
Noname manuscript No.
(will be inserted by the editor)

Tackling a VRP challenge to redistribute scarce
equipment within time windows using metaheuristic
algorithms

Ahmed Kheiri · Alina G. Dragomir ·
David Mueller · Joaquim Gromicho ·
Caroline Jagtenberg · Jelke J. van Hoorn

Received: date / Accepted: date

Abstract This paper reports on the results of the VeRoLog Solver Challenge
2016 - 2017: the third solver challenge facilitated by VeRoLog, the EURO Work-
ing Group on Vehicle Routing and Logistics Optimization. The authors are the
winners of second and third places, combined with members of the challenge orga-
nizing committee. The problem central to the challenge was a rich VRP: expensive
and therefore scarce equipment was to be redistributed over customer locations
within time windows. The difficulty was in creating combinations of pickups and
deliveries that reduce the amount of equipment needed to execute the schedule,
as well as the lengths of the routes and the number of vehicles used. This paper
gives a description of the solution methods of the above-mentioned participants.
The second place method involves sequences of 22 low level heuristics: each of
these heuristics is associated with a transition probability to move to another low
level heuristic. A randomly drawn sequence of these heuristics is applied to an
initial solution, after which the probabilities are updated depending on whether

Ahmed Kheiri
Lancaster University Management School
Department of Management Science, Lancaster, LA1 4YX, UK
E-mail: a.kheiri@lancaster.ac.uk

Alina G. Dragomir
University of Vienna
Faculty of Business, Economics and Statistics
E-mail: alina-gabriela.dragomir@univie.ac.at

David Mueller
Vienna University of Technology
Institute for Theoretical Physics
E-mail: david.mueller@tuwien.ac.at

Joaquim Gromicho, Caroline Jagtenberg and Jelke J. van Hoorn
ORTEC
Houtsingel 5, 2719 EA Zoetermeer, The Netherlands
E-mail: {Joaquim.Gromicho, Jelke.vanHoorn}@ortec.com, C.J.Jagtenberg@gmail.com

Joaquim Gromicho
Vrije Universiteit
School of Business and Economics
De Boelelaan 1105, Amsterdam, The Netherlands

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196591253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Ahmed Kheiri et al.

or not this sequence improved the objective value, hence increasing the chance of
selecting the sequences that generate improved solutions. The third place method
decomposes the problem into two independent parts: first, it schedules the delivery
days for all requests using a genetic algorithm. Each schedule in the genetic algo-
rithm is evaluated by estimating its cost using a deterministic routing algorithm
that constructs feasible routes for each day. After spending 80 percent of time
in this phase, the last 20 percent of the computation time is spent on Variable
Neighborhood Descent to further improve the routes found by the deterministic
routing algorithm. This article finishes with an in-depth comparison of the results
of the two approaches.

Keywords Routing · Evolutionary computations · Metaheuristics · Inventory

1 Introduction

The VeRoLog Solver Challenge 2016 - 2017 was facilitated by VeRoLog, the EURO
Working Group on Vehicle Routing and Logistics Optimization and organized in
cooperation with ORTEC. This challenge inspired a total of 28 teams, world-
wide, to participate. Table 1 lists the institutions to which the participants were
affiliated. The first, second and third prize were awarded during the VeRoLog
conference 2017 in Amsterdam1.

ORTEC designed and ran the third solver challenge organized by the VeRoLog.
The previous two editions took place in 20142 and 20153 and were designed and
run by PTV. This paper concerns the third challenge45.

The routing problem central to the VeRoLog Solver Challenge 2016 - 2017
was based on a real-life problem for one of ORTEC’s clients. From this real-life
problem, a few aspects were selected that lead to a new research topic in vehicle
routing optimization.

The problem concerns a large cattle improvement company, that must regularly
measure the milk quality at a number of farms (customers). This requires special
measuring tools, which have to be delivered to the customers at their request.
After the measurement, typically a few days later, the tools have to be picked up
again. The scheduling of these deliveries to days and the routing for the planned
deliveries and pickups are the issues to address in this challenge.

