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Using an advanced computational methodology implemented in CP2K, a non-local PBE0-TC-LRC density
functional and the recently implemented Linear Response formulation of the TD-DFT equations we test the
interpretation of the optical absorption and photoluminescence signatures attributed by previous experimental
and theoretical studies to O-vacancies in two widely used oxides – cubic MgO and monoclinic (m)-HfO2. The
results obtained in large periodic cells including up to 1000 atoms emphasize the importance of accurate
predictions of defect-induced lattice distortions. They confirm that optical transitions of O-vacancies in 0,
+1 and +2 charge states in MgO all have energies close to 5 eV. We test the models of photoluminescence
of O-vacancies proposed in the literature. The photoluminescence of V+2

O centers in m-HfO2 is predicted to

peak at 3.7 eV and originate from radiative tunneling transition between a V+1
O center and a self-trapped

hole created by the 5.2 eV excitation.

I. INTRODUCTION

Oxygen vacancies strongly affect physical and chemical
properties of oxides and have been studied extensively
both experimentally and theoretically1–4. Experimen-
tal identification of such defects in bulk materials often
relies on the interpretation of recorded optical absorp-
tion, photo-luminescence, and electron paramagnetic res-
onance spectra. Surprisingly, spectroscopic signatures of
O vacancies in different charge states are not well estab-
lished even in case of the simplest oxides, such as MgO.
This complicates verification of existence of O vacancies
as well as models and hypothesis attributed to effects
of their presence. In this paper we test the interpreta-
tion of optical absorption and photoluminescence signa-
tures attributed in the literature to O vacancies in two
widely used metal oxides – cubic MgO and monoclinic
(m)-HfO2.

MgO has long been studied as a model wide band gap
oxide with numerous technological applications. Exten-
sive experimental studies have been carried out of de-
fects in MgO, and particularly O-vacancy (also known
as an F center)5–10. Theoretical studies, however, still
struggle to give reliable insights into the optical spectra
of different charge states of this defect. For example,
theoretical models still continue to disagree on the ex-
act positions of optical absorption peaks of neutral and
positively charged vacancies. The first optical absorp-
tion peaks of the neutral and +1 charged oxygen vacan-
cies (V 0

O and V +1
O centers) occur at very similar energies:
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5.01 and 4.96 eV, respectively5. These peaks are difficult
to resolve both experimentally and in theoretical calcu-
lations. Ab initio cluster model calculations of V0

O and

V+1
O defects11 predicted very similar optical absorption

energies, however, the absolute value was closer to 6 eV,
rather than the experimental 5 eV. It was argued that
the main source of error in this study was the limited
basis set size and that 3d polarization functions should
be added to the oxygen basis set. Further calculations12

using a larger basis set predicted the optical absorption
energy for V0

O at 5.44 eV, in closer agreement with exper-

iment. The optical excitation energy for the V+1
O defect,

however, was not improved. It was therefore concluded
that much larger basis sets are necessary for accurate
prediction of the optical absorption spectrum. In both of
these studies only excitations in the alpha spin channel
were reported for the V+1

O center. However, there are,

in fact, two types of optical excitation in the V+1
O center

(see Fig. 1): a type-V transition into a higher state lo-
cated close to the bottom of the conduction band (CB)
in the α-spin channel, and a type-III transition from the
defect-induced valence band states into the unoccupied
state associated with the V+1

O center in the β-spin chan-
nel.

The β channel excitation was suggested in previous
theoretical and experimental studies13,14 as a possible
origin of the 5 eV absorption peak. Interestingly, both
the α and β channel excitations (type V and III, corre-
spondingly) in the V+1

O center are predicted to be close
to 5 eV. Thus, all three optical absorption peaks associ-
ated with V0

O and V+1
O centers have very close energies.

A qualitative difference between α and β spin excitation
for the V+1

O center, however, is that β channel excita-
tions should be associated with the release of holes into
the valence band (VB). It has been shown that, when
exciting MgO crystals with 5 eV light, a 2.3 eV absorp-
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FIG. 1. Schematic of the typical optical transitions in oxides
with defects. Type-I is a band-to-band transition. Type II is
a VB to defect-induced unoccupied resonant state in CB tran-
sition. Type III represents the VB to unoccupied defect state
in the bandgap transition. Type IV is an occupied defect state
into defect-induced state in the CB transition, and type V is
an occupied defect state into un-occupied defect state in the
bandgap transition. A type VI transition is from a shallow,
occupied defect state into the defect-induced resonant state
in the CB.

tion band also develops, which is associated with holes
trapped on V-type centers13,14. Recent periodic Density
Functional Theory (DFT) calculations15 account for dif-
ferent spin channel excitations in MgO using many-body
perturbation theory in the G0W0 approximation and the
Bethe-Salpeter approach. These calculations predicted
the existence of a 3.6 eV absorption band in the V+1

O
center (in addition to the known 5 eV band in the α
channel), which could be used to distinguish between the
V0

O and V+1
O centers. Thus the position and nature of

optical absorption peaks of V0
O and V+1

O centers in MgO
remain controversial. They are revisited and discussed in
more detail below in section III B.

MgO also has a photoluminescence (PL) band at 2.3
eV attributed to the V0

O center8–10,16. The nature of
this luminescence has been discussed based on theoreti-
cal and experimental data in Refs.16,17 but has not been
confirmed by many-electron calculations. These models
are tested and discussed in detail in section III C.

