
Highlights

 Information from torso edges, not the central body, drives self-estimates of body size in women

 Information extraction was independent of bubble size in the bubble masking task used

 Normal eye fixations up and down the central torso remained despite the bubble mask 

 Eye movements and diagnostic regions for self-estimates of body size are not necessarily equivalent
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3 Abstract

4 A modified version of the bubbles masking paradigm was used in three experiments to 

5 determine the key areas of the body that are used in self-estimates of body size. In this 

6 paradigm, parts of the stimuli are revealed by several randomly allocated Gaussian “windows” 

7 forcing judgements to be made based on this partial information. Over multiple trials, all 

8 potential cues are sampled, and the effectiveness of each window at predicting the judgement 

9 is determined. The modified bubbles strategy emphasises the distinction between central versus 

10 edge cues and localises the visual features used in judging one’s own body size. In addition, 

11 eye-movements were measured in conjunction with the bubbles paradigm and the results 

12 mapped onto a common reference space. This shows that although observers fixate centrally 

13 on the torso, they are actually directing their visual attention to the edges of the torso to gauge 

14 body width as an index of body size. The central fixations are simply the most efficient way of 

15 positioning the eye to make this estimation. Inaccurate observers are less precise in their central 

16 fixations and do not evenly allocate their attention to both sides of the torso’s edge, illustrating 

17 the importance of efficiently sampling the key information. 

18

19 Key words: BMI, self-estimates, body size estimation, eye-movements, bubbles masking 

20 technique, visual cues.
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21 1. Introduction

22 It is well established that people who suffer from anorexia nervosa or bulimia nervosa 

23 overestimate their own body size (e.g., Cornelissen, Johns, & Tovée 2013; Gardner & 

24 Bokenkamp, 1996; Probst, Vandereycken, Van Coppenolle, & Pieters, 1998; Slade & Russell, 

25 1973; Tovée, Benson, Emery, Mason, & Cohen‐Tovée, 2003), although the magnitude of this 

26 overestimation may also depend on a person’s body mass index (BMI; Cornelissen et al., 2015, 

27 2017). Body size overestimation is one of the most persistent of all the eating disorder 

28 symptoms, the severity of which predicts the long-term outcome of treatment (Fairburn, 

29 Cooper, & Shafran, 2003; Junne et al., 2019; Pike, 1998), and its persistence predicts the 

30 likelihood of relapse, which occurs at high rates (Berkman, Lohr, & Bulik, 2007; Castro, Gila, 

31 Puig, Rodriguez, & Toro, 2004; Channon & DeSilva, 1985; Herzog et al., 1999; Keel, Dorer, 

32 Franko, Jackson, & Herzog, 2005; Slade & Russell, 1973). It is therefore important that self-

33 estimates of body size can be made accurately, that we understand how these judgements are 

34 made, how they may go awry, and to develop techniques to ameliorate this.

35 Two factors contribute to the estimation of one’s own body size, both of which can be 

36 disturbed in eating disorders (Cash & Deagle, 1997): (1) an attitudinal component which 

37 captures the feelings that a person has about their body’s size and shape, and (2) a perceptual 

38 component that has to do with the accuracy with which a person can judge the dimensions of 

39 their own physical appearance. Although more recent reviews exist, e.g., Skrzypek, Wehmeier, 

40 and Remschmidt (2001), they arrive at essentially the same conclusion. Measuring the 

41 attitudinal component of body image has proved to be relatively straightforward. Typically, 

42 psychometric tools are used to assess such attributes as body dissatisfaction and attitudes to 

43 body shape and weight (Evans & Dolan, 1993; Fairburn & Beglin, 1994). However, measuring 

44 the perceptual component of body size estimation has proved more challenging. A wide variety 

45 of methods have been tried, starting from image marking procedures (Askevold, 1975) and 
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46 moveable calliper techniques (Slade & Russell, 1973) to distorting photograph and video 

47 techniques (Gardner & Moncrieff, 1988; Probst, Vandereycken, & Van Coppenolle, 1995; 

48 Shafran & Fairburn, 2002). Most recently CGI (computer generated imagery) technology has 

49 been used to create standard stimuli or even personalized 3D avatars that accurately reflect 

50 BMI dependent body shape change (Cornelissen et al., 2015; Irvine et al., 2018; Mölbert et al., 

51 2017; Szostak, 2018). In these perceptual body size estimation tasks, participants are typically 

52 presented images of either a standard model, or an avatar of themselves, usually on a PC 

53 monitor. The images vary in adiposity (indexed by BMI) and the participant’s task is essentially 

54 to decide which image best corresponds to the body size they believe themselves to have. Our 

55 question is: what visual features do participants use to make these judgements about their own 

56 body size when they are viewing such stimuli?

57 1.1. Visual Cues to Body Size Judgements

58 Previous research suggests two potential sets of cues that may drive performance on 

59 perceptual body size estimation tasks: firstly, the width of the body in the stimuli and secondly, 

60 the cues within the body outline. The first set of cues are straightforward. Previous studies have 

61 noted that the width of the torso increases with increasing body mass index, particularly around 

62 the waist region (BMI) (e.g., Cornelissen et al., 2009a; Tovée et al., 1999; Tovée & 

63 Cornelissen, 2001). This “thickening” of the torso could thus provide an index of body mass. 

64 The second set of cues are internal to the body outline. These include the saliency of bony 

65 landmarks such as the collar bones or ribs, which become more obvious as body fat declines 

66 (George et al., 2011). Additionally, as the amount of body fat increases, it is deposited as rolls 

67 of fat, whose size and quantity could be used to estimate total body mass. Between these 

68 extremes, the pattern of texture gradients across the surface of the body can potentially provide 

69 a cue to the 3D shape of the body, such as size of the stomach (Cornelissen et al., 2013; Tovée 

70 et al., 2002).
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71 In support of the first hypothesis, a principal component analysis (PCA) of images of 

72 female bodies varying in BMI, but facing forward in a standard pose, found that the change in 

73 torso width was described by principal component 1 (PC1), and this factor was the main 

74 predictor of body judgements (Tovée et al., 2002). Additionally, when the results of this PCA 

75 were used to create a set of artificial bodies, simply varying PC1 was sufficient to drive the 

76 perception of body weight change without varying any of the other shape dimensions (Smith 

77 et al., 2007a). This suggests that simple changes in torso width are sufficient to drive the 

78 perception of body mass.   

79 This result is also consistent with a recent study which varied body orientation relative 

80 to the observer (Cornelissen et al., 2018). The observer had to discriminate between pairs of 

81 bodies in a 2-alternative forced choice task, based on differences in BMI. The finest 

82 discrimination occurred for the bodies presented either in profile or at 45o relative to the 

83 observer, and the worst discriminations occurred when the bodies were presented in front-view. 

84 Most pertinently, the sensitivity of discrimination was predicted by the magnitude of the torso 

85 width change detectable by the observer. As BMI increases, the degree of change in torso width 

86 as a proportion of the total torso width, is greater in profile or at 45o than in front-view. This is 

87 true for both CGI bodies and digital photographs of real bodies (Cornelissen et al., 2018). As 

88 a result, judgements in profile or at 45o tend to be more accurate than those made in front-view. 

89 This difference in performance and its correlation with the saliency of the visual cues to change 

90 in torso width change, suggests that this is the cue that is being used to judge body size.

91 1.2. Eye-Movement Studies

92 Alternatively, there are also visual cues that are internal to the body outline that index 

93 overall body mass, and several studies suggest that in practice these are the cues being used. 

94 The evidence for this hypothesis is primarily based on eye-movement studies. For example, 
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95 women with anorexia nervosa fixate more on these body landmarks when making body size 

96 judgements than control observers and are significantly better than the control observers at 

97 judging the body size of low weight bodies (Cornelissen et al., 2015; George et al., 2012). This 

98 suggests that the use of these cues may form the basis of a successful strategy in judging lower 

99 BMI bodies. In addition, as mentioned above, increasing body fat changes the pattern of texture 

100 gradients and shading cues across the surface of the body within the body outline (Cornelissen 

101 et al., 2016b). 

102 Several studies have suggested that stomach size, indexed through its depth, is a strong 

103 cue to BMI (e.g., Rilling et al., 2009; Smith et al., 2007; Tovée et al., 1999). Eye-movement 

104 data suggest control participants who are accurate at estimating their own BMI fixate primarily 

105 on the stomach. Critically, these fixations fall within the body outline (Cornelissen et al., 2009b, 

106 2016b; George et al., 2012). This is true whether observers are judging bodies seen in front-

107 view or viewed at a 45o angle. If they were simply viewing the degree to which the stomach 

108 protrudes then their fixations should shift between central fixations on the torso in front-view 

109 to fixations on the edge body outline in the 45o viewing angle. However, the fixations remain 

110 centrally located (Cornelissen et al., 2009b, 2016b; George et al., 2012). This is surprising, as 

111 if participants are asked to judge torso shape, they made eye-movements across the body and 

112 sequentially fixated on either side of the torso edge (Cornelissen et al., 2009b). This suggests 

113 that when viewing bodies at a 45o angle, the optimal fixation strategy for estimating stomach 

114 depth would be to make fixations on both edges of the body corresponding to its outline.  

