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Abstract

A single server is faced with a collection of jobs of varying duration and urgency. 

Before service starts, all jobs are subject to an initial triage, i.e., an assessment of 

both their urgency and of their service requirement, and are allocated to distinct 

classes. Jobs in one class have independent and identically distributed lifetimes 

during which they are available for service. Should a job ’s lifetime ex, , 3 before 

its service begins then it is lost from the system unserved. The goal is to schedule 

the jobs for service to maximise the expected number served to completion. Two 

heuristic policies have been proposed in the literature. One works well in a "no 

loss" limit while the other does so when lifetimes are short. Both can exhibit poor 

performance for problems at some distance from the regimes for which they were 

designed. We develop a robustly good heuristic by an approximative approach to 

the application of a single policy improvement step to the first policy above, in 

which we use a fluid model to obtain an approximation for its value function. The 

performance of the proposed heuristic is investigated in an extensive numerical 

study. This problem is substantially complicated if the initial triage is subject 

to error. We take a Bayesian approach to this additional uncertainty and discuss 

the design of heuristic policies to maximise the Bayes’ return. We identify prob

lem features for which a high price is paid for poor initial triage and for which 

improvements in initial job assessment yield significant improvements in service 

outcomes. An analytical upperbound for the cost of imperfect classification is de

veloped for exponentially distributed lifetime cases. An extensive numerical study 

is conducted to explore the behaviour of the cost in more general situations.
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Chapter 1

Introduction

1.1 Motivation

This January when I came back from vacation, I was stranded in London Heathrow 

airport for two days. Due to the very bad weather, all domestic flights and many 

international ones were cancelled. The passengers had to  wait in massive queues 

for accommodation vouchers, alternative transportation arrangements, or some 

other purposes. The amount of passengers was so huge th a t they significantly 

outnumbered the staff, resulting in excessive waiting times everywhere. Many 

people left the queues, taking with them lots of unhappiness and complaints. A 

challenging question faced by the British Airways management is then how to 

optimally deploy the very limited resources (staff, aircraft, coaches, hotel rooms, 

etc.) so as to improve the service level as much as possible.

Similar situations are common in our daily lives. You may experience excessive 

waiting for service and run out of patience somewhere and sometime; for instance, 

in hospitals, when ringing call centres, or when checking out at the supermarket. 

All these situations are characterised by services provided by relatively scarce 

resources to  im patient customers. Key features (eg. processing time, patience) are 

random, and the management challenge concerns the deployment of these resources 

over time to  optimize some cost criterion. There are some other circumstances, 

which though very rare, are of crucial importance. One example relevant to the
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theme of this thesis is the management of scarce medical resource after mass 

casualty incidents (MCI), like an earthquake or a terrorist bombing. After such 

an incident, a significant number of injuries are caused and these may overwhelm 

existing medical resources immediately. To support efficient resource allocation, 

all patients are subject to an initial triage at the scene, namely an assessment 

of the severity of their conditions, and are classified into distinct priority groups. 

Following triage, a central challenge concerns how the patients should be scheduled 

for treatm ent such tha t the total expected number of patients served successfully 

is maximised. The decisions must deal with the uncertainties associated with 

the patients’ conditions, like the criticality of their condition and the amount of 

resource they will consume. Poor schedules may lead to preventable deaths. In 

many proposals, patients are simply treated according to a static order of their 

priority as determined at the outset. Recent literature on emergency response has 

argued the importance of developing dynamic scheduling policies (Arnold et al.

[2004], Frykberg [2002], and Argon et al. [2008]).

Triage following an MCI must necessarily be undertaken speedily. As Frykberg 

[2002] has commented: “ the more time it may take to find those needing imme

diate care, ...the greater the likelihood of preventable deaths caused by delay in 

treatm ent of the most severely injured.” However, it may well be the case that 

determination of the actual criticality level of a patient in a short timeframe is chal

lenging, and tha t the initial triage is subject to significant levels of error. Indeed, 

in a review related to terrorist bombing events, Frykberg and Tepas [1988] found 

th a t on average 59% of those classified as critical were actually non-critical, with 

a 0.05% error rate for the reverse. In medical terminology, these two triage errors 

are called overtriage and undertriage, respectively. Recently Turegano-Fuentes 

et al. [2008] mentioned in their bomb response assessment tha t “ it is difficult to 

distinguish between casualties requiring immediate and delayed treatm ent by a 

rapid examination in the field ” and reported inital chaos due to overtriage. It has 

been shown by Frykberg and Tepas [1988] th a t the accuracy of triage can have a
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significant impact on casualty survival in MCIs.

3

1.2 Challenges and Objectives

The situation envisaged in the previous section can be thought of as an application 

of stochastic scheduling of impatient jobs in a clearing system. A simple m athe

matical representation can be developed as follows. Please note th a t we shall use 

the term s jobs and customers interchangeably in this thesis to denote the objects 

seeking service. A collection of jobs is seeking service which is provided by a single 

server. There are two major sources of randomness related to each job. Firstly, 

its service is of uncertain duration. Second, the jobs lifetime, namely the period 

of time during which it is available for service, is also uncertain. In most of our 

models, we assume th a t a job abandons the system unserved if its service does not 

begin before the expiration of its lifetime. Further, all jobs whose service begins 

are guaranteed to be served to completion. No service preemptions are allowed. 

Each job is subject to an initial triage on its service requirement and its urgency 

at time zero, and is placed in one of J  classes. Suppose for the moment tha t 

the classification is without error. Jobs in each class j  are assumed to have inde

pendent and identically distributed (i.i.d.) lifetimes (denoted X j  ~  Ff) and i.i.d. 

service times (Y) ~  Gf).  The goal is to optimally schedule service such tha t the 

total number of successful service completions achieved until the system is cleared 

is maximized. Intuitively, it seems clear tha t priority should be given to jobs with 

small service times (since these delays others less) and/or small lifetimes (since 

these are most urgent). Precisely how this should be done to achieve optimality is 

far from clear, however.

Argon et al. [2008] have shown tha t when lifetimes and service times are suit

ably agreeable (jobs with the shortest lifetimes also have the shortest service times) 

then the optimal policy always gives highest priority to the time-critical job regard

less of the system state. Such special results notwithstanding, the central challenge



C H APTER 1. INTRO D U CTIO N 4

concerns the development and evaluation of strongly performing heuristic policies. 

The literature contains discussions of two candidate policy classes. Glazebrook 

et al. [2004] develop a simple static policy (hereafter denoted 7rs ) which operates a 

fixed priority among the job classes. The class with the smallest associated value of 

E ( X j ) E ( Y j ) is accorded the highest priority (jobs scheduled first) while tha t with 

the largest associated value has lowest priority (jobs scheduled last). This simple, 

intuitive policy is shown to be asymptotically optimal for problems with exponen

tially distributed lifetimes in a "no prem ature job loss" limit (mim,- E ( X j ) oo). 

In contrast, Argon et al. [2008] develop a myopic heuristic (hereafter denoted n M) 

which performs well in a "heavy prem ature job loss" limit (maxj E{Xj )  —> 0). 

While these policies perform satisfactorily in the neighbourhood of the regimes for 

which they were designed, they are non-robust and can exhibit poor performance 

more generally.

The textbook approach to solve this problem exactly is to model it as Semi- 

Markov Decision Process (SMDP) and to apply the methods of stochastic dynamic 

programming (DP). However, since the problem size increases exponentially fast 

with the number of job classes, the computational effort required is prohibitive in 

most cases of practical size and so the implementation of DP methods is infeasible. 

Strongly performing heuristic solutions are thus in order in such circumstances. 

An im portant stream of techniques to aid this quest falls under the title of approx

imate dynamic programming (ADP) (Powell [2007]). As far as we know, there is 

not any universal approximation strategy th a t works for every problem. Instead 

customised ADP algorithms are usually developed by exploiting specific problem 

structure. In this regard, one primary objective of this thesis is to design efficient 

ADP algorithms to render feasible the task of the development of robustly good 

heuristic policies for the triage problem.

This problem is complicated very substantially by the introduction of classifi

cation errors. The jobs which are assessed and placed into one class could in fact 

have many different characteristics. Due to this uncertainty, the distributions Fj
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and Gj  are no longer appropriate descriptions of the lifetimes and service times 

of all jobs assessed as belonging to class j .  We shall use i to index the true class 

a job belongs to, and accordingly Xi(Yi) their lifetimes (service times). Moreover, 

the consequences resulting from any action are more uncertain. Any error-prone 

triage problem is much harder to analyse than triage with perfect classification 

and has been rarely studied in the literature.

There are two im portant contributions which address classification errors when 

controlling multiclass queueing systems. In neither case does the model incorpo

rate impatience. Van der Zee and Theil [1961] consider a single server queue with 

two priority classes of jobs. Incoming jobs can be misclassified. To minimize the 

expected waiting time, they propose a threshold assignment rule to allocate the 

uncertain job to either class 1, class 2 or some mixed class. After classification, 

jobs are served in the fixed order of class 1 first, followed by the mixed class, and 

then class 2. The other contribution is due to Argon and Ziya [2009], who con

sider a similar priority assignment problem. Each arriving job sends out a signal 

which gives partial information (of a stochastic nature) about its true identity. On 

this basis the job is placed into a class. The authors argue tha t if jobs are parti

tioned into more distinct classes, the long-run average waiting cost achieved will 

be decreased. Both contributions focus on optimal priority assignment strategies 

to alleviate the possible impact of imperfect information. Neither considers job 

scheduling afterwards and simply offers service in some static priority order. As 

we have stressed earlier, static service policies can have very poor performance, 

especially when impatience is a model feature.

To this end, the thesis aims at the development of strong performing heuristic 

service policies in the presence of classification errors. Solving such a problem is 

far from a trivial task. Further, we are very interested in understanding the nature 

of the additional cost incurred by these errors, and exploring system features for 

which this penalty may be considerable.
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1.3 Literature R eview

6

We first explore the general literature on the scheduling of im patient jobs. Par

ticular attention is then given to clearing systems which are assumed to have no 

new arrivals over time. We also include contributions on admission control and 

dynamic routing of im patient jobs. These two decisions are often crucial compo

nents and precede job scheduling in the three levels of dynamic queueing systems 

control. Since such problems can usually be solved by ADP, a review on this 

theme is presented next from the algorithmic perspective. To conclude this sec

tion, we summarize previous contributions on sequential decision making problems 

with unknown system parameters, which is the broad problem class in which our 

error-prone triage problem sits. ADP approaches are an im portant source of solu

tion methods for these problems also.

1.3.1 Stochastic Scheduling of Impatient Jobs

Impatience can be seen in various real life situations. A typical example is the 

above mentioned management of medical resource in the afterm ath of a MCI. 

Another example in the healthcare setting concerns a hospital blood bank. If 

the blood stored in the bank is not used within a certain time of its collection, 

it may be unusable. In call centres, people will hang up if they are required to 

wait excessively for service. In banks or supermarkets, customers may abandon 

a queue if not served within some time of their arrival. In telecommunications, a 

message is considered lost if its transmission is not completed before some deadline. 

Interesting examples in a military context concern enemy targets which may move 

out of reach if not dealt with promptly.

G arnett et al. said in their work on a call centre design problem tha t "a major 

drawback of models th a t ignore abandonment is tha t they either distort or fail to 

provide information which is im portant to call centre managers." (Garnett et al. 

[2002]). A lot of research attention has been paid to the incorporation of impatience
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in the modelling of manufacturing and service systems, and particularly, in resource 

management problems where limited resources are allocated to different tasks over 

time. Indeed there is now an extensive literature concerning the scheduling of 

im patient jobs in various application domains.

Two quite distinct approaches to the modelling of impatience can be found in 

the literature. One concerns a deadline to the end of service; the other a deadline to 

the beginning of service. The latter is also referred to as the lifetime or availability 

time. Under this approach, a common assumption is tha t jobs will not abandon 

the system once their service commences. In this thesis, we primarily adopt the 

second definition. Unless otherwise specified, the terms lifetime and availability 

time are used interchangeably throughout.

Before proceeding further, we pause to remark th a t the situation envisaged in 

this thesis should be clearly distinguished from cases where jobs do not abandon 

the system even though some deadline may have already passed. The objective in 

such cases is usually to minimize the total or long run average number of tardy 

jobs, or to minimize some cost function based on job tardiness. For im portant 

examples, see Glazebrook [1983], Pineclo [1983], Boxma and Forst [1986], Em

mons and Pinedo [1990], Bhattacharya and Ephremides [1991], Jiang et al. [1996], 

Doytchinov et al. [2001], Van Mieghem [2003], and Pinedo [2008]. Moreover, all 

the literature covered in this thesis concerns stochastic scheduling problems. We 

shall not address deterministic job scheduling. Interested readers are directed to 

Pinedo [2008] who provides a comprehensive account of job scheduling problems 

in various contexts.

An early work related to impatient job scheduling is due to Panwar et al. [1988], 

who consider the transmission of voice packets over a packet-switched network. If 

the customer does not receive packets in time, they become useless and are lost. 

The objective is to maximize the long run fraction of successful customer services. 

It is assumed th a t upon arrival each packet declares an exact value of its deadline, 

namely the time available from its arrival to the beginning of its service. Both the
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inter-arrival times and the service times are assumed to be independent and iden

tically distributed. No service preemptions are allowed. The authors show tha t 

when enforced idle times are prohibited, the shortest time to extinction (S T E ) 

policy is optimal for M / G / l  queues and for a special case of G / D / l  queues. In 

the cases where enforced idle times are allowed, optimal policies, if they exist, 

must use the shortest time to extinction with inserted idle times ( ST El ) .  This 

problem has been further studied by Bhattacharya and Ephremides [1989]. They 

claim th a t when service times are exponentially distributed, the S T E  policy is, 

among all nonpreemptive and nonidling policies, the one to minimize the expected 

number of lost customers over any time interval. A similar argument holds for 

S T  E l  policies when enforced idling is allowed. They also assert tha t when there 

are no new arrivals, idling is not worthwhile and the S T E  policy is optimal among 

all nonpreemptive policies. When service preemptions are allowed, a preemptive 

version of S T E  is optimal in the general class of nonanticipative policies. These 

results are true whether the job deadline is defined as the latest service commence 

time or the latest service completion time. More recently, Shakkottai and Srikant 

[2002] have studied the scheduling of packets over a multiple channel wireless net

work. They argue tha t the results from wireline networks cannot be carried over 

to wireless networks. The S T E  policy is not necessarily optimal in the wireless, 

domain. The main reasons are that the wireless channel is not perfect and tha t 

errors are location dependent. Packets cannot be transm itted through a bad chan

nel, so the channel state (good, bad) must be considered in the scheduling policy. 

Assuming th a t the channel state is perfectly known, the authors show tha t a S T E  

policy implemented only to good channels is nearly optimal for a class of deter

ministic arrival processes. Further, when there are no new arrivals, this channel 

state dependent S T E  policy is indeed optimal in most cases.

The three works mentioned in the preceding paragraph all assume tha t job 

deadlines are deterministic. This may be a reasonable assumption for communi

cation network problems, but the degree of job impatience is generally uncertain.
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The exact lifetime of a patient cannot be known a priori; the waiting time before 

a customer leaves a service queue or hangs up an unanswered phone call is not 

fixed, and so on. Therefore static policies like S T E  do not work well any more, 

except in some special cases. The problems in the stochastic impatience setting 

are usually very hard and optimal policies are not readily available in many cases. 

A ttention has thus been turned to the development of effective heuristics.

Glazebrook et al. [2004] propose a dynamic heuristic policy for a Markovian 

multiclass single server queueing system with abandonment. Customers arrive in 

independent Poisson streams. Each customer class has service requirements which 

conform to some known exponential distribution and availability times are also 

exponential. Customers abandon the system as soon as their availability times 

have expired, whether in service or not. A reward is earned upon each successful 

service completion. The objective is to schedule customers for service to maximize 

the average reward rate. Gaver et al. [2006] consider a very interesting schedul

ing problem in a military setting where service completions cannot be perfectly 

observed. They consider a single server system with multiple classes of uncertain 

time-critical tasks (enemy targets). The service is to detect, classify and attack 

these hostile threats. Each task in the system has a class dependent, exponen

tially distributed availability time for service. The server must process the tasks 

effectively and efficiently. As a result, it is necessary to control the amount of 

service given to each. They propose one myopic policy and one Markovian pri

ority heuristic which allocates a fixed amount of processing time to jobs within 

each class. A special case of this problem tha t has only a single class of tasks is 

studied by Glazebrook and Punton [2008]. They propose two dynamic heuristic 

policies for the determination of processing times. In a different situation, the cus

tomers whose deadlines have expired will not abandon the system automatically. 

Instead they are removed from the queue by the scheduler to avoid wasting server 

resources. Zhao et al. [1991] consider such a problem and assume tha t availability 

times have a concave cumulative distribution function. A scheduling policy must
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decide not only how customers should be served, but also how and when customers 

should be rejected from the system.

All studies reviewed so far concern situations in which a stream  of new jobs 

arrive for service over time. The clearing system model alluded to in Section

1.2 posits an amount (possibly large) of urgent work, arising perhaps as the re

sult of some natural or man-made disaster, which is present ab initio and which 

must be accomplished with limited resources. Direct precursors of this thesis in

clude the studies of Glazebrook et al. [2004] and Argon et al. [2008]. The former 

considers the scheduling of a batch of im patient jobs in a single server clearing 

system. Each job has an exponentially distributed availability time, but its pro

cessing time distribution can be arbitrary. Every successful service completion 

yields a job dependent reward, and the objective is to maximize the expected total 

reward received until the system is cleared. They propose a static permutation 

policy and prove its convergence to optimal in a no loss limit via an interchange 

argument. The la tter contribution emphasises applications concerning the use of 

limited medical resources after MCIs. Patients are placed into different priority 

classes after a triage process, namely an assessment of their urgency for medical 

attention. Lifetimes and service requirements are class specific and are both expo

nentially distributed. The authors develop myopic service polices which have been 

shown to work well when loss rates are high relative to service rates. A slightly 

different version of this problem is due to Glazebrook and Mitchell [2002], who 

consider the scheduling of im proving/deteriorating jobs in a clearing system. Jobs 

improve (namely, more close to completion) while being processed, but deteriorate 

and can even abandon the system whenever service is allocated elsewhere. The 

goal of scheduling is to maximize the total expected discounted reward.

We now move beyond scheduling and give a review of contributions on admis

sion control and dynamic routing of impatient jobs for service. Admission control 

concerns decisions on whether jobs are allowed to enter a queueing system. In a 

multi-queue situation, a routing decision is then made to send the adm itted jobs
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to specific service stations. Ward and Kumar [2008] consider the admission control 

of a G I / G I / l  queue with im patient customers who have a common exponentially 

distributed deadline before service completion. The controller must decide whether 

to adm it an arriving customer for which some payment is received. However, a 

much larger refund must be paid to any adm itted customers who subsequently 

renege after waiting too long without being served. The authors have shown tha t 

a simple barrier policy is asymptotically optimal under some stated conditions on 

the arrival process. Movaghar [2005] considers the problem of dynamically routing 

arriving im patient customers to parallel queues with identical servers. No jock

eying among queues is allowed, and within each queue customers are served in a 

first-come-first-serve (F C F S ) fashion. Customer deadlines are i.i.d. and gener

ally distributed. It is shown tha t when the deadline distribution meets a certain 

condition, the policy of joining the shortest queue minimizes the expected number 

of lost customers during any finite interval in the long run. Recently, Glazebrook 

et al. [2009] have developed heuristic policies for both the admission control and 

subsequent routing of impatient customers seeking service. They assume a Marko

vian model, where interarrival times, service times and availability times are all 

exponentially distributed.

Another contribution due to Lillo [2001] considers the optimal control of an 

M / G / l  queue with impatient customers by means of turning the server on and off. 

Customers are segmented into two priority classes. The higher priority customers 

are highly im patient in tha t they only enter the system if the server is on and 

idle upon their arrival; otherwise they leave the system immediately. The lower 

priority customers have zero impatience. The paper shows that, in the class of 

policies which always turns the server off when the system is empty, the optimal 

one is to tu rn  the server back on when both of two linear functions of the number 

of lower priority customers present in the system attain  non-positive values.

There is now a considerable literature tailored to call centre applications. Bas- 

samboo et al. [2005] consider the admission control and dynamic routing of mul
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ticlass incoming customers to a group of server pools, each of which is qualified 

to process only a certain customer class(es). Arrival rates are subject to random 

changes. According to this paper, if appropriate scaling is applied to the system 

param eters (arrival rate, service rate, abandonment rate) or the number of server 

pools, the original problem can be well approximated by a stochastic fluid model. 

The routing and admission control decisions are then determined by a simple lin

ear program derived from the fluid approximation. The authors are able to derive 

a control policy for the original system and prove tha t it is asymptotically optimal 

for the minimisation of the expected cost over a finite horizon. This problem is 

extended in a subsequent paper (Bassamboo et al. [2006]) to incorporate decisions 

concerning the number of servers to be employed in each server pool. In previous 

literature, the staffing problem is considered separately from the admission and 

routing problems due to the complexity of addressing them together. The paper 

assumes th a t all incoming customers are adm itted and tha t the system consists of 

two types of costs, namely personnel costs and abandonment costs. Again, they 

propose strongly performing staffing and routing policies based on an asym ptot

ical analysis in a limiting param eter regime. Helber and Henken [2010] address 

simultaneously staffing and the shift scheduling of multiskill agents in a contact 

centre. In contrast with telephone call centres, contact centres can be reached by 

customers over a variety of media, like phone, email, instant message and so on. 

They propose simulation optimization approaches and develop policies which are 

shown to work best for medium to large sized contact centres.

1.3.2 Approximate Dynamic Programming

A standard approach to stochastic scheduling problems is to model them as Markov 

Decision Processes (MDP) and then apply the methods of DP. Extensive and 

mathematically rigorous treatm ents of MDPs can be found in Puterm an [1994] 

and Tijms [1994]. The foundation of dynamic programming is the well known
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Bellman equation, which enables com putation of the cost-to-go function  or value 

function  in a recursive fashion. Expressed in detail, it expresses the maximum

the payoff from some immediate action and the maximum reward at the next

where s is the current system state, a the action taken at this state, p (s '|s, a) the

a is applied. We use D and A(s) for the state space and admissible action space 

respectively. E (s) is the value function evaluated at state s. Note th a t P is the 

discount factor and lies between 0 and 1.

solving these equations, we compute the value at all states, and simultaneously an 

optimal policy which determines the best action to take in each state. Solution 

methods for the Bellman equation include policy iteration, value iteration, and 

linear programming. However, the notorious drawback of DP, the curse of dimen

sionality (Bellman [1961]), means tha t the exact solution of the Bellman equation, 

or even storage of the results, is infeasible for a very wide range of problems. The 

computational and storage requirements grow exponentially with the dimensional

ity of the state space. In such situations, good suboptimal heuristic solutions are 

thus in order. Various methods have been proposed for this quest and have been 

proven to work successfully in specific applications.

In this thesis, we primarily focus on methods which centre on the development 

of an approximation to the value function. This stream of methods have been well 

studied and have earned different names. The control theory community uses the 

term “neuro-dynamic programming”, as named after the neural network which is

to tal reward (for finite horizon problems) or the maximum total discounted/long 

run average reward (for infinite horizon problems) at a system state in terms of

state which results from these actions. In the infinite horizon discounted reward

discrete state space case, it can take the form

max
a £A( s )

( l . i )

one step transition probability, and R(s,  a) the reward earned at state s if action

It is clear from (1.1) tha t there is one Bellman equation for each state. By
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used in the value function approximation. An im portant book on this theme is 

due to Bertsekas and Tsitsiklis [1996]. The artificial intelligence community calls 

it “reinforcement learning” (Sutton and Barto [1998]). In this thesis we will use 

the term  “approximate dynamic programming”, which has been adopted by the 

operational research community. A recent book due to Powell [2007] provides a 

comprehensive account on models, algorithms and applications of ADP.

Among various approximation schemes, the simplest one is known as the lookup 

table representation, in which the approximate values, say P (s), are stored in a 

table for each discrete system state s. Such a simple representation still suffers 

from the curse of dimensionality. For a problem with a fairly large state space, 

the resulting lookup table will be huge, even though the values in many states 

are unlikely to be used at all under optimal policies. To get around this issue a 

simulation based value iteration algorithm has been developed. This algorithm 

updates the approximation iteratively for the states on the basis of simulated tra 

jectories. The use of simulation here will help to generate representative states 

so th a t the computational effort is concentrated on them rather than on the en

tire state space. Detailed discussion of such algorithms is given in Bertsekas and 

Tsitsiklis [1996]. Another widely used technique is to aggregate states so as to 

have a simpler lookup table. Bean et al. [1987] use a fixed level of aggregation. 

Adaptive state aggregation is considered by Bertsekas and Castanon [1989] and 

Singh et al. [1995]. The latter also propose a soft state aggregation strategy. The 

contribution due to Lambert III et al. [2004] proposes an aggregation method by 

which the solutions produced can be directly implemented to the original problem. 

The otherwise essential step, disaggregation, is thus not required.

A more efficient scheme, which is called compact representation, maps the state 

by an approximate value function by constructing some parametrized functions 

V(s,  6), where 9 is a vector of parameters. To be attractive the size of the param

eter vector needs to be necessarily much less than tha t of the state space. Only 

these param eters and the general structure of the function are stored, and the
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approximation is generated only as required.

There are two ingredients in this scheme. First, an approximation architecture 

needs to be selected. In a general sense there are two categories of architectures, 

namely, linear and non-linear. An im portant example of the la tter is a neural 

network (Bertsekas and Tsitsiklis [1996]). A notable success story of using neural 

networks is an application to develop a policy for backgammon by Tesauro [1992]. 

In a linear architecture, the approximation is expressed as a linear combination of 

a set of basis functions which are weighted by the param eter vector 9. Basis func

tions are mappings from state variables to the real line and can be nonlinear. They 

are selected to capture system features, namely, im portant aspects of the system 

state. The determination of the architecture or basis functions requires a lot of 

insight on the problem structure. A nice discussion is given in Bertsekas and Tsit

siklis [1996], who have suggested tha t linear architectures should be used whenever 

possible. Keller et al. [2006] explore strategies for the autom atic construction of 

basis functions.

Once the architecture is fixed, the parameters are tuned by some statistical 

methods. Please be aware tha t a variant proposed by Preux et al. [2009] also 

tunes the architecture itself. There are a wide range of param eter fitting methods 

whose performance varies for different approximation architectures. Bertsekas and 

Tsitsiklis [1996] provide a comparison study of alternative methods. Some impor

tan t examples introduced in this book include gradient algorithms, least squares 

methods and Kalman filtering (see also Choi and Van Roy [2006]). For a com

prehensive discussion of statistical learning methods readers are referred to an 

excellent book due to Hastie et al. [2009].

We are still one step away from developing practical approximate DP algo

rithms. There are no training data pairs available to perform the param eter fit

ting (in fact, our objective is to generate those data pairs). We neither know if 

the approximation converges, and if it does, how close the approximation is to 

the real optimum. In this regard, an im portant type of algorithm must be syn
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thesized into dynamic programming, namely the stochastic approximation method. 

These methods provide a theoretical framework for iterative estimation of the value 

functions (in the lookup representation) or the param eter vector (in the compact 

representation) based on randomly sampled information. They are fundamental 

tools to analyze the convergence properties of approximate DP algorithms. More 

details are given in Bertsekas and Tsitsiklis [1996]. A challenging question in these 

methods concerns the selection of optimal stepsizes, which are used to smooth 

old estimates with new observations. Powell [2007] gives a thorough discussion 

of this challenge. A more comprehensive treatm ent of general stochastic iterative 

algorithms can be found in Kushner and Clark [1978] and Benveniste et al. [1990].

We are now ready to introduce approximate value iteration algorithms (AVI). 

In a typical iteration of such an algorithm, the approximate value functions are 

updated at a selected subset of representative states. We write

Vk+i(s) = max <J R(s,  a) +(3 V 'p f s 'l s ,  a )V { s \ 9 k) 1  , Vs G S k. (1.2)

The subset Sk can be generated by either simulation or state sampling. Some 

strategies for the la tter are presented in Powell [2007]. If the expectation in (1.2) is 

tractable, the update can be done exactly, otherwise simulation is used to estimate 

the expectation and the update is done' approximately. Based on the values of 

1 4 +1(5 ), s E Sk, a new set of parameters 64+1 for the approximation function are 

fitted by (for example) least square methods. The above steps are then repeated 

recursively until the algorithm converges.

Such AVI algorithms were proposed almost as early as dynamic programming 

itself. Bellman and Dreyfus [1959] approximate the value function by polynomials 

to accommodate the very small amount of computer memory available then. W hitt 

[1978] reduces a large scale MDP model to a smaller one by compact representa

tion. See also Reetz [1977]. A more recent contribution due to Choi and Reveliotis

[2005] considers a relative value function approximation for long run average re

ward problems. The application is to a job scheduling problem in a capacitated
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re-entrant line, which is modelled as a continuous time Markov decision process. 

The authors use a linear approximation architecture and dem onstrate tha t it is a 

promising solution method for the problem considered. A discussion on feature 

selection strategies is also presented. For AVI algorithms, a known problem is the 

lack of guaranteed convergence. In other words, there may not exist a unique fixed 

point. De Farias and Van Roy [2000] show th a t approximate value iteration should 

not be expected to converge and present two counter examples. Nevertheless, they 

propose a variant of AVI which exploits temporal difference (TD) learning and 

prove th a t this variant is guaranteed to possess at least one fixed point. However, 

this property does not ensure convergence. Temporal difference learning is a simu

lation based policy evaluation method. More details will be given later. Tsitsiklis 

and Van Roy [1996] also propose two variants of their AVI algorithms. One is 

based on a lookup table representation in feature space, while the other employs 

a linear feature based architecture. A proof of convergence of both algorithms 

is provided. Bounds from the optimal performance are developed to assess their 

accuracy. Roubos and Bhulai [2010] approach a problem concerning the control 

of a time-vary queueing system by AVI. A counter-intuitive result is tha t state 

disaggregation is preferred to state aggregation in this problem. They argue that 

their approximation is more accurate when information from more state variables 

is captured.

Another type of algorithm, called approximate linear programming (ALP) and 

first introduced by Schweitzer and Seidmann [1985], endeavours to find a value 

function approximation directly by solving a linear program. They generalize the 

exact linear programming approach by replacing the value functions by linear 

param etric approximations. The obvious advantage is a drastic reduction in the 

number of variables, from the size of state space to th a t of the param eter vector. 

