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Abstract: The kedarcidin chromophore is a formidible target for total synthesis. Herein, we 18 
describe a viable synthesis of this highly unstable natural product. This entailed the early 19 
introduction and gram-scale synthesis of 2-deoxysugar conjugates of both L-mycarose and L-20 
kedarosamine. Key advances include: (1) stereoselective allenylzinc keto-addition to form an 21 
epoxyalkyne; (2) -selective glycosylations with 2-deoxy thioglycosides (AgPF6/DTBMP) 22 
and Schmidt donors (TiCl4); (3) Mitsunobu aryl etherification to install a hindered 1,2-cis-23 
configuration; (4) atropselective  and convergent Sonogashira-Shiina cyclization sequence; 24 
(5) Ohfune-based amidation protocol for naphthoic acid; (6) Ce(III)-mediated nine-25 
membered enediyne cyclization and ester/mesylate derivatisation; (7) SmI2-based reductive 26 
olefination and global HF-deprotection end-game. The longest linear sequence from gram-27 
scale intermediates is 17-steps, and HRMS data of the synthetic natural product was obtained 28 
for the first time. 29 
 30 
Introduction 31 
 32 
Total synthesis is a challenging field. Even more so if the natural product is complex in 33 
structure and non-obvious in construction. The ensuing challenge reach unprecedented levels 34 
when the natural product is highly unstable. Even more so, if late-stage synthetic precursors 35 
are equally unstable. Very few natural products have been tackled under such criteria. 36 
Outstanding cases in the anitumor antibiotic field include the ten- and nine-membered cyclic 37 
enediynes.

1–6
 Complexity aside, the latter enediynes are arguably more challenging to make 38 

because of increased ring-strain
7–13

 A case in point is the kedarcidin chromophore (1, Figure 39 
1). This nine-membered cyclic enediyne exists kinetically stabilized in Nature as part of its 40 
chromoprotein complex, kedarcidin.

14,15
 The enediyne 1, for example, decomposes within 1-2 41 

h at room temperature once separated from its non-covalently bound apoprotein, even in 42 
aprotic solvents. Notably, nine-membered bicyclic enediynes like 1 readily undergo both 43 
spontaneous and nucleophile-induced cycloaromatizations via highly reactive p-benzyne 44 
diradical species to give aromatized benzenoid products,

16–18
 some of which are more readily 45 

isolated and synthesized in stable cyclized forms on the bench.
19–23

 46 
 47 
Kedarcidin itself was first discovered in 1990 by Bristol-Myers Squibb. It was identified as a 48 
cytotoxic product from the supernatant of an unkown microbe cultured from a soil sample 49 
collected in the Maharasta State of India. In 1991, the company disclosed the product 50 
(kedarcidin) to be a new potent, chromoprotein antitumor antibiotic.

24,25
 The producing 51 

organism was eventually designated to be an actinomycete strain L585-6 of uncertain 52 
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taxonomy. Today, the genus is likely to be Streptoalloteichus sp. ATCC 53650 (not 53 
Saccharothrix). This particular species has recently been shown to produce kedarcidin. Gene 54 
sequencing has also shown ATCC 53650 to contain all of the biosynthetic machinery 55 
necessary to construct the kedarcidin chromophore (1).

26
 56 

 57 

 58 
Figure 1. Structural revisions and numbering system of the kedarcidin chromophore (1). 59 
 60 
During 1992-1994, the bioactivities and structures of the isolated chromophore (1) and 61 
apoprotein of kedarcidin were further elucidated by Leet and colleagues within Bristol-Myers 62 
Squibb.

27–29
 Like other chromoprotein antitumor antibiotics, kedarcidin elicits an 63 

extraordinary ability to drive an astonishing sequence of histone/DNA recognition and 64 
peptide/nucleotide cleavage events.