115 However, under these viewing conditions, observers whose fixations are not concentrated 

116 centrally within the body outline, and those who look more at the edge of the body are less 

117 accurate in their body mass judgements (Cornelissen et al., 2016b). Eye movement data like 

118 these therefore suggest that the principal cues being used to judge body mass are located within 

119 the body outline. 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

120 1.3. Dissociation Between Fixation Patterns and the Allocation of Attention

121 A potential key flaw with these eye-movement studies is the assumption that visual 

122 attention is always aligned directly with the line of sight. A number of studies have suggested 

123 that this may not necessarily be the case (e.g., Datta & DeYoe, 2009; Ehinger & Rosenholtz, 

124 2016; Gegenfurtner, 2016). For example, in judgements of a basketball scenario, a contingent-

125 gaze paradigm suggests that the position of the player with the ball is used as an “anchor point” 

126 for an observer’s fixation while the relative position of the other players was estimated using 

127 the peripheral visual field (Ryu et al., 2013).  Thus, a particular fixation point may just be a 

128 suitable point in the visual field from which to sample visual information using the retinal 

129 periphery, and not the complete focus of an observer’s attention. This therefore raises an 

130 alternative account of the eye-tracking studies of body size estimation. It is possible that instead 

131 of extracting information within the body outline, the eye-movement pattern is actually an 

132 efficient foraging strategy which allows a wider attentional window to extract edge-based cues 

133 from the torso while using a central looking strategy.

134 It is well known that resolution acuity (i.e., the smallest separation between two points 

135 that allows them to be perceived as separate) drops off dramatically from the central fovea 

136 towards the parafovea and beyond (Anderson, Mullen, & Hess, 1991; Carrasco, 2011; Pelli & 

137 Tillman, 2008). This necessarily means that the apparent sharpness of the torso edges when 

138 sampled by a strategy of viewing the centre of the body, would be reduced; put simply, the 

139 torso edges would appear blurry. However, it is important to remember that the visual system’s 

140 ability to resolve edge alignment, edge sharpness or smoothness, and curvature, i.e., exactly 

141 the kinds of low-level features that are likely to be needed to estimate the separation and shape 

142 of the torso edges, operate within the hyperacuity range (Carrasco, 2011). The phenomenon of 

143 hyperacuity is based not on the cone density of the retina, but on a cortical calculation which 

144 extrapolates from the limited sampling array to estimate a more detailed percept (Motter, 1998; 
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145 Gegenfurtner, 2016). This means that these spatial attributes can potentially be resolved to an 

146 accuracy often an order of magnitude finer than that of resolution acuity, even in the presence 

147 of a blurred stimulus. Therefore, there is no reason in principle why a foraging strategy that 

148 appears to blur the edges of the object being judged will impair the visual system’s ability to 

149 discriminate the locations and shapes of those edges in calculating body size.

150 1.4. The Bubbles Masking Technique

151 A potential way of disambiguating these two possibilities, i.e., edge versus central 

152 image information and gauging the location of the attentional window during the perceptual 

153 judgement of body size, is the bubbles masking technique (Gosselin & Schyns, 2001). This 

154 technique is a psychophysics paradigm that has been used to determine which visual cues are 

155 being used in a categorisation task; i.e., which areas are diagnostic for a given judgement. For 

156 example, the technique has been used to reveal which facial features drive the distinction 

157 between neutral versus happy faces and male versus female faces. In the bubbles masking task, 

158 parts of the stimuli are revealed by randomly allocated Gaussian “windows.” These are circular 

159 holes with blurred edges that perforate a uniform gray surface that overlies the stimulus (see 

160 Figure 1 for an illustration). On each trial, observers make a categorical judgement based on 

161 this partial information, e.g., “this is a male face” or, as in the current study, “that body is larger 

162 than mine.” Over multiple trials, all areas in the stimulus image are sampled and from this 

163 unbiased sampling strategy, it is possible to calculate how effective each Gaussian window was 

164 at independently determining the behavioural performance (Humphreys et al., 2006). Thus, it 

165 should be possible to localise the areas of a body stimulus that are actually used when 

166 participants make self-estimates of body size. 

167 But the bubbles masking technique has its own potential flaw. It is possible that the 

168 imposition of the bubble masks fundamentally changes the looking strategy (Gosselin & 
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169 Schyns, 2004; Murray & Gold, 2004). So, we address this problem by using an adapted bubbles 

170 strategy which emphasises the distinction between central versus edge featural information 

171 (Experiments 1 and 2). In addition, we also measure eye-movements to test whether the 

172 underlying search strategy, reflected in eye fixation patterns, has changed from the up and 

173 down the middle of the body fixation strategy reported by previous studies of self-estimation 

174 of body size (Experiment 3). 

175 1.5. The Current Study                                                                                                                                                                                                                                       

176 Here we ask what visual cues do participants use when judging their own body size? 

177 The literature reviewed above suggests that there are two potential sets of cues that participants 

178 could be using to make these judgements: (1) information about the separation of the torso 

179 edges and (2) information about body shape contained within the body outline. If the former 

180 case is true, we should expect to find a dissociation between where participants look on the 

181 stimulus bodies and the location of the regions on the bodies that are diagnostic for body size. 

182 Specifically, we predict that the eye fixations should lie along the vertical midline of the body 

183 stimuli, and the diagnostic regions should lie along the left and right torso edges. If, however, 

184 the latter case is true, both the diagnostic regions and the eye fixations should be spatially 

185 coincident, and both should be aligned with the vertical midline of the stimulus body. 

186 In three experiments, we combine a modified bubbles masking technique together with 

187 eye movement recording to distinguish between these two possibilities. All the studies were 

188 completed by two sets of observers. In a pre-test screening process, we identified observers 

189 who were accurate at estimating their own body size, and observers who were inaccurate. By 

190 using both accurate and inaccurate observers we were able to compare the features important 

191 for an accurate judgement with the regions which lead to a misestimation. As discussed above, 

192 overestimation of body size in women with anorexia nervosa may arise from either one or both 
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193 of two factors; attitudinal or perceptual distortion. By testing nonclinical samples who 

194 overestimate body size compared to those who are accurate at estimating body size and who 

195 have the same psychological concerns, we can focus purely on perceptual factors as the basis 

196 of the overestimation. Ultimately, we intend to extend this research to compare diagnostic 

197 regions for self-estimates of body size in people with eating disorders with those from accurate 

198 and overestimating individuals without eating disorders. However, these experiments make 

199 heavy demands on participants. Therefore, as a first step in the introduction of the bubbles 

200 paradigm into this research area, we felt it appropriate to recruit participants who had no history 

201 of eating disorders.

202 1.6. Overall Experimental Strategy

203 In all three experiments, we recruited women with no history of eating disorders. For 

204 each experiment, we used a standard yes-no body size estimation task (described below) to 

205 identify a group of 12 women who estimated their body size accurately and a second group of 

206 12 women who overestimated their body size. In addition, all participants were administered a 

207 standard battery of psychometric tasks to estimate their psychological attitudes regarding their 

208 body shape, weight, eating, and self-esteem, as well as report their symptoms of depression. 

209 This allowed us to ensure that, in each of the three experiments, the groups of accurate body 

210 size estimators and overestimators were comparable in terms of their psychological profiles, 

211 chronological age, and BMI. We then used the bubbles masking technique with large 

212 (Experiment 1) and small (Experiment 2) bubbles to identify the diagnostic regions that 

213 allowed participants to judge their own body size against the stimulus presented. On each trial 

214 of these tasks, participants had to decide whether the body in the masked image was smaller or 

215 larger than they believe themselves to be. Because the two groups of participants differed only 

216 in their accuracy at estimating their own body size (from the yes-no task), and did not differ in 

217 any other way, we could use a spatial analysis to compare the diagnostic regions for self-
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218 estimates of body size between them. Finally, in Experiment 3, we ran an eye movement 

219 recording study to test whether the presence of the bubble masks caused a fundamental change 

220 in looking strategy in Experiments 1 and 2. Specifically, we needed to know whether 

221 participants had changed from an up-and-down the middle of the body viewing strategy, which 

222 we would expect to see in the absence of bubbles, to an alternative strategy in which they 

223 deliberately looked separately at the left and right torso edges. 

224 2. Experiment 1

225 2.1. Method

226 The experimental procedures and methods for participant recruitment for this study 

227 were approved by the local ethics committee at Northumbria University. 

228 2.1.1. Participants.

229 Pilot testing showed that the maxima and minima in the group differences in correctly 

230 responding in diagnostic areas that were biologically meaningful (e.g., edge of torso, central 

231 abdomen, and gap between thighs) could be detected using a sample size of between 4 and 11 

232 participants per group (alpha = 0.05 and power = 80%). To offset attrition in participant 

233 numbers and/or unexpected sources of variability, we therefore recruited 12 participants per 

234 group. 

235 To be eligible to take part in this study, participants had to be female (as assigned at 

236 birth), aged 18-35, with no history of eating disorders, and they had to have normal or 

237 corrected-to-normal vision. We recruited 41 females into Experiment 1 from staff and students 

238 at Northumbria University who carried out the initial psychometric and psychophysical tests. 

239 We defined body size overestimators as those whose point of subjective equality (PSE) from 

240 the yes-no-task (see below) was at least 2 BMI units above their measured BMI. Accurate 

241 body-size estimators recorded a PSE within +/-1 BMI unit of their measured BMI. According 
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242 to these criteria, we identified 12 accurate body size estimators and 12 overestimators from the 

243 initial sample of 41 consenting women and invited these individuals to complete the full study. 

