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18 ABSTRACT 

 

19 This study investigated the effects of graded levels of myo-inositol (INS) in diets containing 

20 two levels of available P, on growth performance, nutrient retention, liver N, fat and vitamin 

21 E contents, INS and alkaline phosphatase (ALP) concentrations in blood plasma. One 

22 hundred and twenty male Ross 308 broilers were allocated to 60 small floor pens each 

23 holding 2 birds. Two basal mash diets were formulated to be nutritionally adequate for chicks 

24 at that age, with one diet designed to have the recommended available P content (RP) (4.8 

25 g/kg non-phytate P), and the other diet containing low available P (LP) (2.5 g/kg non-phytate 

26 P). The two basal diets were split in three batches each and two of the batches were 

27 supplemented with INS at 3.0 and 30 g/kg diet, with the remaining batch of each basal diet 

28 not supplemented, giving a total of six experimental diets. Diets were fed ad libitum to 10 

29 pens from 7 to 21 d age following randomization. Feeding RP diets improved (P < 0.001) the 

30 birds’ growth performance, mineral availability, and blood plasma ALP. Feeding RP diets 

31 reduced (P < 0.001) apparent metabolizable energy (AME), dry matter and fat availability, 

32 blood  plasma  INS  and  hepatic  vitamin  E.  Dietary  INS  did  not  (P  >  0.05)  influence bird 

33 growth,  dietary AME  or  nutrient  retention coefficients.  Feeding INS  linearly increased (P  < 

34 0.05) liver weight and hepatic N content, but linearly reduced (P < 0.05) hepatic fat 

35 concentration. It also linearly increased (P < 0.001) the INS concentration in blood plasma, 

36 but did not influence (P > 0.05) the endogenous losses (measured as sialic acid concentration) 

37 in excreta. Dietary INS did not influence (P > 0.05) the hepatic vitamin E concentration but 

38 increased (P < 0.001) the ALP in the blood of birds fed 30 g/kg INS. In conclusion, high- 

39 level dietary INS supplementation did not affect bird growth performance, mineral 

40 availability, and endogenous losses and there were no interactions between INS and P. 
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61 INTRODUCTION 

 

62 The beneficial effects of dietary phytases (PHY) when fed to poultry are well documented 

63 (Selle and Ravindran, 2007). Phytate is considered an anti-nutritional factor binding minerals 

64 and proteins into indigestible complexes (Cowieson et al., 2004; Pirgozliev et al., 2007). 

65 Phytase not only releases more available energy and nutrients to the birds, but also 

66 hydrolyses dietary phytate. Due to the conditions in bird’s gastrointestinal tract (GIT), as well 

67 as the catalytic properties of supplementary microbial PHY, it is unlikely that phytate is 

68 completely dephosphorylated into free myo-inositol (INS) and inorganic phosphate (Wyss et 

69 al., 1999). Recent studies in pigs (Kühn et al., 2016) and poultry (Cowieson et al., 2015; 

70 Beeson et al., 2017; Sommerfeld et al., 2017) have demonstrated that feeding supra doses of 

71 third generation E. coli PHY increases INS concentrations in the digesta and excreta of 



 

 

72 animals. These results indicate potential further phytate hydrolysis to free INS, consequently 

73 released in the digestive tract of broiler chickens. The biological importance of INS is well 

74 documented, with the involvement in cell survivability and growth, lipid metabolism, and 

75 insulin sensitivity the most relevant for poultry (Lee and Bedford, 2016; Huber, 2016). 

 

76 Although a number of studies on the effects of supplementary INS in broilers are published, 

77 the results for nutrient availability and performance are inconsistent. Some authors found an 

78 increase in growth performance in response to dietary INS (Żyła et al., 2013; Pirgozliev et al., 

79 2017; Sommerfeld et al., 2017), while others (Pearce, 1975; Farhadi et al., 2017) did not. In 

80 addition, Cowieson et al. (2013) reported an interaction between INS and exogenous PHY as 

81 addition of INS to either the normal or low P diet improved feed efficiency only in the 

82 presence of PHY. Farhadi et al. (2017) and Sommerfeld et al. (2017) reported no impact of 

83 supplementary INS on dietary P digestibility and bone mineralisation in poultry. However, 

84 Pirgozliev et al. (2017) observed an interaction as the increase of dietary INS content had no 

85 effect on P digestibility in the absence of PHY but it depressed P digestibility in the diets 

86 containing PHY. 

 

87 The amount of INS supplemented to diets in the aforementioned experiments was between 

88 0.1 and 0.75%. This is similar or slightly higher than the theoretical range of INS released in 

89 the gut of chickens after feeding a commercial level of PHY. However, different dietary 

90 sources would have different phytate contents with varying bioavailability, and different PHY 

91 may possess different abilities to hydrolyse dietary phytate, explaining the discrepancies in 

92 the data published. 