1–12
 The acidic apoprotein of kedarcidin is proposed to 65 

first associate and enzymatically cleave the basic histone-coiled proteins.
30

 Subsequent 66 
exposure of chromosomal DNA, release of the enediyne core (1), naphthyl-based DNA 67 
intercalation, 5’-TCCTN-3’ sequence recognition, and Masamune-Bergman 68 
cycloaromatization of 1, thereby generates a p-benzyne diradical that is transiently and non-69 
covalently bound to DNA. This latter species then initiates DNA-strand breaking and 70 
crosslinking events via hydrogen abstraction of the deoxyribose backbone. These oxidative 71 
events consequently trigger cell death via the generation of carbon-centered radicals and 72 
radical oxygen species (ROS). Despite this non-trivial sequence of events, kedarcidin still 73 
elicits potent, yet selective in vivo antitumor activity against P388 leukemia and B16 74 
melanoma cells. 75 
 76 
Equally eventful and non-trivial has been the structural elucidation of the kedarcidin 77 
chromophore (1). To date, extensive NMR, MS/MS, chemical degradation, derivatization, 78 
reductive, radical-trapping, biosynthetic and total synthesis studies have provided convincing 79 
evidence for the enediyne structure 1. In 1993, Leet et al. described in full their seminal 80 
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characterization studies of the chromophore structure.
28

 They first proposed an azatyrosyl -81 
amino motif about the ansa-macrolide bridge (Figure 1). In 1997, we updated the whole 82 
structure to be antipodal and demonstrated the chromophore to be a -amino acid derived 83 
ansa-macrolide (1’).

31
 It is noteworthy that the amino-mutase to achieve such a -amino 84 

motif has only recently been characterized.
32

 In 2007, Myers and coworkers completed an 85 
impressive total synthesis of this 1997-structure 1’.

33
 Comparison of natural and synthetic 

1
H 86 

NMR data, nevertheless, indicated the C10--epimeric stereoconfiguration of 1’ should be 87 
inverted to 1. 88 
 89 
In 2009, we provided strong NMR spectroscopic evidence for Myers’ C10--epimer 1 90 
through the synthesis of the complete aglycon 2 of the kedarcidin chromophore in protected 91 
form.

34
 The currently accepted target for synthesis is thus Myers’ structure 1. Herein, we 92 

report a detailed account of our early-stage incorporation of both kedarcidin sugars (as 93 
elaborate O-protecting groups) and the convergent construction of the multicyclic, fully 94 
functionalized cyclic epoxyenediyne core. Collectively, our efforts have led to the 95 
development of a viable total synthesis of 1 as characterised by HRMS. Product instabilities 96 
have, however, prevented clean NMR characterization of the cyclic enediyne material in 97 
unprotected form. 98 
 99 
Results and Discussion 100 
 101 

 102 
Scheme 1. General total synthesis plan for the kedarcidin chromophore (1). 103 
 104 
In previous studies to the kedarcidin aglycon 2, we secured several enantioselective routes to 105 
gram quantities of all key fragments: epoxy-iodocyclopentene 3, aza--tyrosine 4, alkyne-106 
polyol 5, and naphthoic acid 6 (Scheme 1).

31,34–38
 We also determined practical methods to 107 

synthesize the 2-deoxy sugars, L-mycarose 7 and L-kedarosamine 8.
39

 Not only this, but we 108 
developed and achieved the direct α-selective glycosylation of several advanced C10--109 
epimeric aglycon precursors to 1’.

33,40,41
 The key question now was when to incorporate the 110 

kedarcidin sugars into our general synthesis plan (Scheme 1). The C4/C5-dioxy, 111 
epoxybicyclo[7.3.0]-dodecenediyne frameworks like 10 and 11 are known to be exceedingly 112 
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unstable.
34

 Among other decomposition possibilities, such frameworks are prone to undergo 113 
facile oxy-Cope ring openings to afford bis-allenyl species.