244 The characteristics of these 24 participants are reported in Table 1.

245 2.1.2. Measures.

246 2.1.2.1.  Psychometric and anthropometric measures. 

247 To measure the attitudinal component of body image, participants completed a number 

248 of self-report questionnaires that measure body satisfaction and attitudes towards body shape, 

249 weight and eating. 

250 2.1.2.1.1. Body Shape Questionnaire. The 16-item Body Shape questionnaire (BSQ-

251 16) (Evans & Dolan, 1993) was used to assess participants’ attitudes towards their body shape. 

252 Items are rated along a 6-point Likert-type scale ranging from never (scored as 1) to always 

253 (scored as 6). Items were summed to create a total score. A sample item is, “Have you been so 

254 worried about your shape that you have been feeling you ought to diet.”

255 2.1.2.1.2. The Eating Disorders Examination Questionnaire. The Eating Disorders 

256 Examination Questionnaire (EDE-Q) is a 28-item self-report version of the Eating Disorder 

257 Examination (EDE) interview (Fairburn & Beglin, 1994). It contains four subscales: the 

258 Restraint subscale investigates the restrictive nature of eating, the Eating Concern subscale 

259 measures the preoccupation with food and social eating, the Shape Concern subscale measures 

260 dissatisfaction with body shape, and the Weight Concern subscale measures dissatisfaction 

261 with body weight. Participants report how many days out of the past four weeks they have 

262 experienced an item (e.g., “Have you been deliberately trying to limit the amount of food you 

263 eat to influence your shape or weight [whether or not you have succeeded]”) on a 7-point 

264 Likert-type scale ranging from No days (scored as 0) to Every day (scored as 6). A global score 

265 of overall disordered eating behaviour and subscale scores were calculated by averaging the 
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266 appropriate items, and frequency data on key behavioural features of eating disorders is 

267 provided. 

268 2.1.2.1.3. Beck Depression Inventory. The Beck Depression Inventory (BDI) was used 

269 to measure levels of depressive symptomatology (Beck, Ward, Mendelson, Mock, & Erbaugh, 

270 1961). It is a behavioural checklist that contains 21 items. Each item is rated on a 4-point scale, 

271 ranging from 0 (no symptom of depression) to 3 (severe expression of depressive symptom). 

272 Items are summed. 

273 2.1.2.1.4. Body mass index. BMI was calculated from their weight and height measured 

274 with a set of calibrated clinical SECA scales and a stadiometer, respectively.

275 2.1.2.2. Psychophysical measurements.

276 2.1.2.2.1. Yes-no task. In this study, we apply classical psychophysical methods (cf. 

277 Gardner, 1996) to measure two components of the participants’ judgements of their own body 

278 size: (a) the point of subjective equality (PSE) and (b) the difference limen (DL). The PSE is 

279 the participant’s subjective estimate of their body size. The DL is an estimate of how sensitive 

280 a participant is to changes in body size and equates to the smallest difference in body size that 

281 she can detect. To obtain these measurements, we use the method of constant stimuli in a yes-

282 no forced choice paradigm. This allows a psychometric function to be estimated. Here, the 

283 psychometric function is a plot of the percentage of ‘this image is larger than me responses’ as 

284 a function of the BMI of the stimuli presented, and the curve tends to have a sigmoidal shape. 

285 The PSE is defined from the psychometric function as the BMI at which participants would 

286 respond ‘larger than me’ 50% of the time. The DL is the difference in the BMI of the stimuli 

287 falling between the 25% and 75% ‘larger than me’ response points (see Gescheider, 1997). 

288 This range captures the steepness of the psychometric curve. Participants who are very 
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289 sensitive to small differences in body size will have a steeper psychometric function with a 

290 correspondingly small DL. 

291 In the yes-no task, participants were presented with a randomized sequence of images 

292 of a standard CGI female model, standing in three-quarter view (for details of stimulus image 

293 generation, see Cornelissen, 2016). Across the image set, BMI varied continuously from 12.5 

294 to 44.5. On each trial of the task, one image was presented, and participants were required to 

295 decide whether the body depicted was larger or smaller than they believed themselves to be. 

296 Stimuli were presented on a 19” flat panel LCD screen (1280w ×1024h pixel native resolution, 

297 32-bit colour depth) for as long as it took participants to make a decision. At the standard 

298 viewing distance of ~60cm, the image frame containing the female body subtended ~26° 

299 vertically and ~8° degrees horizontally. Each participant first judged seven images covering 

300 the whole BMI range (from 12.5 to 44.5 in equal BMI steps) presented in two separate blocks. 

301 Each stimulus image appeared 10 times in each block, and the order of presentation was 

302 randomized. Based on the responses from each block, the participants’ point of subjective 

303 equality or PSE (the BMI they believe themselves to be) was calculated automatically by fitting 

304 a cumulative normal distribution. These two values were then averaged to give an initial 

305 estimate of the participant’s PSE. Based on this initial estimate, the program presented a further 

306 set of 21 images (spread over a range of 5 BMI units centred on the participant’s initial PSE, 

307 at a spacing of 0.25 units per image) for the participants to judge. Each image was presented 

308 ten times in randomized order. This final set of judgements allowed us to plot the full 

309 psychometric function (i.e. the percentage of ‘larger than me’ responses on the y-axis as a 

310 function of stimulus BMI on the x-axis) and use probit analysis off-line to calculate a definitive 

311 estimate of PSE as well as the difference limen or DL (that is how sensitive participants are to 

312 changes in BMI). Participants were classified as accurate at body size estimation if their PSE 
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313 was within +/1 BMI unit of their measured BMI and overestimators if their PSE was > 2 BMI 

314 units above their measured BMI.

315 2.1.2.2.2. Bubbles masking task. We built a bubbles masking task that was inspired by, 

316 but different from, the Bubbles paradigm developed by Gosselin and Schyns (2001). In these 

317 authors’ task, like ours, on every trial, participants are given a partial view of a stimulus through 

318 a set of Gaussian windows (i.e., circular holes with blurred edges, see Figure 1). The holes are 

319 punched, as it were, through a gray overlay that covers the stimulus image. In Gosselin and 

320 Schyns (2001), the centre of any one Gaussian bubble can be located at any pixel location in 

321 the stimulus image.  However, in the current study, we were asking whether information from 

322 the edges of the body outline, or the midline of the body, primarily drives decisions about self-

323 estimates of body size. For this reason, we wanted to constrain the location of the mask bubbles 

324 into three columns. Bubbles in the left column of the stimulus overlay the right body edge and 

325 allowed participants to see this edge only. (Here we use the anatomical convention where left 

326 refers to the left side of the person in the stimulus image, from their point of view.) Bubbles in 

327 the middle column overlay the midline of the woman in the stimulus, thereby restricting 

328 participants’ view to the midline of the body only. Bubbles in the right column of the stimulus 

329 overlay the left body edge, and restricted participants’ view to that region only (see Figure 1a). 

330 This approach meant that we could carry out a spatial analysis of percentage correct responses 

331 at each fixed bubble location, and explicitly test for differences in body size classification 

332 between bubbles in the midline versus the two edge columns.

333 Bubbles were created dynamically as the program ran the task. On each trial, a stimulus 

334 image was covered by an opaque grey overlay (RGB: 64, 64, 64 on a 0-256 range), punctured 

335 by transparent bubbles whose centres were defined by the centres of an invisible, rectangular 

336 grid of squares 3(w) × 9(h), corresponding to the three columns (left edge, midline, and right 

337 edge). Each square of the grid measured 100 × 100 pixels. In Experiment 1, the transparency 
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338 of the bubbles followed a 2D Gaussian distribution with a standard deviation of 0.56 degrees. 

339 On each trial of the task, a subset of the bubble locations was chosen at random from this 3 × 

340 9 array to be transparent, and participants had to decide, and respond by button press, whether 

341 the underlying image (drawn from the same stimulus set as the yes-no task) was larger or 

342 smaller than the participant believed themselves to be. Half of the images presented were 

343 larger, and half of them smaller, and the order of image presentation was randomized across 

344 trials. The particular pair of images presented to each participant were chosen based on their 

345 difference limen (DL) in the yes-no task. The smaller image corresponded to the 25% response 

346 rate in the yes-no task and the larger image the 75% response rate. Like Gosselin and Schyns 

347 (2001), we sought to maintain participants’ performance in the bubble mask task at ~75% 

348 correct across the 2000 trials of the task. To do this, we calculated the correct response rate 

349 after every 20 trials, and reduced the bubble count by 1, kept it the same or increased it by 1 

350 depending on whether the participant’s responses were below, at or above criterion (within +/- 

351 15 %).  

352 2.1.3. Procedure. To maximize participant’s vigilance and minimize their fatigue, 

353 they typically completed the experiment over the course of three sessions on three consecutive 

354 days. On the first day, in a quiet, private testing room, participants gave written consent to take 

355 part having read the study information sheet. Next, over the course of ~ 40 minutes, their height 

356 and weight were measured, they were asked to complete the psychometric questionnaires, and 

357 finally complete the yes-no psychophysical task. Participants who were eligible to complete 

358 the full study (i.e., they fit the criteria either for accurate or overestimation of body size) carried 

359 out the bubble masking task over the course of the next two sessions, each of which lasted 

360 about 60 minutes. Trials were presented back to back, each new trial triggered by the 

361 participant’s button response. A pause was included after every 140 trials, giving the 
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362 opportunity for a break. Once all tasks were completed, participants were verbally debriefed 

363 and given the opportunity to ask questions about the study.