However, the number of constraints is still prohibitive. A natural response to this 

challenge is again to concentrate on a subset of states. A second approach is to 

apply general cutting plane algorithms.
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De Farias ancl Van Roy [2004] propose a sampling scheme to generate a much 

smaller subset of constraints. The resulting problem is called a reduced linear 

program (RLP), and is shown to be not only practically solvable, but also to have 

optimal solutions adequately close to those of the original ALP. Under certain con

ditions, the constraints to be sampled only grow polynomially in the number of 

param eters and are independent of the original number of constraints. Trick and 

Zin [1993] approach a continuous state space stochastic dynamic program by dis

cretization, and solve the discretized problem by ALP with constraint generation 

methods. They claim tha t one benefit of using ALP in this situation is the avail

ability of the shadow prices, which are used to generate an efficient discrete grid 

at no extra computational cost. Much literature on ALP exploits specific problem 

structure. Morrison and Kumar [1999] investigate the special features of transition 

probabilities of a queueing network and construct a new ALP in which only a small 

number of constraints are active. Guestrin et al. [2003] exploit two structures in a 

factored MDP problem, “additive” and “context-specific”, which yield an efficient 

and accurate linear approximation architecture to the value functions. Further, 

the original problem can be represented exactly by another LP with exponentially 

less constraints.

It is a known fact tha t the state-relevant weights appearing in the objective 

function have no influence on the solutions in the exact LP algorithms, and thus 

can take arbitrary positive values. This property, however, does not carry over to 

their approximate counterparts. The role of these weights is explicitly explored by 

De Farias and Van Roy [2003]. They have shown th a t these values have significant 

impact on the scalability of the ALP algorithms. Guidance on the weight selection 

strategies for practical problems is provided. This contribution is also the first to 

evaluate approximation quality by developing error bounds against best possible 

approximations.

Both AVI or ALP aim at approximating the value functions associated with the 

unknown optimal policy, which is a non-trivial task in many cases. In contrast,
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approximating the value functions associated with a given policy can be much 

more straightforward. We call these policy value functions. This observation 

yields a very rich type of algorithm, approximate policy iteration (API). Generic 

API starts with a chosen policy and a fixed approximation architecture to the 

policy value function. The value functions of this policy are estimated by Monte 

Carlo simulation or some other method, followed by a param eter fitting procedure. 

After that, a policy improvement step is performed, which uses the approximate 

policy value functions obtained by using the latest fitted parameters. These two 

steps (the policy evaluation step and the policy improvement step) are then applied 

alternately to the newly constructed policy. This is repeated until convergence is 

achieved.

A variant of API is based on temporal difference learning. It differs from the 

generic simulation enabled API in tha t the policy value function estimation is 

updated incrementally after each transition, while the la tter only updates at the 

end of one simulation run. TD learning was first introduced in the PhD thesis 

of Sutton [1984] and since then has been widely used in ADP. The convergence 

of TD(0) is established by Sutton [1988]. Dayan [1992] extends the result to 

more general TD(A) learning methods, where A < 1 is a discount factor by which 

the differences of future visited states are exponentially discounted. A stronger 

convergence result is given by Dayan and Sejnowski [1994]. Jaakkola et al. [1994] 

relate TD(A) learning to stochastic approximation theory and provide a rigorous 

proof of convergence. TD(A) learning is extended to long run average reward 

problems by Tsitsiklis and Van Roy [1997]. It is applied by Marbach et al. [2000] 

to a call admission control and routing problem for integrated service networks.

Policy iteration algorithms usually achieve the greatest improvement in the 

first few iterations (Tijms [1994]). This observation has motivated the single step 

policy improvement algorithm, in which only one policy iteration is executed. Such 

algorithms have been widely applied in cases where the policy value functions 

can be computed exactly. Examples include Glazebrook et al. [2004], O tt and
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Krishnan [1992], Bhulai and Koole [2003], and Opp et al. [2005]. If exact policy 

evaluation is infeasible, approximation methods are employed and this leads to 

a very im portant variant, single step approximate policy improvement (SSAPI). 

This has been applied by Roubos and Bhulai [2007] to a problem of admission 

control to two single server tandem queues over a long period. They construct a 

very simple initial policy which admits all jobs into the system. The relative value 

function of this policy is approximated by a second order polynomial. Bhulai [2009] 

develops a variant of SSAPI for a call routing problem in a multi-skilled call centre. 

For either of the two settings studied, he proposes an initial policy whose special 

features render feasible a good approximation to the relative value function by a 

non-parametrized architecture.

ADP algorithms (except API) eventually lead to the best estimate of the value 

functions V*(s),  if convergence is achieved. There is one remaining step, which is 

to construct implementable policies based on these values. For API, an updated 

policy must be constructed at every iteration. In either case, it can be done by 

solving the following equation (replace V”*(s) by the policy value function approx

imation for API)

7r(s) =  arg max <! R(s,  a) +  [3 a)f/*(s/) > . (1.3)
aeAW I  5 ' e o  J

Unfortunately, the exact solution to this equation remains challenging if the action 

space is large and/or the calculation of the expectation is intractable.

It is not hard to find practical problems in which the action space has more 

than thousands of dimensions. A typical example mentioned in Powell [2007] is 

the blood inventory management problem. The decision concerns the allocation 

of each available blood type to meet the demand of another type. The number of 

decisions increases exponentially with the number of valid substitution pairs. To 

deal with this difficulty, Bertsekas and Tsitsiklis [1996] suggest the incorporation 

of actions into states and then to solve the augmented state space problem by 

value function approximation methods. Powell [2007] proposes a more systematic
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technique, namely a synthesization of m athematical programming into ADP. It is 

the first work to integrate these two techniques. To make this approach workable, 

the classical pre-decision state variables must be replaced by post-decision ones. 

More details can be found in the book and the references therein.

As for the expectation in (1.3), we can always approximate it by use of Monte 

Carlo simulation. In the ADP literature, there is an im portant quantity whose use 

enables this difficulty to be bypassed. It is called the Q-factor, and is defined for a 

state-action pair (s, a) and a policy 7r. In particular, the optimal Q-factor denotes 

the to tal expected reward obtained when action a is applied in state s and the 

optimal policy is followed thereafter. This is w ritten as

Q(s, a) = R ( s , a) +  ft ^ p ( s ; |s, a)V(s').
s 'e f i

Together with the Bellman equation (1.1), a recursive equation to compute optimal 

Q-factors is derived as follows,

Q(s,a)  = R(s ,a)  +  /? /  p(s' \s,a) [ max Q ( s \ a f)
1' Xa ' eA f s ' )s'en v v '

A strategy called Q-learning to approximate the optimal Q-factors was introduced 

by Watkins and Dayan [1992]. The power of Q-learning lies in its ability to break 

the so-called curse of modeling, which describes the difficulty of explicitly calcu

lating the transition probabilities for complex systems with multiple governing 

random variables. However, this viewpoint has been challenged by Powell [2007], 

who argues th a t the real value of Q-learning is the release from expectation com

putation. Indeed, once the approximate optimal Q-factors, Q*(s,a), have been 

obtained, the computation of the policy by the equation

7r(s) =  argm ax {Q*(s, a)} .
a(zA(s)

is trivial. This is in sharp contrast with (1.3). A convergence proof of Q-learning
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can be found in Tsitsiklis [1994] and Jaakkola et al. [1994]. Crites and Barto [1998] 

apply Q-learning to an elevator control problem. An online Q-learning algorithm is 

proposed by Levy et al. [2006] and is used to control a non-stationary Markov deci

sion process. The learning rate is updated adaptively to track param eter changes. 

Leslie and Collins [2005] propose an individual Q-learning approach to deal with 

the iterated normal form game. They introduce player dependent learning rates 

for which convergence results can be proved in a large number of cases. More 

details of this algorithm are given in Bertsekas and Tsitsiklis [1996] and Sutton 

and Barto [1998].

We conclude this section with reference to a fundamental question in ADP. 

Recall th a t in all ADP algorithms, a subset of representative states are generated 

and computational effort is concentrated on them. This is essential to break the 

curse of dimensionality. A natural question to ask is, should we make decisions 

on just these states, or we should instead try  some new ones? Because no a 

prior knowledge about the optimal policy is available, we do not know which 

subset we should concentrate on. It may well be the case tha t some im portant 

states are left out, and the algorithm could be trapped in a local optimum. It 

is thus necessary to do some exploration of the state space, which however could 

be costly and time consuming. A tradeoff between the cost of exploration and 

their future values must be considered. This issue is referred to as "exploration 

vs. exploitation" and is discussed in Powell [2007]. Singh et al. [2000] consider 

different exploration strategies and provide corresponding convergence results. A 

nice survey and discussion on exploration schemes in learning control is due to 

Thrun [1992].
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1.3.3 Sequential Decision Making with Unknown System 

Parameters

Even though only two direct precursors of the error-prone triage problem have 

appeared in the literature, the general problem of sequential decision making with 

unknown system parameters has been studied extensively. Please note th a t these 

are called stochastic adaptive control problems by the control theory community. 

In such a problem, the system under study has some unknown elements. Taking job 

scheduling as one example, the distributions of service times may not be completely 

known. Instead, they may depend upon an unknown parameter.

The relevant literature can be divided into two distinct threads. One concerns 

Bayesian sequential decision problems (BSDPs), in which a prior distribution on 

the unknown param eters is given. The other deals with non-Bayesian approaches 

in which no prior distribution is available. Instead, the decision maker is usually 

given a set which is believed to contain the unknown parameter. In this thesis we 

shall be concerned with Bayesian sequential decision problems. For non-Bayesian 

approaches readers are referred to a broad survey due to Kumar [1985].

In BSDPs, information regarding the unknown parameters is obtained and 

is available to the decision maker over time. The objective is to design control 

policies to optimize some pre-specified cost function. A problem of this kind is 

made difficult not only because of the uncertainty around the system evolution, 

but also because of changing beliefs in the unknown parameters. The standard 

solution approach is to convert such problems into an equivalent DP. Then the 

rich DP theory and methods are available. Much attention had been devoted 

in the 1960s-70s to resolving delicate questions associated with this conversion 

and to obtaining well formulated DP approaches. For im portant examples see 

Bellman [1961], M artin [1967], Hinderer [1970], Furukawa [1970], Rieder [1975]. 

and Kumar [1985]. Sadly, as we have already seen, DP problems can rarely be 

solved to optimality. Hence ADP algorithms are sought to tackle these problems.

Some early contributions tried to bound the optimal solution. Van Hee [1978]
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proposed an approach to compute lower and upper bounds on the optimal dis

counted cost function. Calculation of the bounds involves the optimal solution to 

two sets of nonadaptive control problems for which the param eters are assumed 

known. The solutions of both problem sets are then manipulated with a DP op

erator in an iterative fashion to generate the lower and upper bounds. It has 

been shown tha t as the number of iterations diverges to infinity then both bounds 

converge monotonically to the real optimum of the original problem. However, 

this calculation procedure can be quite clumsy. Some special cases described in 

Van Hee [1978] allow much simpler procedures. Other lower and upper bounds 

can be found in M artin [1967], Satia and Lave [1973] and Waldmann [1985].

There is one class of BSDPs whose special structure enables the development 

of rigorous theory and exact optimal solutions. These are the multi-armed bandit 

problems, for which the policy induced by the celebrated Gittins Index is proven 

to be optimal. The Gittins Index was first proposed by Gittins and Jones [1974] 

under the name of the Dynamic Allocation Index (D .A .I . ). Later, W hittle [1980] 

gave a simpler proof of the optimality of Gittins Index policies than provided by 

Gittins and Jones [1974] and used the term  Gittins Index. The index policy has a 

particularly simple form, which can be obtained by computing an index function 

for each alternative bandit. There are extensive contributions on this theme, with 

broad applications.

Stochastic  Job Scheduling

An early paper is due to Gittins and Glazebrook [1977], who apply the Gittins In

dex theorem to stochastic scheduling problems where the distributions of the jobs’ 

service times are dependent upon some unknown parameters. Discounted rewards 

are obtained when a job ’s service is completed and the objective is to achieve the 

to tal maximal expected reward. W ith the knowledge of the prior distributions of 

these parameters, each job is modelled as a Bayesian bandit process, and a mem- 

oryless Bayesian bandit process if the posterior distributions of the parameters



C H APTER 1. INTRO D U CTIO N  25

depend only on the current state. It has been shown that, by incorporating the 

param eters and their probabilities into the law of motion, this generalized problem 

can be always reduced to the problem of allocating resources for a multi-armed 

bandit. Hence the Gittins Index theorem applies.

Hamada and Glazebrook [1993] consider a Bayesian sequential single machine 

scheduling problem, where the objective is to minimize the expected sum of weighted 

flowtimes. Jobs are grouped into classes. W ithin each class the processing times 

are i.i.d. and exponentially distributed with an unknown parameter. The con

jugate priors on the parameters are gamma. The system state is augmented by 

including the param eters of the gamma distribution and the problem is formu

lated as a DP. The optimal strategy is then obtained by applying the Gittins 

Index theorem.

Recent work by Cai et al. [2009] considers the scheduling of a batch of jobs 

on a single machine tha t is subject to breakdown. If the machine breaks down in 

the middle of processing a job, all work done to date is lost and the job must be 

processed again from the beginning once the machine is fixed. Both the distribu

tions of the processing times and the machine up/downtimes are unknown. The 

authors develop the Gittins Index from the posterior distributions of the unknown 

param eters and so generate optimal dynamic policies.

Clinical Trials

Glazebrook [1978] studies the allocation of multiple treatm ents to patients in a 

series of clinical experiments. The set of outcomes of an experimental treatm ent 

can be fairly large. The probabilities of the individual outcomes are unknown. 

This treatm ent allocation problem is modelled as a multi-armed bandit and an 

index function is developed for each bandit (treatm ent). The optimal strategy is 

to  choose the treatm ent with the smallest index at each decision point in the trial.
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O ptim al Exploration

Benkherouf et al. [1992] consider a Bayesian model of oil exploration. There are a 

number of candidate areas to explore and each area contains an unknown number 

of oil fields. The oil company needs to know which area to drill next or whether 

to choose to drill no well, based on the knowledge learned from earlier explo

ration. The optimal strategy is established and is based on the Gittins Index. 

Unfortunately, according to the authors the optimal strategy may be difficult to 

apply, since it may involve a lot of switching between areas. In this case, the Git

tins indices can be used to evaluate heuristics by bounding the lost revenue when 

choosing them instead of an optimal policy.

Glazebrook and Boys [1995] extend the oil exploration model to a general search 

problem. This concerns the determination of an optimal strategy to search objects 

in several locations. Each location has an unknown number of objects of value. A 

single search can lead to the discovery of multiple objects and a reward is earned 

accordingly. The discovered objects are then removed from the location before 

the next search. A binomial distribution is assumed as a conditional model of the 

number of objects discovered in a single search. The authors show th a t a Gittins 

Index policy is optimal for this problem and tha t the nature of this policy depends 

critically on the the prior distributions on the number of unknown objects in each 

location. If these priors are either Poisson or have a lighter tail than the Poisson, 

the optimal policy is myopic and searches whichever location yields the largest 

immediate expect reward. In this case a lot of switching between locations may' 

be involved. On the other hand, if all priors have heavier tails than the Poisson, 

the optimal policy becomes a kind of "stay with the winner" rule.

There is also a rich literature on more general BSDPs, in cases where heuristics 

are developed because of the difficulty of finding the optimum.
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Screen ing  D es ig n

Boys et al. [1996b] study a screen design problem where both the therapeutic effect 

and the toxicity of pharmaceutical compounds are tested by passing them through 

two series of screens. Each kind of test must be performed in a specified order but 

between them they can be interleaved arbitrarily. The authors propose a Bayesian 

formulation and specify a joint prior density for measures of activity and toxicity. 

The heuristic which always chooses as the next screen the one with larger failure 

probability per unit cost is shown to work well under some simple conditions. Boys 

et al. [1996a] extend this problem to a more general setting, where the question 

is how to filter out, in a cost effective way, items with acceptable attributes. It is 

very expensive to measure the attributes, but there are some associated covariates 

whose measurement is essentially free. They construct a Bayes-optimal two stage 

screen. At stage 1 screening is via the covariates and only indecisive items are 

passed over to stage 2 when the attributes are measured. The authors suggest 

th a t even though the measurement of the attributes is very expensive, it may be 

worth doing in individual cases.

I n v e n to r y  C ontro l

Azoury [1985] considers periodic review inventory problems where the demand 

distribution is dependent upon some unknown parameters. Two inventory models 

are analysed, namely a depletive model of consumable items and a nondepletive 

model for repairable items, both of which are formulated as Bayesian dynamic 

programs. By imposing certain conditions on the demand distribution and on 

the prior for the unknown parameters, they show th a t the development of the 

optimal ordering policy in either model can be reduced to the solution of a dynamic 

program with one variable only.
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O ptim al Search

A decentralized multiagent search problem is studied by Zhao et al. [2008]. There 

are several agents searching for targets over a network. Communication and coor

dination among agents are limited, a feature which is referred to as a coordination 

dilemma. The consequence of the coordination dilemma is the loss of a global op

timum even though an individual agent could follow an optimal strategy himself. 

The authors claim tha t it is always favourable to implement the same randomized 

policy for all agents individually. Three heuristics are proposed and one of them is 

based on DP policy iteration. The starting point for this is an optimal policy for 

the corresponding centralized multiagent search problem which can be formulated 

and solved as a dynamic program.

As can be seen from the above, BSDP problems are usually computationally 

demanding to solve and/or close to optimal adaptive policies may be difficult 

to implement. A natural question concerns whether or not it is worth devel

oping adaptive policies. This question is investigated by Glazebrook and Owen 

[1995]. They introduce the value of adaptive solutions (VAS) to quantify the ben

efit brought about by learning about unknown parameters. The VAS is defined as 

the loss experienced when deeming the system’s unknown parameters to be known 

and then developing an optimal policy for the known case. The authors are able 

to relate the VAS to two model features, namely, the degree of peakedness of the 

prior distribution and the sensitivity of optimal policies to the assumed values of 

the unknown parameters. According to the authors, the VAS is small if the prior 

is peaked and/or optimal polices are insensitive for the scheduling models under 

consideration.

We would like to mention tha t a slightly different body of literature deals 

with partially observable Markov Decision Processes (POMDP). In this literature 

all elements of the systems are known. The uncertainty relates to knowledge of 

the current system state. It could be costly or, indeed, impossible to observe
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the current state completely and without error. Only information relating to the 

current state is obtained. Despite this difference, the solution methodology is 

somewhat similar. By redefining the state space to be a space of distributions 

over the actual system states, any POM DP can be reformulated as a completely 

observed, continuous MDP problem. General techniques for continuous MDPs can 

then be applied. However, some special properties of this converted problem allow 

tailored techniques to be developed. For comprehensive and rigorous treatm ents of 

POMDPs, readers are referred to Sawaragi and Yoshikawa [1970], Monahan [1982], 

Sondik [1978], and the PhD dissertation of Cassandra [1998] and the references 

therein.

1.4 Contributions

We summarise the primary contributions of the thesis as follows:

1. For the perfect triage problem, we exploit the simplicity (especially the static 

nature) of the heuristic 7rs  proposed by Glazebrook et al. [2004] to develop 

a new class of heuristic policies with robustly strong performance via a two 

stage procedure. At stage 1, we use a fluid model to approximate the policy 

value function of the system operating under n s . We then adopt an ap

proximate DP approach and design in stage 2 a dynamic heuristic by using 

the approximate policy value function from stage 1 in a single step policy 

improvement algorithm.

2. Taking advantage of the special structure of the policy n s , the fluid model we 

have developed has a very simple, deterministic, and non-parametric archi

tecture. This architecture enjoys the advantages of compact representation, 

yet avoids the non-trivial task of param eter fitting. The solution to the fluid 

model is very fast and straightforward, nothing more than solving an array 

of ordinary differential equations, one for each job class. Numerical results
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dem onstrate th a t the approximated value functions are very close to the 

exact ones for all the states examined.

3. We conduct extensive numerical experiments to investigate the performance 

of our proposed heuristics for the perfect triage problem in three general 

scenarios. These are (I) lifetimes and service times are both exponentially 

distributed, (II) Weibull lifetimes and deterministic service times, and (III) 

Weibull lifetimes and exponential service times. In the first two scenarios 

we are able to compute optimal policies using exact DP methods, though 

this is very expensive of computing time, except for very small problem 

instances. It is thus possible to assess the quality of our proposed heuristics 

by direct comparison with the optimum. For the third scenario, it has not 

proved possible to develop optimal policies for problems of even modest size 

in reasonable time. However, the way tha t the proposed heuristic policies 

are developed means tha t their on-line implementation is straightforward. 

Hence, we chose to assess the relative performance of alternative heuristics 

by means of Monte Carlo simulation. Numerical results have shown tha t 

our proposed heuristics perform extremely well, comfortably outperforming 

competitors, in all the testing instances considered. This work on the perfect 

triage problem has appeared as Li and Glazebrook [2010a].

4. To explore the error-prone triage problem, we propose a simple analytical 

model and adopt a Bayesian approach to address the uncertainty of the true 

identity of each job. Hence immediately after triage (t = 0) each job has 

a prior distribution which summarises the decision maker’s beliefs about its 

true identity before service begins. As time passes, these beliefs are modified 

at every time t > 0 and posterior distributions, which condition on the event 

th a t a surviving job ’s lifetime exceeds t, are computed using Bayes’ Theorem.

5. We formulate this Bayesian sequential decision problem as a dynamic pro

gram. The ADP approach proposed for the perfect triage situation is further
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developed to yield effective solutions to our Bayesian model. We successfully 

extend the fluid model approach to accommodate triage errors and the ap

proach still generates high quality policy value function approximations in 

this case. A numerical study testifies to the strong performance of the re

sulting heuristic service policy.

6. We then explore the question of whether it is possible to identify problem 

features in which poor triage is particularly costly in terms of the number 

of service completions lost. To this end, we introduce the (relative) cost of 

imperfect classification, denoted (R ) C I C , as a natural measure of this. We 

are able to develop an analytical upperbound for (R )C IC  for the case in 

which the random lifetimes Xi  are exponentially distributed. This bound 

tells us th a t in the exponential lifetime case, (R )C IC  is small whenever the 

system param eter

A =  maxE {X i)E (Y i)  -  min E(Xi)E(Y i)i i

is small. In such cases the triage process is relatively unim portant for the 

scheduling problems. Numerical studies indicate tha t these insights extend 

beyond the exponential case and suggest strongly tha t there is most to be 

gained for the scheduling problem from improving the quality of triage when 

A is large. A paper (Li and Glazebrook [2010b]) describing these contribu

tions to the error-prone triage problem has been subm itted for publication.

1.5 Outline of the Thesis

Chapter 2 investigates the scheduling of impatient jobs in a clearing system with 

perfect classification. A SMDP is constructed to model this problem. We present 

an efficient ADP approach to the development of dynamic heuristic policies via a 

fluid model approximation. An extensive numerical investigation is carried out to
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compare the performances of our proposed heuristic policies to earlier proposals 

in the literature and (where possible) to optimal.

We extend to the error-prone triage problem with imperfect classification in 

Chapter 3. After the introduction of some additional notation this problem is 

modelled as a Bayesian sequential decision problem which is then formulated as a 

dynamic program. The solution approach and the fluid model proposed in Chapter 

2 are further developed so tha t they can yield effective service policies in the 

presence of classification errors. Again, a numerical analysis is conducted to assess 

the quality of the heuristics.

In Chapter 4 the cost caused by imperfect classification is studied. We propose 

a measure (R C I C ) to quantify the cost. A J  — 2 example is presented to illustrate 

the sensitivity of R C IC  to the error rates. For the exponential lifetime cases, we 

find an analytical upperbound for R C IC  tha t depends heavily on an identified 

system parameter. A detailed proof is given. For more general problems, a worst 

case numerical study is conducted to explore thoroughly the impact of this system 

parameter.

We conclude in Chapter 5 with a summary and a discussion of possible future 

research directions.



Chapter 2

Scheduling of Impatient Jobs with 

Perfect Classification

This chapter considers the scheduling of impatient jobs with perfect classification. 

It proceeds as follows: the problem is modelled as a semi-Markov decision pro

cess in Section 2.1. In Section 2.2 we describe an approach to the development of 

heuristic policies via an approximating fluid model. Our proposed heuristics are 

implemented in three general scenarios and subject to extensive numerical investi

gation in Section 2.3 where they are compared to earlier proposals in the literature 

and (where possible) to optimal. A conclusion is given in Section 2.4.

2.1 The Model

A clearing system has a single server and a collection of im patient jobs (or cus

tomers) awaiting service. Before any service starts, each job is allocated to one of 

J  classes after a triage process. We use the pair j k  to denote the job which is the 

kth member of class j ,  1 < k <  Lj, 1 < j  <  J. Observe th a t Lj is the number of 

class j  jobs present at time 0. Associated with each job j k  are two positive valued 

random variables, namely its lifetime Xjk  and its service time Yj^. Class j  lifetimes 

X j i , X j 2, • • • ,XjLj are independent and identically distributed (i.i.d.), having the

33
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same distribution as X j  whose distribution function is Fj. Similarly, the collec- 

tion {Yji, Yj2 , • • • ,YjLj} of class j  service times are independent and identically 

distributed, having the same distribution as Y) whose distribution function is Gj. 

All lifetimes and service times have finite expectation and are independent of each 

other.

The single server processes individual jobs nonpreemptively. Job j k  will aban

don the system unserved if its service has not begun before Xjk. However, once 

a job has begun service, it will be served through to completion. Let it denote a 

service policy (a nonanticipative rule for allocating the server to waiting jobs) and 

Tjk(tt) the random time at which policy n  begins to process job jk .  If j k  is not 

served by 7r then we write Tjkin) — 0 0 . The number of jobs served to completion 

under 7r is denoted N (n)  and is given by

J F

N M  = ' £ Y I i L k M < x jk} .  (2 .1 )
j —1 k=l

In (2.1), I is an indicator. The goal of analysis is the determination of a policy 7r 

to maximise E { N ( ty)}. Argon et al. [2008] argue tha t under the optimal policy 

the server will never idle, while the theory of stochastic dynamic programming 

(see, for example, Puterm an [1994]) guarantees the existence of an optimal policy 

which takes actions which depend only upon the current system state.

We model this problem as a semi-Markov decision process as follows:

1. Decision epochs are at time zero and at all service completion times. The 

state of the process at decision epoch t > 0 is denoted {rij(t), 1 < j  < J; t} =  

{n ( t) , t}  where rij(t) is the number of class j  jobs which at time t have not 

yet been served and have not abandoned the system. Generic states of the 

system are denoted ( n j ) , ( n ', s ) .  Note tha t the number of effective states 

decreases as time passes. A state is effective if it has a positive probability 

ever to be visited given the initial condition.

2. At each decision epoch, one of the jobs remaining in the system is chosen for
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processing. In any system state (n, £), the collection of admissible actions is 

written A(n) and is given by

A(n) =  {j;nj  >1 , 1  < j <  J}. (2 .2 )

In (2.2) the action j  is identified with the class of the job chosen for process

ing.

3. Let t be a decision epoch and (n, t) the system state then. If action j  E A(n) 

is taken and results in a service time (realized value of Yj) equal to s then

0 <  n'j < rij — Si j, 1 < i  < J.

In (2.3), 5ij is the Kronecker delta which is equal to one when i = j  and is 

otherwise zero.

4. A policy 7r is any nonanticipative rule for choosing admissible actions. Our 

goal is the determination of a policy to maximise the expected number of 

jobs served from initial state (L, 0).

In principle, an optimal policy could be developed with the tools of stochastic

the system at the next decision epoch t +  s will be (n',t + s) with probability 

p(ri\n, t , j ,s)  given by

p(n'|n, t j , s )

7 \  ni /i=i x 1 7

dynamic programming. Write

n = {(n, t); 0 < rij < Lj ,  1 < j  < J,t £ R+}

for the system’s state space and develop the value function V  : Lt —► 0, i Lj
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where V (n, t) is the maximal expected number of service completions from state

(n, t). Assuming sufficient regularity, V  satisfies the optimality equations

It is trivial tha t V (n, t) is monotonically increasing componentwise in n, for fixed 

t. Moreover, from our numerical experiments, we observe th a t in many cases the 

optimal policy is also monotone componentwise in n for fixed t. Specifically, if 

the optimal policy moves from one action to another as the number of jobs in one 

class increases/decreases, it will stay on the la tter action if the number of jobs in 

this class is further increased/decreased.

As we have stressed repeatedly, computational approaches to the determination 

of optimal policies built around the recursive scheme in (2.4) are not practical for 

problems of realistic size. We seek to develop heuristic approaches which are close 

to reward maximising.

Remark 2.1. The heuristic approaches to be developed in the coming section are 

generic. The implementation in scenarios where the state space is discrete and 

finite is straightforward. In general situations, however, the state space Q, is con

tinuous and infinite. This is attributed to the inclusion of the element t in the 

state space. The standard approach is to discretize the continuous time axis and 

develop heuristics for the resulting discrete problem. Unfortunately, this treatment 

may blow up the state space which may be already intractable in many cases. A 

scenario of such is dealt with in this thesis and a detailed account is given in the 

numerical study section 2.3. For general approaches to continuous MDP problems, 

see for example Boy an and Littman [2001], Li and Littman [2005] and Marecki 

et al. [2006].

Two heuristics have been proposed in the literature and both will play a role in

V(n, t) — 1 +  max
j € A ( n )

V {0 ,t)  = 0. (2.4)
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our narrative. Glazebrook et al. [2004] proposed a static priority rule n s . Suppose 

tha t the job classes are numbered in increasing order of the quantity E (X j )E (Y j ), 

i.e. such tha t

E (X 1)E(Y1) <  E {X 2)E{Y2) < <  E ( X j ) E ( Y j ) .  (2.5)

In any state (n,£), 7r5 chooses action 7r5 ( n ,t)  where

7TS(n,t)  =  m in{j;n j > 1 }.

Hence n s implements a class priority according to the ordering 1 —» 2 —> • • • —> J. 

It favours jobs with small mean service times and/or small mean lifetimes, and 

specifically, jobs which have large probabilities of abandonment if the service is 

allocated to any of the others. It was shown by Glazebrook et al. [2004] to be 

optimal in a "no premature job loss" limit when job lifetimes are exponentially 

distributed.

Argon et al. [2008] propose a myopic heuristic policy n M which takes the fol

lowing form: in state (n, t), irM chooses action 7rM(n, t) to be the non-empty class 

j  with smallest associated value of

E( Y j )
J

i= 1
( 2 .6 )

This quantity can be understood as an approximation to the mean number of 

abandonments while serving a class j  job. Therefore, policy n M gives priority to 

the actions for which the mean number of abandonments during the next service 

is close to minimal. It works well in a "heavy premature job loss" limit. In such 

cases most jobs will be lost at an early stage and the value function is determined 

by the very first few actions, which are "optimised" by n M in some sense.

As we shall see, both heuristics n s and 7tm perform well on occasion, but 

exhibit a lack of robustness in performance. Namely there are problems for which
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they do not work at all well. In the next section we propose an approach to the 

development of a heuristic policy with associated performance which is robust and 

stronger than either.

Remark 2.2. Minor adjustments to the above are required for simple variants of 

our model, such as (a) incorporating the possibility of loss during service, and/or  

(b) different returns earned upon completion of services of jobs from different 

classes. For example, scenario (a) requires an adjustment of the optimality equa

tions in (2.4) to

V (n, t) = max < P(Xj > t +  Yj\Xj > t )
j€A(n) I

+ [  ^2p{n ' \n , t , j , s )V(nf,t + s ) d G j ( s ) \ , n /  0, 
u'° n> J

V(O,t) = 0. (2.7)

In (2.7) we make an assumption that service times are delivered in full even when 

premature loss occurs. There are other modelling possibilities. It is evidently the 

case that V ( n , t ) < V ( n , t ) for all choices of n ,t .