37
 The question thus came down to 114 

incorporating the sugars at an early or late stage en route to making 9. Importantly, these 115 
glyosylation events should be executed before cyclization into a highly labile, nine-116 
membered ring system like 10. In either case, the efficiency and -stereoselectivity of our 117 
current glycosylation protocols

40,41
 needed to be tested on newly functionalized substrates of 118 

unknown reactivity (cf. 3, 5, and 9). 119 
 120 

 121 
Scheme 2. Synthesis of late-stage, C10--epimeric aglycon acceptors 18 (for L-mycarose) 122 
and 19 (for L-kedarosamine). 123 
 124 
At first, a late-stage glycosylation strategy was investigated. The ansa-macrolides 18 and 19 125 
(akin to 9) were thus targeted as suitable L-mycarose and L-kedarosamine acceptors, 126 
respectively (Scheme 2). Treatment of 5 with 2,2-dimethoxypropane and acetyl deprotection 127 
afforded the acetonido-alkyne 12 in 76% yield, 2 steps. Sonogashira coupling of 12 with the 128 
known iodo-cyclopentene 13

34
 in degassed DMF under Pd2(dba)3·CHCl3 / CuI catalysis, 129 

followed by selective protio-desilylation of the TMS-C-acetylene, gave the ansa-macrolide 130 
precursor 14 in 61% yield, 2 steps. Saponification of 14 afforded the corresponding 131 
carboxylic acid. This acid was immediately subjected to Shiina macrolactonization conditions 132 
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with 2-methyl-6-nitrobenzoic anhydride (MNBA).
42,43

 These conditions gave the macrolide 133 
15 as a single atropisomer in 62% yield, 2 steps. Mild and selective N-Boc deprotection of 15 134 
(via an O-TBS carbamate)

44
 and HOAt-mediated

45
 condensation of the free amine 16 with 135 

the known naphthoic acid 6 (R= H)
31

 gave the amide 17. Final treatment of 17 with TBAF, 136 
dual C- and O-trimethylsilylation, and chemoselective C10-O-desilylation, gave the L-137 
mycarose C10-O-acceptor 18 with its terminal acetylene suitably C-protected (thereby 138 
minimizing known complications via Ag(I)-complexation).

40
 The alternative treatment of 139 

amide 17 with TFA/H2O (1:2) gave the L-kedarosamine C13-O-acceptor 19 with the C4-OH 140 
free (thereby improving known reactivity issues).

41
 141 

 142 
Having the desired macrocyclic glycosyl acceptors in hand, we first examined the reactivity 143 
of 18 with L-mycarose (Scheme 3). The C10/C11-cis acceptor 18 under established -144 
selective conditions (AgPF6/DTBMP) with the thioglycoside 7 failed to yield any 2-145 
deoxypyranoside (20). This result could not be overturned and was in contrast to the 146 
reactivity of the known C10/C11-trans acceptor 21 to give 22

40
, as well as the success of the 147 

AgPF6/DTBMP glycosylation method during the advanced stages of the total synthesis of the 148 
C10-epimer 1' by the group of Myers.

33
 Clearly, the cis-facial proximity of the chloropyridyl 149 

unit sterically prevented the glycosylation event. 150 
 151 

 152 
Scheme 3. Glycosylation of C10--epimeric alcohol 18 with L-mycarose (7). 153 
 154 
Next, the glycosylation of the L-kedarosamine Schmidt donor 8 with the C4/C13-diol 155 
acceptor 19 was examined (Scheme 4). Initially, our reported -selective conditions were 156 
found unsuccessful, for example, by using BF3 or TiCl4 at low or ambient temperatures in 157 
chlorinated solvents.

41
 Eventually, we succeeded with BF3·Et2O in dichloroethane (DCE) at 158 

an elevated temperature (40 °C). This gave the desired 2°--pyranoside 23 as the minor 159 
product (19% isolated yield) in a 1:2 ratio with the 3°-glycoside 24. As found previously, no 160 
glycosylation occurred when the C4-OH group was protected. Such results do not fair well 161 
for a total synthesis. 162 
 163 
According to these findings, both glycosylations would be better performed at an early-stage 164 
of the synthesis (cf. Scheme 1). Such timings would allow for steric hindrances to be 165 
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minimized (cf. 3 and 18; 5 and 19). In effect, the 2-deoxy--pyranoside sugar functionalities 166 
may be viewed as elaborate THP protecting groups (Sg

