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Abstract

In this thesis, we model theoretically spectra measured for bilayer graphene 

obtained using the angle-resolved photoemission spectroscopy, magneto-optical 

absorption spectroscopy and electronic Raman spectroscopy The theories are 

based on the tight-binding description of the n  bands in the material. In par­

ticular, we concentrate on the comparison of the four-band model and its ef­

fective low-energy approximation neglecting the split high-energy bands, in 

the description of specific spectra. We demonstrate that both for monolayer 

and bilayer graphene, the observed anisotropy of angle-resolved photoelectron 

spectroscopy spectra reflects the electronic chirality in the system. However, for 

bilayer graphene, the influence of the nonchiral dimer states not captured within 

the effective approximation is significant and should not be neglected. We also 

show that the anisotropy of the constant-energy maps may be used to extract in­

formation about the magnitude and sign of interlayer coupling parameters and 

about symmetry breaking inflicted on a bilayer by the underlying substrate. We 

then determine selection rules and optical strengths of the inter-Landau-level 

excitations among any of the n  bands and including the physically most relevant 

symmetry-breaking parameters. We then present a self-consistent calculation 

of the interlayer asymmetry caused by an applied electric field in magnetic 

fields. We show how this asymmetry influences the Landau level spectrum in 

bilayer graphene and the observable inter-Landau level transitions when they 

are studied as a function of high magnetic field at fixed filling factor as measured 

experimentally. We also analyse the magneto-optical spectra of bilayer flakes 

in the photon-energy range corresponding to transitions between degenerate 

and split bands of bilayers. Finally, we investigate the contribution of the low- 

energy electronic excitations toward the Raman spectrum of bilayer graphene 

for the incoming photon energy Q »  leV. Using the four-band model, we de­
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rive an effective scattering amplitude that can be incorporated into the two-band 

approximation and show that this amplitude is different from the contact inter­

action amplitude obtained within the two-band model alone. We then calculate 

the spectral density of the inelastic light scattering accompanied by the excita­

tion of electron-hole pairs in bilayer graphene. In the absence of a magnetic field 

this contribution is constant and in doped structures has a threshold at twice the 

Fermi energy. In an external magnetic field, the dominant Raman-active modes 

are the n- —»n+ inter-Landau-level transitions with crossed polarization of in/out 

photons. We estimate the quantum efficiency of a single n_ —» n+ transition in 

the magnetic field of 10 T as 7„__«+ ~ 1012.
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CHAPTER 1. INTRODUCTION

Chapter

Introduction

1.1 Graphene on paper and in the lab

With many models in physics, it is much easier to conceive a Gedankenex- 

periment and analyse it on paper, rather than prepare a real-life experiment. It 

is definitely the case when imagining a single plane of carbon atoms arranged in 

a honeycomb (hexagonal) pattern. As a conceptual building block of graphite 

[1], this model has been used by theorists to explain this material's physical and 

chemical properties for more than sixty years [2-4]. It resurfaced now and again, 

especially with the discovery of fullerenes [5] and tremendous interest following 

the rediscovery of carbon nanotubes [6, 7], both of which can be thought of as 

constructed from a layer of tightly arranged benzene rings. Somewhere along 

the way, the model got a name - graphene, signalling the presence of the planar 

sp2 bonds between carbon atoms and emphasizing its importance in connection 

to graphite.

In the end, bulk graphite that was the reason for the Gedankenexperiment, 

had the main role in the real-life one. In 2004, Andre Geim's group at the Uni­

versity of Manchester, experimenting at the time with mechanical exfolation 

of layers from layered materials, isolated few-layer graphene films, including 

a single layer, from thin samples of highly-oriented pyrolytic graphite [8, 9], 

Sheets of carbon, one atom thick, have been shown to be stable under ambient
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CHAPTER 1. INTRODUCTION

environment and were successfully processed into devices allowing for the in­

vestigation of their transport properties. These were found promising for both 

fundamental and application-oriented research: they confirmed theoretically 

predicted gapless linear dispersion of the quasiparticles in the vicinity of the 

Fermi energy, electron mobility ~ 104^ ,  the mean free path of the order of 

tenths of micrometer, huge sustainable currents > lO8^  arid unusual sequence 

of plateaus in the Quantum Hall Effect associated with an additional electronic 

degree of freedom due to the symmetry of the crystal lattice [8, 10,11]. Those 

first experiments attracted, therefore, a huge interest in the condensed matter 

community. In six years, their seminal Science paper, [8], has been cited more 

than 2800 times1. The arXiv.org on-line archive alone lists over two thousand pa­

pers on widely defined graphene systems (monolayer, bilayer, few-layer films, 

nanoribbons, etc.) submitted since 2007. Multiple general [12-16] and more 

detailed reviews on synthesis [17,18], optical [19], Raman [20, 21] and photoe­

mission [22] studies and electronic structure and transport [23-28] are already 

avialable in the literature.

Other than mechanical exfoliation, ways to obtain graphene were explored 

and advances in the epitaxial growth of carbon crystallites and layers on SiC and 

metallic substrates [29-31] were taken advantage of. Note that although in some 

of those cases prior to 2004 single layers of carbon atoms have been grown on a 

substrate, their properties (for example the electronic dispersion at the K point) 

were dissimilar to monolayer graphene. Currently, after significant develop­

ment, graphene-like layers can also be grown epitaxially on multiple substrates 

like SiC [32-34], Ni [35-38], Ir [39], Ru [40-42] or Cu [43]. On some of these, 

only monolayer or effectively monolayer-like decoupled layers can be grown 

while others allow for growth of few-layer graphene films in various stackings. 

The technology is already advanced enough to produce coverage areas of the

1 according to the Thomson's ISI Web of Knowledge data
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CHAPTER 1. INTRODUCTION

order of square inch [43-48]. Reliable and detailed tools for characterisation of 

all graphene-like systems are necessary to evaluate their quality quickly and 

efficiently. At the same time, extensive knowledge of and about the materials 

is needed to design future devices and engineer new graphene-based systems. 

This thesis describes efforts undertaken to define a minimal theoretical model, 

allowing for such prediction, for one of the many materials from the graphene 

family, that is bilayer graphene.

1.2 Two layers: double the fun?

Bilayer graphene was first obtained with the scotch-tape technique, origi­

nally used to obtain monolayer graphene. A very 'messy' method, it yields at 

the final stage all kinds of graphene-based thin films with varying thicknesses. 

Some of them consist of two coupled layers of graphene. The most energetically 

favourable relative arrangement of those layers is the AB  (or Bernal) stacking 

[49], also found in crystalline graphite [1, 50]. McCann and Fal'ko showed 

that the low-energy electronic spectrum of such a system, relevant for transport 

experiments, is qualitatively different from the monolayer [51]. Most signifi­

cantly, the interlayer coupling changes the dispersion from linear to quadratic. 

The quasiparticles now exhibit Berry phase of 2n  leading to, for example, weak 

localisation instead of weak anti-localisation as in the monolayer [52,53]. How­

ever, at least in the neutral system, the spectrum is still gapless. This last fact 

leads to the presence of a sixteenfold (including spin) degenerate Landau level 

positioned at zero energy (Fermi energy in the neutral structure) and yet another 

unusual sequencing of the plateaus in the Quantum Hall Effect as the plateau 

at oxy = 0 is missing [54]. McCann and Fal'ko were also the first to point out 

the possibility of breaking the layer symmetry by applying an external electric 

field. This gap was first directly observed with the help of the angle-resolved 

photoemission by Ohta et al. [55]. Thus, bilayer graphene became technologi­
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CHAPTER 1. INTRODUCTION

cally relevant as one of the several options of introducing a gap in the electronic 

spectrum of graphene-based systems. On a more basic level, bilayer graphene 

introduced to solid state physics the unique notion of massive chiral fermions.

1.3 Thesis outline

As aforementioned, bilayer graphene, despite its name and origins, can def­

initely be considered a material on its own rights, rather than a poor cousin of 

(monolayer) graphene. As the experimental effort in its characterisation grows 

and first devices are built, it is desirable to construct a theoretical model, simple 

yet universal, capturing essential physics in wide scope of laboratory relevant 

situations. In this thesis, we probe the limits and capabilities of the tight-binding 

description of n  electrons in bilayer graphene in description of spectra obtained 

by using various spectroscopic techniques: angle-resolved photoemission spec­

troscopy, magneto-optical spectroscopy and electronic Raman spectroscopy. In 

particular, we concentrate on the comparison of the so called four-band and 

two-band models and the importance of the symmetry breaking on-site ener­

gies.

In this thesis, we model theoretically spectra of bilayer graphene as measured 

with various spectroscopic techniques: angle-resolved photoemission spec­

troscopy (ARPES), magneto-optical spectroscopy and electronic Raman spec­

troscopy (ERS). We search for the minimal model based on the tight-binding 

approach, which captures the essential physics in all of those cases. We there­

fore start with the introduction of the tight-binding model of n  electrons for 

graphene systems, presented in Chapter 2. We discuss in detail, the four-band 

model describing the n  bands within the whole Brillouin zone and the linear 

approximation valid only in the vicinity of its comers and define the symmetry- 

breaking parameters contained within the model. We also describe the effective 

two-band, low-energy approximation for the band structure of bilayer graphene,

4



CHAPTER 1. INTRODUCTION

which is the start point for a significant part of the theoretical models postulated 

in the literature to describe the physics of bilayer graphene.

The choice of the spectroscopic methods under consideration has been mainly 

dictated by the developments in the experimental characterisation of graphene 

materials. The angle-resolved studies have been performed extensively on epi­

taxially grown monolayer graphene (e.g., [34, 35, 39, 56, 57]). Photoemission is 

one of the methods used, for example, to confirm the linearity and lack/presence 

of gaps in the electronic spectrum of graphene-like materials. The ARPES spec­

tra of bilayer graphene have been used to demonstrate directly the presence 

of the gap in the electronic spectrum as the interlayer asymmetry has been in­

troduced [55]. Our model [58], presented in Chapter 3, examines the angular 

distribution of the constant-energy maps of the ARPES intensity for monolayer 

and bilayer graphene. We show how these are related to the chirality of electrons 

in those systems. Afterwards, we show that for bilayer graphene, the anisotropy 

of the constant-energy maps may be used to extract information about the mag­

nitude and sign of interlayer coupling parameters and about symmetry breaking 

inflicted on a bilayer by the underlying substrate.

The second spectroscopic method considered in this thesis, magneto-optical 

absorption spectroscopy, is one of the experimental tools employed to examine 

the electronic states in graphene systems in external magnetic fields [59-68]. In 

Chapter 4, we investigate some of the aspects of magneto-optical spectra from 

the theoretical point of view. We start with the description of the Landau level 

structure in bilayer graphene. We complete the thoery based on the two-band 

model [69,70] and give selection rules as well as the optical strengths of the inter- 

Landau-level excitations taking into account all four n  bands and the physically 

most relevant asymmetries [71]. We then look closer at the experimental setup 

used to probe the Landau level structure in bilayer graphene and discuss the 

importance of the external gates used to vary the carrier density in the bilayer

5



CHAPTER 1. INTRODUCTION

during the experiment. Building on the theory proposed for the case of no 

magnetic field [72], we then present a self-consistent calculation of the electric- 

field-induced interlayer asymmetry in magnetic fields and the resulting Landau 

level structure. We also analyse the magneto-optical spectra of bilayer flakes in 

the photon-energy range corresponding to transitions between degenerate and 

split bands of bilayers [73].

Finally, in Chapter 5, we turn towards Raman spectroscopy. Routinely used 

to characterise carbon materials, in graphene systems in particular, it provides 

information on, for example, the number of layers, domain sizes, doping levels, 

thermal conductivity and the structure of edges [20, 21]. Here, we concen­

trate on relatively unexplored in graphene materials, purely electronic in origin, 

processes leading to inelastic scattering of light from the sample. The exper­

imental approach focusing on such processes is often called electron Raman 

scattering/spectroscopy (ERS) [74], We study the contribution of the low-energy 

electronic excitations toward the Raman spectrum of bilayer graphene for the 

incoming photon energy Q »  leV both with and without an external mag­

netic field [75]. Starting with the four-band tight-binding model, we derive an 

effective scattering amplitude that can be incorporated into the two-band ap­

proximation. We show that this effective scattering amplitude is different from 

the contact interaction amplitude obtained within the two-band model alone. 

We then calculate the spectral density of the inelastic light scattering accompa­

nied by the excitation of electron-hole pairs in bilayer graphene. In the absence 

of a magnetic field, due to the parabolic dispersion of the low-energy bands 

in a bilayer crystal, this contribution is constant and in doped structures has a 

threshold at twice the Fermi energy. In an external magnetic field, the dominant 

Raman-active modes are the n- —»n+ inter-Landau-level transitions with crossed 

polarization of in/out photons. We estimate the quantum efficiency of a single 

n_ —»n+ transition in the magnetic field of 10 T as In_~m+ ~ 10-12, which may be

6



CHAPTER 1. INTRODUCTION

experimentally observable.

We summarise the work presented in this thesis in Chapter 6. Based on 

Chapters 3, 4 and 5, we discuss the applicability of the two- and four-band 

models with respect to the electronic structure of bilayer graphene around the 

Fermi energy and prediction of experimental measurements.

7



CHAPTER 2. THE TB APPROACH AN D  THE EL. STRUCT.

Chapter __________________________________________

The tight-binding approach and the resulting 

electronic structure

In this chapter, we describe the crystal and reciprocal lattices of bilayer 

graphene. We also discuss briefly the symmetry of the crystal lattice. We then 

introduce the tight-binding model for Ti-electrons in bilayer graphene. We start 

with a general formulation valid for all points in the Brillouin zone and the 

resulting electronic structure. Next, we concentrate on the linear approximation 

of that model around the corners of the Brillouin zone. This tight-binding 

approach is a variation of the tight-binding model for monolayer graphene as 

developed historically for applications in the physics of graphite (then so called 

Slonczewski-Weiss-McClure model [2-4, 76]). For an introduction to the tight- 

binding approach in carbon sp2 materials, see [77] or [78]. In the following 

section, we introduce symmetry-breaking parameters which will later turn out 

to be very important when interpreting results of spectroscopic measurements. 

We conclude the chapter with the derivation of the effective low-energy, two- 

band Hamiltonian for bilayer graphene.

2.1 The crystal and reciprocal lattices

Bilayer graphene consists of two coupled graphene layers of carbon atoms 

(graphene monolayers) arranged in Bernal (AB) stacking [1, 50]. The unit cell

2



CHAPTER 2. THE TB APPROACH AND  THE EL. STRUCT

contains four inequivalent carbon sites A l ,  B \, A2, and B2, where A  and B denote 

two triangular sublattices in the same layer while 1 and 2 distinguish between 

the bottom and top layer, respectively. The real lattice of bilayer graphene is 

schematically shown in Fig. 2.1(a). The honeycomb lattice of the bottom and top 

layers has been drawn with red and black solid lines, respectively. The lattice 

constant a, that is the A—A  (or B-B) distance, marked in the figure with grey, equals 

2.46A. This lattice constant derives from the benzene-ring structure and is the 

same in bilayer graphene as in monolayer graphene or graphite. The interlayer 

distance, Cq,  is much greater than the nearest neighbour carbon-carbon distance 

-̂ =A. X-ray reflectivity experiments and first-principles calculations performed 

for bilayer graphene epitaxialy grown on SiC [79], as well as first-principles 

calculations for bilayer in vacuum [80], lead to c0 « 3.35A, as in graphite. We 

choose vectors a\ and a 2 as our in-plane primitive lattice vectors and a rhombic 

unit cell as shown in Fig. 2.1(a) with a dashed blue line. Also shown in the figure 

are vectors d \, d2 and d3, which can be used to express the distance between 

neighbouring in-plane carbon atoms. Eventually, we use vector Co = (0,0, c0) to 

describe the thickness of the bilayer.

The corresponding reciprocal lattice is schematically presented in Fig. 2.1(b). 