364 2.2. Results

365 2.2.1. Univariate statistics. The right-hand columns in Table 1 show the output of 

366 pairwise comparisons of the two group means, adjusted for multiple comparisons, using the 

367 bootstrap resampling method with 10,000 bootstrap samples in PROC MULTEST (SAS v9.4, 

368 SAS Institute, North Carolina, USA). The effect sizes (Cohen’s d) for these comparisons, 

369 together with their 95% CI, are also included (Kadel & Kip, 2012). Despite some of the 

370 Cohen’s d values representing medium-to-large effect sizes, almost all of them include 95% 

371 confidence intervals that include zero. This is likely attributable to the relatively small number 

372 of participants. The only confidence intervals that do not include zero, correspond to very large 

373 effect sizes, are these also associated with statistically significant pairwise comparisons. Table 

374 1 confirms that accurate estimators were within ~0.25 BMI units of their actual BMI, on 

375 average, as compared to overestimators who overestimated by ~4 BMI units. With respect to 

376 the World Health Organization’s BMI classification scheme (World Health Organization, 

377 2003), the numbers of participants who fell into the underweight, normal, overweight, and 

378 obese categories for the accurate and overestimating groups, respectively, were: 0, 11, 1, 0, and 

379 1, 9, 2, 0. The mean BSQ scores shown in Table 1 are consistent with mild concern with body 

380 shape (Evans & Dolan, 1993). The mean BDI scores for the accurate and overestimating groups 

381 are both consistent with the mild range. The EDEQ subscales in both groups were within 1SD 

382 of the normative means for women within this age group (Mond et al., 2006). Cronbach’s 

383 alphas for the BDI, BSQ, and EDEQ in the two groups (combined) were .92, .95, and .94, 

384 respectively.
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385 2.2.2. Where are the diagnostic regions for the accurate and overestimating 

386 groups? In Experiment 1, on each trial, the stimulus to be judged was visible through bubbles 

387 picked at random from an array of 3(w) × 9(h) bubble locations. By the end of the task, the 

388 number of times that any particular bubble location had been used, as well as the percentage of 

389 those presentations that were associated with a correct response were recorded for each 

390 participant. Therefore, a percentage correct could be calculated for every bubble location, 

391 separately for each participant. 

392 The adaptive procedure ensured that participants’ responses tracked close to the 

393 criterion we set for the masking task, namely that 75% of the choices they made across 2000 

394 trials should be correct, and Table 1 confirms this. To achieve this criterion performance, both 

395 groups required on average a bubble count of ~5 (see Table 1). As Gosselin and Schyns (2001) 

396 argue, if all regions in our stimuli were equally informative about participants’ perceptions of 

397 their own body size, then the percentage of correct responses at each location in our mask array 

398 should match the same criterion: i.e., the response rate for every bubble location should also 

399 be 75% correct. However, if there is a subset of areas in the stimuli that are particularly 

400 informative about the body size participants’ believed they have, then we should expect the 

401 response rates in bubbles overlying these regions to be significantly higher than 75%. Such 

402 areas should correspond to regions that are diagnostic of participants’ body size beliefs, 

403 according to the terminology of Gosselin and Schyns (2001). However, for this to be true, and 

404 for average performance across the set of trials to be 75% correct, we should also expect the 

405 response rates in bubble locations that overlie non-informative regions in the stimuli to be 

406 lower than 75% correct. Note that the non-informative regions do not necessarily need to be 

407 significantly lower than 75%. They might reach perhaps only ~72% for example, but 

408 nevertheless be widely distributed enough across the sample space so that the average across 

409 the whole space is 75%.
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410 To test these predictions, we ran three generalized linear mixed models (GLMMs) of 

411 the normalized percentage responses across different bubble locations, using PROC MIXED 

412 in SAS v9.4 (SAS Institute, North Carolina, USA). To normalize the data, we calculated the 

413 mean percentage correct across all 3(w) × 9(h) bubble locations for each participant, and then 

414 subtracted these global means from the percentage correct for each individual bubble location, 

415 separately for each participant. For spatially sampled data, we cannot assume that the 

416 percentage correct responses at each bubble location are statistically independent of each other. 

417 Specifically, we must assume that percentage correct will covary across bubble locations, and 

418 that the magnitude of this spatial covariation is inversely proportional to the bubbles’ proximity 

419 to each other. Therefore, in all three models we took account of the repeated measures within 

420 subjects – i.e., each subject was presented 27 mask locations in all (defined by row and column 

421 co-ordinates). In addition, we controlled for spatial covariance by incorporating the spatial 

422 variability into the statistical models by specifying a Gaussian spatial correlation model for the 

423 model residuals (Littell et al., 2006). The general form of the model we fitted was:

424 E[Y|u] = Xβ + Zu + e

425 Where E[Y|u] is the conditional probability of the outcome given the random model 

426 effects, Xβ are the fixed effects, Zu are the random effects, and e the error term. Spatial 

427 correlation was reflected in R, the covariance matrix of the model errors. The fixed effects in 

428 all models comprised two class variables: ROW (i.e., the index for each row of the grid of 

429 bubbles which could take values 1 to 9 inclusive) and COLUMN (i.e., the index for each 

430 column of the grid of bubbles which could take values 1 to 3 inclusive). This means that the 

431 location of each bubble in the 3 × 9 mask array was uniquely addressed, like an x,y coordinate, 

432 by the combination of the two fixed effect variables, ROW and COLUMN. Where relevant, 

433 we also included GROUP (i.e., accurate body size estimators versus overestimators) as a fixed 
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434 effect when we wanted to compare performance between accurate body size estimators versus 

435 overestimators. The most important outcomes from the statistical modelling were to identify: 

436 MODEL 1: Where were the areas diagnostic of body size (i.e., > 75% correct) for 

437 accurate estimators?

438 MODEL 2: Where were the areas diagnostic of body size (i.e., > 75% correct) for 

439 overestimators?

440 MODEL 3: Where were the significant differences in diagnostic areas for body size 

441 comparing accurate estimators with overestimators?

442 To do this, for each model, we computed the predicted population margins from the 

443 GLMMs and compared them using tests for simple effects by partitioning the interaction 

444 effects, controlling for multiple comparisons. In other words, for MODELS 1 and 2, we used 

445 the fitted GLMMs to predict the percentage of correct responses in each bubble location and 

446 asked whether that percentage was significantly greater than 75%. These predictions are 

447 corrected for the repeated measures design, the spatial covariance in the data and the fact that 

448 we carried out multiple comparisons. For MODEL 3 we used the fitted GLMM to predict the 

449 difference in the percentage of correct responses comparing accurate body size estimators and 

450 overestimators, and asked whether each of these differences was significantly different from 

451 zero. An additional constraint for MODEL 3 was that a bubble location was only deemed to 

452 show a statistically significant difference between accurate and overestimators if that location 

453 had a response rate significantly greater than 75% (p < .01) from either MODEL 1 or MODEL 

454 2, as well as showing a significant group difference. For completeness, we report the fixed 

455 effects in each model below, and then show the key outcomes, i.e., the predicted percentages 

456 of correct responses in each bubble location, in Figure 2. 
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457 The Type III tests of fixed effects for MODEL 1 were: ROW F(4, 44) = 1.04, p = .40; 

458 COLUMN F(10, 110) = 25.02, p < .001; ROW × COLUMN F(40, 440) = 5.19, p < .001. 

459 The Type III tests of fixed effects for MODEL 2 were: ROW F(4, 44) = 0.27, p = .90; 

460 COLUMN F(10, 110) =12.98, p < .001; ROW × COLUMN F(40, 440) = 7.37, p < .001. 

461 The Type III tests of fixed effects for MODEL 3 were: GROUP F(1, 22) = 0.00, p = 

462 .99; ROW F(4, 88) = 0.23, p = .92, COLUMN F(10, 220) = 36.91,  p < .001; GROUP × ROW 

463 F(4, 88) = 1.16, p = .33; COLUMN × GROUP F(10, 220) = 2.39, p = 0.01; ROW × COLUMN 

464 F(40, 880) = 10.28, p < .001; GROUP × ROW × COLUMN F(40, 880) = 2.05, p < .001.

465 In principle, a significant fixed effect of ROW means that, averaged across columns, 

466 there would be a significant linear increase/decrease in percentage correct responses as a 

467 function of ROW – i.e., a tilt to the 2D regression plane. Similarly, a significant fixed effect of 

468 COLUMN would mean that, averaged across rows, there would be a significant linear 

469 increase/decrease in percentage correct responses as a function of COLUMN. A significant 

470 interaction between ROW × COLUMN would mean that the degree of tilt in the 2D regression 

471 plane with respect to ROW, say, changes as a function of COLUMN. As the foregoing 

472 description of the fixed effects in the GLMMs makes clear, it is encouraging that we see 

473 statistically significant interactions between ROW and COLUMN in all three models. This 

474 strongly suggests that there are indeed statistically significant diagnostic regions of interest. 

475 However, analysis of the fixed effects alone cannot reveal the specific locations of the 

476 diagnostic bubbles. For this, we need post-hoc comparisons, to which we now turn.