1
, Sg

2
) en route to constructing a bis-167 

glycosylated enediyne cyclisation precursor (cf. 9). Although more risky, this strategy offers 168 
a more convergent total synthesis of 1. The acid lability, free hydroxyl and amino 169 
functionality, and extra steric potentials of the 2-deoxypyranosides, were thus considered to 170 
present additional synthetic challenges (vide infra). 171 
 172 

 173 
Scheme 4. Glycosylation of C4/C13-diol acceptor 19 with L-kedarosamine (8). 174 
 175 
Undeterred by such challenges, we elected to prepare gram quantities of the C10 and C13 O-176 
glycosylated versions of 3 and 5, respectively (cf. Scheme 1). These fragments would be used 177 
later for azatyrosine (4) incorporation and Sonogashira coupling studies (vide infra). We first 178 
targeted the propargyl oxirane moiety 3 as a suitable C10/C11-trans glycosyl acceptor 179 
(Scheme 5). After a few modifications to established procedures, the iodo-cyclopentenone 25 180 
was prepared as its C10-OTES silyl ether (not as its TBS ether).

36
 Similar to the protocols of 181 

Chemla and Caddick,
46,47

 the allenyl zinc species of 3-chloro-1-trimethylsilylpropyne 182 
(prepared at –78 °C) was reacted with the ketone 25 at –18 °C overnight. The crude 183 
chlorohydrin 26 was then treated with DBU in dichloromethane to afford the epoxyalkyne 27 184 
stereoselectively in 70% yield, 2 steps. This latter step avoided the use of potassium 185 
carbonate,

34
 so that the TMS-C-protected alkyne 27 could be formed directly. Unlike its C10-186 

OTBS counterpart,
34

 the TES ether of 27 could also be removed chemoselectively under 187 
Brønsted acid conditions to give the desired C10-OH acceptor 3. Gratifyingly, the 188 
thioglycoside 7 reacted smoothly with 2 equivalents of the 2°-alcohol 3 in the presence of 189 
AgPF6/DTBMP.

40
 This furnished the C10/C11-trans α-pyranoside 28 exclusively in 81% 190 

yield. The excess alcohol 3 was then recovered and recycled. Gram quantities of pure 28 191 
were produced in this manner. 192 
 193 
 194 
 195 
 196 
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 197 
Scheme 5. Synthesis of C10-OH acceptor 3 and -glycosylation with L-mycarose (7). 198 
 199 
Next, the gram-scale, α-selective glycosylation of the C13/C4-diol acceptor 5 was pursued 200 
with various L-kedarosamine donors 8 (Scheme 6).  Due to no silyl acetylene protection, 201 
AgPF6/DTBMP conditions were incompatible with 5.

41
 We thus chose NIS/TfOH to activate 202 

the thioglycoside of 8.
48

 This afforded the 2°--pyranoside 29 in a maximum yield of 26 %. 203 
Coupling with the alternative glycosyl fluoride of 8 under Cp2HfCl2/AgClO4 conditions did 204 
not improve yields (15 % at best).

49,50
 Eventually, we found TiCl4 to be superior to BF3·Et2O 205 

in coupling the Schmidt donor 8 and diol 5 under our reported conditions.
41

 For scale-up 206 
purposes, two-equivalents of diol 5 were used relative to 8, whereby 0.5 equivalents of TiCl4 207 
were added under the gentle reflux of CH2Cl2. This rapidly gave the desired 2°--pyranoside 208 
29 in a 40% isolated yield. Excess 5 was also recovered (ca. one-equivalent) and all cases 209 
produced minor amounts of the 3°--pyranoside 30 (R= H) as an inseparable mixture with 210 
29. Gratifyingly, all pyranosides 29/30 were found to be -anomeric (J = 4.0 Hz coupling 211 
constants). This is consistent with high kinetic control, presumably by virtue of the axial 212 
NMe2 group within an oxocarbenium conformation (829). 213 
 214 
 215 

