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We study the integrable nonlocal nonlinear Schrödinger equation proposed by Ablowitz and Musslimani, 
that is considered as a particular example of equations with parity-time (PT ) symmetric self-induced 
potential. We consider dynamics (including collisions) of moving solitons. Analytically we develop a 
collective coordinate approach based on variational methods and examine its applicability in the system. 
We show numerically that a single moving soliton can pass the origin and decay or be trapped at the 
origin and blows up at a finite time. Using a standard soliton ansatz, the variational approximation can 
capture the dynamics well, including the finite-time blow up, even though the ansatz is relatively far from 
the actual blowing-up soliton solution. In the case of two solitons moving towards each other, we show 
that there can be a mass transfer between them, in addition to wave scattering. We also demonstrate 
that defocussing nonlinearity can support bright solitons.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following Ablowitz-Musslimani nonlocal non-
linear Schrödinger (NLS) equation [1]

iψt(x, t) + 1

2
ψxx(x, t) + σψ2(x, t)ψ∗(−x, t) = 0, (1)

where ψ ∈ C is a complex valued function of the real variables 
t ∈ R+ and x ∈ R, and ∗ denotes complex conjugation. The non-
linearity coefficient is denoted by σ where the value can be either 
+1 or −1, indicating the focusing or defocussing nonlinearity, re-
spectively. The equation is integrable under the inverse scattering 
transform as it admits a linear (Lax) pair representation and pos-
sesses an infinite number of conservation laws [1–4].

Equation (1) has the symmetry that it is invariant under the 
combined action of parity (P) x → −x and time (T ) t → −t , 
ψ(x, t) → ψ∗(x, t) operation, i.e., the governing equation is parity-
time (PT ) symmetric. The concept of PT −symmetry itself was 
formulated by Bender and Boettcher [5–7], that has gained a lot 
of attention in the last decade [8,9]. It offers a ‘violation’ to the 
standard postulate that the Schrödinger Hamiltonian operator be 
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Dirac Hermitian and yet can have real eigenvalues up to a criti-
cal value of the complex potential parameter. Writing the nonlo-
cal NLS equation (1) as a Hamiltonian with a complex potential 
V (x, t) = σψ(x, t)ψ∗(−x, t), then the self-induced potential V (x, t)
can be straightforwardly shown to be PT -symmetric. It is worth 
noting that although the introduction of PT -symmetric models 
was motivated by the quantum-mechanical setting, the concept 
has been extended to a plethora of physical settings, see the re-
views [8–10]. However, for the nonlocal NLS equation (1), its phys-
ical relevance and experimental realisation are still a challenge.

The classical NLS equation is recovered when the nonlocal non-
linear factor ψ∗(−x, t) is replaced by ψ∗(x, t). Because ψ∗(−x, t) =
ψ∗(x, t) when ψ(x, t) is even, this tells us that even solutions to 
the classical NLS equation will also be solutions to (1). The non-
local NLS equation (1) can also be obtained from the defocussing
NLS equation under the variable transformation x → ix and t → −t
[11]. The equation admits periodically blowing-up one soliton so-
lution [1]. However, initial conditions with rapidly decaying tails 
may not necessarily lead to blow-up [12].

Various soliton solutions of the nonlocal NLS equation (1) have 
been obtained, exploiting the integrability of the equations, such 
as dark and antidark solitons [13,14], standing waves in terms of 
elliptic functions [15], and rational solutions both in the focus-
ing and defocussing nonlinearity [16,17]. Note, however, that the 
study of soliton dynamics, especially interactions between solitons, 
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has been done only using Darboux transformation [13,16,18,19] or 
via a combination of Hirota’s bilinear method and the Kadomtsev-
Petviashvili (KP) hierarchy [14], which are limited to specific com-
binations of parameter values and initial conditions. A general 
study of interactions of many bright, dark and antidark solitons 
has been presented recently, where again the same transformation 
method was used [20]. This paper addresses the problem of soliton 
dynamics numerically as well as semi-analytically using variational 
approximation (VA), which enables us to move beyond the limita-
tion.