The problem of this challenge is deterministic and revolves over a long horizon,
meaning that the scheduling of the individual delivery dates has a large impact on
solution quality. The problem was first introduced by Gromicho et al. (2015) and
in the context of the challenge by Dullaert et al. (2017). It combines the following
decisions:

– On which day each delivery request should be served. This leads to a second
automatic decision: on which day it should be picked up again.

– For each day in the planning horizon, which deliveries and which pickups to
combine in each route - and in what sequence.

1 https://verolog2017.sciencesconf.org/
2 www.euro-online.org/websites/verolog/verolog-solver-challenge-2014/
3 www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2015/
4 www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2016-2017/
5 https://verolog2017.ortec.com/

https://verolog2017.sciencesconf.org/
www.euro-online.org/websites/verolog/verolog-solver-challenge-2014/
www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2015/
www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2016-2017/
https://verolog2017.ortec.com/

Tackling a VRP challenge to redistribute scarce equipment within time windows 3

Table 1: The participants’ institutions. If known, the names of the participants
are also mentioned.

Team Institution Country Participants

– CIRRELT Canada

– Erasmus University Rotterdam The Netherlands

–
Ho Chi Minh City

Vietnam
International University

– Koc University Turkey

akhe Lancaster University United Kingdom Ahmed Kheiri

– Los Andes University Colombia

– Maastricht University The Netherlands

Success Shiraz University Iran Morteza Keshtkaran

– Tages s.c. Italy

– Tata Consultancy Services Unknown

– Universidad de Buenos Aires Argentina

Tau17 Tel Aviv University Israel

Yael Arbel
Dafna Piotro
Alona Raucher
Tal Raviv

MLS Universidad de Los Andes Colombia
Maŕıa Ángel
Lucia Paris

– Universidad Torcuato Di Tella Argentina

– University College Dublin Ireland

– University of Groningen The Netherlands

– University of Laguna Spain

– University of Pavia Italy

– University of Pisa Italy

mjg
University of the Federal

Germany Martin Geiger
Armed Forces Hamburg

– University of Twente The Netherlands

ADDM
University of Vienna and

Austria
Alina Dragomir

Vienna University of Technology David Müller

– Vrije Universiteit Amsterdam The Netherlands

– Warwick University United Kingdom

SunBeams Zaporizhzhya National University Ukraine
Igor Kozin
Sergey Borue
Olena Kryvtsun

The main objective is to serve all requests at a minimum cost (see Section 2.1),
subject to the following constraints:

– The number of items (equipment or tools) available per type is limitative,
making them scarce and forcing reuse.

– Items can be loaded at the depot or at a customer, but the items on board
must always satisfy the capacity constraints.

4 Ahmed Kheiri et al.

We may recognize some of the aspects of the problem in the available litera-
ture. The routing part of our problem consists of unpaired pickups and deliveries
which is central to the Pickup and Delivery VRP (PDVRP) as defined in (Par-
ragh et al., 2008), where they argued that this problem had received the least
attention of all problems which they have surveyed. Only one paper was known
to the authors of Parragh et al. (2008) addressing unpaired pickups and deliveries
being repositioned by multiple vehicles, namely Dror et al. (1998). The problem
being addressed there resembles in many aspects the routing of a specific day
in our challenge, including the scarcity of the goods and the possibility of them
being repositioned (shared electric cars). Dror et al. (1998) developed an exact
methodology based on a mixed integer programming model, but the applicability
was limited to very small instances.

Close to the time of writing Parragh et al. (2008), Montané and Galvão (2006)
designed the first metaheuristic for the routing of unpaired pickups and deliveries
by multiple vehicles, but no repositioning was considered: each vehicle departs
from a single depot with the loads to deliver and returns to the same depot with
the picked up loads. This seems to be the setting generally followed by subsequent
research.

Battarra et al. (2014) consider the VRP with simultaneous pickup and deliv-
ery demands and attribute its origin to the work of Min (1989) which considered
simultaneous pickup and delivery in the context of a public library. The study of
Min (1989), which seems to be overlooked by Parragh et al. (2008), also assumes
that the deliveries come from a depot and the pickups return to the same depot,
hence disallows relocation. It is worthy to mention that their proposed mathemat-
ical model includes a parameter to model the traffic congestion, which makes sense
since the setting of their study was a large urban area. This is simply done by ad-
justing the travel times on the arcs. However, just as in the case of our challenge,
no detailed consideration is given to the time aspect and the travel times appear
only in the objective function.