2.2 Heuristic Policy Development - a Single Step 

Approximate Policy Improvement Algorithm  

via Fluid Models

Of the heuristic policies described at the conclusion of the preceding section, n s 

enjoys the benefits of a very simple structure. It seems reasonable to explore the 

possibility of designing effective dynamic heuristics for our problem by strength

ening the performance of this static policy via the implementation of a single DP

policy improvement step. Write Vns : Q —» 0, for the value function
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for 7r5 , namely Vns(n ,t )  is the expected number of service completions from state 

(n, t) under policy txs . The function Vns satisfies the recursion

M o , * )  =  o. (2 .8 )

A single DP policy improvement step applied to n s will result in a new dynamic 

policy 7rSPI determined as follows:

with the argmax in (2.9) being taken over the admissible set A (n). In words,

In support of this claim we make reference to 2,000 randomly generated problems 

in which J  — 2 and both lifetimes and service times are exponentially distributed. 

The performance of n s and 7TSPI when applied to these problems is given in Table

ilar results for 2,000 randomly generated problems with J  =  5 and exponentially 

distributed lifetimes and service times are given in Table 2.1(b). In both tables, the 

results are presented in four groups (500 problems in each group) labelled A, B ,C  

and D  according to the relative lengths of lifetimes and service times in the gener-

group, as measured by the percentage deviation from optimum, are 23.79% (group 

A), 24.33% (B ), 16.52% (C ) and 5.17% (D). Once a policy improvement step is 

applied to 7rs  as in (2.9) above, the corresponding worst case percentages for n SPI 

are 0% for all four groups. In Table 2.1(b), the worst case percentages for n s are 

15.95% (A), 11.86% (B ), 3.87% (C ) and 0.33% (D) while those for ttspi are 0.48%

7r (n, t) =  arg max (2.9)

policy 7tsp i  makes optimal decisions under an assumption th a t all future decisions 

are made according to 7rs .

Our experience is tha t policy n SPI performs very strongly when it is available.

2.1(a), while the details of the problems themselves are given in Section 2.3. Sim-

ated problems. In Table 2.1(a), the worst performances of heuristic n s within each
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(A), 0.88% (£?), 1.04% (C) and 0.05% (D ). In all groups and for both tables the 

median percentage suboptimality for n SPI was 0%. Further, for non-exponential 

cases, results for 2,000 randomly generated problems in which J  =  2, lifetimes are 

Weibull distributed and service times are deterministic are given in Table 2.1(c). 

Full problem details may be found in Section 2.3. The design of the study is along 

the lines of the exponential cases above. In Table 2.1(c), the worst case percentage 

for heuristic n s  are 36.34% (group A'), 26.16% (£?'), 20.21% (C ' ) and 4.13% (D1). 

The corresponding percentage for 7TSPI are 0.00% (A '), 0.24% (ZT), 1.46% (C ') 

and 0 .2 0 % (D7).

R e m a rk  2.3. A dynamic version of the priority policy i\s recalculates the expected 

remaining lifetimes at every decision epoch and updates the priority list. We have 

also implemented a single DP policy improvement step for this policy in all the 

2,000 problems for Weibull lifetimes and deterministic service times when J  — 2. 

The resulting policy is referred to as ttdspi and its performance is summarized 

in Table 2.2, in which we have also included the results for policy ttsp i for the 

reader’s convenience. It is shown clearly that n DSPI does not offer any significant 

improvement on ttsp i  . In some cases its performance is weaker. It is worth men

tioning that in some special cases the priority sequence does not change over time 

and hence tvdspi reduces to n SPI. An obvious example is when lifetimes are ex

ponentially distributed. Another example could be when the lifetime distributions 

satisfy a certain conditions such that the expected remaining lifetimes remain a 

fixed ordering between classes.

The strong performance of n SPI notwithstanding, its development via (2.8) 

and (2 .9 ) is computationally prohibitive other than for small problems and special 

cases. In light of this computational intractability we proceed as follows: we shall 

develop an approximation V “£p : D —> 0 , J2j=i Lj to the policy value function 

Vns. The dynamic heuristic which then results is obtained by using the approxi-
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mation V^fp within (2.9). Hence we have

R e m a rk  2.4. For the determination of policy itspi via equation (2.9), we do not 

need to compute the quantity within the brackets for j  = 7rs (n ,t) ,  because Vns(n ,t )  

should have already been computed. The computational effort is thus significantly 

reduced. However, this result does not carry over to the fluid heuristic itsf  that is 

determined by equation (2.10). We must compute the quantity in the brackets for  

every action j  G A(n), including 7TS(n,t) .

The approximating policy value function V “s P is obtained by developing a suit

able fluid (deterministic) analogue of the stochastic system emptying under policy 

7!”̂ . In this approximating model the (random) number of jobs remaining is repre

sented by a fluid level which diminishes at a suitable deterministic rate to reflect 

both service completions and losses from the system of unserved jobs under 7ts .

2.2.1 Fluid Model: No Losses During Service

We proceed to discuss how to develop V “£p(n,t) ,  an approximation to Vns ( n , t ) 

based on a fluid model which drains fluid in a way which is appropriate given our 

assumption tha t jobs in service cannot experience prem ature loss.

R e m a rk  2.5. Fluid approximations have been widely used in the study of perfor

mance evaluation and optimal control of queueing systems. Almost all the liter

ature approximates the original queueing system via a fluid limit that is obtained 

through appropriate scaling of system parameters. Contributions of this sort are 

covered at length in earlier works by Mandelbaum et al. [1998], Gajrat and Hordijk

[2000], Whitt [2006], Decreusefond and Moyal [2006], and Bassamboo et al. [2006],

TTSF{n , t ) =  argm ax (2 .10)
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among others. Fluid limits have also been used in the development of ADP al

gorithms. Moallemi et al. [2006] obtain valuable insights on system behaviour by 

means of an asymptotic analysis in a fluid limit. These analyses are then used to 

select basis functions in an A LP  algorithm. Similarly, Veatch [2009] approximates 

the relative value functions in an A L P  algorithm by quadratic value functions ob

tained from fluid models. Another contribution due to Chen et al. [2009] constructs 

basis functions by exploiting knowledge of associated fluid and diffusion approxi

mations in a TD learning algorithm.

Distinct from previous literature which centres on asymptotic analyses in a 

limiting regime, the fluid approximation model proposed in this section has a very 

simple structure and does not require any parameter scaling. The solutions to 

the fluid model are immediate approximations to the value functions rather than 

just guidelines to basis function selection as in the previous contributions. These 

features are essential for the development of our efficient AD P algorithms.

We focus initially on the contribution to V “f p(n ,t)  from a single job class. 

We drop the class identifier and use X , Y  and Of) for the class lifetime, service 

time (both assumed absolutely continuous in this account) and lifetime hazard 

respectively. Note tha t the lifetime hazard is given by Oft) = F '(t){  1 — F (t)}~ 1 

where F  is the distribution function of X  and ' denotes derivative. We also write 

E ( Y )  =  ^ K

We use the pair (m, s) to denote the fact tha t an amount of fluid (number of 

jobs) rn is present when the processing of some class begins at time s. Because of 

the way in which tt5 imposes static priorities among the classes, this class will be 

served continually from s until all of the corresponding fluid is drained. We use 

N (m , s) for the number of services completed (which in the fluid model may be 

non-integer) during the processing of the class. It will then follow tha t p r lN fm , s) 

is the time taken to process the class under the fluid model.

The fluid is drained as follows: if m > 1 then a single unit of fluid is removed 

instantaneously (to signify the guaranteed service completion of one job) at time
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s. Loss of fluid is then experienced at a rate determined by the hazard rate 9(t ) 

during the time period s < r  <  s +  fi~l . Note tha t this period is the time 

occupied by the processing of the first job in the fluid model. If the amount of 

fluid remaining at time s +  fi~l exceeds one then a further single unit of fluid 

is removed instantaneously at time s +  /z-1  and signifies the guaranteed service 

completion of a second job. Loss of fluid is then expected at a rate determined by 

the hazard rate 9 ( t )  during the period s T- / / -1  < r  <  s +  2/i-1 , and so on. If we 

write R { t )  for the amount of fluid remaining at time r ,  we have for r  > s

R f{r) — —9 ( t ) R ( t ) ,  t  s +  fc/z-1 , k G N,

R ({s  +  k/i~1}+) = max{R (s  +  kfi~l ) — 1 ,0}, k e N ,  (2 -1 1 )

R(s) = m.

If we define k(m, s) by

k(m, s ) =  min{&;; R ({s  +  fc/z-1}+) =  0} (2 .1 2 )

we then have

N ( m , s) = A;(m, s) +  R(s  +  k(m, s)n~l ). (2.13)

Note from (2.12) th a t k (m , s) is the (integer) number of fully completed jobs under 

the fluid model while R(s  +  k(m, s)/z-1) is a fractional amount of fluid remaining 

after those completions and is deemed to yield a further fractional completion 

within the approximating fluid model.

The fluid model is illustrated in Figure 2.1.

In fact, the system (2.11) is straightforward to solve explicitly. In order to state 

the solution with a minimum of notation we develop the sequence

|  i , r  =  0
777, 5 =  /

(  1 +  £ u = o  ex P { / 0(u+1)M 1 ^ (s +  v ) d v }  t  e  z + .

i
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R(t)

46

m

m-1

T
S

Figure 2.1: Fluid Model.

The quantity m r (s) may be understood as the amount of fluid at time s to achieve 

r +  1 service completions. Please note tha t the assumption th a t E {X )  < oo 

implies th a t the hazard rate 9 has an infinite integral over and hence tha t 

m r(s) —»■ oo ,r —* oo for all choices of s.

Proposition 1. (a) If rar_i(s) < m < mr(s) for some r  6 Z+ then

N(m,  s) = r +  {m -  m r_i(s)} exp | — J  0(s +  |  ; (2-14)

(b) If m  < 777,0 (5 ) =  1 then

N(m, s) — m.

Proof. From (2.11), we have tha t when i?({s +  fc^-1}+) > 0 it then follows tha t

R!{t ) = - 6(t )R (t ), s +  kfi 1 <  t  < s +  (k +  l)fi \
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and hence tha t

R(s + (k + l)ij, ) =  R ({s  +  kn~ l }+) exp < — J  9(s +  v)dv > . (2.15)

We now develop the sequence {R(k), k £ N} as follows:

jR ( 0 )  - -  771,

f />(fc+1)M~1 1
R (k  +  1 ) =  {R{k)  -  1 } exp < -  j  6(s +  v)dv | , f c e N .  (2.16)

Substituting m  into the sequence we have for k £ N tha t

f 1 f Mm-1 1
R(k) = m  exp |  -  j  6(s +  v ) d v \  — exp < — J  6(s + v ) d v \ .  (2.17)

In (2.17) and elsewhere we use the convention th a t an empty sum is zero. From

(2.11) and (2.15) it is straightforward th a t if R(l) > 0,0 <  I < k, then

R(k) = R(s  +  k/j,'1). (2.18)

Now consider m  in the range m r-i(s )  < m  < m r(s) where r £ Z + . We write m  in

the form

r ~ \  (  r{u+l)l i  1 1 (  rrn 1 1
m  =  1 +  2_j exp j  J  0(s +  v)dv +  7  exp -j j  Q(s + v )d v^  (2 .19)

where 7  £  (0,1]. It is straightforward'from (2.17),(2.19) and an induction argu

ment th a t R(k)  decreases as k increases from 0 to r  with

[~2 ( r{u+i)m-1 1 ( rrij‘~1 1
R(k) = 1 + /  exp < / 0(s +  v)dv > + 7  exp < / 0(s +  v)dv > , 0 <  k < r —1 .

u = *  J  J
(2 .20)

It now follows from (2.18) and (2.20) tha t

R(k) — R(s  +  kfi *), 0 <  k < r — 1 ,
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and in particular tha t

^ ( r  “  1 ) =  R (s  +  (r -  1 )m_1) =  1 +  7  exp j f  0 (s +  u ) d u l .  (2 .2 1 )
( J ( r - I)//"1 J

It follows from (2.16), (2.18) and (2.21) tha t

R(r) = R(s +  =  7 . (2 .2 2 )

From (2.11)-(2.13) we now infer tha t 

N(m, s) = r +  7

{
rr\i~x \

— j  0(s + v ) d v \ .  (2.23)

Equation (2.23) is recovered from (2.19) by solving for 7  and using the expression 

for m r(s) in the paper. This completes the proof of Proposition 1(a). Proposition 

1 (b) follows trivially from the definition of the quantities concerned. □

In order to obtain V T ^ n , t), we need to restore the class identifier to the 

notation and write Nj(rrij,Sj) for the above fluid approximation for the number 

of class j  services completed from an initial state (rrij, Sj). We now suppose tha t 

the classes are numbered according to their ordering by 7r5, with class 1 processed 

first and class J  last.

For fixed system state (n, t) and 1 <  j  < J , we inductively develop the quanti

ties 77 (n, t) which record the number of class j  services completed under the fluid 

model when static policy tts is applied from this state, as follows:

Fi.(n, t) = N i(n l t t),
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and

Vj(n ,t)  =  Nj

The first argument of Nj on the right hand side of (2.24) is the number of class 

j  jobs present when the processing of tha t class begins. The original number 

rij (present at t) is diminished by losses occurring over the time period [t, t +

3=i

Dynamic heuristic tys f  is then developed from (2.10).

R e m a rk  2 .6 . It is straightforward to establish from the expression on the right 

hand side of (2 .1 4 ), together with the preceding expressions for the m r(s), that the 

quantity N { m , s), regarded as a function of m  only (fixed s) is continuous, increas

ing, piecewise linear and concave. It will then follow that the derived approximating 

value V^sP(n, t) is increasing and concave componentwise in n, for fixed t. This 

is exemplified in Figure 2.2 below where values of V “s P(ni, n 2, 0) are plotted for a 

two class problem whose details are as in the following example.

E x a m p le  2 .1 . Consider a two class example in which the lifetimes X j  are i.i.d. 

Weibull with hazard rate given by

]Ci=i M* lv i{n ,t))  during which the first j  — 1 classes are processed. We now use 

the quantities in (2.24) to develop the needed approximating policy value function

as
j

V ^ p{n,t) =  J ^ - (  n ,t) .

6j(t) = oij(dj ajtai ~ \ t  e R+, j  = 1,2. (2.25)

In this illustrative example we set the parameter values to be a\ =  1.06, pi = 

56.77, a 2 = 1.81, (3\ =  81.22. We further assume that the service times are de-
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terministic with rates pi  =  0.11 , /i2 =  0.13. In Figure 2.3 find, a summary of the 

decisions (which job class to process) taken by dynamic heuristic ttsf  at time points 

0, 18.15, 30.85 and 45.39, should decisions be required then. These time points 

are chosen to be representative of likely decision tim,es. Indeed, the three positive 

time points are the decision epochs when two class 1 jobs, four class 2 jobs, and 

five class 1 jobs have just finished service, respectively.

In Figure 2.3 each filled circle indicates a decision in favour of class 1, and 

each diamond a decision in favour of class 2. Please note that 9\{t) > 02(f),O < 

t < 66.02, while 02(t)/6\(t) increases with t (refer to Figure 2-4)- Hence at time 

t =  0; class 1 jobs will appear more urgent and in most states this is reflected 

in a decision to process this class. As time increases all residual lifetimes of jobs 

decrease, but those of class 2 jobs decrease more rapidly. Hence decisions taken by 

ttsf  increasingly favour class 2 jobs as time elapses.

We would like to point out that in the top right diagram ttsf  switches back and 

forth between class 1 and 2 with n 2 increasing, for fixed n\ = 9 or 10. This is 

also found in the top left diagram when n\ = 16. This kind of pattern is due to 

approximation errors, even though these are fairly small. We have checked the 

optimal policy for this example and it does not have such behaviour.

Even though we do not have an analytical bound on the accuracy of the 

proposed fluid approximation, we can check its performance numerically. For 

the above example, we plot in Figure 2.5 both the exact value function V^s 

and its fluid approximation V((fp for a set of selected states at four representa

tive decision times. It is shown that the performance of the approximation is 

outstanding, with consistently small errors across all the states examined. We 

conjecture tha t it also works well for the other states. Indeed, the results sum

marised in Table 2.3 support our conjecture. The percentage approximation errors, 

A (I4s, V “£p) = 10011 — V “f p/Vns |%, have a small average of 1.27% and a worst 

performance of just 3.34% over 19,354 points in the effective state space. Such a 

space excludes all the states which will never be visited given the initial condition.
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100
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Figure 2.4: Hazard Rates.

For this example, a state (n i,n 2,t) is in the effective sample space if

1. t can be expressed in terms of

t =  n  +  n ,
Mi M2

for some r i , r 2 which are non-negative integers and satisfy 0 <  r\ < 16, 0 < 

r2 < 10;

2. and the following condition holds:

16 — ni 10 — n 2
t < ---------- + ---------

Mi M 2

MEAN 1.27%
MIN 0.00%
1ST QUARTILE 1.01%
MEDIAN 1.35%
3RD QUARTILE 1.61%
MAX 3.34%

Table 2.3: Percentage approximation errors A(V!^s,V^sP) for Example 2.1.
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2.2.2 Fluid Model: Losses During Service

We now give a brief account of how the above discussion should be modified for the 

variant of our model in which losses are allowed during service. See (2.7) above. 

It is clear tha t our initial policy irs  will continue to be asymptotically optimal in 

the sense discussed in Glazebrook et al. [2004] for this variant of the basic model

discussed above. We write Vns : D 

for 7ts  now given by

Y l j = i  L j for the policy value function

V^.s(n, P) P  > t +  Lr5(n,t) |-̂ Crs (n,i)
poo

+  /  y ' p ( n / |n Jt,7r5 (n Ji ) ,s ) t4 s (n /, i  + s)dGirs {jltt){s),
Jo n ,

VKs{0,t)  = 0 .  (2.26)

Direct computation of V^s from (2.26) is computationally prohibitive other than for 

small problems and special cases. Hence we again deploy a fluid approximation to 

develop an approximating value function V^£p ' Ll 0, ]Cj=i Lj . The dynamic 

heuristic which results is given by

7rSF( n , t )  =  a r g m a x < | P ( X j  >  t  +  Y j \ X j  > t)

. {
+ f  ^ p ( r i \ n , t , j , s ) V ^ p{ri,t  + s)dG j(s)[ .  (2.27)

J° n' J

Consider now a single class with X , Y, and 6 as in subsection (2.2.1) above. 

Under the fluid model suppose tha t tts begins processing the class when in state

(m, s). If we write R (r)  for the amount of fluid remaining at time t ,  we have that

for r  > s

R!{r) -  —9(t )R (t ) -  /dl{£(T) >  0},

R(s) = m. (2.28)

Hence, according to (2.28) fluid is now drained continuously under the impact of
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both losses from the system and service effort. If we define t(m,s)  by

t(m, s) — in f{T  — s;t > s and R(r)  =  0}

then it is not difficult to show from (2.28) tha t t(m, s) satisfies the integral equation

exp 9(s +  v)dv
uo

du = mfi - l (2.29)

which has the solution

t(m, s) = 9~x ln (l +  mdfi-1)

in the special exponential lifetime case in which the hazard rate is constant, namely 

9(-) =  6. Since t(m,s)  is the time for the fluid to be drained, the corresponding 

number of service completions is given by

iV(m, s) —

To obtain V^sP(n, t) we develop quantities P ,-(ji,t),l <  j  < J ,  inductively as 

follows:

Pi(n,t) =  Ni(ni,t),

and

9j(t +  v)dv

j -1
(2.30)

i= 1

Please note th a t in (2.30) the job classes are numbered in order of their processing 

by 7TS. We now use the quantities in (2.30) to develop the approximating policy
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value function as

V ^ p( n , t )  =  M ) .
i=i

Dynamic heuristic itSF is then developed from (2.27).

2.3 Numerical Study

In the following discussion we consider three general scenarios. These are (I) life

times and service times are both exponentially distributed, (II) Weibull lifetimes 

and deterministic service times, and (III) Weibull lifetimes and exponential service 

times. As we shall see, our problem formulations for scenarios (I) and (II) have 

discrete and finite state spaces. In both cases it is possible (though expensive) to 

compute optimal policies for problems of modest size using dynamic programming 

by exploiting special features of the structure of the value iteration algorithms 

concerned. It is thus possible to assess the quality of heuristic irSF by direct com

parison of the expected number of service completions achieved with the optimum. 

For scenario (III), the state space is continuous and infinite. In these cases, it has 

not proved possible to develop optimal policies for problems of even modest size 

in reasonable time. In sharp contrast, it is a straightforward m atter to perform 

the computations necessary to implement heuristic ttsf  on-line; namely, to ob

tain those 7r5ir(n, £) which are required in any realisation of the system. Hence, 

in scenario (III) it is natural to assess the relative performance of n SF and the 

competitor heuristics n s (see (2.5)) and 7tm (see (2.6)) by means of Monte Carlo 

simulation. In the numerical results we have also included the heuristic irSPI for 

comparison when it has proved possible to do so.
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2.3.1 Scenario (I): lifetimes and service times exponentially 

distributed

In this scenario, we have

=  1 -  e~e’‘

Gj(s) =  1 -

and crucially, the lifetime hazard rates 9j are all constant functions. Hence the 

time dependence in the policy value function Vn(n, t) for any stationary policy (i.e. 

one which makes decisions in any state (n, t ) which depend upon n  but not on t) 

disappears. In such cases, the optimality equation in (2.4) reduces to

Equation (2.31) enables the development of optimal policies in this case along 

with the value V(L) which is the expected number of service completions achieved 

from initial state L. It is a straightforward m atter to check tha t in this case heuris

tics irSPI, n SF, n s and 7rM are all stationary (have no explicit time dependence). 

Here, the appropriate value iteration algorithm for the computation of the num-

V  (n) =  1 +  max
jeA(n)

OO  |
^ ‘ds > ,n  ^  0 

n' J
V(0) =  0, (2.31)

and the transition probability reduces from (2.3) to

(2.32)

0 < n'j < rij — Si j , 1 <  i < J.

The policy n SF can be obtained from the expression

^ ^ ( n )  =  argm ax
j

(2.33)
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ber o f exp ected  services achieved under any sta tio n a ry  p o licy  7r is d evelop ed  from  

recursions of the form

p oo
Kr(n) = l +  / V^p(n'|n, 7r(n), n % 0,

Jo n ,

Kr(O) -  0. (2.34)

Please note tha t the integrals in equations (2.31), (2.33) and (2.34) need to 

be estimated by numerical approximation. In this thesis we employ the Matlab 

numerical integration toolbox for this purpose. The function being used is quadl, 

which is based on a recursive adaptive Lobatto quadrature. To use this function 

we need to specify an integration interval of the service time s. The lower bound 

is obviously zero. The upperbound must be a finite positive real number rather 

than infinity as shown in these equations. Proper selection of the upperbound 

is critical to the computation outcome. A value which is too small will lead to 

incorrect integration results, while a too big value will waste a significant amount 

of computational time. Experiments show tha t the value which covers 99.9% of 

all the service time possibilities finds the balance. For exponential service times, 

this value is 3/^_1 In 10.

It is worth mentioning tha t because the lifetime distributions are exponential 

and memoryless in this scenario, the quantity (2.6) th a t determines policy n M 

takes a very simple closed form, as shown below:

'  j

^   ̂(P'i ^ij )
i=z 1

As we shall see, however, this quantity is much more difficult to compute when 

lifetimes are Weibull distributed. In the next two scenarios, numerical methods 

are used instead.

Problems are generated at random for two class (J  = 2) and five class (J  = 5) 

cases for each of four distinct assumptions (A, B , C, D) about the relative lengths
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of lifetimes and service times. We sample the key problem features f i j 1, 9~l , Lj as 

follows:

f i j 1 ~  C/[l, 10] (all cases); (2.35a)

eJ lN  IM71 ~  C/[0.1,0.5] (very short lifetim es,^); (2.35b)

~  U[0.5,2.0] (short lifetimes, B); (2.35c)

9 j 1/ij \/j,~1 ~  ^[2.0,10.0] (moderate lifetimes, C); (2.35d)

\ii~l ~  [/[10.0,100.0] (long lifetimes, D ); (2.35e)

Lj ~  DU[1,50] (J  = 2 cases); (2.35f)

L j~ D U [ l ,6 ] (J  =  5 cases). (2.35g)

In (2.35a)-(2.35g), U[a, b] is a continuous uniform distribution on the range [a, b] 

while DU[a,b\ is a discrete uniform distribution on [a, 6]. Note tha t in category 

A, (2.35b) indicates tha t the ratio of mean lifetime to mean service time lies in 

the range [0.1,0.5] and hence few service completions are likely. In category D 

this ratio lies in the range [10.0,100.0] and hence many service completions are 

likely. We observe tha t the myopic nature of heuristic irM suggests tha t it is likely 

to perform well in category A  where the current decision in any state need take 

little account of the future. Further, the asymptotic optimality of tts in a "no 

prem ature job loss" limit suggests tha t it should perform well in category D.

Note in this section and the numerical study elsewhere, tha t we deliberately 

avoid those special problem instances where the jobs with smaller mean lifetimes 

also have smaller mean service times. In these cases the optimal policy is obvious 

and all the three heuristics can easily find the optimum. This may disguise the 

differences in performance between them.

For each of J  = 2 and J  = 5 and each of the categories A, B ,C  and D , 

500 problems were generated at random according to (2.35a)-(2.35g). For each 

problem value iteration was deployed to compute the mean number of service 

completions achieved under the heuristics tts p i , its f , n s  and 7rM and under an



C H APTER 2. SCHEDULING W ITH  P E R F E C T CLASSIFICATION  61

optimal policy. In every problem the percentage suboptimality A(n,opt)  of each 

heuristic n = n SPI, 7rSF, n s , 7tm was computed. Further, for each collection of 500 

problems, the minimum, mean and maximum values of A (7r,opt) were recorded 

for each heuristic. These values may be found in Table 2.4(a) (J  =  2) and Table 

2.5(a) ( J  =  5).

From Table 2.4(a), and as indicated above, the performance of the asymptoti

cally optimal heuristic n s improves steadily from category A  to category D  while 

for myopic heuristic ttm the reverse is the case. Serious suboptimalities can occur 

especially in those problem instances for which these heuristics are not designed. 

The position is similar in Table 2.5(a) though the fact tha t in the J  — 5 cases the 

values of the generated Lj are much smaller (see (2.35g)) means th a t the maximum 

suboptimalities for the myopic heuristic are substantially reduced. In sharp con

trast, the heuristic 7ts f  is robust; it performs well in all scenarios. It outperforms 

7rs and trM in all cases with the single exception of category D, J  = 5 where the 

asymptotic optimality of n s confers on the latter a slight advantage. As reported 

in Section 2.2, 7rSPI performs outstandingly well and may be readily computed in 

exponential cases of modest size.

We also calculated, for each of the categories and J  = 2 and J  = 5, the number 

of problem instances in which each heuristics 7r =  7rSF, n s , tvm provides the best 

performance. Moreover, a Friedman test was conducted to test if the differences 

across the heuristics are significant. These results can be found in Table 2.4(b) 

( J  =  2) and Table 2.5(b) (J  =  5). It is worth mentioning tha t here and elsewhere, 

the total number of winners exceeds the number of problems. This is because of 

ties in performance between policies. It is shown in Table 2.4(b) th a t tts f  provides 

the best performance in many more instances than the other two when J  — 2. The 

only exception is category D where tts wins in 24 more instances. The result is 

similar in Table 2.5(b). irs wins again in category D. In category B  the myopic 

policy 7rM provides the best performance in 33 more instances than irSF, which 

could be due to the smaller values of Lj  when J  =  5. In either table, the p-values
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of Friedman test are all zeroes, which means tha t we have very strong evidence of 

differences in performance between the heuristics.

It is worthy of mention tha t the scale of computational effort required in the 

analysis necessitated the use of high performance computing (HPC) facilities. The 

most computationally intensive tasks include development of the optimal policy, 

development of policy n SPI, and computation of the mean number of service com

pletions achieved under each heuristic. In contrast, development of heuristic irSF 

takes only a small percentage of the total computation time. It is trivial to develop 

n s  and n M. To appreciate the computing challenge of this numerical analysis, we 

can estimate the time which would have been required if all the 4,000 problem 

instances were solved on a single PC. Experiments show th a t the average run time 

is 12 hours for a single problem on my desktop, which has a 3.00GHz CPU and 

1GB RAM. The total time needed would be 2,000 days, or 5 years and a half. 

In contrast, HPC facilities in Lancaster University have the capability to solve 60 

problems in parallel, with an average run time of 2 hours per problem. The total 

time required is then 5 days and a half. Similar results also hold for the next two 

scenarios.

2.3.2 Scenario (II): Weibull lifetimes and deterministic ser

vice times

The Weibull family of distributions yields a flexible way of modelling lifetimes. 

Note th a t here and elsewhere, we shall use Weibull(olj, fy)  to denote the distribu

tion function

Fj(s) = 1 -  e~{s/l3j)aj, (2.36)

where aq is the shape parameter and /3j is the scale param eter for class j .  This 

reduces to the exponential distribution when aq =  1. The mean of the Weibull 

random variable is f tT ( l  +  otj1). The hazard rate takes the form given in (2.25).
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In order for the class j  hazard to be increasing, which is a natural assumption in 

many applications, we require that aq > 1.

In cases in which class j  service times are deterministic of value fi~l the value 

iteration procedure need only compute value functions V, Vn at states (n, t) for 

t-values of the form t = i m j lH l where the rrij are non-negative integers. The 

optimality equation (2.4) now takes the form

V {n ,t)  =  1 +  max \  V V n 'I n ,* ,  j ^ ~ l )V(rLU  +  f i j 1) I ,n  ^  0,
j EA ( n )  ^  j

V(0,*) =  0, (2.37)

and the transition probability (2.3) becomes

p(n'|n,t.i.Mj1) =  I [  h  "A) (1 -  (Fi{rfT~S'>~< . (2-38)
i=l '  1 '

in which the remaining lifetime distribution F*(s) is given by 

F H s) = 1 -  exp
t \ aj ( t +  s

P i J  V P
(2.39)

Also, we have

and

nSF(n,t) = argmax j ^ T p ( n /|n,£,.b/U (ri H + Tj *) j , (2.40)

V„(n, t) =  1 +  j ^ p ( n ' |n ,  t, 7r(n, t), t + j - , n /  0,

14(0,4) =  0. (2.41)

The effective discretisation of the time axis which results radically simplifies value 

iteration procedures.

We now give the method to compute the quantity (2.6), which has been copied
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over here for th e  reader’s convenience:

E { Y j )
i= 1

In the above expression, the first term  E(Yj )  is as simple as in the previous scenario. 

