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Abstract 
 

1. The current study was conducted to evaluate the influence of high phytase doses and 

xylanase, individually and in combination, on performance, blood inositol and real- 

time gastric pH in broilers fed wheat-based diets. 

2. In a 42 d experiment, a total of 576 male Ross 308 broiler chicks were allocated to 
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four dietary treatments. Treatments consisted of a 2 × 2 factorial arrangement, with 500  

or 2500 FTU/kg phytase and 0 or 16000 BXU/kg xylanase, fed in two phases (starter 0–

21; grower 21–42 d). Heidelberg pH capsules were administered to eight birds from 

each treatment group, pre and post diet phase change, with readings captured over a 

5.5 h period. 
 

3. At 21 and 42 d, birds fed 500 FTU/kg phytase without xylanase had on average 127g 

and 223 g lower weight gain than all other treatments, respectively (P<0.05). At 21 d, 

FCR was reduced (P<0.01) by 2500 FTU/kg phytase or xylanase, however, 42 d FCR 

was unaffected by enzyme treatment. Inositol content of plasma was twice that of the 

erythrocyte (P<0.001), with 2500 FTU/kg phytase tending to increase (P=0.07)  

inositol content in both blood fractions. 

4. Across all treatments, capsule readings ranged from pH 0.54 to 4.84 in the gizzard of 

broilers. Addition of 2500 FTU/kg phytase to the grower diet reduced (P<0.05) 

average gizzard pH from 2.89 to 1.69, whilst feeding xylanase increased (P<0.001) 

gizzard pH from 2.04 to 2.40. In contrast, digital probe measurements showed no 

effect of xylanase on gizzard pH, while addition of 2500 FTU/kg phytase increased 

(P=0.05) pH compared to 500 FTU/kg phytase with or without xylanase. 

5. These findings suggested that xylanase and high phytase doses have opposite effects 
 

on real-time gastric pH, while similarly improving performance of broilers. 
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Introduction 
 

The use of exogenous enzymes in feed is common practice in today’s poultry farming. Plant 

feedstuffs contain a variety of anti-nutritional factors (ANF), including non-starch 

polysaccharides (NSP) and phytate, which hinder diet utilisation and encourage the use of 
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enzymes that reduce the impact of ANF. The predominant enzyme in poultry diets is phytase, 

which is added to increase phytate hydrolysis and release phosphorus (P), thereby lowering   

the requirement for expensive inorganic phosphorus and reducing P excretion (Nelson et al., 

1971; Ravindran et al., 1995). The physiological importance of P is primarily associated to 

bone mineralisation (Bailey et al., 1986), and to a lesser extent growth performance   

(Waldroup et al., 2000; Yan et al., 2001). Recent developments have led to the application of 

higher phytase inclusion rates, referred to as superdosing (Walk et al., 2013), to exploit the 

‘extra-phosphoric effects’ of phytase by reducing the anti-nutritive influence of phytate on 

protein and mineral digestion and retention. Higher phytase doses have been shown to   

improve weight gain, FCR, meat yield, bone ash, phytate-P disappearance and inositol 

provision in poultry (Cowieson et al., 2011). 

Arabinoxylans, the major NSP fraction in wheat, are largely indigestible and reduce nutrient 

digestibility of the diet through increased digesta viscosity and reduced enzyme access to 

nutrients (Choct and Annison, 1992a; Choct and Annison, 1992b). Exogenous xylanases have 

been widely used in wheat-based diets to reduce digesta viscosity and improve nutrient 

utilisation and growth performance of poultry (Adeola and Bedford, 2004; Choct et al., 2004, 

Gao et al., 2008; Kiarie et al., 2014). Reports have indicated a link between increased gizzard 

weight and feed retention and xylanase supplementation (Masey O'Neill et al., 2014; Singh et 

al., 2012). Svihus (2014) speculated that a greater gizzard volume and retention time may 

29 
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effect of xylanase on gizzard pH in broiler chickens (Engberg et al., 2004; Lee et al., 2017c). 

Although substrate specificity of these enzymes is different, a number  of  studies  have 

reported synergistic responses to phytase and xylanase (Kühn et al., 2013; Schramm et al., 

2017; Selle et al., 2003; Selle et al., 2009), and hence the use of more than one enzyme is 

becoming routine in commercial practice. When used in combination, xylanase may enhance 

the availability of phytate within the food-matrix to phytase (Adeola and Cowieson, 2011), 

thereby improving precaecal nutrient and mineral digestibility. By manipulating the digestive 

process, it is possible that these enzymes can influence the digestive environment. In previous 

studies (Lee et al., 2017a; Lee et al., 2018), the ability of phytase to alter gastric pH using real-

time pH capsule technology has been demonstrated. However, pH response to xylanase over 

time has not yet been evaluated. Consequently, the objective of the current study was to 

investigate the effect of high phytase inclusion rates and xylanase supplementation on growth 

performance and real-time gastric pH measurements in broiler chickens. 

 
 

Materials and methods 
 

Animal trials were presented and accepted by the Drayton Animal Health Welfare and 

Ethical Review Body and conducted according to the Animals (Scientific Procedures) Act 

1986. 