HfO2 is another topical oxide with many properties at-
tributed to O vacancies. This high dielectric permittivity
oxide is being used both as a gate dielectric in modern
transistors and as a reducible oxide in memory cells18,19.
The existing and newly generated oxygen vacancies in
HfO2 have been implicated in degradation of these de-
vices and play the central role in the electroforming pro-
cess in Resistive Random Access Memory (RRAM) de-
vices20–23. Again, spectroscopic signatures of these de-
fects are still controversial.

Experimentally, there is a well characterized 2.7 eV
photoluminescence peak24,25 associated with a 5.2 eV ab-

sorption peak. The optical transitions for all five charge
states of the oxygen vacancy in m-HfO2 were calculated
in a DFT study using both periodic and embedded clus-
ter methods and Time-dependent DFT (TD-DFT) for
calculating optical transition energies26. These calcula-
tions predicted the absorption energy of the +2 charged
oxygen vacancy (V+2

O defect) at 4.94 eV, which is appre-
ciably close to the 5.2 eV absorption peak. This pro-
vided evidence that the V+2

O defect may be responsible
for the 5.2/2.7 eV absorption/PL spectrum. Other ex-
perimental work on hafnia films has also connected this
luminescence peak to oxygen vacancies. In a photolumi-
nescence study25the 5.2 eV absorption and the 2.7 eV
luminescence bands were interpreted as emerging from
neutral (rather than positively charged) oxygen vacan-
cies. Furthermore, another absorption/emission line - a
3.66 eV PL excited at 4.4 eV and 5.4 eV - has also been
detected27. The predicted optical absorption energy for
the neutral vacancy is approximately 3.2 eV26. This cor-
responds to an electron being excited out of a doubly
occupied vacancy state (which has its Kohn-Sham (KS)
level in the middle of the bandgap) into an unoccupied
state at the bottom of CB (type V excitation in Fig. 1)
. These calculations also predict similar positions for ab-
sorption peaks of V−1O , V0

O and V+1
O defects, which all

have occupied states at similar energies in the bandgap.

Thus, rather surprisingly considering the amount of
research which went into studies of these two materi-
als, their optical absorption and photoluminescence (PL)
spectra are far from being understood. Predictions of po-
sitions of defect optical absorption and PL peaks rely on
several factors: accuracy of calculations of defect-induced
lattice relaxation, which often requires large periodic cells
or clusters; positions of defect levels should be accurately
reproduced, which requires using non-local density func-
tionals; techniques used to calculate optical excitation
energies. Satisfying all these requirements is challeng-
ing and compromises are often made in favor of one of
the variables. For example, small periodic cells are used
to afford more computationally demanding calculations
using the GW approximation and the Bethe-Salpeter ap-
proach for calculating optical spectra. More efficient but
less accurate LDA calculations are used to optimize the
defect geometry.

Here we attempt to satisfy all the requirements by
using an advanced computational methodology imple-
mented in CP2K, a non-local PBE0-TC-LRC density
functional and the recently implemented Linear Response
formulation of the TD-DFT equations. These are de-
scribed in detail in section II and in Appendix. Using
this method, within the adiabatic approximation we cal-
culate the optical transition energies for the 0, +1, and
+2 charged O vacancies in MgO and m-HfO2 and esti-
mate the photoluminescence energies for the V0

O and V+2
O

centers in MgO and m-HfO2. The results emphasize the
importance of accurate predictions of defect-induced lat-
tice distortions. They confirm that optical transitions of
O-vacancies in 0, +1 and +2 charge states in MgO all
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have energies close to 5 eV. We qualitatively confirm the
model proposed to explain the nature of 2.3 eV PL in
MgO in Refs.16,17. The PL at 3.7 eV of V+2

O centers in
m-HfO2 is predicted to originate from radiative tunnel-
ing transition between a V+1

O center and a self-trapped
hole.

II. METHODOLOGY

A. Computational details

All simulations were carried out using periodic bound-
ary conditions and the implementation of DFT in the
CP2K software package28. These calculations sample the
Brillouin Zone only at the Γ point. To check the depen-
dence of the results on the cell size, for MgO supercells
of 216, 512 and 1000 atoms and for m-HfO2 96 and 324
atom supercells were used. Since we consider the 96 atom
cell to be too small, we only analyze HfO2 defects and
optical transitions for the 324 atom cell.

Charged defects in the periodic model are calculated
using the neutralizing jellium background, as imple-
mented in CP2K. In this paper we are mainly concerned
with optical excitations of defects in particular charge
states rather than their formation energies and transi-
tion levels, where charge corrections as well as potential
alignment are important. TDDFT calculations include
KS orbital energy differences, which are affected by the
cell size as well as the extent of lattice distortion induced
by charged defects. These effects are checked using peri-
odic cells of increasing sizes.

The PBE0-TC-LRC exchange-correlation (XC)
functional29 was used with an exact exchange contri-
bution of 32.5% for the MgO calculations and 25%
for the HfO2 calculations. This functional is based on
ordinary PBE030, however HF exchange is only used for
ranges up to a selected “truncation radius”. Beyond the
truncation radius, a long range correction (based on the
spherically averaged PBE exchange hole31 ) is applied.
In this work, we use 6 Å for the truncation radius in
MgO and 4 Å in HfO2.