The tricky part is to compute E (X i — t\Xi > t ), which is referred to as the mean 

residual lifetime (MRL) in the literature. Recall tha t in the previous scenario MRL 

reduces to E { X )  or 6~l due to the memoryless property of exponential lifetimes. 

For Weibull lifetimes tha t are defined by (2.36), E (X i — t\Xi > t), or M RLi(t) ,  

can be calculated by the following equation. For presentation purpose, we discard 

the subscript i in the following account.

E ( X  -  t \X > t ) = MRL(t)  = f iU 1/ 0 ’ i t /PT) t (2 .42)
a

where r(l/o;, (t/(3)a) is the upper incomplete Gamma function which takes the 

form

poo

r ( l /a ,  (t//3)a) =  /  x l'a^e~xdx. (2.43)
J(t IS)-

Proof. By definition

MRL(t) -  -T  e  -  F (s))ds MRL{f > 1 _  J ? (t ) •

Substituting F(-) by equation (2.36), we have

r°° e~(s/ ^ ads 
=  Jt e- m r  ■ <2-44)

N ow , exp an d  th e  upper in com p lete  gam m a function  in (2 .42) by (2 .43), we have

=  . ( 2 .4 5 )
a
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Let x  = (s/(3)a , we have

dx = a s a 1/(3ads, 

x i/*-i  =  ( p / sy - \ (2.46)

Substituting these values back into equation (2.45), we have the resulting equation

The calculation seems quite straightforward via equation (2.42). The only 

difficulty is tha t C + +  does not have a pre-defined incomplete Gamma function 

in its standard libraries. Luckily, such a function is provided in the Boost C + +  

libraries, which are a collection of free libraries tha t extend the functionality of

Unfortunately, during the analysis we have found th a t the equation (2.42) is 

not numerically robust. When time t is large, the incomplete Gamma function 

approaches zero while on the contrary the exponential term  approaches infinity. 

The result is a NaN (Not a Number). To get around this issue, we opt instead to 

compute MRL by the following equation:

There is no closed form solution to the integration. Again, it is computed numer

ically by M atlab function quadl. The upperbound for the integral is determined 

as

exactly as in (2.44). □

C + + .

poo

M R L (t)  = /  s d F l(s) 
Jo

where F t (s) is the remaining lifetime distribution function given in (2.39). There

fore, we have

M R L (t)  =  ( ^ )  - p  [ Q )  -  ( * ± f )  ] * .  (2.47)

(<“ +  7/?“ In 1 0 +  - t , (2.48)
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which covers 99.99999% of all the remaining lifetime possibilities.

In our numerical study, problems are generated at random for two class (J  =  2) 

and five class problems (J  = 5) under each of four distinct assumptions (A ', B ', C", D')  

about the relative lengths of lifetimes and service times. We sample the key prob

lem features f i j 1 , c^-, (3j, L j  as follows:

H jl ~  U[  1,10] (all cases); (2.49a)

aj ~  f/[1.0,2.0] (all cases); (2.49b)

~  t/[0 .1 ,0.5] (very short lifetimes, A'); (2.49c)

P3T ( l T a ~ l )^3\ ^ \ a 3 ~  U{0.5,2.0] (short lifetimes, B '); (2.49d)

P3V{ l  + a ~ l )ii3\ i i - \ a 3 ~  U[2.0,10.0] (moderate lifetimes, C 7); (2.49e)

P3V( l  + a j l )ii3\n~l , a 3 ~  U[ 10.0,100.0] (long lifetimes, D')\ (2.49f)

L 3 ~  D U [  1,20] (J  — 2 cases); (2.49g)

L j ~ D U [  1,5] (J  = 5 cases). (2.49h)

Note tha t values of pj are derived from the values of n j 1 and olj obtained from 

the draws in (2.49a) and (2.49b) and the value of f tT ( l  +  a j 1) obtained from 

whichever is appropriate of the draws in (2.49c)-(2.49f). Note also tha t the values 

of the Lj drawn from (2.49g)-(2.49h) will tend to be smaller than those in (2.35f)- 

(2.35g). This is forced upon us by the added complexity of the recursions (2.37),

(2.40) and (2.41) in comparison with (2.31), (2.33) and (2.34) . As with scenario (I) 

comparisons between the heuristics are based on 500 problems randomly generated 

as in (2.49a)-(2.49h) above for each of J  = 2 and J  =  5 and each of the categories 

A ' , B ’, C' and D '. Note that development of policy irSPI is possible for the J  — 2 

cases, though computationally expensive. Hence this heuristic has been included 

in the J  = 2 study but not in the J  =  5 study since it was not possible to get 

results for the latter in reasonable computational time. The results are presented 

in Table 2.6 and Table 2.7.

The evidence provided by Tables 2.6(a) and 2.7(a) yields similar conclusions
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to those drawn from Tables 2.4(a) and 2.5(a). The heuristics 7rs and 7rM continue 

to have poor worst case performance in settings for which they were not designed. 

The uniform excellence of the performance of n SF is in clear contrast. From Tables 

2.6(b) and 2.7(b), it is clear th a t tts f  wins easily in all cases. It provides the best 

performance in nearly all the problem instances, especially category A  in which 

it is the best for every single instance. The zero p-values again indicate strong 

evidence of differences in performance among the heuristics.

2.3.3 Scenario (III): Weibull lifetimes and exponential ser

vice times

In both scenarios (I) and (II) it was possible to exploit model features to develop 

exact analyses based on DP value iteration for problems of modest size. In this 

way, it was possible (though expensive) to develop optimal policies and calculate 

the expected number of service completions for the heuristics of interest and for 

the optimal policy. This is no longer possible in scenario (III).

As the service times are now continuous random variables, the decision epochs 

after time zero could be any positive real values in the set R +. The resulting state 

space is continuous and infinite. It is impossible to implement direct DP methods 

for such problems. The continuous state space must be discretized. This can be 

done by defining a small enough time increment 5 and a large enough termination 

time point Tmax. We assume tha t after Tmax no more customers will be sent for 

service and no more rewards will be received. Let E  — {0, 5, 25, • • • , /c5, • • • ,K S}  

be the set of all time points on the discretized time axis, where K5  is the last one 

within Tmax and K  =  |_Tmai/5 J . For any reasonable discretisation, the value of K  

is huge and the size of the state space, (K  A  1) Lj, is far beyond tractability 

even for cases with a modest number of initial jobs. Development of the optimal 

policy, or even the exact evaluation of any given policy, is not a realistic option.

Nonetheless, it is still straightforward to develop on-line applications of the
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three heuristics 7ts f 1tts and ttm (though not of tts p i). By this we mean tha t it 

is straightforward to perform the computations required to determine the action 

prescribed by each heuristic in any given state. This is trivial for the heuristics 

7ts and 7tm . We show now how to determine the action specified by the heuristic 

policy ttsf  for any given state.

After discretisation, the service completions can only happen at the time points 

in set E , and the service time variables are transformed from exponential to their 

discrete counterpart, geometric. We allow customers to abandon the system at 

any time and the lifetime distributions remain unchanged, still Weibull. Let Y f  

be a geometric random variable describing the discretized service time for class j  

jobs. The pmf (probability mass function) for Y f  is

P{YJd = k8} = ( l - G J(6))k~1Gj (5)

= e-M (* -i)(! _  e- M ) 5 o < k < K .  (2.50)

Remember Gj(5)  =  1 — e~IXjS is the probability th a t a service completes within the 

interval 5 before discretization.

Denote by E ( t ) =  {kt5, (ht +  1)£, • • • , KS}  the set of time points lying within 

the interval [t,Tmax\. Obviously we have kL — \t /5 ~| and in particular ko =  0 and 

E (0) =  E. We then have

7r5F(n, t) — argm ax < ^ 2  p (Yf  = s )  ̂̂  s ) V ^ p{n!A +  s) 1 , (2.51)
n; J

where the transition probability p (n '\n , t , j ,  s) takes the same form as in (2.38).

To find a proper Tmax value, we firstly define by Y (L) a random variable for 

the cumulative service times of all the initial jobs, w ritten as

J U

Y (L) =  E Z A * -  (2.52)
j = 1 k= 1
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Then we let

Tmax —£(Y (L )) +  3 ^  ar (Y(L))

J J

£ £ 0 ^  +  3. 5 > a r ( Y ; )L3
3 = 1 \  3=1

(2.53)

The resulting Tmax serves as a reasonable (actually rather conservative) termina

tion point, by which most jobs (if not all) will have either been served or lost from 

the system. There is not a single best choice of the value of S. When making the se-

some time, especially at the early stage, it does not m atter at all if this is only 

required for a few states. In light of this, a natural approach is then to use Monte

7rM. For each simulation run, the computation of (2.51) is only needed for those 

states visited (not many at all) by the simulation trajectory. The computational 

time taken in the rest of the simulation is negligible.

In the exact approach, we do not need to differentiate individual jobs within 

one class as they are identically distributed. This is not the case any more in the 

simulation. Each job has a distinct sampled lifetime and a distinct sampled service 

time. An extra decision is then required to select, among the others, a specific job 

for service. This decision needs to be necessarily a random pick up process as 

otherwise the simulation will be biased from the exact approach. To simulate this, 

we assign each job a priority which is sampled uniformly between 0 and 1. If a 

class j  job is to be served next, the choice is given to the remaining job tha t has 

the highest priority in tha t class.

The other two random variables, the lifetimes Xjk and the discretized service

lection we need to consider the balance between the accuracy of the approximation 

and the computational effort required.

Even though the determination of the ttsf  action by equation (2.51) still takes

Carlo simulation to conduct a comparative study of the performance of n SF, tis and
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times are generated as below.

x jk =  P j ( - l n U ) 1/c

Vjk =
In U
-f i j5

where U is a random variable uniformly distributed between 0 and 1 and is sampled 

using the Mersenne Twister random number generator (Matsumoto and Nishimura 

[1998]). There is plenty of open source code available which implements this algo

rithm. The one we use in this thesis is due to Fog [2010].

A key issue to be addressed in any simulation is variance reduction. In this 

thesis we use the method of common random numbers (or matched sampling) to 

reduce the variance, by sharing random numbers between the simulations for the 

heuristic policies tts , ttm and tts f . Expressed in detail, at the beginning of each 

replication, the lifetimes, service times and priorities are generated and stored 

for all jobs. Under the same experimental scenario, the system is then simulated 

repeatedly three times, one for each heuristic. The difference between the number 

of successful service completions achieved by t t s f  and tha t by 7rs  or 7rM is recorded 

as one output sample, the averages of which over all the replications are used to 

generate the final report.

For each problem instance, the simulation is replicated a large number of times 

until the variance of the samples falls below an acceptable tolerance. Denote the 

sample variance in our simulation by s 2 ( t t s , 7ts f ) and s 2 ( n M , 7 t s f ), respectively. 

The simulation stops after M  replications where M  is the smallest m  which satisfies 

the following stopping criterion.

'm  C m

where d is the acceptable tolerance which is set to 0.001. To ensure tha t the 

simulation has a fairly large coverage of the sample space, we require tha t M  > 

100. In other words, the simulation is replicated at least 100 times and then the
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stopping criterion begins to apply. We also specify an upper limit for M  so that 

the simulation does not run forever.

W ith the simulation progressing, the sample mean and sample variance are 

updated dynamically, whenever a new replication is done and new samples are 

available. We could keep a record of all the samples to date for the calculation, but 

they would consume a lot of memory. A better way is to update the sample mean 

and variance by the following on-line algorithm. We have used generic notations 

x m, x m and for the latest sample after the m th replication, the latest sample 

mean and the latest sample variance, respectively. We have

_ _ E m  E m —1
E m  —  E m — i  - | -  ,

m

$ m  ~  (1 ~   ̂ ~b T Y l { X m  ^m -l) •

As we can see, there is no need to store any samples in this algorithm.

Problem parameters were chosen as in scenario (I) (service times) and scenario 

(II) (lifetimes) though time constraints limited the study to the J  — 2 case, with 

100 problems generated in each category. In Table 2.8(a) find information on the 

estimated values of N{ its , itsi') and A(7tm , n SF), the percentage excess expected 

number of successes achieved by 7tsf over tts and ttm respectively. Hence positive 

values indicate stronger performance by n SF while negative values indicate stronger 

performance by the competitor heuristic.

While we encountered occasional problem instances in which the estimated 

expected number of successes achieved by the competitor heuristic exceeded that 

of 7tsf  these were rare and the differences usually very small. In all categories the 

average performance of n SF was superior. There continued to be problem instances 

in which 7r5,7TM performed very poorly in comparison with 7rSF.

In Table 2.8(b), the number of win instances for n SF is many more than 7ts 

and 7tm  in all the cases considered. The p-values of Friedman test are again zeroes 

throughout and indicate strong evidence of differences in performance among these
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heuristics.

2.3.4 Implementation Notes

In this section we put together a selection of im portant procedures th a t have 

been implemented in this thesis to deal with the very intensive computational 

requirements.

1. The numerical study in this chapter and in the next two is implemented in the 

C + +  programming language for its high efficiency in scientific computation. 

The only exception is some numerical integrations which are calculated by 

the M atlab numerical toolbox. To import M atlab functions into C + + , they 

are compiled into wrapper files for C + +  by invoking the M atlab command 

race, and then the generated files are included in C + +  as resources files.

2. For each of the three scenarios, we group all the analysis processes into one 

class. For the second and third scenario, since most of the data and functions 

are similar, only the class for the second scenario is created from scratch and 

the one for the third scenario is just a derived class. This procedure greatly 

improves code efficiency.

3. The binomial coefficients (™) are used very frequently and repeatedly in all 

problem instances. Even though a single computation of it is momentary, 

millions of times becomes very significant. To remove this unnecessary com

putational effort, we save the pre-calculated binomial coefficients into a disk 

file and load it into memory when the program is initialized. The data stored 

in the file take the form of a matrix, where the columns are n  and the rows 

are k. Because (™) =  (n™fc), the matrix is actually lower triangular. We have 

chosen 0 <  n  <  50, of which the resulting m atrix is enough for all of our 

numerical analyses in this thesis.

4. Similarly, some intermediate quantities are used repeatedly, such as one step 

transition probabilities or MRL. Instead of computing them repeatedly when
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ever needed, they are just computed once and then stored into memory for 

future usage.

5. In our C + +  implementation, each state is defined as an object of a state 

class. For Weibull lifetime cases, the state space is huge. As a result the 

objects created will consume a large amount of memory. To save more mem

ory for the actual computation, we implement state in a different way. We 

create an object for each n rather than for each (n, t), and in each of these 

objects, declare an array for all possible decision epochs. We have found this 

technique works very well for efficient memory allocation.

6. A param eter data file is loaded to memory in the initialization. This file con

tains a set of parameters which change frequently from one problem instance 

to another, such as the number of job classes, or the distribution of lifetimes 

and service times. This approach allows a single compilation for all problem 

instances. Therefore, we do not need to re-compile the program every time 

when a change of parameters occurs. Only the param eter values need to be 

updated in the data file.

2.4 Conclusion

A batch of impatient jobs is present at time zero in a single server clearing system. 

Before any service starts they are subject to a perfect triage process and are placed 

into distinct classes. Jobs placed into one class are assumed to have i.i.d. lifetimes 

and i.i.d. service times. The objective is to schedule the service to maximize the 

total number of successful service completions.

We model this problem as a SMDP and hence standard DP approaches can 

be applied to develop optimal policies. However, any problem of practical size 

cannot be solved to exact optimality due to the curse of dimensionality. Instead, 

we propose to generate effective heuristic policies by a single policy improvement
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step from a static permutation heuristic tts . Moreover, the value functions of n s 

are approximated by a deterministic fluid model to deal with the intractability of 

exact policy evaluation. The constructed fluid model not only has a simple form 

tha t permits fast solution, but also its quality of approximation is outstanding.

Our proposed heuristic is tested in an extensive numerical study in three sce

narios, namely exponential lifetimes and service times, Weibull lifetimes and deter

ministic service times, and Weibull lifetimes and exponential service times. In the 

first two scenarios we are able to compute the exact optimum for small problems 

and thus to compare competing heuristics by means of suboptimality. In the third 

scenario it is not possible to develop optimal policies in reasonable time. Instead, 

a simulation based comparative study is conducted. In all three scenarios, our 

heuristic works robustly well. It comfortably outperforms the other two heuristics 

proposed in the literature (one is n s ), both of which can exhibit poor performance 

outside of the domains for which they were designed.



Chapter 3

Scheduling of Impatient Jobs with 

Imperfect Classification

In this chapter we extend the work of Chapter 2 to impatient job scheduling with 

imperfect classification. It is organized into four major topics. In Section 3.1 our 

job scheduling problem is formulated as a Bayes sequential decision problem and 

in Section 3.2 an exact approach to its solution via dynamic programming is de

scribed. In Section 3.3, the approximate DP methodology and the fluid model 

proposed in Chapter 2 are further developed so that they can yield effective so

lutions to our Bayesian model. A numerical study in Section 3.4 testifies to the 

strong performance of the resulting heuristic scheduling policy. It is concluded in 

Section 3.5.

3.1 The Model

A clearing system has a single server and a collection of N  jobs (or customers) 

awaiting service, which starts at time 0. Each job is one of J  types, each type 

being identified by an integer i G {1,2, . . . , J } .  Each type i job has associated 

with it two positive-valued random variables (r.v.s). One of these is its lifetime, 

namely the period during which the job is available for service, which is deemed 

to have the distribution of some r.v. X i with distribution function F{. A  job will

80
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leave the system unserved if its lifetime expires before it is taken into service. The 

other job-related r.v. is its service time, which, for a type i job, is deemed to have 

the distribution of some r.v. U with distribution function Gi. A job leaves the 

system when its service is complete. The lifetimes and service times of all jobs 

form a mutually independent collection. We assume th a t service is nonpreemptive. 

Up to this point the model duplicates the one in the previous chapter.

At time 0 all jobs are subject to an error-prone triage and thus the type of 

each job is observed with error. Should a type i job be assessed as type j ,  we 

shall say tha t it becomes a member of class j .  Hence throughout, we shall use the 

term  class to denote the assessed type of a job. Only job class is observed. We 

shall adopt the following simple probabilistic model of job (mis)classification. We 

write pi for the (unconditional) probability tha t a job is of type i and eij for the 

(conditional) probability tha t a type i job is assessed as j .  If ta < 1 for any i then 

some misclassification is possible. By deployment of Bayes’ Theorem we infer the 

conditional probability that, in advance of any service, a class j  job is actually of 

type i to be

Pij(0) =  P  (type i | class j )  = —f — ----- . (3.1)
1 ekjPk

We shall call {pij{0), 1 <  i < J}  the prior distribution for each job classified as j .  

This summarises the decision maker’s beliefs about its true identity before service 

begins.

As time passes, jobs leave the system as services are completed and lifetimes 

expire. It is also true, that at some time t > 0 our beliefs with regard to the 

(true) type of the remaining jobs need to be updated in light of their survival 

beyond t. Again applying Bayes’ Theorem, we compute posterior distributions 

{pij(t), 1 <  i < J }  for each class j  job as follows,

Pij (t) = P  (type i | class j ,  life tim e  > t) = • (3.2)
E fc = i  ekjp k { l -  Fk (t)}
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Proof. Define the following events.

• Af. a job is of type i. Generally define event A k : a job is of type k, 1 < k < J. 

It is obvious tha t all these events are mutually exclusive.

• B: a job is assessed as class j.

• C : a job has survived up to time t.

It is not difficult to derive the Bayes’ formula for three events.

td( /t i d  n  /~i\  P (B  Pi c\A )P (A )  P (A i)P (B \A i)P {C \A i n  B)
F [ A i 'B  n C ) -  p (b 7w ) ----------- p ( B n C ) --------- '

By definition event C  is independent of event B  given any event Ak, as a job ’s 

lifetime distribution is solely determined by its type. We then have

T . U P { B \ A k ) P ( C \ A k) P { A k )

Substituting all the probabilities by their definitions gives the equation (3.2) im

mediately. □

Please note tha t equation (3.2) is not numerically robust for large t. When 

time t is large enough, the survival probability for all jobs will usually approach 

zero. This results in a zero numerator and a zero denominator, and thus a NaN 

issue. We fix this by multiplying both expressions by {1 — P)(£)}_1. In the Weibull 

distributed lifetime scenario, the rearranged equation is,

Pij(t) €ljPl
J2k=i ekjPk exp [(t/Pi)ai -  (t/P k)ah]

6ijPi (3.3)
djPi +  E * = w »  ekjPk exp [(t/A )ai -  (t/P k)ak\

It is trivial to show tha t if all of the e..,p. are strictly positive and, further, that
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there exists some type i* which outlasts the others in the sense th a t

(3'4)

then we must have

and consequently

lim Pi*j(t) = 1, Vj,
t—>oo

lim  pij (t ) =  0 , i ^  i \ \ / j .
t—> oo

H ence survival in form ation  can be very in form ative for (true) ty p e  identity.

Exam ple 3.1. Consider an example with J  — 2 and with the following parameters:

•  p i =  0 .3, p 2 =  0.7,

• 1̂2 — 0.3, 621 — 0.4,

• X\  ~  W eibull( 1.68,1.62), ~  W eibull( 1.16,13.43).

A t time zero, the probability that a class 1(2) job is indeed of type 1(2) is 0.43(0.82) 

from equation (3.1). As time passes these conditional probabilities are updated 

according to equation (3.2). Their values at times 2 and 5 are given below:

P l l (2) =  0 .17,p22(2) =  0.95; 

p n (5) =  0 .00 ,p 22(5) =  1.00.

Since type 2 jobs have much longer mean lifetimes (with mean 12.75) than type 

1 (mean 1-45), it is unsurprising that we have i* = 2 here and that type 2 jobs 

outlast type 1. As time passes, all surviving jobs are increasingly likely to be of 

type 2.

The goal of analysis is the development of an approach to the allocation of 

service to surviving jobs (i.e., those still in the system) to maximise the expected
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number of jobs which leave the system served. Equivalently, we seek to minimise 

the expected number of jobs which leave the system on the occasion of the expiry 

of their lifetimes. Decision epochs occur whenever a service completion occurs. 

Suppose tha t t is such an epoch and tha t at time t, n j class j  jobs survive. We 

write (n, t) for the corresponding system state, where n  =  (rq, n 2, . . . ,  n j)  is the 

vector summarising the class membership of surviving jobs. Write

A (n) =  { j \n 5 > 0}

for the set of admissible actions in state (n, t ) . A service policy ir maps each system 

state (n, t) to the action set A  ( n ) . We shall conventionally use (L,0) for the initial 

system state, where L =  { L j ,  1 <  j  < J} . Hence a t tim e 0, Xj jobs are placed in 

class j, 1 <  j  < J.

W ith initial system state (L,0) we shall use L . =  {Xy, 1 <  i rj  < J }  to denote 

the unobservable true state, where Xy denotes the number of type i jobs clas

sified initially as j. Since all job classes are determined independently, we have 

Y fL i  L ij = L j , l  < j  < J, with

{Xy , X2j , . . .  Lj j }  | L ~  M ultinom ial (X jjpy (0) ,p2j  ( 0 ) , . . .  ,pj j  (0)), 1 < j  < J.

(3.5)

Conditionally upon the true state (L.., 0) we use a triple i j k  to label the jobs, where 

i j k  denotes the kth  type i job to be classified as j.  The range of k is 1 <  k < Lij. 

Denoting the lifetime of i j k  by ~  E*, we use Tijk (tt) to denote the time at 

which service policy 7r begins to process job i jk.  Conditional upon the true state 

(L .,0 ) we write N  (n | L .,0 )  for the number of jobs to  be served to completion 

under policy 7r. We have

j  j  Xi j

A TM  L .,0 )  =  £ E E  I {Tijk (?r) <  X^k}  > (3.6)
i= l j= l  fc=l

where I  is an indicator. The goal of analysis is the determination of a service policy
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7r to maximise the quantity

q ( L ,0 )  =  £ L |(Li0) [ E { N ( tt | L .,0 )} ] . (3.7)

In (3.7), the inner expectation is taken over realisations of the system, evolving 

under policy w from initial true state L .. The outer expectation is taken with 

respect to the conditional distribution for L | (L,0) whose marginal distributions 

are given in (3.5). We call Vf  (L,0) the Bayes’ return generated by policy 7r from 

initial state (L ,0 ). Please note tha t in (3.7) and in what follows we shall use a 

superscript e to denote the fact that we are dealing with an object associated with 

a classification which is prone to error (and hence uncertainty).

At this point, we want to make a distinction between our problem and partially 

observable Markov Decision Processes. POMDPs are differentiated from standard 

MDPs only in tha t the state of the system is not directly observable. In our 

problem, not only is the true state L . unobservable, but so are "true" actions as the 

type of the job chosen by an action is unknown. Therefore, the problem considered 

in this chapter is actually more difficult than standard POM DP problems.

Remark 3.1. This model generalizes the job scheduling problem with perfect clas

sification that we have studied in Chapter 2. To see this, consider a no error limit 

where ey —> 0,Vi ^  j .  For any non-negative time point, we have by equation (3.1) 

and (3.2)

P i j ( t )  =  0,Vi ^  j,

Pjj 00 =

and by equation (3.5)

L ^  = 0, Vi ^  j ,

Ljj — Lj.
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The jobs assessed as class j  are indeed o f type j  and the observed initial state is 

exactly the true state.

3.2 Formulation of the Bayes Sequential Decision 

Problem as a Dynamic Program

We now formulate the Bayes sequential decision problem

V e (L,0) =  supV;e (L,0) (3.8)
7r

as a dynamic program (DP). Any policy achieving the supremum in (3.8) is 

a Bayes’ policy. In order to formulate the associated DP we require additional 

notation. We shall use X f  to denote the random lifetime of a job classified as j  at 

time 0. Using (3.1) above, the associated distribution function is given by

j
Fj(s)  = Y,Pa (0 )p i (s).* e K+. 1 < i  < 7, (3.9)

i= 1

and the corresponding survival function by 

F ‘(s) =  1 -  F ‘(s)
J

= ^  (s ) ’ s G K+>1 -  3 -  (3-10)
i= 1

where Fi(s) = 1 — X)(s) is the survival function for type i lifetimes.

We shall assume tha t each F{ has an associated absolutely continuous density 

fi. Hence X ? has the density

j
f j ( s )  =  (° )  fi  ( * ) . s  e  K + - 1 <  i  <  7. (3.11)

i= 1
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and the continuous hazard

j
to =  / / t o  {1 -  fjto}"1 =  to 8* t o  . « 6 K+. 1 < 3 < J ,  (3-12)

2 =  1

where in (3.12), 0* =  /»{1 — Fi}-1 denotes the continuous hazard associated with 

the type i lifetime X{.

Proof of (3.12). From (3.9), (3.11), and the definition of hazard rates we have

T , L i P i M M s) 
E t i ^ ( 0 ) ( i - F ( s ) )

e ^ s )  = - j 1™; "  *,  (3.i3)

Substitute pij(0) by equation (3.1), and cancel the common term  Efc=i e k j Pk ,  then 

we have

E i i  eijP i j l -  F j ( s ) ) ( f i ( s ) / { 1 -  Fi (s)) )  

E z t i ^ ( l  -  Fi(s))
rj(s) = X j----- V , ~ ; ^ ------------------------------(3-14)

By changing the index from i to k in the denominator, the equation above can be 

transformed to

ffe(s ) _  e i j P i (  1 ~  F j ( s ) ) _____ fj(s)
1 £ f  E L i  W * ( l  -  f t t o ) 1 -

Note th a t the first multiplier within the summation is just P i j ( s )  (See equation 

(3.2)), and the second multiplier is the hazard rate 6{ for type i. The result then 

follows trivially. □

Should type i* outlast the others in the sense of (3.4) above then we will have 

lim { & U s ) - 0 i *  (s)} = 0 , 1  < j  < J.
S - *  O O

Concerning job service times, consider a situation in which a job, originally classi

fied as j, is still in the system and is scheduled for service at time t. We shall use
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Yft  for the corresponding service time, whose distribution function is given by

Gu  t o  =  W Gi t o  ’s e  R+- 1 S  j  <  •/, (3.15)
2 = 1

and the mean value is given by

j
E N t )  =  (3.16)

2 = 1

Please note tha t service time distributions are now time dependent. In the impor

tan t special case tha t the true service times Yi are deterministic and distinct (in 

which case we use Si for the type i service time), we have

P  { Y ‘t = Si} = Pij (t) , t  € R +, 1 < i, j  < J. (3.17)

Now let t be a decision epoch for the problem and let (n,t) be the system state 

then. If action j  £ A  (n) is taken and results in a service time (realised value of 

Y?t) equal to s then the system state at the next decision epoch will be (n 't  +  s ) 

with probability pe (n  | n ,£ ,j, s) given by

pe (n  | n ,t, j, s)

= n ( n“ , 6rni) { P [ X ^ > t  + S \X'm > t } f ~ { P { X ‘wl< t  + s \ X ' m >t}}  
i V nm Jm= 1 N

_ A ( n m -  Smj\  + ( F ^ ( t  + s ) - F Z ( t )  ]
“ 1 1 1  nm J \  1 - J * ( t )  J \  l - F ' ( t )  /

71m fimj P-m

m =  1

0 ^  rijYi /to &mji I ^  nr /to J, (3.18)

In (3.18), 5mj is the Kronecker delta which is equal to one when m  — j  and is zero 

otherwise. We can re-express the transition probability in (3.18) using the hazard
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in (3.12). We have

p'(n | n , t , j ,  s)

S (  rim ) \ ^ [ - J ^ r ) d r ) \  ( l - e x p (  - | f c ( r ) d r

o < rim < nm -  Smj, 1 <  m  < J. (3.19)

In order to formulate the optimality equation for our Bayes sequential decision

problem, we require the value function V e : tt 

system’s state space, given by

0. E L  h , where Vt is the

fl = { (n, t ) ; 0 < rij < L j , t  e  R + }  .

The quantity V e(n, t) is the maximal expected number of service completions 

which can be delivered from system state (n, t).  Note th a t the quantity V e (L,0) 

is developed in (3.6),(3.7) and (3.8) above. The observed state (n, t) implies the 

marginal conditional distributions

{n i j , n 2j , . . .  nj j }  | n  ~  M ultinom ial (rij]pij (t) ,p2j (t) , . . .  ,pj j  (t) ) , 1 < j  < J

(3.20)

over true (but unobservable) states (n ..,£), where n.. is the unobserved true state 

associated with n. These are marginals for the posterior distribution over true 

states which apply when the system finds itself in state (n, t). For any service 

policy 7r, we then develop the quantity N  (7r | n ,t) by natural extension from (3.6) 

and write

V e (n,£) =  sup V* (n , t ) , (3.21)
7r

where

v ;  (n ,t) = E n |(n,q [E { N  (tt | n ., t )}] , (3.22)

with the outer expectation in (3.22) being taken with respect to the posterior
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distribution over true states. W ith the above in place we may write the DP 

optimality equations as

V e (n,t) = 1 + max j  J £ p‘ (n' | n , t , j ,  s) (n't +  s) dG% (s) j  , n ^ 0, (3.23)

and

Ve (0 ,t) = 0.