477 The first two columns in Figure 2a show the outcomes of the analyses of simple effects 

478 from MODEL 1 and MODEL 2, for accurate body size estimators and overestimators, 

479 respectively. Circles correspond to mask locations where correct response rates were 

480 significantly higher than criterion (i.e., 75%), based on the GLMMs, and which can therefore 
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481 be considered diagnostic regions. The red/orange/yellow coloured overlay represents the 

482 averaged and smoothed raw data above criterion, referred to henceforth as a heat map. 

483 For the accurate estimators, the circles a (80.4%, 95%CI 79.0 – 81.8%) and c (82.0%, 

484 95%CI 80.7 – 83.4%) correspond to the peak LSmean response rates for the left and right 

485 columns of mask bubbles respectively, and circle b (78.4%, 95%CI 77.1 – 79.8%) is the closest 

486 mask bubble adjacent to both a and c. Circle d (78.4%, 95%CI 77.1 – 79.8%) corresponds to 

487 the peak LSmean response rate for the central column of mask bubbles. Therefore, while it is 

488 true that the central abdomen provides information that is diagnostic about body size for 

489 accurate estimators, the left and right torso edges appear to provide more information, and this 

490 difference is statistically significant for the left torso edge (i.e., the 95% confidence interval for 

491 c does not overlap with those for b or d). 

492 For the overestimators, circles e (82.0%, 95%CI 80.8 – 83.3%) and g (80.2%, 95%CI 

493 78.9 – 81.4%) correspond to the peak LSmean response rate for the left and right sides of the 

494 torso, and circle f (77.1%, 95%CI 75.9 – 78.4%) is the closest mask bubble adjacent to both e 

495 and g. Circle h (77.9%, 95%CI 76.7 – 79.2%) corresponds to the peak LSmean response rate 

496 for the central column of mask bubbles. Therefore, unlike the accurate estimators, the midline 

497 is providing diagnostic information about the face. As with the accurate estimators, the midline 

498 is also providing diagnostic information about the abdomen. However, the upper right torso 

499 and the left hip are providing more, and this difference is statistically significant for the upper 

500 right torso (i.e. the 95% confidence interval for circle e does not overlap with those for f or h). 

501 The right most column in Figure 2a shows where diagnostic information about body 

502 size differs significantly between accurate and overestimators. Specifically, accurate estimators 

503 made significantly more use of information from the upper thigh gap and the left edge of the 
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504 abdomen (red/yellow colours), whereas overestimators made significantly more use of 

505 information from the right upper torso/arm and the face (blue/cyan colours).

506 2.3. Discussion 

507 The results of Experiment 1 suggest that while both groups utilised information from 

508 the middle of the stimulus body as well as its edges, the edges provided the most diagnostic 

509 information (i.e., were more influential in driving participants’ decisions in the categorisation 

510 task). Additionally, the two groups differed significantly in the edge cues used. While the 

511 accurate estimators made most use of the left flank and thigh gap, the overestimators used the 

512 face and right arm/chest area more. Interestingly, eye-tracking studies suggest that women with 

513 anorexia nervosa, who also overestimate body size, also fixate more on the face than 

514 nonclinical controls who accurately estimate body size (Cornelissen et al., 2016b). Accurate 

515 estimators also showed a distribution of diagnostic areas that are more evenly spread onto both 

516 sides of the body, whereas the diagnostic areas of overestimators showed a bias onto one side 

517 of the torso (see Figure 2a).

518 Even though the evidence from Experiment 1 suggests that body edges provide 

519 diagnostic information for body size judgements, some mid-body features were still used, i.e., 

520 the face and thigh gap. Therefore, in order to provide a more detailed picture of the edge cues 

521 used, we decreased the size of the bubbles from 100 × 100 pixels to 40 × 40 pixels in 

522 Experiment 2. With this strategy, by providing more bubbles that are smaller in size, a more 

523 detailed picture of the diagnostic information may be gathered.

524 3. Experiment 2

525 3.1. Method

526 3.1.1. Participants. The selection criteria and methods of participant recruitment were 

527 the same as for Experiment 1. Accordingly, we identified 12 accurate body size estimators and 
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528 12 overestimators from an initial sample of 41 consenting women, to take part in the complete 

529 study. These participants’ characteristics are reported in Table 2.

530 3.1.2. Measures. The psychometric and psychophysical tasks were identical to 

531 Experiment 1. The only difference in the bubble mask task was that we used a finer scale 

532 rectangular grid of 9(w) × 21(h) squares (each of which measured 40 × 40 pixels), to locate the 

533 bubble centres. The transparency of these smaller bubbles followed a 2D Gaussian distribution 

534 with a standard deviation of 0.29 degrees, and the bubble count was increased or decreased by 

535 2.

536 3.2. Results

537 3.2.1. Univariate statistics. Table 2 confirms that accurate estimators were within 

538 ~0.25 BMI units of their actual BMI, on average, as compared to overestimators who 

539 overestimated by ~4 BMI units. With respect to the World Health Organization’s BMI 

540 classification scheme (WHO, 2003), the numbers of participants who were classified into the 

541 underweight, normal, overweight, and obese categories for the accurate and overestimating 

542 groups, respectively, were: 0, 10, 1, 1, and 2, 8, 2, 0. Cronbach’s alphas for the BDI, BSQ, and 

543 EDEQ in the two groups (combined) were .92, .96, and .97, respectively. The mean BSQ scores 

544 shown in Table 2 are consistent with mild concern with body shape (Evans & Dolan, 1993). 

545 The mean BDI scores for the accurate and overestimating groups are consistent with the 

546 minimal and mild ranges respectively. The EDEQ subscales in both groups were within 1SD 

547 of the normative means for women within this age group (Mond et al., 2006). Table 2 shows 

548 that the adaptive procedure maintained participant performance very close to 75% correct in 

549 both groups, and that they required ~18-19 bubbles on average to achieve this performance.  

550 3.2.2. Where are the diagnostic regions for the accurate and overestimating 

551 groups? The rationale for the analysis procedures in Experiment 2 was identical to those for 
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552 Experiment 1. Therefore, the treatment of data was the same, and we fitted the same 3 GLMMs 

553 as in Experiment 1. The only difference was in the resolution of the bubble mask, which 

554 comprised 9(w) × 21(h) bubble locations. 

555 The Type III tests of fixed effects for MODEL 1 were: ROW F(10, 110) = 10.44, p < 

556 .001; COLUMN F(22, 242) = 5.88, p < .001; ROW × COLUMN F(220, 2420) = 2.39, p < 

557 .001.

558 The Type III tests of fixed effects for MODEL 2 were: ROW F(10, 110) = 15.51, p < 

559 .001; COLUMN F(22, 242) = 8.21, p < .001; ROW × COLUMN F(220, 2420) = 3.13, p < 

560 .001. 

561 The Type III tests of fixed effects for MODEL 3 were: GROUP F(1, 22) = 0.00, p = 

562 .99; ROW F(10, 220) = 24.7, p < .001; GROUP × ROW F(10, 220) = 1.21, p = .28; COLUMN 

563 F(22, 484) = 12.56, p < .001; COLUMN × GROUP F(22, 484) = 1.51, p = .06; ROW × 

564 COLUMN F(220, 4840) = 4.13, p < .001; GROUP × ROW × COLUMN F(220, 4840) = 1.38, 

565 p < .001.

566 As before, the first two columns in Figure 2b show the outcomes from MODEL 1 and 

567 MODEL 2, for accurate body size estimators and overestimators respectively. Circles 

568 correspond to mask locations where correct response rates were significantly higher than 

569 criterion (i.e., 75%), based on the GLMMs. The heat maps represent the smoothed, averaged 

570 raw data above criterion. For the accurate estimators, the bubble locations corresponding to 

571 significant diagnostic information about body size are clustered continuously along the edge of 

572 the right lower chest and abdomen, the edge of the left waist and upper hip, and the thigh gap 

573 (again using anatomical conventions for left and right). The overestimators show a very similar 

574 pattern along the right edge of the upper body and a more extensive cluster along the left body 

575 edge extending to the chest. However, it appears that the overestimators do not make use of the 
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576 thigh gap. The right-hand column in Figure 2b shows where diagnostic information about body 

577 size differs significantly between accurate and overestimators. Specifically, accurate estimators 

578 made significantly more use of information from the upper thigh gap and a small region just to 

579 the right of midline in the upper abdomen (red/yellow colours). In comparison, the 

580 overestimators made more use of information on the right abdominal edge, as well as the left 

581 upper quadrant of the abdomen (blue/cyan colours).

582 3.3. Discussion

583 The results of Experiment 2 suggest that for both groups the edges of the body stimuli 

584 were instrumental in driving self-estimates of body size. Again, the two groups differed to 

585 some extent in cues used, with accurate estimators using the information about the thigh gap, 

586 and a region in the upper abdomen, while the overestimators used more cues from the right 

587 edge of the abdomen and an upper area of the abdomen. These results provide a more detailed 

588 picture of the diagnostic areas driving self-estimates of body size. 

589 However, as described in the Introduction, it is possible that the presence of  the bubbles 

590 and the partial view of the stimulus that this provides, changes the oberver’s looking strategy. 

591 Therefore, we have measured the eye-movements of our participants to identify if the up-down 

592 looking pattern reported by prior studies of size estimation changes when a bubble mask task 

593 is used (Cornelissen et al., 2016b).

