately ~82 times more UDP-α-D-Glc than TDP-α-D-Glc.  E. gracilis was then found to 

have ~280 times more UDP-β-L-Rha than TDP-β-L-Rha, supporting our bioinformatics-based 
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assignment of this species to the plant UER1/RHM pathway. On the other hand, P. parvum was 

found to contain ~6 times more TDP-β-L-Rha than UDP-β-L-Rha, supporting our assignment of 

P. parvum to the bacterial Rml TDP-β-L-Rha biosynthesis pathway. Interestingly though, both 

species displayed appreciable levels of both TDP and UDP activated L-Rha. This would support 

in vitro work on both pathways that shows reduced, but still measurable, activities for the 

alternative nucleotide in each pathway [16, 17, 44].  

 

Turnock et al [34] showed that Trypanosoma cruzi produces the UDP- activated form of L-Rha, 

showing the pathway precursor, UDP-α-D-Glc, is ~28 times more abundant than UDP-β-L-Rha 

in this species. This figure is strikingly similar to the data we present here for E. gracilis, an 

evolutionary neighbour of the trypanosomes [46, 47], which has ~23 times more UDP-α-D-Glc 

than UDP-β-L-Rha (Figure 58). Interestingly, for P. parvum, TDP-β-L-Rha is ~250 x more 

abundant than TDP-α-D-Glc, suggesting an as yet undefined but crucial role for L-Rha in 

Prymnesium glycobiology. These findings are somewhat at odds with the early findings of 

Marker [25], who claimed that L-Rha is only present in trace amounts in the extracellular cell 

preparations of P. parvum, with none observed inside the cell. For E. gracilis, initial work by 

Barras and Stone [21], among others [22], confirmed the presence of L-Rha in the pellicle and 

mucus of E. gracilis. This work was later built upon by Nakano et al [23], who showed L-Rha to 

be the most abundant monosaccharide in the pellicle of E. gracilis. The lack of correlation 

between relative levels of activated glucose to L-Rha sugar nucleotides in turn supports our 

bioinformatic findings that E. gracilis and P. parvum have evolved independent pathways for L-

Rha biosynthesis.  
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5.5 Conclusion 

Although a sugar nucleotide profiling of the other organisms discussed in this study is 

warranted, based on our combined use of bioinformatics analysis and LC-MS/MS profiling, we 

show that L-Rha biosynthetic genes are widespread throughout the diverse algal groups. We 

show that the plant UER1/RHM pathways are abundant throughout the glaucophytes, red 

algae, green algae, excavates, cryptophytes, alveolates and stramenopiles but are surprisingly 

absent from haptophytes, which contain a fusion of RmlC and RmlD from the bacterial 

pathway. Using phylogenetic analysis, it seems likely that a HGT event from bacteria led to the 

haptophytes acquiring this RmlC/D bacterial machinery, and propose that it was then passed 

on to the Gymnodiniaceae through EGT to the dinoflagellate host.  Using sugar nucleotide 

profiling we confirm our bioinformatics findings by showing that the haptophyte P. parvum 

contains mainly TDP-β-L-Rha, while the excavate E. gracilis contains primarily UDP-β-L-Rha. 

Although in vitro analysis of enzyme specificities is warranted in each case, this is often difficult 

due to poor expression of target enzymes, or lack of availability of substrates, which has often 

been the case for UDP-6-deoxy-L-lyxo-4-hexulose [17]. We show here that the combined use of 

bioinformatics and LC-MS/MS based profiling provides an alternative way to answer questions 

surrounding the evolution of enzymatic pathways associated with rhamnose-based sugar 

nucleotide production. 
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5.6 Experimental 

TDP-α-D-Glc, UDP-α-D-Glc and GDP-α-D-Glc were obtained commercially from Sigma Aldrich 

(Haverhill, UK). UDP-α-D-GlcNAcA was prepared as previously described [48], and TDP-β-L-Rha 

and UDP-β-L-Rha were provided as gifts by Martin Rejzek (Research Assistant of Rob Field 

group). 

5.6.1 Euglena gracilis axenic cell culture [46] 

Euglena gracilis var. saccharophila Klebs (strain 1224/7a) was obtained from the Culture 

Collection of Algae and Protozoa (CCAP) (http://www.ccap.ac.uk/). Stock culture was treated 

with antibiotics according to a method suggested by CCAP to produce an axenic culture 

(https://www.ccap.ac.uk/documents/Antibiotic_treatment.pdf) with small modifications to 

the antibiotic components (only Cefotaxime, Carbenicillin and Kanamycin were used). The 

stock culture was treated with 0%, 0.5% and 1% of the antibiotic mixture in the recommended 

1x EG + 1x JM (EG: Euglena gracilis medium, JM: Jaworski’s medium) media for Euglena gracilis 

and subsequently inoculated into fresh 1x EG + 1x JM media at the following time intervals: 24, 

48 and 72 hours. The culture was examined by microscopy and plating on 1x EG + 1x JM agar 

to confirm the production of an axenic culture.  

 

Batch cultures (3 biological replicates) were grown essentially as described before [24]. In 

brief, cells were grown at 22 oC on a 14:10 light cycle with a light intensity of 100 µmol.m-2.s-1. 

Mid-log phase (OD600 = 1.1 in about 6 days) cultures were harvested. Cells were pelleted by 

centrifugation (6,750 x g for 20 min at 4 oC). The pellet was re-suspended in ice-cold 

phosphate-buffered saline (PBS, 200 ml) and centrifuged again (6,750 x g for 20 min at 4 oC). 

The pellet was transferred into tared centrifuge vial (Oak Ridge) using PBS (25 ml), centrifuged 

(6,750 x g for 20 min at 4 oC) and the supernatant was carefully decanted before weighing out 

the wet pellet. UDP-α-D-GlcNAcA was added to the cell pellet as internal standard (1.46 nmol / 

g wet pellet). The cells were lysed straight away without flash freezing and/or cold storage. 

5.6.2 Prymnesium parvum axenic cell culture 

Prymnesium parvum (strain 946/6) was obtained from the Culture Collection of Algae and 

Protozoa (CCAP) (http://www.ccap.ac.uk/) and maintained in the recommended f/2 –Si media. 

Stock cultures were treated with Carbenicillin (100 µg/ml) in order to obtain axenic cultures, 

which were judged to be axenic by optical microscopy. Batch cultures (3 biological repeats) 

were grown at 22 oC on a 14:10 light cycle with a light intensity of 100 µmol.m-2.s-1, as 

previously described [49]. Under these conditions, cell densities of ~3 x 106 cells ml-1 could be 

http://www.ccap.ac.uk/
https://www.ccap.ac.uk/documents/Antibiotic_treatment.pdf
http://www.ccap.ac.uk/
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achieved after 12-16 days of growth. Cells were pelleted by centrifugation (6,748 x g, 20 min, 4 

oC). The pellet was transferred into tared centrifuge vial (Oak Ridge) using ice-cold phosphate-

buffered saline (PBS, 20 ml), centrifuged (12 857 x g, 20 min, 4 oC) to give pellet. GDP-α-D-Glc 

was added (1.54 nmol / g wet pellet). The cells were lysed straight away without flash freezing 

and/or cold storage. 

5.6.3 Sugar-nucleotide extraction and profiling [50] 

Pelleted cells of E. gracilis and P. parvum containing known amount of the appropriate internal 

standards were lysed with cold (-20 oC) 70% ethanol (20 ml) in an ice bath for 1 h with 

occasional shaking / vortexing. The cell debris was removed by centrifugation (28 928 x g, 20 

min, 4 oC) and the supernatant was transferred into a glass round-bottom flask (100 ml). 

