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Abstract

We present a hitherto unknown polar representation of complexified quaternions (also known as
biquaternions), also applicable to complexified octonions. The complexified quaternion is factored into
the product of two exponentials, one trigonometric or circular, and one hyperbolic. The trigonometric
exponential is a real quaternion, the hyperbolic exponential has a real scalar part and imaginary vector
part. This factorisation is shown to be isomorphic to the polar decomposition of linear algebra.

1 Introduction

A complex number may be expressed in polar form using the famous formula eiθ = cos θ + i sin θ due to
Euler. The polar form of a quaternion [13, p 56] is an important representation because it generalises Euler’s
formula to cases where the square root of −1 is a quaternion. That quaternions could be expressed in polar
form was already clear to Hamilton in 1843 [6, Eqn: (s)] because he stated that, like complex numbers, they
could be written in terms of a cosine and a sine of a single angle.

The polar form of biquaternions or complexified quaternions is a more recent discovery based on the
roots of −1 in the biquaternions [9]. Several variant polar forms were set out in [11]. However, all of these
previously known polar forms are based on a single exponential with a root of −1. De Leo and Rodrigues [1]
discussed polar forms of biquaternions and described a single polar form containing the product of two
exponentials. However, the first of the exponentials was complex, and was therefore just representing a
‘complex modulus’ for the biquaternion. Both exponentials in their polar form were based on roots of −1.
Dorst and Valkenburg [2] worked out a polar decomposition of rotors in the conformal geometric algebra
Cl(4, 1), thus showing that polar decompositions can exist in hypercomplex algebras.

In this paper, we show that it is possible to factorise a unit biquaternion into a polar form as the product
of two exponentials: one a quaternion exponential containing a root of −1 and a real angle, and the other
a biquaternion exponential containing a root of +1 and again a real angle. The latter is a hyperbolic
exponential based on hyperbolic cosine and sine functions, as we show in Lemma 1. The more general
case of a biquaternion which is not of unit norm requires that we consider the complex semi-norm of the
biquaternion, which can of course be done by fairly trivially including a third (complex) exponential with a
real scalar modulus.

The factorisation is developed in this paper using direct algebraic manipulation of the biquaternion.
However, it is also shown that this factorisation is equivalent (in fact isomorphic) to the polar decomposition
[4, § 4.2.10] or [7, § 13.3-4] of linear algebra which factorises a matrix into the product of a non-negative
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Hermitian matrix and a unitary matrix. Thus if we represent the biquaternion using a 4× 4 complex matrix
based on the usual matrix representation of quaternions [14], then the polar decomposition of the matrix
yields the matrix representation of the two factors of the biquaternion, a result which has been verified
computationally using [12]. This is why we call the decomposition/factorisation presented in this paper the
polar decomposition of a complexified quaternion. In section 6 we discuss the existence of the decomposition
for complexified octonions, which follows exactly the same reasoning and algebra, and therefore does not
need to be explicit. This is remarkable as it is well-known that there can be no matrix representation of the
octonions (because octonion multiplication is not associative, whereas matrix multiplication is).

2 Notation

We use notation consistent with two earlier papers on biquaternions [10, 11] and also make use of some
results and concepts from these papers.

We write full quaternions as ordinary variables, thus q; pure quaternions with zero scalar part as bold
Greek variables, thus α; matrices in uppercase roman font thus: A. A quaternion in Cartesian form is
q = w + xi+ yj + zk, where i, j,k are the usual quaternion basis elements. We use I for the complex root
of −1 in order to distinguish it from the quaternion i. The notation S(q) = w denotes the scalar part of a
quaternion, and V(q) = xi+ yj + zk denotes the vector part. Quaternion conjugate (negation of the vector
part) is denoted by an overbar: q = w − xi− yj − zk = S(q)−V(q). Complex conjugation is indicated by
a superscript star: q? = w? + x?i+ y?j + z?k.

The inner product of two quaternions is denoted 〈p, q〉 [13, § 2.5] and can be computed as the sum of the
products of corresponding coefficients of p and q. The norm of a quaternion is the sum of the squares of the
coefficients: ‖q‖ = w2 +x2 +y2 + z2, and is also given by 〈q, q〉. The modulus is the square root of the norm:
|q| =

√
‖q‖. When the coefficients are complex (as they are in biquaternions), the norm may be complex,

and is strictly referred to as a semi-norm[11, § 3].