It is two-dimensional, because bilayer graphene, although strictly speaking 

three-dimensional due to the interlayer spacing, is not periodic in the z direc­

tion. The reciprocal unit vectors b\ and b2, related to a\ and a 2 via the condition 

bi • a,j = Indij, are shown in darker blue. The Brillouin zone is a hexagon, marked 

in the figure with a dashed line. We denote two inequivalent corners of the Bril-

Table 2.1: Components of the vectors in the real and reciprocal lattices shown 
in Fig. 1 and used throughout the text.

vector component ai a 2 di d2 d3 6l b2 K + K -

x  or kx a a a 2 n 2n 471 4tt
2 2 U 2 2 a a 3 a 3 a

y o x k y a V3 
2

a V3 
2

a
V3

a
2V3

a
2V3

2n
« V3

In 
a V3 0 0

9



CHAPTER 2. THE TB APPROACH AND  THE EL. STRUCT

A1/A
y

X

Figure 2.1: (a) Schematic drawing of the bilayer graphene crystal lattice. The 
bottom (top) layer is depicted with red (black) solid lines. The real primitive 
lattice vectors are a\ and a2 and the unit cell is shown with dashed blue line. 
Grey line marks the lattice constant a. Vectors d\, d2, and d3, are used to express 
the relative position of neighbouring carbon atoms, (b) The reciprocal lattice 
of bilayer graphene with the Brillouin zone shown with the dashed blue line 
and its two inequivalent corners (valleys) K+ and K_. In contrast, the dotted 
blue line shows an alternative, rhombic unit cell in reciprocal space used briefly 
in Chapter 3. The orange dashed line shows the high-symmetry directions for 
which the band structure in Fig 2.2 is shown.

louin zone (later also called valleys) as K+ [at the position K+ = {^n/Sa, 0)] and 

K_ [at the position K _ = (—An/3a, 0)] and reserve index £ = ± to distinguish 

between them in further discussions.

The real primitive lattice vectors a\ and a2/ reciprocal primitive vectors b\ and 

b2/ nearest neighbour vectors d;, as well as the coordinates of the valley are 

repeatedly used throughout the remaining parts of the thesis. For convenience, 

all aforementioned vectors and their components in their respective space have 

been summarised in Table 2.1.

10



CHAPTER 2. THE TB APPROACH AN D  THE EL. STRUCT

2.2 The four-band tight-binding model for n elec­

trons

2.2.1 Full momentum dependence

Let us consider an infinite sheet of bilayer graphene. For the origin of the 

coordinate system, we choose the centre of a unit cell (position of the B 1 -A 2  

dimer, at the point halfway between the layers) and denote by r  and Rq the 

position vector and a vector pointing to the centre of another unit cell (one of N  

in total), respectively. We reserve symbol R i to represent a vector pointing from 

the centre of a unit cell to the atomic site i (i then stands for A l ,  B l, A2  or B2) in 

this unit cell. We assume periodic boundary conditions and construct a basis of 

functions (pkj(r ) built up from the n-orbitals <p(r) of carbon atoms in site i,

(pk,Ai{r) = - j=  e,fe‘(i2o"dl~^V (r’ -  Ro + di + y ) ,
’  Ro

<pk,Bi{r) = 2 =  y V fc-(,W y ( r  -  fio + y ) ,

<pk,A2{r) = 2= T  '<p(r - Ro -  f),

<pk,82(r) = 2 =  Y j -  Ho -  dx -  | ),
’  Ro

where A; is a two-dimensional electron wave vector.

The electron wave function T/y(r), corresponding to the energy eigenvalue 

€j(k) of an electron with wave vector k , is a linear combination of functions in 

Eq. (2.1),

%-(r) = £ Q ,< M r ) .  (2-2)
i

It is easy to see that ^ ( r )  satisfies Bloch's theorem, as we have

Wj(r + mai + na2) = Cij<pk,i(r  + max + na2) = eik<ma'+naH ',■(»•). (2.3)

11



CHAPTER 2. THE TB APPROACH AN D  THE EL. STRUCT

By using the variational principle, we arrive with the matrix equation for the 

column vector ipj of the coefficients Qy,

We assume that the interaction between two carbon atoms depends only on 

their distance. Also, for a carbon atom on site i, we take into account only its 

interaction with the closest carbon atoms on sites j .  We make an exception for 

the interaction of an atom on site i with another on site i, where we include the 

influence of next-nearest neighbour of the same kind. The phase factor resulting 

from a summation over nearest neighbours can, for any carbon atom, be written 

in terms of the vectors d\, d 2 and d3. We define the geometrical factor f ( k ) ,

(2.4)

To explicitly write down the form of the Hamiltonian operator H  and the 

overlap operator S ,  we choose the order of the basis functions from Eq. (2.1) to

be

<pk(r ) =  (<pklA l ( r ) , ( p k /B2(r ) ' (P k , A 2 ( r ) , ( p k M r ) ) T-

(2.5)
1= 1

12



CHAPTER 2. THE TB APPROACH AN D  THE EL. STRUCT

As a result, the full matrix form of the operators H  and S  is :

A =

s=

€ai -  y n\f(k)\2 - y s W k ) y*f{k) - y o f ( k )

- y s f i k ) eB2-yn\ f (k) \2 -yof*(k) y Af ' {k)

y*f*(k) - yo f ( k )  eA2- y n\f{k)\2
/

yi

K - y o f ( k ) y i f i k ) yi €B1 -  y n\f(k)\2 ;

1 0 0 s0f ( k )  '

0 1 s o f i k )  0

0 Sof(k) 1 Si

K s o f i k )  0 S! 1 ;

(2.6a)

(2.6b)

In the above, we introduced several parameters into the model as a descrip­

tion of the strength of interactions between carbon atoms. In this, we mostly 

follow the Slonczewski-Weiss-McClure model developed for bulk graphite [2-  

4, 76] (for a review see [50]). The on-site energies e/, couplings yj  and overlap

1 We neglect in Eq. (2.6a) a factor of 3y n appearing on the diagonal as it only leads to a shift
of zero on the energy scale.

13
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(2.7b)

parameters s/ used in Eq. (2.6) are given by:

€i = {<p(r - R o -  RjJ\H\<p(r -  R 0 -  R ,■)) (2.7a)

70 = ~(<p(r - R o ~  R Ai)\H\cp(r -  R 0 -  Rai ~ d * ) >  ee  

=  ~{(p(r -  R 0 -  R A2)\H\(p(r -  R 0 -  R A2 -  d ,- )>

71 = {p(r -  Ro -  R Bi)\H\(p(r - R 0-  R A2)> (2.7c)

y 3 = -{(p(r -  Ro -  R Aij\H\cp(r - R 0-  R A1 + dk -  co)> (2.7d)

y 4 = (cp(r -  Ro -  R Aij\H\cp(r -  R q-  R a1 -  di -  c0)> =

= <<p(r - R q-  R m)\H\(p(r -  R 0 -  R B1 - d i ~  c0)> 

y n = {(p(r -  R 0 -  Ri)\H\(p(r -  Ro -  R t + d3 -  d2)> (2.7f)

s0 = <<p(r -  R 0-  R Ai)\(p(r -  Ro -  R A1 -  d,-)> =

= {(p(r - R 0-  R A2)\(p(r -  R 0 -  R A2 -  df)>

Si = (cp(r -  R q-  R B1)\cp(r -  R 0 -  R A2j) (2.7h)

(2.7e)

(2.7g)

The diagonal terms e, denote the on-site energy of the electron at the carbon 

atom in site i. In the first approximation, they are equal to the energy of an 

electron in the 2pz orbital of a carbon atom. This energy is modified as carbon 

atoms bond together to form the lattice. However, in an ideal and charge-neutral 

bilayer this on-site energy is approximately the same for each site in the lattice. 

In this case, we can take it to be zero and define our energy scale relatively to 

this point. More complicated situations in which the symmetry between the 

atomic sites has been broken are discussed in Sec. 2.2.3.

The parameters yj  describe the strength of the coupling between a specific 

pair of carbon atoms. The constant y 0 denotes the coupling between the nearest 

neighbours (A1<-*B1 and A2  <-> B2). The parameter y t describes the direct in­

terlayer coupling A2  <-» Bl. The y 3 coupling represents the interlayer interaction 

between the nearest A 1 and B2 atoms, whereas y4 characterizes the interlayer

14
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Figure 2.2: The band structure of bilayer graphene resulting from eq. (2.4) with 
the Hamiltonian and overlap matrices H  and S  as in eq. (2.6) presented for high- 
symmetry directions in the Brillouin zone as shown in Fig 2.1(b). The values 
of the parameters used are: yo = 3.1eV, y\ -  0.4eV, 7 3  = 0.15eV, 7 4  = O.leV, 
y n = 0.05eV, So = 0 .1 , Si = -0.05, e,- = 0  for all i, and a = 2.46A. The range of 
energies important in experimental setups modelled theoretically in this work 
is shown on red background.

coupling between the nearest A 1 and A2, as well as B1 and B2 atoms. The last 

coupling, y n/ describes the interaction of the in-plane next-nearest neighbours.

The overlap integrals s/ take into account the fact that our n orbitals do not 

span an orthogonal basis set. We only included here the overlap s0 between 

two nearest neighbour atoms and the overlap si between the A2 and B1 sites 

where atoms are directly above/below each other. Due to their small value, in 

most of the situations under consideration in this thesis, even these two overlap 

integrals are neglected.

The electronic band structure resulting from eq. (2.4) with the Hamiltonian 

and overlap matrices H  and S' as in eq. (2.6) is shown in Fig. 2.2. We see two 

conduction and two valence bands. The lower conduction band and the upper 

valence band touch exactly at the K point. The position of this touching point 

at the energy scale denotes half-filling of the bands and is called the neutrality
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point. It is usually treated as the zero of the energy scale. In the neutral 

structure with the valence bands completely filled, the Fermi surface consists 

only of points. Any shift of the chemical potential results in the creation of 

separate Fermi lines around each of the K points. Due to this behaviour of the 

Fermi surface, the K points are often refered to as valleys. We point out that 

for most experiments and potential applications, only the part of the dispersion 

relatively close to the neutrality point (~ leV) is important and interesting. 

Indeed, a proper description of this part of the band structure forms the basis 

for the understanding and theoretical modelling of spectroscopic experiments 

presented in this thesis. We will, therefore, investigate it in more detail in the 

following sections.

2.2.2 Approximation for hopping elements

We now want to look closer at the electronic dispersion for energies relevant 

to most experiments, that is, the energies of up to ~ leV from the neutrality 

point. This range of energies is marked with red background in Fig. 2.2. For 

such energy, the relevant regions in momentum space are the vicinities of the six 

corners of the Brillouin zone. To describe electronic dispersion around a local 

minima at the K points, we shift the coordinate system in reciprocal (momentum) 

space from the T point to the point. We write the electron wave vector as 

k  = K i  + f , where the electronic momentum p  is now measured from the centre 

of the valley K%. The geometrical factor f ( k ) from eq. (2.5), expanded up to the 

second order in p, reads

f ( k ) * (iP* -  iPy) + | j 2 (P* + 'P u t ■ <2'8>

We introduce some new parameters, namely velocities v = ^ |p ,  v3 = 

and v4 = - ^ ±, constant rj = as well as operators, n  = px + ipy and
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=  V x  — i-Py- We also neglect at this stage the overlap integrals s0 and Si, and 

hence obtain only a unit matrix on the right hand side of Eq. (2.4). Our basis 

now consists of 8 functions <pPf£,i(r) (4 for each valley). However, for the cases 

considered in this thesis the valleys can be regarded as independent (we do not 

consider any valley-connecting processes) and it is usually enough to explicitly 

write down only the electronic Hamiltonian H % for one valley K c ,

/
0 V 3 7 t V i 7 t f V 7 Tf (  62 2 p  2

y  o r
f ( V )2 vA

—  7 T
V

\
f t 2

V 3 7T+ 0 V 7 T V i T T

- n

v 3 ~ 2
— 7r
V

67 n 2 
y o  "

( 7f + ) 2
E ± { j t f )2

V i  7 T V 7 t f 0 f ( V ) 2 7r 2
6 y » v  2 
y o  "

0

V 7 T
\

V i  7Tf
t y i

0
/ k ( * +)2 ~ 7f 2

V
0 ^ i p 2

y o  r  ;

In the Hamiltonian above, we have for now neglected the on site energies et-, 

which are discussed in detail in Sec. 2.2.3. The order of the basis functions is2 

((j)+tAi, <fi+,B 2, <p+,Air <P+,bi)t  in the K +  and ((/>_, B2, </>-, ai, §-,bi> in the K-  valley.

The same Hamiltonian can be obtained using the 'k  p ' approximation (see 

for example [81, 82] for detailed derivation). In this scheme, as a basis set we 

use functions <\>P£,i{r) constructed from <ftk,i(r )/ e<T (2.1), calculated exactly in the 

centre of the valley K  ̂and a plane wave envelope function which varies slowly 

at the distance of the order of the lattice constant a [83, 84]:

4>P,u (r ) = e*p'r<l>K(,i(r ) = ~U= e ‘̂P r X , etKt'iRo+Ri)(p(r - R o ~  H*).
’ Rq

Comparing functions <pP£,i(r) and (pKi+R/l(r)/ we can intuitively see why the 

Hamiltonians in both approximations take the same form. Both functions take 

similar values for r  ~ R 0- R i ,  whereas in other regions the n  orbital cp (r-R o -R i)  

ensures that they both quickly decay, rendering the phase factors unimportant.

The electronic band structure resulting from the Hamiltonian (2.9) is shown

2For brevity, we omit the momentum index p  and explicit dependence of the basis functions 
<fip,U on r.
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a)

K_ valley

Figure 2.3: The band structure of bilayer graphene in the vicinity of both a) 
K_ and b) K+ valleys, obtained within the linear approximation, eq. (2.9). The 
values of the parameters used are: yo = 3.1eV, y\ -  0.4eV, y 3 = 0.2eV, y4 = O.leV, 
y n = O.leV, a = 2.46A. No on site asymmetries are included (that is, e* = 0 for all 
i). For both valleys, the low-energy and high-energy bands are shown in yellow 
and red, respectively.

for both valleys in Fig. 2.3 for the energy range 3.5yi away from the neutrality 

point. On this scale, all bands look approximately parabolic very close to the 

center of the valley and linear further away. The former is not exactly true for 

the bands shown in yellow (later referred to as the low-energy bands), as shown 

in Sec. 2.3. The bands marked in red (in what follows called the high-energy 

or split bands) are shifted away from the neutrality point by approximately 

the interlayer coupling, y \  ~ 0.4eV [55, 85-921 in each direction. The velocity 

v ~ 106m/s [87-89,92] determines the slope of the linear parts of the bands. The 

isoenergetic lines create circles, which in the case of the low-energy bands are 

trigonally warped. This warping is the effect of the velocity v3 ~ Q.lv [89, 92] 

as well as terms quadratic in the momentum p. The remaining velocity, u4, 

breaks the electron-hole symmetry. It renormalizes somewhat the slopes of 

the linear parts and its effect is opposite in the conduction and valence bands. 

The next-nearest neighbour coupling y n also breaks the electron-hole symmetry. 

The parameters v, yi and v3 are the most important in the description of the 

electronic dispersion around the valleys. At low energies, the deviation from 

the electron-hole symmetric situation is negligible for most cases. Also, it is
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difficult to experimentally separate the contributions of y±, y n or even so to the 

electron-hole asymmetry.