Ethanol was evaporated at reduced pressure and ambient temperature and the aqueous 

residue was freeze dried. At this stage the sample can be stored at -80 oC for any length of 

time before the next step. 

 

Lipophilic components were removed by partitioning the sample between water and butan-1-

ol [34]. The sample was dissolved in 9% aqueous butan-1-ol (3 x 2 ml) and transferred into a 

glass vial (10 ml volume). The solution was extracted with 90% butan-1-ol (3 x 2 ml) to remove 

lipids (but also chlorophyll, and insoluble polysaccharides such as paramylon forming middle 

layer). The bottom layer was collected and extracted again. Centrifugation was used to speed 

up the separation of the layers (200 - 800 x g, 4 oC, 5 min). The clear aqueous layer was 

collected and freeze dried in a pear-shaped flask (foaming may appear under vacuum). 

Samples were stored at -80 oC before the next step. 

 

SPE of sugar nucleotides was performed essentially as described by Rabina and co-workers 

[35]. A graphitised carbon column (EnviCarb, Supelco, 250 mg, 3 ml) was conditioned by 

washing with 80% aqueous acetonitrile containing 0.1 % trifluoroacetic acid (3 ml) followed by 

water (2 ml). The sample was dissolved in ammonium bicarbonate (5 mM, 500 µl) and applied 

on the SPE column. The column was washed with water (2 ml), followed by 25% aqueous 

acetonitrile (2 ml), and 50 mM triethylammonium acetate buffer (pH 7.0, 2 ml). Finally, the 

sugar nucleotides were eluted with 50 mM triethylammonium acetate buffer pH 7.0 containing 

25% acetonitrile (1.5 ml). The sample was filtered using 0.45 µm disc filters (PTFE) and freeze 

dried. Samples were stored at -80 oC prior to LC-MS/MS analysis. 

LC-MS/MS profiling of sugar nucleotides was performed on a Xevo TQ-S tandem quadrupole 

mass spectrometer (Waters) operated in MRM mode coupled to an Acquity UPLC. ESI-MS/MS 
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analysis was performed in negative ion mode using a source with a capillary voltage of 1.5 kV, 

500 °C desolvation temperature, 1000 l.hr-1 desolvation gas, 150 l.hr-1 cone gas, and 7 bar 

nebulizer pressure. MRM transitions for sugar nucleotide standards in negative ESI mode were 

generated using IntelliStart software (Table 9). Samples (10 µM) were introduced at 10 µl/min 

combined with a flow from the HPLC pump typical of an LC run. Once LC retention times of 

standards have been established, the mass transitions were collected in time-windows centred 

on the relevant peaks, to avoid collecting excessive numbers of transitions simultaneously. 

MassLynx software (Waters) was used to collect, to analyse and to process data. 

 

Liquid chromatography separation of sugar nucleotides was achieved on a surface-conditioned 

PGC column (Hypercarb, Thermo Scientific, dimensions 1 x 100 mm, particle size 5 µm) 

equipped with a column guard (Hypercarb, 5 µm, 1 x 10 mm). Sugar nucleotides were eluted 

using mobile phase A: formic acid 0.3% brought to pH 9.0 with ammonia and mobile phase B: 

acetonitrile using the following multistep gradient at a flow rate 80 µl/min: 0 min: 2% B; 20 

min: 15% B; 26 min: 50% B; 27 min: 90% B; 30 min: 90% B; 31 min: 2% B; 50 min: 2% B. 

Available sugar nucleotide standards (10 µM) were injected (5 µl) to determine retention time 

(Table 9).  
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Sugar Nucleotide Relative 

Retention 

time 

MRM 

transitions 

Fragment 

UDP-α-D-Glc 1.00 565 → 323 

565 → 79 

[NMP-H]- 

[H3PO4-H3O]- 

UDP-α-D-GlcNAcA 0.89 620 → 403 

620 → 159 

[NDP-H]- 

[H4P2O7-H3O]- 

UDP-β-L-Rha 0.84 549 → 323 

549 → 159 

[NMP-H]- 

[H4P2O7-H3O]- 

TDP-α-D-Glc 1.39 563 → 321 

563 → 241 

[NMP-H]- 

[Glc-1-P-H-H2O]- 

TDP-β-L-Rha 1.35 547 → 321 

547 → 225 

[NMP-H]- 

c[Rha-1-P-H-H2O]- 

GDP-α-D-Glc 1.56 604 → 362 

604 → 241 

[NMP-H]- 

c[Glc-1-P-H-H2O]- 

Table 9 - Relative retention times and MRM transitions of sugar nucleotides standards 

 

Limit of detection was determined to be 10 fmol on column using a serial dilution of UDP-α-D-

Glc. Samples of extracted sugar nucleotides were reconstituted in buffer A (25 µL) and injected 

(5 µl, 20 % of total) using partial loop injection. Analysis of 3 biological replicates was 

performed. Where in doubt, co-injection of sample with appropriate standard sugar nucleotide 

was used for positive identification. Data processing was performed using MassLynx (Waters) 

software. Although between runs there were significant differences in absolute retention 

times of standards, relative retentions were reasonably reproducible (Table 9). To ensure 

maximum retention time (Rf) stability, after a batch of samples, the PGC column had to be 

regenerated and its performance was tested using UDP-α-D-Glc as a standard. The 

regeneration and column performance steps were performed using a standard HPLC (Ultimate 

3000, Dionex) system with UV detection at 265 nm. Column performance was tested first 

before regeneration steps at flow rate 80 µl/min by injecting UDP-α-D-Glc (5 µL, 10 µM) 

standard and elution using mobile phases A and B as mentioned earlier. The column was then 

washed for 3 hrs with mobile phase C (acetonitrile 80%, water 20 %, TFA 0.1%) [51] followed 

by water (5 column volumes). Next, the PGC column was reduced at flow rate 80 µl/min with 

freshly prepared sodium sulphite (100 mM) for 24 h [36] followed by MQ water (5 column 

volumes). The column was then washed at 80 µl/min with high acetonitrile (90% B, 10% A) for 
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30 min and equilibrated with 2% B, 98 % A for 10 min. The column performance was tested 

again by injecting UDP-α-D-Glc (5 µl, 10 µM) standard. The column was stored in 2% B, 98 % A. 

 

5.6.4 Bioinformatic analysis 

For the identification of NDP-β-L-Rha biosynthetic pathways, BLASTp [52] analysis was carried 

out against the transcriptomes (MMETSP) or genomes (NCBI) of representative algae from all 

algal groups Supplementary Material 3. Protein sequences for RmlC (NP_217982.1), UER1 

(NP_564806.1) and RHM1 (NP_177978.1) were used as consensus sequences. Hits with E-

values ≤ 1E-10 were then manually analysed for conserved domains before being assigned as a 

hit.  