3 Existence and computation of the polar factorisation

We require the following result, which although straightforward, is not commonly listed in mathematical
reference works in the full form given here. The first and third cases, but not the middle case, may be found
in [3, Equations (2.3) and (2.25)].

Lemma 1. Let ν be a hypercomplex 1 root of −1, 0, or +1, that is either: |ν| = 1 and ν2 = ±1, or ν2 = 0
(in this case |ν| = 0). Then the Euler formula has the following more general form:

eνθ =


cos θ + ν sin θ, ν2 = −1

1 + νθ, ν2 = 0

cosh θ + ν sinh θ, ν2 = +1

(1)

Proof. All three cases follow easily from the series expansions of the exponential function and the trigono-
metric and hyperbolic functions (see, for example Korn and Korn [7, E-7(1-4)]), and the stated properties
of ν2.

We also require a second result which we have not been able to find in the literature (a related result is
of course very well-known: that the quotient of two unit pure quaternions is a full quaternion, and if the two
unit pure quaternions are orthogonal, the quotient is a unit pure quaternion). The result is a special case of
the more general rotation in 4-space.

Lemma 2. The quotient of two orthogonal full quaternions is a pure quaternion.

1It is of course possible for this formula to work for other types of root than hypercomplex numbers (for example, matrices).
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Proof. Let m and n be unit full quaternions which are orthogonal. Thus S(mn) = 〈m,n〉 = 0 by [8,
Proposition 10.8]. S(mn) = 0 implies that

mn = V(mn)

The quotient of the two quaternions is mn/ ‖n‖. Hence we have shown that the quotient of m and n is a
pure quaternion.

Remark: it follows from the fact that the quaternions are a division algebra that if m and n are orthogonal
and are both of unit modulus, their quotient will be a unit pure quaternion.

We consider unit biquaternions in what follows, with unit (and therefore real) semi-norm [11, § 3.3]. (The
semi-norm is a complex generalisation of the norm of a quaternion, computed by the same method — the
square root of the sum of the squares of the four complex coefficients.) Since the semi-norm is complex, it
can be represented in the usual polar form with a real modulus and a real angle. As we will see later, the
factorisation will work with a general biquaternion with non-unit semi-norm, in which case the complex semi-
norm will scale the result. Therefore, in the theorem below, we assume a biquaternion with unit semi-norm
for simplicity, and without loss of generality.

Theorem 1. An arbitrary biquaternion with unit semi-norm q may be factored as follows:

q = eαθteIβθh (2)

where α and β are pure real unit quaternions (and therefore α2 = β2 = −1); Iβ is a pure imaginary unit
biquaternion (and therefore (Iβ)2 = +1). The two angles θt and θh are real, the subscripts standing for
trigonometric and hyperbolic respectively.

In what follows we distinguish between the factors by referring to them as the trigonometric (eαθt) and
hyperbolic (eIβθh) factors. An alternative factorisation exists with the factors reversed, since they do not
commute, in general. The trigonometric factor is real, since α and θt are real, and it is invariant to the
ordering of the factors. The hyperbolic factor has a rather special structure: it has a real scalar part, and an
imaginary vector part. This can be seen by inspection of the second line of equation (1). The scalar part of
the hyperbolic factor is the modulus of the real part of q. The imaginary part of the hyperbolic factor can
be obtained by left division of the trigonometric factor into the imaginary part of q, but it is also possible
to divide by the trigonometric factor on the left of q to obtain the entire hyperbolic factor.

Any biquaternion (with the exception of divisors of zero), may be normalised to unit form by dividing by
its semi-norm. We deal with the special case of a divisor of zero later in the paper: the factorisation works
even in this case, but one of the factors will be a divisor of zero.

Proof. The proof assumes a general biquaternion with unit semi-norm, from which by a series of algebraic
steps, we obtain the right-hand side of equation 2 .