The GTH pseudopotentials and GTH MOLOPT basis
sets were used for all atom species32,33. In our set up,
Mg has 2 valence electrons, whereas Hf and O both have
6. All periodic cells had lattice parameters and geometry
optimized such that forces were smaller than 0.023 eV/Å.
The effect of oxygen vacancies on the local structure was
simulated by re-optimizing the cell geometry after the
deletion of an oxygen atom. Lattice parameters were
kept constant during optimization of the defective cells.
Since MgO has an FCC structure, all oxygen atoms in
the periodic cell are equivalent and it is not necessary to
sample different sites. In m-HfO2 O atoms can be either
3- or 4-coordinated by Hf ions. In this work, we focus
only on O vacancies at 3C sites. Positive or negative
oxygen vacancies were simulated by removal or addition
of electrons from the defective cell and then re-optimizing

the geometry.
To calculate optical transition energies and oscillator

strengths we use the well established Linear Response
formulation of the TDDFT within the local adiabatic ap-
proximation. In this approximation, the XC-functional
is simply one of the usual XC-functionals used for ground
state DFT calculations. The detailed description of
mathematical expressions implemented in CP2K is given
in Appendix.

Calculation of Hartree-Fock electron-repulsion inte-
grals greatly increases the computational cost of hy-
brid functionals, and renders the ground state DFT and
TDDFT calculations infeasible for the system sizes con-
sidered here. For this reason it is necessary to employ
the auxiliary density matrix method (ADMM)34. This
approximation utilizes a smaller or faster converging ba-
sis set, greatly speeding up the calculation of HF exact
exchange. This allows us to use large supercells, which
means we can more fully represent the structural relax-
ation induced by the presence of vacancies. Reducing the
basis set quality can introduce errors in the HF exchange
calculations. The key assumption of ADMM are outlined
in the next section.

B. Auxiliary Density Matrix Method

In ground-state KS-DFT the exact exchange en-
ergy, which is an essential component of hybrid XC-
functionals, is expressed in terms of a density matrix P 34:

EHF
x [P ] =

∑
µνλσ

PµλPνσ(µν|λσ) (1)

and Electron Repulsion Integrals (ERIs) over Gaussian
basis functions {χ}:

(µν|λξ) =

∫
χ∗µ(r)χν(r)

1

|r− r′|
χ∗λ(r′)χξ(r

′)drdr′ (2)

The number of such integrals grows with the total num-
ber of atomic basis functions to the fourth power in a
naive implementation that quickly becomes a bottleneck.
However, the majority of these integrals are negligible. In
particular, the inner product of two Gaussian functions
centred on different atoms exponentially decays with the
distance between these atoms. This effectively means
that the number of non-negligible ERIs scales quadrati-
cally with the system size for a given basis set.

To take advantage of this fact, CP2K screens ERIs
based on the Cauchy-Schwarz inequality:

(µν|λσ) ≤
√

(µν|µν)
√

(λξ|λξ), (3)

and ignores the integrals which are less than the given
threshold. Screening based additionally on the size of
the density matrix element of the pair of orbitals in the
ground state wave function can further reduce this to lin-
ear scaling. However even in this case evaluation of ERIs
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still remains a challenging task due to a large prefac-
tor. This prefactor becomes much larger when the basis
set is augmented with diffuse functions, because these
functions have a slower long-range decay. This prob-
lem also affects the MOLOPT basis sets commonly used
in CP2K33, as they contain significant numbers of (con-
tracted) diffuse basis functions.

The Auxiliary Density Matrix Method (ADMM) ad-
dresses this problem by computing ERIs using a small
auxiliary basis set with rapidly decaying basis functions
{χ̃}. An approximate auxiliary density matrix P̃ is then
constructed by fitting the density matrix in the primary
basis set (P ):

P̃ = OPOT, (4)

using a projector from the primary basis set onto the
auxiliary basis set:

O = S̃−1U, (5)

S̃µν = 〈χ̃µ|χ̃ν〉, Uµν = 〈χ̃µ|χν〉. (6)

Optionally, the ground-state auxiliary density matrix can
be purified using a number of techniques34 to ensure that
all properties of a true density matrix are met. We have
not implemented purification for use with TDDFT meth-
ods, as a response density matrix P (1) – which appears
in Eq. (1) instead of the ground-state density matrix –
does not satisfy all conditions for a pure density matrix
(see Appendix for further details).

ADMM also assumes that the difference between
exact-exchange energies computed using primary and
auxiliary basis sets has (semi-)local nature and thus can
be well described using some reference LDA or GGA ex-
change functional (EDFT

x ). It naturally leads to the triv-
ial expression for the approximate exact-exchange energy
in the primary basis set:

EHF
x [P ] ≈ EHF

x [P̃ ] + (EDFT
x [P ]− EDFT

x [P̃ ]). (7)

Differentiation of the above expression with respect to
the density matrix gives the following contribution to the
Kohn-Sham matrix35:

KHF
x ≈ FDFT

x +OT(K̃HF
x − F̃DFT

x )O, (8)

where

(FDFT
x )αβ =

∫
χ∗α(r)vx[P ](r)χβ(r)dr, (9)

(F̃DFT
x )µλ =

∫
χ̃∗µ(r)vx[P̃ ](r)χ̃λ(r)dr, (10)

(K̃HF
x )µλ =

∑
νσ

P̃νσ(µ̃ν̃|λ̃σ̃), (11)

and vx is the (semi-)local reference exchange potential as
a functional of the electron density.