Animal and housing 

A total of 576 male Ross 308 broiler chicks were supplied from a commercial hatchery (P D 

Hook Hatcheries Ltd, UK) in a 42-day experiment. Chicks were vaccinated against infectious 

bronchitis at the hatchery before arriving at the experimental housing unit in two batches, one 

week apart. Birds were raised in separate rooms to allow for sufficient pH capsule monitoring 

to be performed. On day 1, chicks were randomly allocated to one of four dietary treatments, 

54 
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whereby each treatment group had eight replicate floor pens (1.5 x 1.3m) bedded on wood 

shavings, each containing 18 chicks. Light was provided for 23 h for 1 d.o. birds, 20 h for 2 

d.o. and 3 d.o. birds, and 16 h for 4-42 d.o. birds. Light intensity was provided at 

approximately 40 lux on d 1, reducing to a target of 20 lux over the following 10 d. The 

temperature of the housing unit was set to 31°C at d 1, and gradually decreased to 20°C over 

the rearing period. Each pen of birds was weighed on days 0, 21 and 42 of the study. Any 
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birds withdrawn from study or died during the study were weighed manually when removed. 
 

Dietary treatments 
 

Treatments consisted of a 2 × 2 factorial arrangement, with 500 or 2500 FTU/kg phytase 

(modified E. coli-derived 6-phytase; Quantum Blue, AB Vista, Marlborough, UK) and 0 or 

16000 BXU/kg xylanase (family 11 xylanase derived from Nonomurea flexuosa; Econase 

XT25, AB Vista, Marlborough, UK). Treatment diets were wheat-soy based (Table 1), and 

formulated to meet or exceed the NRC (1994) nutritional requirements of broilers. 

 
 

Table 1 Composition of starter and grower broiler diets 

  Ingredient, g/kg Starter (0-21 d) Grower (21-42 d) 
Wheat  633.0  735.7 

79 

Soybean meal 48 308.5 205.2 
Soy oil 27.1 35.9 
Salt 3.9 3.9 
DL Methionine 1.8 0.8 
Lysine HCl 2.1 2.1 
Threonine 0.2 0.0 
Limestone 12.8 9.7 
Mono Ca Phosphorus 6.0 2.1 
Premix1 4.0 4.0 
Monteban G100 0.6 0.6 
Quantum Blue2 0.1 0.1 

Nutrient composition, % 
  

Crude protein 21.85 17.90 
ME, MJ/kg 12.45 12.97 
Calcium 0.98 0.78 
Phosphorus 0.71 0.59 
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  Chloride 0.33 0.33  

 
1 Starter premix- supplied per kg of diet: manganese, 100 mg; zinc, 80 mg; iron (ferrous 
sulphate), 20 mg; copper, 10 mg; iodine, 1.0 mg; molybdenum, 0.50 mg; selenium, 0.25 mg; 
retinol (vitamin A), 13.5 mg; cholecalciferol (vitamin D3), 5 mg; tocopherol (vitamin E), 100 
mg; thiamine (vitamin B1), 3 mg; riboflavin (vitamin B2), 10 mg; pyridoxine (vitamin B6), 3.0 
mg; cobalamin (vitamin B12), 30 mg; hetra,  5.0 mg;  nicotinic acid,  60 mg;  pantothenic acid, 
15 mg; folic acid, 1.5 mg; and biotin 251 mg. choline chloride, 250 mg. Grower premix- same 
as starter, except retinol (vitamin A), 10.0 mg. 
2Quantum Blue was included at 100g/t, with an expected activity of 500FTU/kg, into all diets. 
Phytase matrix applied: 0.15% available phosphorus, 0.165% calcium, 0.035% sodium. 

 
 

Phytase was included at 100 g/t (expected activity of 500 FTU/kg) in all diets, and assigned a 

matrix value of 0.15% available phosphorus, 0.165% calcium, 0.035% sodium. No matrices 

were used for the subsequent addition of enzymes. For treatments with 2500 FTU/kg phytase,   

a further 400 g/t (2000 FTU/kg) phytase was added to the basal diet. Diets were fed in two 

phases; starter crumb (0–21d) and grower pellet (21–42 d) and were  provided ad libitum   

along with water throughout the study. Analysed nutrients in starter and grower feed are   

shown in Table 2. 
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Capsule administration and data collection 

Four pens per treatment were selected for capsule dosing, with eight birds per treatment (four 

birds from each batch, two birds per pen) being randomly selected for capsule administration 

 
 

Phytate Phosphorus 
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Available Phosphorus 0.46 0.37  

Fat 4.12 5.04  

Crude fibre 2.60 2.50  

Methionine 0.50 0.34  

Methionine + Cysteine 0.88 0.67  

Lysine 1.28 1.00  

Tryptophan 0.27 0.22  

Threonine 0.80 0.62  

Sodium 0.19 0.19  
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on either day 19 or 20 (pre-diet phase change). The same eight birds were dosed again on  

either d 22 or 23 (post diet phase change). The Heidelberg pH Diagnostic System (fifth 

generation) from Heidelberg Medical, including a pH capsule and transceiver, was used to 

capture pH readings. Capsules were administered to birds as previously described (Lee et al., 

2017a). Capsuled birds were isolated into individual pens placed within the original treatment 

pen. This allowed the transceiver to remain in close proximity to the bird, thereby optimising 

data collection. Individual pens had separate feeders and drinkers with diets and water  

provided ad libitum during the monitoring period. 

Capsule readings were collected every second, over a 5.5 h period, and aggregated into 5 min 

averages prior to analysis. Readings of pH 0, owing to lost signal between the capsule and the 

transceiver, were removed from the data set as these were not considered ‘true’ values. Data 

anomalies were removed from the data set prior  to  statistical analysis, as  determined by 

values residing outside 3 x root mean square error (RMSE). 