 

93 In view of the above, the objectives of the present study were to quantify the response of bird 

94 growth performance, dietary metabolisable energy and nutrient digestibility as a result of 

95 feeding a high level of supplementary INS in diets that contain low (LP) or recommended 

96 (RP) levels of dietary P. Endogenous losses (measured as sialic acid; SA) in excreta, hepatic 

97 vitamin E content, liver composition, alkaline phosphatase (ALP) and INS content in the 

98 blood of broiler chickens were also determined. 

99 

100 MATERIALS AND METHODS 

101 

102 Birds and Housing 

103 



 

 

104 The experiment was conducted at the National Institute of Poultry Husbandry and approved 

105 by the Harper Adams University Research Ethics Committee. A total of 130 male Ross 308 

106 broilers were obtained from commercial hatchery (Cyril Bason Ltd, Craven Arms, UK), 

107 allocated  to  a   single  floor   pen  and   offered  a  standard  wheat-based   broiler   starter feed 

108 formulated  to  meet  Ross 308  nutrient  requirements  (Aviagen  Ltd.,  Edinburgh,  UK).  At 7d 

109 age, 120 birds were allocated to 60 small floor pens each holding 2 birds. Each of the pens 

110 had a solid floor and were equipped with an individual feeder and drinker. Feed and water 

111 were  offered  ad libitum to  birds throughout  the  experiment.  Each diet was offered to birds in 

112 10 pens in a randomized block design. The birds were fed the experimental diets from 7 to 

113 21d age, when the experiment ended. Room temperature and lighting regime met commercial 

114 recommendations (Aviagen Ltd, Edinburgh, UK). For the last 4 d of the study, the solid floor 

115 of each pen was replaced with a wire mesh in order to enable excreta collection. The well- 

116 being of the birds was checked regularly every day. 

117 

118 Diets and Treatments 
 

119 Six corn-soy-based diets were offered to the birds during the experiment. Two basal diets 

120 were formulated to be nutritionally adequate for chicks at that age (12.90 MJ/kg ME, 216 

121 g/kg CP), with one diet designed to have the recommended available P content (4.8 g/kg non- 

122 phytate P), and the other diet containing relatively low available P (2.5 g/kg non-phytate P) 

123 (Table 1). The two basal diets were then split in three batches each, and two of the batches 

124 were supplemented with myo-inositol (Sigma-Aldrich, Inc., St. Louis, MO 63103, USA) 

125 (Table 2) at 3.0 and 30 g/kg diet, respectively, with the remaining batch of each basal diet not 

126 supplemented, to give a total of six experimental diets. All diets were fed as a mash. 
 

127 Sampling and Measurements 
 

128 Birds were weighed on d1, in order to obtain information on the average birds weight at the 

129 start of the study. Birds and feed were then weighed on d7, and d21 in order to determine 

130 average daily feed intake (ADFI), average daily weight gain (ADG) and to calculate the 

131 gain:feed ratio (G:F) on a pen basis. Excreta were quantitatively collected each day for the 

132 last four days of the experiment (in order to avoid evaporation losses), immediately dried at 

133 60◦C and then milled through 0.75 mm screen. At the end of the study, one bird per pen, 

134 selected at random, was electrically stunned and blood was obtained in heparin tubes from 



 

 

135 the jugular vein. The livers from the same birds were collected immediately after, weighed, 

136 and freezed prior to analysis. 
 

137 Chemical Analysis 
 

138 Dry matter (DM) in feed and excreta samples was determined by drying of samples in a 

139 forced draft oven at 105◦C to a constant weight (AOAC, 2000; method 934.01). Crude 

140 protein (6.25 × N) in samples was determined by the combustion method (AOAC, 2000; 

141 method 990.03) using a LECO FP-528 N (Leco Corp., St. Joseph, MI). Oil (as ether extract) 

142 was extracted with diethyl ether by the ether extraction method (AOAC, 2000; method 

143 945.16) using a Soxtec system (Foss UK Ltd.). The gross energy (GE) value of feed and 

144 excreta samples was determined in a bomb calorimeter (model 6200; Parr Instrument Co., 

145 Moline, IL) with benzoic acid used as the standard. Phosphorus and Ca in feed and excreta 

146 samples were determined by inductively coupled plasma emission spectrometry, ICP (Optima 

147 4300 DV Dual View ICP-OE spectrometer, Perkin Elmer, Beaconsfield, UK) (Tanner et al., 

148 2002). 