VA has been a standard method in the study of solitons in NLS 
equation [21]. However, it has not been applied and analysed for 
the nonlocal NLS equation (1). Here, we apply VA for the nonlocal 
NLS equation (1) using the standard sech or Gaussian ansatz [21]. 
We show that VA yields excellent agreement with the numerics 
for the dynamics of single localised waves. This includes the blow 
up one-soliton solution, which is quite interesting as our ansatz is 
relatively far from the actual solution. For soliton interactions, we 
observe that VA is only good prior to collisions at the origin as the 
centre of symmetry.

In Sec. 2, we consider dynamics of single localised solutions. 
Gaussian wave packets that disperse when located far away from 
the origin and soliton solutions are also discussed. Interactions of 
two solitons are considered in Sec. 3. In Sec. 4, we compare our 
analytical results in the previous two sections with numerical com-
putations, where generally we obtain good agreement. We point 
out some limitations of our VA. We conclude our work with Sec. 5.

2. Variational methods for a single soliton

Consider a localised solution, i.e., a hump, with |ψ(x, t)| → 0
rapidly as |x| → ∞. Let the centre of mass of the hump be lo-
cated at x = X . When |X | → ∞, one can observe that the nonlocal 
NLS equation (1) becomes the nonrelativistic time-dependent lin-
ear Schrödinger equation studied in standard textbooks describing 
free particles moving in one dimension. As the linear Schrödinger 
equation has a localised in space solution describing wavepackets 
spreading in space as time evolves, a limiting solution of (1) in 
that case is given by [22]

ψ =
√

s√
π

(
s2 + it

)
× exp

[
−1

2

(x − p0t − X)2

s2 + it
+ i

p0(x − p0t − X)

2

]
, (2)

where s and p0 are constants and |X | → ∞.
Motivated by the dispersing wavepacket solution (2), to study 

dynamics of a Gaussian hump for the governing equation (1) using 
VA, we use the ansatz

ψ = A exp [iB] exp
[
−C (x − X)2

]
exp

[
iD (x − X)2 + iE(x − X)

]
,

(3)

where A and B account for the amplitude and the phase, C is the 
decay rate, D and E are the chirp parameter that represents inter-
nal oscillations [23,24] and the travelling velocity, respectively, and 
X is the centre of mass. The conventional travelling NLS soliton 
has a vanishing chirp D = 0.

In the following, we will allow the parameters to vary as a func-
tion of time, namely they become collective coordinates. The aim 
is to reduce the solution dynamics from being governed by the 
partial differential equation (1) into coupled ordinary differential 
equations that govern the dynamics of the collective variables [25]. 
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In doing so, we will use the variational method and as such, the 
collective coordinate approximation is also referred to as the VA.

The variational equations for the dynamics of the parameters 
are given by (see, e.g., [26])

Re

[ ∞∫
−∞

(
iψt(x, t) + ψxx(x, t) + σψ(x, t)2ψ∗(−x, t)

)

× ∂

∂�ψ∗(x, t) dx

]
= 0, (4)

where � = A, B, C, D, E, X . Explicit computations will yield the 
system of nonlinear differential equations

Ȧ = α−
(

A3σ
((

4C2 X2 − 10C − β2−
)

sin θ− − 4Cθ− cos θ−
) − 8

√
2AC Dα+

)
8
√

2C
,

(5a)

Ḃ = 1

8
√

2C

(
α−

(
A2σ

((
−4X2(C2 − D2) + 10C + 4D E X

−3E2
)

cos θ− + 4Cθ+ sin θ−
)

− 4
√

2C
(

2C − E2
)
α+

))
,

(5b)

Ċ = α−
(

A2σ
((

4C2 X2 − 2C − β2−
)

sin θ− − 4Cθ− cos θ−
) − 8

√
2C Dα+

)
2
√

2
,

(5c)

Ḋ = α−
(

A2σ
((

4C2 X2 − 2C − β2−
)

cos θ− + 4Cθ− sin θ−
) + 4

√
2(C2 − D2)α+

)
2
√

2
,

(5d)

Ė = −α− A2σ
((

2C2 X + Dβ−
)

cos θ− + C(E − 4D X) sin θ−
)