 

For phylogenetic analysis of NDP-β-L-Rha biosynthesis hits, multiple sequence alignments were 

generated using the default settings of MAFFT [32], including additional sequences from 

bacteria and plants. Regions of poor alignment were inspected for manually and their 

respective sequences were removed. An unrooted maximum likelihood tree was then 

generated using MEGA7 with 100 bootstraps. The final tree was based on 135 ungapped 

amino acid residues and was made up of 122 sequences.   
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5.8 Supplementary Information 

Kingdom Phylum Class Family Genus Species Strain Database and identifier Sequence 

         

GLAUCOPHYT
ES 

Glaucophyta Glaucocystophyceae Glaucosphaeracea
e 

Cyanoptyche gloeocystis SAG4.97 MMETSP1086 CAMPEP_0196658872 

 Glaucophyta Glaucophyceae Gloeochaetaceae Gloeochaete wittrockian
a 

SAG46.84 MMETSP1089 CAMPEP_0184350920, 
CAMPEP_0184349520 

         

GREEN 
ALGAE 

Chlorophyta Chlorodendrophyceae Chlorodendraceae Tetraselmis striata LANL1001 MMETSP0817, MMETSP0818, MMETSP0819, 
MMETSP0820 

CAMPEP_0200914898 

 Chlorophyta Chlorophyceae Dunaliellaceae Dunaliella tertiolecta CCMP1320 MMETSP1126, MMETSP1127, MMETSP1128 CAMPEP_0187373064 

 Chlorophyta Chlorophyceae Chlamydomonada
ceae 

Chlamydomona
s 

reinhardtii CC-503 cw92 
mt+ 

https://www.ncbi.nlm.nih.gov/nuccore/158276217 XP_001695032.1 

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. RCC472 MMETSP1084, MMETSP1387  

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. NEPCC29 MMETSP1386, MMETSP1082  

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas sp. CCMP2099 MMETSP1390, MMETSP0802 CAMPEP_0190189836 

 Chlorophyta Mamiellophyceae Mamiellaceae Micromonas pusilla CCMP1545 https://www.ncbi.nlm.nih.gov/genome/?term=txid5
64608[Organism:noexp] 

XP_003057320.1 

 Chlorophyta Mamiellophyceae Mamiellaceae Bathycoccus prasinos RC1105 https://www.ncbi.nlm.nih.gov/genome/12309 XP_007514013.1, 
XP_007508076.1 

 Chlorophyta Mamiellophyceae Mamiellaceae Ostreococcus tauri  https://www.ncbi.nlm.nih.gov/genome/373 CEG01892.1 

 Chlorophyta Pyramimonadophycea
e 

Halosphaeraceae Pyramimonas parkeae CCMP726 MMETSP0058, MMETSP0059 CAMPEP_0191497618, 
CAMPEP_0191502286 

 Chlorophyta Trebouxiophyceae Chlorellaceae Auxenochlorella  protothecoi
des 

sp 0710 http://www.ncbi.nlm.nih.gov/genome?LinkName=nu
ccore_genome&from_uid=667612142 

XP_011395817.1 

 Chlorophyta Trebouxiophyceae Chlorellaceae Chlorella  variabilis NC64A https://www.ncbi.nlm.nih.gov/genome/694 XP_005851985.1 
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 Chlorophyta Unknown Unknown Picocystis salinarum CCMP1897 MMETSP1159, MMETSP0807 CAMPEP_0190751704 

         

RED ALGAE Rhodophyta Compsopogonophyce
ae 

Compsopogonace
ae 

Compsopogon coeruleus SAG 36.94 MMETSP0312  

 Rhodophyta Compsopogonophyce
ae 

Erythrotrichiaceae Madagascaria erythroclad
iodes 

CCMP3234 MMETSP1450 CAMPEP_0198320684 

 Rhodophyta Cyanidiophyceae Galdieriaceae Galdieria sulphuraria 074W http://www.ncbi.nlm.nih.gov/genome/405 XP_005707655.1 

 Rhodophyta Florideophyceae Gigartinaceae Chondrus crispus Stackhouse http://www.ncbi.nlm.nih.gov/genome/12106  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Erythrolobus australicus CCMP3124 MMETSP1353  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Erythrolobus madagasca
rensis 

CCMP3276 MMETSP1354  

 Rhodophyta Porphyridiophyceae Porphyridiaceae Timspurckia oligopyren
oides 

CCMP3278 MMETSP1172  

 Rhodophyta Rhodellophyceae Porphyridiaceae Porphyridium aerugineu
m 

SAG 1380-2 MMETSP0313  

 Rhodophyta Rhodellophyceae Rhodellaceae Rhodella maculata CCMP736 MMETSP0167, MMETSP0314 CAMPEP_0191515942, 
CAMPEP_0191515916 

 Rhodophyta Rhodellophyceae Stylonemataceae Rhodosorus marinus CCMP 769 MMETSP0011  

 Rhodophyta Rhodellophyceae Stylonemataceae Rhodosorus marinus UTEX LB 2760 MMETSP0315  

EXCAVATES Euglenozoa Euglenophyceae Eutreptiaceae Eutreptiella gymnastica NIES-381 MMETSP0039  

 Euglenozoa Euglenophyceae Eutreptiaceae Eutreptiella gymnastica
-like 

CCMP1594 MMETSP0809, MMETSP0810, MMETSP0811 CAMPEP_0200405894 

 Euglenozoa Euglenophyceae Euglenaceae Euglena gracilis ?? ?? light_m.86199 

RHIZARIA Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Chlorarachnion reptans CCCM449 MMETSP0109 CAMPEP_0114518010 

 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Gymnochlora sp. CCMP2014 MMETSP0110 CAMPEP_0167746174, 
CAMPEP_0167745746 

 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Lotharella oceanica CCMP622 MMETSP0040 CAMPEP_0170191836 
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 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Lotharella globosa CCCM811 MMETSP0111, MMETSP0112 CAMPEP_0190181758 

 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Bigelowiella natans CCMP623 MMETSP1052 CAMPEP_0169532188, 
CAMPEP_0169546672,  

 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Bigelowiella natans CCMP 2755 MMETSP0045 CAMPEP_0114200706 

 Cercozoa Chlorarachniophyceae Chlorarachniacea
e 

Bigelowiella natans CCMP1259 MMETSP1054 CAMPEP_0169599456 

CRYPTOPHYT
ES 

Cryptophyta Cryptophyceae Cryptomonadacea
e 

Cryptomonas parameciu
m 

CCAP977/2a MMETSP0038 CAMPEP_0113696002 

 Cryptophyta Cryptophyceae Cryptomonadacea
e 

Cryptomonas curvata CCAP979/52 MMETSP1050 CAMPEP_0172168610, 
CAMPEP_0172173114 

 Cryptophyta Cryptophyceae Geminigeraceae Geminigera cryophila CCMP2564 MMETSP0799 CAMPEP_0179481402, 
CAMPEP_0179458582 

 Cryptophyta Cryptophyceae Geminigeraceae Geminigera sp. Caron Lab 
Isolate 

MMETSP1102 CAMPEP_0173087898, 
CAMPEP_0173097438 

 Cryptophyta Cryptophyceae Geminigeraceae Proteomonas sulcata CCMP704 MMETSP1049  

 Cryptophyta Cryptophyceae Geminigeraceae Guillardia theta CCMP 2712 MMETSP0046 CAMPEP_0113812340 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP439 MMETSP1041 CAMPEP_0172041234 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP1180 MMETSP1042 CAMPEP_0169429296 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis andersenii CCMP441 MMETSP1043 CAMPEP_0172046830 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis tepida CCMP443 MMETSP1355 CAMPEP_0174941776 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis rufescens PCC563 MMETSP1357 CAMPEP_0173449620, 
CAMPEP_0173437524 

 Cryptophyta Cryptophyceae Hemiselmidaceae Hemiselmis viresens PCC157 MMETSP1356 CAMPEP_0173408906, 
CAMPEP_0173411170 

 Cryptophyta Cryptophyceae Goniomonodacea
e 

Goniomonas Pacifica CCMP1869 MMETSP0107, MMETSP0108 CAMPEP_0188509280 

 Cryptophyta Cryptophyceae Pyrenomonadace
ae 

Rhodomonas salina CCMP1319 MMETSP1047 CAMPEP_0172097468, 
CAMPEP_0172099434 

 Cryptophyta Cryptophyceae Pyrenomonadace Rhodomonas sp. CCMP768 MMETSP1091, MMETSP1389 CAMPEP_0191543004 
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ae 