149 Hepatic  vitamin  E  was  analysed  at  the  IDEXX  BioResearch  Vet  Med  Labor  GmbH 

150 (Ludwigsburg, Germany). Vitamin E in liver was determined by means of high performance 

151 liquid  chromatography  (Hess  et al.,  1991).  The  ALP in  blood  plasma was  analysed at   the 

152 APHA Laboratory (Shrewsbury, UK) following standard procedure using a Randox Immolite 

153 Analyser  and  the  associated  Randox  kit  (Recommendations  of  the  German  Society  for 

154 Clinical Chemistry). 
 

155 The  concentration  of  excreta  SA  was  determined  by  the  periodate-resorcinol  method  as 

156 described by Jourdian et al. (1971). The procedure detects total, free and glycosidically bound 

157 N-acety neuraminic (sialic) acid. 
 

158 For analysis of INS, samples of milled feed (0.1g) were extracted in 5 mL of 20 mM EDTA, 

159 100 mM NaF, pH 10, on a rotary shaker for 15 min followed by sonication in a bath sonicator 

160 for 15 min. The samples were held at 4◦C for 2 h before centrifugation at 14,000 x g for 15 

161 min. The supernatant was filtered through a 13 mm x 45 µm pore PTFE filter (Kinesis Ltd, 

162 UK) and diluted 50-fold in 18.2 MOhm.cm water. Inositol was determined by HPLC pulsed 

163 amperometry  (HPLC-PAD)  on  a  gold  electrode  at  30◦C  after  separation  by 2-dimensional 

164 HPLC  (Dionex DX-600  HPLC  System).   Samples  (20 µL) were  injected onto a  4 mm x  50 

165 mm  CarboPac  PA1  column  (Dionex,  UK)  arranged  in  series  with  a  4  mm  x  250  mm 



 

 

166 CarboPac MA1 column with 4 mm x 50 mm guard column of the same material. The flow 

167 rate of the 150 mM NaOH eluent was 0.4 mL min-1. After 1.5 min, the flow through the 

168 CarboPac PA1 column was switched to 750 mM NaOH, at 0.4 mL min-1 to elute more 

169 strongly retained sugars to waste. Eluent from the CarboPac MA1 column (150 mM NaOH) 

170 was directed to an ED50 electrochemical detector (Dionex) configured with a gold electrode 

171 and operating a standard Dionex carbohydrate waveform. After 11.5 min, the CarboPac PA1 

172 column was switched back into the 150 mM NaOH flow (in series with the CarboPac MA1 

173 column) to condition the column for a further 8.5 min, before initiation of the next injection 

174 sequence. 
 

175 Inositol eluted at approximately 10.5 min. Injection of INS standards (0.01-0.2 nmole in 20 

176 µL) and integration of the peak yielded a linear calibration curve typically with r2 > 0.995 

177 and slope of approximately 100 nC.min nmol-1. 
 

178 For INS measurement in plasma, plasma samples were mixed with 2 volumes of ice-cold 5% 

179 w/v perchloric acid and held on ice for 20 min to precipitate protein. The samples were 

180 centrifuged at 16,000 x g for 15 min at 4◦C and the supernatant diluted 50-fold in 18.2 

181 MOhm.cm water before analysis (20 µL injection) by HPLC-PAD. 
 

182 Calculations and Statistical Analysis 
 

183 Average  daily feed  intake,  ADG and  G:F ratio  were  calculated for  the  experimental period 

184 from d7 to d21 on a pen basis. The AME of the diets was calculated following total collection 

185 technique.  The  total  tract  digestibility  coefficient  of  each  of  the  studied  nutrients  was 

186 calculated as the difference between the intake and the excretion of the nutrient, divided by 

187 their respective  intake based  on data  obtained for the last  4 days  during  collection period  as 

188 previously described (Whiting et al., 2018). The quantity of P and Ca retained in the body 

189 (g/d) was obtained by multiplying of P and Ca intake and their total tract digestibility 

190 coefficients. 
 

191 Statistical analysis was performed using GenStat 19th edition statistical software (IACR 

192 Rothamstead,  Hertfordshire,  England).  A  randomised  block  two-way  analysis  of   variance 

193 was performed using a 2 × 3  factorial  structure to investigate  the  main treatment factors (P  × 

194 INS inclusion levels) and their interaction. When there were statistically significant 

195 differences in INS, the treatment sum of squares were partitioned to test the linear effects. 

196 Differences were reported as significant at P < 0.05 and trends were noted at P ≤ 0.1. 



 

 

197 RESULTS 
 

198 Broiler Growth Performance, Dietary Metabolizable Energy and Nutrient Digestibility 

199 Birds fed adequate available  P diets,  had greater (P < 0.001) BW  (by 22.4 %),  ADFI (by 16.2 

200 %) and a better G:F (by 11.1 %) (Table 3). Variation in growth performance, nutrient and 

201 mineral  availability,  and  AME  were  in  the  expected  range  for  a  study  involving  broiler 

202 chickens at this age and fed a similar diet formulation (Abdullah et al., 2016; Whiting et al., 

203 2017). Coefficients of variation (CV %) of ADFI, ADG, and G:F were 6.9 %, 9.2 %, and 7.3 

204 %, respectively. The variation in dietary AME was relatively low (CV = 2.5 %), ranging from 

205 14.32 to 14.68 MJ/kg DM and was not affected by dietary INS content (P > 0.05) (Table 4). 