III. RESULTS AND DISCUSSION

A. Properties of perfect crystals

We start from considering the calculated bulk prop-
erties for different cell sizes of MgO and m-HfO2. All
calculations are performed sampling the Brillouin zone
at the Γ point. The band gap energies are calculated
as the difference of Kohn-Sham (KS) energies and using
TDDFT. The results shown in Tables I and II for MgO
and m-HfO2, respectively, demonstrate good agreement
of lattice parameters with experimental reports. How-
ever the band gap of HfO2 is slightly overestimated. We
note that in both systems the TDDFT calculated optical
band gap is lower than the KS band gap. This is because,
unlike in GGA-based TDDFT, in hybrid TDDFT there
is electron-hole interaction36. Excitation between delo-
calized band states creates an electron-hole pair which is
confined within the simulation cell and thus has an ar-
tificially high electron-hole interaction energy. This ex-
plains why the difference between the KS and TDDFT
band gap is greatest for small simulation cells where the
electron-hole pair is more confined and thus the electron-
hole interaction is greater.

Cell Size
216 512 1000 Exp.

|a| 4.21 4.21 4.21 4.21137

KS BG 7.7 7.7 7.8 -
Optical BG 7.1 7.4 7.5 7.786

TABLE I. The lattice parameters (Å) and band gap values
(eV) for bulk MgO. The optical band gap (BG) is calculated
using TDDFT. Cell sizes are given in number of atoms.

Cell Size
96 324 Exp.

|a| 5.08 5.07 5.11738

|b| 5.13 5.13 5.1838

|c| 5.25 5.24 5.2938

β (degrees) 99.12 99.11 99.2238

KS BG 6.51 6.66 -
Optical BG 6.0 6.1 5.6839

TABLE II. The lattice parameters (Å) and band gap energies
(eV) calculated for bulk m-HfO2. The optical band gap (BG)
is calculated using TDDFT.

B. Optical transitions of O vacancies

The removal of a neutral oxygen atom in the MgO
or m-HfO2 periodic cell leaves behind a neutral oxygen
vacancy, V0

O. Two electrons localize on the vacancy (see
Fig. 2). These localized electrons occupy two degenerate
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Ionic Displacements
MgO ∆Mg ∆O

V 0
O 0.02 0.01

V +1
O 0.11 0.03
V +2
O 0.20 0.08

HfO2 ∆Hf ∆O

V 0
O 0.01 to 0.08 0.02 to 0.09

V +1
O 0.09 to 0.11 0.04 to 0.18
V +2
O 0.19 to 0.24 0.07 to 0.39

TABLE III. The displacements (in Å) of the ions surrounding
an oxygen vacancy in MgO and HfO2. ∆Mg, ∆Hf and ∆O In
MgO, high symmetry means that all NN Mg ions are displaced
equal amounts, as are all NNN oxygen ions. In HfO2, however,
the surrounding Hf and O ions are not displaced equally. For
HfO2, the range of displacements are shown.

mid-gap levels (one state for each spin) which are located
4.45 eV below the conduction band minimum (CBM) in
MgO and 3.3 eV below the CBM in HfO2. In general, the
vacancy perturbs the electronic structure, causing quasi-
local states to appear in VB and CB, as shown in Fig. 1.

Structural relaxation around the neutral vacancy is
small since the Coulomb interaction between the vacancy
and nearby ions is similar to the Coulomb interaction be-
tween an oxygen ion and its neighbors in the bulk. Charg-
ing the vacancy causes greater structural reorganization.
For example, charging the V0

O defect to the +1 state in
MgO results in the nearest-neighbor Mg ions moving out-
ward by 0.11 Å (See Table III). The calculated displace-
ments are in good agreement with those derived from the
analysis of EPR spectra of the V+1

O center in Ref.40.
In this study we look at the 0, +1 and +2 charge states

of O vacancies in MgO and HfO2. In the +1 charge state,
the vacancy is paramagnetic. Removing an electron from
V0
O (and then relaxing) to create a V+1

O defect splits the
doubly occupied state in the band gap into two states
which are energetically separated. In MgO, for example,
the occupied α spin state sits 5.2 eV below the CBM,
whereas the β spin state is unoccupied and is higher in
the band gap (see Fig. 1). The nature of the transition
in the +1 state therefore depends on the spin channel:
alpha spin excitations will involve a transition from a mid
gap state into CB states, whereas a beta spin transition
involves a VB electron being promoted into a gap state.

The wavefunctions of excited states calculated using
TDDFPT are linear combinations of determinants where
Ψa
i is a singly excited wave-function, whose i-th occupied

Molecular Orbital (MO) is replaced by the a-th virtual
MO (see Appendix). Often one excitation Ψa

i dominates
and will be used to qualitatively represent the excited
state in further discussion.

The lowest energy transition of the MgO V0
O defect has

zero oscillator strength because the singly occupied de-
fect state and the LUMO state dominating this transition
have similar cubic symmetry (see Fig. 2) analogous to hy-
drogenic 1s and 2s orbitals. The next three higher energy

FIG. 2. The nearest-neighbor environment of neutral O-
vacancy in MgO (A) and HfO2 (B). An isosurface of the wave-
function of the doubly occupied defect state is shown in blue.
Mg ions are colored in peach, Hf in cyan and O in red.

transitions have equal excitation energies and are respon-
sible for the main excitation peak seen in V0

O defects in
MgO (Fig. 3(A)). They correspond to the excitation into
a degenerate p-like state.

V0
O center in m-HfO2 has lower symmetry and the

TDDFT calculations predict a broader absorption spec-
trum with an onset at 2.5 eV, and then with higher en-
ergy peaks at 3.0 eV and 3.5 eV. Also, unlike in MgO,
the V0

O excitation in HfO2 is from the vacancy state into
the states delocalized at the bottom of the conduction
band. Hence much lower oscillator strengths of these
transitions. The calculated spectra of the V0

O in HfO2

are plotted in Fig. 3 (D). We note that the predicted
transition energies are in good agreement with the re-
sults of embedded cluster calculations in Ref.26.