Upon completion of the initial capsule readings, birds  were subsequently placed back into  

their respective original treatment pen. However, following the final capsule reading at 22 or  

23 d, birds were humanely killed by electrical stunning and exsanguination. Immediately, the 

gizzard  was located and a small incision made to allow a spear tip pH probe (Oakton, USA)   

to be inserted. Concurrent to pH readings taken by the probe, capsule readings were collected  

at the same time to assess method comparability. The spear-tip probe was calibrated using the 

same pH standards (pH 1.0 and 7.0) that were used to calibrate the Heidelberg capsules to 

maintain consistency between the two methods. 

Capsule Benchmarking 

At the end of the experiment (d 42) birds from the 500 FTU/kg phytase without xylanase 

treatment group were used in a benchmarking assessment to confirm the accuracy of the 

capsule readings when dosed for different periods of time. Eight birds were monitored in 

1  
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total, two from each group at the following time points: 0.5, 1.0, 1.5 and 2.0 h post dosing   

with the pH capsule. On completion of capsule dosing, birds were humanely euthanised and a 

spear-tip probe used to measure gizzard pH simultaneously to a capsule reading. 

Foot pad and litter scores 
 

External foot pad dermatitis (FPD) scores were recorded for all birds on day 21 and 42.    

Scores were assessed as follows: 1 = good condition, no lesions; 2 = mild superficial lesions  

are visible within a small area; 3 = moderate lesions, discolouration and thickening to the foot 

pad, not widespread; 4 = lesions over majority of  the  area,  maybe inflamed;  5 = severe 

lesions over majority of the area, may have signs of ulcers and/or scabs, haemorrhages, 

bleeding and inflammation. 

Litter quality, in terms of friability, was determined on day 21 and 42 for each pen. 

Throughout the experimental period, all pens received approximately equal quantities of 

shavings. Scores were determined using the following criteria: 1 = fully friable - no capping  

in any area; 2 = mostly friable - very slight capping (5-40%); 3 = friable litter area reduced 

(~50%); 4 = still small areas of friable litter - most of assessment area capped (60-75%); 5 = 

extensive capping over all of assessment area (>80%). 

Blood inositol 
 

Following euthanasia of capsulated birds, a terminal blood sample was collected into lithium 

heparin vacutainers. Erythrocytes were pelleted by centrifugation at 1,500 x g for 10 min and 

an aliquot was washed by mixing with 10 volumes of phosphate-buffered saline, followed by 

centrifugation at 1,500 x g for 10 min. Plasma samples were mixed with 2 volumes of ice-  

cold 1N-perchloric acid and held on ice for 20 min to allow precipitation of protein. Samples 

were centrifuged at 16,000 x g for 15 min at 4◦C and the supernatant diluted 50-100-fold in 

18.2 MOhm.cm water. Inositol was determined by HPLC pulsed amperometry (HPLC-PAD) 
 

on a Dionex DX-600 HPLC System fitted with two 6-port valves. Following this, 20 ml of 
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sample was injected onto a 4 mm x 50 mm CarboPac PA1 column (Dionex, UK) arranged in 

series with a 4 mm x 250 mm CarboPac MA1 column with 4 mm x 50 mm guard column of 

the same material. 

Initial flow rate of the 150 mM NaOH eluent was 0.4 ml/min. Once inositol had eluted from 

the CarboPac PA1 column onto the CarboPac MA1 column, the flow through the CarboPac 

-1 

14 169 PA1 column was switched at 1.5 min to 750 mM NaOH, at 0.4 ml min . Eluent (150 mM 
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NaOH) from the CarboPac MA1 column was directed to an ED50 electrochemical detector 

(Dionex) configured with a gold electrode and operating a standard Dionex carbohydrate 

waveform. After 11.5 min, the CarboPac PA1 column was returned to the 150 mM NaOH 

flow, in series with the MA1 column, conditioning the columns for a further 8.5 min before 

the next injection. Inositol was eluted at approximately 10.5 min. For determination of 

inositol concentration, peaks derived from inositol standards (0.01-0.2 nM in 20 µl) were 

used to create a linear calibration curve (r2>0.995) with a slope of approximately 100 

nC.min/nmol. 

Statistical analysis 
 

The effect of phytase and xylanase on performance parameters and pH readings were  

compared statistically by Least Squares ANOVA using JMP Pro 13.0 (SAS Institute Inc.,  

Cary, NC). When considering gastric pH changes, diet phase change was included in the 

model. When differences were significant, least square means were separated using Student’s t-

test. Mortality, footpad and litter scores were analysed using a non-parametric Wilcoxon  Test. 

Significance was accepted at P≤0.05, with trends (P<0.10) discussed. 

 
 

Results 
 

In-feed phytase activities were measured by ELISA (performed by AB Vista Lab Services) 

and were as expected (Table 2). 
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Table 3. At days 0-21, neither high phytase dose nor xylanase inclusion significantly  

influenced feed intake.  However, during days 21-42, feed intake was affected by a phytase  

and xylanase interaction (P = 0.03), with birds fed 500 FTU/kg phytase without xylanase 

having lower feed consumption than all the other treatments. Considering the entire 

experimental period (d 0-42), dietary treatment had no significant effect on feed consumption 

in birds. 
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TABLE 3 HERE 

 
 
 

An interaction between phytase and xylanase (P=0.04) was seen for BWG from d 0 to 21, 

whereby birds fed 500 FTU/kg phytase without xylanase gained less (127g on average) than   

all other treatments. From d 21-42, higher  doses of phytase  (2500 FTU/kg)  improved 

(P=0.04) BWG of broilers by approximately 70g, compared to diets with 500  FTU/kg   

phytase. Addition of xylanase, however, had no effect on BWG from d 21-42. Over the entire 

experimental period, an interaction between phytase and xylanase (P=0.04) was evident, with 

birds fed 500 FTU/kg phytase without xylanase having, on average, 223 g lower weight gain 

than all other treatments. 