206 Feeding diets  low in  available  P  improved  (P  < 0.001)  dietary AME by 0.36 MJ/kg DM (by 

207 2.5 %). Daily intake of dietary AME was improved (P < 0.001) by feeding RP diets, but was 

208 not influenced (P > 0.05) by INS supplementation. 
 

209 Nutrient retention and digestibility coefficients were not affected (P > 0.05) by dietary INS 

210 content (Table 4). The CV in DMR, NR and FD coefficients were 3.0 %, 7.8 % and 4.0 %, 

211 respectively. Feeding LP diets improved (P < 0.001) DMR and FD, but did not influence (P > 

212 0.05) the NR coefficient (Table 4). 
 

213 Digestibility coefficients and daily retention of P and Ca in broilers were not affected (P > 

214 0.05) by INS supplementation (Table 5). The CV % of digestibility and retention data varied 

215 from 10.0 to 15.0 %. Feeding LP diets improved the Ca digestibility coefficient (P < 0.001) 

216 but did not affect P digestibility (P > 0.05). Feeding RP diets improved (P < 0.001) daily 

217 retention of P and Ca. 
 

218 Hepatic vitamin E, fat and N contents, SA secretion, inositol and alkaline phosphatase in 

219 blood plasma 
 

220 The CV in the variables presented in Table 6 were between 2.2 % for hepatic N concentration 

221 and  22.9  %  for  INS  in  blood  plasma.  Feeding  RP  diets  reduced  (P  <  0.001)  the relative 

222 weight of the liver of the birds, and relative hepatic fat concentration and content (P < 0.05). 

223 However, it increased (P < 0.001) the relative hepatic N concentration but did not influence 

224 (P  > 0.05)  hepatic N retention.  The  concentration of  secreted SA was not affected (P > 0.05) 

225 by any of the dietary treatments (Table 7). Feeding LP diets increased (P < 0.001) the hepatic 

226 vitamin E and INS concentration in blood plasma. However, birds fed RP diets had an 

227 increased (P < 0.001) ALP concentration in blood. 



 

 

228 Feeding INS-supplemented diets linearly increased (P < 0.05) liver weight and hepatic N 

229 content, but linearly reduced (P < 0.05) hepatic fat concentration (Table 6). It also linearly 

230 increased (P < 0.001) the INS concentration in blood plasma, but did not influence (P > 0.05) 

231 the SA concentration in excreta (Table 7). Dietary INS did not influence (P > 0.05) the 

232 hepatic vitamin E concentration but increased (P < 0.001) the ALP in the blood of birds fed 

233 30 g/kg INS (Table 7). 
 

234 DISCUSSION 
 

235 The aim of this study was to investigate the effects of three different levels of INS in LP and 

236 RP diets, on growth performance, nutrient retention, liver N, fat and vitamin E contents, INS 

237 and ALP concentrations in blood plasma. The low INS supplemented diet contained 3 g/kg 

238 INS, which is the expected dose released in response to a commercial dosage of PHY in the 

239 GIT of  broilers.  The  high  INS supplemented diet contained  30 g/kg INS and was designed to 

240 emphasise   the   impact   of   INS   on   the   studied   variables.   Previous   studies   on   INS 

241 supplementation of broiler diets have used doses from 0.1 to 0.75 % (1 to 7 g/kg)  (Żyła et al., 

242 2004; Cowieson et al., 2013; Pirgozliev et al., 2007), but high dietary levels of INS has not 

243 yet been studied. 
 

244 There are relatively few reported measurements of INS in chicken plasma. Schmeisser et al. 

245 (2013) recorded values of 0.199, 0.246 and 0.345 mM for birds fed positive control, negative 

246 control and phytase supplemented at 1000 FTU/kg diets, while Sommerfield et al. (2017) 

247 obtained values of 0.23 and 0.54 mM for birds fed control and INS-supplemented diets (3.8 

248 g/kg, starter; 3.5 g/kg grower). The values obtained here for LP, and LP + 3 g/kg and 30 

249 g/kg-supplemented diets were 0.583, 0.664 and 0.982 mM (Table 7). While these, perhaps, 

250 seem high the factors that control plasma INS are poorly defined. The renal clearance of INS 

251 in chickens is unknown, but in humans it has been shown that following intra-venous supply 

252 of INS the renal clearance of INS is exceeded at 3-4 mM plasma INS, considerably higher 

253 than the values measured here (Doughaday and Larner, 1953). The elevations of INS reported 

254 in our study coincided with a reduced concentration of hepatic fat content in birds fed INS. 