√
2C

,

(5e)

Ẋ = α− A2σ(2C X sin θ− − β− cos θ−)

2
√

2C
+ E, (5f)

with θ± = Xβ±, α± = e± β2−
4C ±3C X2

, β± = E ± 2D X .
From the exact soliton solution in [1], being trapped near the 

origin can make localised excitations blowing up. In that case, the 
ansatz (3) will not be expected to describe a single soliton well, 
which can be improved by using the sech ansatz [27,28]

ψ(x, t) = A exp [iB] sech[C(x − X)]
× exp

[
iD (x − X)2 + iE(x − X)

]
. (6)

Performing the same calculations, we obtain instead of (5) the set 
of equations up to O(X2)

Ȧ = 1

4πC3

(
8Aσ̃ X Ẽ

(
C4 − π2 E2C̃1,1

+ π E2
(

2C E T̃ − π C̃1,1 Ẽ2
))

+ 3(π − 2)π AC3 D
)

, (7a)

Ḃ = 1

24C5

(
Ẽ3

(
2π2C Eσ̃ H2

(
4D XC̃5,11 − 3EC̃1,1

)
− η9 + η−3G2 − 3γ1 + γ3)) , (7b)

Ċ = 1

6πC2

(
Ẽ3

(
4σ̃ X

(
3C4 − 2π2 E2C̃1,1

)
G2

− 4σ̃ X
(

3C4 + 4π2 E2C̃1,1 − 6πC E3 H2

)
+ 9(π − 2)πC3 D H3

1

))
, (7c)

Ḋ = − 1
2 3

(
2
(
π Eσ̃ Ẽ

(
πC T̃ K + 2E

(
2π2 D XC̃1,1 Ẽ2
π C
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+ C2
((

6 + π2
)

D X − E
)

+ π2 D E2 X
))

+ 2
(

C7 − π2C3 D2
)))

, (7d)

Ė = − 1

15C5

(
4πσ̃ Ẽ

(
2C6 E X − 5C4

(
D − E3 X

)
+ C2 E

(
10

(
6 + π2

)
D2 X − 15D E + 3E4 X

)
+ 5π D

(
C T̃ K + 4π D E X

(
C2 + E2

)
Ẽ2

)
+ 10π2 D2 E3 X

))
,

(7e)

Ẋ = E − 1

3C5

(
πσ̃ Ẽ3

(
C4 + πC H2 K

+ 3C2 E
(

2
(
π2 − 2

)
D X + E

)
+ G2

(
−C4

+ C2 E
(

2
(

6 + π2
)

D X − 3E
)

+ 2π2 D E3 X
)

+ 6π2 D E3 X
))

, (7f)

with

C̃m,n = mC2 + nE2, σ̃ = A2σ ,

Ẽ = csch

(
π E

C

)
, T̃ = coth

(
π E

C

)
,

Gn = cosh

(
nπ E

C

)
, Hn = sinh

(
nπ E

C

)
,

γn = C3
(

C2C̃1,3 − 3π2 D2
)

Hn,

K = C2(E − 4D X) + E2(E − 12D X),

ηn = 4πσ̃
(

4C4(E − D X) + C2 E2
(

nπ2 D X − 30D X + 7E
)

+ nπ2 D E4 X
)

.

Before we check the validity of the approximations (5) and (7), 
we will first derive VA when there are two solitons interacting.

3. Variational methods for soliton collisions

Following the idea of Karpman and Solov’ev [29], we assume 
that the interacting solitons can be written as a superposition of 
two single solitons

ψ(x, t) =
2∑

j=1

ψ j(x, t), (8a)

ψ j = A j exp[iB j] sech[C j(x − X j)]
× exp

[
iD j

(
x − X j

)2 + iE j(x − X j)
]
. (8b)