In the special case of deterministic service times considered in (3.17), we can 

specialise (3.23) to

V e (n,t) =  1+ max f  T ,T .P v  (*)p‘ (n'l (n'( +  $ ) }  >n /  0. (3.24)
ieA{a)W i «  J

We further note tha t DP value iteration is available to us to compute the Bayes’ 

returns associated with any specified service policy ir. In this event we use the 

recursion

v;e (n,t) = i +  |  j Y ^ p e  V * (n^ + 5) d G U n ,t ) , t ( s ) |  ^ 0,

(3.25)

which in the case of deterministic service times becomes

V* (n,t) = 1 +  ^ P i 7r(n,t) (t ) pe (n | n ,£, tt (n, t) , S{) Vne (n 't + S*) j  , n ^  0.

(3.26)

In Chapter 2 we have shown tha t in the case of perfect classification, the 

simple static heuristic policy ns works well when loss rates are low. We now adapt 

this policy to the imperfect classification case as follows: list the job classes in 

increasing order of the quantity E  (Xj )  E  ( Y ?0), i.e such tha t

E (X{) E  p f t )  < E  (X‘2) E  { f t  0) < . . . E  (Xj) E (3.27)
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In any state (n,£), the adapted policy n s chooses action irs (n ,t) where

n s  (n,t) =  min {j; rij > 1} .

In what follows, the policy tts will be both assessed as a policy in its own right and 

also used as a building block in the construction of strongly performing heuristic 

policies for our Bayes sequential decision problems. How we do this is described 

in the next section.

R e m a rk  3.2. We have demonstrated in Chapter 2 that the scenario of exponen

tially distributed lifetimes and service times is relatively easy to analyse in the per

fect classification case because of the memoryless property. The time dependence 

disappears and the state reduces to just n. This simplification is not available when 

classification is imperfect. To see this, suppose that lifetimes and service times for  

type i jobs are exponentially distributed as Fi(s) =  1 — e~6iS and Gi(s) =  1 — 

respectively. According to equation (3.9) and (3.15), we have for each class j  the 

following distributions

j
q ' ( S) =  1 -  (0) e - e‘s,

i= l  
J

Glt(s)  = l - ' Y ^ P i A t ) e~,XiSi
i—1

both of which have now lost the memoryless property. This can be also seen from  

hazard rates which are now a function of time rather than constant as before, 

namely,

j
Oj(s) = ^ 2 p i j ( s )  6i. 

i=  1

As a result, the time dimension cannot be discarded from the state and in this 

case the state space is therefore continuous and infinite. It is not easy at all to solve 

such problems exactly. Due to the computational constraints, we shall focus instead
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on the Weibull lifetime and deterministic service time scenario in the numerical 

analysis, ,4s we shall see in section 3.4, this scenario permits one to compute 

optimal policies via an exact value iteration.

3.3 On the Development of Effective Heuristic Poli

cies

For problems of realistic size, the utilisation of full DP to develop optimal service 

policies via suitable deployment of optimality equations (3.23) is computationally 

intractable. In light of the results from the previous chapter, one possible route 

to the development of effective policies would be to apply a single DP policy 

improvement step to the simple static proposal tts in (3.27). The resulting policy, 

which is again referred to as 7rSPI, is determined as follows:

, n ^ 0 .

(3.28)

Sadly, the computation of Vfs is in many cases not tractable. Instead, we 

develop an approximation V*sPP to Vfs by the deployment of an appropriate fluid 

approximation to the stochastic service system. This approach, which extends 

tha t described in Chapter 2 for the perfect classification case, is now described.

In our fluid approximation, we fix j  e  {1, 2 , . . . ,  J} and represent the class j  

situation when its processing begins under static policy ir5 by the pair (mj, Sj) In 

this representation, Sj is the time at which class j  service begins under its and 

m j is an amount of fluid representing the number of class j  jobs surviving then. 

The nature of policy n s means that class j  will be served continually from (mj, Sj) 

until all of the class j  jobs are completed, namely until all of the corresponding 

fluid is drained in the approximating model. The process of draining class j  fluid 

is as follows: if m j > 1 a single unit of fluid is removed instantaneously at time

^ spi7T

f  o o

(n,t) =  arg max < /  V V  (n | n ,t, j, s) Vfs (n,f +  s) dGej t (s)
j € M n )  1 7  n .
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tjo =  sj and signifies the guaranteed completion of a single job’s service. Loss 

of fluid is thereafter experienced at rate 6? (r) during the period of this initial 

class j  service, which in the fluid model occupies the time interval [fj0) tji), where 

tji =  tjo +  E  ( y ^ . ^  . Should the amount of class j  fluid remaining at tj\ exceed 

one then a further single unit of fluid is removed instantaneously then and signifies 

the guaranteed completion of a second class j  service, and so on. In what follows, 

tjk denotes the time of the kth  class j  service completion while Rj (r) denotes the 

amount of class j  fluid remaining at time r. Class j  fluid draining as service is 

offered to class j  continuously from (rr i j, Sj) is modelled as follows:

tjo — sj] tjk+i = tjk +  E  (Yj,tj/̂  > & £ N, (3.29)

R j  {tjo) — m ji

Rj  M  = ~0ej (r) Rj  ( t )  , r  $ { t jkl k e  N} , (3.30)

R j  {tjk) = { R j  ( t j k )  - 1 } +  e  N .

The illustration to the above model is very similar to Figure 2.1 in Chapter 2,

except th a t the time interval between two service completions is now a variable

quantity (E (Y tejk)) instead of the constant ( f i jx). This model is solved recursively 

using:

f rtjk+1 1
Rj(tjk+1) =  Rj (tjk) exP j  J t - 0 ‘ (T )d .T  | , (3.31)

R j i t j  o) =  m

where tjk is computed by (3.29) and Rj( t fk) from the last equation in (3.30). The 

solution process terminates as soon as the first zero value of Rj  ( ttfc) is encountered. 

We now introduce the quantities

K j  ( m j ,  s j )  =  m in  { k ; R j  ( t j h) =  0 } (3.32)
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and

Nj (rrij, Sj) = Kj  (mj; Sj) +  Rj ( t ^ m ^ ) )  • (3-33)

From (3.32), Kj{rrij ,Sj) is the (integer) number of fully completed class j  jobs 

under the fluid model while Rj  (tj7^ (miiSi)) is the fractional amount of class j  fluid 

remaining at the conclusion of the class j  processing and which is deemed to yield 

a further fractional completion within the approximating fluid model. In the fluid 

model, we take the total processing time of class j  to be

r , (m ilSj) =  £  E + Rj (t}Klimj,Sj}) E [ Y ‘t ) .  (3.34)

We now fix system state (n,£) and use the quantities developed in (3.29)-(3.34) 

to develop V japp (n,£), the estimate of the expected number of job completions 

secured under static policy n s from state (n,t) obtained from our approximating 

fluid model. We define the quantities Q ( n ,£), ^  ( n , t ) , 1 <  j  <  J, inductively as 

follows:

Ci (n,t) =  Ni (ni , t )  ,ip! ( n ,t) = Tx (nu t ) ,

and

0  (n,t) =  Nj

4>j (n ,t)  =  Tj

Uj exp < -  f  Sj (t + v) dv i  , t  + ^ 2  i>k (n,t) , 1 < j  < J,

\  { o ) k=1 /
(3.35)

iij exp < -  I  (t +  v) dv j  , t +  ^ 2  k (n,t) ] , 1 < j  <  J.
0 I fc-i

(3.36)

The quantity records the number of class j  services completed under

the fluid model when irs is applied from state (n, t), and the quantity ^  (n, t) the 

processing time taken on this class. The first argument of N j , T j  on the right hand 

side of (3.35) and (3.36) is the number of class j  jobs present when the processing 

of class j  begins. The second argument is the time at which the processing of class
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j  begins. The original number rij (present at t) is diminished by losses occurring 

over the time period [t, t +  Y?k=i ^  (*M)) during which the first j  — 1 classes are 

processed.

We now obtain the approximating value function as

^ T w (iM) =  £ c > , t ) -  (3.37)
3=1

E x a m p le  3.2. For the problem with deterministic service times, and the pi and 

lifetime distributions given in Example 3.1, and the following additional problem 

parameters, namely

• L\ =  L 2 =  5,

•  5 i  =  1 .4 1 ,  S 2 =  4 .7 6 ,

we computed both the exact value function V fs and the fluid approximation V f f pp. 

As in the perfect classification situation, we plot in Figure 3.1 fluid approximation 

values at time zero and in Figure 3.2 both exact and approximate ones at a set 

of states at four representative decision epochs. A summary of the percentage 

approximation errors, A (Vfs ,Vfsapp) — 100|1 — V f’sapp/V£s \%, over the effective 

state space is presented in Table 3.1 below. For this example, a state ( n i , n2,t) Is 

in the effective sample space if

1. t can be expressed in terms of

t = n S i  + r 2S 2,

for some r i , r 2 which are non-negative integers and satisfy 0 < r 1}r 2 < 

(Li +  L2) = 10;

2. and the following condition holds:

t < (10 -  n\ -  n2) max{Si, S 2}.
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MEAN
MIN

1.41%
0 .00%
0 .00%
1.48%
2.35%
4.55%

1ST QUARTILE 
MEDIAN 
3RD QUARTILE 
MAX

Table 3.1: Percentage approximation errors A (Vfs ,Vfjflvp) for Example 3.2.

It is worth mentioning that due to the uncertainty of each jo b ’s true identity, 

the effective state space tends to be larger in the imperfect triage case compared 

to the perfect triage of Chapter 2. This can be seen from the more relaxed upper 

bounds on r i , r 2 and on time t.

We can see that the approximating value function is again increasing and con

cave componentwise in n, for fixed t. Further, the fluid approximation still has 

robustly outstanding performance, with an average error of 1 .4 1 % and a worst 

performance of 4-55%.

Our proposed sequential decision rule n SF in the case of error-prone triage can 

now be obtained by deploying the approximate value function from (3.37) within

(3.28). We write,

7tsf  (n ,t) = arg max
jeA( n)

When service times are deterministic, we have the form

n SF (n,t) = arg max
j € A ( n )

(3.39)

3.4 Numerical Study

In what follows we compare the performance of the heuristic n SF developed in 

the preceding section with that of the static proposal tts described around (3.27).
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We shall also consider irM, an adaptation of the myopic policy proposed by Argon 

et al. [2008] for the perfect classification case. In state ( n ,£), irM chooses the action 

from A  (n) to be the non-empty class j  with the smallest associated value of

,k= 1

In the above expression, E  (X% — t \ X% > t) or MRL for the class k jobs, can 

be obtained by

j
E { X t  -  t \ X l  > t )  = Y s M t M X i  -  t \X,  > t), (3.40)

i = 1

in which E(Xi  — t\Xi > t ) is the MRL for type i jobs and can be calculated by 

equation (2.47).

Proof of (3.40). By definition, we have

E ( X ‘ il '  t) L ° (1 "  n { s ) ) d s  -  f ‘°° ^ {s)dS (3 11)E ( X k - t \ X k > t ) -  l _ F e{t) -  Fg(t) ' (3'41)

From equation (3.10),

, p,k(0)Fi(s)ds
E { X t  -  t\X% > t) =  Jt A ; =1 ■ 3.42

ELiPik(0)Fi ( t )

Substitute pik(0) by equation (3.1), simplify the resulting expression, and switch 

the order of integration and summation, to obtain

r J- i dkPi r  Fi(s)ds 
E { X ek -  t \ Xl  > t )  =   ■ (3.43)

E i = i  t i k P iF iU )

Change the index from % to m  in the denominator, and move it into the summation
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in the numerator; the above equation then becomes

Note tha t the first term in the summation is just Pik(t) (refer back to equation 3.2), 

and the second term E(Xi  — t\Xi > t). The result then follows immediately. □

The Bayes’ returns for each of n SF, n s and ttm are compared to the optimum 

for 18,000 randomly generated problems in each of which job lifetimes are Weibull 

and service times are deterministic. As we can see from (3.24), (3.26), and (3.39) 

in the deterministic service time case the optimality equation, value function equa

tion and approximate single step policy improvement equation are computed via 

summations over a finite number of terms, followed by an argmax over a finite set. 

For problems of modest size, it is thus possible, even though very expensive, to 

compute optimal policies for such cases and compare competing heuristics against 

the optimal performance.

The problems are generated at random under four different sets of assumptions 

(represented by categories A,B,C and D) regarding the relative lengths of service 

times and lifetimes of individual jobs and under three different sets of assumptions 

(poor, medium and good) regarding the quality of the initial job classification. 

Some problems involve just two job types (J  =  2) while for others there are four 

( J  =  4). The key problem features Si, oti,/3i and N  are sampled/chosen as follows:

j
E { X l  -  t \ X l  > t) =  5 2

(3.44)
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A  ~ *7 [1,10] (J  — 2 cases); (3.45a)

S i ~ U [  1,5] (J  — 4 cases); (3.45b)

c*i ~ U [  1,2] ; (3.45c)

f t r ( i + 0 7 1 ) 5 ^ Si, a t ~ u  [0.1,0.5] (very short lifetimes, A); (3.45d)

Ar(l + ar1) s r 1 S i ,a i  ~ Cf [0.5,2] (short lifetimes, B); (3.45e)

ftr( l  + ar1)ST1 Si, oc{ ~ U [2,10] (moderate lifetimes, C); (3.45f)

Ar (1 +  a - 1) s-1 Si,Oi  ~ 17 [10,100] (long lifetimes, D); (3.45g)

N  = 20 (J  — 2 cases); (3.45h)

N  = 10 (J  — 4 cases). (3.45i)

Further, for each problem the Pi are obtained by first sampling independently 

from U[Q. 1,0.9] and then normalising. The (mis)classification probabilities ê j are 

obtained as follows: first obtain the probabilities of correct classification eu by 

sampling as follows:

eu ~  U [0.5, 0.65] (poor classification); (3.45j)

ea ~  U [0.65,0.85] (medium classification); (3.45k)

eu ~  [/[0.85,1] (good classification). (3.451)

Then obtain the ep- , i ^  j, by sampling independently from U [0,1] and normalising 

suitably.

Please note tha t the number of initial jobs N  here is much less than in the 

counterpart scenario when the classification is perfect (see (2.49g)-(2.49h) in sec

tion 3.4). The MDP model and the DP recursions in this chapter are much more 

challenging. Moreover, the state space is far larger, which can be seen from the 

fact th a t the next decision epoch resulted from an action can have J  possibilities, 

rather than just one in the perfect classification situation. We found that it is not
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possible to solve larger problem instances to optimality in reasonable time.

Each sampled instance from the above is called a profile. For each profile, we 

generate a range of problems with different initial states (L,0). This is done in two 

steps as follows: first, the number Ki of jobs of type i is obtained by sampling 

from the multinomial distribution

{ K 1, K 2, . . . ,  I<j} ~  M ultinom ial (N;p1,p2, . . . p j ) .  (3.46)

Second, for each fixed i, the L^, 1 < j  < J, namely the number of type i jobs clas

sified initially as j  is then obtained by sampling from the multinomial distribution

{ Ln , L i 2t . • •, Lu } ~  M ultinom ial (Kp e^, ei2, • • •, eu ) . (3.47)

These samples are drawn independently for distinct i. We obtain the components of 

initial state L by setting Lj,  the total number of jobs initially classified as j ,  equal 

to E l l  L *  Please note that our sampling scheme is such tha t the Lj will tend 

to be smaller for the J  =  4 cases studied than for the J  = 2 ones. This choice is 

dictated by the computational requirements of the value iteration scheme needed 

for the determination of the maximal Bayes’ return and the associated optimal 

policies. Please note that our heuristic policies can themselves be computed easily 

for much larger problems.

Please also note tha t service times are sampled from a smaller range for J  — 4 

cases. The large variability of service times will lead to a huge number of decision 

epochs and thus unreasonably long computational times. Since the true identity 

of each job under service is unknown, the time between two consecutive decision 

epochs could be the service time of any job type. The longest service time deter

mines the last possible decision epoch, while the shortest service time determines 

the gap between two consecutive epochs. When these two extreme values are far 

apart, the number of decision epochs is very large. A smaller sample interval can 

greatly reduce the number of decision epochs and thus the computational times,
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yet has little impact on the analysis. It is just a scale change. The param eter that 

really makes a difference is the relative length between lifetimes and service times, 

which has not been changed at all.

For J  =  2, 200 profiles were generated according to the above sampling scheme 

in (3.45a)-(3.451) for each of the 12 combinations of problem category (A,B,C,D) 

and classification quality (poor, medium, good). For each profile, 5 problems 

(ie, initial states) were generated according to (3.46) and (3.47). Thus the total 

number of problems generated for each problem category/classification quality 

combination quality was 1, 000, making 12, 000 problems overall. For each problem, 

the quantities VfSF (L,0) , Vfs (L,0) and VfM (L,0), the Bayes’ returns respectively 

for the three heuristics 7rSF, n s and irM were computed along with the maximal 

return V e (L,0) . All computations used an appropriate form of DP value iteration 

from (3.24) and (3.26). For each heuristic n  =  n SF, irs , n M and each problem (L,0) 

generated , the percentage suboptimality

A* (L,0) =  100 {V e (L,0) -  V ‘ (L,0)} {V ‘ ( M ) } ” 1

was computed. Further, for each subcollection of 1,000 problems corresponding 

to a problem category/classification quality combination, the minimum, mean and 

maximum values of A n (L,0) were computed for each heuristic. These values may 

be found in Table 3.2(a). As in Chapter 2, we calculated, for each of the categories, 

the number of instances in which each heuristic it =  nSF, 7r5, ttm provides the best 

performance. In Table 3.2(b) find these results, together with p-values of the 

Friedman test on the differences in performance.

From Table 3.2(a), we observe that the policy irSF developed by utilising an 

approximating fluid model within a single step DP policy improvement performs 

robustly well throughout. Its mean percentage suboptimality never exceeds 0.03% 

with a worst case, among all 12,000 problems of just 1.21% suboptimal. It com

fortably outperforms tts and ttm excepting only the category B /poor classification 

case where it is marginally outperformed by irM. Serious suboptimalities are ob-
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served for the policies 7rs and 7rM, especially for problem configurations for which 

they were not designed. As before, policy 7rs works well when jobs have long 

lifetimes and deteriorates as lifetimes decrease. For policy 7 the reverse is the 

case. From Table 3.2(b) we find that, in most category/classification quality com

binations, policy n SF provides the best performance more often than the other 

two. Particularly in category A,  it is the best policy in all the 1,000 problems 

regardless of the classification quality. It only loses to n s and irM at a small disad

vantage in categories B  and C  when the classification is poor. The zero p-values 

nearly everywhere show that these policies have statistically significant differences 

in performance. The single exception is category C /poor classification in which 

the p-value is 0.001. This is still very strong evidence of differences in performance 

among the heuristics.

Note that, within problem categories, percentage suboptimalities tend to in

crease with classification quality. Take category A as one example. The mean 

and worst percentage for policy tts are 0.32% and 4.39% when the classification 

is poor, but they increase to 1.95% and 26.08% if the classification is good. Sim

ilarly, for policy 7rM, its mean(worst) percentage increases from 0.01%(0.43%) to

0.05%(5.35%) when the classification quality improves from poor to good. The 

same pattern can be found in the other categories.

To understand this, consider the worst case for classification in which =  

J ~ W i , j  and the classification process randomly allocates jobs to classes. In this 

case, the assessment process fails to offer useful information on job type and pos

terior probabilities (of true type) are independent of class. All jobs are effectively 

members of a single undifferentiated class and service policies which make use of 

class information are indistinguishable. As the classification improves from this 

worst case, the classes become more distinct, information on class membership 

more informative, policies more distinct and hence the choice of policy more im

portant. It is thus unsurprising that the differences between the heuristic service 

policies is most pronounced when classification is reasonable or good. A cautionary
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note is tha t the small suboptimalities when classification is poor do not necessarily 

indicate satisfactory service outcomes. It may well be tha t even the optimal policy 

cannot achieve a high Bayes’ return when the classification errors are significant. 

There is little value in investing lots of resource to develop optimal policies or 

the fluid heuristic which are just marginally better than these simple ones. The 

only way is to improve the classification process itself. However, as we shall see 

in the next chapter, there are some special situations in which the classification 

outcomes really are immaterial and hence the difference between policies small. 

In such cases, effective scheduling is not reliant upon an accurate initial triage. A 

detailed account on this theme is presented in the next chapter.

The study for problems with J  = 4 was conducted in a similar fashion, except 

tha t its computational demands were such tha t only 100 profiles were generated 

for each of the problem category/classification quality combinations. Hence in this 

part of the study a further 6, 000 problems were investigated.

The results summarized in Table 3.3(a) are qualitatively very similar to those 

for the J  =  2 cases. However, the performance pattern with regard to the lifetime 

category or the classification quality is not as clear as in Table 3.2(a). In some cases 

the heuristic irs works better when jobs leave faster, and in some others the myopic 

policy 7rM works better when jobs leave more slowly. This is due to the relatively 

small sample size which is forced upon us by the computational complexity when 

J  =  4. To uncover the real trend, we calculated the moving average of the mean 

percentages over two adjacent categories and two adjacent classification qualities. 

The results presented in Table 3.3(b) more clearly show the consistent pattern as 

before.

In comparison with Table 3.2(b), Table 3.3(c) shows stronger performance of 

n SF in tha t it wins in all the scenarios. Moreover, the number of win instances is 

considerably more than that of ns  and 7rM. The p-values are now all zeroes and 

thus there is strong evidence of differences in performance among the heuristics.

R e m a rk  3.3. Analysis has been conducted to understand how the optimal policy
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fo r the perfect classification case performs in the imperfect classification case. By 

deeming the classification errors to be zero, the optimal policy for the perfect clas

sification was developed via the method described in Chapter 2. Then the Bayes; 

return for this policy was computed and compared against that of each of the heuris

tics and the maximal return V e(L, 0). Results show that even though sometimes, 

especially when the errors are small, this policy is also optimal in the imperfect 

classification case, it is in general suboptimal. In some cases its performance is 

weak and is outperformed by ixs .

To conclude this section, we list below several implementation features in this 

chapter, which complement those mentioned in Section 2.3.4 in Chapter 2.

1. The prior probabilities pp-(0) and posterior probabilities Pij(t), t > 0 are 

calculated only once. Whenever needed, we just retrieve the value from 

memory. Similarly, the remaining lifetime distribution for class j  jobs, 

P ( X j  < t +  s | X? > t) appearing in equation (3.18), is calculated and 

stored in memory. They are used frequently to compute transition probabil

ities.

2. There is no closed form solution to the integrations in equation (3.19) and 

(3.31) in most cases, they are thus calculated numerically by M atlab function 

quadl, as in Chapter 2.

3. The main C + +  class for this numerical study is also derived from the one 

for the Weibull lifetime and deterministic service time scenario in Chapter 

2 .

3.5 Conclusion

In this chapter we consider an error-prone triage problem in which jobs assessed 

as one class could actually have many different characteristics. To deal with this 

additional uncertainty, we propose a Bayesian sequential decision model for this
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problem. Our beliefs on the true identity of the remaining jobs are updated over 

time in light of the job’s survival.

To solve this Bayesian model, we reformulate it as a SMDP. The approxi

mate single step policy improvement algorithm and the fluid approximation model 

proposed in Chapter 2 are further developed to generate effective heuristics here 

when triage is with error. Even though the fluid model is now more complex, 

and does not have closed form solutions, it can still be quickly solved numerically. 

The resulting approximation is again very close to the corresponding exact value 

function.

The proposed heuristic is subject to extensive numerical investigation. Unlike 

in Chapter 2 where three scenarios have been tested, in this chapter we can only 

test problems with Weibull lifetimes and deterministic service times, since only in 

such cases are the optimal policies available in reasonable time. Performances of 

competing heuristics are compared in terms of suboptimality. The results show 

tha t our proposed heuristic has outstanding performance throughout and outper

forms the alternative heuristics in almost all problem instances.

An interesting observation is that, for all the heuristics, the suboptimality tends 

to decrease as the triage quality deteriorates. This does not necessarily mean tha t 

the heuristics work well when the classification is poor. On the contrary, it may 

well be tha t even optimal policies cannot achieve good outcomes. When the triage 

process is improved, the policies become more distinct, and more is to be gained 

by choosing a good scheduling policy.



Chapter 4 

Cost of Imperfect Classification

In Chapter 3, we have described tools to develop TiSh, an effective and easily 

computed policy for the triage problem with imperfect classification which has 

been seen to achieve a Bayes’ return close to the optimum in a large number of 

problems. We now explore the complementary question of the price paid in reduced 

service completions for our inability to classify perfectly. Inter alia, this will give 

us insight concerning situations where there is most to be gained from improving 

the quality of classification. Section 4.1 introduces a measure to quantify the 

classification cost. An analytical upperbound for the cost is developed in Section 

4.2 for exponential lifetime cases. To investigate the behaviour of the cost in 

more general situations, a comprehensive numerical study is conducted in 4.3. We 

conclude this chapter in Section 4.4.

4.1 Introduction

Recall from our development in Section 3.1 tha t for imperfect classification, we 

used L . for the true state corresponding to the observed state L. We write v for 

a service policy which is able to take decisions on the basis of the (unobservable) 

true state as the system evolves and

max E { N ( v  | L..,0)}

110
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for the maximal return available when access to the true system state is available

throughout.

D efin itio n  4.1. The cost of imperfect classification for initial state (L,0) is given

which takes values in [0,1]. We choose to use R C IC  as it is a natural measure of 

the relative increase in the number of service completions which could have been 

secured if the true states were able to be observed. This ratio can be more than 

one if the classification errors are significant.

E x am p le  4.1. For the problem with the pi and lifetime distributions given in Ex

ample 3.1 (page 83), we computed the relative cost R C IC  with respect to different 

mis classification probabilities in the range 0.0 to 0.5. Note that €ij — 0.5, i , j  =  1,2 

is the worst case when there are only two types of jobs. Figure 4-1 below plots

In Figure 4.1 we see that the relative cost R C IC  is continuous, increasing 

and concave componentwise in the misclassification probabilities eu  and e2i and 

is much more sensitive to the latter. A major factor here is the fact that type 1 

jobs have much shorter lifetimes (with mean 1.45) than type 2 (mean 12.75), and 

are thus lost from the system much more quickly in any event. Should type 2 jobs 

be classified correctly and scheduled for processing appropriately, they are much

C7C(L,0) =  E l ,kL|0) m a x E { N  (v | L .,0 )}  - W ( L , 0 )

The relative cost of im,perfect classification is given by,

R C IC  (L,0) (4.2)

An alternative to R C IC  can be obtained by

R C IC  =
R C IC CIC{  L ,0 )

1 +  R C IC  £l..|(l,o) [max,, E  { N  (v | L , 0)}]

R C IC .



CH APTER 4. COST OF IM PERFECT CLASSIFICATION  112

more likely to be served to completion and contribute to the system’s return. 

Mathematically, the quantity Z?L |(L)o) [max„ E  { N  {y | L. ,0)}] in the expression 

for C7C(L,0) increases with 621 but decreases with e12. For any initial state (L,0 ), 

the higher the value of e21, the more jobs are likely to actually be of type 2 , and 

the higher are likely to be the number of successful completions. The quantity 

V e (L, 0) decreases with both misclassification probabilities.

4.2 The Cost of Imperfect Classification - Analyt

ical Insight

In the special case of exponentially distributed lifetimes, it is possible to gain 

analytical insight into system characteristics which impact the cost of imperfect 

classification C IC  and which will inform our upcoming numerical study. We first 

state a simple result which will be of use in the analysis.

L em m a 4.1.

E L .. |(L ,0 ) m axL 1 {TV [v | L.., 0)} > V e (L, 0) >  i ? L . . | ( L , o )  m ini? {N  (v \ L , 0)}
v  J L v

(4.3)

In order to state our main result, we need some additional notation. In the 

exponential lifetime case we shall write the distribution of type i lifetimes as ~  

exp (p9i) , 1 < i < J, where the 0* are taken to be fixed, and we shall be interested 

in the ’no loss’ limit p -» 0. Further, we write Y  ( L .) for the total of the service 

times associated with the true but unobservable system state (L.., 0). Conditionally 

upon this true state, as in Section 3.1 we use the triple i j k  for the kth  type i job 

to be classified as j. If Yijk denotes the service time of i jk  then ~  G{ and we 

write T tJ J



CH APTER 4. COST OF IM PERFECT CLASSIFICATION 113

( % ) o i o a

Fi
gu

re
 

4.
1.

 
Th

e 
le

la
tiv

e 
co

sts
 

RC
IC

 
for

 
a 

pr
ob

lem
 

wi
th 

J 
— 

2, 
W

ei
bu

ll 
lif

et
im

es
 

an
d 

de
te

rm
in

is
tic

 
se

rv
ic

e 
tim

es
.



CH APTER 4. COST OF IM PERFECT CLASSIFICATION

Finally, we need the system parameter <5, defined by

114

5 = max —mm
E(Yi) i E(Yi) m a x { E (X i )E (Y i ) }  ‘ - m i n  { £  (Y;) £  (Y;)} 1

Theorem  4.1. For the case of exponential lifetimes, we have

CIC(L,0) < -S p E LJ(Lm[E {Y (L ,)}2] +  O (p2)

and,

R C IC fL f i )  < — <5P£ L |(L.0)[£  { Y  (L..)}2] +  O (p2)

Proof. It follows from the above Lemma and from the definition of C IC  tha t

CICCLfl) < E l  kl.o) max £  {IV (v | L..,0)} -  min E { N  (v | L„,0)} . (4.4)
' L v  V J

It further follows from the analysis of Glazebrook et al. [2004], tha t when the true 

state is observable and has initial value (L. ,0) then the static service policy vSI 

which serves the jobs in increasing order of the quantity E  (X i ) E(Yi)  secures a 

return which is within an O (p2) quantity of the maximum, namely

ma x E { N { u  \ L. ,0)} -  E  { N  (uSI \ L.. ,0)} < O (p2) . (4.5)

Similarly, it can easily be established tha t the static policy vSD which serves the 

jobs in decreasing order of the quantity E  (X{) E(Yi)  secures a return which is 

within an O (p2) quantity of the minimum, namely

E  { N  (vSD | L.., 0)} -  min E  { N  (u \ L.., 0)} < O (p2) . (4.6)

To simplify the argument at this point, we relabel the jobs 1 to N  such that, 

conditional upon ( L . , 0 ) , the static policy vSI is identified with the permutation
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( 1 , 2 , . . . ,  N)  and the static policy vSD with (A/-, IV — 1 , . . . ,  1). Now, the perm uta

tion (1, 2 , . . . ,  N )  can be obtained from (N, N  — 1 , . . . ,  1) by a series of (^) pairwise 

interchanges. At each stage, a permutation of the form ( . . . , / ,  m , . . . ) ,  / > m, is 

transformed via a single interchange to ( . . . ,  m ,l,  • • •) • From Glazebrook et al. 