255 Early reports support  this observation  and found that  dietary INS supplementation  is effective 

256 at   depressing   liver   fat   synthesis   (Bull,   1968;   Cough,   1968).   A   beneficial   effect  of 

257 supplementing diets  with  INS  to  treat  fatty  liver  syndrome  in  layers  was  also  reported by 

258 Parker  and  Deacon  (1968).  Holub  (1986)  describes the metabolism and  the function  of INS 

259 and INS phospholipids in animals. A close negative correlation has been found between the 



 

 

260 activity  of  the  enzymes  fatty  acid  synthetase  and  acetyi-CoA  carboxylase  and  levels  of 

261 dietary INS,  thus further  supporting the  observed results in   this  study.  The  total  hepatic  N 

262 content increased primarily due to increased liver weight. 
 

263 Cowieson et al.  (2015) and Sommerfeld  et al.  (2017)  reported greater  INS in blood plasma of 

264 PHY  fed  chickens  compared  to  birds  fed  control  diets.  In  agreement  with  Shastak  et  al. 

265 (2014)  and  Zeller et al.  (2015),  in the present  study,  broilers fed  LP  diets had higher  blood 

266 plasma INS concentration, compared to birds fed RP diets. In agreement with our findings, 

267 higher INS concentrations in blood plasma (Cowieson et al., 2015) and excreta (Beeson et al., 

268 2017) has been reported in chicks fed LP diets compared to birds fed RP diets. It has been 

269 demonstrated that a reduced intake of dietary minerals, especially of P and Zn, could increase 

270 the activity of intestinal alkaline phosphatase and PHY (Davies et al., 1970; Bitar & 

271 Reinolds, 1972). This enhanced the digestibility of P in a subsequently fed diet (Moore & 

272 Veum, 1982, 1983). In addition, Maenz & Classen (1998) demonstrated in vitro, that high 

273 mineral concentration markedly decreased the activity of brush border phytase in chicks. 

274 McComb et al. (1979) reported that many microbes adapt to low P concentrations by 

275 increasing the synthesis of alkaline phosphatase. This finding suggests that the intestinal 

276 microflora might be involved in the enhanced dietary P availability due to feeding LP diets. 

277 Although  not  determined  in  this  study,  it  seems  likely  that  the  activity  of  the  intestinal 

278 alkaline phosphatase and PHY in the gut of broilers fed LP diets is elevated and thus these 

279 birds exhibited an improved phytate degradation compared to the birds fed RP diets. The 

280 improved AME, DMR and FD of LP diets observed in the present study further support this 

281 hypothesis. 
 

282 The  apparent  total  tract  Ca  and  P  digestibility  coefficients  were  in  the  expected  range 

283 (Olukosi  and  Fru-Nji,  2014;  Sommerfeld  et  al.,  2017).  The  lack  of  difference  between P 

284 digestibility  in   the   LP  and   RP  diets  was  expected  and  can   be  explained  by  the   same 

285 bioavailability of the added dietary dicalcium phosphate. Similar to Olukosi and Fru-Nji 

286 (2014), the LP diet exhibited lower Ca digestibility compared to RP diets. When LP diets are 

287 fed  the  Ca:P  ratio  in  the  gut  is  relatively  wide  compared  to  the  same  ratio  in  RP diets. 

288 However, the widening of Ca:P ratio is known to reduce Ca utilisation in broilers (Olukosi 

289 and  Fru-Nji,  2014;  Farhadi et al.,  2017).  It seems  that  the  decreased  Ca  utilization in diets 

290 with  wide  Ca:P  can  thus  be  explained  by the  presence  of  a  greater  amount  of  Ca  in the 

291 intestine  than  can  be  used  by  the  birds,  leading  to  excessive  Ca  excretion  or  reduced 

292 efficiency of Ca absorption. 



 

 

293 The hepatic vitamin E concentration was in line with previous observations (Karadas et al., 

294 2010, 2014; Pirgozliev et al., 2015). Although the reduction in vitamin E concentration in RP 

295 fed birds was not expected, the values were in the expected range for chickens at this age. 

296 The increased vitamin E concentration in the liver of LP fed birds coincided with reduced 

297 growth performance variables, thus suggesting that the relatively low feed intake of these 

298 birds reduced the oxidative stress, thereby preventing vitamin E reserves from depletion. 
 

299 The ALP concentration in blood was in agreement with the expected reference limits 

300 (Meluzzi et al., 1992). The levels of ALP for birds fed RP diets were higher than those fed LP 

301 diets, possibly due to increased growth rates and osteoblastic activity of chickens (Bell and 

302 Freeman, 1971). ALP belongs to a group of enzymes with a low substrate specificity and 

303 catalyses the hydrolysis of phosphate esters in a basic environment. This suggests that dietary 

304 INS  may  reform  INS  phosphate  isomers,  provoking  ALP  synthesis,  thus  explaining  the 

305 results for the  high  inclusion INS diet.  There  was a correlation between  ALP activity and the 

306 rates  of  bone  formation  in  mice  (Dimai  et  al.,  1998),  suggesting  that  decreased  bone 

307 reabsorption and  an improved bone  density might  be a  reason for  elevated ALP  in the blood 

308 of birds fed the high INS diets. A study by Cowieson et al. (2015) showed positive 

309 correlations between bone ash and plasma INS after adding phytase to LP diets. Conversely, 

310 there was no link between plasma INS levels and bone ash contents in birds fed diets 

311 supplemented with either INS or PHY (Sommerfeld et al., 2017). 
 