 Cryptophyta Cryptophyceae Pyrenomonadace
ae 

Rhodomonas abbreviata Caron Lab 
Isolate 

MMETSP1101 CAMPEP_0181338540, 
CAMPEP_0181298928, 
CAMPEP_0181313830, 
CAMPEP_0181297718 

HAPTOPHYTE
S 

Haptophyta Pavlovophyceae Pavlovaceae Pavlova gyrans CCMP608 MMETSP1466 CAMPEP_0206039264, 
CAMPEP_0206053400 

 Haptophyta Pavlovophyceae Pavlovaceae Pavlova lutheri RCC1537 MMETSP1463  

 Haptophyta Pavlovophyceae Pavlovaceae Pavlova sp. CCMP459 MMETSP1139, MMETSP1140, MMETSP1381 CAMPEP_0190524078, 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromuli
na 

polylepis UIO037 MMETSP0286  

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromuli
na 

polylepis CCMP1757 MMETSP0143, MMETSP0145, MMETSP0146, 
MMETSP0147 

CAMPEP_0193719730, 
CAMPEP_0193726698 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromuli
na 

rotalis UIO044 MMETSP0287 CAMPEP_0115854040 

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromuli
na 

ericina CCMP281 MMETSP1096 CAMPEP_0181246850, 
CAMPEP_0181201634,  

 Haptophyta Prymnesiophyceae Prymnesiaceae Chrysochromuli
na 

brevifilum UTEX LB 985 MMETSP1094 CAMPEP_0174727498 

 Haptophyta Prymnesiophyceae Prymnesiaceae Prymnesium parvum Texoma1 MMETSP0006, MMETSP0007, MMETSP0008, 
MMETSP0815, MMETSP0814 

CAMPEP_0191228776,  

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Emiliania huxleyi 374 MMETSP1006, MMETSP1007, MMETSP1008, 
MMETSP1009 

CAMPEP_0187581196 

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Emiliania huxleyi 379 MMETSP0994, MMETSP0995, MMETSP0996, 
MMETSP0997 

CAMPEP_0187642360 

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Emiliania huxleyi PLY M219 MMETSP1150, MMETSP1151, MMETSP1152, 
MMETSP1153 

CAMPEP_0187777132 

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Emiliania huxleyi CCMP370 MMETSP1154, MMETSP1155, MMETSP1156, 
MMETSP1157 

CAMPEP_0187665496 

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Emiliania  huxleyi CCMP1516 http://www.ncbi.nlm.nih.gov/genome/2 XP_005785625.1 

 Haptophyta Prymnesiophyceae Noelaerhabdacea
e 

Gephyrocapsa oceanica RCC1303 MMETSP1363, MMETSP1364, MMETSP1365, 
MMETSP1366 

CAMPEP_0188174236 
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 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis sp. CCMP1324 MMETSP1129, MMETSP1130, MMETSP1131, 
MMETSP1132 

CAMPEP_0188830390 

 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis sp CCMP1244 MMETSP1090, MMETSP1388 CAMPEP_0188768992 

 Haptophyta Prymnesiophyceae Isochrysidaceae Isochrysis galbana CCMP1323 MMETSP0944, MMETSP0943, MMETSP0595 CAMPEP_0193694840, 
CAMPEP_0193669402 

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis Sp CCMP2710 MMETSP1162  

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis antarctica Caron Lab 
Isolate 

MMETSP1100 CAMPEP_0172959570 

 Haptophyta Prymnesiophyceae Phaeocystaceae Phaeocystis antarctica CCMP1374 MMETSP1444 CAMPEP_0198174474 

 Haptophyta Prymnesiophyceae Pleurochrysidacea
e 

Pleurochrysis carterae CCMP645 MMETSP1136, MMETSP1137, MMETSP1138 CAMPEP_0190806002 

STRAMENOPI
LES 

Ochrophyta Bacillariophyceae Amphipleuraceae Amphiprora sp. CCMP467 MMETSP0725, MMETSP0726, MMETSP0727, 
MMETSP0724 

CAMPEP_0186506366, 
CAMPEP_0186488760 

 Ochrophyta Bacillariophyceae Catenulaceae Amphora coffeaefor
mis 

CCMP127 MMETSP0316, MMETSP0317, MMETSP0318 CAMPEP_0186538782 

 Ochrophyta Bacillariophyceae Bacillariaceae Fragilariopsis kerguelensi
s 

L26-C5 MMETSP0733, MMETSP0734, MMETSP0735, 
MMETSP0736 

CAMPEP_0188139216 

 Ochrophyta Bacillariophyceae Bacillariaceae Fragilariopsis kerguelensi
s 

L2-C3 MMETSP0906, MMETSP0907, MMETSP0908, 
MMETSP0909 

 

 Ochrophyta Bacillariophyceae Bacillariaceae Nitzschia punctata CCMP561 MMETSP0744, MMETSP0745, MMETSP0746, 
MMETSP0747 

CAMPEP_0199327438 

 Ochrophyta Bacillariophyceae Bacillariaceae Pseudo-
nitzschia 

australis 10249 10 AB MMETSP0139, MMETSP0142, MMETSP0140, 
MMETSP0141 

CAMPEP_0199647432 

 Ochrophyta Bacillariophyceae Bacillariaceae Pseudo-
nitzschia 

fraudulenta WWA7 MMETSP0850, MMETSP0851, MMETSP0852, 
MMETSP0853 

CAMPEP_0199791592 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros debilis MM31A-1 MMETSP0149, MMETSP0150 CAMPEP_0200879214 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros neogracile CCMP1317 MMETSP0751, MMETSP0752, MMETSP0753, 
MMETSP0754 

CAMPEP_0201017622, 
CAMPEP_0201002392, 
CAMPEP_0200999620 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros curvisetus  MMETSP0716, MMETSP0717, MMETSP0718, 
MMETSP0719 

CAMPEP_0187046754 

 Ochrophyta Bacillariophyceae Chaetocerotaceae Chaetoceros affinis CCMP159 MMETSP0088, MMETSP0090, MMETSP0091, 
MMETSP0092 

CAMPEP_0187024338 
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 Ochrophyta Bacillariophyceae Corethraceae Corethron pennatum L29A3 MMETSP0169, MMETSP0171 CAMPEP_0200351556, 
CAMPEP_0200360040 

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO103 MMETSP1002, MMETSP1005 CAMPEP_0187315252 

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO104 MMETSP1010, MMETSP1012, MMETSP1013 CAMPEP_0193980186 

 Ochrophyta Bacillariophyceae Lithodesmiaceae Ditylum brightwellii GSO105 MMETSP0998, MMETSP1001 CAMPEP_0187336034 

 Ochrophyta Bacillariophyceae Cymatosiraceae Extubocellulus spinifer CCMP396 MMETSP0699, MMETSP0697, MMETSP0698,  CAMPEP_0200501572 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira rotula CCMP3096 MMETSP0403, MMETSP0404 CAMPEP_0192952656 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira oceanica CCMP1005 MMETSP0970, MMETSP0971, MMETSP0972, 
MMETSP0973 