[2004], the static service policies corresponding to these permutations have associ

ated returns such that

E  { N  ( ( . . . ,  m , / , . . . )  | L. ,0)} — E { N  ( ( . . . , / , m, . . . )  | L . , 0 ) }

=  { ^ y  ~ j N ' j E {Yl)E (Y m) + 0 ( p 2) < S p E ( Y t)E (Y m) + 0 ( p 2) .  (4.7)

Note that, in (4.7), by slight abuse of our notation, we have used subscripts l , m  

to identify quantities (hazard rates, service times) identified with particular jobs. 

If we now aggregate the impact on returns from all (^) pairwise interchanges, we 

infer from (4.7) tha t

E  { N  (vSI | L ,  0)} -  E  {N  (vSD | L . 0)} <  Sp ^  E  (Y,) E  (Ym) + 0  (p2)
l > m

< l p £ { Y ( L . ) } 2 +  0 ( p 2) .  (4.8)

We now infer from (4.5), (4.6) and (4.8) that

m a x F  { N  (u \ L , 0)} — min E { N  {y \ L.., 0)} < - p E  {Y (L..)} +  O (p2)
V v £

and the bound for C IC (L ,0 ) now follows from (4.4). The bound for RCIC(Li,0) 

uses tha t for C IC {L,0) together with the fact tha t

W (L,0) = N  + 0{p).

This concludes the proof. ^

R e m a rk  4.1. I f  we suppose that service time Y{ has mean and variance and of
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respectively then it is straightforward to show that the key quantity in the bounds 

given in Theorem 4-1 is given by

£ l . . | ( l , o ) [ £ { Y ( L . ) } 2] =  K 2 +  / 4 I 1 - P * j ( 0 ) } ]
j - 1  i = 1

J

-EE j P i j  ( .fyPkj  {ff)P,iP ‘k •
j = 1  i^k

It follows from the above theoretical results that when job lifetimes are expo

nentially distributed and, moreover, long, the cost of imperfect classification will 

be small for problems in which the key quantity E{ X f ) E  (E ) varies little across 

distinct job types. We shall see in the upcoming numerical study tha t the insight 

afforded by these cases has much broader application. Note, for example, the 

following development of Example 4.1 above. We first introduce the quantity

_  E { X n ) E { Y n )
E ( X h ) E ( Y h )

as the index ratio between job types i\ and i2.

E x am p le  4.2. In Example 4-1, should the service time for types of job 2 be de

creased to 0.16 then R u  =  R 21 = 1 and the relative cost of imperfect classification 

is drastically reduced. See Figure 4-2, where the maximum of R C IC  over the 

displayed range for the adjusted problem is now just 2.32%.

We now consider further the insights afforded by the above material in the next 

section.
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4.3 The Cost of Imperfect Classification in the Worst 

Case - a Numerical Study

We shall now explore the role of the above index ratio by numerically investigat

ing the behaviour of the key quantities C IC  and R C IC  in the worst case, namely

tions about how much damage is done by a failure of the classification process to 

achieve anything better than random allocation of jobs to classes. The reader is 

referred back to the above definitions of C IC  (L, 0) and R C IC  (L, 0) around (4.1). 

Remember tha t in this worst case, the quantity V e (L, 0) which plays a key role 

in (4.1), can be obtained by computing the Bayes’ return for any service policy. 

In the computations below, we shall in fact use the static proposal tts for this 

purpose.

One approach to the computation of the key quantity

is to estimate it via repeated sampling from the multinomial conditional distri

bution for L | (L,0) . We opted instead for an exact approach which computed 

[m&x„E{N (v | L. ,0)}] for each L in the support of this distribution and then 

computed the exterior expectation. Remember tha t to calculate the number of ex

pected service completions in the perfect classification situation, we need to know 

the initial number of jobs in each type. To derive them from L , we define the 

following two vectors. One is L' =  (L[, • ■ • , L ') the number of jobs of each type z, 

and the other L.j =  (T ij, • • • , Ljj)  the number of class j  jobs which are actually 

of type z, 1 < i < J. It is clear that L.j has components which form a subset of 

those of L while L'  can be obtained from the equation below.

when €{j — J  lVz, j.  We shall thus adopt a conservative viewpoint and ask ques-

E l  |(l,o) max E  { N  {v | L. ,0)}
' L v

J
(4.9)
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We then have
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£ L..|(L,0) m ax£{JV (i, | L. ,0)} =  -Bl'Kl.o) m a x f i  { N  (v  I L', 0)}
l  u  J L v

=  ^ L ' | ( L , 0 )  [ ^ ( L ' , 0 ) ]  .

The inner quantity on the right hand side of the second equal sign can be computed 

via the optimality equations in (2.4) (page 36) in Chapter 2. To calculate the outer 

expectation, we need to compute the probability mass function of 1/ | (L,0), which 

is however a far from trivial task for problems of practical size. We first write down 

below the probability mass function of L.j | (L,0) (denoted as hj ) for class j ,  which 

has been shown to be multinomial (see (3.5)).

It then follows from (4.9) and (4.10) tha t H,  the probability mass function of 

L ' | (L,0), can be computed via a convolution of all the hj , written as

Convolution of two or more probability mass functions of one dimensional dis

crete random variables is straightforward and a detailed account can be found 

in Grinstead and Snell [1997]. However, this is certainly not the case for multi

dimensional random variables, or vectors. In our problem, there are J  multinomial 

random variables, each of which is a J  dimensional vector whose components sum 

to Lj.  The convolution of any two such distributions requires summing over the 

support of either of them. For each class j ,  the support is the set

0, otherwise.

Pij(0)Lli ■ ■ Lij = Lj,
(4.10)

H  = h\ * /12 * • • ■ * hj. (4.11)

{ ( n i ,  ■ • • , n j )  €  N J |rai  + ■ ■ ■ +  n j  — Lj } . (4.12)
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Its number of elements is
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Lj T J  ~
Lj ) '  ^

which is exponential with regard to J  and polynomial of degree J  — 1 with regard 

to Lj.  Even for moderate J  and Lj,  the size of the support is already very large. 

To make the situation worse, the convolution needs to be performed recursively 

over all hj.

In light of this, we explored the question of how this task should be approached 

for maximum computational efficiency. It has been found tha t the order of convo

lution makes a big difference in the run time. It is always preferable to convolve 

the variables with smaller support first, and in each convolution, to sum over the 

support with smaller size. Experiments show that the best convolution order could 

lead to a run time reduction of as much as 80% in some cases in which J  — 5 and 

Lj  is less than 10.

R e m a rk  4.2. The reader should note that even though the quantity

m a ,xE {N ( i '  | L..,0)}

is available in the numerical study reported here, it is challenging to obtain in gen

eral. Instead we can approximate it by computing returns for our heuristic policy 

7rSF, whose design is described in Section 2.2, in cases with perfect classification 

and whose initial state is summarised by (L. ,0).  We know from Li and Glazebrook 

[2010a] that the performance of nSF is very close to optimal in such cases and that 

any underestimate of the quantities C IC  (L, 0) and B,CIC  (L, 0) which results will 

be small.

Our numerical study considers problems with Weibull lifetimes and determin- 

istic service times and J  =  2,4. Problems are created as in (3.45a)-(3.45i) above
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except for the sampling of (3j, which is obtained as follows. Firstly we sample Pi 

foi the type 1 fiom one of (3.45d)-(3.45g), according to the specified category. The 

remaining Pi s are determined such that, conditioned on the sampled values of the 

Qfi, Si, and Pi the index ratios Ra+i are all equal to some R, say, where without 

loss of generality we take R  > 1. We then check the relative length of service times 

and the lifetimes for every type other than the first one. If all of them are in the 

same category as of type 1, one problem instance is created. Otherwise the entire 

process is repeated. We take four cases for the setting of an R  — value which are

R ~  U [1,1.1] (Rangel ) ;

R  ~  U [1.1,1.5] (Range 2);

R~I7[1 .5 ,2]  (Range 3);

R  ~  U [2,4] (Range 4).

Please note tha t Range 1( respectively, 4) allows the quantity E(XP)E(Yf) to be be

tween 1( respectively, 8) and 1.331( respectively, 64) times as large as E(Xi )E(Yi ) .  

We thus investigate a wide range of cases, including some in which the values of 

E(X.i)E(Yi) are nearly equal Vi to others in which there can be very large dif

ferences. As above, the p{ will be obtained by first sampling independently from 

U [0.1, 0.9] and then normalising. However, we replace (3.45j)-(3.451) by the choice

6ij =  j .

The computational effort needed here is very considerably greater than for 

the studies reported in Section 3.4. Happily, for the worst classification case 

we are considering the classification outcomes L are immaterial. Nonetheless, 

for each imperfect classification problem we need to solve to obtain V  (L, 0), 

there are (N+̂ _1) corresponding perfect classification problems whose solution con

tributes to the quantity Fl..|(l,o) [maxv E { N ( u  | L ..,0)}]. This number increases

very rapidly with N  in the J  = 4 cases.

For J  — 2 and each category (A,B,C,D)/range (1,2, 3,4) combination, 500
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profiles were generated according to the above scheme, making 8, 000 problems in 

total. Values of the relative costs R C I C  are presented in Figure 4.3 in the form 

of a boxplot for each of the 16 category/range combinations.

Computational demands are such that for the J  =  4 study, the number of 

profiles for each category/range combination was reduced to 100. Hence 1,600 

problems with J  =  4 were investigated. The results are given in Figure 4.4.

It is shown very clearly in both figures that, within each category, the values 

of R C I C  do indeed increase markedly with R.  Take Category D  in Figure 4.3 as 

an example. The average and the maximum R C I C  for Range 1 is just 0.68% and 

3.05%, respectively. The values are still quite small for Range 2, with a mean of 

0.98% and a maximum of 4.98%. However, when R  continues to increase to the 

next two ranges, the R C I C  values can get quite significant. The mean is 3.65% 

in Range 4, with a maximum as large as 10.52%. This increase is rather more 

dramatic for the J  =  4 cases. This is as to be expected since the latter cases 

accommodate much greater variability in the type-specific values E{Xi ) E{ Yi ) .

Another clear feature is the tendency of R C I C  to decrease as lifetimes grow. 

To see why this might be expected, observe that in the limit in which no jobs are 

lost (lifetimes are infinite), all jobs will ultimately be served and no costs incurred 

by any misclassification. The only exception is Category A, which has smaller 

R C I C  than category B in most cases. This is not surprising as category A jobs 

have very short lifetimes. Most of them abandon the system in the very early stage 

and thus the impact of the misclassification is small.

The median values for R C I C  are considerably larger for the J  =  4 cases , 

reflecting the fact that misclassification has more impact when the number of job 

types is greater. That the maximum values are nevertheless reduced for J  — 4 is 

almost certainly due to the fact that the initial number of jobs in these problems 

is rather smaller (10 rather than 20), depressing the variability of the outcomes.
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4.4 Conclusion
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In this chapter we introduce a quantity R C I C  to measure the cost of imperfect 

classification. An upperbound for R C I C  is then developed for problems with 

exponentially distributed lifetimes. It follows tha t for such problems the value of 

R C I C  is small when jobs’ lifetimes are long and when the index ratio R m 2 is 

close to one across all job types. In light of this result, a comprehensive numerical 

study is conducted to explore the behaviour of R C I C  in a more general scenario 

in which lifetimes are Weibull and service times are deterministic. We focus on the 

worst case in which the classification process randomly allocates jobs to classes. It 

has been found that R C I C  does increase significantly as the index ratio increases 

from one in all the problem instances considered. Further, the misclassification 

has more impact when there are more distinct job types, in which cases more 

uncertainty is accommodated. An interesting observation is tha t the cost tends 

to decrease with jobs’ lifetimes. This can be understood by considering a limit 

situation in which all jobs have infinite lifetimes and there will be no cost incurred 

by any misclassification as all of them will be served sooner or later.

It is worth mentioning that in the cases where R C I C  is small, the optimal 

policy tha t takes decisions based on the observed state will be almost as good as 

the optimal policy that is able to take decisions based on the unobservable true 

state. The classification errors thus hardly have impact on effective scheduling of 

the system. This result extends to any policy if R C I C  is small even in the worst 

case. In such situations, an arbitrary policy will achieve the same good results.



Chapter 5

Conclusions and Future Research

5.1 Summary and Conclusions

We consider in this thesis the scheduling of impatient jobs in a clearing system, 

which is originally motivated by the medical resource management problem af

ter MCIs. In such situations the injuries significantly and suddenly overwhelm 

the available resource. To support efficient resource allocation, all the patients 

are subject to an initial triage and are placed into distinct classes based on the 

severity of their conditions. Following triage, the central challenge is to develop 

effective service policies such that the expected number of successful treatments is 

maximized.

A simple single server version of this problem is addressed in Chapter 2, where 

it is modelled as a SMDP and explicit optimality equations are constructed by 

means of which optimal policies can in principle be developed. Sadly, this exact DP 

approach is not a realistic option for problems of practical size. The computational 

complexity increases exponentially fast with respect to the problem size. We opt 

instead to develop effective heuristic service policies by implementing a single step 

approximate policy improvement algorithm to a static permutation policy n s which 

was proposed by Glazebrook et al. [2004]. The value functions of n s are well 

approximated by a fluid model, which is a deterministic analogue of the stochastic 

system when operated under 7r‘~b It has a very simple form and can be solved

126
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trivially. This feature is essential for the efficiency of our heuristic algorithm and

the effectiveness of the resulting policy.

An extensive numerical study has been conducted to explore the performance 

of our proposed heuristic policy. In the scenario of exponential lifetimes and service 

times, and tha t of Weibull lifetimes and deterministic service times, we are able to 

develop optimal policies and thus to evaluate the heuristics’ performance by means 

of reward suboptimality. We also consider a more challenging scenario of Weibull 

lifetimes and exponential service times. In this case it has not proved possible to 

compute optimal policies (even for fairly small problems) in reasonable time. A 

simulation study is carried out instead to compare the performance of competing 

heuristics. It is shown clearly that, in all the three scenarios, our heuristic works 

robustly well. It comfortably outperforms the two alternative heuristics proposed 

in the literature (one is tts ) in most problem instances.

This problem is extended in Chapter 3 to accommodate classification errors. 

Jobs placed into one class could actually have many different characteristics. This 

is especially the case for triage after MCIs, which has been shown in the literature 

to be subject to significant levels of error. Due to this additional uncertainty, the 

resulting problem is substantially more complex. We propose a simple analytical 

model and adopt a Bayesian approach to deal with the uncertainty arising from 

possible misclassification. This Bayesian sequential decision problem is then for

mulated as a dynamic program and optimal policies can in principle be developed 

by standard DP methods. However, this is again infeasible for a wide range of 

problems. In light of the results from Chapter 2, we implement a single policy 

improvement step to an adapted version of policy i t  . We successfully extend the 

fluid approach to generate high quality approximations to the value functions of

the adapted n s .

The resulting heuristic policy is subject to a similar numerical study to that 

of Chapter 2. Due to the complexity of the error-prone triage problem, we are 

only able to test the scenario of Weibull lifetimes and deterministic service times.
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Numerical results indicate that our proposed heuristic policy has robustly strong 

performance in all problem instances considered. An interesting observation is 

tha t the suboptimalities of all the heuristic policies considered in this numerical 

analysis tend to decrease with the classification errors. Indeed, in the worst case 

in which the triage process randomly allocates jobs to classes, all heuristics have 

the same performance as the optimal policy. This is however not good news at 

all. Instead, it simply means that even the optimal policy cannot achieve good 

results in these cases. The only way to improve the performance is to make the 

classification more accurate.

However, there are some special cases in which effective scheduling is not re

liant upon an accurate initial triage. The issue is explored in detail in Chapter 4. 

We first propose a measure to quantify the cost incurred by classification errors. 

An analytical upperbound is then established for exponential lifetime cases. This 

upperbound approaches zero when the lifetimes are long and when the index ratio 

R m 2 is close to one across all jobs. To explore the behaviour of the cost, a worst 

case numerical study is conducted for problems of Weibull lifetimes and determin

istic service times. It is shown that the cost does decrease rapidly as the index 

ratio approaches one from above in all problem instances. Moreover, the misclas

sification has more impact when there are more job types. This is not surprising 

as greater variability is accommodated in these cases. Finally, the cost decreases 

with jobs’ lifetimes. To understand this, observe that in a no loss limit, all jobs 

will be served eventually and no cost is incurred by any misclassification.

5.2 Future Research

IMore research is needed to investigate the behaviour of the cost of imperfect classifi

cation in the exponential service time scenario. Because of the computational com

plexity exact optimal policies cannot be developed in these cases and thus [H)CIC  

is not available. However, it can be approximated by the following method. It has
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been shown in Chapter 2 and 3 that under both perfect and imperfect classifica

tion, our proposed heuristic policy has very strong performance and the deviation 

from optimal is very small. Therefore, a close approximation to C I C  is given by 

the following quantity,

£ l . . | (l,0) [V >  (L.,0)] -  V ' s f  (L,0).

Unfortunately, in the Weibull lifetime and exponential service time scenario, Vn S F  (L. ,0) 

and V^sf (L, 0) are not available either. A possible way is to estimate them by 

Monte Carlo simulation. The quantity (L.., 0) can be readily obtained as 

we have already done this in Scenario (III), Section 2.3, Chapter 2. The main 

work then required is to simulate the true states from the observed states, and to 

calculate V^SF (L, 0) for every sampled true state.

A key problem feature in this thesis is that all jobs are present at time zero 

and there are no new arrivals into the system. This is indeed the case (at least 

approximately) for the triage problem in the aftermath of MCIs, as all the injuries 

are present immediately after the incident. However, it does take time to identify 

all of them. The triage process and the following treatm ent would start straight

away rather than wait until all injuries are collected. In this regard, one possible 

topic for future research could be the incorporation of an incoming stream with a 

time dependent arrival rate that decreases gradually to zero.

A practical research topic could address the hospital Accident & Emergency 

triage problem. In this problem, patients must be seen within a few hours (say 

4) after arrival or they have to be admitted to hospital. The cost incurred in the 

la tter case is significantly more than the former. Therefore, one major objective 

of the A&E triage is to maximize the number of patients attended within 4 hours. 

Different from the triage problem in the aftermath of MCIs, new patients come to 

A&E continuously and randomly, and hence multiple stochastic arrival processes 

must be considered. The lifetimes are however known and deterministic in this

case.
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We conclude this section with a very interesting and challenging future research 

problem. Consider a scenario in which each impatient job requires a range of 

different resource(s). Take the medical service as an example. Some patients 

may need a doctor, a nurse and an anaesthetist at the same time to complete 

the treatm ent, while some others may need only a doctor and/or a nurse. There 

are some multifunctional staff who can play different roles, while the rest can 

only perform a single specialised function. The question is how to allocate staff to 

patients and in what sequence to achieve the maximum number of expected service 

completions. A promising method to deal with this very complex problem is to 

model each job as a restless bandit process and then the rich theory of W hittle 

Indices (W hittle [1988]) applies. The recent extension of Gittins Index heuristics 

to accommodate more general resource distribution among multiarmed bandits 

(Glazebrook and Minty [2009]) may shed some light on this issue. Note that if all 

patients need only one and the same type of resource, this problem reduces to a 

multi-server version of the problem considered in Chapter 2.
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Appendix A

Contents in the Accompanying CD

The main directory in the CD is \ D S IC S  ", which includes all the C + +  header 

files (.h ) and source files (.cpp). They are organized into a Microsoft Visual C + +  

project, which can be accessed by double clicking the file DSICS.sin.

Other files include the param eter file controlParas. dat, the binomial coefficient 

data  file comb Matrix, dal and a sample input data  file wd_sample.dat. For the 

reader’s reference, we have also copied two resource files into this folder. One is 

libcalcProb.lib which is generated by the method mentioned in Appendix D, and 

the other a M atlab run time library, m,clmcrrt.lib. Both resource files must be 

included into the project.

There are two other data files (regression.dat, fluidApp.dat) in this directory, 

but they are not actually used. However they cannot be deleted as the program 

still reads them in the initialization.

The second directory is \ prob lem  in s ta n c es  ", which contains all the prob

lem instance data files used in this thesis. The file format must be strictly followed 

for any new instances. Note that the selected data  file needs to be copied over to 

the working folder before kicking off a solve.

The third directory is \ m atlab  F u n c tio n s  ", for the three M atlab functions

to be mentioned in Appendix D.

The last directory is " .\ th e s is " ,  which contains an electronic copy of this 

thesis in pdf format.
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Appendix B

Instructions to Use HPC

The following steps can be followed to use HPC.

1. Log into HPC.

2. Copy all the header files, source files, data files and M atlab files from corre

sponding directories in the accompanying CD into HPC fileserver.

3. Load M atlab module and launch it. Execute the command to be mentioned 

in Appendix D to compile all the M atlab functions into a C + +  library.

4. Still in Matlab, execute the following command to build an executable: 

mbuild Culmprove. cpp Expo Expo, cpp WeibDetermnc.cpp Weib Expo, cpp Bay esian- 

WeibDeter.cpp convolution, cpp mersenne.cpp SimuPolicies.cpp stdafx.cpp -

L. -IcalcProb -I. -output triage.

5. Change param eter values in controlParas.dat for the selected problem in

stance.

6. Create a batch job control script and submit jobs by issuing a qsub command. 

Remember to load Matlab and Boost modules in the script.

7. More information can be found in h ttp ://w w w .lancs.ac .uk/iss/hpc/.
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Appendix C

C + +  Code for Key Classes and 

Functions

This appendix contains a selection of C + +  code for the key classes arid functions 

in this thesis. They are organized in the following order.

•  ExpoExpo.cpp:  the source file for the exponential lifetime and service time 

scenario. The key functions which are included in this appendix are:

—  create S t a t eSpace():  create all the states.

—  probC alcu la tion (): calculate transition probabilities.

—  altF lu idA pprxF orThetaM u():  fluid model in this scenario.

— policyIm provem en tF lu id()\  the approximate single step policy im

provement algorithm using the fluid model.

— g e n e O p tA c t io n s ()\ development of the optimal policy.

•  W eibD eterm nc.cpp:  the source file for the Weibull lifetime and determin

istic service time scenario. The key functions included in this appendix are:

—  geneDeciEpochs():  generate all possible decision epochs.

— calcA llM R L Ts():  calculate MRL for all job classes at all decision 

epochs.
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•  WeibExpo.cpp:  the source file for the Weibull lifetime and exponential 

service time scenario. The key function is:

— ca lcB yS im u la tio n (): simulation steps for this scenario.

•  B a y e s ia n W e ib D e te r .c p p : the source file for the Weibull lifetime and de

terministic service time scenario in the imperfect classification situation. The 

key functions included in this appendix are:

— ca lcP o s tP ro b s (): calculate the prior and the posterior probabilities.

—  ca lcR em S u rP rob (): calculate remaining survival probabilities.

•  C ulm prove .cpp:  the main function. It is where the program starts to 

execute. This code should be the first to read as it contains detailed steps to 

run this program. Due to the length of this code, it is not included in this 

appendix. Interested readers can find it in the accompanying CD. Refer to 

Appendix A for more information.
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CO 0 0 J J • H g X • H £ t o > X X X X X X X X X X
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-----' Eh A 0 CU 1—1 d j j CO
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a 3 a

rH 0) j j * X 3 X o
td i—1 0 0 G G o 0
u X O j j O Pi rH

G id a  x
\ O \ j j \ X G G
\  13 \ CO G W G

x  ai 
C  Pia

\  X\  Q)

uc
3
G
3
3
0)d •'a c 
x  oa; -H

4-1II o < 
g  3 
o  g  

■h a  
x
o  II 

< !
3  G 
G O 

£  -rH
3  x  a> o 
Pi C  
a  3  
X  0) w s 
x  x
G  G  
g  B

JJ Pi U ■H
0 a II G

r£ X G II X
JJ w

X
G
X Q

3
G

01 0 G X 0
G r£ g G H •H MH
01 JJ a X MH
m i G X u O

G G MH O < N
01 i—i 0 G •G o 1 3 £

rH o £ X G 0
G rd G O c2 >
i G j j X G Eh 0 01 w

G rH G X G G O '
X > G X 1 3 w a  x rd
• r l O 1 3 Eh G g G i—I

G > — H X MH
X a G rH O — X 01
o o X a G G 0

o X 3 a  o 01 G ,£
13 rH G B A G JJ
G G Pi H V i >
G MH X a G 0 £ CO

0 G X G G X O g
s rH G X X G a r£

d G X r—1 X o 0 JJ
£ O ii G 01 o CO •H

W 1—1 
rd G

X
G

1 3 rH i—i 
0

G
O

s o X CO — MH i S '
\ rH 0 l+H rH

G \ X •iH rd
r ^ X) N •H d

l-i 
<U_ > 

13 o  
G
G  Q ,
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a 0) •rH 4J CO d
a) rQ G CO QJ d
SH JJ id CO
>H > 0 CO cu
2 JJ 4J cd X
o QJ

CD
rd

<u
rH
u

JJ

,_s a) <14 rH £ X
+ A \ d XI H
+ JJ N •rH

MH
cd

•H *1 \
TJ 4J • s QJ G \
•H a) „_s Q id V

o
\

>
X

—

.__ \ CO \ td d) o—' rQ X
aj 0 • «. aj d II
N •«. h) o d H II

•H r—y e *G CO
CO TD 3 o 4-1 CO ,—.

•H s d) id X
aj JJ II a •—i QJ
0 aj a; 0 TJ
cd u C \ C
04 cd A 0 CO • ' Hco a *H QJ O CO
a) CO QJ 4J CO CO
j j a) J j O \—1 CO II rd
cd JJ cd C 1 td C—1
j j cd j j •—I X a
co 4J CO a) II U OJ| CO 2 x CO

1 ii s d qj d X
V 04 o X H 0II CO Di -H 4J COTJ XI ft -U CO g
•rH QJ 0 X O g  id

JJ *"3 w c Q) rH c
cd 6 X s > O

o 4J rd ai o
CO a g 2 4-1 14-1

II X ft d •rl* j j QJ id 0  -H
"0 (1) a 1-1 g o —
♦rH JJ H X J

cd 0 G■U G
JJ JJ QJ 0 d \  0a CO > X ■rH X  >r

X
<14
4JO
04ft
X0)
04X

+ + + + + + + + + + + +

X  X  
0) 04 
X X
a d
H  H
X XI0 O 
2 2

1 §
a d

X X X X 
a) <u a) o> 
X X X X 
d d d d 
H  H  H  H  
X XI XI XI0 o o ob b b b
§ § § §
d d d a

o JJ CO cd ,_, ,_, ,__
i—i cd rH o X CN X id
id QJ rH o
o JJ

cd
o JJ

Sh
X
id

X
id

X
td

X
id

X
id

X
id

X) rH rH X cd 2 £ £ £ £ £
d G cd cd j j cn cn tn cn cn cn
id U

rH
Sh
OJ

S
CO

CO X
O

X
O

X
O

X
O

X
O ■8CO cd > JO X 2 2 2 2 2 2

cn o QJ 0 td g g g g g g
id \ CO i—■ £ G G 3 G G G
i—i !>i \ e + CO to d d d d d d
o cd • %. rH p + CO rQ

U CO cd a •rl cd O II ii ii II II ii
4-) u QJ •H rH *"3 V V V V V V
d cd CO JJ • <. a B
0) to *H cd CO j j O ,—, ,—, i—, ,—, ,—, ,—.
G Sh cd a Sh CO Sh Q o i—i CM X 1̂* in
G QJ i—i •H Sh < cd <—> >—i '—1 1—1 1—1 •—*
G tP a cd jj II X X X X X X
O 0)

4J e
p

a)
A cu

O CO 04
XI

0)
X)

04
Xl

04
X5

04
X

04
X

d) a j j rQ 5 r C d d d d d d
X •G I + j j s 0 H H H H H H
4J + j j X •H •G X X X X X X

CO •H QJ O X 0 o 0 0 o o
0 . - 4-4 CO JJ s CO U 2 2 2 2 2 2
4-) O d ■—, CO XI g g g g g g

QJ CO ,—, CO CO \ CO V O G G G 3 G G
d X o g CO CO < CO \ CO •"3 CO 0) d d d d d d
0 QJ 0) < CO >0 cd cd ■rl B CO d

*G Xl II rH X < u rH rH 3 cd • - . - ■ - . -
4-) d QJ a X 2 o o a »«. a rH + o o o o o o
O h  d o 5 JJ QJ CO u cn
td CO 0  

CO -G
w
CO X

Sh
cd

II N
•H

CO
td

ii
XI

cn
cn

0)
X

II II II II II II

QJ td 4-> < X j j ,—, CO rH «—* aj td td ,—, t—, ,—, 1—, ,—, i—,
X rH O X X s CO •H u •H > rH X o X CM X ■31 X
4J U < a i<d V rH JJ G a cn

S s •—> II •H X cd u X Q) X X X X X X X4J II QJ 2 X 1—1 cd 3 cd cd tn G i—i 0) 0) 04 04 0) 04
QJ 2 2 0 X CO S JJ j j £ id i—i X5 XI XI X4 X X
cn d  S XJ td CO O CO o CO CO O X id d d d d d d

O QJ 0 d £ cd JO cd A X cn M X H H H H
QJ ■rl Cd 2 H CO rH II O ll O *—1 G X X X X X X
CO •G f t 4-1 X X u p) QJ •"3 1—1 X 0) o O o o 0 0

-rH o x 0 O JJ •H e rC •r| B id > 2 2 2 2 2 2
!S <  QJ Q) 2 2 Sh 0 JJ O CO £ o g g g g g g
G 3 4-> g g cd JJ a JJ a O cn G G G G 3 G
QJ aj qj td G G jj Sh >i a Q X f t d d d d d d

X d  rH OJ d d CO -H a •H •H O O
4J X G 0 —' £ 2 O
o ■U G a X X j j Sh o Sh £ X G G G G G G

d  0 \ d d C O O 3 \ O O O 0 o O
\ •G X N •G •H •rH MH \ MH d X X X X X X
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+ + + + + + + +
CO P -  0 0  CTt

X X X X 
d) qj cu tu  
X X X X  
d  d  d  d

H  H
X I  ,Q

H  H

I

!1*3o
C*3

d  d d d a
< QJ X

•H

3 X f t 0)
i— , ■— , i— , i— , tu X O ,G
i d  t ' - 0 0 04 d d 4 J

o 0
X  X X X - X f t G
id  td cd cd to s •H
£  S £ £ X a) tu
CO W CO to + • s 0 X f t x i

X  X I X ) X + X) d f t x l
O  O 0 0 • r l 1— 1 tu  g 43 0 X rd

X X) X • - •pH 43 Q) OH d f t

§  §
g g to c n »— ' cd (X QJ *- X *
d d X I CO X x  g i—1 .___ QJ <u <D

d  d d d 0
• m

<
XI

a)
T*

to d  
d to

to
X

X
X

t n
A

AJ
rd

ii ii ii ii a G 43 — X 0 i j j d
V  V V V X )

td
H
X i

X
QJ to

o
•E—l

X)
g

d
•H

QJ
X

w
d

0
•H

r—, i--- 1 ,— , ,— i d 2 0 d  X g tu cd AJ 0 X
i d  r - ' 00 c n •H IX X ) 0 QJ (X X X to X *rl O
i— i i— i '— ' <— > ftf s e 0  d (X g d CO QJ <D X <
X  X X X g £ 3 43 a . g d cd X X G a
0) QJ CD QJ cu ^G to d d X cd < tu

