
How to Build Emergent Software Systems (Tutorial)
Roberto Rodrigues Filho and Barry Porter

School of Computing and Communications
Lancaster University

Lancaster, UK
Email: {r.rodriguesfilho, b.f.porter}@lancaster.ac.uk

I. INTRODUCTION
Emergent software systems take a reward signal, an en-

vironment signal, and a collection of possible behavioural
compositions implementing the system logic in a variety of
ways, to learn in real-time how to best assemble a system to
maximise reward. This reduces the burden of complexity in
systems building by making human programmers responsible
only for developing potential building blocks while the system
determines how best to use them in its deployment conditions
– with no architectural models or training regimes. Instead
of adaptation being a special capability, emergent systems
treat adaptation as continuous self-assembly, where a system
is constantly reviewing its own behavioural composition to
find alternative building blocks which better suit the currently
perceived environment.

II. SCOPE

This is a hands-on tutorial in which participants will be
encouraged to build their own emergent system, with au-
tonomously learned behaviour that is a consequence of the
current deployment environment. The tutorial is structured in
two major parts: (i) the Dana programming language, and (ii)
our emergent systems framework.

A. Dana Programming

In the first part we will introduce our hyper-adaptive Dana
programming language [1]. Dana makes runtime adaptation
safe, lightning fast, and pervasive to every element of a soft-
ware system from TCP socket implementations up to graphical
user widgets. Runtime adaptation is sufficiently cheap in Dana
(taking a few microseconds) that a system can be in almost
constant flux without impacting the user experience, allowing
high-speed real-time learning to freely experiment with a wide
range of different behaviours in a production environment.

The fundamental goal of runtime adaptation which is to
move from one system version A to another system version
B; and to do this with (i) no perceivable downtime, and
(ii) in such a way that the running system in version B is
indistinguishable from one which had always been in version
B from the start of system’s the execution.

While aspect (ii) of this is a very difficult to uphold for
all elements of a system’s global state machine [2], Dana
uses a special theory of structural mechanics to uphold this
condition for the structure of a running system. This allows
the programmer to create a diverse range of design patterns,

with complex and dynamic object reference graphs, while
supporting seamless runtime adaptation for any component.

This tutorial will begin by outlining the theory of runtime
adaptation, and exploring Dana’s model of structural mechan-
ics which implements this theory for system structure. The
core of the Dana language is designed around this theory,
offering generalised adaptation support, with its syntax and
operators layered on top and designed to work within the
constraints of its structural model.

Following the theoretical elements we will then run through
a range of increasingly complex example systems which can
be built with Dana and examine how those systems are
pervasively adaptable at runtime.

The first half of the tutorial will conclude with hands-on
experience of building an adaptive system in Dana, using its
APIs to automatically search for components to integrate into
a system, and gaining familiarity with the set of tools available
to create simple abstractions for entire system composition and
runtime recomposition.

B. Emergent Systems

In the second part of the tutorial we will introduce our
emergent systems framework, itself built using Dana, which
uses the language’s capability to abstract entire compositions
of behaviour into simple action/reward tables. We will cover
the three major parts of our framework in detail, including
assembly, perception, and learning.

Our assembly module discovers compositions of behaviour
which implement a desired system, and presents those compo-
sitions as actions. When a new composition is selected to use,
the assembly module computes a difference between its current
composition and the new one, and triggers a series of runtime
adaptations throughout the system to move between the two
compositions. This provides the abstraction of a set of simple
actions (compositions) which can be selected by a learning
agent, but which each entail potentially complex behavioural
changes to the running system. Some of the most recent
research on emergent systems is using this idea to present
both local composition options, and distributed compositions
where selected components are relocated to remote hosts, all
as a simple set of actions.

Our perception module injects probes into the running
emergent system to transparently monitor metrics such as
response time or energy usage. This builds on the general
adaptation capability of Dana, in which we can swap one

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196591293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


implementation of an interface for a different one. In the case
of injecting perception probes, we adapt a selected interface N
to a proxy implementation P of that interface with associated
metric capture logic. P itself has a required interface of type
N , and we connect this required interface to the component
originally implementing N before the probe was injected.
Using this concept, we can selectively inject and remove
probes into different parts of a system at runtime depending
on the intensity of monitoring needed.

Finally, our learning module takes a list of actions from the
assembly module, and the available perception data from the
perception module, to learn at runtime how different environ-
ment conditions impact the observed behaviour, performance
or health characteristics of the running system – and how to
select the most ideal behaviour for each encountered operating
environment range.

This section of the tutorial will give participants the op-
portunity to use our emergent systems framework and in
particular to explore how the machine learning element works
– gaining insights into how complex behavioural decision-
making can be simplified to a set of real-time learning actions.
Following on from this we will also cover some of the major
theoretical and practical challenges of building an effective
machine learning solution for this context, which generalises
across any emergent system in any application domain. As
part of our discussion of the learning element we will also
introduce the concept of multi-armed bandits as one of the
most prominent reinforcement learning techniques, examining
the theory of UCB1 (Upper Confidence Bound) as a simple
implementation of this approach.

III. OUTCOMES
By the end of this tutorial, participants will have had the op-

portunity to experiment with adaptation, compositional search,
and real-time machine learning to drive system assembly and
re-assembly as a product of a perceived environment. We hope
that this will provoke new ways of thinking about autonomous
and adaptive systems, where complex behavioural decisions
can be driven by apparently simple actions and rewards in a
reinforcement learning algorithm. You can find out more about
ongoing work in emergent systems in recent publications [3],
[4], [5].

ACKNOWLEDGEMENTS
This work was partly supported by the Leverhulme Trust
Research Grant The Emergent Data Centre, RPG-2017-166.

REFERENCES

[1] B. Porter, “Runtime modularity in complex structures: A component
model for fine grained runtime adaptation,” in Component-Based Software
Engineering. ACM, June 2014, pp. 26–32.

[2] A. R. Gregersen and B. N. Jrgensen, “Dynamic update of java applica-
tionsbalancing change flexibility vs programming transparency,” Journal
of Software Maintenance and Evolution: Research and Practice, vol. 21,
no. 2, pp. 81–112, 2009.

[3] B. Porter, M. Grieves, R. Rodrigues Filho, and D. Leslie, “REX: A
development platform and online learning approach for runtime emergent
software systems,” in Symposium on Operating Systems Design and
Implementation. USENIX, November 2016, pp. 333–348.

[4] R. Rodrigues Filho and B. Porter, “Defining emergent software using
continuous self-assembly, perception, and learning,” Transactions on
Autonomous and Adaptive Systems, vol. 12, no. 3, pp. 1–25, September
2017.

[5] R. Rodrigues Filho, B. Porter, F. Costa, and M. Pereira de Sa, “Towards
emergent microservices for client-tailored design,” in International Work-
shop on Adaptive and Reflective Middleware. ACM, December 2018,
pp. 1–6.