In the +1 charge state, transitions in the α and β spin
channels are no longer equivalent. In MgO, the absorp-
tion energies in both spin channels have been predicted
to be close to one another13, making the interpretation
of optical absorption spectra difficult. Here, however,
we predict that the β spin excitation has higher energy
(Fig. 3(B)). This should lead to asymmetry in high en-
ergy part of the optical absorption spectrum of the V+1

O
center and can explain the asymmetric line shape ob-
served in Ref.7. There will also be qualitative differences
between the two types of excitation. Excitations in the
α channel will excite an electron from the gap state into
CB states, similar to the V0

O defect. Excitations in the
β channel, however, will release holes into the valence
band. It is then possible for these holes to be trapped
onto V-centers13.

We note that our results do not support the predic-
tion15 that the β absorption energy should be much lower
than the α spin absorption energy (≈ 3.6 eV). It is possi-
ble that the 3.6 eV absorption band emerges due to con-
straint on the V+1

O center relaxation imposed by small
periodic cells used in Ref.15. Indeed, charging the V0

O
center to the +1 state but not allowing the structure to
relax brings the main β-spin absorption energy down to
3.5 eV. This is not surprising as the defect-induced lat-
tice distortion strongly affects the positions of quasi-local



6

FIG. 3. Optical absorption spectra of oxygen vacancies in MgO and m-HfO2. (A) is the V0
O defect in MgO. There is strong

absorption peaking at 4.85 eV. This corresponds to a transition between an s-like and a p-like states. (B) Shows transitions
in the V+1

O center in MgO. The lower energy absorption peaks at 4.70 and comes from excitation of an α spin electron in a
gap-state into CB states. The higher energy absorption peaks at 5.26 eV and comes from excitation of electrons in VB states
into the unoccupied state in the gap. (C) is the V+2

O defect in MgO. (D), (E), and (F) correspond to the V0
O, V+1

O and V+2
O

centers in m-HfO2, respectively. All the transitions represented by (E) are from excitations in the alpha channel. Individual
transitions (without smearing) are shown by delta functions, in (F) these trnasitions are too small to be seen. The smeared
spectra is plotted using Gaussian smearing of σ = 0.2 eV.

states in the valence band responsible for β transitions.
We therefore find that failure to allow the charged defect
to fully relax can change absorption energies by as much
as 2 eV.

In HfO2, optical excitations in the α and β spin chan-
nels have different energies. To illustrate why, we can
look at the electronic structure of the V+1

O defect in HfO2.
The alpha HOMO-LUMO separation is calculated to be
3.6 eV, whereas the beta HOMO-LUMO separation is
calculated to be 5.6 eV (very close to the optical band
gap value). Thus, when irradiating HfO2 with photons
of sub-bandgap energy, we expect the V+1

O spectrum to
be dominated by α spin transitions (transitions from the
vacancy state into the CB states, i.e. type 4 in Fig. 1).
Indeed we predict that the first optical absorption peak
occurs at 2.9 eV and corresponds to the transition of
the alpha-spin electron from the gap-state into a quasi-
local state in the CB. All the higher energy peaks up to
band-gap energy also correspond to excitations of the α-
spin electron out of the gap-state and into higher energy
CB states. Excitations in the β spin channel are only at-
tainable once we arrive at excitation energies comparable
with the band gap.

In both materials the V+2
O defect produces an unoccu-

pied state high in the band gap as well as resonant states

in the CB (Fig. 1). In MgO, the optical absorption of the
V+2
O center has been predicted26 to be close to the V0

O

and V+1
O defects. It is dominated by transitions from the

defect-induced states in the valence band into the LUMO
defect state located close to the bottom of the CB (type
III in Fig. 1) . Therefore, all of the VO defects in MgO
are predicted to have optical absorption peaks near 5 eV.
This explains why it is so difficult to distinguish between
different charge states of the VO defect in MgO using
optical absorption experiments alone.

In HfO2, the optical transition energies from the va-
lence band into the V+2

O defect are comparable to the
band gap energy and are predominantly of type II in
Fig. 1. Optical experiments conducted on HfO2

24 have
detected a 5.2 eV absorption peak which has been at-
tributed to the presence of oxygen vacancies. We predict
that the doubly positively charged oxygen vacancy (V+2

O )
has an optical absorption peak at 5.3 eV, which is in good
agreement with this detected absorption band. We note
that the position of the peak predicted in this work is at
higher photon energy than 4.94 eV calculated in Ref.26

using TDDFT in a relatively small embedded cluster.
This is consistent with our observation that full account
of defect-induced lattice distortion for charged defects is
important for predicting correct optical absorption ener-
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gies.