594 4. Experiment 3

595 4.1. Rationale

596 We wanted to know where participants were fixating when they carried out the bubble 

597 masking task with large and small bubbles. Therefore, in a third sample of participants, we 

598 recorded the movements of the right eye during 200 trials of each version of the bubble mask 

599 task. In addition, we also wanted to identify any differences in gaze patterns between the bubble 

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534



27

600 mask task as carried out in Experiments 1 and 2, compared to using the same size bubbles and 

601 the same task – i.e., judging whether the presented image was larger or smaller than the 

602 participant believed themselves to be, but now with all of the bubbles always set to transparent. 

603 These latter conditions, 200 trials with large bubbles all open and 200 trials with small bubbles 

604 all open, were the closest we could get to normal viewing using the bubbles task, and still 

605 permitting maximum visibility of all parts of the stimuli simultaneously, on every trial. Given 

606 that the view of the body per trial during the actual bubbles mask task is so restricted, we fully 

607 expected that there should be greater dispersion of fixations across space, when the data were 

608 binned over the course of 200 trials. Nevertheless, the critical question was whether participants 

609 adopted a different viewing strategy compared to what is usually seen when participants view 

610 non-masked bodies: i.e., looking up and down the midline of the body (see e.g., Cornelissen et 

611 al., 2016b). Specifically, given the evidence from Experiments 1 and 2 that the body edges 

612 provide diagnostic information for self-estimates of body size, we needed to know whether 

613 fixation patterns during the bubble masking task also split into two distinct distributions, with 

614 their peaks similarly aligned with the left and right body edges, instead of the midline.

615 4.2. Method 

616 4.2.1. Participants. The selection criteria and methods of participant recruitment were 

617 the same as for Experiments 1 and 2. Accordingly, we identified 12 accurate body size 

618 estimators and 12 overestimators from an initial sample of 36 consenting women, to take part 

619 in the complete study. The characteristics of these 24 participants are reported in Table 3.

620 4.2.2. Measures. The psychometric and psychophysical tasks were identical to 

621 Experiments 1 and 2. 

622 4.2.3. Eye movement recordings. Movements of the right eye were recorded with an 

623 Eyelink 1000 eye-tracker at a sample rate of 1000Hz. Stimuli were presented on a flat 19” CRT 

624 monitor while participants sat at a table with their heads restrained by a combined chin and 
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625 forehead rest. At the standard viewing distance of ~60cm, the image frame containing the 

626 female body subtended ~26° vertically and ~8° degrees horizontally. At the start of each block 

627 of 200 trials, participants’ eye movements were calibrated using a 9-point calibration screen. 

628 Once the calibration procedure was validated, the experimental task began. We randomized the 

629 order of the four versions of the masking task: large bubbles, large bubbles open, small bubbles, 

630 and small bubbles open. While we did record participants’ button responses in the task, there 

631 were not enough trials to warrant a spatial analysis of these behavioural data (i.e., 1/10th of the 

632 number of trials in Experiments 1 and 2). Nevertheless, the average accuracy of responding 

633 over the 200 trials for large bubbles, large bubbles open, small bubbles, and small bubbles open 

634 was: 69%, 88%, 67%, and 87%, respectively, for accurate estimators. The equivalent 

635 performance for overestimators was: 69%, 98%, 69%, and 96%, respectively. Tests of location 

636 showed that all these values are significantly better than guessing (i.e., 50% accuracy), even 

637 though participants’ performance had not stabilized at the ~75% criterion, which would be 

638 expected had they carried out all 2000 trials of the main tasks.   

639 The Eyelink 1000 system uses a saccade-picker approach to identify saccades by 

640 applying an exclusive OR rule to three thresholds: velocity (30 degrees/sec), acceleration (8000 

641 degrees/sec2), and distance moved between samples (0.1 degrees). It then treats the rest of the 

642 (non-blink) data as fixations, assuming that the ‘not in a saccade’ condition is maintained for 

643 at least 50ms. The stated accuracy of the system is down to a resolution of 0.15°, though 0.25° 

644 to 0.5° is typical.

645 4.3. Results

646 4.3.1. Univariate statistics. Table 3 confirms that accurate estimators were within 

647 ~0.25 BMI units of their actual BMI, on average, as compared to overestimators who 

648 overestimated by ~4 BMI units. With respect to the World Health Organization’s weight 
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649 classification scheme (WHO, 2003), the numbers of participants who fell into the underweight, 

650 normal, overweight, and obese categories for the accurate and overestimating groups, 

651 respectively, were: 0, 11, 0, 1, and 1, 9, 1, 1. Cronbach’s alphas for the BDI, BSQ, and EDE-

652 Q in the two groups were .90, .93, and .94, respectively. The mean BSQ scores shown in Table 

653 3 are both consistent with mild concern with body shape (Evans & Dolan, 1993). The mean 

654 BDI scores for the accurate and overestimating groups are consistent with the minimal and 

655 mild ranges, respectively. The EDE-Q subscales in both groups all fall within 1SD of the 

656 normative means for women within this age group (Mond et al., 2006). 

657 4.3.2. Where were participants fixating? The main question we wanted to address 

658 was whether participants were fixating primarily within the midline of the stimuli or along the 

659 body edges, during each of the four conditions: i.e., masking task with: large bubbles; large 

660 bubbles open; small bubbles; and small bubbles open. Therefore, our analyses focus on within 

661 task comparisons rather than between task comparisons. After blinks and saccades were 

662 removed from the eye movement time series, the only additional data filtering we applied was 

663 to remove the first 300msec post stimulus onset, as otherwise this would include the initial 

664 fixation which was determined by the fixation cross and not by the observer. In order to 

665 examine the spatial distributions of fixations, we constructed a sampling grid of square cells 

666 (20 × 20 pixels each) and applied it to the fixation data that were recorded within the central 

667 600(w) × 1020(h) pixels of the stimulus array. This cell size (20 × 20 pixels) represents a 

668 compromise between capturing as many fixation samples per cell as possible to optimize 

669 statistical power (which ideally requires large cells) versus retaining good anatomical 

670 resolution (which ideally requires small cells) (cf. George et al., 2012). Having binned the 

671 fixation data in this way, we calculated the percentage of the total fixation samples in each bin, 

672 separately for each task and participant. These fixation density data were then converted to z-

673 scores which are presented as heat maps in Figure 3.
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674 Figure 3 shows clearly that, irrespective of whether they viewed stimuli through small 

675 or large bubble masks, or whether they were accurate body size estimators or overestimators, 

676 participants always showed a spatially more distributed gaze pattern during the bubble masking 

677 task as compared to viewing the stimuli when all bubbles were open. The critical question for 

678 the current study, however, is whether the gaze patterns for the bubbles task remain centred on 

679 the midline, or whether they break apart into two distributions: one centred on the left torso 

680 edge and the other on the right. Inspection of the black contours in Figure 3, which represent 

681 the three standard deviation limits in each heat map, would suggest that participants’ fixations 

682 remained densest in the midline irrespective of task type or group assignment. To quantify this, 

683 we split each fixation density map into three columns of equal width, corresponding to the large 

684 bubble diameters at 100 pixels. We then calculated the total percentage of the fixation samples 

685 in each column, separately for each participant and for each task, and used PROC MIXED in 

686 SAS v9.4 (SAS Institute, North Carolina, USA) to test for differences between the average 

687 fixation density in each column. Table 4 shows the outcome including the post-hoc 

688 comparisons, controlled for multiple comparisons, between the left and middle columns and 

689 the right and middle columns of fixations. There is no case in Table 4 where both left and right 

690 columns of fixation data are significantly larger than the middle column. Therefore, we found 

691 no compelling evidence that participants’ fixation patterns divided into separate distributions 

692 coincident with the edge regions diagnostic of body size. However, for accurate observers 

693 during the masking task, there was evidence that their gaze patterns shifted to the left, 

694 particularly in the chest region. 

695 4.3.3. Direct comparison between eye fixations and psychophysical performance. 

696 Clearly, direct comparisons between Experiments 1 and 3 and between Experiments 2 and 3 

697 were not feasible because the outcome measures, tasks, and participant groups were all 

698 different. Moreover, the spatial sampling of data in the three experiments was not directly 
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699 comparable. Nevertheless, we attempted to make approximate comparisons as follows. First, 

700 we resampled the eye movement data for each participant to match that for the bubble masking 

701 tasks. To do this, we used 20 × 20 pixel sample bins placed at the centres of the small and, 

702 separately, the large bubble masks. This procedure spatially co-registered the eye-movement 

703 data precisely with the large and small bubble mask psychophysical data. Then, we converted 

704 both the behavioural psychophysical data and the eye-movement data to z-scores, and re-ran 

705 the GLMMs, separately for the psychophysics and eye-movement data. This allowed us to 

706 compute marginal means (i.e., LSmeans in SAS) with their accompanying 95% confidence 

707 intervals for the data at each sample point, and these are plotted in Figure 4. In each case, the 

708 solid black lines represent the eye-movement data, and the solid white lines the psychophysical 

709 data. All error bars represent 95% confidence intervals in units of z-scores. The locations of 

710 the horizontal slices through the combined datasets are indicated by letter groups: A, B, & C 

711 and D, E, & F, for the large and small bubble mask datasets, respectively. Finally, there is a 

712 small horizontal offset in the x-axes for the eye-movement and psychophysical data, so that 

713 error bars do not overlap. Figure 4 confirms that eye fixations remained densest in the mid-line 

714 of the body, while the regions diagnostic of body size were concentrated on the edges.