 216 
Scheme 6. Glycosylation of diol 5 with L-kedarosamine (8) and origin of -selectivity. 217 
 218 
Having gram quantities of the L-mycarose and L-kedarosamine fragments 28 and 29 in hand, 219 
azatyrosine incorporation of 4 and the search for suitable Sonogashira coupling substrates 220 
were explored (Scheme 7). Low temperature, reductive deprotection of the benzoate 28, by 221 
using DIBAL in toluene, thus provided 32. The cis-relative C10/C11-stereochemistry was 222 
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next achieved by phenolic Mitsunobu inversion
51

 of the allylic C11--alcohol 32 by the β-223 
amido-2-chloroazatyrosine 4. For scale-up purposes, the use of DMEAD was found 224 
preferable to DEAD.

52
 Triethylsilyl (TES) protection of the tertiary alcohol on L-mycarose 225 

then gave the L-mycarose fragment 34. Initial attempts at Sonogashira coupling between the 226 
iodoalkene 34 and the alkyne 29 or its diol 31 were, however, unproductive. These attempts 227 
were in contrast to previous studies with a C13-OMOM equivalent of the L-kedarosamine 228 
fragment 29.

34
 We therefore decided to explore alternative substrates to achieve this key 229 

Sonogashira coupling step. 230 
 231 

 232 
Scheme 7. Mitsunobu installation of azatyrosine 4 to afford C10/C11-trans fragment 33 and 233 
attempted Sonagashira coupling between the sugar bearing fragments 34 and 29. 234 
 235 
 236 
 237 

 238 
Scheme 8. Sonogashira coupling and saponification-macrolactonization study. 239 
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Additional steric and conformational effects by the kedarosamine moiety were considered the 240 
primary causes for the unproductive iodoalkene-alkyne coupling between 29 and 34. We thus 241 
prepared various cylic diol-protected versions of 29. These modified substrates 36a–c proved 242 
to be successful under established Pd(0)/Cu(I) Sonogashira conditions (Scheme 8).

35–38
 The 243 

orthoester 36c was selected as the optimal substrate for subsequent hydrolytic, ansa-244 
macrolactonization studies. This minimized the loss of acid labile 2-deoxypyranoside 245 
moieties during the methanolysis of 37c to its free diol 38 (82%). The alternative cyclic 246 
acetals 37a/b could not be deprotected cleanly and gave the diol 38 in yields below 55%.

53,54
 247 

Final saponification of 38 and Shiina macrolactonization
55

 generated the atropisomeric ansa-248 
macrolide 39 exclusively in 52%, two steps. ROESY NMR analysis between the protons of 249 
the pyridyl C4’ and epoxy C8 of 39 confirmed its structure. We thus secured a viable route to 250 
bis-glycosylated cyclization precursors like 9 (cf. Scheme 1). 251 
 252 

 253 
Scheme 9. Protecting group selection under Myers’ global deprotection conditions.

33
 254 

 255 
Before progressing forward with 39 and attaching the naphthamide moiety 6, we became 256 
concerned at our protecting group strategy to 1 (cf. Scheme 1). Thus far, relatively strong O-257 
TBS protected 2-deoxysugar fragments 34 and 36 were selected. Although useful in 258 
establishing the chemistry to advanced ansa-macrolides, a final global deprotection sequence 259 
to 1 needs to be both rapid and mild due to enediyne instabilities (cf. 10 and 11). We thus 260 
directed our attention to adjusting the protecting groups on the L-mycarose (7), L-261 
kedarosamine (8) and naphthamide (6) moieties. Model substrates 40, 42, and 44

14
 were thus 262 

prepared and subjected to excess TBAF/o-nitrophenol and HF∙Et3N according to Myers’ 263 
established deprotection sequence to 1’ (Scheme 9).

