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Abstract It has been increasingly reported that the multi-
objective optimization evolutionary algorithm based on de-
composition (MOEA/D) is promising for handling multiob-
jective optimization problems (MOPs). MOEA/D employs
scalarizing functions to convert an MOP into a number of
single-objective subproblems. Among them, penalty bound-
ary intersection (PBI) is one of the most popular decom-
position approaches and has been widely adopted for deal-
ing with MOPs. However, the original PBI uses a constant
penalty value for all subproblems and has difficulties in
achieving a good distribution and coverage of the Pareto
front for some problems. In this paper, we investigate the
influence of the penalty factor on PBI, and suggest two
new penalty schemes, i.e., adaptive penalty scheme (APS)
and subproblem-based penalty scheme (SPS), to enhance
the spread of Pareto optimal solutions. The new penalty
schemes are examined on several complex MOPs, show-
ing that PBI with the use of them is able to provide a bet-
ter approximation of the Pareto front than the original one.
The SPS is further integrated into two recently developed
MOEA/D variants to help balance the population diversity
and convergence. Experimental results show that it can sig-
nificantly enhance the algorithm’s performance.
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1 Introduction

Many real-world optimization problems, such as water re-
source management (Reed et al., 2013), design optimization
(Deb and Jain, 2013; Yang and Deb, 2013), and land use
management (Chikumbo, 2012; Masoomi et al., 2013), of-
ten have multiple objectives that conflict with each other.
Without lose of generality, these kinds of multiobjective op-
timization problems (MOPs) can be described as follows:

min F(x) = (f1(x), ..., fM (x))T

s.t.


hi(x) = 0, i = 1, ..., nh
gi(x) ≥ 0, i = 1, ..., ng
x ∈ Ωx

(1)

where Ωx ⊆ Rn is the decision space, nh and ng are the
number of equalities and inequalities, respectively, M is the
number of objectives, and F(x): Ωx → RM is the objective
function vector of the solution x. Due to the nature of con-
flict among objectives, there does not exist a single optimal
solution that can minimize all the objectives simultaneously.
As a consequence, the optimization goal of MOPs is to ob-
tain a set of solutions with a good trade-off among the objec-
tives. The set of trade-off solutions is known as the Pareto-
optimal set (POS), and its image in the objective space is
called the Pareto-optimal front (POF).

Multiobjective evolutionary algorithms (MOEAs) are an
important class of methods devoted to solving MOPs. They
employ a population of candidate members and evolve them
collaboratively, resulting in a number of candidate solutions
in a single run, without the use of any gradient information
of MOPs. These characteristics make MOEAs very suitable
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for handling MOPs. After several decades of effort to the
field of evolutionary computation, a huge number of MOEAs
are available to date. They can be classified into three main
groups: Pareto-based approaches (Deb et al., 2002; Knowles
and Corne, 1999; Zitzler et al., 2002; Deb and Jain, 2013),
indicator-based approaches (Bader and Zitzler, 2011; Beume
et al., 2007; Ishibuchi et al., 2010; Zitzler and Kunzli, 2004),
and decomposition-based approaches (Zhang and Li, 2007;
Li and Zhang, 2009; Asafuddoula et al., 2015). The MOEA
based on decomposition (MOEA/D) is the most well-known
representative of decomposition-based approaches. It uses
scalarizing functions or decomposition approaches to de-
compose an MOP into a number of single-objective sub-
problems and optimize them in a co-evolutionary manner.
In MOEA/D, weight vectors or search directions involved
in the scalarizing functions implicitly manage population di-
versity, and the concept of neighbourhood is introduced to
co-evolve solutions of neighbouring subproblems. This way,
MOEA/D can quickly approximate the Pareto front and pro-
vide a set of diverse solutions. Recently, various versions of
MOEA/D have been proposed in the literature (Zhang and
Li, 2007; Li and Zhang, 2009; Asafuddoula et al., 2015; Li
et al., 2015a; Jiang and Yang, 2015), and the idea of decom-
position has been exploited in a number of studies (Deb and
Jain, 2013; Li et al., 2014b,c, 2015a,b; Liu et al., 2014; Yuan
et al., 2015).

In MOEA/D, there are three widely-used scalarizing
functions, i.e., weighted sum, weighted Tchebycheff, and
penalty boundary intersection (PBI), to aggregate M differ-
ent objectives (Zhang and Li, 2007). Compared with PBI,
the weighted sum and weighted Tchebycheff are easier to
implement and less computationally expensive. A recent
study (Ishibuchi et al., 2013) reported that the weighted sum
shows better search performance than the weighted Tcheby-
cheff in many-objective problems. However, the weighted
sum is not effective to approximate problems with the entire
concave Pareto front (Zhang and Li, 2007). The weighted
Tchebycheff approach has received intensive research inter-
est due to its ability to approximate both convex and concave
POFs. Despite its great success for solving standard bench-
mark problems like ZDT (Zitzler et al., 2000) or DTLZ (Deb
et al, 2005), some recent investigations have revealed that
this approach has difficulties in uniformly distributing solu-
tions on boundary regions of the POF for complex problems
(Qi et al., 2014; Jiang and Yang, 2015). On the other hand,
the PBI approach gains a firm foothold in MOEA/D be-
cause it can provide a more uniform distribution of POF than
the weighted Tchebycheff for three- and higher-dimensional
problems (Li et al., 2015a; Zhang and Li, 2007; Deb and
Jain, 2013; Gomez and Coello Coello, 2015).