From the discussion in Sec. 2, we know that placing both soli-
tons on one side of the origin will only yield spreading of the 
wavepacket. We therefore in the following assume that

|�X | = |X2 − X1| � 1, |Xa| = |X2 + X1| � 1,

|Ea| = |E2 + E1| � 1,
(9)

i.e., the solitons are far away from the origin and moving towards 
each other with almost the same velocity. Additionally,

|��| = |�2 −�1| � 1, � = A, B, C, D, E (10)

i.e., the solitons are almost identical.
Substituting the ansatz (8) into the nonlocal NLS equation (1)

and computing the dominant terms in the vicinity of each soliton 

wi
the

iψ

He
tio
tio
der
equ

vol

A2
1

wi

�φ

In 
and

se

D1

E1

wh

�a

Su

Ȧ j

Ḃ j

Ċ j

Ḋ j

Ė j

Ẋ j

wi

σ̃ =
β2

β3

χ1

χ4
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ll yield the coupled equations (see, e.g., [30] for derivations in 
 classical NLS equation)

jt(x, t) + 1

2
ψ j xx(x, t) + σψ2

j (x, t)ψ∗
3− j(−x, t) = 0, j = 1,2.

(11)

re, we neglect the terms ψ2
j ψ

∗
j , 2ψ jψ3− jψ

∗
3− j , etc., (where func-

ns with the conjugate are evaluated at (−x, t)) from the equa-
n because they contribute to higher order corrections. Next, to 
ive the dynamics of the parameters we apply the variational 
ation to (11) (see (4)) and use the assumptions (9) and (10).
Consider the variation with respect to, e.g., A1, which will in-
ve the integral of ψ2

1 ψ∗
2 (−x, t)∂ψ∗

1 (x, t)/∂ A1, i.e.,

A2 exp[2iB2
1 − iB2] sech3[C1z1] sech[C2z2]ei�φ, (12)

th

= D1z2
1 − D2z2

2 + E1z1 + E2z2, z j =
(

x + (−1) j X j

)2
. (13)

the vicinity of x ≈ X j for the jth soliton, the assumptions (9)
 (10) will lead us to the approximations (see [30])

ch3[C1z1] sech[C2z2] ≈ sech3[Caz1] sech[Caz2],
z2

1 − D2z2
2 = 1

2
�D

(
z2

1 + z2
2

)
+Da

(
z2

1 − z2
2

)
≈Da

(
X2

1 − X2
2

)
,

z1 + E2z2 = Ea (z1 + z2) + 1

2
�E (X1 + X2) ≈ 1

2
�E (X1 + X2) ,

ere

= 1

2
(�1 +�2) .

ch asymptotic simplifications will lead us to the equations

= −
A j C j

(
Caσ̃

((
π2 − 6

)
C2

j + 3π2C2
a

)
(β1 + sin(B j − B3− j)) + 3π2 D j (χ1 + χ2)

)
6π2C4

a
,

(14a)

= 1

12C4
a

(
C j

(
C2

a σ̃ (β3 − (β2C j + 2Ca(2E j − 3β2))) + χ3

−3E2
j (χ2 + 2C jC

2
a ) + 3π2 D2

j (Ca − C j)
))

, (14b)

= 1

3π2C4
a

(
C2

j

(
3π2 D j

(
−χ1 − C jC

2
a + C3

a

)
− Caσ̃

((
π2 − 6

)
C2

j + π2C2
a

)
(β1 + sin(B j − B3− j))

))
,

(14c)

= C3
j

(
C2

a σ̃ (2Ca − C j)(cos(B j − B3− j) − β2) − χ4 + E2
j χ2 + π2 D2

j (3C j − Ca)
)

π2C4
a

,

(14d)

= 2C j σ̃ (2(C j Ca Xa cos(B j − B3− j) + 5β1 E j) + 5 sin(B j − B3− j)(2E j − D j Xa))

15Ca
,

(14e)

= − C j(Caσ̃ Xa sin(B j − B3− j) + 3C j E j)

3C2
a

, (14f)

th

2A1 A2σ , β1 = (2Da(X j − X3− j) + �E)Xa cos(B j − B3− j),

= (2Da(X j − X3− j) + �E)Xa sin(B j − B3− j),

= (C j − 6Ca) cos(B j − B3− j),

= −3C3
j + C2

j Ca, χ2 = 3C jC
2
a − 3C3

a , χ3 = C3
j C2

a + 3C2
j C3

a ,

= C2
a C3

j + C2
j C3

a .
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Fig. 1. Comparison of the travelling wave solutions of Eq. (1) between the numerical and variational solutions for the Gaussian initial condition (3) with A = 1, B = 0, C = 1, 
D = 0, and X = 1 in the focusing σ = 1 (a,b) and defocussing σ = −1 (c,d) case. In (a,c), the initial velocity is E = 2, while in (b,d), it is E = 0.1. Blue solid and red dashed 
lines indicate the numerical and variational solutions, respectively. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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In the following section, we will examine the applicability of 
system (14) numerically.