2.2.3 Symmetry breaking asymmetries in the on-site energies

Up to this point, we considered the kinetic energies of electrons on different 

atomic sites (the terms e* in Eq. (2.7a)) to be equal. In other words, all the carbon 

atoms in the lattice were chemically equivalent. However, that is obviously not 

the case as the environment of the dimer atoms, B1 and A2, is definitely different 

than the surroundings of the atoms A 1 and B2. In general, three parameters are 

needed to account for differences between our four atomic sites. The (not unique) 

definitions we use here are:

1
Aab = 2  + Caz) ~ (Tbi + £52)]; (2.10a)

A = 2 [(̂ 41 + £52) _ ipBi + €ai)]; (2.10b)
1

u = i^ T a i + £bi) -  (€A2 + 632)]} (2.10c)

1 1
£ai = 2 ^U + ^  + Aab); €b\ -  2 û ~ ^  ~ ^ab)} (2.10d)

1 1
€a2 = 2 ^~u — A + Aab)/ &B2 = -^{~u + ^  ~ ̂ ab)) (2.10e)

Then, Aab describes the difference between on-site energies of A  and B sublattice 

sites on each layer. We call it intralayer asymmetry. It may be influenced, espe­

cially in the bottom layer, by the underlying substrate. The next parameter, A, 

accounts for an energy difference between dimer and non-dimer sites. Finally, u 

characterizes the interlayer asymmetry between the two layers. This asymmetry 

can be significantly changed by doping the sample [55] or even continously var­

ied with external gates [93]. This effect is discussed in more depth in Sec. 4.3.1. 

To show the influence of each of the asymmetries on the band structure, we add 

them separately to the tight-binding model and plot in Fig. 2.4 cuts through
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a) A = 0.2eV c) u = 0.2eV

Figure 2.4: Cuts through the electronic dispersion around the K+ valley along 
the px axis in the presence of a) A = 0.2eV, b) Aab = 0.2eV, c) u = O.leV. For 
illustrative purposes, we use large values of asymmetries. In reality, only the 
interlayer asymmetry u can be of the order of lOOmeV [94, 95]. The values of 
other parameters used are: yo = 3eV, yi = 0.35eV, y3 = 0.15eV, y4, y„ = OeV, 
a = 2.46A.

the electronic dispersion around the K+ point along the px axis. The intralayer 

asymmetry does not open any gaps in the electronic spectrum but breaks the 

electron-hole symmetry. The dimer/non-dimer asymmetry Aab opens a gap and 

preserves the electron-hole symmetry. The interlayer asymmetry u preserves 

the electron-hole symmetry and also leads to the opening of a gap in the spec­

trum. However, we point out the characteristic 'Mexican-hat-like' features in 

the shape of the low-energy bands in the vicinity of the gap.

2.3 The effective two-band model

In this section, we derive an effective low-energy Hamiltonian describing 

the two degenerate bands in the close vicinity of the valley K%. This analysis 

was first performed by McCann and Fal'ko [51] and proved extremely useful 

in describing the low-energy properties of bilayer graphene (see for example 

[51, 52, 54, 69, 96, 97]). For a detailed discussion of this effective two-band 

approximation, see [98, 99]. For simplicity, we take as the starting point the
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eigenproblem for the Hamiltonian in linear approximation, eq. (2.9), containing 

only the most important parameters v, y \  and v3, and terms up to linear in the 

momentum p. We also introduce the Pauli matrices ax, oy and oz, and write the 

eigenproblem for the Hamiltonian as

/ \
£,V3((Jxpx -0yPy) ZV((T-P)

/ \ 
'pi = €

( \ 
4>i

 ̂ &(cr-p) oxy\ , ^ , , ^  ,
(2 .11)

where fa  and ip2 denote two-component vectors which form together the four- 

component electronic eigenstate \pj from (2.4). Let us use the second row of 

(2.11) to express in terms of fa  and e and substitute it into the first row to 

obtain,

[oxPx ~ OyVy) + v1 ia ’P) ie ~ ^ L i]-1 {cr-p) fa  = efa.

For low energies, e y i ,  we get [e -  crxyi]-1 ~ and

 [ 0 X ( p i  -  p f j  +  2OyPxPy \  +  ^V3 ( 0 xp x ~  OyPy)  f a  =  H ^ f a  =  6 f a .  (2.12)
y  i

The above effective Hamiltonian describes the electronic dispersion for energies 

close to the neutrality point while neglecting the split bands. The basis of H eff is 

(<f>+,Ai/ (P+,bi)t  at the K+ and (<p-B2, <P-,ai)T at ̂ e  K- valley. The resulting electronic 

dispersion,

=  ± p cos 3(p (2.13)
j o  r  i

where p2 = pi + p2y and arctan (p = is shown in Fig. 2.5(a). The trigonally 

warped isoenergetic line undergoes a splitting into four pockets at the energy 

£ l t  = ± ? ' ( t )2 ~ l meV (a so called Lifshitz transition [100]), see Fig. 2.5(b). 

However, characteristic values for this transition energy e n  and momentum 

Pur ~ are below the resolution of any of spectroscopies considered in the 

following chapters. Hence, the only importance of v3 for our considerations is
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■lOmeV,
■lOmeV
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Figure 2.5: (a) The electronic dispersion of bilayer graphene at very low energies 
e ~ ImeV around the valley K+. The blue contour represents the isoenergetic
line at the Lifshitz transition energy eLT = ± (^ )  • (b) The isoenergetic lines
around the valley K+ for energies Cli/2 (green solid line), £lt (blue solid line) 
and 2eLT (red solid line). Also shown are the isoenergetic line at the energy 
lOmeV from the neutrality point (black solid line) and its shape if the trigonal 
warping due to v3 is neglected (black dashed line), (c) The density of states 
given by equation (2.13) for Z73 = Q.lv (dashed line) and i?3 = 0 (solid line). The 
latter corresponds to a purely parabolic bottom of the band.

its role as the main source of trigonal warping for the isoenergetic lines at low 

energies. For these energies, trigonal warping does not significantly affect the 

density of states (DOS), as shown in Fig. 2.5(c), where the comparison between 

the density of states of a purely parabolic band in the case of v3 = 0 (black solid 

line) and of the electronic dispersion given by eq. (2.13) (black dashed line), is 

shown. The peak in the DOS corresponds to the Lifshitz transition. However, 

for energies e > 5meV the density of states already closely follows constant 

density of states for a parabolic band, although the isoenergetic lines may still 

be significantly noncircular (Fig. 2.5(b)).

The procedure applied above to obtain the low-energy description of elec­

trons can be easily generalised to include all other terms appearing in the four- 

band Hamiltonian in linear approximation, eq. (2.9), as well as the on-site 

asymmetries from Sec. 2.2.3. We then obtain [99]

H e ff = H q + hw + h-4 + h n + h u + h& + H^b (2.14a)
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where

2
= ~Z[ [ax (p* “  Py)+ 2fW y ] ; (2.14b)

h w = & 3 (axpx -  C yP y)  -  rp-^ [ax (p2x -  p fj  + 2aypxpy] ; (2.14c)

h 4 = 2 ^  p1; 
yoyi

(2.14d)

l -  2.fon ~ j P /

To
(2.14e)

(2.14f)

(2.14g)

L
foAB -  4 2 ° z' (2.14h)
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Chapter

Angle-Resolved Photoemission Spectroscopy

The angle-resolved photoemission spectroscopy (ARPES) is a powerful ex­

perimental tool based on the photoelectric effect, first observed by Hertz more 

than 120 years ago [101] and explained by Einstein at the beginning of the 

previous century with the help of the then novel, idea of photons, quanta of 

electromagnetic radiation [102]. In the photoelectric effect, absorption of a suf­

ficiently energetic incident photon with energy co ejects an electron with the 

initial energy ep corresponding to the m omentum p  = h k  from the sample into 

the vacuum. In ARPES, such ejected electrons (called photoelectrons) w ith kinetic 

energy ee are detected with the help of a hemispherical detectors, so that both 

their energy and momentum p e can be identified. The modulus of the latter is 

given by pe = V2meee (me is the electron mass), while its components,

(pe)x = ^ 2 m eee cos (ft sin 0; (pe)y = -\j2meee sin <ft sin 0; p£ = ^ 2 meee cos 6; (3.1)

where (ft and 6 are the azimuthal and polar angles of detection, respectively. 

Knowledge of electronic states in the sample is gained with the help of two 

conservation laws: (I) conservation of the energy in the whole process puts a 

constraint on ep/ while (II) conservation of the in-plane-momentum resulting 

from in-plane crystallic periodicity yields some information about the electron 

m omentum in the crystal, p. For bulk materials, the angular distributions of 

measured photoelectrons as a function of ep are difficult to analyse, due to the
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lack of sufficient restrain on the out-of-plane component of p. For layered or 

(quasi-)two-dimensional systems, however, as long as the incident radiation is 

monochromatic, those distributions represent direct connection to the constant- 

energy countours of the band structure of the material.

Because of its layered nature, graphite has been an object of extensive ARPES 

studies in the past [103-109]. Poor angular and energy resolutions resulted in 

little data concerning the n  bands in the vicinity of the K  points, although 

significant variation in the intensity from states on the same isoenergetic line 

has been noticed [108,109]. Much more sophisticated equipment was available 

at the moment when monolayer graphene was isolated. Hence, ARPES was the 

m ethod of choice for numerous investigations of the electronic band structure 

of two-dimensional graphene systems. It has been used to examine the epitaxial 

growth and confirm the graphene-like linear dispersion relation for electrons 

in carbon layers on SiC [33, 34], Ni [35-38], Ir [39] or Ru [42]. At the same 

time, high resolution allowed detailed examination of the deviations from this 

linearity [56,57,110, 111], which stimulated numerous theoretical considerations 

of the band renormalisation due to many-body interactions [112-117] and some 

controversy on the possibility of the substrate-induced sublattice symmetry 

breaking in the monolayer grown on SiC [57, 118-120]. ARPES has been used 

to show for the first time, the appearance of the electric-field-induced gap in 

the spectrum of bilayer graphene [55]. In the same work, the magnitude of 

the interlayer coupling yi has been extracted. It has been further employed to 

investigate the effects of molecular doping of monolayer and bilayer graphene 

[121, 122]. The ARPES studies have been then extended to tri- and fourlayer 

graphene systems [123]. Review of the photoemission studies of graphene 

systems grown on SiC can be found in [22, 26].

In this chapter, we aim to describe the angular distribution of the angle- 

resolved photoemission spectroscopy intensity patterns for bilayer graphene.
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We first introduce a simple theoretical model of the photoemission process, 

based on the idea of multiple-source interference of electronic Bloch waves. 

More detailed reviews of the theoretical background of ARPES can be found, 

for example, in [124,125]. We then use our model to obtain low-energy angular 

distributions of ARPES intensity for monolayer graphene and demonstrate that 

they are a manifestation of w hat has been recently branded as electronic chirality 

and w hat is common to all graphene-layered systems, including graphite [109, 

126]. Afterwards, we show that for bilayer graphene specifically, the anisotropy 

of the constant-energy maps may be used to extract information about the 

m agnitude and sign of interlayer coupling parameters and about symmetry 

breaking inflicted on a bilayer by the underlying substrate.

3.1 ARPES as quantum Young's experiment

We consider here the following photoemission process: an incoming photon 

with energy co > W, where W is the work function of the material, is absorbed 

by an electron in the momentum state k with energy ek . This electron receives

thus, enough energy to overcome the energetic barrier, described by the work

function W, and leave the material. It is then detected as having energy ee and 

mom entum  p e/ connected by Eq. (3.1). The energy conservation in the whole 

process can be expressed as

co + €k = W  + €e. (3.2)

We treat the electron leaving the material as a simple case of a wave passing 

a potential step. It follows then from the periodicity of the sample in the plane, 

that the in-plane component of the momentum is conserved,

n(k + G) = p l  (3.3)
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where p  = %k, G  = m ib \+  m 2b2 is the reciprocal lattice vector and we choose the 

z axis to correspond to the direction perpendicular to the plane of our sample 

and (pj) = -  {p f  f  , p f  = (0, 0, ^ ) .

The ARPES intensity is proportional to the m odulus square of the transition 

am plitude between the initial and final states of system under the perturba­

tion caused by incoming radiation. We treat the latter with the perturbative 

Hamiltonian
p. p

(3.4)#int = ~7T— (A -p  + p A ) =  —A -p ,
2 m„ mP

where A  is the electromagnetic vector potential of the incoming radiation and 

p  is the electron momentum operator. We neglect many-body interactions and 

as the initial state take the single-electron Bloch wave state in the general form, 

Eq. (2 .2),

'V(r) = Ej Ci4>kAr), (3-5)
i

where we have for now dropped the index j  and consider a single band. As for 

the final state of the electron, ^Pe(r), we approximate it with a plane wave,

We(r) cc e x p ^ p ^ r j . (3.6)

We are interested in the angular distribution of ARPES probing the low-energy 

electronic states in the vicinity of the valleys, not the absolute value of the in­

tensity. Hence, neglecting prefactors not contributing to the angle-dependence, 

we express the ARPES intensity from electron states in a given band as

I oc ( e ^ ' r |A*p| Cieik {Ro+Rl)(p(r - R q-  Rd)
i , R o

5(ee + W -  ep -  co). (3.7)

At the same time, we expect the patterns to reflect the shape of the isoenergetic 

lines around the valleys. The radius of the area in the reciprocal space around 

a single valley im portant for our considerations is less than ten per cent of the
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T -  K  distance. Also, the shapes of the patterns for a specific energy should 

resemble trigonally w arped circles with all im portant angle-dependent features 

contained within a narrow ring in the reciprocal (or momentum) space. We 

assume, that for this narrow range of momenta, the result of the perturbation 

operator A  p  acting on the initial state is a smooth, slowly varying function of 

mom entum  and approximate it w ith an irrelevant constant. This assumption is 

justified, as the energy of incoming photons used in experiments is of the order 

of 50-150eV [22, 34, 42, 55,57,118,123] translating into the lower bound on the 

photon's wavelength A > 5nm, corresponding to about twenty lattice constants. 

This means that the incoming electromagnetic wave does not distinguish details 

of the electron Bloch state (for example the structure of the atomic 2pz orbital). 

Therefore, the intensity I can be related to

where we introduced new position vector r '  = r  -  R q — Ri. Sum over the 

two-dimensional lattice vectors Ro  of the phase factors leads to the Dirac delta 

expressing conservation of the in-plane momentum, Eq. 3.3. The integral over 

r '  is the Fourier image of the atomic 2pz orbital cp{r'), which we denote by cp(pe)- 

We obtain

Let us now consider the Fourier transform cp(pe) as a function written in

space, its Fourier transform cp(pe) has rotational symmetry in the px -  py plane 

and does not depend on the azimuthal angle <fi. For a given energy of the incom­

ing photons co and material specific work function W, to resolve the constant- 

energy maps of the ARPES intensity for energy ep, one only needs to look at

2

l o c V c '.gflV-PeYRi

2

spherical coordinates, (p(pe) = (p(pe, (/),£?). Just like the 2pz orbital in the real
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photoelectrons with well specified energy ee -  co -  W  + ep and thus the modulus 

of the mom entum  pe. Finally, as we concentrate on a small area in the momen­

tum  space around the valleys, the resulting change in the polar angle 6 is going 

to be small. For the momentum states under consideration, cp(pe) is almost a 

constant. Therefore, we neglect the prefactor |(p(pe)|2. We will also first treat the 

lattice as strictly two-dimensional, which means that e ~ ^ ' Ri -  1. We end with 

the expression

I  oc L c<e-iGRi 5(ee + W — Cfc — co) . (3.9)

In the formula above, the ARPES intensity pattern arises as a result of the 

interference of the photoelectron waves originating from all atomic sites within 

the unit cell. The contribution of the z'-th site is given by the amplitude on that 

z-th site of the electronic Bloch wave function corresponding to the initial state 

w ith energy e These amplitudes are simply the coefficients of the eigenstates 

for the tight-binding Hamiltonians, as is evident from Eq. (2.2) and (2.4). The 

exponential factors exp { - iG  • R )  take into account the in-plane difference in 

optical paths between electron waves originating on different sites and travel­

ling towards the detector. Hence, in this simplified description, ARPES patterns 

correspond to a electron-wave version of quantum  Young's double-slit experi­

m ent [127]. The number of sources equals in this case the number of atoms in 

the unit cell. Conservation of the in-plane momentum maps directly the ARPES 

pattern of the photoelectron momentum to the constant-energy cuts through the 

band structure of our material, while conservation of energy defines the total 

wavevector (k  + G ) observable in the experiment. The greater the energy of 

the incoming photons, the more Brillouin zones can be resolved. Finally, we do 

not model here dynamical effects that lead to energy broadening [56, 112-117] 

but introduce a Lorentzian S(- • •) ~ n ^ T /[(■ • • )2 + T2] in the figures with the 

parameter T representing finite energy broadening.
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3.2 Monolayer Graphene

To derive the angular distributions of the ARPES intensity for monolayer 

graphene, we use the tight-binding Hamiltonian, which can be obtained in a 

procedure very similar to that presented for bilayer graphene in Chapter 2. 