CAMPEP_0192905742, 
CAMPEP_0192933258 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira weissflogii CCMP1010 MMETSP0898, MMETSP0899, MMETSP0900, 
MMETSP0901, MMETSP1407, MMETSP1408, 
MMETSP1405, MMETSP1406, MMETSP1415, 
MMETSP1416, MMETSP1417, MMETSP1418, 
MMETSP1419, MMETSP1420, MMETSP1421, 
MMETSP1422, MMETSP1409, MMETSP1410, 
MMETSP1411, MMETSP1412, MMETSP1413, 
MMETSP1414,  

CAMPEP_0193043134 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira antarctica CCMP982 MMETSP0902, MMETSP0903, MMETSP0904, 
MMETSP0905 

CAMPEP_0200088110 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira weissflogii CCMP1336 MMETSP0878, MMETSP0879, MMETSP0880, 
MMETSP0881 

CAMPEP_0193083268 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira rotula GSO102 MMETSP0910, MMETSP0911, MMETSP0912, 
MMETSP0913 

CAMPEP_0192998562 

 Ochrophyta Bacillariophyceae Thalassiosiraceae Thalassiosira gravida GMp14c1 MMETSP0492, MMETSP0493, MMETSP0494 CAMPEP_0200699684 

 Ochrophyta Bacillariophyceae Rhizosoleniaceae Proboscia alata PI-D3 MMETSP0174, MMETSP0176 CAMPEP_0200159498 

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema marinoi skelA MMETSP0920, MMETSP0918 CAMPEP_0192233268 

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema dohrnii SkelB MMETSP0562, MMETSP0563 CAMPEP_0192137106 

 Ochrophyta Bacillariophyceae Skeletonemaceae Skeletonema menzelii CCMP793 MMETSP0603, MMETSP0604 CAMPEP_0192272568 

 Ochrophyta Bacillariophyceae Fragilariaceae Asterionellopsis glacialis CCMP134 MMETSP0705, MMETSP0706, MMETSP0707, CAMPEP_0199870378, 
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MMETSP0708 CAMPEP_0199870466 

 Ochrophyta Bacillariophyceae Thalassionematac
eae 

Thalassionema nitzschioide
s 

L26-B MMETSP0156, MMETSP0158 CAMPEP_0200190772 

 Ochrophyta Bacillariophyceae Thalassionematac
eae 

Thalassiothrix antarctica L6-D1 MMETSP0152, MMETSP0154 CAMPEP_0200962748 

 Ochrophyta Chrysophyceae Synuraceae Paraphysomona
s 

Imperforat
a 

PA2 MMETSP0103, MMETSP0104 CAMPEP_0190482658 

 Ochrophyta Chrysophyceae Dinobryaceae Dinobryon sp. UTEXLB2267 MMETSP0019, MMETSP0020, MMETSP0812 CAMPEP_0187279028, 
CAMPEP_0187277876 

 Ochrophyta Chrysophyceae Ochromonadacea
e 

Ochromonas sp. CCMP1393 MMETSP0004, MMETSP0005 CAMPEP_0190272254 

 Ochrophyta Dictyochophyceae Pedinellaceae Pseudopedinell
a 

elastica CCMP716 MMETSP1068, MMETSP1097 CAMPEP_0191451212, 
CAMPEP_0191405316 

 Ochrophyta Dictyochophyceae Pedinellaceae Pteridomonas danica PT MMETSP0101, MMETSP0102 CAMPEP_0193806330 

 Ochrophyta Eustigmatophyceae Eustigmataceae Nannochloropis  gaditana B-31 http://www.ncbi.nlm.nih.gov/genome/11691?geno
me_assembly_id=53301 

EWM28830.1 

 Ochrophyta Pelagophyceae Pelagomonodacea
e 

Aureococcus anophageff
erens 

CCMP1850 MMETSP0914, MMETSP0915, MMETSP0916, 
MMETSP0917 

CAMPEP_0186659954, 
CAMPEP_0186691924 

 Ochrophyta Pelagophyceae Sarcionochrysidac
eae 

Aureoumbra lagunensis CCMP1510 MMETSP0890, MMETSP0891, MMETSP0892, 
MMETSP0893 

 

 Ochrophyta Pelagophyceae Pelagomonodacea
e 

Pelagococcus subviridis CCMP1429 MMETSP0882, MMETSP0883, MMETSP0884, 
MMETSP0885 

CAMPEP_0190535384 

 Ochrophyta Pelagophyceae Pelagomonodacea
e 

Pelagomonas calceolata CCMP1756 MMETSP0888, MMETSP0889, MMETSP0886, 
MMETSP0887 

CAMPEP_0199675904 

 Ochrophyta Raphidophyceae Chattonellaceae Chattonella subsalsa CCMP2191 MMETSP0947, MMETSP0948, MMETSP0949, 
MMETSP0950 

CAMPEP_0187151886 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP2393 MMETSP0292, MMETSP0294, MMETSP0295, 
MMETSP0296 

 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo NB MMETSP0416, MMETSP0414, MMETSP0415 CAMPEP_0200245898 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP3107 MMETSP0409, MMETSP0410, MMETSP0411 CAMPEP_0188619588 

 Ochrophyta Raphidophyceae Chattonellaceae Heterosigma akashiwo CCMP 452 MMETSP0894, MMETSP0895, MMETSP0896, 
MMETSP0897 

CAMPEP_0188660716 
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 Ochrophyta Xanthophyceae Vaucheriaceae Vaucheria litorea CCMP2940 MMETSP0945, MMETSP0946 CAMPEP_0199157760 

 Labyrinthista Labyrinthulea Thraustochytriace
ae 

Aplanochytrium sp PBS07 MMETSP0954, MMETSP0955, MMETSP0956, 
MMETSP0957 

 

 Labyrinthista Labyrinthulea Thraustochytriace
ae 

Aplanochytrium stocchinoi GSBS06 MMETSP1347, MMETSP1348, MMETSP1349, 
MMETSP1346 

 

 Labyrinthista Labyrinthulea Thraustochytriida
e 

Aurantiochytriu
m 

limacinum ATCCMYA-1381 MMETSP0959, MMETSP0960, MMETSP0961, 
MMETSP0958 

CAMPEP_0186647428 

 Labyrinthista Labyrinthulea Thraustochytriace
ae 

Schizochytrium aggregatu
m 

ATCC28209 MMETSP0962, MMETSP0963, MMETSP0964, 
MMETSP0965 

 

 Labyrinthista Labyrinthulea Thraustochytriace
ae 

Thraustochytriu
m 

sp. LLF1b MMETSP0198, MMETSP0199  

ALVEOLATA Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Amphidinium carterae CCMP1314 MMETSP0399, MMETSP0259, MMETSP0258, 
MMETSP0398C 

CAMPEP_0186428018, 
CAMPEP_0186426112 

 Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Karenia brevis CCMP2229 MMETSP0027, MMETSP0029, MMETSP0030, 
MMETSP0031 

CAMPEP_0188846322, 
CAMPEP_0188912736 

 Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Karenia brevis Wilson MMETSP0202, MMETSP0201, MMETSP0648, 
MMETSP0649 

CAMPEP_0189492014, 
CAMPEP_0189388456 

 Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Karenia brevis SP3 MMETSP0527, MMETSP0528 CAMPEP_0189309980, 
CAMPEP_0189259884 

 Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Karenia brevis SP1 MMETSP0573, MMETSP0574 CAMPEP_0189168478, 
CAMPEP_0189051810 

 Dinoflagellat
a 

Dinophyceae Gymnodiniaceae Karlodinium micrum CCMP2283 MMETSP1015, MMETSP1016, MMETSP1017 CAMPEP_0200794146, 
CAMPEP_0200809940, 
CAMPEP_0200812546, 
CAMPEP_0200785114 