33
  This study demonstrated the clear need 264 

for TES protection of the sugar moieties 40 (for R
1
) and 42 (for R

3
) during the end-game of a 265 

total synthesis, as well as the need for pivaloyl (Piv) phenolic protection for the naphthamide 266 
(44). In all these cases, deprotection could be achieved cleanly within 10-30 minutes. In 267 
contrast, the TBS ethers of 40 (for R

1
) and of 42 (for R

3
) remained intact even after 3 hours. 268 

Bis-TMS protection (R
1
, R

2
) of the mycarose 40 was also found acceptable, but other silyl 269 

combinations were not. 270 
 271 
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Armed with this information and the experience gained in preparing 39, we turned our 272 
attention to assembling a suitably protected version of the advanced intermediate 9 for 273 
subsequent enediyne cyclisation studies. After several trials, we settled on making the bis-274 
glycosylated ansa-macrolide 50 according to Scheme 10. In this particuar case, we began 275 
with the TES-protected kedarosamine fragment 46 (freshly prepared) and the TBS-protected 276 
mycarose fragment 33 (3°-OH free). After Sonogashira coupling and orthoester methanolysis 277 
to diol 47, the TES ether proximal to NMe2 was found to cleave during the Shiina 278 
macrolactonization step. This generated the ansa-macrolide 48. After TES ether re-protection 279 
of the L-kedarosamine moiety of 48, a chemoselective one-pot amidation procedure was 280 
developed. This entailed the sequential addition of TMSOTf/2,6-lutidine, akin to Ohfune’s 281 
NH-Boc deprotection conditions,

44
 followed by saturated aqueous sodium bicarbonate 282 

solution and the one-pot addition of a preformed CH2Cl2 solution of the HOBt-activated 283 
naphthoate ester 6. This afforded the fully protected ansa-macrolide 50 in 63% yield from 48. 284 
 285 

 286 
Scheme 10. Reliable assembly of a fully protected, storable ansa-macrolide (50). 287 
 288 
 289 
Under this scheme, we could reliably prepare 30–90 mg quantities of 50. Here, samples could 290 
be safely stored as dilute CH2Cl2 solutions at –20 °C over a couple of months. When 291 
required, a suitably protected aldehyde substrate would thus be prepared for immediate 292 
enediyne cyclization studies. Preparations of the mono-TES (54) and bis-TMS (55) protected 293 
aldehydes are given in Scheme 11. After complete TBAF deprotection of 50 to its unstable 294 
pentaol, care was needed to achieve the differential Piv, TES, and TMS O-protection pattern 295 
as achieved in 51 and 52. In one-pot operations, mono-pivalation of the naphtholic group was 296 
first effected at –78 °C with PivCl. Next, mono-triethylsilylation of the kedarsoamine moiety 297 
was effected at 0 °C. This was followed by either mono-TES or bis-TMS silyation of the 298 
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mycarose moiety in the presence of cat. DMAP. Ultimately, in the same pot, the C4-OH was 299 
protected as its TMS ether. Subsequent treatment of 51/52 with DDQ resulted in the N-300 
demethylated alcohol 53. Although the oxidative N-methyl cleavage process could not be 301 
circumvented, crude 53 was readily N-methylated under reductive amination conditions using 302 
formalin and NaBH3CN. Dess-Martin periodinane (DMPI) oxidation of the primary alcohol 303 
then delivered the aldehydes 54 and 55 in good overall yields (75–90 % over 3 steps). 304 
 305 

 306 
Scheme 11. Preparation of aldehyde enediyne cyclisation precursors (54/55). 307 
 308 
The formidable challenges to transform multicyclic alkyne-aldehydes like 54/55 into fully 309 
fledged, epoxybicyclo[7.3.0]-dodecadienediyne cores should not be underestimated by any 310 
means. Whilst the aldehydes themselves are considered unstable in traditional senses, once 311 
the nine-membered enediyne cores are forged closed, all subsequent synthetic operations and 312 
characterization studies should be ideally performed within 16 hours, especially for 313 
kedarcidin-based chromophores. All reagents, methods and work-up operations need to be 314 
mild, streamlined and rapid in both chemical and practical senses. After considerable 315 
experimentation and refinement of reaction timings and bench skills, a 6-step sequence to 1 316 
was eventually shown to be viable over a total time period of 12-hours (Scheme 12). This 317 
entailed the cyclisation of the enediyne-aldehydes 54/55 via the highly unstable cis-diol 318 
derivatives 58–63 and SmI2-based reductive transformation into the equally unstable epoxy-319 
dienediynes 64–69 (Table 1). 320 
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 321 
Scheme 12. Nine-membered enediyne cyclisation and end-game sequence to 1. 322 
 323 
 324 