Represent an arbitrary biquaternion q with unit semi-norm in the complex form II of [11, Table 2], that
is, in the form of a complex number with real quaternion coefficients:

q = qr + Iqi (3)

where qr and qi are real quaternions. Then write the real and imaginary parts in the usual quaternion polar
form:

q = |qr| eµrθr + I |qi| eµiθi (4)

where µr and µi are unit pure quaternion roots of −1, and θr and θi are real.
We now use two consequences of the fact that ‖q‖ is real (because ‖q‖ = 1). These are given in [10,

Lemma 1]. Firstly, we have that ‖qr‖ − ‖qi‖ = 1, or equivalently, |qr|2 − |qi|2 = 1, which requires that
|qr| = coshψ and |qi| = sinhψ for some ψ to be determined. Secondly, 〈qr, qi〉 = 0 which implies that
eµrθr ⊥ eµiθi . Two orthogonal unit quaternions have a quotient that is a unit pure quaternion. This follows
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from Lemma 2. Therefore we can introduce an unknown unit pure quaternion ν, such that ν2 = −1, and
write eµiθi = eµrθrν. Making use of both these consequences, we can write:

q = coshψ eµrθr + I sinhψ eµrθrν (5)

which can be factored as follows:

q = eµrθr (coshψ + Iν sinhψ) (6)

or, by Lemma 1

q = eµrθreIνψ (7)

which matches the theorem as stated with the obvious identifications between variables.

A simple algorithm to compute the factorisation follows directly from Equation 6 — the trigonometric
factor is obtainable from the real part of the biquaternion, since qr = eαθt cosh θh (using the variables
in Theorem 1). Normalising this removes the hyperbolic cosine to give a unit quaternion which is the
trigonometric factor. The hyperbolic factor can then be obtained by division (using multiplication by the
inverse of the trigonometric factor, the inverse being the quaternion conjugate, since the trigonometric factor
is a unit quaternion). This is the algorithm implemented in the Quaternion Toolbox for matlabTM [12,
function: polar], for both biquaternions and complexified octonions, which has been used to verify the
results in this paper.

To conclude this section we present a worked numerical example. We take q = 1 + (1 + 1I)i+ (1− 1I)j,
which has ‖q‖ = 1. The real part is qr = 1 + 1i + 1j which has ‖qr‖ = 3. The orthogonal imaginary part
is qi = i − j, which has ‖qi‖ = 2, so ‖q‖ = ‖qr‖ − ‖qi‖ = 3 − 2 = 1. Hence, the trigonometric factor
is eαθt = (1 + 1i+ 1j) /

√
3 from which α = (i+ j) /

√
2 and tan θt =

√
2 may be obtained by the usual

quaternion formulae.
To obtain the hyperbolic factor we need to divide q on the left (or right if we desire the alternative

factorisation) by the trigonometric factor. Taking the conjugate of the trigonometric factor we have:

eIβθh = e−αθtq =
1√
3

(1− 1i− 1j) (1 + (1 + 1I)i+ (1− 1I)j) (8)

=
1√
3

(3 + 1Ii− 1Ij + 2Ik) (9)

from which it is possible to find β = 1√
3

(
(i− j) /

√
2 +
√

2k
)
, and cosh θh =

√
3. That these results are

correct may be verified numerically using [12] by substitution into (2).

4 Divisors of zero and degenerate cases

The previous section assumed that the biquaternion to be factored had unit (real) norm. In fact the
decomposition can be defined even in the case of divisors of zero (with some provisos as we see below), and
for degenerate cases of biquaternions. We start by setting out the general case where the quaternion to be
factored does not have unit norm:

q = |q| eαθteIβθh

where of course |q| may be complex, and we will consider in turn the cases where q is wholly real, wholly
imaginary, or a divisor of zero:

• If q is a real quaternion, the decomposition is trivial: |q| is real, the trigonometric factor eαθt is a unit
version of q, and the hyperbolic factor eIβθh = 1 must be unity. The polar decomposition therefore
reduces to the well-known polar form of a real quaternion.
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• If q is an imaginary quaternion (a biquaternion with zero real part), the decomposition is again trivial:
|q| is imaginary, and after normalising the biquaternion, q/|q| is real and of unit modulus. Therefore
the trigonometric factor eαθt = q/|q|, and again the hyperbolic factor must be unity.