4. Numerical simulations

We will compare the VAs (5), (7), and (14) with the soliton 
dynamics from the governing equation (1). We numerically inte-
grate (1) in time using the fourth-order Runge-Kutta method. The 
Laplacian is approximated by a pseudospectral differentiation ma-
trix based on the Fourier series. Simulations below were carried 
out in the spatial interval [L, L) with L ≥ 30, and discrete step-
sizes �x = 0.1 and �t = 0.005 or smaller. By checking qualitative 
features of the evolution, we note that further decrease of �x
and/or �t did not produce any conspicuous effect. The VAs (5), (7), 
and (14) are also integrated using the fourth-order Runge-Kutta 
method. The varying-in-time variables are then inserted back into 
the ansatz to obtain the spatial profile of the VA.

First, we consider the passage of dispersive Gaussian wave 
packets. The initial condition is taken as (3). In Fig. 1 we display 
the evolution of the incident Gaussian wave packet impinging onto 
the origin x = 0 at two different values of initial velocities. Shown 
is the square absolute value of the field, |ψ(x, t)|2.

It is obtained that a large incoming velocity E(0) yields rather 
excellent agreement between the numerics and the VAs. The type 
of nonlinearity is also not relevant for that case as panels (a) and 
(c) that are for focusing and defocussing nonlinearity, respectively, 
show quite similar time dynamics. This indicates that the system 
behaves as a linear one.

When the incoming velocity is taken to be quite small, we ob-
tain that the focusing case yields a trapped state that is followed 
by a blow-up. Unfortunately the Gaussian ansatz (3) together with 
(5) can only capture the trapping. As for the defocussing case, 
there is no blow up. However, our VA also can only provide qual-
itative agreement. As shown in Fig. 1(d), the wave function from 
the nonlocal NLS integration decays more rapidly than the VA. 
Moreover, there is a scattering and transmission process in the 
nonlocal NLS equation that cannot be possibly captured by our 
ansatz.

For the blow-up case in Fig. 1(b), we know from [1] that the 
solution is likely to be in the form of a sech shape. It is therefore 
suggestive to use the same shape ansatz. Using (6) as the initial 
condition, we plot in Fig. 2 the dynamics of the initial condition 
for the same parameter values as in Fig. 1.

For large incoming velocities, we still obtain good agreement 
between the numerics and the VA, see Figs. 2(a) and 2(c) for the 
focusing and defocussing case, respectively, where the soliton is 
spreading after passing the origin. A similar spreading is also seen 
for small incoming velocities in the case of defocussing nonlinear-
ity as shown in Fig. 2(d). Fig. 2(b) shows that ansatz (6) together 
with (7) can capture the blow up, even though only qualitatively. 
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Fig. 2. The same as Fig. 1 but for the sech ansatz (6). The parameter values for panels (a)–(d) are the same with those in Figs. 1(a), 1(b), 1(c), and 1(d), respectively.
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However, if one takes the initial position |E(0)| � |X(0)| � 1, we 
will obtain better agreement. The discrepancy is due to our ansatz 
(6) that is far away from the actual blow-up solution provided in, 
e.g., [1].

Finally, we have also simulated collisions of two bright solitons 
moving toward each other, see Fig. 3. The initial conditions are 
taken as per expression (8). We consider different initial parame-
ters between the two solitons. The difference is introduced through 
the phases B j . We do not present interactions of twin solitons be-
cause in that case the governing equation (1) will correspond to 
the local case, which has been considered for the first time in [29].