312 Here, no effects of INS supplementation on growth performance, energy, nutrient and 

313 mineral utilisation were observed. The literature investigating the effects of supplemental INS 

314 on broiler performance is ambiguous. Żyła et al. (2013) demonstrated that supplementation 

315 with  as little  as 1  g/kg INS in wheat- and corn-based  diets containing 1.5 g/kg of  available  P 

316 improved growth of broilers of a similar age. Pirgozliev et al. (2017) reported an optimised 

317 dietary  AME  and  broiler  growth  at  approximately  2.5  g/kg  INS  when  feeding corn-based 

318 diets containing 2.5  g/kg available  P.  Sommerfeld et  al.  (2017) found that supplementing 3.5 

319 g/kg INS to P sufficient wheat-based diets improved feed efficiency in broilers during the 

320 starter phase.  However, Cowieson et al. (2013) found that the  addition of INS to a  diet low  in 

321 Ca and digestible P resulted in a negative effect on feed efficiency during the starter phase, 

322 although during the finisher phase the effect became positive. Moreover, feeding INS reduced 

323 feed intake (Cowieson et al., 2013) which is in contrast to the current work. Furthermore, 

324 Cowieson et al. (2013) reported an interaction between INS and exogenous PHY, whereby 

325 the addition of INS to either a RP or LP diet improved feed efficiency in older birds only in 



 

 

326 the presence of PHY. Finally, Pearce (1975), Żyła et al. (2004), and Farhadi et al. (2017), did 

327 not find any advantage in broiler growth rates when fed INS supplemented RP or LP diets. 
 

328 The principal finding that large dietary INS significantly elevates plasma INS with neither 

329 beneficial nor deleterious effect focuses attention on aspects of avian physiology concerned 

330 with renal clearance of INS. The half-life of INS in plasma is rarely reported, but values of 

331 approximately 2 h are evident for human adults in the data of Doughaday and Larner (1953) 

332 and  5  h  in  neonatal  infants  (Phelps  et  al.  2013).  With  regards  to  INS  measurement,  the 

333 methods  elaborated  here  have  been  tested  by the  authors  and  found  to be  appropriate  for 

334 chicken muscle, liver and kidney. They should enable metabolomic and transcriptomic study 

335 of  tissue  response  to  phytate-derived  INS,  providing  means  can  be  found  to  distinguish 

336 between organ-specific de-novo synthesis of INS (from glucose 6-phosphate) and INS 

337 derived from dietary phytate. In this regard, the known refractory nature of proximal, but not 

338 distal, PI-3kinase signalling to insulin in chicken muscle (but not liver) remains a puzzle that 

339 would benefit from measurement of plasma, liver and muscle INS and its metabolites. 
 

340 Regardless of dietary P content, in the present experiment INS did not influence studied 

341 mineral availability in agreement with previous reports (Farhadi et al., 2017; Sommerfeld et 

342 al., 2017). However, comparing diets with and without PHY supplementation, Pirgozliev et 

343 al. (2017) observed an interaction as the increase in dietary INS content had no effect on P 

344 digestibility in the absence of PHY but it depressed P digestibility in the diets containing 

345 PHY. In addition, increasing dietary INS content did not change SA concentration, which is 

346 contradictory  to  previous  findings  (Pirgozliev  et  al.,  2017).  Since  INS  is  involved  in  the 

347 control of cell volume and osmolarity (Kane et al., 1992), it was expected that high dietary 

348 levels  might  modulate  mucin  secretion.  However,  the  dose  range  in  this  experiment  was 

349 greater compared to Pirgozliev et al. (2017), thus a physiological maximum response may be 

350 met between 7.5 and 30 g/kg of dietary INS supplementation. 
 

351 Dietary PHY supplementation in RP diets has been shown to improve INS concentration in 

352 blood but not overall growth performance (Cowieson et al., 2015). Conversely, in the same 

353 study the dietary PHY supplementation in LP diets did not affect plasma INS concentration 

354 but did improve overall growth performance variables. Similarly, Beeson et al. (2017) 

355 reported overall improvement  in growth performances of  PHY   fed birds, although  there  was 

356 PHY by available P interaction for INS in excreta. Thus, there was no apparent correlation 

357 between feed efficiency and INS and INS phosphate esters concentration in excreta. In 



 

 

358 addition, feeding LP diet resulted in a lower feed efficiency but higher INS concentration in 

359 ileal digesta. Sommerfeld et al. (2017) reported highest INS concentration in blood plasma of 

360 birds fed INS supplemented diets, approximately 35 % higher than the INS in blood plasma 

361 of PHY only fed birds, but there was no difference between the overall feed efficiency 

362 between these diets. 
 