Considering only one layer of hexagonally arranged carbon atoms (for example 

the bottom one in Fig. 2.1), one ends with the same unit vectors, unit cell and 

Brillouin zone. However, the unit cell now contains only two atoms, A  and 

B, w ith their positions within the unit cell given as R A = —d\ and R B = 0, 

respectively. Within the linear approximation, the Hamiltonian of monolayer 

graphehe in the basis (cp+/A,<fi+/B)T or (<fi_B/<fi^A)T depending on the valley, is 

[2, 78, 84]

H n  =

/ , \ 
0 7T

7f 0
(3.10)

From this follow the energy eigenvalue ep and corresponding eigenstates ipp/

€p = svp, ipp = ——1
V2

e 2

1 s t
(3.11)

where <p -  arctan — and s = +1 denotes the conduction (s = 1) or the valence
Px

(s = - 1) band. Both the conduction and valence bands have linear dispersion. 

They touch each other exactly in the center of the valley at the energy eD usually 

taken as zero of the energy scale. This characteristic feature leads to the K  points 

often being called the Dirac points [13, 14, 25]. With the use of Eq. (3.9), the 

angular distribution of ARPES for monoalyer graphene is related to
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The two real numbers, mi and m2, define which Brillouin zone the ARPES spec­

trum  is described for. However, as the vicinity of any valley belongs formally to 

one of the three neighbouring Brillouin zones (due to the K  point being a corner 

of a hexagon), for further simplicity of our discussion, we choose different unit 

cell in the reciprocal space, that is, a rhombus centred on the T point, as shown 

in Fig. 2.1(b). This choice does not influence any of the formulae in this chapter, 

yet simplifies the problem of choosing the numbers mi and m2 as the vicinity of 

any K  point is now contained in a single unit cell. For the two representative 

valleys K+ and K_, equation (3.12) can now be put in the simple form

I oc
cos2 [ f  -  (m2 -  mi) for Es = 1

sin2 (m2 -  mi)j for
(3.13)

We see that as the path around the valley is traversed and the angle (p changes, 

one peak in the intensity is observed, at the angle [cp = £y(m 2 -  mi)mod27zj 

if £s = 1 or [(p = tl + £y (m 2 -  mi)mod27z] if £s = -1 . The ARPES patterns 

probing states at the same energy ep differ between the valleys. However, the 

angular distribution around the valley K+ for the valence band is the same as the 

angular distribution around the valley for the conduction band. The same 

is true for patterns around K+ for the conduction band and for the valence 

band.

Numerically calculated ARPES patterns for monolayer graphene within the 

general tight-binding model, that is the band structure described as

(
0 - y o f ( k )

^(p) =

/
l s0f { k )

, - y o f ( k ) 0 , , So/* (fc) 1 /
i/>(p)/ (3-14)

are shown in Fig. 3.1. Although due to additional terms in the electronic 

momentum p  contained in the geometrical factor / ,  the eigenstate can no longer 

be written down in a simple form containing the azimuthal angle <p, the above

31



CHAPTER 3. ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

m a x

§I
m i n

Figure 3.1: The constant-energy ARPES maps of monolayer graphene obtained 
within the full tight-binding model, Eq. (3.14), for (a) whole Brillouin zone; (b) 
and (c) valley K+; (d) and (e) valley K_. Energy corresponding to each map is 
given with respect to the Dirac point. The length of the side of the map in the 
reciprocal space is ^  and ^  for (a) and (b)-(e), respectively. Numerical values 
of the parameters used: y o = 3eV, So = 0.129, a = 2.46A.

conclusions still hold. As a particular valley is circled round, the ARPES intensity 

exhibits one peak (intensity is at maximum) and one dip (intensity is zero). Due 

to those higher terms in p, for energies far from the Dirac point (Fig. 3.1(a)) 

pattern around each valley is trigonally warped. However, for energies close 

to the Dirac point (Fig. 3.1(b)-(e)), the isoenergetic lines are circular and the 

electron-hole asymmetry is negligible. Thus, the pattern around the valley 

K+ (K- ) for the valence band is the same as around the valley K_ (K+) for the 

conduction band.

The peculiar behaviour of the ARPES intensity as a function of the azimuthal 

angle (p around the valley i<Q has been noticed before for bulk graphite [109]. 

As shown, its origins lie purely in the hexagonal symmetry of graphene. This 

symmetry gives rise to a specific phase relation between components of the 

electron wave on the two sublattices and the electron's momentum. In recent 

literature, this is often reffered to as chirality of electrons in graphene [13, 14, 

25, 96]. The angle-resolved photoemission provides thus a direct observation of 

this phenomenon.
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3.3 Bilayer Graphene

As explained in the previous section, the main features in the angular dis­

tribution of the ARPES intensity for graphene have been in the past observed 

for graphite. As graphene and graphite are conceptually the extreme cases of 

hexagonally layered carbon system, one might expect no significant differences 

in the ARPES spectra for systems in between, that is also for bilayer graphene. 

However, the low-energy electronic spectrum undergoes a drastic change from 

linear to quadratic dispersion when two graphene layers are coupled together 

to form a bilayer. The question is therefore, whether this change leads to new 

features in the angular distribution of the ARPES intensity.

3.3.1 Low-energy spectrum: contribution of the two degenerate 

bands only

As we are concerned with the low-energy electronic properties, we start 

with the effective two-band approximation, Eq. (2.12). For simplicity of the 

arguments that follow, we neglect the v3 terms and write the eigenproblem

where s, as before, swaps between the conduction (s = 1) and valence (s = - 1) 

bands and cp = arctan y .  The eigenstates above are very similar to those in the 

case of the monolayer, Eq. (3.11), although the prefactor \  in front of the angle

(3.15)

We write the resulting spectrum and electronic eigenstates as follows:

v /
(3.16)
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Figure 3.2: The constant-energy ARPES maps of bilayer graphene obtained 
within the low-energy two-band approximation, Eq. (3.14), for energies (a) 
e = -O.leV, (b) e = O.leV with respect to the neutrality point. The length of the 
side of the map in the reciprocal space is yg, numerical values of the parameters 
used: v = 0.97m/s, y \  -  0.4eV.

(p and valley index £ are missing. From Eq. (3.9), the ARPES intensity is

angular distribution of the ARPES intensity around a valley should depends on

fore, two symmetric peaks and two dips in the intensity are expected at low 

energies as the path around the valley is traversed. That is shown in the Fig. 

3.2. No difference (except possibly trigonal warping effects) should occur when 

changing the valley from K+ to K_. Also, a rotation by tt/2 should occur when 

swapping the band.

3.3.2 Contribution from the split bands

In the previous section we described the ARPES spectra in the low-energy 

limit. At the same time, the ARPES pattern should evolve so that at higher 

energies it resembles that of monolayer graphene or graphite, Fig. 3.1(a), with 

one peak in the intensity. Such a regime can not be described with the low energy 

approximation. We move therefore to the four-band Hamiltonian, which not 

only enables us better comparison to experimental data, but also, as it turns out,

for s = -1

for s = 1
(3.17)

Comparison between (3.17) and (3.13) shows that for bilayer graphene the

twice the characteristic angle obtained for monolayer, [ f  -  f  {m2 -  mi)]. There
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adds to the low-energy description from the previous section [58]. Again, for 

the sake of the argument, we start with the minimum model describing all four

% that is,

0 0 0 E,vn

0 0 Con 0

0 ^7T+ 0 n

E,vn 0 7 i 0

ip -  exfj. (3.18)

Once again, we require the knowledge of the eigenstates and the energies,

Gb = s j  ( + 4v2p2 + by2 j ,  xfjsb =

e ~ i<p

sbelcp

C ^ lgsfrl 
^  vp

& vp )

(3.19)

where b = +1 distinguishes between the split and the low-energy bands. Note 

that w hat b (1 or -1 ) corresponds to which set of bands depends on the sign of 

y i . This does not matter for the band structure (does not change the form of the 

eigenvalues, only reorders them), but does influence the form of the eigenstate 

corresponding to each band. The angular distribution of the ARPES intensity is 

proportional to

I oc (1 + sb cos

Î bs I \ f I €b,

Atc
2cp + (m2 -  mi)

+ 25sb vp ) [ v p
+ (b + s) cos + (m2 — mi)

(3.20)

The first two terms correspond to the low energy limit discussed in the previous 

section. The last term is then a correction, which vanishes for sb = -1 . In this case 

one is left w ith the pattern of two symmetric peaks, as in Fig. 3.2. However, this 

happens for only one of the two low-energy bands (and one high-energy band).
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For the other, sb = 1, the correction does not vanish and contributes towards the 

intensity. To estimate its importance, we consider valleys K+ = (+ |j ,  0) in the 

first Brillouin zone (m i,m 2 = 0). Also, for the low energy bands, \e\ « y p 2. Then,

This function has two maxima for (p e (0,2n), at (p = 0 and (p = n. The ratio of 

their intensities is

For the energy \est\ = O.leV from the neutrality point, the above ratio yields y  

for s = 1 or ^  for s = —1. Hence, one of the peaks is more than twice higher 

than the other. That strong asymmetry is obtained for energies of the order of a 

quarter of y \ ,  which are usually considered to be in all instances well described 

by the two-band approximation.

To summarise, according to Eq. (3.20), we expect the symmetric two-peak 

pattern to appear for two of the bands. For y \  > 0, these are the valence split 

band (s = -1  , b  = 1) and the conduction low-energy band (s = 1, b = -1). For 

the other two bands, we expect one of the peaks to go darker as we increase 

the distance from the neutrality point. From the band structure considerations, 

Eq. (2.9), we also expect the pattern to be strongly trigonally w arped at low 

energies due to the coupling y3- This low-energy warping does not occur in the 

monolayer case.

The constant-energy maps of the ARPES intensity, calculated within the full 

four-band model, Eq. (2.4) and (2.6), are presented in Fig. 3.3 for the whole 

Brillouin zone, (a), and valley K+, (b)-(g). As anticipated, for the energy far from 

the neutrality point, Fig. 3.3(a), the ARPES spectrum look similar to that of the 

monolayer, 3.1(a) and graphite [109,126]. Figures 3.3(b)-(g) show the evolution

I oc 1 + cos (2®) + 4s cos cp + 2 ^ ^
V y  i n\
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minHBF [arb. unitsJ ~ J B max

Figure 3.3: The constant-energy ARPES maps of bilayer graphene obtained 
within the four-band tight-binding model, Eq. (2.4) and (2.6). All energies are 
given with respect to the neutrality point. The length of the side of the map in the 
reciprocal space is (a) ^ , (b)-(g) fg . Numerical values of the parameters used: 
y Q = 3eV, a = 2.46A (resulting v ~ 0.97m/s), y \  -  0.4eV, y3 = 0.2eV, s0 = 0.129, 
and the energy w idth T is one sixth of the corresponding energy.

of the ARPES pattern as the energy changes from 0.5eV to -0.5eV. At energies 

greater than the interlayer coupling, e > y lf (b) and (c), there are two ring­

like patterns, each corresponding to photoemission from states in two bands, 

whereas, for low-energies, e < y lf (d)-(g), there is a single ring corresponding 

to emission from the degenerate band only. The dot in the center of 3.3(d) 

corresponds to the photoemission from the bottom of the split band due to 

finite energy width T. Disappearance of this dot provides an estimate for the 

magnitude of the parameter y \  [55]. It is not visible on Fig. 3.3(e), because for this 

band sb = -1 . As mentioned before, the sign of y 1 determines for which set of 

bands the pattern of two equally bright peaks should be observe. In agreement 

with the conclusions from Eq. 3.20, in the Fig. 3.3(b)-(g) these symmetric peaks 

are observed for the low-energy conduction and high-energy valence bands as 

y \  was taken to be positive. Negative sign of y \  would lead to equally bright 

peaks appearing in the high-energy conduction and low-energy valence bands.
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Figure 3.4: The influence of the signs of y i and y 3 on the ARPES spectra for the 
energy e -  -O.leV with respect to the neutrality point. The length of the side of 
the map in the reciprocal space is Jg. Numerical values of the parameters used: 
y 0 = 3eV, a = 2.46A (resulting v «  0.97m/s), \yi\ -  0.4eV, \y3\ = 0.2eV, s0 = 0.129, 
and the energy w idth T = 0.1/6eV.

Hence, probing the electron wave function via ARPES may reveal not only the 

m agnitude of the coupling but also its sign. We emphasize that this sign is 

not im portant when the tight-binding model is used only to obtain the band 

structure and comparisons to experimentally obtained electronic dispersions 

relate only the band splittings which are always positive. Also, notice the 

second peak evolving in the pattern originating from the low-energy valence 

band at cp = 0 as the energy shifts closer to the neutrality point. It is not visible at 

all at the energy e = -0.5eV, but is quite clear for e -  -O.leV, where, in agreement 

to the above discussion, it is less than half of the dominant peak around <p -  tl.

As mentioned above, the sign of the y 1 coupling may be extracted from 

the ARPES spectra. We now show that knowledge of this sign allows for the 

determination of the sign of the trigonal warping parameter, y 3. Let us recall 

the low energy dispersion around the valley fQ as described by the two-band 

approximation, Eq. (2.13),

This expression illustrates that the angular dependent factor, which produces 

trigonal warping, depends on the sign of the ratio y 3/y i .  Once one of the signs 

is set, the other follows from investigation of the shape of the ARPES patterns

38



CHAPTER 3. ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

at low energies. This is presented in Fig. 3.4, where the comparison between 

patterns at the energy -0.5eV for different signs of y \  and y3 is shown. For 

sgnyi = sgny3, the trigonal warping due to y3 deforms the isoenergetic lines 

in the same fashion as the high-energy trigonal warping due to higher than 

linear terms in the electronic momentum in the factor /  (k ) [Fig. 3.4(a) and (d); 

compare to Fig. 3.3(a)]. However, for sgnyi = -sg n y 3, the low-energy warping 

counteracts the effects of the high-energy warping [Fig. 3.4(b) and (c)]. Once the 

sign of y i  has been established, the direction of the low-energy w arping along 

the px axis [compare Fig. 3.4(a) and (b) or (c) and (d)] determines the sign of y 3.

3.3.3 Influence of the symmetry breaking parameters on the 

ARPES spectra

The angular distributions of the ARPES intensity are also sensitive to the 

symmetry breaking parameters u, A and Aab. There are two reasons for that: 

(I) all of these parameters, as shown in Sec. 2.2.3, modify the band structure, 

thus changing the shape of the isoenergetic lines in the reciprocal space probed 

w ith ARPES; (II) these parameters also influence the amplitude C; of the electron 

Bloch wave on the atomic site i. The influence of the on-site asymmetries on the 

ARPES spectra is shown on the example of the interlayer asymmetry u in Fig. 

3.5. Four spectra around the K+ valley for different values of the asymmetry are 

presented, as well as the corresponding low-energy band structures (beneath 

each ARPES spectrum). The two-peak pattern is quite robust against the opening 

of a gap. Only when the top/bottom of the gap is near the probed energy, 

the pattern is distorted (last column in Fig. 3.5). The opening of the gap in 

the electronic spectrum due to the interlayer asymmetry u has already been 

sucessfully observed with ARPES [55].
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Figure 3.5: The influence of the interlayer asymmetry u on the ARPES spectra for 
energy e = O.leV with respect to the neutrality point. The length of the side of the 
map in the reciprocal space is Shown below the spectra are corresponding 
electronic dispersions along the Px axis; the dotted lines show the position of the 
neutrality point (the middle of the gap) and the dashed lines show the energy 
the spectra are resolved for. Numerical values of the parameters used: y o = 3eV, 
a = 2.46A (resulting v  ~ 0.97m/s), y \  -  0.4eV, y3 = 0.2eV, s0 = 0.129, and the 
energy w idth T = 0.1/3eV.