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Durinskia baltica CSIRO CS-38 MMETSP0117, MMETSP0116 CAMPEP_0200004706, 
CAMPEP_0200061890, 
CAMPEP_0199929530 

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Glenodinium foliaceum CCAP 1116/3 MMETSP0118, MMETSP0119 CAMPEP_0188311894, 
CAMPEP_0188271626, 
CAMPEP_0188383902, 
CAMPEP_0188247870, 
CAMPEP_0188407728 

 Dinoflagellat Dinophyceae Peridiniaceae Kryptoperidiniu foliaceum CCMP 1326 MMETSP0121, MMETSP0120 CAMPEP_0189696278, 
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a m CAMPEP_0189642352, 
CAMPEP_0189900696, 
CAMPEP_0189771244 

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Peridinium aciculiferu
m 

PAER-2 MMETSP0370, MMETSP0371 CAMPEP_0190670536, 
CAMPEP_0190612054,  

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Scrippsiella trochoidea CCMP3099 MMETSP0270, MMETSP0271, MMETSP0272 CAMPEP_0191964902, 
CAMPEP_0191966966 

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Scrippsiella Hangoei SHTV-5 MMETSP0359, MMETSP0360, MMETSP0361 CAMPEP_0191865414, 
CAMPEP_0191802586, 
CAMPEP_0191847402 

 Dinoflagellat
a 

Dinophyceae Peridiniaceae Scrippsiella hangoei-
like 

SHHI-4 MMETSP0367, MMETSP0368, MMETSP0369 CAMPEP_0199174568, 
CAMPEP_0199204792, 
CAMPEP_0199287414 

 Dinoflagellat
a 

Dinophyceae Goniodomataceae Alexandrium monilatum CCMP3105 MMETSP0095, MMETSP0096, MMETSP0097, 
MMETSP0093 

CAMPEP_0200518424, 
CAMPEP_0200664972 

 Dinoflagellat
a 

Dinophyceae Goniodomataceae Alexandrium fundyense CCMP1719 MMETSP0196C, MMETSP0347 CAMPEP_0185978494 

 Dinoflagellat
a 

Dinophyceae Goniodomataceae Alexandrium tamarense CCMP1771 MMETSP0382, MMETSP0384, MMETSP0378, 
MMETSP0380 

CAMPEP_0186347800, 
CAMPEP_0186194818 

 Dinoflagellat
a 

Dinophyceae Unknown Azadinium spinosum 3D9 MMETSP1036, MMETSP1037, MMETSP1038 CAMPEP_0186738362, 
CAMPEP_0186849724 

 Dinoflagellat
a 

Dinophyceae Ceratiaceae Ceratium fusus PA161109 MMETSP1075, MMETSP1074 CAMPEP_0199470176, 
CAMPEP_0199448012 

 Dinoflagellat
a 

Dinophyceae Crypthecodiniace
a 

Crypthecodiniu
m 

cohnii Seligo MMETSP0323, MMETSP0325, MMETSP0326, 
MMETSP0324 

CAMPEP_0193873420, 
CAMPEP_0193920440 

 Dinoflagellat
a 

Dinophyceae Gonyaulacaceae Lingulodinium polyedra CCMP 1738 MMETSP1032, MMETSP1033, MMETSP1034, 
MMETSP1035 

CAMPEP_0190033118, 
CAMPEP_0189981950 

 Dinoflagellat
a 

Dinophyceae Oxyrrhinaceae Oxyrrhis marina CCMP1795 MMETSP0452_2, MMETSP0451_2C  

 Dinoflagellat
a 

Dinophyceae Oxyrrhinaceae Oxyrrhis marina Unknown MMETSP0468, MMETSP0469, MMETSP0470, 
MMETSP0471 

 

 Dinoflagellat
a 

Dinophyceae Oxyrrhinaceae Oxyrrhis marina LB1974 MMETSP1424, MMETSP1425, MMETSP1426  

 Dinoflagellat
a 

Dinophyceae Prorocentraceae Prorocentrum minimum CCMP1329 MMETSP0053, MMETSP0055, MMETSP0057, 
MMETSP0056 

CAMPEP_0190887074, 
CAMPEP_0190973906, 
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CAMPEP_0190881924 

 Dinoflagellat
a 

Dinophyceae Prorocentraceae Prorocentrum minimum CCMP2233 MMETSP0267, MMETSP0268, MMETSP0269 CAMPEP_0191171648, 
CAMPEP_0191085234, 
CAMPEP_0191101348 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium kawagutii CCMP2468 MMETSP0132_2, MMETSP0133_2, MMETSP0134_2, MMETSP0135_2 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium sp. CCMP2430 MMETSP1115, MMETSP1116, MMETSP1117 CAMPEP_0192483534 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium sp. Mp MMETSP1122, MMETSP1123, MMETSP1124, 
MMETSP1125 

CAMPEP_0192623488 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium sp. C1 MMETSP1367, MMETSP1369 CAMPEP_0199632616, 
CAMPEP_0199584150 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium sp. C15 MMETSP1370, MMETSP1371 CAMPEP_0192427984 

 Dinoflagellat
a 

Dinophyceae Symbiodiniaceae Symbiodinium microadriat
icum 

 CCMP2467 https://www.ncbi.nlm.nih.gov/genome/?term=txid2
951[orgn] 

OLP79990.1 

 Ciliophora Colopdea Platyophryidae Platyophrya macrostom
a 

WH MMETSP0127 CAMPEP_0176435236, 
CAMPEP_0176475592, 
CAMPEP_0176458050 

 Ciliophora Heterotrichea Climacostomidae Climacostomum virens Stock W-24 MMETSP1397  

 Ciliophora Oligohymenophorea Orchitophryidae Anophryoides haemophila AH6 MMETSP1018  

 Ciliophora Oligotrichea Ptychocylididae Favella taraikaensis Fe Narragansett 
Bay 

MMETSP0434, MMETSP0436 CAMPEP_0199840474 

 Ciliophora Spirotrichea Euplotidae Euplotes focardii TN1 MMETSP0205, MMETSP0206 CAMPEP_0187815918 

 Perkinsozoa Perkinsea Perkinsidae Perkinsus chesapeaki ATCC PRA-65 MMETSP0925, MMETSP0924C  

 Perkinsozoa Perkinsea Perkinsidae Perkinsus marinus ATCC 50439 MMETSP0923, MMETSP0922  

 

Supplementary Material 3 – List of organisms used in this study with respective nucleic acid database identifiers, and sequence identifiers found for NDP-rhamnose 

biosynthesis. 
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6.1 Key findings of this thesis 

6.1.1 Ichthyotoxins responsible for toxic Prymnesium blooms 

One aim of this thesis was to fill some fundamental gaps in knowledge that still existed 

surrounding physiology of Prymnesium parvum blooms and their associated toxicity towards 

aquatic organisms. A key objective was to clear up much literature ambiguity surrounding the 

toxins responsible for fish deaths. Given the numerous claims of toxic compounds released by 

P. parvum, which included galactoglycerolipids [1], fatty acids [2], fatty acid amides [3, 4], and 

ladder-frame polyether prymnesins [5, 6], at the time of starting this thesis one could only 

speculate on the biologically relevant toxin(s). However, the potent ichthyotoxic LD50 values 

observed for the polyether prymnesins [6] and their structural similarity to other known algal 

toxins [7] led to the hypothesis that the prymnesins had a key role in toxic P. parvum blooms – 

even if researchers had failed to report the detection of these compounds since their original 

isolation in 1996-1999.  