It is not very surprising that PBI has obtained great suc-
cess for multiobjective and many-objective problems since
its introduction. Probably due to the lack of complicated

POF characteristics in the well-known ZDT (Zitzler et al.,
2000), DTLZ (Deb et al, 2005) and WFG (Huband et al.,
2006) test suites in the field of multiobjective optimization,
PBI has been rarely or even not deeply examined on prob-
lems with complicated POFs. However, real-world MOPs
often have irregular POF geometries (Deb et al., 2000; Osy-
cza and Kundu, 1995; Wang et al., 2013), where the shape
can be extremely convex and/or concave. Note that, there
are also other kinds of irregularities, such as degenerate
and disconnected POFs (Cheng et al., 2015; Jain and Deb,
2013; Giagkiozis et al., 2014), which may be harder than
extremely-shaped POFs. As a starting point, we just con-
sider irregular extremely-shaped POFs in this paper. While
it has been repeatedly reported that PBI works well on regu-
lar problems, one may wonder whether PBI can continue its
success on the real-life or artificial problems with compli-
cated POFs. If not, the applicability of PBI (Zhang and Li,
2007; Al Moubayed et al., 2013; Pavelski et al., 2014; Jia
et al., 2011) and its extension to many-objective optimiza-
tion (Cheng et al., 2016; Deb and Jain, 2013; Gomez and
Coello Coello, 2015; Li et al., 2014a, 2015a; Mohammadi
et al., 2014; Yuan et al., 2014; Mendez and Coello Coello,
2015; Gomez and Coello Coello, 2015), which has become
a recent hot topic, could be questioned.

The performance of PBI is largely determined by its
penalty factor, which controls the balance between conver-
gence and diversity. A small penalty favours convergence
whereas a large one stresses diversity. The penalty value
was commonly set to 5.0 in most studies, e.g., (Deb and
Jain, 2013; Zhang and Li, 2007; Li et al., 2015a). However,
in (Ishibuchi et al., 2015), PBI with a penalty value of 0.1
was reported to outperform that with a penalty value of 5.0
on multiobjective knapsack problems. This means, the opti-
mal value for the penalty factor may vary dramatically from
problems to problems. Also, in the case of small penalty val-
ues, if the distance from the obtained ideal point to boundary
solutions is significantly larger than that to intermediate so-
lutions, boundary solutions are likely to be abandoned dur-
ing the search because of the poor convergence measured
by the distance. In the case of large penalty values, due to
overemphasis of diversity, population individuals need more
computational resources to explore the search space before
converging to the POF. Besides, Sato (2014) argued that
if the obtained ideal point is far from the true ideal point
(probably due to the loss of boundary solutions), PBI will
face difficulties to approximate the entire POF. Therefore,
the author suggested an inverted version of PBI to ease this
problem. Nevertheless, the inverted PBI fails to consider the
influence of the penalty factor, and may still get stuck into
the difficulty of tuning this parameter.

In this paper, we first study the influence of the
penalty factor on the search performance of PBI, fol-
lowed by suggesting two new penalty schemes, i.e., adap-
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tive penalty scheme (APS) and subproblem-based penalty
scheme (SPS). APS adaptively assigns all subproblems the
same penalty value by taking into consideration different re-
quirements at different search stages, whereas SPS specifies
distinct penalty values for different subproblems at an at-
tempt to enhance the spread of POF. These schemes are ex-
amined on several complex problems and experimental re-
sults demonstrate their promise for improving PBI’s perfor-
mance. Besides, SPS is further integrated into some newly-
developed MOEA/D variants, showing that it significantly
improves the performance of these algorithms.

The rest of this paper is outlined as follows. Section 2
briefly reviews related work on MOEA/D. Section 3 first
presents an investigation into the influence of the penalty
factor on PBI and then introduces the two penalty schemes
proposed for PBI. In Section 4, the experimental study is
conducted on the proposed penalty schemes. Section 5 con-
cludes this paper and discusses some future work.

2 Related Work

2.1 The PBI Approach

Decomposition approaches play a key role in converting
an MOP into a number of scalar optimization subprob-
lems in decomposition-based MOEAs. There are three pop-
ular decomposition approaches, such as the weighted sum,
weighted Tchebycheff and PBI. The weighted sum approach
favours convex problems and fails to approximate problems
with a concave POF, whereas the weighted Tchebycheff ap-
proach can handle both convex and concave problems. The
PBI approach has its advantages in obtaining a good dis-
tribution of solutions in the objective space (Zhang and Li,
2007) and handling many-objective problems (Deb and Jain,
2013; Ishibuchi et al., 2015), but its performance is very sen-
sitive to the setting of the penalty factor (Ishibuchi et al.,
2015). The scalar optimization problem of PBI is defined as
follows:

min gpbi(x|w, z∗) = d1 + θd2
s.t. x ∈ Ωx

(2)

where

d1 =
‖(F(x)− z∗)

T
w‖

‖w‖
(3)

d2 = ‖F(x)− (z∗ + d1
w

‖w‖
)‖ (4)

Ωx is the search space and z∗ = (z∗1 , · · · , z∗M ) is the ideal
point in the objective space for which the ith component can
be computed by z∗i = min

x∈Ωx

fi(x), and θ is a user-defined

penalty factor. d1 and d2 are the length of the projection of

f2

f1

z∗

F(x)

w

d1

d2

Fig. 1 Illustration of PBI.

vector (F(x)− z∗) on the weight vector w and the perpen-
dicular distance from F(x) to w, respectively. Fig. 1 offers
a brief illustration of the PBI approach. It is not difficult to
see that θ takes the responsibility for balancing convergence
(measured by d1) and diversity (measured by d2), and the
PBI approach drives the search toward the obtained ideal
point z∗ by minimizing gpbi.