Another aspect that received substantial attention is that of pickups and deliv-
eries of individual items, which is central to so-called dial-a-ride models (Cordeau
and Laporte, 2007). These models deal with the transportation of people and tend
to focus on the journey of each item (person), which starts at pickup and finishes
at delivery. Some modifications to this theme include the usage of transfer points
as in (Masson et al., 2014) and anticipation on expected return transports as in
(Schilde et al., 2011). The latter adds a coordination aspect that relates to the sub-
ject of our challenge in the sense that the items being delivered need to be picked
up again; however, their items (people) are not ‘reusable’ nor ‘exchangeable’.

Simultaneous pickups and deliveries are also central in the literature on routing
within reverse logistics, see (Dethloff, 2001). Researchers in this field tend to focus
on the transportation of reusable packaging, which seemingly relates to our relo-
cation of scarce items. However, the relocation - and hence reuse - is out of scope
of these models: packaging is brought back to depots to be reused in subsequent,
not yet planned, routes. Typically, no careful inventory of packages is kept since
they are not perceived as scarce.

In general, routing papers assume the pickup and delivery orders to be a priori
defined and they should be served on the day of planning.

One area where we do find the multiple day aspect and the choice of deliv-
ery day is in inventory routing problems as surveyed by Coelho et al. (2014). The

Tackling a VRP challenge to redistribute scarce equipment within time windows 5

main difference is that in inventory routing models the inventory is managed at the
delivery location and typically estimated by the routing operator. Goods are not
relocated, nor they are scarce. Inventory inside the vehicles is simple to manage
since loading takes place at the depot only, whereas unloading takes place during
the route. The intrinsic difficulty of such models comes from the combination of
demand forecasting (leading to inventory estimation) with routing and schedul-
ing decisions. These scheduling and routing aspects are present in our problem;
however, classical inventory routing models lack the relocation and reuse of goods.

Finally, we mention the research on relocation planning for bike sharing systems
(see (Fishman, 2016) for a survey). In this problem, the goal is to transport bikes
from locations where they tend to accumulate to those where they are sought. The
decision on what level of bike inventory to maintain at every location greatly de-
pends on estimations of flows between locations, which makes this problem highly
stochastic and complex. This complexity is mentioned in, for example, (Schuijbroek
et al., 2017), which notes that finding provably optimal solutions is practically in-
tractable. Perhaps that is why this domain is quite rich in approaches, including
Variable Neighborhood Search heuristics in (Rainer-Harbach et al., 2013), branch-
and-cut algorithm in (Raviv and Kolka, 2013), cluster-first route-second heuristic
in (Schuijbroek et al., 2017), and simulation optimization in (Jian et al., 2016).
Furthermore, these models are sometimes extended with different aspects of the
problem, such as combining staff-based vehicle redistribution and real-time price
incentives for customers (Pfrommer et al., 2014).

It is interesting to mention that the repositioning by multiple vehicles addressed
by Dror et al. (1998) was also in a context of vehicle sharing, in their case electric
cars, which are indeed much more scarce than the bikes being shared.

We believe that the combination of decisions found in the problem of this
challenge, which is a practical problem faced by some of ORTEC’s customers,
is quite unique and may lead to subsequent research. Also, the richness of the
objective function contributes to the versatility and difficulty of this problem:
emphasizing tool minimization leads to different methodologies being effective than
emphasizing total distance. In order to support future research with benchmarking,
the challenge site remains alive after the challenge has ended.

The problem, including the format of the instance and solution files, and the
challenge rules are described by the challenge team (Gerhard Post, Daan Mocking,
Jelke van Hoorn, Caroline Jagtenberg and Joaquim Gromicho) which can be found
on the competition website. Note that this paper contains a recap of the problem
description and the challenge rules.