3.3.4 Interference due to a finite interlayer distance

Up to this point, we treated bilayer graphene as purely two-dimensional and 

disregarded the existence of the interlayer spacing between layers, c0. Clearly, 

c0 is going to influence the ARPES spectra via the phase factors describing the 

difference in the optical paths for photoelectron waves originating on differ­

ent atomic sites, as shown in Eq. (3.8). The out-of-plane component of the 

m om entum  is

p2 = ^ 2 m ( c o - W  + ek) - h 2 (k  + G )2, (3.22)

and we assume that only the photoelectrons with p f  > 0 are detected. In order 

to calculate the ARPES patterns, we now need to set the values of the energy 

of the incoming photons co and the material constant, work function W. The 

intensity distribution now depends on co.

Examples of the ARPES spectra for different energies of the incoming radi­

ation have been shown in Fig. 3.6. At high-energies (Fig. 3.6(a)) the pattern 

does not qualitatively change. However, at low energies (Fig. 3.6(b)-(c)), when
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Figure 3.6: The influence of the interlayer spacing on the ARPES spectra for 
energy (a) e = — leV, (b)-(c) e = -0.2eV with respect to the neutrality point. 
The length of the side of the map in the reciprocal space is (a) y y  (b)-(c) y y  
Numerical values of the parameters used: y 0 = 3eV, a = 2.46A (resulting v « 
0.97m/s), y i = 0.4eV, y3 = 0.2eV, s0 = 0.129, c0 = 3.4A, W  = 5eV and the energy 
w idth (a) T = 0.2eV, (b)-(c) T = 0.04eV.

the contribution due to the states in the split bands is no longer present, the 

dependence on co manifests itself through a rotation of the pattern around the 

valley. These slightly rotated patterns resemble experimental constant-energy 

m aps of ARPES intensity shown in the online material supporting work pub­

lished in [55]. The additional rotation caused by the phase factor associated 

w ith the interlayer distance c0 makes extracting the band structure parameters, 

and especially their signs, from the spectra much more difficult. However, with 

detailed comparison with experiment and calibration of the energy scale, it may 

still be possible. Then, an energy can be chosen for the incoming photons so 

that « 0 for photoelectrons originating from the states close to the centre of 

the valley.
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Chapter

Magneto-Optical Spectroscopy

Behaviour of electrons in (quasi-)two-dimensional systems in external mag­

netic fields is a fascinating area of physics. Classically the Lorentz force caused 

by the magnetic field curves the trajectory of a charged particle. If such a particle 

is constrained to move only in one plane, in a strong enough field perpendicular 

to that plane, the trajectory of the particle becomes a closed orbit. However, 

quantum mechanically, due to wave nature of matter, only some of the orbits 

are stable. For a two-dimensional solid in low temperatures, this results in the 

electronic band structure turning into a discrete spectrum of Landau levels [128]. 

The number of states per unit area in each Landau level (LL) (degeneracy of the 

LL) is equal to those originally within the range of one cyclotron energy coc = ^  

(where m is the effective mass of the electron) in the two-dimensional density of 

states, that is y  per LL. The number of the LLs filled with electrons is described 

by the filling factor v = (with v = 0 corresponding to the neutral system). As 

v is varied, for example by changing the applied magnetic field, the Landau level 

crossing the Fermi energy is filled or emptied of electrons. Repetitive crossing 

of the Fermi energy by Landau levels leads, for example, to oscillations in the 

conductivity measured as a function of the magnetic field (Shubnikov-de Haas 

effect) [129]. Similar in origin is the appearance of discrete steps in the Hall con­

ductivity oxy in the integer quantum Hall effect (QHE) [130,131]. In fact, it is the 

observation of the unusual sequencing of these steps for monolayer and bilayer
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graphene [10,11, 54,132] that fuelled most of the initial interest in the Landau 

level structure of graphene systems. For monolayer, the sequence is shifted with 

respect to the QHE sequence of a 2DEG, so that oxy = ± g j ( N  + |), where N  is the 

Landau level index and g is the level degeneracy (in graphene materials it is 4 

due to double valley and double spin degeneracy). For bilayer, the steps appear 

at oxy = ± g j N .  However, the plateau at oxy -  0 is missing. Both situations can 

be easily understood with the help of the Landau level structure. In particular, 

as the electronic structure of both systems is gapless (disregarding for a moment 

any on-site asymmetries), an addiditional, unusual Landau level is present at 

the energy e -  0, sharing states between electrons and holes. Hence, both for 

monolayer and bilayer, no v = 0 plateau exists in symmetric structures. For 

monolayer, integer filling factors follow then the sequence v = ±2, ±6, ±10,..., 

leading to oxy = ± ^ - (N  + 1). For bilayer, as we will show, the e = 0 level contains 

twice as much electron states as other LLs. Thus, at least in strong magnetic 

fields, the plateau sequence v = ±4, ±8, ±12,..., results in oXXJ — ± jg N .

One of the ways to study the Landau level spectrum of a (quasi-)two- 

dimensional semiconductor heterostructure is to examine its optical absorption 

spectrum in an external magnetic field, usually perpendicular to the plane of the 

sample. This method, called simply magneto-optical (absorption) spectroscopy 

[133], has been extensively applied to graphene systems [59-68], mainly in rela­

tion to the unusual VB dependence of the Landau level energy on the magnetic 

field and the physics of the zero-energy Landau level at very high fields. Re­

view of the magneto-optical absorption spectroscopy of graphene systems is 

given in the broader context of optical properties of graphene multilayers in 

[19]. In monolayer graphene specifically, these studies confirmed the unequally 

spaced Landau level spectrum, arising from the linear electronic dispersion in 

the absence of the magnetic field, and the scaling of the Landau level ener­

gies as VB. Some deviations from the predictions of the tight-binding model
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with regards to the transition energies suggested contribution of many-particle 

interactions to the picture [60]. This is different from the two-dimensional sys­

tems with parabolic dispersion, where electron-electron interactions have no 

impact on the Landau level transition energies in magneto-optical experiments 

('Kohn's theorem') [134]. For bilayer graphene, with the electronic dispersion 

quadratic at energies e y 1/ the non-interacting theory predicts at low energies 

a linear scaling of the Landau level energy with the strength of the magnetic 

field [69]. At higher energies, e « y\,  the Landau level energy should fol­

low a VB-dependence. Thus, the Landau level spectrum of bilayer graphene 

should change from that characteristic of a parabolic dispersion to that of a lin­

ear dispersion. This has been observed experimentally by Henriksen et al. [63]. 

However, the changeover to a VB behaviour occured at lower energies, and 

more suddenly, than expected. In fact, for some filling factors, a better fit was 

achieved when fitted to monolayer dispersion rather than bilayer one. Again, 

the many-body interactions were suggested as responsible for this departure 

from the predictions of the single particle theory.

In this chapter, we discuss the magneto-optical absorption spectroscopy of 

bilayer graphene and test the limits of the tight-binding approach as applied 

to the experimental situation of Henriksen and co-workers. In particular, we 

investigate the importance of the interlayer asymmetry in that experiment. This 

chapter is divided into three parts. In the first one, Sec. 4.1, we describe the 

Landau level structure of bilayer graphene using both the two-band and the 

four-band models. In this, we follow an approach applied to graphite [135— 

137] and routinely used in the case of graphene systems [16, 51, 69]. We then 

derive in Sec. 4.2 selection rules for the optical absorption in magnetic field. 

We describe the optical strengths of transitions between any of the n  bands and 

include into the model presence of the physically most relevant asymmetries. 

We also show the resulting magneto-optical spectra. In the last part, Sec. 4.3,
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we concentrate on the role of interlayer asymmetry in the abovementioned 

experiment of Henriksen et ah, results of which have been initially fitted to 

the predictions of the 'neutral bilayer' model (tight-binding model with the 

interlayer asymmetry equal to zero). We show that the experimental setup 

may have caused significant charge asymmetries between the layers and thus 

rendered the 'neutral bilayer' model unapplicable. We demonstrate that self- 

consistently obtained values of the interlayer asymmetry in the presence of the 

magnetic field help to explain some of the discrepancies between experimental 

results and the theory used to interpret them. Some of the results contained in 

this chapter have been published in [71] and [73].

4.1 Bilayer graphene in an external magnetic field

4.1.1 Landau levels in the two-band model

In the following, we will work in the Landau gauge, A  = (0, Bx), and the 

resulting magnetic field

perpendicular to the sample. Let us consider a Landau function i//M = e~lW(pn{x+ 

qA\), where (p„(x) is the eigenfunction of quantum harmonic oscillator. We then 

observe, that operators tt = px + ipy and ir+ = px -  ipy/ with the the electronic 

momentum now containing the electromagnetic vector potential, p  = - i t N - e A ,  

coincide with the raising and lowering operators in the space of functions 

That is1,

B  = V x A  = ( 0,0, B)

(4.1b)

(4.1a)

1From now on, we supress the index q as irrelevant to our work.
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where the magnetic length AB =

Looking now at the leading term in the two-band approximation,

(4.2)

we realise that the eigenstates for the above matrix can be written in a gen­

eral form of = (ipnr aijjn-2), with some complex coefficient a. In fact, after 

calculation we obtain a set of eigenvalues and eigenfunctions

where we use the index n to number the Landau levels and a to distinguish 

between the valence (a = -1) and conduction (a = 1) band. We see that at 

low energies, the energy of the Landau level is proportional to the strength 

of the magnetic field B. Also, for large n the LLs are almost equidistant as 

^ n(n -  1) « n. Two levels, n = 0 and n = 1, have the same energy, e0 -  e2 = 0, 

giving rise to an unusual, 8-fold degenerate Landau level, which is shared 

between electrons and holes and thus does not require any index a.

4.1.2 Landau levels in the four-band model

The derivation of the Landau level spectra within the four-band model fol­

lows very much the same approach as in the case of the two-band approximation. 

Again, we neglect y3 and other less important couplings. However, we add to 

our Hamiltonian the symmetry breaking on-site energies. In particular, we are 

interested in (i) the interlayer asymmetry u and (ii) the substrate-induced in- 

tralayer asymmetry in the bottom layer only, 5. The former is taken exactly as

(4.3)
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defined in Sec. 2.2.3 while the latter can be obtained by taking Aab = A, and 

reflects in the simplest way interaction of bilayer with an underlying substrate. 

In the case of bilayer graphene grown epitaxially on diatomic substrate, such 

as SiC, this interaction distingiushes between sublattices in the bottom layer. 

However, due to a much greater distance, the interaction between the substrate 

and the top layer is neglected. The Hamiltonian in the linear approximation is 

then,

H  = £

|  + f(i + 0  

o 

0 

V7T

0

vir

V7T

0

- !  + !(i - «

V7T

0

t y i
(4.4)

In this case, we construct the eigenstates using functions ifjn and \pn-2 (for the first 

two components of the eigenstate), as well as (for the last two components).

In the following, we use superscript c (s) to denote Landau levels originating 

from the low-energy (high-energy) bands and a equal to 1 or -1  to indicate the 

sign of the energy. Then, in the case of symmetric bilayers (w, 6 = 0), the energy 

e°na of the n-th low-energy Landau level is given by:

£C0 =  £{ =  0,

H2v2
a!

4Hzv2y l
y\ + 2'~rr̂ 2n~1̂ ~ + 'a2~ + At

In turn, the energy esna in the high-energy bands is 

H2v2
e l ,=

a

v f

I 4H2v2y 2
y 2 + 2 ' ^ - ( 2 n - l )  + J y t  + At

(!In -  1) +
At

(4.5)
for n >  2.

for n > 1. (4.6)

In this formulation, for high-energy LLs indexing starts with n = 1, not n = 0, 

emphasizing the distinctiveness of the e = 0 LL. Each level has additional 4-fold
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degeneracy due to valleys and spins.

For magnetic fields B < 20T, expressions for the LL energy in a symmetric 

bilayer, Eqs. (4.5) and (4.6), can be simplified using a small parameter x =

The numerically calculated Landau level spectra both in the absence and 

presence of the asymmetries u and 5/2 are shown in Fig. 4.1(a)-(d). The low- 

energy Landau level spectrum for neutral bilayer, equivalent with Eq. (4.5), 

is shown as grey solid lines in Fig. 4.1(a)-(d). Those levels create a fan-plot 

originating at zero energy. As shown earlier within the two-band approxima­

tion, levels n = 0 and n = 1 have the same energy, leading to an unusual 8-fold 

degenerate level at e -  0. The high-energy LLs, Eq. (4.6), create two additional 

fan-plots originating at e = ±yi,  which are shown together with low-energy LLs 

with grey solid lines in Fig. 4.1(a)-(b). The Landau level spectra for u = 50meV 

(f = 50meV) is shown with black lines in Fig. 4.1(b) and (d) [(a) and (c)]. Both 

of the asymmetries lift the valley degeneracy. Also, in both cases the additional 

degeneracy of n = 0 and n = 1 LLs is removed, ei *  eQ [note that even the n = 0 

level is shifted with respect to the middle of the gap at the K point from e = 0 in 

opposite directions in the valley K+ (£ = +) and K- (E, = —)]. As can be seen in

\x\ 1. Additionally, assuming that u and 5 are small, we obtain LL

energies for asymmetric (charged) bilayer:

(4.7)
1 r &

+ -  i u x 1 -  -  (l -  x2 {In -  1)) , n > 1;

where
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Figure 4.1: Numerically calculated Landau levels of bilayer graphene for range 
of high [(a) and (b)] and low [(c) and (d)] energies; black solid and dashed lines 
in (c) and (d) represent levels at valley K+ and K_ respectively, grey solid lines in 
the background show the Landau level spectrum for no asymmetries {u, 5 = 0); 
in (a) and (b) only the spectrum at K+ is shown for clarity. Note that nonzero u in 
(b) affects the high-energy LLs very weakly and so the corresponding grey lines 
are underneath the black ones. Zero of the energy scale is shifted to the middle 
of the gap opened in each case at the K  point, (e) Area bounded by dashed red 
rectangle in (d) shown again with the 11 lowest LLs at K+: black solid lines 
- taking into account v3 = 0.15eV, grey dashed lines - neglected. Values of 
param eters used: v = 1 x 106m/s, y 1 = 0.35eV, resulting in low-energy effective 
mass meff = y i /2 v 2 ~ 0.03 of the electron mass.

Fig. 4.1(a), interlayer asymmetry u affects the high-energy LLs very weakly and 

so, the corresponding black lines cover grey lines showing high-energy LLs in 

the symmetric bilayer. At low energies and low fields [Fig. 4.1(e)], signatures of 

a Mexican hat developing in the electronic spectrum of an asymmetric bilayer 

can be noticed in the fan-plots of the LL spectrum. Inverted curvature in the cen­

tral part of such a structure (hole-like in conduction and electron-like in valence 

band) results in inverted behaviour of Landau levels at very low B [the energy of 

electron (hole) levels decrease (increase) with increasing B] which then returns 

to typical behaviour at higher B [the energy of electron (hole) levels increase 

(decrease) w ith increasing B]. This results in interlevel crossings. Also, this is a 

regime where the influence of the parameter v3, neglected so far, is important, 

because it mixes LLs n and n -  3, thus changing some of the interlevel crossings 

into anticrossings. An example of the numerically calculated spectrum taking 

into account v3 using a procedure explained in the next section is shown in Fig.
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2(e).

The wave functions corresponding to LLs described in Eqs. (4.7) are as 

follows:

where:

' - i f y o  '
/

0
• i \y ~

0

, 0 , V

2 + £ji)

0

xxpo 

0

-z£ [l -  x2 (n -  |) ]  (T„ + en + jSQ)i//n

( !  +  4 -) ffn +  £ n ~  jSO)l/;n_2

x afn(Tn + en +

-jSx Vn -  1(T„ + -  pQ)ipn-i

_1_

y/2

i£x yjn\pn 

-i<ifix AIn -  lijjn-i

p [ l - f ( n - l ) ] ^ !