From  d 0-21,  FCR was lowered (P<0.01)  by five points with addition of 2500 FTU/kg 

phytase and seven points with xylanase, although no interaction between these enzymes was 

shown. However, from d 21-42 and over the entire experimental period, dietary treatment had 

no significant effect on FCR or body weight corrected FCR. 

Mortality was not significantly affected by treatment at any age (Table 4). However, 
 

mortality was clearly higher in the starter phase than in the grower. It was noted that, in the 

3 189 Performance 
4   

5 190 The effect of phytase and xylanase dose on performance parameters in broilers is shown in 
6   
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first batch of chicks, 74% of mortalities occurred within the first week. Mortality was 13.5%    

in the starter phase for the first batch compared to 5.1% in the second batch. Once these birds 

were removed, mortality was reduced during the grower phase to around 3% for both batches, 

which is within the expected level. Therefore,  high  mortality in this trial was  attributed to 

poor chick quality in the first batch of chicks, and not dietary treatments. 
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1Means represent the average response of 8 replicate pens (144 chicks) per treatment. 
SEM, standard error of the mean 
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51 231 
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53 232 
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55 233 

and 3 for day 21 and 42, respectively, indicating that capping was not extensive in this trial. 

The majority of foot pad dermatitis (FPD) scores for all treatments ranged between 1 and 2, 

signifying overall good-to-mild footpad conditions in birds. At day 21, FPD scores were 

unaffected by treatment, however, at day 42 a xylanase effect was shown (P=0.01); feeding 

xylanase reduced the incidence of FPD scores of 5 (severe), compared to when no xylanase 

was supplemented. 

1  

2  

3 214 
4  

5 215 
6  

 

16 220 Table 4 Influence of phytase and xylanase on broiler mortality1 
17 221  

18    Mortality (%)  
19 Phytase Xylanase 
20 

 (FTU/kg) (BXU/kg) Days 0-21 Days 21-42 Days 0-42  

22 500 0 5.48 3.42 8.82 
23 2500 0 10.20 5.11 14.86 
24 500 16000 9.58 1.44 10.94 
25 2500 16000 12.04 1.39 13.36 
26 SEM 1.606 0.799 1.588 

28 
      

29 P-value    

30 Phytase 0.075 0.894 0.085 
31 Xylanase  0.309 0.068 0.850 
 

38 225 Litter and FPD scores 
39   

40 226 The effects of treatment on footpad and litter scores were determined at 21 and 42 d of age 
41   

42 227 (Table 5). Litter scores were unaffected by treatment and were given approximate scores of 2 
43   
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Blood inositol content 
 

Blood inositol content, measured in two separate blood fractions (erythrocyte and plasma), 

11 
238 

13 

14 239 

15  

16 240 

17  

18 241 
19  

20 242 
21  
22 243 
23 
24 

244 
25 

26 245 

with results presented in Table 6. Xylanase in the diet had no effect on inositol levels, and no 

interaction between xylanase and phytase was shown. Addition of 2500 FTU/kg phytase 

tended to increase (P = 0.056) blood inositol level, compared to 500 FTU/kg phytase. The 

fraction of blood analysed had a considerable effect (P<0.001) on inositol levels, with   

samples taken from the plasma having higher inositol content than that from erythrocytes. 

 
 

Table 6 Blood myo-inositol content in birds fed diets containing varying levels of phytase 
and xylanase1 

27 246    

28 

29 Blood fraction 
Phytase 
(FTU/kg) 

Xylanase 
(BXU/kg) 

Myo-inositol 
(nmol/mL) 

30 
31 Erythrocyte 
32 
33 

34 

35 
36 Plasma 
37 
38 

500 0 98.1 
2500 0 106.8 
500 16000 95.2 
2500 16000 136.4 
500 0 246.3 
2500 0 281.8 
500 16000 246.2 
2500 16000 294.4 

39 
RMSE 49.90 

41 

42 Erythrocyte 109.1 
43 Plasma 267.2 
44 
45 500 171.4 
46 

2500 204.9 

48 

49 0 183.3 
50 16000 193.0 
51 P-value 
52 Phytase 0.070 

54 Xylanase 0.584 
55 Blood fraction <0.001 

56 Phytase x Xylanase 0.528 
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Phytase x Xylanase x Blood fraction 0.780 
1 Means represent the average response of 4 birds per treatment 
RMSE, root mean square error 

 
 

Gizzard pH 
 

Changes in gizzard pH over the 5.5 h period in response to supplementing phytase and 

xylanase to broiler starter (Figure 1) and grower (Figure 2) diets were recorded. 

 
 

FIGS 1 AND 2 HERE 
 
 
 

Capsule readings ranged from pH 0.54 to 4.84 in the gizzard of broilers across all treatments 

(Table 7). Following euthanasia, capsules were located in the gizzard of broilers, except for  

one bird in the 500 FTU/kg phytase with xylanase treatment group where the capsule was 

found in the crop. Data from this bird was kept in the analysis as pH readings were within the 

expected limits for gastric readings, and therefore it is possible that the capsule had moved    

out of the gizzard during euthanasia. A feed phase x phytase interaction (P<0.001) was seen  

for gizzard capsule pH, whereby increasing phytase dose from 500 to 2500 FTU/kg had no 

effect on average gizzard pH (2.16 vs. 2.15) in birds fed starter diets. However, in birds fed   

the grower diets, increasing phytase to 2500 FTU/kg reduced gizzard pH (1.69 vs. 2.89) 

compared to 500 FTU/kg phytase diet. Addition of xylanase to the diet increased (P<0.001) 

gizzard pH (2.40 vs. 2.04), irrespective of phytase dose or diet phase. There was no    

interaction between phytase and xylanase, indicating that these enzymes were working 

independently of one another. 