715 5. General Discussion

716 In Experiment 1, the results of the modified bubbles technique (using the larger 

717 bubbles) suggest that the key areas of the image for accurate self-assessment of body size are 

718 on the edge of the torso at waist height on either side of the body. Both the left and right edges 

719 of the torso are of equal importance in making the judgement. Overestimating observers favour 

720 the right side of the image relative to the left side, as illustrated by the comparison of accurate 

721 and overestimators in Figure 2a. In Experiment 2, the results of the bubbles technique (using 

722 the smaller bubbles) suggests that the key areas are located along the outline of the torso on 

723 either side of the body and at the thigh gap. Once again, both sides of the body have equal 
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724 importance in accurate judgements, but there is a bias towards one side of the body in 

725 overestimators as illustrated by the comparison of accurate and overestimators in Figure 2b. It 

726 seems that an equal division of visual attention to both side of the torso outline may be key to 

727 accurate judgements. 

728 A potential concern is that the use of the bubble masks significantly changes the looking 

729 strategy used to assess the stimuli (Gosselin & Schyns, 2004; Murray & Gold, 2004). However 

730 in face experiments, the diagnostic areas of the face identified by the bubbles techniques for a 

731 particular task are consistent with those identified using other methods, such as comparing the 

732 performance with isolated parts of the face (e.g., Bassili, 1979; Calder, Young, Keane, & Dean, 

733 2000), using reverse correlation (Jack, Caldara, & Schyns, 2012; Yu et al., 2012), and eye-

734 tracking (Blais et al., 2017). In Experiment 3, the addition of eye-tracking to the bubbles 

735 paradigm shows the visual fixations are clearly in the centre of the torso (Figures 3 & 4). This 

736 pattern of fixations is very similar to that reported by previous studies which have not used a 

737 masking paradigm, but have instead allowed a free, unoccluded view of the body stimuli during 

738 self-estimates of body size (Cornelissen et al., 2016b; George et al., 2012). This suggests that 

739 the use of the bubbles technique is not qualitatively altering the fixation pattern that our 

740 observers are using to estimate the size of their own body (Gosselin & Schyns, 2004). However, 

741 although the fixations fall within the centre of the stimulus torso, the key regions of the torso 

742 for accurate judgements are clearly on its edge (Figure 4). In short, the eye-movement results 

743 suggest a clear dissociation between fixation location and the location of the regions of the 

744 body stimuli that are diagnostic for self-estimates of body size. 

745 At first, this dissociation might seem counterintuitive. The physical constraints of the 

746 retina mean that detailed spatial information can only be sampled from a small central area of 

747 around 2°, corresponding to the fovea (Levi, Klein, & Aitsebaomo, 1985). As a result, 

748 information in detail and colour can only be collected in small snapshots corresponding to an 
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749 observer's individual fixations (Miller & Bockisch, 1997). Thus, the failure to fixate the key 

750 regions of the body (as identified by the bubbles paradigm) so that the corresponding part of 

751 the image formed on the retina falls on the fovea is unexpected. Such a strategy should allow 

752 detailed analysis of the shape of these regions. Moreover, in a previous study in which 

753 participants were explicitly asked to judge torso shape (indexed by the waist-to-hip ratio), eye-

754 tracking shows that fixations are initially made on one edge of the torso and then the 

755 participants’ gaze moves across the torso to fixate the other edge (Cornelissen et al., 2009b). 

756 They do not make a simple central fixation as is seen here. 

757 It is possible that the fixation on the centre of the torso may be serving as a convenient 

758 way to locate an image of the torso’s left and right edges on the parafoveal region (the region 

759 of the retina surrounding the fovea). The parafoveal region supports a less detailed, lower 

760 resolution sampling than the fovea, but which is still sufficient to support the detection of the 

761 edges of the torso. This perception may be enhanced by the phenomenon of hyperacuity. In 

762 this perceptual process, the cortex extrapolates detail from the limited sampling of the 

763 parafoveal cone array and so is capable of finer discrimination than the retinal structure would 

764 suggest (Gegenfurtner, 2016; Motter & Belky, 1998; Ryu et al., 2013). So even though the 

765 centre of the torso is being fixated, information about the relative position of both torso edges 

766 can be derived from the periphery of the visual field and an estimate of the body width can be 

767 made. After all, just because the observer is fixating in the centre of the torso, that does not 

768 mean that her visual attention is focussed at the same position. Numerous studies have 

769 suggested that it is possible to direct attention at different parts of the visual field while at the 

770 same time fixating a separate part of the image (Evans et al., 2011; Motter & Belky, 1998), 

771 although it is unclear whether this allocation of attention across different parts of the visual 

772 field is achieved simultaneously or in rapid succession (Evans et al., 2011; Hutterman et al., 

773 2013). 
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774 Thus, if one accepts that the width of the torso is a good cue to overall body mass, then 

775 the most efficient way of sampling the visual information that will allow you to make that 

776 judgement may not be to fixate on one edge of the torso and then move the eyes to fixate on 

777 the other edge of the torso. Instead, it may be quicker and simpler to foveate within the centre 

778 of the torso while directing your attention to the parafoveal regions of the retina corresponding 

779 to the edges of the torso. The previously reported difference in the pattern of eye-movements 

780 when estimating body size as opposed to judging body shape may be because although the 

781 parafovea can support enough spatial resolution to judge the relative position of the left and 

782 right torso edges (and so judge width), it may lack sufficient resolution to detect the subtler 

783 changes in the outline necessary to judge differences in torso shape (Cornelissen et al., 2009b). 

784 This dissociation between the fixation pattern and the visual cues used in self-estimates 

785 of body size illustrates the danger of making assumptions based on eye-tracking data. Just 

786 because someone appears to look at a certain part of the body, it does not mean they are 

787 necessarily directing their visual attention to the same place. The assumption that these two 

788 visual activities are the same can lead to a misinterpretation of the data and mean that wrong 

789 conclusions are drawn on which body features are key to self-estimates of body size. In future 

790 research, it is important that eye-movement studies are paired with other techniques to localise 

791 which body features are used in a judgement, to either corroborate or clarify the results of the 

792 eye-tracking and avoid the wrong conclusions being made. 

793 5.1. Clinical Implications

794 Given the dissociation between eye fixation and diagnostic regions we have found in 

795 this study of nonclinical women, it is clearly important to make the same measurements in 

796 women who have eating disorders. Based on an extensive review of the literature on visual 

797 processing in anorexia nervosa, Madsen, Bohon, and Feusner (2013) conclude that women with 
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798 anorexia nervosa struggle to process global features and tend to over-value local detail. 

799 Therefore, one possible outcome of applying the bubbles technique to a body size self-

800 estimation task in anorexia nervosa might be to reveal a very non-specific, or diffuse pattern 

801 of diagnostic regions. On each trial, it is possible that participants might lock onto one or a very 

802 few bubbles to process only those local details. However, the particular bubble locations that 

803 they choose to focus on may be quite different from one trial to the next. When averaged over 

804 multiple trials, this could lead to widely dispersed and diffuse diagnostic regions. An alternative 

805 possibility might be that, in the face of such over-attention, women with anorexia nervosa may 

806 cling to a single well focused diagnostic region, say along just one body edge. If either of these 

807 outcomes were true, such findings might suggest new intervention strategies to retrain how 

808 sufferers attend to images of their body, thereby helping to prevent body size overestimation. 

809 We know that such an outcome could be useful, because recent perceptual training studies have 

810 shown clinically meaningful reductions in psychological concerns about body size, shape, and 

811 eating that last for up to a month post-intervention (Gledhill et al., 2016; Szostak, 2018). 

812 5.2. Conclusion

813 In conclusion, the results of these studies using the modified bubbles technique suggest 

814 that the key visual cue used when making self-estimates of body size is the width of the torso, 

815 as judged from the relative position of the edges of the torso on either side of the body.  Previous 

816 studies have found that the width of the torso increases with increasing BMI and so this would 

817 be a reliable cue to BMI status (e.g., Cornelissen et al. 2009a; Tovée & Cornelissen, 2001; 

818 Tovée et al., 1999). In the small bubbles condition, there is an additional important area of the 

819 image located at the position corresponding to the gap between the upper thighs. The diameter 

820 of the thighs is correlated with overall BMI (Ryan & Niklas, 1999) and so the “thigh gap” is a 

821 potential cue to overall adiposity, particularly for lower BMI bodies. The addition of eye-

822 tracking to the paradigm suggests that observers use an efficient fixation strategy when 
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823 sampling the cues to body size, fixating centrally within the torso outline to estimate its width 

824 and thereby the BMI of the body.  
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1007 Figure Legends

1008 Figure 1. Screenshots of the stimuli from two consecutive trials from: (a) Experiment 1 with 

1009 large bubbles, and (b) Experiment 2 with small bubbles. The first two columns show the stimuli 

1010 as presented to the participant. Columns three and four show the same images but with a red 

1011 outline to indicate the outline of the female model in the stimulus, beneath the gray overlay. 

1012 On every trial, participants are given a partial view of the female model through a set of so-

1013 called Gaussian bubbles. These are circular holes with blurred edges that perforate the gray 

1014 overlay that covers the model in the stimulus image. Please note that much visual detail will be 

1015 lost in this illustration, compared to the original stimuli displayed on a PC monitor. 