C. Photoluminescence energies

As was mentioned above, MgO has a well-established
PL band at 2.3 eV attributed to the V0

O center8–10,16.
The life-time of this luminescence is much longer than
that for the V+

O center, which is caused by a single-
electron transition in the doublet state. Therefore the
2.3 eV luminescence of the V0

O center could be due to a
partially-allowed 2s → 1s type and/or triplet-to-singlet
transition. The kinetics of this PL is, however, much
more complicated than that of the V0

O center in CaO,
where the lowest relaxed excited state has been shown to
have a tetragonal (100) triplet state with fast spin-lattice
relaxation (see, for example, Ref.41). The PL kinetics in
MgO is strongly affected by the presence of H and other
impurities and depends on sample preparation8,16. Semi-
empirical16 calculations suggest that tetragonal singlet
and triplet states are both located very close to the bot-
tom of the CB and that there are two minima in the
relaxed excited state corresponding to 3T1u and 3A1g

configurations, respectively. The predicted PL energies
corresponding to transitions from these two minima are
equal to 2.9 eV and 2.2 eV, respectively. The PL peaking
at 2.9 eV has been observed experimentally42 but has an
excitation energy at about 7 eV. It has been concluded
that the PL peaks at 2.3 eV and 2.9 eV may involve both
transitions intrinsic to the V0

O center and those caused
by electron transfer from impurities8,16. We note that
the dynamics of similar PL of F centers in alkali halides
has been studied in detail43. In that case, the transition
is allowed due mixing of 2s and 2p terms, with 2s having
the lower energy in the relaxed excited state43.

To shed more light on the nature of excited states,
we have calculated the triplet excited states of the V0

O
center in MgO using the so called ∆SCF method. This
computational procedure employs a non-Aufbau occupa-
tion of the triplet state in a dielectric to converge the KS
equations to an excited state44? . The total energy and
geometry of the triplet excited state of a defect are cal-
culated self-consistently. This approach allows us to pre-
dict defect geometries in the electronically excited state
(the feature still unavailable in TDDFT in CP2K). The
lowest energy triplet state has 3A1g symmetry and the
calculated luminescence energy from this state is 2.0 eV.
A higher energy triplet state has a geometry formed from
a combination of A1g and T2g displacement modes. The
calculated PL energy from this state is 2.9 eV. Thus our
calculations support the PL model suggested in earlier
studies8,16 with surprising agreement of calculated PL
energies.

We used the same approach to investigate the lumines-
cence of the neutral oxygen vacancy in m-HfO2. In the
case of optical excitation of the V0

O defect the electron-
hole pair remains bound to the vacancy. The predicted
triplet-singlet PL energy is 0.8 eV.

The situation is, however, more intriguing in the case
of the V+2

O center. It produces an unoccupied state in-
side the gap close to the bottom of the CB as well as
quasi-local states in the VB and CB in both MgO and
m-HfO2. In alkali halides, a singly positively charged an-
ion vacancy (also called an α-center) has a qualitatively
similar electronic structure and a characteristic lumines-
cence, which is close in energy to the exciton lumines-
cence (so called α-luminescence) and is attributed to ex-
citon perturbed by the vacancy45. The relaxed excited
state of this center can be also viewed as an electron
transferred into the vacancy and a hole trapped next to
the vacancy46. Such luminescence has not been observed
for V+2

O center in MgO because free excitons in MgO
are very mobile and get trapped by impurities. Since
excitons and holes have been suggested to self-trap in
m-HfO2

47–49 one could expect creation of α-type lumi-
nescence in this material. Recent experiments27 suggest
that 3.6 eV luminescence excited by 5.3 eV photons could
be due to charged vacancies in m-HfO2.

Using the ∆SCF method we investigated the triplet
excited state of the V+2

O defect in HfO2. It is found that

the relaxed triplet configuration of the V+2
O center has

an electron localized into the vacancy (producing a V+1
O

center) and a hole localized in a polaron state elsewhere
in the supercell. Holes have been predicted to self-trap
in m-HfO2 at low temperatures48,50. Due to repulsion
with the positively charged vacancy, the hole cannot sit
close to the vacancy - the closest stable separation we
find between the hole polaron and the vacancy is approx-
imately 5 Å (see Figure 4). Therefore the localized hole
and vacancy can be viewed as two separated defects. In
such a system, luminescence due to electron-hole recom-
bination can occur when the electron in the V+ defect
tunnels into the hole polaron via a radiative tunneling
transition (RTT). The RTT recombination luminescence
of spatially well-separated electron and hole defects has
been studied in semiconductors51 and ionic crystals52. It
usually occurs between ground electronic states of donor
and acceptor.

We predict the photon energy of this emission to be
3.7 eV. Unlike in semiconductors51, the emission energy
does not depend on the defect separation in the range
of up to 11 Å (this upper limit originates in the finite
size of the supercell) due to dielectric screening in the
high-k material. In53 a range of luminescence peaks be-
tween 2.0 and 3.7 eV, attributed to oxygen vacancies have
been detected at approximately 7 K using cathodo- and
optical luminescence. In another optical experiment47,
conducted at 10 K, weak emission in the range of 2.2 to
3.6 eV has been detected. A recent study27 also found
luminescence peaking near 3.6 eV, again linked to oxygen
vacancies. These results are consistent with the optical
absorption of the V+2

O defect and the predicted RTT lu-
minescence energy. However, further studies are required
to elucidate the nature of experimentally observed peaks.
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FIG. 4. The relaxed triplet configuration of the V+2
O defect.

An electron localises around the vacancy (to create a V+1
O

defect) and a hole self-traps elsewhere in the lattice. A range
of separations between hole and vacancy are possible. Here,
the closest separation configuration is shown. Transparent
surfaces show the |ψ|2 of the hole (orange) and electron (blue).
The iso-surface value is 0.007. The nearest neighbor atoms of
each defect are highlighted.