Figure 2 shows the contour lines of PBI with θ = 1.0 on
three different two-dimensional weight vectors, where dif-
ferent weight vectors specify distinct promising search re-
gions in the objective space. This means each weight vector
can direct the search toward its preferred POF segment, and
by employing a number of well-spread weight vectors, the
whole POF can be approximated. To illustrate the influence
of the penalty factor θ, we also plot the contour lines of PBI
on w = (0.5, 0.5)T for θ = 0.0, 1.0 and 2.0 in Fig. 3. The
figure indicates that different values of θ lead to different
search behaviours and a large value of θ narrows efficient
search regions and promotes diversity.

2.2 MOEA/D Algorithm

MOEA/D employs a set of predefined weight vectors that
uniformly partition the entire objective space to specify a
number of search directions, and defines a single-objective
problem or a multiobjective subproblem by decomposition
approaches for each search direction. For each search direc-
tion, MOEA/D also specifies T closest neighbours before-
hand, which helps to efficiently solve the associated single-
objective problem in a collaborative manner. During the
course of search, mating selection and replacement are con-
sidered among solutions associated with the T neighbouring
search directions. MOEA/D is a steady-state algorithm and
updates solutions one by one, so it approximates the true
POF quickly. Algorithm 1 presents a brief description of the
original MOEA/D with the PBI (Zhang and Li, 2007). For
more details, the interested readers are referred to (Zhang
and Li, 2007).
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Fig. 2 Contour lines of PBI with θ = 1.0.
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Fig. 3 Contour lines of PBI with w = (0.5, 0.5)T .

Algorithm 1 MOEA/D-PBI
1: Input:

– MaxIteration: the stopping criterion
– N : the number of subproblems considered in MOEA/D
– T : the neighbourhood size

2: Output: approximated Pareto-optimal set
3: Initialization: Generate a uniform spread of N weight vectors:
w1, . . . , wN and then compute the T closest weight vectors to
each weight vector by the Euclidean distance. For each i =
1, . . . , N , set B(i) = {i1, . . . , iT } where wi1 , . . . , wiT are the
T closest weight vectors to wi

4: Generate an initial population P = {x1, . . . , xN} by uniformly
randomly sampling from the decision space

5: while gen := 1 to MaxIteration do
6: for i := 1 to N do
7: Randomly select two indexes r1 and r2 from B(i)
8: Apply genetic operators on individuals r1, r2 to produce a

new solution y
9: If y is better than any individual xj in B(i) (i.e.,

gpbi(y|wj , z∗) ≤ gpbi(xj |wj , z∗)), then xj is replaced
by y

10: end for
11: end while
12: Output P

3 Proposed Penalty Schemes for MOEA/D with PBI

3.1 Influence of the Penalty Factor

As mentioned earlier, θ is a key factor for balancing con-
vergence and diversity in PBI. A small value of θ favours
convergence whereas a large one is beneficial for diversity.
Figures 4 and 5 show the influence of two different θ values
on convergence and diversity, where the bold curve is the
true POF and points A to G are scattered POF points.

In Fig. 4, θ is set to 1.0, and its influence is illus-
trated by two adjacent boundary weight vectors, i.e., w1 =

(0.1, 0.9)T and w2 = (0.2, 0.8)T . Intuitively, B and C are
ideal optimal points for subproblems associated with w1

and w2, respectively. However, the solution B of the sub-
problem associated with w1 will be replaced with C since
gpbi(C|w1, z

∗) = 0.60 is smaller than gpbi(B|w1, z
∗) =

0.75. This means, due to insufficient penalty, POF points far
away from the obtained ideal point z∗ are replaced by those
close to z∗, thus the diversity of solutions declines. Even
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Fig. 4 Illustration of insufficient penalty for weight vectors where
w1 = (0.1, 0.9)T , w2 = (0.2, 0.8)T and θ = 1.0 is used in PBI.
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Fig. 5 Illustration of excessive penalty for weight vectors wherew1 =
(0.5, 0.5)T , w2 = (0.4, 0.6)T and θ = 5.0 is used in PBI.

worse, for extremely-convex problems that have a sharp
peak and long tail (Jiang and Yang, 2015), the above im-
pact is more vital, and boundary points on the POF cannot
be approximated so as to decrease the spread of the POF.

In Fig. 5, w1=(0.5, 0.5)T and w2=(0.4, 0.6)T are two
adjacent intermediate weight vectors, and a large value of
θ = 5.0 is used in PBI. For w1, PBI is expected to drive
the search toward the POF segment between D and E. At
the early stage of search, the subproblems associated with
w1 and w2 find their best solution H and J , respectively.
Clearly, J is much closer than H to the expected POF seg-
ment. But, for the subproblem associated with w1, its cur-
rent solution H will not be replaced by J as J gives a larger
gpbi than H . This indicates, due to excessive penalty, solu-
tions close to weight vectors but far away from the POF may
be preferred over those close to the POF but far away from
the weight vectors. This inevitably spoils PBI’s convergence
performance and slows down the whole search process.

3.2 Adaptive Penalty Scheme (APS)

Facing the above-mentioned difficulties, one may naturally
turn to adaptively adjusting the magnitude of penalty at dif-
ferent search stages. At the early stage, the main optimiza-
tion goal is to drive the search toward the POF as fast as pos-
sible, so a small value of θ is helpful for fast convergence. In
contrast, at the late stage, the obtained solutions are required
to be diverse and spread so that they will not miss any part
of the entire POF. Thus, the late search stage focuses on di-
versity, and a large value of θ is expected to diversify the
solutions.

In this paper, we propose to use the APS to balance
the population convergence and diversity at different stages,
which is described as follows:

θ = θmin + (θmax − θmin)
t

maxIteration
(5)

where t is the iteration counter, maxIteration is the maxi-
mum number of iterations, θmin and θmax are the lower and
upper bounds of θ, respectively. Here, these two parameters
are suggested to be θmin = 1.0 and θmax = 10.0, which
ensures θ = 5 recommended by Zhang and Li (2007) is in
the interval [θmin, θmax].