X  X X I X d V > i  d d cu tu X d) 3 a
d  d d d 4 J  (0 tu d d to i—i Q) 3
H  H H H tu •rH •H  d X x X a (U
X I X I X I X I X ! O 1—1 Eh 43 cd X * X ♦rH 3 f t >s
o  o o 0 4-1 « . rd ■H 43 * d 43 QJ X w 0) f t d
*"3 X X) Xi W

* i
X  Q) 3 CO X X tu W f t X 0

g  g g g d ifi cd t n 43 X o d 0 f t QJ •rH
3  d d d 0 rtf X X  A tu QJ t n d o * X X
d  d d d MH i—I to 0  ■ 43 t n •rH f t  rH w II o

a d d  cu cd QJ i—i r—i X <
i . « - d «- A j f t f t  x 43 II 3 II id rH id d 3

o  o o o 0 to u cd to + rd g o tu
4-1 X rtf to <U 43 <U i—1 d •rH d

II II II ll 0 0 4 J X X  to 43 X cd d Q) Jh • s. A X
tu X) m 0 4 J X cd X 0 > cu rH o ii

,__, ,— , ,— , ,— , > g X) II QJ X 0 • d 0 > d 5 !
c o  r ~ 0 0 0 3 tu ii g tu d CO X X 0 II 0 d

cd (V (U x  x X u f t + •H QJ o
X  X X X H •rH f t cd 0 Q) X a) c o t p X a •rH
tu  QJ Q) Q) <U r j g i—1 &H X CU X 3 0 G G o 3 X

X ) x l X ) X ) X d 4 J d d  a 43 d X QJ rH •pH 0 2 tu o
d  d d d id G d CJ a f t •H 3: f t

H  H H H <U 4 J •rH i—1 QJ 43 * X 3 MH o AJ tu f t
X I X I X I X I d d ■—- cd i—i QJ tu QJ tu 0 o U a X Q)
o  o 0 0 U H O  X O X U f t i—1 3 « a

X ) X l X) X) 0 u d id f t  X s tu X X
g  g

i  I
tu 0 " v .  o \ X X G u a) f t cd id

d  d > MH \  X c n QJ W <D 3 & g g
d  d d d J j 3 X

\
\

MH
<

a)
(X

tu

d  d d d f i 1
O  0 0 0 •'» N . X 0 3

MH MH 14-1 IH r-^ N ' QJ •rH ^

a
G 13
0 QJ

•rH f t
X f t

to o X
cu < w
to ? X
to 0) cd

<U cd 2 B
to X
rH o cd
CU S X
1 d f t

QJ o 0)
4H > d d X
• r l 0 0 O cd

•H f t X
MH f t X S to
0 0 o CU

o < f t d
X rH X f t cu
d f t X >
cu MH o w 0

0 X X
V 0) QJ f t

X to CO 0
r—» G A A 0

W rH
QJ 0)

N X X MH
\ cd cd O

X X
to to Td
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Oft
0)XX

I0s
E
«
§*»•»
£

xooftw
•rH
o
<Ua0)ca;Cn

Cn -ha ra. <u

d) u
e  £  -rH 73

•U O

X as 
rd a  
g  to

X  EH 
td X

(tf rH

\  o \  X

Xuoft0)
!>i
b
td
g

StoX

X ! O  
u  to oft u 
ai tu

to Cn 
to -H O ,3ft >1 
rH iH 
i—i 0)
td >

tu td
X
td a) 
d  X! 
a)
a  o
Q) X  
Cn

to 
* to 

X  <d 0)

+  d
-rH td

a) cn w 
xl b co
X  -rH l<C i j  T

Or-HcNm-tfLntxt''-
X X X  X  X
a> tu tu tu tud d t) d da c b a bH H H H H

XI X! XI xi x0 o o o ob b b b b
1 i I § Ic a c b c

x  x: x; 
ai tu a) x  x  X 
b  b  bH H H 

XI XI X!
o  o  o  XXX

OHlNtn^UlUX
x x x x x x x x
t d t d t d t d t d t d t d t d  
2 2 2 2 2 2 2 2  to to io to to to to to  
X X X X X X X X  
O O O O O O *  “  
b) X  b) b) X  b)
g  g  g  g  g  g
b  b  b  b  b  b
b  c  a  b  b  b

ii ii n

o o
bj bj 
g  g  b b 
b  b
n iiu qj •H x u X O g d a «—• g V V V V V V V V

(tf cn
cn

4-1
•H

cn
rH

tu
a) rd

tuX o
d

•rH
CP | cn

QJ
tui—1

iH rtf d •H b u td s CO M-l 0) 2 cn rQ o i—1CN CO tn to X
a) i—i •H rtf rtf d X CQ rQ X cn O 1—11—4’—’ '—• 1—1■—>1—■'—1
CP u 4J tu QJ ai O to rtf in X X X X X X X X
qj 6 a) QJ d b s hi X £ s rH a QJ tu tu <u (U tu <u <u
4J d rd Ti td d tu S d 0 a Ttf X X X X X X X
pi d, 4-1 ♦H Cn V D td u V tu rd d b b b b b b b
■H I + cn to 5 S MH N 0 H H H H H H H H

+ 4-1 4J b to tu •rl X tu •H ♦H rtf rQ X X X X X X X
(0 ■H <L> rH O XI X d cn cn QJ 0 0 0 o o 0 0 o
4-> CO d •H o • «. 0) • v 1 h) X X X X X X X
Cl ,_, CO cn 4-1 •n b cn rH 4-1 cn iH B g g g g g g g

i
CO ,_, CO cn N 0) 0 td cn II rtf rtf cn ii 0 d b b b b b b b
CO< CO

CO c
dl

cn
rtf

\ u rtf id
O

a rtfrH l_l 4-1
0

4->
cn

rtf
rH ,_( MH d b b b b b b b

r-H tQ < a rH • «. MH ntf to o •rl 4-1 o •rl QJ • • V • V •V ■ -
Q) a J u O O 0J d X 4-1 1—1 0J 4-1 1--1 O o o o o o o o o

a 5 4J i—i (U o iH X QJ rH in X rtf
CO s iH II 0) ■H A o rtf td rQ rQ rtf td a ii II ll II II II II ll
CO X rtf <u rtf g ft 4-1 g 4J rtf 4-1 2 cn< x s jJ ,—, iH 4-1 b tu cn to cn to i—• 1—1i—i .—1,—i r—i i—. i—,
J X s cn •H O' 0J b X >1 O X 0J o *—1 CN co in to O'
a 2 V 0J b ll 0 rH rtf ll O 4-1

»—J s II •H X T3 tu 0 b> a 0J b> rtf X X X X X X X X
5 X rtf 4-1 QJ X •H •rH g g iH •H g 4-1 QJ tu tu tu Q) tu <U tu
S 0J X cn ... g QJ o rQ X cn b •H b cn Ti X X X X X X X

(tf in o cn rd < 4-1 •rH 4-1 b cn >1 hi b d b b b b b b b
0 C S rtf rQ 4-1 u X u d i—I d QJ H H H H H H H H
g H cn i—i II 0 <U *4-4 (U QJ •rl MH d •H rd rQ X X X X X X X
4-> rQ rQ a *n d 4-1 H (X TJ H 0 4-1 0 0 0 O o o o o

0 0 jj ■H o QJ Jh iH h) X X X X X X X
0) in hi w Q \ \ \ O \ O OJ

§ §
g g g g s g

JJ
§ i

rtf 4-1 d TJ rQ N, MH \ MH 4-1 b b b b b b
rtf 4-> d CU•rH rtf d b b b b b b b
a) d d cn •rH cn tu

tu
<1) wr — — ■— -—- — — —

Cf rtf S iH
o 4J 4-> jj Cl CQ to O M d d d d d d d

d Cl d 0 Id 1—1 N O O O O O O O O
•H •H •rl MH \ •H *- tu —■« \ MH td td td M-t td id td
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I0
»

§
I

+ + + +
00 CTl
X  X 
cu a) 

x l  x ) 
G g
H  H
XI XI o ot) tj
§ § 
g  c

00 CTl

X X 
td id
S  S  cn cn 
X  XI0 O tj h)
1 I
a  g

oo cn

X X 0) OJ
XI Xl
g  a
H  H
XI XIo o*0
3 3 cn G

G X 1—1 to X II
0 U X o V

,s , - to X o o
o o E SH t) ft X

p G E w o
II ll 2 X p G 0

X to 2 0 ft,—, ,—, G X •H w
CO cn QJ II G cn G

l-i aj •rl 0
X X Vh •rH Vh o •rH
OJ Q) 3 Vh 0 to

X) XI O X 3 XJ •rH
G G G 0 0
H H X •rH 0) a>
X X G •-r X XI
0 o H X
t j t j o Vh 3
E E Q) o o X
3 p > X XI •rH

__G £

M Vl
0 o

>4-1 >4-1

xl
a
O  Xft Xlw ca) 

v  
v

to x i  o
•rH

x i  w  G 
oX -rl o cn

(0 *H
xi, u

3  V 
f t  V

to -U 
X 3 
u  o  
o  a
f t  x .  
ai x

G
G 0
0  to
tO X

to •rH Vh
QJ to Vh G3 X G f t
rH G f t  e

to G •«H e o
OJ > o 0  o3 ft 0X XJ Q)
G QJ QJ 0) cn
> X e cn -h

G •H -rl 5
XJ o X S  U
OJ •H U -H
X rH X ■rH G
G ft G G ft
O 3 O ft•rH XJ •rH Q)
I—1 i—1 a> x
f t Q) ft X  x
3 X 3 X
XJ X XI X

x i
qjc

•H
(tf

§
VH
OJ . .
X  S-l
aj d)

xJ I

u
OJ
>  a

a)
a) x l xi G

c
•rH W - r l
to cn 

xJ a) 
x l  G Xd id
G X  ai
X  X  x x
x  X
x i  cn 6
<U - h  o

X  Vl Vl14-1
a; a;

x  x  c
fH EH O

- O ft

o
G

QJ
Vh
G

>i
OJ

X

G •H - r •— 1 0 CN Vh
QJ X i G  Vh OJ X f t o • - G • -
o 4 J 0 c G G o w + +
to O  X • r l • r l 0 -k G II + >> +
G N . X  G t n t n o CU

N , Vh a j QJ QJ i • r l Vi Vh X VH
G to ai X X > to 0) Q) X Q)

•H • - X  X O Vh •rH X X X
.—_ O  X co cn S 0 o VH VH X VH

J J ... ■— ■ 0  •• X X X 0) 1 1 VH I
CO f t  •• o O X H X). X CN CN

•H •—' QJ OJ A 0 o \ 1 0 o \ O
i—1 3 QJ f t a CN X

J J O ’ QJ X QJ Q) • V O
<D u •H X  X + * a)

x i 0 G x  3 II ii + -— to
V co 3 0 X X

>1 X ) Vh Vh Vh ■rl r . r ~ ,  Q)
4 J 0) cn f t  V Q) Q) Q)
u x i X o X X X
0 0 O U  X H , H X
CO 0 0 to 1 1 I

\ a f t X .  X rH CN CN 0
\ 0) QJ \  X o U o XJ ^ }

w
h
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e
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0
Xift

u
S

is
Q
S

U  A  d) O

Xa
oaw
0o

0
g

•H
Eh - 0 

—  0  x o 
0

Td '
0 0
H  x  
Q) d)
g  a

0Aft

0oO'
0<
>H

A

* rH
>1 *

£ •rl X * OJ *
| X ,—, X Eh X * 0 *

0 X 0 A 0 * £ *
V Td 0 X O e , * *

0 id 0 0 * w *
X H 0 H f t Eh * •rH *
<D CO H 0 W X * *

XJ cn cn g X Pi * £ *
£ cd cn -rl 0 £ * o *
H rH 0 X 10 u * O  rH *
W o i—i rH * \  <U *
W 1—1 0 II 0 * rH rQ *
(d 0 o 0 * O *

rH A 0 0 * \  id *
o f t X ll g II * in  rH *

rH 0 •rH * vH £ *
s—' W 0, A X Eh Eh *

X5 ^
*

O i—1 | 1 0 0 X * *
w o 05 0 Pi * 0) 0 *
Eh II Eh II 0 a £ * 0J 4H *
hi J II H * td *

X 0 0 0 0 * XJ <3J *
Q) Xl 0 g rH rH * 04 r£ *

rH XJ f t  X) ■rl X X * £> Eh *
rH £ OJ rH 0 X 0 0 * *

H rH 0 X 0 0 * * * *
0 (0 XI X X d / / /

rH W 3 0 0 0
ftJ fd 0 rH 1—1 •rH
O rH

0
Q
0
0

XI
0
0

X
0
0

0
0

4J > Td id X '■’H

<d (d 
&  X  d> 
0  f t  x

■H H  ••
cd <d ••
g  x i
0  '  X
M cd rd

•H g  
0 d) •• 
cd A  •• 
dl ^  x) 
g  0  cn 

g  O 
d  -h o
0  Eh X
X) 0
cd 0  * 
T3 O
f t  —  Cd 
0  IS X  

O d) 
0  f t  X  

A
x) II II

d) f t  Eh 
x> g  XI
0 0 exi—i oj jiij
0
o  d) d)

iH  rH r-H
0 X  X
-^0 0 

Td A
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I

1
rS
I

rH
X
0
d

°l
JJ

1

d I)
ft X
J J J J
do

<ji°
d d
0 0

*H •H
J J V
o3 fd u

rH rH CD
P P MH
e £ MH

•H •rH P
CO CO rQ

0)
u > cd
0 < s rH rH

MH ,—, •H •rH
O M MH <d

CD in a) MH
rH MH 4J
•H MMH G <D
MH <D G o rH

MH £ *rH
fd MH £ MH

P MH fd I
G rQ J j a) 4->
a) g in P
& H •H 4J 0
o (d u cn
\  x i 0* MH MH
N 0 CO 0

rd
d
<U
d
tU
tn

da)
•d2

E
<U

rH13od0.
d>X

X) 
tO CL) >1 

d) X)
CD

td E <U
d  O X
Q) XI U
d  d  d
a) td jj
tn d  d

CD
CD O
cd •H

rH J J
t ) d)A

.d j j
o • r l
cd j j
d> d

cd
a

■H MH
O

CD
d) d)

•H CO
JJ o
•H f t

CO d d
CD •o d
e •H f t

•H d
JJ f t cu

CO X
<1) d) J J
e o CO

•H ■H 13 d
■P > O O

d •n MH
d) CU

MH CO d>
•H jd CD
rH d j j d

0 dUmh d d0 0
MH d MH d

0 d)
M JJ d Q
0 rd O
4J d JJ p
fd d) cd du d d
CD d) d) d
a tn d d)
a) cu >

d D> cu

T3 d  ro

ft 0) u a d + jj
e • s ,—, 4J CD d) o 'd to *H ID
O + o3 Ci \ tn o tu CO d)
u CO + Pi "p \ .—. *—i tu 0 CD to •rH +

a) • n u 3 d T> + to JJ £ tu j j +
d) CO CD G • V d) 0) X} •H E •H ■n
> CO ... CO A d) tu >i to Eh •H u
cd fd CO J e —' E to d) jj d CD Eh 0 •*.
CO i—i (D 0 d tn *rj O MH d •H to

o CO X d to —- d jj •H tu u tu
0 e CO\ G IH (D tu to O u CDcu to
J j g fd 03 Xl g g tu *rj 0) t ! X) xi to

g , rH rH iH o G o ♦rH E d > d d G td
d) j a -— H Tl Eh •rH CM id id 03 i—1
g £ n CD a) Xi d a) Eh to d DC Pi Ph o

•H CD p ,G £ 0 • H. rd MH d X o > i >< £
4J £ g 4J •rH U rH d ♦rH d) O *H id id 03 p
U •H 1•r-i 4J cu Xi j M x> JJ d d iH G
<D E-c >—> iH jj G d) tn tn tn d d d inCOd V d) O CN <D CD U d d d tu id id OS V

d> *n g MHro O' V J j E •ro
G m •H -P V d) <U tu ■H to to CO
rd d Eh Xi G * Xi MH d d d ts d d G •V
0) cd o U CD ■rH CD o d d d tu tu CD o
£ cu a) CD o CD tu tu <u 0 E E £g II cn CO o CO d) to to to s ■rH •H •rH II
CD G ll UD V d d d d JJ O p P

d) •n o3 QJ ro V O tu d) tu o 0 o •ro-U rH
X J j

a)
£

CO
0

xi
CD II

Q)
rH <u i l l tu

(U I
s
Eh

S
Eh JJ

-L> p G 0 CD + •rH to 0 o o d X 13 X G
a) 0 •rH X CO ‘K O TJ T) ti X d d d •rl
o Q O 'G o d d d JJ Q Q P

0 u CN CD jj X td id td to a O o iH
\ (D 0 \ ro CD d 0 oi Pi & \ d) tu tu 0) O
\  i> MH \ 4J CO0 u U a X rH > > > MH

G X

-
f t

& E• M E f t a)tu E j j
1--1 j j a) — ■
•ro ■—■ j j
■—> — a ;
CO X o
(D O Ai td
CO id a ACO A, rd
03 X

rH X to
a tn X d
CD d to f t
N f t d

•H f t to
to tu

J tu to •rH
E a) -P

•H E •H
Q j FH •H d
£ CD Eh O
CD MH d •H
j J •rH CU d

P CD CM
CD T) T3

rH d d d
13 td td td
d Pi Di pi
0 >1 i>1 >i
p td td tda d d dtu d d d
> td td td

of
 

si
m

u
la

ti
o

n
 

ru
n

s.
 

To
 

ge
t 

th
e 

nu
m

be
r 

of
 

ru
n

s,
 

ad
d 

on
e 

to
 

it
 

(s
im

R
u

n
s



//
 

C
R

an
do

m
M

ot
he

r 
rg

(s
e

e
d

);
 

//
 

m
ak

e 
in

st
a

n
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e
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ra
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om
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m

be
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g
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e
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O O
o  o

o 
dO 3+> <D ,
e , e ,

cn

g Tdc,
J  J  o ,a

cd C 
a) 3

o  Td 
•rH »H 
J-> 0

JA ,
■rH Td
3  -H 

3
•H IH W H  H

rd 3  
4J S  
tn td I  °td "rH■u a

CD o  A >i -U 6

5  > . .
a) o  o
g .  •

| o  og
rd II II 
CD
E. Td 3: 

H  CD 
Td o  g

-  g1 g1g td 
CD CD 
E E

- J J3  Td Td 
Oj 'H *3
o g g
^ l H  r l
6  mh mh

I .1

tw OJCDCDCDCDCDCD

n  XI A  A  A
3  3  3  3  3o o o o ot  x! t  t  t  g g

g
0

♦H
4H

o fd
o rH

o 0
o E

II ■H
II CO •

0 a)
g g i—1 tn Qj
>, g 0 i—1 cn

>, u fd i—t
I 4J MH g

■H Td 0 MH
0 •H 0 II
rH g 0 II
MH rH a)

1 MH 0 0 a)
g 1 jJ 0 g
s o q 0
g •H CO 0 a
jj a Cn S o
<D o fd (V •H
A > i rH 4J a
jj e MH a) 0

fd >i
CD CD 0 jJ E
rH rH
A A Eh rH rH
g g 0 0
0 0 o 0
Td Td \  X) x i

>iA

A 
cn 0  
tn td cn 
3  (D tn 
rH g
O g  rH

•rl O
Xiu mg 
g  xi o  
■■ o  gCD

rH -n g •rH
Td d g
CD •H MH g CM
JJ O •g MH
g CO o
CD rQ tn g g
a O 5! •g g
CD ■ri E jj jj
g

MH
•H
jj

•g
g

•g

Td O o
CD CD•g g
cn CO O g E
g o a) •H a -H

£ > Eh
r ) cn o •H g - g
CD ■H JJ CD cn O
> •fc cn XI •H OJ
g JJ 0) QJ O > JJ
a) H JJ H* MH g •n g fd
CO (d 4* •H A g jj

XI jj CO rH Eh g cn CO
0 E CO 0 x l MH
ig CD jj 0 <U Eh o CO
0 i—1 •H P i g •H
♦H XI 0 £ E-< \ g X I

>i a 0 *H •H \ \ jj JJ
0 0 g ’—' CO tn ■g

•H i>i a • s. H g . .. JJ
rH E 04 • «. JJ •«. E cn (d
o a> COXi CO d CO•H g g
a v X! cu •H 3 a) 0) Eh ■g E 0

Td JJ CO 0 D g £ g jj •H 0
X! CD COrH 04 9 •H o ■g Eh • - •H
0 > g fd Cn 0 Eh •H g g •M a JJ
g g 0 rH a) § in CD > 0 MH X! g O
<1) CD MH a jj H •H MH g •g •H O 13 fd

CO <u fd CO > •H g g XI t>
g XI g N jj 3 g XI w a MH Td g 0)
CD 0 o •H CO CD MH MH MH O g a X
Td t> -g CO <D § o o o g > rH jj

g g jj rH X g >1 >1 rH g g JJ
g S u —' cn o g g g jj g I

g g a) 0 •H g g g •g cn g 0
+ > 4J •H JJ g g g u fd

0) CD H cd CO V fd g g g g g c
> X! Pm 4-> rH O o g 0) O
g JJ CO II CO 2 A A A jj jj g JJ
(D T3 Jj 2 £ CD g g g g g fd •- II
tn •H a) g 0 •H rH i—1 rH g g MH jj OJ II

Td 0 Cn o CO rQ XI rQ g g MH CO JJ
XI CD rH •H g 0 g 2 jj jj •H fd CN
o > MH ii JJ •H a) 0 o O ■g •H Td aj jj

•rn g 0 CO X Q a Q • • X CO ĉ0
CD OH Q) < jj j j jj jj • • jj u

MH CO CO 4J H CO cn CO g g g 2 0 CO
0 X! U cd 04 o a •H •g •H i—t cn rH rH QJ u 0 0

0 •g 4-> XJ 2 XI XI XI XI jj XI XI 0 •H 0
g ig MH CO •H II V V V 3 C 3 3 •H * JJ P i
0) Td jj 2 jj g g g O g O O MH 0) O £

Xl •H CD •H rH CO qj 0 0 0 Q E Q Q QJ JJ fd •H
0 X! 0 Cn 2 CO jj jj jj JJ g JJ jj Q fd CO

g rH JJ •H aJ 2 o o u cn rH cn cn jj jj —'
g MH CO P i CD g g •g g •g •H CO 0 MH

Td * U £ > > > XI XI J •H •iH
0) OJ g 0) •H •H g

X ! rH •H JJ MH CO X !
Eh

■9
Cn <d

j j JJ iH
jj

\
3

V CO
£

0
•rH

0
MH ^

>.
rH
£5

//
 

G
en
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e 
ne
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ra
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om

 
nu
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fo
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ev
en
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d
ex

ed
 

ru
n

s
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X
rH
O, X H

i—I t

3  i—I 
CO3 a) 10 3

O'a
-3
Xa
3o

I

!ftj
I

jx
3
3
Pi>i
3
3
33

■8
•3 XIo  3 t> i—■

•n  CO
---- — 1 r - ,  ai

CO -n  -rl
s 01 ' JJ
0 g  CO -H
X r r rr •h 01 VH
3 A X g  O
<d + 01 -rl -H

P i cn MH Eh Vh

X -h  Vh IX
o x  ai x

jj X Tl <0 3
■H p 3 X 3
iH p 3  3  P i
O 3 P i n S  >i

-rl >i P i 3
iH • - 3  >i Vh
Oj ,—, Vh 3  Vh
CO • n Vh Sh 3
XI 1—• 3  Vh
0 CO 3  ■
t> 01
tn CO i rH

CO rH
id rH II

II I—1 II
.— i a II r-.
CO ai r - ,  CO

X! N co i— i x
O • rl X  co 0
X w , O X  X
P 1 X O g
p g  X  3
3 V 3  g  3

*—■ 3  3  1
i—i CO 3  < ->
- n CO + X ■— ■ 1— 1 - n
1—* 3  + 0 • n  ■— • '— 1
CO 3  - n X •—1 - n  CO
3 Vh g co 1—1 oi

•H p 0) CO -rl
JJ X  co 3 g  a) JJ
•rH dl 01 • rl g  -rl
VJ X co 0H -rl Vh
0 oi co o as Eh O

*r| X  <d mh Vh -r t
Vh 3  rH II ■rH 0) Vh
IX - r |  u X C/1 (X
X g CO X X X
3 X  3 X 3  3  3
id X  3, O 3  3  3
Pi 0 X Pi Pi Pi
>i V e >i >i >i
id Vh - n 3 3  3  3
Vj O 3 Vh Vh Vh
Vj MH — Vj Vh Vj
id O jj 3  3  3

D 3
II •H

• n Vh
rH 0

J J MH "
0) 3
CO -rl

CD D  ~
3 Vh

• rl O

X
O +

• n +
o CO

»>i 3 X
Vj 3 0
3 CO N
> 3 £
3 • r l  J J p

J J  o a
Vj -H  3
O 3

MH O  CO ---- -
»H  *rl *r-j

CO 3 «— i
3 IX CO CO

•H CO X a)
4 J X  O CO
■H O  - n CO
iH • n
O MH 1—1

• r | '  O o
3 CO a)
O j 3  3 N

g  3 •H
X CO
3 £  1 I
3 3  3

O 3 V
CO •H

<11 -n
a i g  

X ! -H  -  
J J  J J  O

<d ai ii 
■u mm
3  -rl -n  
1-1 rH
ai jj 
3  0  3  ai jj -h o

> ai 
3  x

<0 MH 
X Ho

co
Q) O
g

-H  A 
Eh
3 r-, 

MH - n  
•H 1—’
X  CO 
w a) 
xi co 
O co 

• n  rd
r-H

Q) O  
rH ai
XI N
3  -rl
O  CO,

2 J
co

jo
b

sL
if

e
T

im
e

s.
p

u
sh

_
b

a
c

k
 

( 
_

b
e

ta
[j

]*
 

po
w

(-
 

lo
g

(a
rr

a
y

R
a

n
d

L
if

e
T

im
e

s[
j]

[n
u

m
jo

b
s]

),
 

l/
_

a
lp

h
a

[j
])

);
 

//
 

g
e

n
e

ra
te

 
ra

nd
om

 
li

fe
ti

m
e

s
jo

b
sS

e
rv

ic
e

T
im

e
s.

p
u

sh
_

b
a

c
k

 
(c

e
il

(-
 

m
e

a
n

S
e

rT
im

e
[j

]
*

lo
g

(a
rr

a
y

R
a

n
d

S
e

rT
im

e
s[

j
]

[n
u

m
Jo

b
s]

))
 

* 
_

s
te

p
S

iz
e

); 
//

 
g

e
n

e
ra

te
 

ra
nd

om
 

se
rv

ic
e

 
ti

m
e

s



jo
b

s
P

ri
o

ri
ti

e
s.

p
u

sh
_

b
a

c
k

 
(a

rr
a

y
R

a
n

d
P

ri
o

ri
ti

e
s

[j
]

[n
u

m
jo

b
s]

);
 

//
 

g
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r
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\ 0 d
* He He d rH (0
•K He He f t  43
He He He rH E td
He He He fd 0
He He He •rH CJ G cn

<d He He He JJ <u cn
u He He He •H a) a td
u He He He d o 0 i—i
fd He He He •H •rH 44 CJ

He He He > cn
> i cu He He He QJ G G > i
id XJ He He He X ! a) a 43
u JJ He He He jJ cn
u He He He 44 4J
td 0 He He He CO 4-1 o w

JJ He He He fd O O
0) d He He He cu 44 i—1

X l •H He He He TJ 0) 6 X
JJ He He He QJ a •G 0) tn

TJ He He He d •rH 44 C CO G •*. . -
0 TJ He He He •rH 44 43 0 * .___
JJ fd He He He fd 44 44 O a 0 cn
d He He He E 44 G tn O 0 • - 0 0

• r | \ He He He a) a a) 0 f t  T5 44 E •G
cn \ He He He >4 d) > rH a) a) cn cn •rH 2
d) TJ He He He > 0) > G 0 E4 ■H
a TJ •«. He He He cn 0 CO 44 M O 6 0 G

•H cd He He He 43 0) a) ■rH td 0 •rH CJ O
JJ CO He He He o rH a) 43 cn 44 E4 •rH •rH

\ cu He He • r~1TJ o 43 44 U cn O 0 > G
CU \ B He a He •H u 44 QJ 43 tn 44 G f t

MH •H He 0 He • s 4-1 QJ 0 B O S4 G •H 0 44
•rH Eh 10 * •rH He r 0 o N a) G 0 • n 0 0 2 CO O
rH CU cu He JJ He J j (3 *H JJ E Q 44 44 >1

CO 0 •H He fd He G CO •i-i 44 CO 44 O o O 0
CU 0) •rH JJ He rH He 0 CO fd 44 Q) d O 44 G >1 !>i G

X I B > •rH He d He CU z *b d a) Q o cn C 0 0 G
JJ ■H u u He 6 He t—1 V a j j a) a M G G G 0

Eh cu 0 He •H He •H V g (d B \ CO a) CJ 0 G G *—*
JJ Q) CO •rH He CO He 4-1 i—1 S3 j j •H \ CO 43 0 0
u MH CO u He He + CO JJ fd E 44 44 ■—* — cn
0 •H XJ cu He H He JJ »v • n a) • *. rH G O tn 0
CO P 0 CO He Qj He d z V 43 u B •*. >4 a G 44 0 cn -G

CO •r-> XJ He He Q j V 44 QJ QJ >4 E4 G G 6 0 2
\ X3 0 He T5 He JJ JJ r > j J E4 H x l rH 0 G ■rH a •G

0 •m He •rH He d a + CO rH 44 u CO H 2 u fd A O E4 *H G
• n He d He 0 CU + cn TJ (1) QJ >1 Z H •H JJ a O 0 t4 O

, s 0 He r—1 He > *r~i rd a W CO CO H f t 43 O G 44 G •rH
fd rV He Uh He cu w i—i cu f t 2 3: JJ C — _ ■H 0 G

'— rV XJ 0 He He X I s CO o V QJ QJ 2 H ■—, 2 CO f t
0 <d He He He JJ V QJ 44 V \  43 X I H 1 a) OJ 0 44 44 2

J j fd xJ XJ. He He He V CO o r JJ jJ W G X I 43 o o O
u X I CO He He He 44 s CO B CO f t 2 ♦rH JJ 44 .—. >1 >1 !>i
0 1 d  x l He He He 0 fd QJ d tn jJ JJ 2 2 4H o 0 0 0
C/1 XJ Q j CO He He He QJ i—i cd j j 0 QJ QJ 2 C Q) JJ 44 * G G G

CO d * He He CO B a X ) (d tn CO CO < > a d G tn G G G
co d CO Q j He He He u •H s 0 j j tn \ > d G 0 <
cu Q j CU He He He a) Eh p •r~> CO 0 \ II 0 O cn ■o H m)
6 B CO He He He 6 a . = u i—i \ II \ u u tn •rH •H •rH

•H CO •rH CU He He He fd cu V OJ a • s 0 0 d G G
Eh (U E-i •rH He He He cu J j V V > 0 \—1 •V 0) a \ i—i rH rH i—t
QJ i 0 JJ He He He X I CO •r-> QJ u N 1 o E •rH CO \ \ O f t f t f t

MH •rH U •H He He He >1 i—1 aj ■H •H E4 CO a
♦rH Eh •rH g He He He cu CO •rH CO tn II o E4 G fd • V G A A A
P (U > o He He He CO XJ z O 44 z 1 Xl O rH o O G. 0 0 0
CO 4-1 u •H He He He Q j j j V II V CO II (3 T3 o J rH rH i—1
X •H cu u He He He 0) V • n JJ V ll d W G d n II 43 X I 43
0 X I CO Qj He He He JJ Q j CU d CU j j QJ G td 0 44 G d G

4-1 4J 44 He He He CO d rH JJ 0 rH QJ a rd B 0 rQ TJ CO TJ cn O 0 O
o o o He He He d JJ •H d •rH N cu j j •rH cn < d X3 0 O a p a
>1 >1 >1 He He ♦ f i cu 44, •H 44 •rH f t CO Eh 44 44 fd O > 2 2 j j 2
cd fd fd He He He -H CO 1 rH 43 u CO X X •n G 43 tn CO cn
u u u He He He CO JJ U JJ fd 0 QJ t>i 0 a) <2 i—i 0 O •H ■rH ■G

*<• u u u He He He JJ \ d 0 d •rH • n > CO (3 G j j td CO - n 2 2 2
<d fd He He He CJ N . 0 44 o JJ u X 44 43 V V V

He He He -H •rH 44 QJ cu a) 0) QJ o O 44 G G G
He He He M d G CO rH rH 1—1 d 44 ■ n G O O O
He He He Q j H H 43 4Q 43 H 2 2 2
He He He ^ U JJ 0 31 G j j 44 44 CJ a a CJ
He He He 4-J \ a) d o O 0 d G G 0 0 0 0
\ wv r-> > •rH T l 43 •rH *H *H > > > >

4J d) 0 cn 43 1-1 G 2 ft

0  0  *G 
4 3  O ' 4 4-u 0 lln 0 c u e•H O O ft 2 *G 

2- w o

//
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se
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se
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th
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ti
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an
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it
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om

 
th
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a
rr

a
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//
 

O
p

ti
o
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se
le

c
t 

th
e 

on
e 

fo
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se
rv

ic
e

 
ba

se
d 

on
 

th
e
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ra
nd

om
 

p
r

io
r

it
ie

s
 

if
(F

lu
id

A
rr

a
y

O
fL

if
e

T
im

e
s

[a
c

ti
o

n
].

si
ze
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E
• ' o
C ° aj
c  o

•rH *H& j> 
Q) X 
XI QJ

j-> a
U
rtf OJ to ,—.