363 In  conclusion,  this  experiment  has  confirmed  the  expected  biological  effects  of  diets that 

364 differ in available P contents. However, dietary INS did not affect bird growth performance, 

365 mineral  availability,  and  endogenous  losses.  There  was  no  observed  interaction  between 

366 available  P and INS in any of the  variables studied.  Further investigation of  plasma,  liver and 

367 muscle INS and its metabolites is warranted to distinguish dietary from tissue specific de- 

368 novo synthesised INS. 
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Table 1. Ingredient composition (g/kg ‘as fed’) of the basal experimental diets1 

 
 

Ingredients 

 

g/kg 

 

g/kg 

Corn 604 600 

Soybean meal 48 % CP 300 300 

Corn gluten meal 40 40 

Vegetable oil 20 20 

Salt 3.6 3.6 

DL Methionine 4.2 4.2 

Lysine HCl 3.0 3.0 

Limestone 15.2 6.7 

Dicalcium Phosphate 6.0 18.5 

Vitamin Mineral premix2 4.0 4.0 
 1000 1000 

Calculated values (as fed)   

Crude protein (N x 6.25), g/kg 216 216 

Crude fat, g/kg 47 47 

ME, MJ/kg 12.87 12.82 

Calcium, g/kg 9.4 9.2 

Av Phosphorus, g/kg 2.5 4.8 

Lysine 13.6 13.6 

M+C 11.4 11.4 

Determined values   

DM, g/kg 0.903 0.903 

GE, MJ/kg 16.87 16.80 

Crude protein (N x 6.25), g/kg 213 200 

Crude fat, g/kg 41 42 

Ca, g/kg 9.5 10.2 

P, g/kg 4.5 7.4 

Na, g/kg 1.2 1.4 

 
1The INS was added on the top of this formulation. 
2
The Vitamin and mineral premix contained vitamins and trace elements to meet the requirements specified by 

NRC (1994). All the experimental diets were designed to be low in P. The premix provided (units/kg diet): 

retinol 3600 µg, cholecalciferol 125 µg, α-tocopherol 34 mg, menadione 3 mg, thiamine 2 mg, riboflavin 7 mg, 

pyridoxine 5 mg, cobalamin 15 µg, nicotinic acid 50 mg, pantotenic acid 15 mg, folic acid 1 mg, biotin 200 µg, 

iron 80 mg, copper 10 mg, manganese 100 mg, cobalt 0.5 mg, zinc 80 mg, iodine 1 mg, selenium 0.2 mg and 

molybdenium 0.5 mg. 



 

 

391 Table 2. Determined myo-inositol (INS) and total P content in the experimental diets 

392 
 

Diets 
 

INS g/kg 

 

P g/kg 

LP 0.248 4.5 

LP + 3 g/kg INS 2.482 4.5 

LP + 30 g/kg INS 27.055 4.5 

RP 0.280 7.4 

RP + 3 g/kg INS 2.426 7.4 

RP + 30 g/kg INS 28.163 7.4 

393 

394 Analysis were performed in duplicates. 

 

395 
 

396 
 

397 



 

 

398 Table 3. Body weight (BW), average daily feed intake (ADFI), average daily gain (ADG) and 

399 gain to feed ratio (G:F) of broiler chickens fed the experimental diets. 

400 

Treatment factor 
BW kg/bird

 
(21d age) 

ADFI kg/bird 

(7-21d) 

ADG kg/bird 

(7-21d) 

G:F kg/kg 

(7-21d) 
 

av P (g/kg) 

2.5 0.594 0.766 0.461 0.601 

4.8 0.727 0.890 0.594 0.668 

SEM 0.0092 0.0105 0.0089 0.0085 

INS (g/kg) 

0 0.656 0.817 0.522 0.636 

3 0.662 0.838 0.530 0.628 

30 0.664 0.829 0.530 0.639 

SEM 0.0112 0.0128 0.0109 0.0104 

p-Value 

av P <0.001 <0.001 <0.001 <0.001 

INS NS NS NS NS 

av P x INS NS NS NS NS 

CV % 7.6 6.9 9.2 7.3 
 

401 

402 av P, calculated dietary available P; INS, added dietary myo-inositol; CV %, coefficient of 

403 variation. 

404 There were 10 observations per treatment, based on two birds per observation. 

405 Means within a column with no common superscript differ significantly. 

406 

407 

408 

409 

410 

411 



 

 

412 Table 4. Apparent metabolisable energy (AME), dry matter retention (DMR), nitrogen 

413 retention (NR), and fat digestibility (FD) of the experimental diets. 

414 

Treatment factor 
AME

 
AME:GE AME intake DMR NR FD 

 

 

 

 

 

 

 

 

 

 

 

 

 

415 

416 

417 av P, calculated dietary available P; INS, added dietary myo-inositol; CV %, coefficient of 

418 variation. 