Note that, the APS used in this paper is linear and serves
as an example for validating the promise of this kind of
method to enhance PBI. In principle, any proper nonlinear
APS can fulfil this purpose.

3.3 Subproblem-based Penalty Scheme (SPS)

Another alternative way to reduce the drawback of PBI is to
specify independently a penalty value for each subproblem.
As explained in Section 3.1, for convex problems, boundary
solutions are much further than intermediate solutions from
the obtained ideal point, so boundary subproblems should
be given strict penalties on diversity measure to avoid unrea-
sonable replacements. For concave problems, although there
is no much difference between boundary solutions and inter-
mediate solutions in terms of their distance to the obtained
ideal point, strict penalty on boundary solutions might also
help maintain diversity.

The idea behind the SPS is simple, but it is not easy to
assign N different penalty values for N subproblems. Also,
such assignments may be computationally expensive. Hav-
ing realized that each subproblem is mainly determined by
its weight vector and there are distinct differences between
boundary and intermediate weight vectors, we elaborate the
following SPS for PBI:

θi = eαβi (6)

βi = max
1≤j≤M

wji − min
1≤j≤M

wji (7)
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where θi denotes the penalty value for a weight vector wi,
and βi is the difference between the maximum component
and the minimum component in wi. Since

∑M
j=1 w

j
i = 1

and wji ≥ 0 for any 1 ≤ j ≤ M , βi lies in [0,1]. For in-
termediate weight vectors, i.e., all components are almost
identical, βi is close to 0, while for boundary weight vec-
tors, particularly those lying on the M coordinate axes, βi
has a value of one. α is a non-negative value controlling the
magnitude of penalty and α = 4.0 is recommended in this
paper based on some preliminary studies. The exponential
formulation used here ensures that the penalty value is al-
ways positive.

4 Experimental Study

4.1 Experimental Settings

To examine the effectiveness of our proposed schemes, we
use six complex problems with irregular Pareto fronts in-
stead of some well-known test suites such as ZDT (Zitzler
et al., 2000) or DTLZ (Deb et al, 2005) for empirical com-
parison. Some of them have been tested in (Jiang and Yang,
2015) and (Deb and Jain, 2013), showing that the original
MOEA/D faces difficulties in solving these kinds of prob-
lems due to their complex characteristics. The detailed de-
scription of these problems is presented in Table 1.

The proposed two penalty schemes, i.e., APS and SPS,
are compared with the original PBI. MOEA/D 1 with these
different penalty schemes was implemented in C++. θ in the
canonical PBI was set to 5.0, and this kind of setting has
been widely adopted in the literature (Zhang and Li, 2007;
Deb and Jain, 2013; Li et al., 2015a). The neighbourhood
size T was set to 20. The crossover probability was set to
pc = 1.0 and its distribution index was ηc = 20. The muta-
tion probability was set to pm = 1/n, where n is the num-
ber of variables, and its distribution ηm = 20. We set the
population size N to 100 for bi-objective problems and 190
for three-objective problems. The stopping criterion was set
to 100 generations. For all the test problems, the MOEA/D
variants were executed 30 independent runs.

4.2 Performance Metrics

In the experiments, we use three performance measures,
which are described below.

4.2.1 Maximum Spread (MS)

The MS, first introduced by Zitzler et al. (Zitzler et al.,
2000), measures to what extent the extreme members in an
approximated Pareto front POF ∗ has been reached. Goh

1 Source code available from http://dces.essex.ac.uk/staff/qzhang/.

and Tan (Goh and Tan, 2007) proposed a modified version
of MS by taking into account the proximity of POF ∗ to-
wards the true Pareto front POF :

MS′=

√√√√1

M

M∑
k=1

[
min[POFk, POF ∗k ]−max[POFk, POF ∗k ]

POF ∗k − POF ∗k

]2

(8)

where POFk and POFk are the maximum and minimum
of the kth objective in POF , respectively; Similarly, POF ∗k
andPOF ∗k are the maximum and minimum of the kth objec-
tive in POF ∗, respectively. A large value of MS′ indicates
a good spread of POF ∗, and MS′ will have a value of one
when POF ∗ covers the whole POF .

4.2.2 Inverted Generational Distance (IGD)

The IGD (Zitzler et al., 2003) is an effective performance in-
dicator since it can provide reliable information on both the
diversity and convergence of obtained solutions. Let PF be
a set of solutions uniformly sampled from the true POF, and
PF ∗ be the approximated solutions in the objective space,
the IGD metric measures the gap between PF ∗ and PF ,
which is calculated as follows:

IGD(PF ∗, PF ) =

∑
p∈PF d(p, PF

∗)

|PF |
(9)

where d(p, PF ∗) is the distance between the member p of
PF and the nearest member of PF ∗. In this paper, 500
points uniformly sampled from the true POF are used as the
reference set for IGD, which can be done by generating a
large volume of points and then pruning them to the desir-
able size by the kth nearest neighbour method proposed in
the strength Pareto evolutionary algorithm 2 (SPEA2) (Zit-
zler et al., 2002).