• If q is a divisor of zero, there must be non-zero real and imaginary parts. We cannot extract the
semi-norm or modulus (since the semi-norm of a divisor of zero is zero) [10, § 3]. However, we can
extract the real part of q and normalise it. This gives us a trigonometric factor of unit modulus, and
of course a real modulus which we may choose to keep as a separate factor or to combine with the
hyperbolic factor. Dividing q by the trigonometric factor yields the hyperbolic factor which will be a
divisor of zero.

A numerical example will make this clearer. Let q = 1
2 (1 + 1i+ 1Ij − 1Ik). This is an idempotent,

meaning that q2 = q, and it has a vanishing semi-norm: ‖q‖ = 0. The real part of q is qr = 1
2 (1 + 1i),

with |qr| = 1√
2
. Normalising this gives eαθt = 1√

2
(1 + 1i) from which α = i and θt = π/4. We now

choose to divide out of q the real part, including its modulus, to obtain the hyperbolic factor. Therefore
eIβθh = 1√

2
(1− 1i) q = 1√

2
(1− 1Ik) which is a divisor of zero. Dividing this result by

√
2 gives the

idempotent value 1
2 (1− 1Ik). Examination of the hyperbolic factor reveals that it is not possible to

find θh since there is no value of θh for which cosh θh = sinh θh other than at infinity. However, it is

easy to verify that q =
√

2
(

1√
2

(1 + 1i)
) (

1
2 (1− 1Ik)

)
, the three factors being, from left to right, a

real scale factor, the real trigonometric factor (which may also be written as eiπ/4), and the hyperbolic
(idempotent) factor.

5 Relation to the polar decomposition of linear algebra

We have used the name polar decomposition in this paper for the result in Theorem 1 for good reason: it is
isomorphic to the polar decomposition of matrices in linear algebra [4, § 4.2.10] or [7, § 13.3-4(3)]. In order to
demonstrate the isomorphism for the case of biquaternions we need two concepts. Firstly, quaternions have
a 4× 4 matrix representation, as given, for example, by Ward [13, § 2.8]. A quaternion q = w+ xi+ yj + zk
is represented in matrix form as2: 

w −x −y −z
x w −z y
y z w −x
z −y x w


This means we can represent a biquaternion using a 4× 4 complex matrix and the product of two biquater-
nions by the matrix product of their equivalent matrices. Secondly, we need the equivalences between the
biquaternion operations of quaternion conjugate and complex conjugate, and the corresponding operations
on the matrix representation. These are as follows:

• the quaternion conjugate (the negation of the vector part) corresponds to the matrix transpose as can
be seen by inspection of the matrix given above;

• the complex conjugate (of the four complex coefficients) of the biquaternion corresponds to the complex
conjugation of all the matrix elements.

The Hermitian transpose of linear algebra, which both transposes the matrix and conjugates the complex
elements of the matrix, corresponds to the application of both types of conjugation: the quaternion conjugate
and the complex conjugate of the coefficients of the biquaternion.

Now we note that in the linear algebra case of the polar decomposition the matrix corresponding to
our hyperbolic factor is obtained by the following expression [7, § 13.3-4(3)], where A is the matrix to be

2The transpose of this matrix is also valid, one or other must be chosen by convention.
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factorised3:
√

A†A, where the square root denotes a matrix square root, and † denotes a Hermitian transpose.
Given the equivalences noted above, in order to show that the factorisation presented in this paper is
isomorphic to the linear algebra polar decomposition, it is sufficient to show that the hyperbolic factor can
be obtained using the same formula (with equivalent operations substituted for the matrix operations). We
do this by substitution of the result in Theorem 1 into the formula just stated, replacing the Hermitian
transpose of linear algebra by the double conjugation of quaternion and complex conjugation:√

(eαθteIβθh)
?
eαθteIβθh (10)

We now show that this reduces to the hyperbolic factor alone. The complex conjugate has no effect on the
trigonometric factor eαθt because α and θ are real, but it does change the sign of I in the hyperbolic factor
eIβθh (recall that β is also real, so it does not change β):√

(eαθte−Iβθh)eαθteIβθh (11)

The quaternion conjugate applied to a product reverses the order of the terms and conjugates each: pq = q p.
Further, the quaternion conjugate of an exponential changes the sign of the exponent. Therefore, applying
the conjugate to the bracketed exponentials, we have:

√
eIβθhe−αθteαθteIβθh (12)

Finally, the middle pair of trigonometric exponentials cancel, and the pair of hyperbolic exponentials reduce
under the square root to:

eIβθh (13)

which is the hyperbolic factor in Theorem 1. As noted in Section 3, it is simpler and faster to compute the
hyperbolic factor by dividing out the trigonometric factor rather than by using the expression

√
q?q.