1—' X! 4-) -—
cn 4-1 to —- j j

J j a) ♦H X p
•H g 4-1 i—1 G JJ 0

■H OJ O P H
4J Eh to rH Sh 0 MH
U Sh OJ rH OH u I
OS a) T l E r6 1 MH a
rH cn G ♦H f t 0
OS MH id Eh E O a a
C/1 o QJ 0 ft 0

>1 >. O Sh a i—i
J j rtf 4-1 •H OH p
C/1 Sh ■H > G .—. 0
P Sh X to O P •H

• r i *5 0-1 0) 4-) •H 0 J j
*0 0 cn G 4J •H U
♦rH 0-4 0) 0) u 4J otf

■U P a) O E E co o i—i
MH rH E X •H OJ 1—' rtf cn
OS IX -X OJ Eh rH cn ■—i as
i—I 4-> 4-> X 0J OS cn •H

n -H QJ g 0) J j
Xi a) * to QJ •H 6 •H
0 (U o XI Eh •H Sh

•n E ■H II II 4-) a) Eh 0
*H > MH Sh •H

<U X OJ 0) 0) ■H OS Sh
p oj Q) E E > XI cn a
o o to •X •H 0 04 4-1 MH

•H Eh Eh E O o O
> OJ (-1 TJ OJ r>1 rH

rH X XI tu a Sh td rtf rtf
a <U 4J to w Sh u Sh
o cn Sh G Sh U Sh

MH
4-1
o

X
0)

OJ
rX

0)
cn

0)
XI

•H X O XI 4-1 Eh •H •H •H
Q) p X p P P

\ X o OJ \ rH iH rH
■X \  T l g a a

a)
E •>•H -
4-> rQ  Od) G) 
O T>

(U G
G > > O

-H X X • H
• s tri QJ QJ X

OJ to CO OS
•*. Q) rQ H

o QJ * 9 *G
•H

-H
> G

X
4-4 C E

0 __
p O' X 0 a G)

•H d) Q) •rH Ti G E
O' Xi to 4-1 G -H Q) OJ -X
OS o *rH to a E Eh • V
,Q X id MH QJ •rH tn •X Q) ___

P 0 1—1 X > X Eh a Xi
0 04 to O X to Q) -X 0

P •H dJ MH ,—, Q) •H X >
0 JJ QJ -H • - G to rH •H X TS

•H a rH 4-4 P O XI Q) 0)
JJ rtf Xi -H .—.. 0 •X X aj X cn >
CJ <—• rtf X — •H X XI QJ O X u
rtf cn i—I 0 ts JJ o tu X X O as
•—» as •H •rH G Itf G G X QJ X cn
cn g rtf X QJ o 1—1 X X QJ ■—-
Q) •H > (X 0 to OJ •H X
g Eh rtf 04 ,—, rH QJ X i—1 —' •rH as

•H Sh o G -X X Q) rH Q) cn
Eh QJ Xi >1 O JJ X E (tf cn QJ rtf
OS cn 0 <d -X rP •X TJ -X rtf to Sh
MH OH •n X 4-1 O' X • - G Eh E Sh G as
•H O X o •H o .—* G QJ 0 as X
XI rX J>1 f S G X •X ft U X QJ ,—i
04 <d jJ T! X • V G X •H X P
O Sh *H •H to Q) IX to •X > P ,—, 0
>i X Sh P QJ X 04 a X tn 0 G •rH
id 0 rH -H X O rtf - X Q) X •H O JJ
Sh tJ •H a >1 O' Q) 0 cn - - G 4J ■rH u
Sh •rH Sh *— -X 0 G E X Q) Q) U Jj <tf

P a jj X X X s. •H Q> O E E rtf o 1—1
t ! i—i p o X as Eh E X •rH OJ 1—' rtf cn
■H IX JJ as -H tn f S g 0) •X QJ Eh rH cn ■—i as
p cn g X X •rH CJ X X X QJ as in ♦rH
rH ii as as (X 0 •H Eh •X OJ g as JJ
a A i—i 04 X p Q) > Q) * to QJ •rH g •rH

aj O' O td r-H 04 X O X Eh •H Sh
II E •rH >1 X [X •H id •H II 11 X 0) Eh 0

•H XI X td QJ X c n > MH Sh •H
0) Eh fd X X Q) X X X QJ Q) Q) •rH as Sh
E QJ QJ E X •H O o O a> E E > XI c n a

•H 0 X <! G X X to •H •H 0 X MH MH
Eh -X OJ ll • d OJ G QJ QJ Eh Eh E O O O
QJ > ■H X X X X QJ X TS tu > i >i
04 X QJ X P X to •rH •rH X OJ G X G rtf rtf
•H 0) to 0 rH •rH '—' •—' X to W X Sh Sh
XI c n 0 G> a QJ T J QJ QJ X G X U Sh
OH
O

04
O

0
X

TJ
Q)

>
O ll

a
c

O
G

X
Q)

Q)
rH

QJ
c n

QJ
X 5  5 5

Sh X o > S G G O rQ X Eh •rH •H
OJ OJ X a > > P X P P P
4-> 4J \ OJ rtf TJ TJ X 0 OS rX rH rH
■rH •H to O' G G X TS G h a

GXft
p

tjc
G

oj grQ O
g  ’ r "l
P  4->
Q •' O

' G0) I
X
x  g  o0)
(0 X  
id U d  tJ

ll
- x  P

cu <d 4-1 tu 
>

Q  (U >  tn 
,Q  X  rQ
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m
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T
im
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st
op

 
th
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u
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an

d 
do

 
no

t 
co

u
n

t 
th

e 
re

w
ar

d 
o

n
w

ar
d

s 
if

(n
e

x
tS

e
rE

n
d

T
im

e
 

>=
 

_
m

ax
T

im
e)
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•H &

CO *ih
CO '
oj g

rH O
0  (X1 a3 o  •'
G, - n  rH

v  >0 
V V G 

• n  1) «  
i—I V 

• » -H V 
O  MH O  
II | V 

■ n  J->
3 0 0)

•rH

a JJ X
0 QJ

•H 0 aJJ
0 jj
0) jj CO
rH CO o a
OJ P rH •H
to •ih

0J QJ
Q) > A
A JJ
A MH

QJ
O
JJ •IH

O' rH t—i 0)
a <U CO g•rJ _.. A CJ a) „—, •H
■X s—-■ O O g a) Eh
(d •IH ♦H g QJ
g OJ Eh •H MH

JJ O A QJ Eh •H
M & a jJ MH G A
0) g •H 0 MH
JJ 0J CO CO A Tl o
MH •H >1 MH G Vj
td ,—. 1—1 rtf O (d QJ

+ •ih QJ 5 >t 43 jJ • s
Jj + Vj rH itf <1 •H •IH
g *ih CO QJ (tf Vj 4-J *
0) 0) A Vj X IIg g 4J CO 3, 0) II
c CO •rH •H G CO
0 QJ Eh MH •H tu CO
Tl CO QJ H JJ 3 V g (tf JJ
c CO MH CJ rH •H 1—1 CJ
fd (tf •rH \ QJ Pm ai Eh U QJ

43 rH A g g G a >
id u MH QJ II •H 0 0 0Jg o • «. i—l Eh T) TJ
jj 3 >1 QJ QJ Q) 0) G CJ JJ
X (tf P g MH fd rtf CO
Q)
G V1

u
u CJ

•H
JJ
CO

•H
Eh

•H
A

Vj
•H

•n < JJ Vj 0) MH jj JJ MH
QJ *3 CJ •H MH o X X

43 •rH o MH •H Vj QJ QJ CO
jJ O PrH

o
aj

GJ
MH

OJ
JJ d C! •H

^J
QJ II Ch A o •H JJ
t—1 Eh Sh *
P •ih as JJ

MH \ • P MH ♦«. P
OJ JJ •H \ •H •H r—» di

A a JJ
0 •H P
cn o

Cm0)
43
Eh
T l
f i r , :  -
<U +  rH 

CO +  T l  
= - n  = G
V V 0)
V CO V V 
= Q> r - ,  V

to - n  rH 
CO •—' +
fd g  co i—l 01 3 

= O  P i  U
V g  43 (d
V 3 O J-> 
0) ( J - n W  
g  V n
•rt v v a)
Eh - n  OJ >  
to rH IH 

*rH QJ 10 O  MH CO
V II | V
V - n  4J V Q) 3 aj 
rH J J  O  rH 
•H G -rl

Jj Jh 3 O 
O  mh

fo
r(

in
t 

j 
= 

0;
 

j<
_

n
u

m
C

la
ss

e
s; 

j+
+

) 
to

ta
lJ

o
b

s 
+=

 
jo

b
R

e
m

[j
];



if
(n

e
x

tS
e
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n

d
T

im
e

 
<=

 
n

e
x

tA
b

a
n

d
o

n
T

im
e

) 
//

 
if

 
n

ex
t 

ev
en

t 
is

 
s

e
rv

ic
e

 
c
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m

p
le

ti
o

n
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Q) t o
J J A
cd p • %
4J CU O
CO 4 J cd

£ cd rH
qj CO 44 f a

cu t f •rH CO CO
B A r d d 1—1

•H 0 44 d o a
E4 • n o Q)
tj 4 4 II rH
d QJ 0 II A O '
w j j p
d cd d t o t n *H
cu J j 0 cd cd CO
CO CQ •H rH r—1
44 J J 44 f a fa II
X Q> o 0) 10
cu t n cd 1—1 rH P
d o u 0

II cu cu 0) •rH
ii , £ 1—1 rH J J

QJ 44 t o t n U
cu •U d P <d
B cd 44 •rH •H

•H J J CU CO CO
E-< c n a a)
co u J j CO
> i P Ch MH rH
cn 0 •rH •rH QJ

O

d CU 
O  O

♦rH *H 4J >
O  d  (0 Q) 

coCUrJ u
4-> o  

144 • 'e —
0  4J —
Q  X

44 CD 44
d  d  (U o a 4J u

• r l  m  IH> o I
d  rH 0< CD 001 0) ft 

rQ  •

o o

CO rd a) 
B• H

o d <u-r~» CL) 44 
CO -r4n dO '44 

•pH p-4 O
r d  >1S d cd 

O  d
4-) -rH d
a  4J 
cu Op tl 

(—I O  *H 
a) d
cn \  t—c\  Cn

d  d  
o  o44 -H
d  <d o

to
a) a> 
jd e4-> -H E4 4-) CD 
O 44
0) *r4P—1 d) 
Q) 44 
CO O 

>1 
'  cd

CM d  
d

d  <  
o  t3

•rH *rH-d 3 O) pH 
O Cd

,_, A
P JJ d
o X i—i o

•H QJ d *H
4-> P 0 44
O • - —̂. •rH u
cd OJ CO .—, > - JJ to*—i A JJ -— .—. 0 p—p
CO JJ CO •—- cd to

jJ QJ •H 44 P «—i cu
•rl e JJ rH d 4J 0 to B

•H QJ o d u 2 -pH
J j Eh O' 1—1 d 0 MH £ Eh
a Ih a 1—I 44 d | •rH d
a) QJ T l B <u cd 44. a Eh CU

i—i cn P •H B Op 0 <U CO
a) MH cd E4 •rH 6 O Qj a 44 44
CO O CU Eh 0 Qp 0 •rH O

!>i a CO In Oj i—. J !>-i
jj cd jj •rH t>J MH p 44 (0
CO U •rH > to d ,—. 0 o d
P u d CO 0 d •H >1 d

•m 4H cu + JJ •rH O JJ (0
0 CO p JJ •H O d ■3s. •H 44 (U QJ U 4J cd d •rH

Jj 0 QJ o B e cd O •—• P
MH 1—1 6 d •rH 0) •—• cd CO T> t—1
QJ f a *H a) Eh 1—1 CO ■— i cu •rH ftp

rH 44 44 d cu QJ CO •rH P
II •H CU £ OJ JJ rH ll

rQ CU * CO <u •H £ *H ftp
O cu o r d Eh •rH U cu

*1 1 B •H II II 44 OJ Eh 0 ii e
•H > MH U •H ♦rH

CU E4 d CU CU cu -H QJ u cu Eh
d CU CD e e > Pi cn fa B CU
0 o CO •p4 •rH 0 MH MH MH •rH D

•rH Eh Eh B O O o Eh •H
>i > CU d T l cu 1̂ >i t>1 CU >

rH d r d CU P d cd cd cd 44 d
d CU 44 CO W u u U •rH CU
o CO U d u u Vh d CO

44
44o

44
CU

cu
p—i

QJ
cn

cu
.d

44
O

44
o

•rH d CD 4 3 j j Eh •rH •rH •H d d
CU d X d P P cu <D
44 0 QJ \ p—i rH rH 44 44
•rH TJ p fa f a ■pH -pH

to
CU

<u n

> d  
d  o  
cu -h
CO 44 

O
d  cd O “

A  - H  
cd d

pH O 
•H  *rH
cd d> 04
Cd 44o

J3 >i 
o  cd

•i—v d
d

> i  <  
44 rp 
•H *H 
d  d
O  pH 

•H  I d  
d  “Q, 44

d
44 CU
CO B  
CU cu

r d  pH
t o  cu, 

-r4
r d  X

cd
<u B



//
 

M
ov

e 
th

e 
it

e
r

a
to

r
s

 
to

 
th

e 
ri

g
h

t 
lo

c
a

ti
o

n
 

fo
 

fi
n

d
 

th
e 

s
e

rv
ic

e
 

ti
m

es
 

an
d 

li
fe

 
ti

m
e

s
 

ga
p 

= 
d

is
ta

n
c

e
(

F
lu

id
A

r
r

a
y

O
f

P
r

io
r

it
ie

s
[

a
c

ti
o

n
]

.b
e

g
in

 
()

, 
s

e
rv

e
d

J
o

b
);

 
a

d
v

a
n

c
e

(i
te

rO
fL

if
e

T
im

e
, 

g
a

p
);

 
a

d
v

a
n

c
e

(i
te

rO
fS

e
rv

ic
e

T
im

e
, 

g
a

p
)

;

A P P E N D IX  C. C + +  C O D E  F O R  K E Y  C L A S S E S  A N D  F U N C T IO N S  1 6 8

•r4 Q)
> i—1

& a
a> e • - (d
CO o ._-
4-) o -  Q) a
0 —  g 0
0) 03 03 -H •pH
CO U g  EH • 4 4J
03 •H cn •H 03 rd
g > 4-1 Eh O n 1—1
o 14 cn <13 -H 0 0
03 03 ■pH 44 > t> £
xi cn rH •H 3h b CO •H
+> U  03 03 0 CO
V 4J Q) 44 CO > 4J
V X d) O  44 g rd 0)
= 0) 14 )4 O 0) j j A
o a X 0) >4 cn CO 4-)
3

03
4-1 44 0) 

-H 44 u 04
cn x < - 1—1 "— *r4 0) 0) 0

•H 4-J 03 1—1 03 cn > 4J
g 03 rd cn 03 g u CO

03 b •pH g g cn g <D
U g Eh •pH g S4 (CJ 0) CO ..

•H g 0) Eh o 03 14 (D
> o cn lH • 03 ,—, a) £
M 4-1 *rH 44 ,—1 • g pCj •rH
Q) ■H > cn g . o 4J Eh
CO cn o g •pH X

4-1 03 + 4-1 ■H O 4J d) g
U 0 CO a 44 -i4 O -U 6 ,
o 4-4 0) <13 U 44 <d rd I

44 a; O g g g o ,—, TJ
g U •H 03 ■—1 g CO a g

4-1 ■<—) 03 Eh rH cn >—■ 0) 03
C 4-1 4-1 in 0) 03 cn •H 44
03 a> g  03 H \ 44
10 03

O
* cn a)

X £  e  Eh *(4
•pH
u g

03 •H II II 4-1 03 Eh 0 »«. cn
g > 44 (4 •H 0 b
o M 03 0) 03 -rH 03 u 0 g

O' 03 g g > J  CO fa •H 03
g a) cn •pH•pH 0 44 44 4J

x Eh Eh g O  O o -  u 03
03 03 14 43 a) t>i !>i J>1 ' rd u

b X 03 g 14 g g fd i •H
V 4-1 CO W g  g U r— II >

g V M g g  g U 0 g
o
14-1

4-1
g

4-1
Q)

0) 
1--[

Q)
CO

03
X $ 3 $

O CO 
•rH 0  +

03
cn

\ 0 o 1 3 4-1 Eh •pH -pH•H JJ H  +
N o g X 0  0 g a  (d 'd 03

o 0) s . rH rH rH rd j-j <u X
N . b g N . fa fa fa 1—1 CO > 44

£ U U
O  Q) (D 
P i  >  CO
XI H  X
o  a)  o  

• n  cn - n

g g
03 0
o i •rH
03 44
g o

•H 03
Eh rH
X 03
g cn

e ,
1 0)

X
% 44

cn
b O '
g g

w •t4
a • - . x —-
g Z g

•H + g ' —
CO +
s • n z g >1
V V g 44
V CO V 44 a
r <D .— i 4 4 g

CO • n g g
CO
rd g 44 - - - ,— ,

rH 03 g + • n
s o P i <13 >H + ■— »
V £ h p Eh • n cn
V O O 2 H g

<13 d) 0 , ■ n 1—1 o 3 - - g
g £ V b b H cn •H

-H •H V V g g &4 g Eh
Eh Eh •f~l Q) 03 g 3 cn g
X CO rH V b H cn 44
g >1 .«* •pH V • - g I g •H
6 , cn CO o LH o d r W i—i

1 a V II | V o 44 D a 44
03 V • m 4 J V Eh X J g O • s.

ii 44 d) 0 03 CO <13 < g >1 d)
A CO rH j J 0 rH 1 g > g , g 0

g •pH O •H H g 0
a) g LH •rH ‘H a <13 II V g ♦H
g - g | —" Q X • n 25 H

•H CO 4 J g 44 H 44 03 b 0
Eh 44 0 0 g 3 g - - •H O
b g 0 4 4 0 x 03 •pH O 0 O
g *H p4 rH Eh r—1
w g g g II f a
g a o b O
03 44 O b - o
CO 4 4 o X g LH
44 -H  '- h O ' V g 44 ♦rH
X cn X g
<13 03 <5

_ g P i 44 -—
X g

4 4 - - N 0) o
*H H N g 4 4  h
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I
I3
a
I

S'
a)

X)

o  - ~  6 OJ 
• h  6
Eh -3
3  e-i

3  <d 
- 3  0  
X  TO 
9-i <d 
O  3  >i x 
3  <
3 3 t-i x <j 0)H a

•H
3  V

r—I
a)
e

II -3
Eh Cl) 3 

g  9-1 
•H  *H
&  x  
a )  9-j99 O  

•H M
x  a)
99 3  
O  -3  
)9 *
a)
3  99 
•3  *(9

II
Cfld) Cfl

B td
•H i—I E9 O
id 3  
o  o  

t )  n  a ccd td
£ £  
3  3
X  X  
a) a) c c

cd
<uco

T)c
$a
w
3 —- -Q) + 
cfl +

3  g  cn 
r9  3  3  
O  fa 3
§ X Id
3  O  49
X  - n  co

V 3  
V V d) 

£9 * n  d)
rH Jh

CD
Cfl
>1 •- -3
Cfl O  99 -
V II I V
V - n  49 V 
d) 3  CD 

i—I 4—> O  «—I 
•H G -rH 
CM *H MH

J :  J
3  0  3
O  99 O

3 0 G
0 •rH
X a) — CO to
3 rC .—. 3 CO a>
3 AJ 3  - h 3 cd

5
3  3 0 rH

O' 0  3 3 o ,—,
-U G 3  O M
X •rH 99, 3 A •—>
a) > 99. f t 0 .— CO
G 0 f t  O •H .—. (D
V g O f t f t X e
V 3 f t  O •s •H
r 3 • f t ,—, >1 E-i
CO i—i • cn X 3 3
CO • 9 >i CO r—. cn 3 f t 3
cd „—. z • V XI cn w 3 3 g •H

rH + rH 3  cn rH 3 X
o + 73 3 r9  3 a 3 3
r • n r G O O  i-9 3 3  — ,—, O

• - V • <. V a) •3 3  U O 3  + • n >1
>4 V CO V V 3 O 3 T) B  9- >—1 3
E-i z 0 ,—, V 3 3 ) 0 3 3  *1 i Cfl 3
H CO •m rH O 3  X 3 0 3 3
S CO 1—* + 0 3  3

3
|tf  - g

3H rd B CO i—1 3  W •H
• s* + fa rH a) p 3 3  3 E4 •H
1 + £ z o & 4J XI X X  CA 3 P

0 1 H V g rP td o X 3 3 3  CA 3 rH
g ,—, cn I V 3 0 4J • n 3  X 3 3 *r| fa

•3 CO Cfl fa Q) a , WD CO 3  3 1—1 4-J i—1 X
E9 CO 3 3) B V u 3 |—■ 3 cn X u 3 ii
3 cd rH X •H V V <D cn (A ^ 3 3  g o IS,
O rH o < Eh • o a; > 0 3  Cfl ■rH 3  3 (U 3

X o 3 > CO i—i Jh i—i g  3 3 3 , 3 P g
3 c O >i •H 0) •3  g *H 99 3 G •H
3 0 X II CO CO o CM CO 3 E9 -r9 3 O V 3 •r| Eh

3
TJ 3 a V II 1 V X 3  E-I 0 •n

s
-U 3

G 3 3 0) V * n 3 V 3 3  3 -H 3 G 3
49 rd

3
g j j 0) 3 a) 3 -3  3 3 g  • ' •H 0 •H

X •H co rH 4J O rH 35 co fa •3  O P O X
CD 4J E-i G •H G •H 3 3  3 3 3 rH 3
3 49 X 3 & CM •H >4H XI o  o o II Ph o

X 3 0 •H | '—• | 3 13 !>i >1 3 i' 3
II d) jd X CO 4J u -U 3  3 3 X  - n 3

3 3 3 G 0 G 3 3  3 3 3 HH 3
CD •—• 3 3 3 o CM O 3 3  3 3 3 •*H •iH
g g

d)
3
o £

•3
3

3
X 3 3 3

X  3  
3  -3

£h fa X 4-> f t f t -H *H •3  ’
co XI XI X 13 3  3 P fa  3

0 0 0) 99 \ i—1 3 rH \  0
CO •i—i • n G •3  ——’ \ fa  fa Ph N  99 "



APPENDIX C. C++ CODE FOR K EY CLASSES AND FUNCTIONS 170

I!
to

a) to 
g  «i

•rH rHeh o
3  pi o o 

13 n3 
3  3  
3  aS

%% 
4-1 4-1
X X a) a) 
3  3

<d to 
3  35 O 0

rH 3 )  
rd rH O cd

•S.

rH S N
* * ¥

+ ¥ ¥ ¥
¥ ¥ ¥to ¥ ¥ ¥

3 ¥ ¥ ¥
3 ¥ ¥ ¥
p i ¥ ¥ ¥
g ¥ ¥ ¥

•rl ¥ ¥ ¥
C/1 ¥ ¥ ¥

— ¥ ¥ ¥
¥ ¥ ¥

\ ¥ ¥ ¥
¥ ¥ ¥
¥ ¥ ¥

13 ¥ ¥ ¥
rH ¥ ¥ ¥
o, ¥ ¥ ¥

¥ ¥ ¥
• s 3 ¥ ¥ ¥

s 3 ¥ ¥ ¥
>1 3 ¥ ¥ ¥
U E, ¥ ¥ ¥

•rl ¥ ¥ ¥
rH 13 ¥ ¥ ¥
0 -rl ¥ ¥ ¥ • H

s a 3 ¥ ¥ ¥ z
V rH ¥ ¥ ¥
V H OH ¥ ¥ ¥

CO ¥ ¥
3 i ¥ d ¥ 3 z
o TS ¥ 0 ¥ 1—1 V

z ■ - •H 13 ¥ *H ¥ ■H V
> rH 3 Is 3 ¥ j J ¥ OH rH
3 13 rH H > ¥ td ¥ +
0) z 3 OH a 3 ¥ rH ¥ 4-1 IS •I~l
CO V (0 3 ¥ P ¥ 3 c V
13 V V OH 13 CO ¥ a ¥ a V
3 ,—, V o •H 35 ¥ •rl ¥ 4-1 4-1 z • H
W *H> rH 3 O ¥ CO ¥ 1 3 3 H* CO rH
33 <—1 + (1) rH 13 ¥ ¥ O 3 + CO TJ
0 a to OH 13 ¥ 3 ¥ > ♦1—1 td d

+ •d <u 3 10 •H ¥ £ ¥ 3 H rH cu
+ 4-1 a ; 4-1 a OH 3 ¥ rd ¥ 35 r CO u V
•HI to rQ rO 0 O r—1 ¥ 4J ¥ 4-1 V 0) MH V

3 + 0 4-1 4-1 OH ¥ 0) ¥ V CO O r
• h • h 31 + •Hi CO cn 3 -— ¥ & ¥ OH - CO a CO
co ,_, = •HI V )H 3 ¥ ¥ 0 rd cu P
cu ’Hi V V 0) 3 0) + ¥ ¥ 3 rH ex 4J
co V CO <U > 35 g • s ¥ He ¥ to g a X5 rd
CO e z a) rH 3 4-1 13 £ ¥ ¥ ¥ 3 •rl e 0 jJ
rd a) CO •H 0) m 1—1 3 ¥ ¥ ¥ 3 Eh p • 0 CO

rH CO 4H tn lH i—i O, 3 , ¥ ¥ ¥ •3 a - U
u rQ rd V o a 1 ¥ ¥ ¥ 3 <D V 0)

0 rH 4-1 V 14-1 ... g 3 3 ¥ ¥ ¥ 3 4J V V >
*H1 z o 3 0) 13 3 3 3 ¥ ¥ ¥ 35 CO • n Q) u

d • h V £ O rH r-H CL) to 3 3 ¥ ¥ ¥ rH 1—1 cu
II CU V d •rH 3  > 6 , 6 , ¥ ¥ ¥ .—. 3 CO •Hi •H CO

V 1 + a i g 0) d. lw, XI In 3 1 1 ¥ ¥ ¥ CO 35 z O HH z
•Hv 0 •«H e (0 3 3! 13 13 ¥ ¥ ¥ a 4-1 V ll | V

CO 0 Eh •H V 4-> rH CO 4-1 •rH •rl ¥ ¥ ¥ Q) V • n JJ V
■ « A rH n Eh •HI 3 33 P P ¥ ¥ ¥ V a Q) P cu

o 0 d CO O 0) 0 3 i—1 rH ¥ ¥ ¥ CO 3 rH jJ 0 1—1
0) w • H rH • «. 31 - n g OH MH ¥ ¥ ¥ p 4-1 *H d •H

II rH 1—1 rH CO CO o 4-1 -rl ¥ ¥ ¥ a 3 4H •H HH
cd ♦rH cu i a V II \  II 4-1 II II ¥ ¥ ¥ »—. • iH cn | 1

TH 4J A CO 0) V •HI ¥ He ¥ 0) CO 4J U 4J
0 z j j II 4J <U 13 i—1 s TJ ¥ ¥ ¥ d 4J —- P 0 P
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X
03
d

1—1

4J 03 u 03 . ».
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Appendix D

Matlab Functions

The following M atlab functions are included in this appendix.

•  ca lcP ro b .m : the function to calculate the one step transition probability in 

the exponential lifetime and exponential service time scenario in Chapter 2. 

Refer to equation (2.32).

•  M R L T .m : the function to calculate MRL for Weibull lifetimes. Refer to 

equation (2.47).

• B a y e s ia n F lu id .m : the function to calculate the integration in equation 

(3.31) to solve the fluid model when classification is imperfect. It is also 

used in (3.19) to compute the one step transition probability in these cases.

The command to compile these M atlab functions is mcc - W  cpplib:libcalcProb  

- T  linkdib ca lcProb.m  M R L T .m  B ayes ian F lu id .m  b in opdf .m , the result of 

which is a C + +  library file named libcalcProb.lib. By importing this file to C + + , 

we can then access any of these Matlab functions from C + + . Note tha t binopdf.m 

is a native M atlab function to calculate pdf (probability density function) values 

for binomial random variables.
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