4.2.3 Hypervolume (HV)

HV (Zitzler and Thiele, 1999) measures the size of the ob-
jective space dominated by the approximated solutions S
and bounded by a reference point R = (R1, . . . , RM )T that
is dominated by all points on the POF, and is computed by:

HV (S) = Leb( ∪
x∈S

[f1(x), R1]× · · · × [fM (x), RM ]) (10)

where Leb(A) is the Lebesgue measure of a set A. In our
experiments, R is set to (1.2, 1.2)T and (1.2, 1.2, 1.2)T for
bi- and three-objective test instances, respectively.
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Table 1 Test Instances

Instance Description Domain Number of Variables Notes

F1

f1(x) = (1 + g(x))x1
f2(x) = (1 + g(x))(1−√x1)3

g(x) = 2 sin(0.5πx1)(n− 1 +
n∑

i=2

(y2i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)
POF: f2 = (1−

√
f1)3

POS: xi = sin(0.5πxi), i = 2, . . . , n

[0, 1]n 20
Uni-modal
Convex

F2

f1(x) = (1 + g(x))x1
f2(x) = (1 + g(x))

√
1− x15

g(x) = 2 sin(0.5πx1)(n− 1 +
n∑

i=2

(y2i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)

POF: f2 =
√

1− f15

POS: xi = sin(0.5πxi), i = 2, . . . , n

[0, 1]n 20
Uni-modal
Convex

F3

f1(x) = (1 + g(x))x1
f2(x) =

1
2
(1 + g(x))(1− x0.11 + (1−√x1)2 cos2(3πx1))

g(x) = 2 sin(0.5πx1)(n− 1 +
n∑

i=2

(y2i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)
POF: f2 = 1

2
(1− f0.1

1 + (1−
√
f1)2 cos2(3πf1))

POS: xi = sin(0.5πxi), i = 2, . . . , n

[0, 1]n 20
Multi-modal
Disconnected

F4

f1(x) = (1 + g(x))(x1 + 0.05 sin(6πx1))2

f2(x) = (1 + g(x))(1− x1 + 0.05 sin(6πx1))2

g(x) = 2 sin(0.5πx1)(n− 1 +
n∑

i=2

(y2i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)
POF: f0.5

1 + f0.5
2 = 1 + 0.1 sin(3π(f0.5

1 − f0.5
2 + 1))

POS: xi = sin(0.5πxi), i = 2, . . . , n

[0, 1]n 20
Multi-modal
mixed

F5

f1(x) = (1 + g(x))(x1 + 0.05 sin(6πx1))0.2

f2(x) = (1 + g(x))(1− x1 + 0.05 sin(6πx1))10

g(x) = 2 sin(0.5πx1)(n− 1 +
n∑

i=2

(y2i − cos(2πyi)))

where yi=2:n = xi − sin(0.5πxi)
POF: f5

1 + f0.1
2 = 1 + 0.1 sin(3π(f5

1 − f0.1
2 + 1))

POS: xi = sin(0.5πxi), i = 2, . . . , n

[0, 1]n 20
Multi-modal
mixed

F6

f1(x) = ((1 + g(x)) cos(0.5πx1) cos(0.5πx2))
4

f2(x) = ((1 + g(x)) cos(0.5πx1) sin(0.5πx2))
4

f3(x) = ((1 + g(x)) sin(0.5πx1))
2

g(x) =
n∑

i=3

(xi − 0.5)2

POF:
√
f1 +

√
f2 + f3 = 1

POS: xi = 0.5, i = 3, . . . , n

[0, 1]n 20
Uni-modal
Convex

4.3 Experimental Results

Table 2 records MS, IGD and HV values obtained by PBI,
PBI+APS and PBI+SPS for F1 to F6, where the best value
for each problem and each performance metric is marked in
bold face. From Table 2, it can be seen that both the pro-
posed penalty schemes are helpful for improving the per-
formance of PBI. Specifically, on the MS metric, the use
of APS and SPS can provide a better coverage of POF for
most of the problems compared with the original PBI, and
SPS improves the coverage much more than APS. The IGD
metric suggests that APS and SPS can give better distribu-
tion of obtained points along the POF for all the problems
except F2. Besides, the HV metric further indicates the ef-
fectiveness of APS and SPS for most of the problems, and

SPS significantly improves the performance of PBI except
on F2. Note that, PBI with APS or SPS does not offer notice-
able improvement on the MS, IGD and HV metrics for F2.
This may be because F2 is a concave problem and there is
no considerable difference between boundary solutions and
intermediate solutions in terms of their distance to the ob-
tained ideal point. This negligible difference implies that all
the decomposed subproblems have similar convergence per-
formance in PBI. In this case, diversity is the only influenc-
ing factor, and thus a fixed and identical penalty value can
help all the problems reach the same level of balance be-
tween diversity and convergence, which may be suitable for
solving such kind of problem. Nevertheless, the use of APS
and SPS does not degrade PBI’s performance in this case.
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Table 2 Best, mean and worst performance measure values obtained by three penalty schemes on six problems

MS IGD HV
Prob. PBI PBI+APS PBI+SPS PBI PBI+APS PBI+SPS PBI PBI+APS PBI+SPS

F1
0.5323 0.6418 0.9313 0.1045 0.0665 0.0181 1.3137 1.3272 1.3356
0.5252 0.6282 0.8928 0.1077 0.0717 0.0213 1.3123 1.3256 1.3354
0.5135 0.6012 0.8129 0.1125 0.0783 0.0288 1.3101 1.3234 1.3340

F2
0.9998 0.9993 0.9999 0.0074 0.0084 0.0083 0.5404 0.5402 0.5402
0.9970 0.9972 0.9987 0.0116 0.0104 0.0146 0.5388 0.5388 0.5395
0.9845 0.9602 0.9202 0.7838 0.0391 0.0537 0.5334 0.5265 0.4919

F3
0.5988 0.5994 0.8852 0.1941 0.1851 0.0209 1.3334 1.3395 1.3565
0.4842 0.5402 0.8780 0.4040 0.3966 0.0224 1.2974 1.3048 1.3563
0.3290 0.3907 0.8756 0.4046 0.3985 0.0283 1.2962 1.3031 1.3553

F4
0.6192 0.6552 0.9160 0.0817 0.0707 0.0131 1.2549 1.2576 1.2656
0.6041 0.6297 0.8933 0.0838 0.0744 0.0150 1.2537 1.2566 1.2654
0.5988 0.5994 0.8852 0.0848 0.0791 0.0165 1.2527 1.2480 1.2647