1016

1017 Figure 2. Diagnostic images for (a) the big bubbles mask Experiment 1, top row, and (b) the 

1018 small bubbles mask Experiment 2, bottom row. For the Accurate and Overestimate figures (left 

1019 and middle columns), the white circles show the locations of bubbles where correct response 

1020 rates were significantly above the 75% criterion based on the GLMMs. The heat maps represent 

1021 the averaged and smoothed raw data that contributed to the GLMMs. For the Accurate – 

1022 Overestimate figure (right column), the white circles show where the differences between the 

1023 two groups of observers are significantly different from zero. The blue-cyan colours in the heat 

1024 map show where over-estimators made more correct responses than accurate estimators. The 

1025 red-yellow colours in the heat map show where accurate estimators made more correct 

1026 responses than over-estimators.

1027

1028 Figure 3: Fixation density maps for accurate and overestimators across the four eye-tracking 

1029 conditions. Each image represents the same stimulus model with a semi-transparent coloured 

1030 overlay to indicate fixation density, reported in z-scores. The higher the z-score (from gray, 
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1031 through green and yellow to red), the more time participants spent looking at a particular region 

1032 on the body. Black contours represent 3SDs, within which most fixations lie. 

1033

1034 Figure 4: Shows predicted marginal means together with their 95%CIs, for co-registered eye 

1035 fixation and psychophysical data, across a set of horizontal slices. The locations on the model’s 

1036 body of the horizontal slices through the combined datasets are indicated by letter groups: A, 

1037 B, & C and D, E, & F, for the large and small bubble mask datasets, respectively. For accurate 

1038 estimators, solid black lines with black circles represent the eye-movement data and solid white 

1039 lines with white circles the psychophysical data. For overestimators, solid black lines with 

1040 black triangles represent the eye-movement data and solid white lines with white triangles the 

1041 psychophysical data. There is a small horizontal offset in the x-axes between the eye-movement 

1042 and psychophysical data, so that error bars do not overlap.
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Table 1. Experiment 1 with large bubble masks: Participant characteristics 
Accurate
(n =12)

Overestimate 
(n =12)

Accurate vs. Overestimate

M SD M SD p                  d         95%CI
Participant characteristics
   Age (years)
   BMI (kg/m2)

23.67
21.97

5.65
2.89

22.25
22.16

4.37
3.22

.99
1.00

-0.28  (-1.12 – 0.56)
 0.06  (-0.77 – 0.90)

Depression   
   BDI score 15.17 9.84 17.75 11.28 .99  0.24  (-0.60 – 1.09)
Body shape and eating concerns
   BSQ-16 score
   EDE-Q global score
   EDE-Q res score
   EDE-Q eat score
   EDE-Q wc score
   EDE-Q sc score

38.92
1.32
1.40
0.45
1.58
1.86

20.78
1.02
1.37
0.52
1.45
1.67

47.67
2.23
2.03
1.28
2.47
3.14

23.03
1.57
1.32
1.42
1.84
2.17

.93

.50

.86

.35

.76

.55

 0.40  (-0.45 – 1.25)
 0.69  (-0.48 – 1.55)
 0.47  (-0.38 – 1.32)
 0.78  (-0.09 – 1.65)
 0.53  (-0.32 – 1.39)
 0.66  (-0.20 – 1.52)

Psychophysical performance
   PSE (kg/m2)
   DL (kg/m2)
   Overestimation (PSE - BMI) 

22.16
0.67
0.19

2.98
0.26
0.78

25.85
1.15
3.69

3.40
0.88
1.31

.07

.43
< .001

 1.15  (0.25 – 2.06)
 0.73  (-0.14 – 1.59)
 3.25  (1.98 – 4.53)

   Mean bubble count 5.00 1.08 5.12 1.21 .92  0.15  (-0.69 – 0.99)
   Mean percentage trials correct 74.41 0.86 74.33 1.10 .97 -0.08  (-0.92 – 0.76)
Note. BDI = Beck Depression Inventory; BSQ-16 = Body Shape Questionnaire; EDE-Q = Eating Disorders Examination 
Questionnaire global score; EDE-Q subscales: res = restraint; eat = eating concerns; wc = weight concerns; sc = shape 
concerns.
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1063

1064 Table 2. Experiment 2 with small bubble masks: Participant characteristics

Accurate
(n = 12)

Overestimate 
(n = 12)

Accurate vs. Overestimate

M SD M SD p   d         95%CI
Participant characteristics
   Age (years)
   BMI (kg/m2)

22.58
22.55

6.40
4.80

20.92
21.99

3.75
2.94

.98
0.99

-0.32  (-1.16 – 0.53)
-0.14  (-0.98 – 0.70)

Depression   
   BDI score 9.50 8.60 16.83 11.34 .45  0.73  (-0.14 – 1.59)
Body shape and eating concerns
   BSQ-16 score
   EDE-Q global score
   EDE-Q res score
   EDE-Q eat score
   EDE-Q wc score
   EDE-Q sc score

45.67
1.74
1.35
1.08
2.08
2.43

23.91
1.66
1.43
1.48
2.09
1.92

53.17
2.65
2.22
1.63
2.97
3.79

18.41
1.29
1.43
1.40
1.63
1.39

.97

.64

.65

.95

.85

.33

 0.35  (-0.49 – 1.20)
 0.62  (-0.24 – 1.48)
 0.61  (-0.25 – 1.46)
 0.38  (-0.46 – 1.23)
 0.47  (-0.38 – 1.32)
 0.81  (-0.06 – 1.68)

Psychophysical performance
   PSE (kg/m2)
   DL (kg/m2)
   Overestimation (PSE – BMI) 

22.40
0.75
-0.15

4.68
0.30
0.57

25.96
1.03
3.97

2.72
0.23
1.35

.20

.11
<.001

 0.93  (0.05 – 1.81)
 1.04  (0.15 – 1.94)
 3.98  (2.53 – 5.42)

   Mean bubble count 18.42 5.51 19.62 3.86 .74  0.25  (-0.59 – 1.09)
   Mean percentage trials correct 74.75 1.46 74.03 1.05 .61 -0.33  (-1.17 – 0.51)
Note. BDI = Beck Depression Inventory; BSQ-16 = Body Shape Questionnaire; EDE-Q = Eating Disorders Examination 
Questionnaire global score; EDE-Q subscales: res = restraint; eat = eating concerns; wc = weight concerns; sc = shape 
concerns.
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1073 Table 3. Experiment 3: Participant characteristics

Accurate
(n = 12)

Overestimate 
(n = 12)

Accurate vs. Overestimate

M SD M SD p     d         95%CI
Participant characteristics
   Age (years)
   BMI (kg/m2)

20.58
23.42

1.98
6.38

23.33
21.73

5.35
3.57

.55

.98
 0.68  (-0.18 – 1.54)
-0.33 (-1.17 – 0.52)

Depression   
   BDI score 12.50 8.12 15.17 8.12 .98  0.33  (-0.52 – 1.17)
Body shape and eating concerns
   BSQ-16 score
   EDE-Q global score
   EDE-Q res score
   EDE-Q eat score
   EDE-Q wc score
   EDE-Q sc score

38.92
1.38
1.15
0.65
1.55
2.16

16.81
0.97
0.92
0.69
1.48
1.55

46.33
2.15
2.37
1.12
2.32
2.79

12.61
1.24
1.89
0.96
1.11
1.35

.83

.53

.33

.75

.71

.91

 0.50  (-0.35 – 1.35)
 0.69  (-0.35 – 1.35)
 0.82  (-0.05 – 1.69)
 0.56  (-0.29 – 1.41)
 0.58  (-0.27 – 1.44)
 0.44  (-0.41 – 1.28)

Psychophysical performance
   PSE (kg/m2)
   DL (kg/m2)
   Overestimation (PSE – BMI) 

23.45
0.78
0.03

6.15
0.40
0.64

25.35
0.92
3.62

3.27
0.65
2.03

.95

.99
< .001

 0.39  (-0.46 – 1.23)
 0.25  (-0.59 – 1.09)
 2.39  (1.29 – 3.49)

Note. BDI = Beck Depression Inventory; BSQ-16 = Body Shape Questionnaire; EDE-Q = Eating Disorders 
Examination Questionnaire global score; EDE-Q subscales: res = restraint; eat = eating concerns; wc = weight 
concerns; sc = shape concerns.
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Table 4. Comparison of fixation density in each of the three columns.

Group Bubble 
Size

Task Left column (%) Middle column 
(%)

Right column 
(%)

Left 
vs. 
Middle

Right 
vs. 
Middle

M SE M      SE M SE p p
Accurate Big Mask 32.41   4.66 56.98    3.74 10.60    2.26 < .001 < .001

No mask 20.56   5.99 75.21    6.18 5.63    3.20 < .001 < .001
Small Mask 41.17   5.19 50.75    3.58 8.82    2.39   .08 < .001

No mask 17.89   4.74 77.45    4.66 5.08    2.14 < .001 < .001

Big Mask 35.09   5.26 52.80    3.44 12.11    3.48 < .001   .003Over-
estimate No mask 25.53   7.57 70.98    6.99 4.19    2.53 < .001 < .001

Small Mask 39.64   4.86 50.82    3.19 9.55    3.29   .05 < .001
No mask 31.34   9.76 63.18    8.71 6.58    2.92 < .001 < .001
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