 

A major advancement in the prymnesin research field came in 2013 when Manning and La 

Claire reported a detailed extraction and analysis protocol for the detection of prymnesins 

from cultures of P. parvum [8]. Using the methods outlined in that paper, we were able to 

show that our laboratory strain of P. parvum (CCAP 946/6) produced the polyether 

prymnesins-1 and -2 (Chapter 2). Work by Blossom et al in 2014 then further supported our 

hypothesis that the prymnesins played a key role, having shown that fatty acid amides and 

others were not biologically relevant toxins in P. parvum ichthytoxicity [9]. Using a 

combination of optical microscopy and genetic analysis, we then showed that a harmful algal 

bloom in 2015 on the Norfolk Broads, United Kingdom, was caused by P. parvum (Chapter 2). 

At the time of the bloom, we were unable to detect prymnesin-1 or -2 in water samples or gill 

tissue preparations, making us question our initial hypothesis. However, Rasmussen et al 

would go on to report a structural diversity of the prymnesins in 2016, outlining new m/z 

values for novel prymnesin toxins including prymnesin-B1 [10]. Using these new findings, we 

were able to detect prymnesins for the first time in natural water samples, having detected 

prymnesin-B1 in water samples from the site of the 2015 bloom. Furthermore, we were able 

to detect prymnesin-B1 in the gill tissue of a deceased pike. Taken together, these findings 

strongly support the assignment of the polyether prymnesins as the biologically relevant 

ichthytoxins, although a cocktail of toxins which include the prymnesins cannot be ruled out. 
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6.1.2 Method of toxin release – implication for algal viruses 

Because of the ambiguity in the nature of the Prymnesium-associated ichthytoxins, their 

localisation (i.e. intra- vs extra-cellular) and mode of toxicity was unknown when this thesis 

was started. Many toxicity assays were previously based on the erythrocyte lysis assay (ELA) 

[11] but this assay may have also been assessing other toxic compounds produced by P. 

parvum and not those specific to fish. Probably the most convincing work at the time of 

starting this thesis was by Remmel and Hambright who, in 2012, showed that ichthytoxins 

from P. parvum were intracellular and that they were only released through contact with prey 

or by natural causes of stress to the algal cells [12]. Importantly, the toxicity studies in this 

work used live 10-14-day old fathead minnows (Pimephales promelas) rather than other 

standard bioassays.  

 

In Chapter 3, we showed that natural populations of P. parvum during the toxic bloom of 2015 

on Hickling Broad appeared to be infected by an algal virus, and subsequently isolated and 

characterized a new species of Prymnesium-infecting virus, named Prymnesium parvum DNA 

virus (PpDNAV-BW1). Using cell culture techniques, we showed that PpDNAV-BW1 is lytic; 

causing lysis of more than 95% of the P. parvum population 120-hours post infection.  

Morphological and genetic analysis of this virus placed it into the Megaviridae family of algal 

viruses. Given that other algal viruses had previously been reported to be involved in the 

release of intracellular metabolites, such as dimethylsulfide [13], we immediately formed the 

hypothesis after discovery of PpDNAV-BW1 that it may be involved in the release of the 

intracellular prymnesin toxins (Figure 60). This would agree with the work of Remmel and 

Hambright, who proposed toxin release through natural causes of stress [12] and of La Claire 

et al who propose that prymnesins are not actively secreted but are likely excreted passively or 

by cell-lysis events [14]. We propose that at some point during bloom formation, natural 

populations of P. parvum may become infected by lytic viruses. This infection ultimately leads 

to a sudden lysis event in the algal population, causing release of new viral progeny and 

dissolved organic matter (DOM) from the cells. Importantly, we propose that this DOM 

includes the toxic prymnesins, raising extracellular levels above the threshold to be toxic to 

aquatic life. We also suggest that resuspension of sediment may be a cause for increased 

instances of viral infection, as the viral particles are re-suspended in the waterbody and more 

likely to encounter P. parvum cells (Figure 60). Given the toxin extraction and analysis 

protocols described in Chapter 2 of this thesis, follow-up work in this area will look at the 
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effect of viral infection on the production of prymnesin toxins, and of viral lysis on extracellular 

prymnesin levels. 

 

 

Figure 60 – Proposed mechanism of viral lysis-mediated toxin release in a P. parvum bloom.  Grey 

hexagons represent viral particles. Background image adapted under a Creative Commons 

Attribution-No Derivative Works 3.0 Licence (https://creativecommons.org/licenses/by-nd/3.0/)  with 

permission of the author (kazza234). 

 

 

6.1.3 Sialic acid biosynthesis in algae and potential roles in viral 

infection 

After entering the world of algal viruses following the discovery of PpDNAV-BW1, our interest 

was turned to the molecular basis behind viral infections of algae. Research from Israel had 

recently shown that the uncommon sialic acid, 2-keto-3-deoxy-D-glycero-D-galacto-nononic 

acid (KDN) played a key role in infection of the haptophyte Emiliania huxleyi by Emiliania 

huxleyi virus (EhV) [15]. However, prior to this work, reports of sialic acids in algae were 

sparse; to our knowledge sialic acids had not been reported in algae at all. Given the 

importance of sialic acids in a suite of host:pathogen interactions [16, 17], influenza virus 

https://creativecommons.org/licenses/by-nd/3.0/


Chapter 6 

Page | 207  

 

 

infection of the lungs being the archetypal example, and their recent implications in algal virus 

infections, we then sought to investigate the presence of sialic acids in P. parvum.  

 

Using a range of LC-MS techniques, Chapter 4 showed that P. parvum contains the cytidine 

monophosphate (CMP)-activated form of KDN, CMP-KDN. Using a publicly available 

transcriptome of P. parvum we then identified sialic acid biosynthetic genes from P. parvum. 

These genes were successfully cloned and expressed in E. coli, and the biosynthetic capabilities 

of the corresponding enzymes were analysed using a range of analytical techniques that 

included NMR, MS, and colorimetric assays. As expected, these assays confirmed that P. 

parvum produces CMP-KDN starting from mannose-6-phosphate, in a similar fashion to that 

seen for Bacteroides thetaiotaomicron [18]. Using a colorimetric phosphate release assay, we 

demonstrated that KDN-9-P synthase from P. parvum has a more efficient kcat and Km value 

than many other enzymes of this family, a feature that warrants further investigation.  

 

Furthermore, using these newly discovered and characterized sequences, we used BLASTp 

analysis [19] to query more than 150 algal nucleic acid databases from NCBI [20] and MMETSP 

[21]. Using this analysis, we showed that sialic acid biosynthesis is much more widespread 

amongst algae than previously thought. Phylogenetic trees were created and display distinct 

clades of algal sialic acid synthases with similarity to KDN-9-P synthase from P. parvum, which 

we speculate separate sialic acid biosynthesis from the biosynthesis of the structurally similar 

acidic sugar, KDO. Taken together, the findings in Chapter 4 show that sialic acid biosynthesis is 

abundant throughout the algae, and coupled with recent work by Fulton et al which implicates 

KDN in viral infection of E. huxleyi [15], may suggest sialic acids play crucial roles in algal virus 

interactions. 

 

6.1.4 The algal monosaccharide L-rhamnose has a complicated 

evolutionary origin 

 

During our bioinformatic analysis of sialic acid biosynthesis in P. parvum we came across a 

range of other interesting sugar-nucleotide biosynthetic enzymes. One transcript that caught 

our attention translated to a fusion protein of RmlC and RmlD – two bacterial enzymes 

involved in L-rhamnose biosynthesis [22]. Rhamnose is an important monosaccharide that is 

found in structural polysaccharides across microbes, algae, and plants, but not in animals. The 
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biosynthesis of nucleotide activated rhamnose has been extensively studied in bacteria [23] 

and plants [24], and it is generally accepted that most prokaryotes activate rhamnose as 

thymidine diphosphate (TDP) adducts, whilst most eukaryotes activate rhamnose as uridine 

diphosphate (UDP) adducts. Prior to our study however, it was unknown how algae produce 

rhamnose and which activated sugar nucleotide they produce. Furthermore, independent 

work from our group identified rhamnose as being an important sugar in the viral infection 

process of P. parvum.  