Table 1. End-game olefination-deprotection sequence to kedarcidin chromophore (1). 325 

Entry[a] R1, R2, R3, R4 HRMS[b] t (TBAF / HF)[c]   1
[d] 

5864 TES, H, TES, Ms 0.0015 10 / 2 min nd 

5965 TBS, H, TES, Ms nd 10 / 5 min nd 

6066 TMS, H, TES, Ms nd 10 / 2 min nd 

6167 TBS, TES, TBS, Ms 0.0004[e] 10 / 5 min nd 

6268 TMS, TMS, TES, Ms 0.0002 10 / 25 min 2%[f] 

6368 TMS, TMS, TES, TFBz 0.0001 10 / 20 min 3%[f] 

[a] All entries were repeated twice; see Scheme 12 and Supporting Information for conditions of 326 
preparation. [b] Difference between calculated and found HRMS data for 64–69 after treatment of 58–327 
66 with SmI2 in THF at –20°C for 5–10 min. [c] Respective times of treatments with TBAF/o-328 
nitrophenol and then HF-pyridine. [d] nd = not detected. [e] Cycloaromatized product from 67 had an 329 
HRMS difference of 0.005 after treatment with cyclohexa-1,4-diene in THF over 22 h. [f] Relative 330 
percentage of 1 to the major (100%) species observed by HRMS: 1030.3734 calculated for [M+H] + = 331 
[C53H61ClN3O16]

+, found 1030.3732 (from 62 via 68) and 1030.3733 (from 63 via 68). 332 
 333 
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Specifically, nine-membered epoxy-enediyne cyclizations of 54/55 using CeCl3/LiHMDS to 334 
give the C4C5 O-migrated TMS products 56/57 necessitated careful quenching with 335 
phosphate buffer (pH 7) at –78 °C. The resulting products 56/57 were treated with TBAF 336 
carefully at –78 °C to remove the C5-O-TMS group. For the cis-C4,C5-diol mesylate 337 
derivatives (58–62), desilylation was immediately followed by mesylate formation and then 338 
esterification with p-trifluoromethybenzoyl (TfBz) chloride. The bis-OTMS, bis-OTfBz 339 
substrate (63) was also prepared by omitting the mesylation step. This proved to be more time 340 
economical, but 63 was found to be more unstable than its C5-OMs counterpart (62). It 341 
should be noted that electron withdrawing C4,C5-diol substituents marginally reduce the 342 
propensity of nine-membered cores from undergoing oxy-Cope like sigmatropic 343 
rearrangments.

35,37
 Nevertheless, all enediyne cores 58–62 remained highly unstable to all 344 

silica gel chromotography techniques and all work-up operations. As a result, we were only 345 
able to obtain high resolution mass spectroscopic (HRMS) data for all compounds in Scheme 346 
12 (cf. Table 1). 347 
 348 
Further discussion is necessary for these final olefination-deprotection studies. Thus, all 349 
cyclized C4,C5-diol mesylate derivatives 58–63 were first subjected to reductive olefination 350 
by SmI2 at –20 °C to afford the fully-fledged epoxydienediynes 64–69 (Table 1).