Although the polar decomposition presented in this paper is isomorphic to the polar decomposition of
linear algebra, it is worth pointing out that the algorithm for computing the polar decomposition in this
paper is inevitably considerably faster than the linear algebra case, as is always the case with quaternion
computations: the matrix representation has 4-fold redundancy, and requires both more memory, and a
greater number of numerical operations; it is also not guaranteed that the special form of the matrix will be
preserved accurately over a series of computational steps.

We now return to the numerical example with which we concluded § 3, but this time in its isomorphic
matrix form. Recall that we took q = 1 + (1 + 1I)i+ (1− 1I)j. In isomorphic matrix form this biquaternion
is:

Q =


1 −1− 1I −1 + 1I 0

1 + 1I 1 0 1− 1I
1− 1I 0 1 −1− 1I

0 −1 + 1I 1 + 1I 1

 (14)

The matrix representation of the trigonometric factor can be found directly from Q by taking the real part
of Q and dividing by its 2-norm4, which gives:

T =
1√
3


1 −1 −1 0
1 1 0 1
1 0 1 −1
0 −1 1 1

 (15)

which is the matrix representation of the trigonometric factor found in § 3.

3An alternative with the Hermitian transpose on the right is also possible, corresponding to the alternative ordering of the
factors in Theorem 1.

4This method is specific to the biquaternion case, and is not applicable to the polar decomposition of matrices in general.
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The matrix representation of the hyperbolic factor can be obtained by H = T−1Q or by H =
√
Q†Q,

either of which gives the following result, which can be seen on inspection to be isomorphic to the hyperbolic
factor given in § 3:

H =
1√
3


3 −1I 1I −2I
1I 3 −2I −1I
−1I 2I 3 −1I

2I 1I 1I 3

 (16)

These matrix results may be verified using [12]5.

6 Octonion case

Without formal proof, the decomposition presented here works also for octonions with complex coefficients
(complexified octonions). This is because all of the algebraic steps presented in the proof of Theorem 1 are
valid for octonions, and at no point does a product of more than two octonions occur, which would cause
problems with associativity.

It is well-known that the octonions do not have a matrix representation (because the matrix product
is associative, matrices cannot represent the multiplication of octonions). Therefore the correspondence
between the polar decomposition presented in this paper and the polar decomposition of linear algebra, as
presented in Section 5, cannot be valid.

We present an example, and as in the case of the examples presented earlier for biquaternions, this
example may be verified numerically using [12, function: polar]. At this point we introduce additional
notation for the octonion basis elements, using i, j,k as before for biquaternions, and l,m,n,o for the
further four needed to complete the 7-dimensional octonion basis6.

Let p = (1 + 2i+ 3j+ 4k+ 5l+ 6m+ 7n+ 8o) + I(8 + 7i+ 6j+ 5k+ 4l+ 3m+ 2n+ 1o). This octonion
has norm ‖p‖ = 240I and modulus |p| = 2

√
30(1 + 1I). The polar factorisation gives the following results

(computed numerically, and then converted to the form given using the matlabTM symbolic toolbox):

• Semi-norm: ‖p‖ = 240I and modulus: |p| = 2
√

30(1 + 1I);

• Trigonometric factor: 1
2
√
2
(1 + 1i+ 1j + 1k + 1l+ 1m+ 1n+ 1o);

• Hyperbolic factor: 1
2
√
15

(9− I(4l− 1m− 2o)).

From these values we can obtain:

• α = 1√
7

(1i+ 1j + 1k + 1l+ 1m+ 1n+ 1o),

• tan θt =
√

7,

• β = −1√
21

(4l+ 1m+ 2o)

• tanh θh =
√
7

3
√
3

Substitution of these values into (2) will confirm their correctness using [12].

5The matrix representation of a biquaternion q can be computed using the function adjoint(q, ’real’).
6This is a slight but common abuse of notation — the quaternion and octonion i, j,k should be regarded as distinct.
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