 
 

Table 7 Influence of diet phase, QB and XT on gizzard pH as measured using pH capsule 
technology1 

3 Phytase x Blood fraction 0.635 
4 Xylanase x Blood fraction 0.842 
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(FTU/kg) 

 
XT 
(BXU/kg) 

 
Min Max 

Average 
gizzard 

pH 
6 
7 
8 Starter 
9 
10 

11 

12 

13 Grower 
14 
15 

500 0 0.96 3.64 1.92 
2500 0 0.54 4.09 1.92 
500 16000 1.02 4.33 2.40 
2500 16000 1.17 4.56 2.37 
500 0 0.91 4.74 2.72 
2500 0 0.61 3.24 1.59 
500 16000 1.79 4.84 3.05 
2500 16000 0.54 3.89 1.79 
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40 274 
41 
42 275 
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44 
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47 277 

RMSE 0.782 

Starter 2.15 
Grower 2.29 

 
500 2.52 
2500 1.92 

 
0 2.04 
16000 2.40 

P-value 
Phase 0.060 
QB <.0001 
XT <.0001 
Phase x QB <.0001 
Phase x XT 0.175 
QB x 

0.572 
XT 
Phase x QB x XT 0.720 

 

1 Means represent the average response of 8 birds per treatment 
 

Capsule readings were compared to a standard method using a spear-tip pH probe to take 

gizzard pH readings following euthanasia (Figure 3). In contrast to the capsule readings, pH 

probe measurements showed no effect of feeding xylanase on gizzard pH (2.06 vs. 1.96),  

while 2500 FTU/kg phytase increased (P=0.05) gizzard pH (2.21 vs 1.81) compared to a 500 

FTU/kg phytase diet, irrespective of xylanase inclusion. Simultaneous to probe  

measurements, capsule readings were taken to allow comparisons to be made between the 

methods. Out of the 32 birds sacrificed, 26 of the capsules had pH readings that plateaued at 
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0.50 at the time of simultaneous probe reading, indicating that the capsules had become 

unresponsive. 

FIG 3 HERE 
 
 
 

It would appear that the longer the monitoring period within the gizzard, the more likely the 

capsule was to become damaged, thereby prompting the 0.50 reading. This lead to a 

benchmarking experiment, that used eight 42 d birds from the 500 FTU/kg phytase without 

xylanase treatment group to dose capsules over 0.50 to 2.0 h prior to euthanasia, with pH 

recordings taken by both probe and capsule. Following euthanasia, all capsules were located 

in the gizzard of birds, except one bird dosed for 1.5 h where the capsule was located   

between the crop and gizzard. This bird gave a capsule reading of pH 2.62, however, data 

from this bird was removed from the dataset due to the capsule not being located in the 

gizzard. The range of difference between the capsule reading and the probe was -0.03 to 

+0.76, with the average difference across the eight birds being 0.30 (Figure 4). None of the 

capsules plateaued at pH 0.5, indicating that dosing up to 2 h in birds does not appear to 

cause damage to the capsules. 

 
 

FIG 4 HERE 
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hydrolysis of lower inositol phosphate (IP) esters created from phytate degradation, thereby 

reducing anti-nutritive effects on protein and mineral digestibility (Beeson et al., 2017, Yu et 

al., 2012). As a result, increasing phytase dose above industry standards has been shown to 

improve performance of broilers (Lee et al., 2017b, Shirley and Edwards, 2003, Walk et al., 
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2014, Walk et al., 2013). Supplementation of xylanase to wheat-based diets has shown 

improvements in broiler performance (González-Ortiz et al., 2016, Wu et al., 2004). This 

response has been accredited to reductions in intestinal viscosity and enhanced AME of feed 

(Annison and Choct, 1991, Selle et al., 2003, Wu et al., 2004). 

In the current study, day-old birds were 5 g lighter than expected (average weight 37g), 

although this did not appear to effect subsequent growth performance as suggested by dos 

Santos et al. (2010). Birds fed 2500 FTU/kg phytase, 16,000 xylanase or a combination of the 

two, gained significantly more weight than birds fed  500 FTU/kg  phytase  without  xylanase, 

at 21 and 42 days. A study by dos Santos et al. (2017) reported a significant increase in    

weight gain with 1500 FTU/kg phytase, while 16,000 xylanase  showed  a  tendency  to 

improve gain in 42 day birds, compared to feeding a standard phytase dose (500 FTU/kg)  

alone. However, the combination of 1500 FTU/kg phytase and xylanase had no additional 

benefit on the body weight gain of broilers. A similar response was reported by Karimi et al. 

(2013), suggesting that phytase and xylanase exert non-additive effects in diets based on corn 

and sorghum based of performance parameters. However, Kühn et al. (2013) showed that a 

combination of 1500 FTU/kg phytase and 16,000 BXU/kg xylanase significantly increased 

weight gain in 35d wheat-fed broilers, compared to feeding these enzymes individually. This 

suggests that xylanase may give additional benefits alongside phytase in birds fed wheat-   

based diets. 

This synergy may be explained by the morphology of the wheat grain. The primary storage 

site of phytate in wheat is in the aleurone layer (O'Dell and Boland, 1972), the cell walls of 

which are comprised essentially of b-glucans and arabinoxylans (Burton and Fincher, 2014). 