38,56,57 
After 351 

HRMS data collection, these were immediately subjected to the established global 352 
deptrotection conditions, namely, by brief exposure with TBAF/o-nitrophenol and then 353 
exposure to HF-Et3N over differing time scales (cf. Scheme 9). Whilst the TBS-protected 354 
mesylate derivatives 59/60 conferred the greatest stabilities, these could not be transformed to 355 
1. The protected and cycloaromatized forms of 1 were, however, detected by HRMS analysis 356 
of 67 before and after treatment with cyclohexa-1,4-diene in THF (cf. Table 1). Interestingly, 357 
the more successful derivatives 61–63 all featured bis-silyl ether protection on the mycarose 358 
moiety. These derivatives all gave accurate HRMS data correlations after SmI2 olefination to 359 
67–69. We thus suspected complexation/activation issues from samarium(II/III)-salts, but 360 
additives like pyridine and 2,6-lutidine during work-up procedures (prior to filtration through 361 
Celite) did not improve the results. Ultimately, after exhaustive use of the advanced precursor 362 
50, the bis-TMS ethers 62 or 63 gave an accurate match of the HRMS data patterns for 1, 363 
albeit in relatively low percentages. A viable total synthesis route to the kedarcidin 364 
chromophore was thus identified for the first time in our laboratories. 365 
 366 
Conclusion 367 
 368 
Herein, we have disclosed our concerted efforts towards securing a total synthesis of the 369 
latest revised structure of the kedarcidin chromophore 1 (cf. Scheme 1).

33,34
 Initial 370 

glycosylation studies demonstrated the poor reactivity of late-stage aglycon acceptors like 18 371 
and 19 (cf. Schemes 2 to 4). Consequently, pre--glycosylated fragments of the epoxy-372 
iodoalkene 33 and alkyne-orthester 44 were prepared on gram scales by reworking previously 373 
developed chemistry (cf. Schemes 5 to 8).

34–38
 These fragments were then assembled after 374 

optimization of Sonogashira coupling,
58

 Shiina macrolactonization,
55

 and mixed-anhydride 375 
amidation protocols.

45
 These efforts eventually furnished the ansa-macrolide 50 as a storable 376 

substrate that is fully-adorned with all the components of the kedarcidin chromophore (cf. 377 
Scheme 10). 378 
 379 
During latter enediyne cyclisation studies, our protecting group strategy was assessed for its 380 
potential to succeed at the last step of the synthesis. This highlighted the need for either 381 
mono-TES or bis-TMS ether protection of the 2-deoxysugar moieties (cf. Scheme 9). The 382 
alkyne-aldehyde cyclization precursors 54/55 were thus prepared in appropriately protected 383 
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forms (cf. Scheme 11). The subsequent development of a streamlined cyclisation-384 
derivatisation-deprotection sequence to the fully-fledged, nine-membered enediyne proved to 385 
be extraordinarily challenging on the bench (cf. Scheme 12). After exhaustive trials and 386 
tribulations, the bis-OTMS ether 55 (freshly prepared from 50) was first cyclized to 56/57 387 
under Ce(III)-amide mediation, then derivatized as its C4-O-trifluorobenzoate (TfBz) ester 62 388 
or 63, deoxygenated by SmI2 to its olefin 68, and finally deprotected under buffered fluoride 389 
conditions to afford the kedarcidin chromophore (1), as inferred by HRMS analysis (cf. Table 390 
1). 391 
 392 
To close this paper, we note that the early introduction of 2-deoxy--pyranosides as elaborate 393 
THP protecting groups offered a convergent route to 1. Accordingly, a viable total synthesis 394 
strategy was founded in only 17-steps via the equally convergent synthesis of suitably 395 
protected L--mycaroside (33) and L--kedarosaminide (44) fragments. This result is 396 
meaningful for a target of this complexity and fragility, and was achieved in spite of the 397 
additional challenges imposed by free hydroxyl/amino-groups and extra bulky/labile-398 
functionality. At the root of our tactical and evolutionary pursuit of this formidable natural 399 
product were the development of several powerful, yet chemoselective methods. Over 20-400 
years since kedarcidin was isolated and first characterized,

24–30
 several new synthetic organic 401 

methods may now be highlighted, namely: Myers’ anionic transannular cyclization,
33

 402 
stereoselective epoxyalkyne formation,

34
 atropselective Pd/Cu-Sonogashira coupling,

36–38
 2-403 

deoxy--glycosylation,
40,41

 CeX3-mediated enediyne cyclisation,
14

 and SmI2-based reductive 404 
olefination.

56,57
 Further application of some of these key methods to the synthesis of the 405 

putative biomimetic enediyne-precursors of the fijiolides will be reported in due course.
21

 406 
 407 
Experimental Section: see SI 408 
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