F5
0.8659 0.9261 0.9758 0.0218 0.0109 0.0092 0.7530 0.7573 0.7565
0.8561 0.8576 0.9664 0.0230 0.0234 0.0130 0.7479 0.7449 0.7540
0.6367 0.7617 0.9245 0.1391 0.0627 0.0280 0.6168 0.6829 0.7351

F6
0.7108 0.8441 1.0000 0.0425 0.0329 0.0337 1.6705 1.6748 1.6740
0.6889 0.7788 0.9670 0.0469 0.0376 0.0363 1.6644 1.6705 1.6702
0.6676 0.7197 0.9385 0.0495 0.0417 0.0453 1.6572 1.6664 1.6619
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Fig. 6 Approximated POFs with the lowest IGD values among 30 runs on F1-F3.
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Fig. 7 Approximated POFs with the lowest IGD values among 30 runs on F4-F6.

For a better understanding of the improvement provided
by our proposed penalty schemes, we also present graphical
plots of approximated POFs for the six problems in Figs. 6
and 7. It can be clearly observed from the figures that, both
PBI+APS and PBI+SPS help to find more boundary points
than the original PBI for F1, F3, F4 and F6 so as to stretch
out their approximated POFs, and PBI+SPS performs much
better than PBI+APS in doing this. For the overall concave
F2 and F5 problems, three PBI variants show nearly similar
distribution of obtained solutions, although PBI+SPS seems
to find more boundary points than PBI and PBI+APS for F5.

It is understandable that PBI+SPS performs the best
in most cases. This can be attributed to the feature that
PBI+SPS imposes strict penalty on boundary subproblems
so that it is capable of finding boundary points.

4.4 Integration into MOEA/D Variants

The previous subsection clearly shows the effectiveness of
the two proposed penalty schemes, and SPS generally per-
forms better than APS. In this subsection, SPS is inte-
grated into two newly-proposed variants of MOEA/D, i.e.,
MOEA/D-ACD (Wang et al., 2015) and MOEA/D-STM (Li
et al., 2014c), to examine whether SPS can help improve the
performance of PBI-based algorithms.

4.4.1 Integration into MOEA/D-ACD

MOEA/D-ACD uses constrained decomposition approaches
to convert an MOP into a number of single-objective sub-
problems. The basic idea behind it is to add constraints to the
decomposed subproblems to shrink improvement regions.
For the wi search direction in MOEA/D, the resulting con-
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f2

f1

z∗

φ

γ

wi

Fig. 8 Illustration of the improvement region (marked in grey) for the
constrained PBI approach.

strained subproblem i is defined as follows:

min g(x|wi, z∗)

s.t. 〈wi,F(x)− z∗〉 ≤ φ
2

x ∈ Ωx
(11)

where g(·) is the scalarizing objective function defined by a
decomposition approach, 〈wi,F(x)− z∗〉 is the acute angle
between wi and F(x)− z∗, and φ is a parameter controlling
the size of improvement regions. The value of φ is different
for different subproblems. Fig. 8 illustrates the improvement
region of the constrained PBI approach for subproblem i.

It can be clearly observed from Fig. 8 that the enclosed
improvement region for the constrained PBI is mainly con-
trolled by two acute angles, i.e., φ and γ, where γ is de-
termined by the penalty factor θ. A constant θ value in
MOEA/D-ACD means all subproblems have the same γ,
and the improvement regions may be still too large for some
subproblems although the constrained decomposition ap-
proach is used. As a result, a new solution can replace sev-
eral different old but well-distributed solutions, thus impair-
ing the population diversity. In contrast, if each subproblem
is assigned a different and proper θ value, the improvement
regions will be well controlled, which may help maintain the
balance between the population diversity and convergence.

It should be noted that our proposed SPS and the con-
strained approach in MOEA/D-ACD are similar in some
sense because both are based on the assumption that each
subproblem should separately maintain an appropriately dif-
ferent balance between diversity and convergence. When
SPS is integrated into MOEA/D-ACD, it is expected that
SPS can help improve the performance of MOEA/D-ACD.
For this reason, we compare the integrated MOEA/D with
MOEA/D-ACD on our previously used test problems. For
notation convenience, MOEA/D-ACD is denoted as “ACD”
and MOEA/D-ACD with SPS as “ACD+SPS” later on.

Table 3 Best, mean and worst performance measure values obtained
by ACD and ACD+SPS

MS IGD HV
Prob. ACD ACD+SPS ACD ACD+SPS ACD ACD+SPS

F1
0.8257 0.9623 0.0270 0.0196 1.3340 1.3351
0.7538 0.8653 0.0390 0.0228 1.3318 1.3337
0.6466 0.7405 0.0640 0.0440 1.3267 1.3311

F2
0.9999 0.9996 0.0164 0.0205 0.5397 0.5383
0.9988 0.9982 0.0239 0.0320 0.5363 0.5342
0.9914 0.9936 0.0399 0.0371 0.5294 0.5280

F3
0.8343 0.8816 0.0278 0.0190 1.3531 1.3559
0.7431 0.8600 0.0410 0.0218 1.3509 1.3552
0.5322 0.6116 0.1763 0.1738 1.3389 1.3435

F4
0.9160 0.9184 0.0147 0.0143 1.2630 1.2643
0.8600 0.8930 0.0208 0.0166 1.2613 1.2626
0.8020 0.8723 0.0274 0.0200 1.2584 1.2606

F5
0.9865 0.9889 0.0085 0.0105 0.7548 0.7578
0.9210 0.9278 0.0173 0.0137 0.7497 0.7502
0.8659 0.8937 0.0265 0.0257 0.7420 0.7419