, n > 1;

(3 = + 1; r„ =

(4.9)

, n > 2; (4.10)

(4.11)

(4.12)

4.1.3 Numerical treatment of the y3 coupling

The derivation of the Landau level structure of bilayer graphene around a 

single valley, as shown in previous sections, is possible because each of the 

components of the wave function can be written in terms of only one Landau 

function \pn. Any of the on-site asymmetries, as well as the couplings y 0/ y 1 or y4 

can be incorporated into this scheme. However, the y 3 coupling leads to mixing 

of the LLs with each other and the problem can no longer be solved in this way. 

This perturbation becomes important only at weak magnetic fields and in most 

situations, it can be neglected for fields B > 5T. Nevertheless, we investigate here
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how the 73 terms affect the Landau level structure of bilayer graphene at weak 

magnetic fields. This is because with improving sample fabrication processes, it 

is now possible to probe the physics at energies where 73 is im portant [138]. We 

use an approach similar to that developed to treat 73 in the calculation of the LL 

spectrum of graphite [137] and for simplicity, discuss the case of the two-band 

model, Eq. (2.12).

In an external magnetic field, the 73 perturbation mixes LLs with each other 

so that the electron amplitude on each sublattices is now a linear combination of 

infinitely many functions ipn. Using the knowledge from the previous sections, 

we again w ant to describe the eigenstates with vectors whose odd and even 

components correspond to electron wave amplitudes on one of the sublattices, 

B2 (Al) and A l  (B2) in the K+ (K_) valley, respectively. Also, we want each 

component to be expressed using a single function ipn. We choose the ordering 

of the entries corresponding to specific ipn in such a way, so that pair of vectors 

(2n -  l)-th  and (2n)-th create a minimal subspace required to describe the n-th 

LL in the absence of 7 3 . In the absence of 7 3 ,  this tallies to repeating Hamiltonian 

(4 .2) as the diagonal block of an infinite matrix, with all other elements equal to 

zero. The presence of 7 3  leads to some off-diagonal perturbations in this matrix, 

which can be written in the form2:

(
0 0 0 D (  1) 0

0 0 0 0 D (  2)

0 0 H (  1) 0 0

D \  1) 0 0 H (  2) 0

0 D \ 2 ) 0 0 H (  3)

V :

2Note, that two rows and columns in the following matrix, identically equal to zero, give rise 
to tw o solutions at zero energy, which correspond to unphysical eigenstates (zero vectors) and 
should not be confused with the zero energy Landau levels described earlier in the text.
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Figure 4.2: Comparison of the low-energy and weak-field Landau level struc­
tures obtained neglecting the y 3 coupling (black lines) and taking it into account 
(red lines). Values of parameters used: v = 1 x 106m/s, y \  = 0.4eV, resulting in 
low-energy effective mass meff = y i / l v 1 «  0.03 of the electron mass, v3 = O.lv (if 
applicable).

where

H (n )

We then truncate the infinite basis, restricting the calculation to a given n LLs 

and diagonalise the resulting Hamiltonian numerically. The number of the 

basis vectors required in the calculation in order to describe properly the low- 

energy LL structure increases with decreasing magnetic field (reflecting growing 

importance of the y 3 terms at weaker fields). Basis of of the dimension 800 is 

enough to describe LL spectra for magnetic fields B > 0.01T. Similar analysis can 

be performed within the four-band model. However, the matrix dimension has 

to be then doubled for the same accuracy at low energies, whereas the correction 

to the high energy LLs is negligible.

The low-energy Landau level spectra at weak fields has been presented in 

Fig. 4.2. The black lines show the LL spectrum equivalent to that described in 

Eq. (4.3), whereas the red lines demonstrate the low-energy LL spectrum with

y x 2 ^/n(n + 1)

^•x2 -yjn(n + 1)
D{n)  =

0 - i£ x v 3 xfn 

0 0
(4.14)
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the y 3 taken into account (via a procedure explained above). Only the energies 

of few lowest Landau levels are affected. The unusual degeneracy of the e = 0 

Landau level is preserved.

4.2 Magneto-optical selection rules and the absorp­

tion spectra

We describe the electron-photon interaction within the four-band linear ap­

proximation, by expanding the Hamiltonian H%(p -  eA), where [p -  eA] is the 

canonical momentum including the electromagnetic vector potential A ,  up to 

the first power in A ,  and write the interaction Hamiltonian

&mt = J -A ,  (4.15)

A 0  j r r  t V
where j  = is the current operator. The incoming beam is charac­

terised by a time-dependent electric field, E w{t) = E ^ e ^ .  Using Maxwell's 

equations, we arrive at

A  = (4.16)
—ICO

Wave functions given in Eqs. (4.9) can now be used to determine transition 

rules for the absorption of right (©) and left-handed (©) circularly polarized 

light E u = E J 9/q, with Z0 = j^ ilx  -  ily) and le = + Uy). Neglecting for now

the prefactor ^  in the interaction above, we end with perturbation (i'T0/e) for 

circularly polarised light interacting with electrons in the material. We can now

find optical strengths of inter-LL transitions. We give here all of them with the

accuracy up to the first meaningful term in For the transitions between the
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low-energy bands (c->c), we obtain:

=  mrieW)? » - W ( f 2H + 5 ) 2 -
27I

~ 2e2v2x2A {̂ ,  K f ^ j - l e l ^ J W 2 w 2eV x2A ^)/

~ e2v2x2m5n- litn -  *n , m > 2,
(+) *(-) (4.17a)Av 'Aa *-rn(xJ 1 
"2

H  A (+ )A £A
W n p \j ' leWma)\ ~ e2v2x2(m -  1)6„/W_!—  ---- , m > 3.

For the transitions between the low-energy and the high-energy bands (s <-> c), 

we have:

l<^yj'J®|i/4>l2~ eVS„-1/W/ m = 0,1,

e2v2A {*l
'np\J ~ 4

KV'npli ■ *elV40>l2 « » S 2,

^  (4'17b)
K V ^ li-W L )!2 ~ — 4— ^ ^

|<l//Cjj-Zelfta>|2~ e2V26n,m+l, ™ = 1,2,

e2u2A(g)
~ 4 M > 3 .

Finally, for the transitions among the high-energy bands alone (s —> s), we have:

\ ( fnf i \r l®\fma)\2 ~ 2 e W m < 5 n_:,m, m >  1, 

K ^ tfW * « > l2 » 2e2v2x2(m -  l)6ntm- lf m >  2.
(4.17c)

In the above equations, we introduced:

(,,) (rm+em + Liaa)_ AW 2 (or u, 6 = 0. (4.18)
1 *ma r  (V a. c }1 m\L m '

Equations in (4.17) generalise the earlier study of optical and magneto-optical 

absorption in bilayers [69]. Examples of allowed transitions are illustrated in
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Fig. 4.3(a)-(b). Independently of the presence/absence of asymmetries 5 or u, 

selection rules for absorption of right-handed polarized light are such that the 

Landau level index has to be decreased by one, whereas absorption of left- 

handed photons requires an increase of the Landau level index by one. Also, 

optical strengths of c —»c and s —> s transitions are proportional to the magnetic 

field B and LL index, whereas optical strengths of s <-> c transitions are almost 

independent of B. As x is a small parameter, the intensity of the first s <-> c 

transitions should be higher than for c—>c transitions corresponding to the same 

energy of incident radiation Hco.

We describe the optical absorption of the incoming photons by the sample in 

the presence of an external magnetic field, Iabs, by the ratio of the energy absorbed 

by the material to the energy carried by the electromagnetic field, (S) oc . The 

energy absorbed is proportional to the energy of the incoming photons, density 

of electrons in the Landau level (and thus to the strength of the magnetic field 

B) and the transition probability between the initial and final states, expressed 

by the optical strengths above. One also has to take into account electron level 

occupancy f n of the level |n) and conservation of energy in the process. Hence, 

the intensity of absorption, 7abs, is proportional to

V* (e« — e^) (/m ~ /n )  ^©/elw )| ^  1Qx
f a b s M  2-1 --------------------- *---------------— &(£n -  em -  Hco), (4.19)

m,n

where |m) and |n) are the initial and final electron states, respectively. In Fig. 

4.3(c), the numerically calculated magneto-optical spectrum of symmetric bi­

layer for Hco w |yi| has been shown (the range of energies at which the s <-> c 

transitions become possible). For this purpose, we approximated the Dirac 

delta expressing the energy conservation with a Lorentzian, with the full width 

at half-maximum parameter T associated with the broadening of the Landau 

levels (as the incoming photon beam is monochromatic). We assumed the same
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Figure 4.3: Allowed intraband (a) and interband (b) optical excitations. Low- 
energy (high-energy) LLs are depicted with solid (dashed) lines. Transitions 
in 1® (le) are shown on the left (right) of the energy axis, under © (©) symbol. 
Energy axis not to scale; not shown is very weak |0C) —> \lc) transition allowed 
only in the presence of asymmetry, (c) Magneto-optical absorption spectrum 
for the energy of incident light Hco « \yi\-, magnetic field B = 10T, yi  = -0.35eV, 
v  = 106m/s; Landau level broadening was approximated with a Lorentzian with 
full width at half maximum 20meV.

broadening of all Landau levels. The onset of s c transitions (the two highest 

peaks around Hco « 0.39eV) can be observed against the background of c —> c 

excitations.

4.3 Magneto-Optical spectroscopy in charged bilayer 

graphene

4.3.1 Landau level spectrum in charged bilayer graphene: self- 

consistent analysis of the interlayer asymmetry gap

In the infrared experiment realised by Henriksen and co-workers [63], inter- 

LL transitions for the filling factors v = ±4, ±8, ±12, ±16 have been separately 

traced for increasing strength of the applied external magnetic field. The ob­

served behaviour of the transition energies followed the predictions of the non­

interacting model, that is, showed a change from a linear dependence of the LL 

energy on B to a VB dependence. However, the changeover occured at lower
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energies, and more suddenly, than expected. For some filling factors, a better 

fit was achieved when fitted to monolayer dispersion rather than bilayer one. 

Many-body interactions were suggested as responsible for this departure from 

the predictions of the single particle theory. However, the experimental setup 

and the need to fix the filling factor while the magnetic field was changed to 

trace a particular transition, implies significant changes in the carrier density in 

bilayer graphene during the experiment by applying an external electric field 

perpendicular to the layers. Such external electric field is known to induce in­

terlayer asymmetry in the system [72,139,140], in our model described by the 

on-site energy u (see Sec. 2.2.3). Non-zero asymmetry u, caused by a possible 

difference in electric potential energy between the layers, opens a gap in the elec­

tronic spectrum and, in the presence of an additional external magnetic field, 

modifies the LL spectrum [51, 71, 141-143]. To model this effect, we employ 

a self-consistent theory of the charging of bilayer graphene. In order to repro­

duce the experimental conditions, we extend the self-consistent analysis of Ref. 

[72] from the zero-magnetic field regime into the regime of quantizing magnetic 

fields, taking into account the possibility that there is a finite asymmetry in a 

neutral structure [see Eq. (4.20) below].

In particular, we consider a gated bilayer as shown in Fig. 4.4. The interlayer 

distance is c0. In an external magnetic field B, the Landau levels are described 

by the four-band Hamiltonian, Eq. (4.4). We neglect from now on the interlayer 

assymmetry <5. In order to keep the filling factor v fixed while changing B, a 

total excess density, n = v f , must be induced using the gate. The density n is 

shared between the two layers: n = nx + n2, where, assuming a top gate, n2 («i) is 

the excess density on the layer closest to (furthest from) the gate. The interlayer 

asymmetry u is a result of different electric potentials LẐ and and the 

first and second layer and is therefore related to the electric field E  between the 

layers which arises due to the incomplete screening of the gate electric field by
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Figure 4.4: Schematic of a 'biased bilayer' showing all charge densities and 
electric fields induced by a single gate.

the charge en2 on the top layer alone. Hence, with the help of Gauss's law, the 

interlayer asymmetry u can be related to the unscreened density nlf

Here, er is the effective dielectric constant determined by the Si02 substrate, 

and w takes into account finite asymmetry of a neutral structure (internal elec­

tric field due to, for example, initial non-intentional doping of the flake by 

deposits/adsorbates). In our numerical calculations we use er — 2.

On the one hand, u influences the LL spectrum via the Hamiltonian in Eq.

(4.4). On the other hand, its value depends on the charge density nx which 

can only be obtained with a full knowledge of the LL spectrum and the wave 

functions corresponding to each LL. Therefore, a calculation of u requires a self- 

consistent numerical analysis. This calculation consists of the following steps: 

for each given B, 5 < B < 20T, and v we choose a starting u, and diagonalize the

(4.20)
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Figure 4.5: Top row: results of a self-consistent calculation of the interlayer 
asymmetry u for (a) zv = 0 and (b) zv -  -lOOmeV. Bottom row: the LL spectrum 
as a function of applied magnetic field B for constant filling factor and excess 
density-induced interlayer asymmetry a: (c) v = +4; zv = 0, and (d) v = +12; 
zv = -lOOmeV. Dashed and solid lines denote levels belonging to K+ and K-, 
respectively. The line corresponding to the last filled Landau level is shown in 
bold. In these calculations we used v = 106m/s and = 0.4eV.

Hamiltonian to find the LL spectrum and the eigenstates with m < M max where 

M max ~ 300. Then, we sum over all filled Landau levels and determine the excess 

electron densities on each layer. Note that, as a nonzero value of u splits the 

valley degeneracy of the LLs [71], care has to be taken when comparing densities 

in specific LLs in biased and neutral structures, not to confuse levels in different 

valleys. Finally, using Eq. (4.20) we find the asymmetry parameter and, then, 

iterate the numerical procedure to obtain the self-consistent value of u?  Note 

that, for a sufficiently large cutoff M max ~ 300, the results were independent of 

M max.

The self-consistently calculated values of u obtained for several values of 

the filling factor v are shown in Fig. 4.5(a) and (b) for the case of zv = 0 and 

a nominal zv = -lOOmeV, respectively. In the case when zv = 0, the induced 

3Neither the Landau level broadening nor partial filling factors were considered in this work.
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interlayer asymmetry is antisymmetric with respect to the change of the filling 

factor from positive to negative. This is because changing the filling factor 

from +v to —v corresponds to reversing the applied electric field and inducing 

excess densities ~n,—ni and —n2 and thus reversing the sign of u. Also, with 

decreasing B all curves tend towards u = 0 and u ~ -60meV in Fig. 2(a) and 2(b), 

respectively. These values are the results of the self-consistent calculation with 

corresponding values of w in the absence of a magnetic field [72], Examples of 

the low-energy LL spectrum for v = +4, w = 0 and for v = +12, w  = -lOOmeV are 

shown in Fig. 4.5(c) and (d). To refer to LLs as shown in Fig. 4.5, we use in the 

further text three symbols: sm£, where s attributes the LL to the conduction (+) 

or valence (-) band, m is the LL index and £ € (+, -)  identifies the valley (K+ or 

K- ) that the level belongs to, respectively. As mentioned in the previous sections, 

the Landau levels m = 0,1 have no s index, as those levels are degenerate when 

u = 0. The sign of the valley splitting of the level sm depends on the sign of u: 

for u > 0, level s m -  has higher energy than level sm+ whereas the opposite is 

true for u < 0. Levels m = 0,1 behave differently - in this case

£m+ ^ b 

€m- b

€m+ ^ b 
► for u > b,

€m- ^ b
f o r u c b .  (4.21)

The size of the valley splitting of the low-energy LLs increases with u and B 

and for \u\ « b.leV, B « 20T [filling factors v = +12,+16 in Fig. 4.5(a) and 

v = _ 3, _ i 2, -16 in Fig. 4.5(b)] is of the order of lOmeV.