IV. CONCLUSIONS

To conclude, we used a newly implemented TDDFT
algorithm in CP2K to conduct optical absorption calcu-
lations on oxygen vacancies in MgO and HfO2. Using
a range of periodic cells We demonstrate that failure to
properly describe the geometric structure of a defect sig-
nificantly affects the predicted absorption energies, po-
tentially by several eV. We confirm the existing models
of the nature of optical absorption and photolumines-
cence of O vacancies in MgO and HfO2 and predict that
the PL at 3.7 eV in HfO2 excited at 5.2 eV could origi-
nate from radiative tunneling transitions between a V+

center and hole polaron created by this excitation. The
results of our calculations are in good agreement with
the available experimental data and shed light on the
nature of optical absorption and luminescence peaks in
these materials. Therefore the use of TDDFT with a
hybrid functional, which strikes a good balance between
accuracy and computational efficiency, is appropriate for
the prediction of the optical properties of defects in other
solid state systems.
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VI. APPENDIX

In the linear response (LR) formulation, TDDFT equa-
tions can be cast in the form of a non-Hermitian eigen-
problem54:(

A B
B∗ A∗

)(
Xp

Yp

)
= ωp

(
1 0
0 −1

)(
Xp

Yp

)
, (12)

where (Xp, Yp) is an eigenvector and ωp is a correspond-
ing transition energy. In terms of Kohn-Sham orbitals
{φ}, the elements of the matrices A and B can be writ-
ten as55:

Aiaσ,jbτ = AE
iaσ,jbτ +AJ

iaσ,jbτ + cHFXA
HFX
iaσ,jbτ +AXC

iaσ,jbτ

= δijδabδστ (εaσ − εiσ) + (iσaσ|jτ bτ )

− cHFXδστ (iσjσ|aτ bτ ) + (iσaσ|fxc;στ |jτ bτ ),
(13)

Biaσ,jbτ = (iσaσ|bτ jτ )− cHFXδστ (iσbσ|aτ jτ )

+ (iσaσ|fxc;στ |bτ jτ ). (14)

Here AE, AJ, AHFX, AXC denote orbital energy dif-
ference, electron-hole Coulomb, exact-exchange, and
exchange-correlation (XC) terms respectively, while no-
tations (iσaσ|jτ bτ ) and (iσaσ|fxc;στ |jτ bτ ) stand for four-
centre electron repulsion integrals (ERIs) and XC-
integrals:

(iσaσ|jτ bτ ) =

∫
φ∗iσ(r)φaσ(r)

1

|r− r′|
φ∗jτ (r′)φbτ (r′)drdr′

(15)

(iσaσ|fxc;στ |jτ bτ ) =

∫
φ∗iσ(r)φaσ(r)fxc;στ (r, r′)

× φ∗jτ (r′)φbτ (r′)drdr′ (16)

We use the following index convention: i and j label oc-
cupied orbitals, a and b stand for virtual orbitals, and σ
and τ refer to spin components. Besides, the quantity
εiσ stands for the i-th Kohn-Sham orbital energy, and
fxc;στ (r, r′) is a response XC-kernel. The explicit expres-
sion for the AXC term in Eq. (13) is given in the adiabatic
approximation which postulates independence of the XC-
functional on time. As such, XC-kernel becomes the sec-
ond functional derivative of the XC-functional (Exc) over
the ground-state electron density (ρ(0))56:

fxc;στ (r, r′) =
δ2Exc[ρ](r)

δρσ(r′)δρτ (r′)

∣∣∣∣
ρ=ρ(0)

. (17)

It is important to note that in case of a hybrid exchange
functional the exact-exchange term is excluded from the
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XC-functional prior taking its functional derivative. For
example, in case of a standard PBE0 XC-functional30

which contains 100% PBE correlation, 75% PBE ex-
change, and 25% exact-exchange energies, only the first
two terms contribute towards the XC-kernel.

As is customary, we also use the Tamm-Dancoff ap-
proximation (TDA)57 which amounts to setting all the
elements of the matrix B in Eq. (12) to zero. This sim-
plifies the LR-TDDFT equation by reducing it to a stan-
dard Hermitian eigenproblem:

AXp = ωpXp. (18)

We use block Davidson method58 to solve this eigenprob-
lem, as the matrix A itself is a diagonally dominant one
and only few excited states are typically in interest.

A significant advantage of the Davidson algorithm fol-
lows from its iterative nature. The algorithm approxi-
mates target eigenvectors by iteratively refining a set of
trial vectors Xp – one vectors for each excited state p in
question – and only the action of the response operator
on these vectors AXp needs to be known. In our im-
plementation we use trial vectors in form of contracted

response orbitals φ
(1)
i;pσ(r), which is a linear combination

of virtual Kohn-Sham orbitals φa;σ(r)

φ
(1)
i;pσ(r) =

LUMO∑
a

Xia;pσφa;σ(r) (19)

obtained from solving the ground-state KS-DFT equa-
tions. The squared contraction coefficients |Xia;pσ|2 thus
can be thought as a probability of an electron transition
between the i-th occupied and a-th virtual KS orbitals.