Note that in contrast to the local NLS equation, nonlocal NLS 
equation with defocussing nonlinearity will still allow for two 
bright solitons, provided that their phases differ by π . Therefore, 
in here we also consider defocussing cases with a phase difference 
between the solitons a little bit different from π .

From Fig. 3 we obtain that in general solitons will blow up in 
time. When they are almost identical, i.e., Figs. 3(a) and 3(c), they 
will pass each other at the origin. However, there is a continuous 
transfer of mass from one to the other. Depending on the initial 
phases, one of them increases in amplitude while the other one 
vanishes. From the numerical simulations we obtain that the mass 
transfer occurs from a soliton with positive relative phase to that 
with a negative one.

Such transfers can be explained from viewing the nonlocal NLS 
equation (1) as a Hamiltonian with the self-induced complex po-
tential V (x, t) = σψ(x, t)ψ∗(−x, t). Soliton with the increasing am-
plitude has Im[V (x, t)] < 0, i.e., it experiences ‘gain’. The other 
soliton depletes because it experiences ‘loss’, i.e., Im[V (x, t)] > 0. 
Moreover, we have the conserved quantity [1]

Q =
∞∫

−∞
ψ(x, t)ψ∗(−x, t)dx, (15)

called ‘quasipower’, that can be obtained from the power/mass of 
the NLS counterpart simply by replacing ψ∗(x, t) with ψ∗(−x, t). 
As some part of ψ(x, t) increases in time, to keep Q conserved, the 
other part of ψ(x, t) will have to decrease. All these mechanisms 
create the dynamic effect of a continuous mass transfer between 
the solitons.

We also consider the situation when initially solitons are not 
quite identical, see Figs. 3(b) and 3(d). In this case the solitons 
collide and then keep overlapping, instead of passing each other, 
with the tails that also grow in time. Both soliton peaks blow up 
later on (not shown in the figures).

In all the cases, we see that our VAs describe the numerics well 
prior to soliton collisions. After the two solitons meet at the origin, 
VAs only capture their qualitative dynamics, such as blow up in 
Figs. 3(a) and 3(c) and merger in Figs. 3(b) and 3(d).
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Fig. 3. Soliton collisions in the focusing (panels (a) and (b)) and defocussing (panels (c) and (d)) case, comparing numerical and variational solutions for the sech ansatz (8). 
The parameter values at t = 0 are A1 = A2 = 1, B1 = 0, C1 = C2 = 1, D1 = D2 = 0, E1 = −E2 = 2, X1 = −X2 = 5, with (a) B2 = 0.1, (b) B2 = 1, (c) B2 = π + 0.1, and 
(d) B2 = π + 1.
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5. Conclusion

In this paper, we considered the integrable nonlocal nonlinear 
Schrödinger equation proposed by Ablowitz and Musslimani. We 
have derived a collective coordinate approach based on variational 
methods to study dynamics (including collisions) of moving soli-
tons. Through comparisons with numerical computations, we have 
examined its applicability in the system. We obtained that VAs are 
generally good in describing single soliton dynamics.

For collisions of two solitons, they capture the dynamics quite 
well before collisions at the origin, while afterwards they only pro-
vide qualitative comparisons. Our current work implies that VAs 
should be well applicable to describe soliton dynamics in the evo-
lution equations [31]

iqt + 1

2
qxx + σq2r = 0, (16)

irt − 1

2
rxx − σ r2q = 0, (17)

which give the local NLS equation if r = ±q∗(x, t) and the nonlo-
cal NLS equation (1) if r = ±q∗(−x, t). However, the general case 
when r(x, t) is not explicitly related to q(x, t) through a symme-
try has not been considered yet. It will be particularly relevant to 
extend our study to this general system of equations. In that case, 
ensembles of N-solitons, as the work of Gerdjikov et al. [32,33] for 
the classical NLS equation, will be interesting.

For future works, it will be particularly important to seek for 
further approximation ansatzs to make the VA better approach the 
numerical results. Such an ansatz would need to be close enough 
to the actual solutions we consider. However, balancing between 
accurate approximations and simple computations is unfortunately 
not an easy task. Additionally, VAs for dark solitons in the defo-
cussing nonlocal NLS equation are also interesting to be developed.
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