F6
0.9202 1.0000 0.0358 0.0310 1.6713 1.6748
0.7623 0.9986 0.0379 0.0331 1.6662 1.6718
0.7197 0.9829 0.0408 0.0388 1.6569 1.6686

Table 4 Statistical difference between ACD and ACD+SPS

MS IGD HV
Sign ACD ACD+SPS ACD ACD+SPS ACD ACD+SPS
better 0 5 0 4 1 4

equivalent 1 1 2 2 1 1
worse 5 0 4 0 4 1

The results of ACD and ACD+SPS regarding the three
performance measures are given in Table 3. From Table 3,
we can observe that the use of SPS helps enhance the per-
formance of ACD for all the problems except F2 and F5. For
F2 and F5, ACD performs better in some runs but worse in
other runs than ACD+SPS. The comparison between ACD
and ACD+SPS clearly indicates that different subproblems
require different θ values to control the upper bound of
the improvement regions. Furthermore, we performed the
Wilcoxon rank sum test on these two algorithms at the 0.05
significant level to verify the statistical difference between
them. The results are shown in Table 4, where “better”,
“equivalent”, or “worse” denotes the number of test prob-
lems on which the corresponding algorithm is better than,
equivalent to, or worse than the compared algorithm, re-
spectively. The statistical results further confirm that SPS
is beneficial to MOEA/D and improves the performance of
MOEA/D-ACD.

In order to have a better understanding of the impact of
SPS, we graphically plot the average IGD metric obtained
by ACD with and without SPS against the number of gen-
erations on the six test problems in Fig. 9. Clearly, ACD
without SPS generally has a faster convergence speed than
that with SPS. The reason is that the use of SPS reduces the
improvement region for each subproblem so that ACD+SPS
needs some effort to find a new solution that is better, in
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Fig. 9 Evolution curves of the average IGD metric for F1-F6.

terms of diversity and convergence, than the old solution of
the considered subproblem and replace the old with the new
one. Despite that, the use of SPS improves the IGD met-
ric at the late stage for the problems except F2. This means
that SPS enhances the diversity performance of MOEA/D-
ACD, thereby providing improvement on the distribution of
obtained POFs.

4.4.2 Integration into MOEA/D-STM

Another MOEA/D variant to be considered is a stable
matching (STM) based MOEA, called MOEA/D-STM (Li
et al., 2014c). MOEA/D-STM uses the STM model to coor-
dinate the selection process in MOEA/D, where subproblem
agents can express their preferences over the solution agents,
and vice versa. As a consequence, suproblems’ preference
encourages convergence whereas solutions’ preference pro-
motes diversity. As our work focuses on the improvement of
PBI, so PBI should be used in MOEA/D-STM for experi-
mental analysis, and the penalty value θ is set to 5.0 (Zhang
and Li, 2007). The other parameter settings remain the same
as in Li et al. (2014c).

Table 5 reports the results of three performance mea-
sures obtained by MOEA/D-STM and MOEA/D-STM with
SPS, where for the notation convenience, “STM” and
“STM+SPS” represent the former and the latter, respec-
tively. It can be clearly observed that, the use of SPS sig-
nificantly improves the performance of STM for all the con-
sidered problems. On the other hand, it is worth noting that

Table 5 Best, mean and worst performance measure values obtained
by STM and STM+SPS

MS IGD HV
Prob. STM STM+SPS ACD STM+SPS STM STM+SPS

F1
0.5375 0.8960 0.1025 0.0188 1.3139 1.3351
0.5273 0.8676 0.1068 0.0221 1.3123 1.3346
0.5130 0.8186 0.1124 0.0338 1.3099 1.3326

F2
0.0000 1.0000 0.7838 0.0159 0.2400 0.5399
0.0000 1.0000 0.7838 0.0219 0.2400 0.5349
0.0000 1.0000 0.7838 0.0407 0.2400 0.5283

F3
0.4796 0.8822 0.1978 0.0211 1.3319 1.3560
0.3311 0.8770 0.4036 0.0252 1.2976 1.3547
0.3191 0.8407 0.4051 0.0331 1.2956 1.3526

F4
0.6579 0.9248 0.0805 0.0138 1.2538 1.2645
0.6066 0.8949 0.0846 0.0166 1.2525 1.2637
0.5998 0.8857 0.0861 0.0194 1.2519 1.2624

F5
0.8784 0.9817 0.0253 0.0114 0.7546 0.7618
0.8719 0.9478 0.0313 0.0154 0.7533 0.7598
0.8678 0.9370 0.0406 0.0206 0.7517 0.7578

F6
0.7373 1.0000 0.0389 0.0334 1.6693 1.6725
0.7094 1.0000 0.0421 0.0355 1.6664 1.6714
0.6847 0.9943 0.0444 0.0378 1.6625 1.6696

STM seems struggling to solve F2, and its MS metric value
of zero indicates that STM produces as many duplicate so-
lutions as the population size for F2. In contrast, when SPS
is integrated into STM, F2 can be easily approximated, as
indicated by the very small IGD values. This means a fixed
penalty value for PBI in STM is not suitable for solving test
problems.

The poor performance of STM without SPS on the tested
problems may be explained by two possible reasons. One is
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Table 6 Best, median and worst IGD values obtained by PBI+SPS
with different α values on F1 and F2

Prob. α = 1.0 α = 2.0 α = 3.0 α = 4.0 α = 5.0 α = 10.0

F1
0.1757 0.0791 0.0351 0.0181 0.0186 0.0193
0.1761 0.0825 0.0391 0.0213 0.0203 0.0219
0.1771 0.0877 0.0575 0.0288 0.0325 0.0287

F2
0.0047 0.0047 0.0047 0.0047 0.0048 0.0090
0.0048 0.0048 0.0048 0.0049 0.0052 0.0137
0.7835 0.7835 0.0071 0.0051 0.0067 0.0230

that, the test problems may be too complicated in terms of
their POF shapes so that STM struggles to solve them. The
other reason may be the inappropriate setting of the penalty
value in PBI. As subproblems in MOEA/D are responsible
for different landscapes of the objective space, they should
be given different penalty values for different scenarios to
balance convergence and diversity in PBI. Although STM
promotes the balance between convergence and diversity,
its convergence still depends on scalarizing functions. Thus,
when PBI is chosen as the scalarizing function, the penalty
value should be carefully specified.