Xylanase may increase permeability of the aleurone layer by degradation of arabinoxylan in 

the cell walls (Parkkonen et al., 1997), thereby enhancing availability of phytate for 

interaction with phytase (Karimi et al., 2013). 
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In the current study, FCR at 21 d was significantly reduced in birds fed 2500 FTU/kg phytase 

and 16000 BXU/kg xylanase, compared to birds fed 500 FTU/kg phytase alone. However, at    

d 42, FCR was not significantly affected by higher phytase dose or xylanase. This may be 

explained by the fact that growth performance of all birds was approximately 16% ahead of 

breed standards, and FCR was around 12% lower at this age. This makes it extremely 

challenging to observe any performance response to treatment when birds are already 

exceeding performance expectations. Even so, the combination of 16000 BXU/kg xylanase  

and 2500FTU/kg phytase gave a four point reduction in FCR (non-significant) compared to   

the 500 FTU/kg without xylanase diet. This is a considerable reduction in already well 

performing birds, and, although not statically significant, is highly commercially relevant. 

Wet litter poses a major challenge for the poultry industry, with FPD among broilers being of 

increasing concern from both a welfare and economic standpoint. There is some evidence that 

exogenous phytase may reduce litter quality and  increase faecal  moisture  (Debicki-Garnier 

and Hruby, 2003). Phytate and its lower esters have anti-nutritive effects on protein and  

mineral digestion and absorption (Beeson et al., 2017, Yu et al., 2012), leading to an   

imbalance that can increase water intake and thus wet  litter.  Increasing  phytase  dose 

promotes the near-destruction of phytase and its lower esters (Walk et al., 2014, Walk et al., 

2013), thereby enhancing protein and mineral absorption and improving litter quality. In the 

current study, reasonable litter quality was observed for bird age and was unaffected by 

treatment. Consequently, incidence of FPD was relatively low in birds at 21 and 42 d of age. 

Exogenous xylanase has been widely acknowledged for its ability to resolve wet litter issues, 

particularly in birds fed wheat-based diets, through soluble NSP degradation and subsequent 

reduction in digesta viscosity and faecal moisture content. In the present study, feeding  

xylanase significantly reduced the incidence of severe FPD in 42 d.o. birds. Since litter 

quality was unaffected by xylanase, other factors such as altered health status and litter 
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microbial population (Kim et al., 2017, Shepherd and Fairchild, 2010) may explain these 

findings, or it may be that the measures of litter quality are not currently adequate. 

Blood inositol can be a useful indicator of complete dephosphorylation of dietary phytate by 

addition of exogenous phytase to the diet. In the body, inositol is involved in a number of 

signalling pathways that support the development and growth of animals (Lee and Bedford, 

2016). Several studies have  supported the benefits of  inositol either by dietary 

supplementation or through high phytase inclusion rates (Cowieson et al., 2015, Cowieson et 

al., 2013, Lee et al., 2017b, Sommerfeld et al., 2017, Walk et al., 2014), indicating that   

inositol may play an important role in animal  growth  response.  Previously,  inositol profile 

has been determined primarily using blood plasma samples (Cowieson et al., 2015,  

Sommerfeld et al., 2017). However, inositol has been detected in erythrocytes of day-old and  

21 d chickens (Oshima et al., 1964). In erythrocytes, myo-inositol appears to be a precursor   

for myo-inositol pentaphosphate (IP5), which interacts with haemoglobin to modulate affinity 

for oxygen (Isaacks et al., 1982; Lutz, 1980). In the current study, the fraction of blood 

analysed had a considerable effect on inositol levels, with plasma inositol being more than 

twice the concentration than in erythrocytes. This is in contrast to Oshima et al. (1964), that 

found higher concentrations of free myo-inositol in  erythrocytes  than  plasma. This 

discrepancy may be the result of differences in sensitivity between the previous and more 

current detection methods used. Nonetheless, increasing phytase dose to 2500 FTU/kg tended  

to  increase inositol concentration in both blood fractions compared to the standard 500  

FTU/kg phytase inclusion rate, suggesting more complete dephosphorylation of phytate. 

Addition of xylanase to the diet had no effect on blood inositol levels, as this enzyme would 

not be expected to directly affect phytate degradation. 

It is clear from the current study and previous work (Lee et al., 2017a, Lee et al., 2018) that 
 

relatively large fluctuations in gastric pH can be detected using real-time capsule technology. 
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The fact that pH is not kept at a consistent level illustrates that acid secretion is not static and 

questions the value of point-in-time measurements. Reports in both laying hens and broilers 

have shown no effect of adding xylanase to wheat- or corn-based diets on gizzard pH  

(Engberg et al., 2004; Lee et al., 2017c; Mirzaie et al., 2012). Similarly, in the present study, 

digital pH probe measurements indicated that inclusion of xylanase into wheat-soy diets had  

no significant influence on gizzard pH in broilers. However, in contrast, pH capsule readings 

demonstrated that inclusion of xylanase into the diet significantly increased gizzard pH from 

2.0 to 2.4, irrespective of phytase inclusion or diet phase. Morgan et al. (2017) reported a pH 
 

2.5 optimum for xylanase degradation of wheat arabinoxylan to short-chain xylo- 

oligosaccharides. Conditions may therefore have been optimised in the current study in terms 

of xylanase efficacy. 