By analogy with occupied ground-state KS orbitals
φi,σ, the contracted response orbitals are expanded as
a linear combination of atomic basis functions {χ}:

φi;σ(r) =

N∑
µ=1

C
(0)
µi;σχµ(r), φ

(1)
i;pσ(r) =

N∑
µ=1

C
(1)
µi;pσχµ(r),

(20)
subject to orthogonality conditions:

Tr
(
C(0),T
σ SC(1)

pσ

)
= 0, (21)

Tr
(
C

(1),T
p↑ SC

(1)
q↑

)
+ Tr

(
C

(1),T
p↓ SC

(1)
q↓

)
= δpq. (22)

where Sµν = 〈χµ|χν〉 is the overlap matrix, and δpq is the
Kronecker delta. The calculation of the action of the re-
sponse operator on trial vectors, expressed in the atomic
basis set, is then performed in the following steps, which
are essentially the same steps as required for building
the Kohn-Sham matrix in ground-state DFT using the
Gaussian and Plane Wave method28:

1. For every spin component σ construct the response
density matrix:

P (1)
pσ =

1

2

(
C(0)
σ C(1),T

pσ + C(1)
pσ C

(0),T
σ

)
. (23)

The initial guess is formed from energetically or-
dered single orbital excitations. Note that the re-
sponse density matrix is not a pure one, as it does
not fulfil the idempotent property:

P (1)
pσ SP

(1)
pσ S 6= P (1)

pσ S.

Map the response density onto a real-space grid

P
(1)
pσ → ρ

(1)
pσ (r) and the corresponding reciprocal-

space grid by performing the fast Fourier transfor-
mation (FFT):

ρ(1)pσ (G) = FFT[ρ(1)pσ (r)].

2. Compute the energy difference term:

AEC(1)
pσ = FσC

(1)
pσ − εσSC(1)

pσ , (24)

where Fσ and S are Kohn-Sham and overlap ma-
trices respectively, and εσ is a diagonal matrix of
Kohn-Sham orbital energies.

3. Compute the Coulomb term by

(a) solving the Poisson equation on the reciprocal

grid: ρ
(1)
pσ (G)→ v

(1)
pσ (G);

(b) calculating components of the electrostatic
potential on the real-space grid using the in-

verse FFT: v
(1)
pσ (r) = FFT−1[v

(1)
pσ (G)].

4. Compute the adiabatic XC term by evaluating the
integral:

f̄xc;pσ(r) =
∑
τ=↑,↓

ητ

∫
fxc;στ (r, r′)ρ(1)pτ (r′)dr′ (25)

on the real-space grid. The scaling factors (η↑, η↓)
are equal to (2, 0) or (1,−1) for singlet and triplet
states computed using spin-unpolarised electron
density, or (1, 1) otherwise.

5. Transform the sum of electrostatic potential and
the XC term from the grid representation into a
matrix representation in the atomic basis set by
evaluating expectation values:(

AJC(1)
pσ +AXCC(1)

pσ

)
µν

=∫
χ∗µ(r)

(
v(1)pσ (r) + f̄xc;pσ(r)

)
χν(r)dr. (26)

6. Using precomputed ERIs over atomic basis func-
tions (µν|λξ), compute matrix elements of the
exact-exchange operator:

(Kpσ)µλ =
∑
νξ

(µν|λξ)
(
P (1)
pσ

)
νξ
. (27)

The exact-exchange action term is then calculated
as a matrix product scaled by the amount of the
exact exchange:

cHFXA
HFXC(1)

pσ = cHFXKpσC
(0)
σ . (28)
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7. When combined with ADMM (see section II B), in-
stead of the previous step compute the matrix el-
ements of the exact-exchange operator in auxiliary
basis set {χ̃} using the auxiliary density matrix P̃
from Eq. (4):(

K̃pσ

)
µ̃λ̃

=
∑
ν̃ξ̃

(µ̃ν̃|λ̃ξ̃)
(
P̃ (1)
pσ

)
ν̃ξ̃
, (29)

and then project the obtained matrix back to the
primary basis set:

Kpσ = OTK̃pσO. (30)

Repeating steps 4 and 5 we also compute two com-
pensation XC terms using a reference (semi-)local
XC-functional in accordance with Eq. (8).

8. All components of the action matrix for the given
response wave function (steps 2, 5, and 6) are then
summed up. Once obtained for all excited states
in question, these action matrices then used in the
block Davidson algorithm58 to compute residuals
and to refine the response wave functions.

With no periodic boundary conditions, having the op-
timised response wave function for the p-th transition Ψp

one can compute the associated oscillator strength using
the classic expression for dipole integrals in the “length”
form54:

fp =
2

3
ωp

∑
q=x,y,z

|〈Ψp|q|Ψ0〉|2 . (31)

The above expression can be recast in terms of contracted
expansion coefficients:

fp =
2

3
ωp

∑
q=x,y,z

∣∣∣Tr
[
C(1),T
p SCvirt.Cvirt.,TQqC

(0)
]∣∣∣2 ,

(32)
where the matrix elements of the dipole operator in
atomic basis set are:

Qq,µν = 〈χµ|q|χν〉, (33)

and Cvirt. is a matrix of expansion coefficients of virtual
Kohn-Sham orbitals φa;σ(r) in the atomic basis set. Us-
ing the commutation relation between Hamiltonian and
position operators

[Ĥ, r̂] = −∇, (34)

we can rewrite Eq. (32) in the equivalent “velocity” form:

fp =
2

3
ωp

∑
q=x,y,z

∣∣∣Tr
[
C(1),T
p SCvirt.

{
W ⊗ (Cvirt.,T ∂S

∂q
C(0))

}]∣∣∣∣2 , (35)

to make it suitable for periodic boundary conditions.
Here W is the inverse energy difference matrix between
all virtual (a) and occupied (i) Kohn-Sham orbitals:

Wai = (εa − εi)−1, (36)

∂S
∂q is a matrix containing the first partial derivative of

overlap integrals along the q-th direction:(
∂S

∂q

)
µν

= 〈χµ|
∂χν
∂q
〉, (37)

and the symbol ⊗ denotes the element-wise (Hadamard)
product.
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