4.3.2 Tracking a single inter-LL transition: low-energy inter-

Landau level transitions

Using spectra similar to those shown in Fig. 4.5(c) and (d), we find the energy 

of the low-energy inter-Landau level transitions for several filling factors which 

mimics the experimental conditions of Ref. [63] (the tight-binding approach to
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Figure 4.6: Energy of low-energy inter-LL excitations as a function of magnetic 
field for w = 0. The broken lines are the contributions of individual valleys to 
the transition energy: black dashed and dot-dashed lines denote the transition 
energy for positive (negative) v at K+ (K- ) and K_ (K+), respectively. The solid 
black lines show the contribution of both valleys to the transition energy, cal­
culated according to Eq. (4.22) (in this case the transition energy is the same 
for both positive and negative v), whereas solid grey lines depict the transition 
energy in a neutral (u = 0) structure. Note that for v = 8,12,16 all black lines are 
very close to each other and difficult to resolve.

this problem has also been adopted in [144], where the dependence of interlayer 

asymmetry on the density n and its influence on Landau level transition energies 

was estimated by neglecting screening effects). As explained before, in that 

experiment infrared light of energy Hco was incident on the graphene bilayer 

in a strong external magnetic field and with a constant filling factor in order 

to excite charge carriers between a prescribed pair of LLs and to probe the 

energy dispersion. According to the selection rules determined in Sec. 4.2, only 

transitions which change the LL index m by one are allowed. Also, as photons 

provide a very small momentum transfer, we only consider transitions between 

levels at the same K point. Thus, the corresponding low-energy transitions 

for filling factors v — +4,+ 8,+12,+16 are 1£ > +2£, +2£ > +3£, +3£ > +4£, 

and +4£ -> +5£, respectively. For filling factors v = -4, - 8, -12, -16, they are
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Figure 4.7: Energy of low-energy inter-LL excitations as a function of magnetic 
field for w  = —lOOmeV. Black solid and dashed lines denote the transition energy 
for positive and negative filling factor, respectively. Grey solid lines depict the 
transition energy in a neutral (u = 0) structure.

- 2 E, —» 1£, -3£ —» -2£, -4£ —> -3£, and -5^  —> -4^, respectively. However, 

as transitions between the same levels at different K points differ too little in 

energy to have been resolved separately in the abovementioned experiment (in 

fact, they can be only be clearly distinguished in Fig. 4.6 for the case v = 4), we 

obtain a single transition energy evtrans for a given filling factor v by comparing 

the relative intensities of the corresponding transition at each K point:

v c „ , ( ^ ) n K + )  + c ^ - ) ± ' ( * - )  (422)
£>m,s i'(K^) + r-'(K^) v ' ;

where evtrans(K$) and IV(K^) are the transition energy at the Kc point and its inten­

sity, respectively. The results obtained for sets of parameters as in Fig. 4.5(a) 

and (b) are shown in Fig. 4.6 (w = 0) and Fig. 4.7 (w = -lOOmeV). We shall first 

discuss the case w = 0 presented in Fig. 4.6. In this case, for a specified value of 

B, the asymmetry u changes sign with a change of the sign of the filling factor 

[Fig. 4.5(a)], the Landau level spectrum for v and -v  are the same but the K
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points have to be exchanged. Therefore, evtrans{K+) = e ^ ns{K-), clearly seen in all 

four graphs. Moreover, both transitions have the same intensity and contribute 

equally to £vtrans (black solid line). Comparison with the transition energy for 

a neutral bilayer (grey line) shows that non-zero u decreases the energy of the 

transition. The greater \u\ and B, the bigger the difference between excitation 

energy in symmetric and biased bilayers. However, this difference decreases 

with an increase of filling factor.

Introduction of parameter w breaks symmetry between the conduction and 

valence band LLs as presented in Fig. 4.7 for the case of w -  -lOOmeV. The 

valence band excitation has greater energy than the conduction band excitation 

at filling factor v = +4. However, this situation is reversed for higher filling 

factors v = ±8, ±12, ±16 (this reversal was not observed in the experiment [63]). 

For this specific case, w = -lOOmeV, the asymmetry introduced between excita­

tions for filling factors v and -v  is of the size of 3 -  lOmeV. These two effects, 

the reduction of the transition energy with the increase of u and the breaking of 

the symmetry between transitions for positive and negative filling factor caused 

by w, partly account for the disagreement between experimental findings and 

Eq. (4.5) obtained from a tight-binding model for neutral bilayers as used in 

Ref. [63] to fit the data. Other investigations [145-147] show that additional 

corrections may arise from electron-electron interactions.

4.3.3 Magneto-optical spectra in charged bilayer: high-energy 

inter-Landau level transitions

Using the self-consistently obtained values of the interlayer asymmetry u for 

a given filling factor v and magnetic field B, we can analyse again the optical 

transition spectra corresponding to transitions between LLs in split bands of 

the bilayers, Sec. 4.2. With the help of Eq. (4.19) describing the intensity of 

absorption in external magnetic field, we compute the infrared optical absorp-
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Figure 4.8: Magneto-optical absorption spectra of bilayer graphene in strong 
external magnetic field B = 14T and for filling factors v = 8 and v = 16 (left 
and right columns, respectively) and the case of w = 0 (top row) and w = 
-lOOmeV (middle and bottom row). For the symmetric case of w = 0, solid and 
dashed lines show absorption of right-handed (left-handed) and left-handed 
(right-handed) circularly polarised light for the positive (negative) filling factor, 
respectively. For the case of w = -lOOmeV, solid and dashed lines represent 
absorption of right and left-handed circularly polarised light, respectively.

tion spectra of right (©) and left-handed (©) circularly polarized light for bilayer 

graphene in a strong external magnetic field. As opposed to Fig. 4.3(c), we 

describe this time a charged bilayer with significant interlayer asymmetry. The 

broadening of the Landau levels is again modeled using a Lorentzian shape 

with the same full width at half maximum y  -  60meV for all Landau levels. 

Numerical results for magnetic field B = 14T and filling factors v = 8 and v = 16 

are shown in Fig. 4.8. For the case of w = 0, the symmetry of the system 

demands that the intensity of absorption of light with a given polarisation for
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filling factor v and is the same as that of the light with the inverted polarisa­

tion for filling factor -v. This, indeed, is the case for graphs in the top row of 

Fig. 4.8, where black solid and dashed lines show absorption of right-handed 

(left-handed) and left-handed (right-handed) circularly polarised light for the 

positive (negative) filling factor, respectively. Such a symmetry is broken for 

the case of w = -lOOmeV, for which the spectra for positive and negative filling 

factors are shown in the separate panels, where solid and dashed lines refer to 

right-handed and left-handed polarisation, respectively. In particular, the peak 

visible for some of the spectra at the radiation energy around 0.4eV corresponds 

to electron excitation between the low-energy n -  0 LL and one of the two 

high-energy n = 1 LLs. Its position can be used to determine the value of the 

coupling constant j \ ,  and a small shift in energy of this peak is due to strong 

magnetic field and asymmetry u.
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Chapter

Electronic Raman Spectroscopy

As discussed in Sec. 4.3, experimental measurements of the bilayer graphene 

Landau level structure with infrared absorption showed that tight-binding de­

scription for neutral bilayer is unable to describe all the important physics [63]. 

Some theoretical explanations were suggested [73, 145-147], but the issue has 

not yet been clarified. It would be therefore beneficial to have at one's disposal 

another probe of the Landau level structure but with different selection rules. 

Then, electronic excitations between different pairs of levels would be mea­

sured. This could help gain more insight into the physics of the problem. In this 

chapter, we investigate the possibility of using electronic Raman spectroscopy 

as such a probe.

The electronic Raman spectroscopy can provide information about various 

single particle and collective electron excitations in the system studied. In semi­

conductors, it has been, for example, employed to investigate donor and accep­

tor states, plasmons and spin-density fluctuations involving electron spin-flip 

due to the spin-orbit interaction [74, 148]. The inelastic scattering of photons 

on electrons in semiconductor placed in an external magnetic field was first 

discussed by Wolff, who pointed out that unequal spacing of the LLs resulting 

from nonparabolicity of the electronic bands is crucial for the electron-photon 

interaction matrix elements not to vanish [149]. The features corresponding 

to the electronic contribution to the Raman scattering in an external magnetic
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field were observed in many semiconductors, for example, InSb [150] and GaAs 

[151]. Very recently, the Raman spectroscopy of electronic excitations in mono­

layer graphene has been investigated theoretically [152]. It has been shown 

that at high magnetic fields the inelastic light scattering accompanied by the 

excitation of the electronic mode with the highest quantum efficiency involves 

the generation of inter-band electron-hole pairs. At high (quantizing) magnetic 

fields this leads to the electron excitations from the Landau level n~ (with energy 

€„- = — V2nHv/Ag) in the valence band to the Landau level n+ (en+ = ^TkhvlXp)  

in the conduction band with energies con = 2 y/lnHv/AB and crossed polarisation 

of in/out photons. This fact, contrasted with the An = ±1 selection rules for 

transitions between Landau levels in the absorption of left and right-handed 

circularly polarised infrared photons [69], is the first hint that electronic Raman 

spectroscopy provides data supplementary to that obtained in optical absorp­

tion.

Here, we investigate the contribution of the low-energy electronic excita­

tions towards the Raman spectrum of bilayer graphene for the incoming photon 

energy Q > leV. Starting with the four-band tight-binding model, we derive 

an effective scattering amplitude that can be incorporated into the two-band 

approximation. We show that due to the influence of the high-energy bands, 

this effective scattering amplitude is different from the contact interaction ampli­

tude obtained within the two-band model alone. We then calculate the spectral 

density of the inelastic light scattering accompanied by the excitation of electron- 

hole pairs in bilayer graphene. In the absence of a magnetic field, due to the 

parabolic dispersion of the low-energy bands in a bilayer crystal, this contri­

bution is constant and in doped structures has a threshold at twice the Fermi 

energy. In an external magnetic field, the dominant Raman-active modes are 

the n~ -> n+ inter-Landau-level transitions with crossed polarisation of in/out 

photons. Finally, our estimate of the quantum efficiency of a single n —> n
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transition peak in the magnetic field of 10T, ~ 10 12, suggests that these

features may be observable experimentally [75].

5.1 The two-photon field and the electron-photon in­

teraction

As a starting point we choose the tight-binding Hamiltonian in the linear 

approximation, eq. (2.9). We shall keep terms up to quadratic in the electronic 

momentum p, but disregard the least important couplings, V4 and y n. Then, 

using the set of Pauli matrices, ox, oy and oz, the Hamiltonian H^(p) describing a 

single electron with momentum p  in the vicinity of the valley can be written 

in the form

M p ) = i

(
v3(a -p y  vcr-p

v a p  CyiOx
(5.1)

7  kr(p? -  f y )  + 2 < W y ] -  f y )  -  ^ y V x V y

-  Pi) -  ZOyPxPy 0

To describe the process of inelastic scattering of light on electrons in our 

material, we consider an experimental setup in which incoming laser light of 

energy Q »  y lf in-plane momentum q (out-of-plane component of momentum 

equal to qz = y jd 2/c2 -  q2) and polarisation / is shined onto to the sample. 

Scattered photon has polarisation I, in-plane momentum q and energy Q = Q-co, 

where co is the Raman shift. We also assume the temperature T to be smaller 

than the Raman shift, k^T < cu (k-B is the Boltzmann s constant). In our case, the 

inelastic light scattering may occur via (I) a one-step process [so called contact 

interaction, Fig. 5.1(a)] or (II) a two-step process involving an intermediate state 

[Fig. 5.1(b)]. The two-step process involves: the absorption (or emission) of a 

photon with energy Q (Cl) transferring an electron with momentum p  from an
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•  in itial sta te
•  in term ediate sta te

(a) one-step process (b) two-step processes

Figure 5.1: Schematic depiction of the (a) one and (b) two-step ERS processes 
considered in this text, shown for the valley K+. For the two-step processes, grey 
(black) solid lines indicate the first (second) step of the process. Also, in (b), two 
different cases of the possible two-step process, one involving an intermediate 
state in the high-energy band (sequence with the dark blue ball on the red 
high-energy band) and one only involving states in the low-energy bands, have 
been shown. The light blue (purple) circle denotes the hole (electron) in the 
final electron-hole pair, while the dark blue circle represents the intermediate 
virtual state (if relevant). Note that for any intermediate state |v) with energy 
ev/ Q, Q »  ev.

occupied state in the valence band into a virtual intermediate state (energy is not 

conserved at this stage), followed by another electron emission (or absorption) 

of the second photon with energy Q (Q). The one-step process is the usual 

inelastic scattering of an incoming photon on an electron with transfer of energy 

to the latter. As a result of both one and two-step processes, an electron-hole 

pair in the low-energy bands is created with the electron and the hole having 

almost the same momentum (p + q — q and p, respectively), since q ,q  p  

and the momentum transfer from light is negligible (v/c ~ 3 • 10 ). Therefore, 

p  + q  -  q  ~ p  and due to the approximately electron-hole symmetric band 

structure in the vicinity of Brillouin zone corners, the electron initial and final

energies e* and £/ are related, ey ~ -e,-.

To include the interaction of the electrons with photons, we construct the

canonical momentum [p -  e(A(r , V) + A (  "))],where and are
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the vector potentials of the incoming and outgoing light, respectively,

V  denotes the normalisation volume appropriate for the incoming photons and 

bq>Cjzii is an annihilation operator for a photon with in-plane momentum q, out- 

of-plane momentum component qz and polarisation I. We then expand the 

Hamiltonian H ^(p  -  e[A + A]) up to the second order in the vector potential and 

write down the interaction part,

Ai„, = n + A(r, n) + ejE  <5-2)

where j  = is the current vertex.

5.2 Theory of Raman scattering in graphene

To describe the electronic contribution to Raman scattering in bilayer graphene, 

we aim to calculate the spectral density g(co) and the quantum efficiency (inten­

sity) of the Raman scattering, I. The quantum efficiency describes the ratio of 

the flux of outgoing, inelastically scattered photons to the flux of the incoming 

photons, and is an integral, I = Jdcog{a;), of the spectral density g(cj) represent­

ing the probability for the incoming photon to scatter inelastically with energy 

Cl = Cl -  co, where co is the Raman shift. Hence, the quantum efficiency ex­

presses the total probability for single incoming photon to scatter inelastically 

on an electron and excite an electron-hole pair in the low-energy bands. The 

probability for the incoming photon to scatter with the Raman shift a; in a partic­

ular direction (defined by the momentum q of the scattered photon), is, in turn, 

characterised by the angle-resolved probability of scattering w(q). Finally, the
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scattering probability w(q) that one photon is scattered with the excitation of an 

electron-hole (e-h) pair in the final state is related, as woe \R\2, to the scattering 

amplitude R  of the Raman process. This scattering amplitude R  is a sum of two 

contributions: 8R due to the one-step processes (contact interaction) and R  due 

to the two-step processes.

5.2.1 Contribution of the contact interaction

The contact interaction scattering amplitude 8R results from the second term 

in the interaction Hamiltonian (5.2). It is characterised by operators d2H/dptdpj 

and hence, the first term in the Hamiltonian in (5.1) does not allow any contact 

interaction processes, as it includes only terms linear in the electron momentum 

p. The only contribution to the contact interaction comes from the second term

in the right-hand side of (5.1), which contains terms quadratic in p. Such a
2

contribution involves prefactor determining the smallness of the amplitude 

8R of one-step Raman scattering of photons with energy less than the band-width 

of graphene, ~ 6yo- Detailed calculations yield the contribution to the scattering 

amplitude due to the contact interaction obtained within the four-band model,

e2H2v2
d R =   _ X-d; (5.3)

6eoVyo vOQ

d  = (Zj; + l / x, l j x -  Z/y); £  = { £ x, £ , ) ;

IIK

/
7
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S
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5.2.2 Contribution of the two-step processes

To find R, we describe a two-step transition which involves an intermediate 

virtual state |v) with energy ev, as

2e0V  VQQ

The virtual state |v) may belong to any of the four bands, since an electron is 

excited from a state with momentum p  to a state with momentum p  + q or p  -  q 

depending on the accompanying photon process. In Eq. (5.4), the first (second) 

term corresponds to processes in which the photon is absorbed (emitted) in the 

first step and emitted (absorbed) in the second step of the process. Integration 

over time in those expressions can be performed by changing variables to t  = 

t' — t", which varies at the scale of co~l , co = Q — Q, and t = (T + t")/2, which 

varies at the scale of Q-1, O = (Q + Q ')/2 »  co. For incoming and outgoing 

photons, Q, C »  y\. We also concentrate here on the low-energy excitations in 

the final states with co c  j \ .  This allows us to expand factors ±̂ €v resulting 

from the integration over t  in powers of (ev/Q), keeping terms of the order of 1 

and (yi/O) (the latter appear when the virtual state is taken to be in the high- 

energy bands) and to perform summation over the intermediate virtual states
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of the process. Consequently, the amplitude R  takes the form of a matrix

5.2.3 The resulting Raman scattering amplitude

The scattering amplitude R  of the Raman process acompanied by electron- 

hole excitation is a sum of R  and dR. From the comparison of the corresponding 

prefactors Eq. 5.3, and VOC, Eq. 5.5, it follows that dR R, as

6yo »  Hence, we can neglect the contribution of the one-step processes,

Also, we are mostly interested in the low-energy properties of our material. 