Moreover, as measured by pH capsule technology, increasing phytase dose from 500 to 2500 

FTU/kg significantly reduced gizzard pH in birds fed grower diets. A similar finding was 

evident in a previous trial (Lee et al., 2018). It has been suggested that 500 FTU/kg phytase 

releases more Ca than P, while higher phytase doses increases P release beyond Ca, restoring 

this balance (Cowieson et al., 2011). It may be this rebalancing of minerals lowers gastric pH 

with 2500 FTU/kg phytase, which accounts for the improved solubility and digestibility of 

dietary nutrients shown with high  phytase inclusion rates (Manobhavan et al., 2016;  

Pirgozliev et al., 2012). However, capsule results were contradictory to pH probe 

measurements, showing an increase in gizzard pH with 2500 FTU/kg phytase compared to   

500 FTU/kg phytase. Other studies adopting point-in-time pH measurements have reported a 

lack of effect of administering phytase doses up to 2500 FTU/kg on gastric pH (Lee et al., 

2018; Nourmohammadi et al., 2011; Radcliffe et al., 1998) while, application of much higher 

phytase inclusion rates of 5000 FTU/kg has been shown to increase gizzard pH in broilers 

(Walk et al., 2012). Therefore, this may suggest that much higher enzyme doses are required 
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to enable detection of a noticeable response to treatment using current methods. Even so, the 

direction of response, particularly for phytase, is conflicting between capsule and probe 

methods. 

There are clear differences between the two methods used in this study to record gizzard pH, 

which may explain these opposing conclusions. For example, in-situ and ex-situ pH probe 

readings are taken at one point-in-time, once the animal has been sacrificed. Conversely, in 

vivo pH capsules take readings every second for several hours in the live animal, thereby 

providing a more representative outlook on real-time acid secretions in response to treated 

feed. It may be this ability to detect fluctuations in gastric pH that allows treatment responses 

to be realised, which would otherwise be missed using standard point-in-time methods. 

However, a limitation to the capsule technology is that only a restricted number of birds can   

be capsuled at the same time, due to the number of detection devices available. In order to 

determine the comparability between these two methods and the effect of euthanasia on   

gastric pH, capsule readings were taken simultaneous to probe measurements. However, the 

majority of capsules appeared to plateau at pH 0.50 at the point of probe measurement, 

suggesting potential damage to the capsule. In light of this, a benchmarking experiment was 

undertaken to confirm the accuracy of the capsule readings when dosed for different periods   

of time. The average pH difference between probe and the capsule readings was 0.30, with a 

range of -0.03 to +0.76. This suggested that digital probe measurements read higher than the 

capsule. This may be due to the positioning of the H+ ion sensor within the food bolus when 

measurements are taken. The orientation of the capsule cannot be controlled, however, taking 

into account the size of the capsule (2cm in length) compared to the size of the gizzard, it  

could be assumed that the H+ ion sensor would be located in the outer region of the food   

bolus, where exposure to gastric acid secretions is high. In contrast, the probe was inserted 

directly into the centre of the food bolus, the region less exposed to gastric secretions. 
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Therefore, the method of choice may be dependent on the research question, as to whether a 

change in acid secretion is to be determined or the pH of the food bolus. Since none of the 

capsules plateaued at pH 0.5, this would suggest that dosing up to 2.0 h did not cause damage  

to the capsules, as indicated after a 5.5 h dosing period. However, capsule readings obtained 

over 5.5 h in the live bird did not suggest capsule damage, and therefore it is possible that this 

damage only becomes apparent once the bird has been  killed.  Further  investigation  is 

required for intermediate dosing periods to confirm the potential maximum period for capsule 

administration. 
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Conclusions 

 

The current study demonstrated that body weight gain  and FCR of broilers can be improved   

by addition of higher phytase doses and xylanase in wheat-based diets. Increasing phytase   

dose had the tendency to increase inositol in the blood, suggesting more complete phytase 

degradation with higher phytase inclusion rates. Addition of  xylanase  and  higher  phytase 

dose appeared to have opposite effects on real-time gastric pH, as measured by capsule 

technology. Supplementation of xylanase increased gizzard pH, while feeding high phytase in 

the grower diet led to a reduction in gizzard pH. However, these findings were not supported  

by probe measurements, indicating inconsistencies between the methods. The fact that   

xylanase and high phytase doses had opposing effects on real-time gastric pH, while giving 

similar performance responses, indicated that gastric conditions were not solely accountable   

for animal performance. 
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15 

32 

27 
1 

2 

3 Figure 1. Effect of phytase and xylanase on gizzard pH in broilers fed starter diets. Phytase 
4 

5 (phy) was supplemented at 500 or 2500 FTU/kg, and xylanase (xyl) at 0 or 16000 BXU/kg. 
6 
7 Data points represent means of 8 birds per treatment. 
8 
9 
10 Figure 2. Effect of phytase (phy) and xylanase (xyl) on gizzard pH in broilers fed grower 
11 
12 diets. Phytase (phy) was supplemented at 500 or 2500 FTU/kg, and xylanase (xyl) at 0 or 
13 
14 

16000 BXU/kg. Data points represent means of 8 birds per treatment. 

16 
17 

18 Figure 3. Comparison of different methods, capsule or probe, on gizzard pH measurements in 
19 

20 broilers. Broilers were fed diets supplemented with phytase at 500 or 2500 FTU/kg and 
21 

22 xylanase at 0 or 16000 BXU/kg. Different letters denote significant difference for a specific 
23 
24 method at P<0.05, with trends (P<0.10) indicated by an asterisk. Error bars indicate ± 
25 
26 standard error of the mean. Capsule and probe data show means of 8 birds per treatment. 
27 
28 
29 Figure 4. Benchmarking assessment comparing capsule and probe pH measurements taken 
30 0.5, 1.0, 1.5 and 2.0 h post capsule application. Replicate birds per time point are indicated by 
31 letters ‘a’ and ‘b’. Data from one replicate bird following 1.5 h capsule dosing is missing due 