419 There were 10 observations per treatment, based on two birds per observation. 

420 Means within a column with no common superscript differ significantly. 

421 

422 

423 

(MJ/kg DM)  (MJ)  

av P (g/kg) 
2.5 14.68 

 
0.870 

 
10.17 

 
0.761 

 
0.647 

 
0.774 

4.8 14.32 0.852 11.51 0.743 0.627 0.751 

SEM 0.067 0.0040 0.161 0.0042 0.0090 0.0056 

INS (g/kg)      

0 14.52 0.863 10.71 0.753 0.634 0.760 

3 14.57 0.865 11.02 0.756 0.641 0.766 

30 14.41 0.856 10.78 0.746 0.636 0.763 

SEM 0.082 0.0049 0.198 0.0051 0.0111 0.0069 

p-Value      

av P <0.001 <0.05 <0.001 <0.05 NS 0.006 

INS NS NS NS NS NS NS 

av P x INS NS NS NS NS NS NS 

CV % 2.5 2.5 8.2 3.0 7.8 4.0 

 



 

 

424 

425 

 
Table 5. Digestibility coefficients and retention of dietary Ca and P. 

426    
Digestibility Retention (g/d) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

427 

428 av P, calculated dietary available P; INS, added dietary myo-inositol; CV %, coefficient of 

429 variation. 

430 There were 10 observations per treatment, based on two birds per observation. 

431 Means within a column with no common superscript differ significantly. 

432 

433 

Treatment factor Ca P Ca P 

av P (g/kg)     

2.5 0.396 0.503 2.89 1.72 

4.8 0.549 0.524 4.99 3.47 

SEM 0.0111 0.0094 0.109 0.059 

INS (g/kg)     

0 0.473 0.507 3.89 2.53 

3 0.470 0.510 3.98 2.61 

30 0.475 0.524 3.94 2.64 

SEM 0.0135 0.0116 0.133 0.072 

p-Value     

av P <0.001 NS <0.001 <0.001 

INS NS NS NS NS 

av P x INS NS NS NS NS 

CV % 12.8 10.1 15.1 12.4 

 



 

 

434 

435 Table 6. Liver weight, concentration and retention of hepatic fat and N of the experimental 

436 birds. 

437 
 

Weight Concentration (g/kg) Retention (g) 

Treatment factor 
Liver

 
Liver Fat N Fat N 

 

 

 

 

 

 

 

 

 

 

 

 

 

438 

439 av P, calculated dietary available P; INS, added dietary myo-inositol; CV %, coefficient of 

440 variation. 

441 There were 10 observations per treatment, based on two birds per observation. 

442 Means within a column with no common superscript differ significantly. 

443 

 (g) (% body weight)  

av P (g/kg)       

2.5 19.3 3.1 11.8 12.2 0.22 0.24 

4.8 19.4 2.6 10.1 12.4 0.20 0.24 

SEM 0.40 0.08 0.34 0.05 0.007 0.005 

INS (g/kg) 
0 

 
18.4a 

 
2.7 

 
11.6 

 
12.2 

 
0.21 

 
0.22a 

3 19.7ab 2.8 10.9 12.3 0.21 0.24b 

30 20.1b 2.9 10.2 12.4 0.20 0.25b 

SEM 0.49 0.10 0.42 0.06 0.009 0.006 

p-Value       

av P NS <0.001 <0.001 <0.001 0.008 NS 

INS 0.048 NS 0.090 0.084 NS 0.028 

av P x INS NS NS NS NS NS NS 

CV % 11.4 15.6 17.3 2.2 18.2 12.2 

 



 

 

444 

445 Table 7. Sialic acid (SA) concentration in excreta, myo-inositol (INS) and alkaline 

446 phosphatase (ALP) in blood, and hepatic vitamin E of chickens fed the experimental diets. 

447 

 SA INS ALP Vitamin E 

Treatment factor 
(mg/g) (nmol / mL) (U/ml) (µg/g) 

av P (g/kg)     

2.5 0.756 834 5817 29 

4.8 0.768 653 13446 22 

SEM 0.0201 31.1 661.6 1.04 

INS (g/kg) 
0 

 
0.765 

 
584a 

 
8519a 

 
25 

3 0.743 663a 8620a 25 

30 0.781 982b 11756b 26 

SEM 0.0246 38.1 810.3 1.3 

p-Value     

av P NS <0.001 <0.001 <0.001 

INS NS <0.001 0.010 NS 

av P x INS NS NS NS NS 

CV % 14.4 22.9 37.6 22.6 

448 

449 av P, calculated dietary available P; INS, added dietary myo-inositol; CV %, coefficient of 

450 variation. 

451 There were 10 observations per treatment, based on two birds per observation. 

452 Means within a column with no common superscript differ significantly. 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 
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