To analyse the contribution of electronic modes toward the low-energy part of 

Raman spectrum with the photon energy shift co < yi/2, which is determined by 

the excitation of the electron-hole pairs in the low-energy bands with vp «: y lf 

we use the effective low-energy Hamiltonian, Eq. 2.12 in Sec. 2.3,

To characterise the excitation of the low-energy modes corresponding to the

e2H2vz  <
C oin a/o o

i z  tV \  /  /

R  = R  + d R * R . (5.6)

(5.7)
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transitions between low-energy band states described by H en, we take only the 

part of R  which acts in that two-dimensional Hilbert space, keep terms in the 

lowest relevant order in v p /y i 1 and y i/Q  1, and write down an effective 

amplitude R ê ,

^  ~ e0VQVQf5 \ az 1̂ X ̂  + Q \°xdy + °ydxP ' ^

We point out that the above matrix cannot be obtained within a theory con­

strained by the two-band approximation from the very beginning. Seemingly, 

one may try to define a contact-interaction-like term due to the terms quadratic 

in the electron momentum p  in the Hamiltonian in Eq. (5.7), which carries a
2 f - 2  2prefactor Such a prefactor may suggest a greater magnitude of scatter­

ing than prefactor e- ^ r  in the amplitude 7?eff above. However, the scattering 

amplitude obtained within the two-band model can only be applied to photons 

with Q < y i, which is hardly relevant for Raman spectroscopy since the latter is 

usually performed with laser beams using Q ~ 1.3 to 2.8eV [89-92,153-157].

5.3 ERS spectra in the absence of the magnetic field

To calculate the angle-resolved probability of the Raman scattering, w(q), we 

consider the ratio of the energy flux of the outgoing photons scattered into a 

state with momentum q, cf)̂ ut, to the energy flux of the incoming photons with 

momentum q, ĉ J1,
cb .

w(9) = 4 - -  (5-9)

The energy flux of the incoming photons is given by the number of photons

with momentum q, ng, found in volume V, each carrying energy Q, cjjj1 = - f -

The energy flux of the outgoing photons is described by the number of photons 

scattered in unit time, hg, and originating from an area S of the material, their
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energy Q and the speed of light, c, as cj)̂ ut = We assume that the only 

processes creating the outgoing photons in the state with momentum q are 

those under consideration here and therefore,

integrated out the electron states. Using Eq. (5.9) and the above relations, the 

angle-resolved probability of the Raman scattering, w{q « 0), is

where fi and f j  are filling factors of the initial and final electronic state, re­

spectively, and the spin and valley degeneracies have already been taken into 

account. This gives 1

Above, the first term with polarization factor Ss describes the contribution of 

photons scattered with the same circular polarization as the incoming beam. 

The second term, with polarization factor S0, represents the scattered photons 

with circular polarization opposite to the incoming beam.

^  the integration over the electronic momentum p we neglected the trigonal warping of the 
electronic dispersion caused by V3, Sec. 2.3. This is only important for very low energies. The 
density of states, apart from the vicinity of the Lifshitz transition, remains almost unaffected.

where we used Fermi's golden rule to include the scattering probability and

-  2VC1 
W cnH3Q

(5.10)

|t x f |2, s„ = 1 + (1 x r) ■ (r x f ).
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In turn, the angle-integrated spectral density of Raman scattering g(co) is

Here, the constant spectral density g as a function of co reflects the parabol- 

icity of the low-energy bands and thus, energy-independent density of states in 

the bilayer. This is different in monolayer graphene, where g(co) oc co, reflecting 

the energy-dependent density of states of electron-hole pairs [152]. The charac­

teristic of monolayer graphene crossed polarisation of in/out photons is retained 

in the case of the bilayer system.

Experimentally, constant spectral density g in undoped bilayer graphene is 

impossible to distinguish from a homogeneous background. However, if the 

chemical potential /i is not at the neutrality point, then transitions with co < 2p 

are essentially blocked. Although new processes, resulting in the creation of 

the intraband electron-hole pair excitations and very small co, are possible for 

\i ^  0, their contribution carries additional prefactor vjc  ~ ^  [149]. Explicit 

calculation performed for the monolayer graphene showed that the quantum 

efficiency of the intraband transitions was of the order of 10“15 [152]. In contrast, 

for chemical potential ju ~ 50meV (corresponding to additional carrier density 

no ~ 1.5 x 1012cm-2), the lost quantum efficiency due to the blocked interband 

transitions is, according to eq. (5.11), AJ ~ 10“12.

5.4 ERS spectra in quantizing magnetic fields

The quantization of electron states into Landau levels gives the Raman spec­

trum due to the electronic excitations, a pronounced structure which can be used 

to detect their contribution experimentally. We only consider here low-energy 

Landau levels, as at high energies the Landau level broadening due to, for ex-

(5.11)
6(co -  2y).
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ample, electron-phonon interaction, will smear out the LL spectrum. In strong 

magnetic fields, low-energy Landau levels are sufficiently described [70] by

2H2v2 f— —
en« = a — — Cn(n -  1),

A b

= for n -  0,1, Wn« =
V2 aijjn-2

(5.12)
for n > 2,

where Ag = VH/eB is the magnetic length, n is the Landau level index and a = + 

denotes the conduction and a -  -  the valence band. Also, ipn is the normalised 

n-th Landau level wavefunction. In a neutral bilayer, all LLs have additional 

fourfold degeneracy (two due to the electron spin and two due to the valley). 

Moreover, levels n = 0 and n = 1 are degenerate at e = 0 giving rise to an 8-fold 

degenerate LL. We can project our effective transition amplitude ^ eff onto the 

eigenstates Wn« to find the electronic Raman spectrum in the presence of a strong 

external magnetic field. This leads to the following selection rules for allowed 

electronic transitions from the initial level n~:

(;i)n ->n+; (ii)(n + 1) —> (n ± l)+. (5.13)

Among those, (z) is the dominant transition. These selection rules, represented 

schematically in Fig. 5.2, show that using Raman spectroscopy, one can probe 

different electronic excitations than in optical spectroscopy, where the selection 

rules are An = ±1 [69, 71]. For a neutral bilayer, the angle-integrated spectral 

density g(co) of Raman scattering in the magnetic field is equal to

{5-y

(§)2( i ^ )  ( ■ & )  [ £ 2y(<u"e°,+
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Figure 5.2: (a) Schematic drawing of allowed inter-LL transitions accompanying 
the Raman scattering. The solid (dashed) line represents the first dominant 
(weaker) transition 2~ <— 2+ (pair 2“ <— 0 and 0 <— 2+). (b) The low-energy 
electronic contribution to the Raman spectrum in bilayer graphene. The solid 
(dashed) line represents the spectrum in the presence (absence) of an external 
magnetic field and chemical potential p = 0 (p =£ 0). For the spectrum in a 
magnetic field, corresponding inter-LL transitions have been attributed to each 
peak.

Here, we use Lorentzian y(x) = n~lT/{x1 + T2) with a width specified by T to 

model the broadening of Landau levels. The term 5g(co) describes the spectral 

density of the (n T I)- —»{n ± 1)+ transitions, which is a correction to the dominant 

contribution due to the n~ —»n+ transitions given by the first term on the right 

hand side of Eq. (5.14).

An example of the low-energy electronic contribution to the Raman spectrum 

in the neutral bilayer in strong magnetic field is shown with a solid line in Fig. 

5.2(b). The dominant features are peaks due to the n~ —» n+ transitions with 

the first being the 2“ —> 2+ transition. Note that within the LL indexing scheme 

applied here, indices 0 and 1 are only used to denote one valley-degenerate level 

each (no a index is needed). The quantum efficiency of a single n~ —> n+ peak in 

Fig. 5.2(b) is approximately

L -
e2/AB\2 _ v4e5B

(5.15)
c2 €o nCl j tl2c4e2̂ Q2

per incoming photon, which at the field B ~ 10T gives ~ 10~12 for Q ~ leV
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Figure 5.3: Comparison of electronic contributions to the Raman spectra in 
neutral bilayer graphene for two different energies of incoming photons: (a) 
Q = leV, (b) Q = 2eV. For each case, total spectral density g(co) and contributions 
due to the n~ —> n+ and (n ± I)- - > ( « ;  1)+ modes are shown in the solid, dot- 
dashed and dashed line, respectively Intensity scale is the same on (a) and (b); 
values of the parameters used: v = 106m/s, y i = 0.4eV, B = 10T, and T = 0.012eV.

photons, comparable to similar transitions in monolayer graphene [152].

A weaker feature in Fig. 5.2(b) is the first and the only visible (n + I)- —> 

(n ± 1)+ peak due to both 2“ —»0 and 0 —>2+ transitions, positioned to the left of 

the 2~ —> 2+ peak. The quantum efficiencies of the (n ± I)- - » ( n ;  1)+ transitions 

are smaller by the factor (§-) in comparison to the n~ —» n+ transitions. This 

is different from the monolayer graphene case, where the corresponding ratio 

between quantum efficiencies of (n± l)~  —> (n+1)+ and n~ —»n+ transitions is (g j , 

much smaller than for the bilayer. The term 8g(<v) can be further emphasized 

by changing the energy of incoming photons Q. Shown in Figs. 3(a) and 

3(b), is a comparison of the total spectral density g(co) and contributions due 

to each mode separately, for two different energies of incoming photons, Q = 

2eV and Q = leV. The intensity scale is the same on both figures and in each 

case, the total spectral density g(co), the contributions due to the n~ —» n+ and 

(n ± 1)“ —> (n + 1)+ modes are shown in the solid, dot-dashed and dashed line, 

respectively. The dominant contribution, resulting from the Raman scattering 

accompanied by the ri~ —»n+ electronic transitions, is proportional to the inverse 

square of the incoming photon energy Q. Therefore, two peaks drawn with 

dot-dashed lines are roughly four times smaller on the right figure. The spectral
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density of the (n ± I)- 1)+ transitions is smaller by a further factor

in comparison to the n~ —> n+ transitions. Hence, this contribution, shown 

with dashed lines, is close to zero on the right figure, while on the left, the 

first of the two smaller peaks corresponding to symmetric transitions 2~ —> 0, 

0 —> 2+ and 3“ —»1, 1 —* 3+ is still visible in the total spectral density. Because 

of the contrasting polarization factors in Eq. (5.14), contributions of different 

modes, n~ —> n+ or (n ± 1)" —» (n =F 1)+, to the total spectral density could be 

separated using polarizers. If the polarizers were set as to collect only photons 

with circular polarization identical to that of the incoming photons, then the 

n~ —> n+ contribution would be measured. However, if only the photons with 

polarization opposite to the polarization of the incoming beam were detected, 

the (n + 1)“ —> (n ± 1)+ contribution would be determined.

Increasing the filling factor leads first to the 2- —> 0 and 3“ —»1 transitions 

being blocked when LLs with n = 0 and n — 1 are completely filled. Therefore, 

the height of the two corresponding (n± l)~  (n+T)+ peaks is halved (transitions

0 —> 2+ and 1 —>3+ are still allowed). Next to disappear are the first n~ —♦ n+ peak, 

that is 2~ —> 2+, and the remains of the first (n ± I)- —> (n + 1)+ peak, (due to 

the 0 —> 2+ transition) because of the filled LL 2+. Complete filling of each 

following Landau level results in the disappearance of the next n~ —> n+ and 

(n ± 1)" —> (n T 1)+ peaks.
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Chapter

Conclusions

In the previous chapters, we developed theories based on the tight-binding 

model for tl electrons, in order to describe the angle-resolved photoemission, 

magneto-optical absorption and electronic Raman spectra of bilayer graphene. 

The results for the first two can be compared to experimental spectra. Specifi­

cally, the constant-energy ARPES maps found in literature (in particular in the 

supporting on-line material to the article by Ohta and co-workers [55]), closely 

resemble those shown in the Fig. 3.3, 3.4 and 3.6. The presence of the asym­

metry can be deduced from the experimental spectra due to the appearance of 

the gap in the spectrum. The experimentally obtained ARPES spectra were also 

detailed enough for the magnitude of the direct interlayer coupling y \ to be 

extracted. Unfortunately, little experimental data does not allow testing of other 

predictions of our model, that is, whether the sign of y \ as well as magnitude 

and sign of y^ can be determined.

In the case of the magneto-optical absorption, the spectra shown in Figs. 

4.3(c) and 4.8 can be compared to those predicted and experimentally measured 

for optical absorption [69, 85, 88, 95, 158]. The main feature - the peak corre­

sponding to the onset of the transitions between the low-energy and split bands 

- is similar in both cases and allows for an independent check on the value of 

the coupling y \. However, it is very difficult to comment on the accurateness 

of the main point of the considerations in Chapter 4 - the importance of the
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gate-induced interlayer asymmetry in the interpretation of the experimental 

results of the work of Henriksen et al. [63]. Although the presented theory 

suggests the presence of the gap, it is definitely not the only factor responsible 

for the observed deviations from the 'neutral bilayer' model. In fact, some of the 

many-body theories show significantly better agreement with the experiment 

[146,147].

The situation is different for the electronic Raman spectroscopy. Although 

inelastic scattering of light is a widely used experimental technique for char­

acterisation of carbon materials and has been employed for graphene systems 

specifically to investigate not only the electron-phonon coupling but also num ­

ber of layers, disorder or doping level, the electronic contribution to the Raman 

spectra has not yet been examined in detail. Therefore, theory presented in 

Chapter 5 goes one step beyond being tested by comparison to available mea­

surements. The absolute numbers predicted for the quantum efficiencies of the 

inelastic light scattering accompanied by electron-hole excitations suggest that 

some of the features discussed may be observable. In our opinion, in the light 

of the complications in the interpretation of the experimental results of experi­

ments of the type of the one by Henriksen and co-workers, examination of the 

ERS spectra in an external magnetic field would provide an important addi­

tional way of investigating the Landau level structure of bilayer graphene. This 

would also give more insight on the usefulness and limits of the tight-binding 

approach for graphene systems.

Note, that in all three cases presented, it was important to choose as the start­

ing point for the theory, the four-band model. The two-band approximation, 

neglecting the influence of the high-energy states, does not capture essential 

features of the spectra discussed in any of the chapters. For ARPES, it cannot 

describe the asymmetry in the intensity between the two-peak pattern (see Fig. 

3.3 and discussion in Sec. 3.3.2) even at relatively low energies. The high-
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energy bands are essential in order to obtain the self-consistent values of the 

interlayer asymmetry both in the absence and presence of the magnetic field. 

The two-band approximation, for obvious reasons, also cannot describe the 

inter-Landau-level transitions between the low-energy and split bands caused 

by absorption of incoming photons. Finally, for inelastic scattering of photons, 

we showed that the ERS scattering amplitude for experimentally relevant ener­

gies of the incoming beam cannot be properly described within the two-band 

approximation alone. Due to the importance of the high-energy bands in the 

two-step processes, proper results can only be obtained within the full four- 

band model. All those arguments show how carefully any problem related to 

the electronic structure of bilayer graphene has to be considered before only the 

two-band approximation is used to predict or explain its results. Good under­

standing of the physical processes involved is required if the theoretical model 

is to be correct and useful.
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