33 to the capsule being located between the crop and gizzard. 
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2 28 
3 
4 

5 

6 
7 Table 2 Expected and analysed diet composition for broilers 
8 
9 

Phytase (FTU/kg) Xylanase (BXU/kg) Calcium (%) Phosphorus (%) Crude protein (%) ME (MJ/kg) 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 
41 Accepted for publication 28 May 2018 
42 
43 
44  

46 

47 

Phase Target Analysed Target Analysed Target Analysed Target Analysed Target Analysed Target Analysed 

500 722 0 - 0.98 0.99 0.71 0.61 21.85 20.3 12.45 11.9 
2500 2390 0 - 0.98 1.20 0.71 0.65 21.85 21.8 12.45 11.8 

Starter 
500

 868 16000 12300 0.98 1.22 0.71 0.63 21.85 22.3 12.45 11.7 
2500 2260 16000 11800 0.98 0.79 0.71 0.57 21.85 22.4 12.45 11.9 

500 493 0 - 0.78 0.63 0.59 0.4 17.90 18.7 12.97 12.7 
Grower 

2500
 2500 0 - 0.78 0.66 0.59 0.44 17.90 18.6 12.97 12.4 

500 677 16000 14100 0.78 0.61 0.59 0.43 17.90 19.2 12.97 12.8 
2500 2670 16000 14100 0.78 0.67 0.59 0.43 17.90 19.3 12.97 12.5 

 



 

 

Page 33 of 36 British Poultry Science 
 

 
1 

2 29 
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5 Table 3 Effect of phytase and xylanase on broiler performance1 
6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 Means of 8 replicate pens per treatment; main effects given as least square means 
34 

a,b,c Data in a column not sharing a common superscript letter significantly differ at P<0.05. 
35 RMSE, root mean square error; FCR, feed conversion ratio (intake:gain) corrected for mortality and withdrawn birds; bwcFCR, FCR corrected for 
36 body weight 
37 
38 

39 

40 
41 Accepted for publication 28 May 2018 
42 
43 
44 
45  

47 

  

Feed intake (kg) 
 

Weight gain (kg) 
  

FCR 
 bwcFC 

R 
Phytase Xylanase        

(FTU/kg (BXU/kg Initial body Days Days Days Days Days Days Days Days Days Days 
) ) weight (g) 0-21 21-42 0-42 0-21 21-42 0-42 0-21 21-42 0-42 0-42 

500 0 36.6 1.28 3.79b 4.94 0.99b 2.25 3.24b 1.29 1.69 1.52 1.52 
2500 0 36.4 1.35 4.04a 5.24 1.10a 2.37 3.47a 1.23 1.71 1.51 1.51 
500 16000 36.5 1.34 3.99a 5.19 1.12a 2.32 3.43a 1.20 1.72 1.51 1.51 

2500 16000 36.5 1.33 4.01a 5.18 1.13a 2.36 3.49a 1.18 1.70 1.48 1.48 
 RMSE 0.00 0.098 0.135 0.280 0.063 0.100 0.115 0.033 0.059 0.060 0.060 

500 
 

3.7 1.31 3.89 5.06 1.05 2.29 3.34 1.25 1.70 1.52 1.52 
2500  3.6 1.34 4.02 5.21 1.12 2.36 3.48 1.20 1.70 1.50 1.50 

 
0 3.6 1.31 3.91 5.09 1.04 2.31 3.35 1.26 1.70 1.52 1.52 

 16000 3.6 1.34 4.00 5.18 1.12 2.34 3.46 1.19 1.71 1.50 1.50 

P-value 
           

Phytase 0.621 0.322 0.012 0.149 0.006 0.041 0.002 0.001 0.987 0.384 0.383 
        <0.00    

Xylanase 0.981 0.540 0.089 0.364 0.001 0.415 0.011 1 0.489 0.293 0.292 
Phytase x Xylanase 0.836 0.286 0.025 0.124 0.044 0.287 0.044 0.063 0.317 0.724 0.725 
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3 

4 

5 
6 Table 5 Effect of phytase and xylanase on broiler litter and footpad dermatitis scores at 21 and 42 days1 
7 
8 

  Footpad score  

10 Day 21 Day 42 
  

11 Number of birds scored Number of birds scored 

 

 
30 

 
 
 
 
 
 
 

Litter score 

12 Phytase Xylanase Score Score Score Score Score 
13 

 (FTU/kg) (BXU/kg) 1 2 3 4 5  

 
  

Score Score Score Score Score 

  1 2 3 4 5  Day 21 Day 42 
 

15 500 0 71 25 4 0 0 4 46 33 14 4 2.0 3.1 
16 2500 0 70 19 7 2 1 10 43 28 13 5 2.1 3.3 
17 

500 16000 63 29 4 3 0 13 46 28 12 1 2.0 3.1 

19 2500 16000 63 31 4 2 1 20 54 20 4 1 2.0 3.0 
20 
21 P-value 
22 Phytase 0.705 0.663 0.447 0.342 0.151 0.143 0.860 0.110 0.186 0.735 0.317 1.000 
23 Xylanase 0.264 0.437 0.983 0.922 1.000 0.053 0.338 0.238 0.110 0.009 0.317 0.651 
24 1Means represent the average response of 8 replicate pens (144 chicks) per treatment. 
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