 

In Chapter 5, we used a bioinformatics-guided approach to discover rhamnose biosynthetic 

genes across the algal groups using nucleic acid databases from NCBI [20] and MMETSP [21]. 

We found that whilst most algal groups appear to encode the ‘plant-like’ UDP-β-L-Rha 

pathway, the haptophytes (including P. parvum) and some dinoflagellates encode the 

‘bacterial-like’ TDP-β-L-Rha pathway. To support these findings, we took two representative 

algae from each pathway; P. parvum which should produce TDP-β-L-Rha, and Euglena gracilis 

that encoded the ‘plant-like’ pathway and should produce UDP-β-L-Rha. We profiled the sugar 

nucleotides of these species using LC-MS and showed that, as expected, P. parvum contains 

more TDP-β-L-Rha than the UDP adduct, and E. gracilis contains more UDP-β-L-Rha than the 

TDP adduct. Taking these findings together, we proposed an evolutionary model for L-

rhamnose biosynthesis across the algal groups, suggesting that the haptophytes lost the ‘plant-

like’ pathway sometime after secondary endosymbiosis. We then proposed a horizontal gene 

transfer event from bacteria, whereby the haptophytes obtained the ‘bacterial-like’ pathway. 

Finally, a tertiary endosymbiosis event with the peridinin-containing dinoflagellates led to the 

fucoxanthin-containing dinoflagellates having both the bacterial-like pathway (from P. parvum) 

and the plant-like pathway (from their dinoflagellate ancestor).  
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6.2 Recent development of practical applications 

This thesis was carried out as a BBSRC-funded iCASE studentship in conjunction with the 

Environment Agency. With that in mind, some key objectives of this thesis involved the 

generation of practical methods for monitoring and managing blooms of P. parvum on the 

Norfolk Broads. 

 

6.2.1 Detection of P. parvum and PpDNAV-BW1 

In Chapter 2 we report the uses of qPCR in monitoring P. parvum populations across Hickling 

Broad over a 20 month period, and propose that this could be used to predict when blooms of 

P. parvum are likely to occur. However, as we describe earlier, we suspect that viral lysis of 

natural populations of P. parvum are a cause of toxin release (Figure 60), meaning that 

monitoring of P. parvum populations alone is not enough to predict toxic blooms of this 

species. Since the discovery and sequencing of PpDNAV-BW1, we have worked to expand our 

qPCR analysis to include monitoring of PpDNAV-BW1. With significant input from collaborating 

scientist Dr Jennifer Pratscher (UEA), we have recently developed a specific and sensitive qPCR 

assay for PpDNAV-BW1 based on sequences encoding the major capsid protein (MCP). Using 

the same nucleic acid samples that were previously used to monitor algal abundance, we have 

been able to produce a seasonal profile of virus abundance with relation to its algal host 

(Figure 61). The findings from this dataset display typical Lotka-Volterra predator:prey 

population dynamics [25], suggesting a key role for this virus in control of the native P. parvum 

population in Hickling Broad. As is seen in Figure 61, increases in abundance of viral transcripts 

directly correlate with decreases in abundance of algal transcripts. We propose that the 

regular use of these qPCR assays will allow the Environment Agency to predict when a toxic 

bloom of P. parvum is likely to occur. 
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Figure 61 – Seasonal abundances of P. parvum and PpDNAV.  (Top) Abundance of P. parvum as 

determined by copies of internal transcribed spacer (ITS) sequence. (Bottom) Abundance of PpDNAV-

BW1 as determined by copies of MCP1 sequences based on the following primers: MCP1-1F 5’-

TGTCTGCCGTGGACTTAGTGCT-3’, MCP1-1R 5’-ATGGCACAACGACTTGGT-3’ (unpublished). Decreases in 

algal transcripts coincide with sharp increases in viral transcripts (red arrows). 

 

6.2.2 Control of P. parvum blooms using hydrogen peroxide 

 

Alongside the work documented in this thesis, I championed, with the help of many 

collaborating scientists and government agencies, field trials for the use of hydrogen peroxide 

in the management of P. parvum blooms on Hickling Broad. Previous work has shown 

hydrogen peroxide to be an effective algaecide in the management of toxic algal blooms, but 

reports of its use in the U.K are sparse [26, 27]. Furthermore, work carried out by myself 

showed in a laboratory setting that low concentrations of H2O2 (>20 mg L-1) were effective at 

reducing levels of both P. parvum and its polyether prymnesin toxins over a 48-hour period. To 

build on this, we sought to assess whether H2O2 was effective at reducing levels of P. parvum 

on Hickling Broad. Importantly, we wanted to show that the doses required to kill P. parvum 

(and presumably other phytoplankton) were not toxic to macroinvertebrates such as water 

fleas (Daphnia sp.), or fish. Field trials were subsequently set up at Whispering Reeds Boatyard, 

Hickling Broad, where H2O2 was applied to a small area at a final concentration of 30-40 mg L-1 

over a 4-hour period (Figure 62).  
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Figure 62 – Hydrogen peroxide field trials for management of P. parvum blooms.  Image taken on 

29/06/2017 by Martin Rejzek at Whispering Reeds Boatyard on Hickling Broad, United Kingdom.  

 

Water samples were then taken at regular intervals following the peroxide application and 

nucleic acids were extracted. Peroxide concentrations were followed closely throughout the 

treatment using QUANTOFIX® Peroxide 100 test strips (Sigma Aldrich, U.K). Using the qPCR 

assay outlined in Chapter 2 of this thesis, we were able to show that areas treated with 

peroxide showed a marked loss in P. parvum cell numbers over the next 24 hours (even under 

non-bloom steady state conditions at the time of the trial), compared to control locations that 

were not sprayed with peroxide (Figure 63). P. parvum numbers returned to normal non-

bloom background levels in all locations 96 hours after treatment. Importantly no adverse 

effects on macroinvertebrates or fish were noted throughout the field trial. The success of this 

trial has now led the Environment Agency to re-design protocols for the practical management 

of P. parvum blooms, with a view to incorporating H2O2 in their waterways management 

strategies.  
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Figure 63 - P. parvum specific qPCR quantification for hydrogen peroxide trial – Whispering Reeds 

Boatyard, Hickling Broad (29/06/2017).  The abundance of P. parvum was monitored at 3 locations 

treated with hydrogen peroxide at 30 mg L-1 doses (location 1, 2, 3) and at 2 control locations (Control 

location 6, 7) over a 96-hour period after H2O2 application. Whilst P. parvum abundance rose slightly 

at control locations, locations treated with peroxide saw levels of P. parvum drop over a 24-hour 

period. By 96-hours post application all locations saw levels rise to around 100,000 copies ml-1. 

 

 

 

 

Overall, the findings presented in this thesis reveal new insights into the bloom dynamics of 

Prymnesium parvum and its’ glycobiology. The discovery of a novel species of virus highlights 

an importance of algal viruses in regulation of toxic blooms of P. parvum, and may represent a 

globally significant mechanism for toxin-release from harmful algae. This new model system of 

a toxin-producing alga and lytic virus can now be explored to address many key questions that 

have emerged during this study.  
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