4.5 Influence of Parameter α on SPS

In SPS, the magnitude of penalty for a subproblem consid-
erably depends on its control parameter α. In this subsec-
tion, we investigate the sensitivity of SPS to this parameter.
MOEA/D with PBI+SPS is tested on F1 and F2 since these
two problems have distinctly different POF shapes, i.e., F1
is extremely convex whereas F2 is extremely concave. The
value of α in SPS varies from 1.0 to 10.0, and other param-
eters remain the same as in Section 4.1.

Table 6 presents the obtained IGD values of MOEA/D
with PBI+SPS with different α values on F1 and F2. It can
be observed that, for F1, α = 4.0 in SPS provides better
IGD values than the other settings. Setting α to a too small
or too large value degrades the performance of PBI+SPS in
terms of the IGD metric. For F2, however, all the settings
of α except α = 10.0 can produce similar IGD results and
there is no significant difference between these IGD values.
This observation indirectly indicates that, concave problems
are less likely to be affected by the penalty factor θ in PBI,
but this is not the case with convex problems.

In SPS, the penalty value is controlled by two parame-
ters, i.e., α and β. For a weight vector wi, βi can be easily
calculated by Eq. (6). Thus, α is the only factor that can in-
fluence the penalty value. However, for distinct weight vec-
tors, the value of αβ may be different. There are at least two
scenarios, i.e., αβ < 1 or αβ ≥ 1. Small αβ values under-
emphasize population diversity whereas large ones favour
diversity. To investigate these situations, we use F1 as the
test problem. As F1 has an extremely convex POF shape,
the boundary regions are hard to be located. Therefore, we
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Fig. 10 Influence of α on population distribution for F1.

select three boundary weight vectors w1 = (0.02, 0.98)T ,
w2 = (0.05, 0.95)T and w3 = (0.15, 0.85)T to approxi-
mate three boundary points. Correspondingly, their β values
are β1 = 0.96, β2 = 0.9, and β3 = 0.7, respectively. α is set
as α=0.5, 1, 2, and 4, meaning that αβ < 1 if α=0.5 and 1;
otherwise, αβ > 1. Since only three population individuals
(which is determined by the number of weight vectors) are
used, we increase the maximum number of generations to
1000 in order to guarantee convergence.

Figure 10 shows the influence of α on population dis-
tribution. Clearly, the larger α is, the more spread the ob-
tained points will be. Thus, α = 4 yields better spread than
the other settings, although one of the solutions is a little
bit far away from w3. We guess that α = 4 might be too
large for the subproblem associated with w3, which may
discard solutions that have good convergence but poor diver-
sity. On the other hand, small α values favour intermediate
points as these points are much closer than boundary points
to the ideal point, indicating that the resulting penalty is not
enough to maintain diversity.

It is worth noting that α = 4.0 might not be the best pa-
rameter setting for all kinds of problems, although it clearly
provides a significant improvement for PBI. As α controls
the balance between the population diversity and conver-
gence for each decomposed subproblem, it should be care-
fully selected in order to maximize the algorithm’s perfor-
mance. Also, it is desirable to design an adaptive strategy
for the setting of α, which is left for our future work.

5 Conclusions and Future Work

In this paper we have investigated the influence of the
penalty factor on the performance of PBI within MOEA/D.
The investigation shows that, a small penalty value is bene-
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ficial for convergence but may make PBI unable to preserve
boundary solutions if boundary solutions are much further
away from the obtained ideal point than intermediate solu-
tions, while a large one is advantageous to diversity but can
slow down the convergence course. On the basis of this in-
vestigation, two new penalty schemes, i.e., APS and SPS,
are introduced to strike a balance between convergence and
diversity. Similar to the original PBI, APS assigns identical
penalty values for all subproblems, but the penalty values
are generationally increasing during the course of search,
with a small value at the early stage in favour of fast conver-
gence and a large one at the late stage emphasizing diversity
and spread of solutions. In contrast, SPS turns to specify
distinct penalty values for different subproblems according
to the location of their associated weight vectors. Boundary
subproblems are given a strict penalty and intermediate ones
are given a loose penalty. This way, preservation of bound-
ary solutions are enhanced so as to provide a wide spread of
Pareto font.

These two new penalty schemes have been tested on
several complex problems, including bi-objective and three-
objective problems. Experimental studies have shown that
both schemes help ease the loss of boundary solutions and
outspread the Pareto font, and PBI with SPS performs sig-
nificantly better than that with APS. This means SPS is
an effective way to improve the performance of PBI. Be-
sides, SPS has been integrated into two recently proposed
variants of MOEA/D, i.e., MOEA/D-ACD and MOEA/D-
STM, and experimental results have clearly demonstrated
the efficiency of SPS in promoting the performance of
decomposition-based MOEAs with PBI.

Although the proposed penalty schemes have offered en-
couraging results on the test problems considered in this pa-
per, they should be examined on a wider range of different
kinds of problems. As there has recently been an increas-
ing number of studies in extending PBI-based MOEAs to
many-objective optimization, it should be very interesting to
further examine the effect of PBI on different types of many-
objective problems. Besides, designing a parameter-free or
adaptive PBI method for MOEA/D is very desirable. In our
future work, MOEA/D with PBI variants will be compared
with other state-of-the-art algorithms.
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