The challenge problem is a simplification of a richer version found by OR-
TEC’s clients, which includes among other features multiple resource capabilities,
heterogeneous fleet, multiple depots, route synchronization, tight time-windows
and adherence to working and driving time directives. Furthermore, the real prob-
lem as solved by ORTEC for its clients includes an additional phase which is not
part of this challenge: the scheduling and routing of inspectors, who should visit
the farms while the equipment is present. Each inspector has his or her own home
base, skills and periods of availability, which makes the whole problem an even
greater challenge. The problem instances used during the VeRoLog challenge can
be downloaded from the competition website.

As a curiosity, we mention that a group of undergraduate Business Analytics
students at the Vrije Universiteit in Amsterdam ran a preliminary version of the

6 Ahmed Kheiri et al.

challenge composed of smaller and less restrictive instances, as a case study during
a course taught by Joaquim Gromicho. During this case study it became evident
that there are at least two main ways to tackle the problem: route first, schedule
second or schedule first, route second. Those that focus first on routing day by
day and just schedule to meet restrictions were the first to obtain solutions to all
instances, while those that develop a sophisticated scheduling of the visits prior to
routing took longer to design and implement their algorithms but reached higher
solution quality.

The remainder of this paper is structured as follows. Section 2 provides a
description of the tackled problem. Section 3 describes the algorithms that ended
up second and third in the ranking of the challenge. Section 4 presents the results,
and Section 5 describes the conclusions.

2 Problem description

The problem discussed in this paper consists in planning of deliveries and pickups
of tools to customers at their requests to achieve objectives under the presence of
several constraints.

The problem consists of a set C of customers, a set T of tool kinds, and a set
R of tool requests. A request r(n, t, c, d, w) asks for n ∈ N tools of one kind t ∈ T ,
that need to be present at customer c ∈ C for a given number of consecutive days
d. The delivery of the tools has to fall within a certain time window w given in full
days. If a customer requires several kinds of tools, this means separate requests
are made. Note that all requests are known at the moment the planning is made.
The tools of the request have to be picked up by one vehicle the day after the
request is completed, i.e., precisely d + 1 days after the tools were delivered.

Each problem instance has one depot location where all tools are located at the
beginning and end of the planning horizon. A vehicle can load a tool at the depot
and unload it at a customer. Alternatively, after the first day, a vehicle can also pick
up a tool at customer c1 and deliver it to customer c2 without visiting the depot
in between. Vehicles can also visit the depot multiple times per day, leaving tools
and picking them up later for redistribution. To avoid the need for synchronization
between the vehicles on the same day, only the vehicle that left the tool at the
depot may pick it up again. Relaxing this constraint would force detailed arrival
moments at the depot to be modeled in order to enable checking that tools already
brought by a vehicle are available to be taken by another during the same day. If
the tools cannot be exchanged between vehicles on the same day, the arrival and
departure times of vehicles at the depot do not need to be synchronized among
the vehicles. This restriction does not apply if the tool is being picked up on a
later day. All vehicles must start and end their day at the depot. If a vehicle visits
the depot during the day, the vehicle route consists of multiple tours.

Each tool kind has a certain size, and the available vehicles all have the same
capacity with respect to the tool sizes. During any part of a route, the total size
on board of a vehicle may not exceed its capacity. There is no maximum amount
on the number of vehicles one can use (although vehicles are not free).

Every problem instance provides coordinates for each customer as well as a
depot, allowing the participants to compute the Euclidean distance between any

Tackling a VRP challenge to redistribute scarce equipment within time windows 7

two locations. There is an upper bound on the distance that a vehicle can travel
in one day.

2.1 Objectives

All requests must be satisfied, and the objective is to minimize a cost function that
consists of four parts: (1) costs per distance traveled, (2) costs for using a vehicle
for a day, (3) costs for using a vehicle at all, and (4) a cost per tool, depending on
the tool kind. The latter was inspired by the real-life problem that this challenge
originated from: the tools involved are in fact rather expensive, and hence it is
worthwhile to investigate whether routes can be created which allow for fewer
tools to be purchased. Each problem instance includes a definition for costs (1) -
(4), which means that different problem instances emphasize different aspects of
this problem. This makes it more challenging for the participants to come up with
one algorithm that tackles all problem instances.

For the challenge rules, including how algorithms are evaluated, we refer the
reader to Appendix A.

3 Competitors’ algorithms

Search methodologies are at the core of decision support systems, particularly
while dealing with computationally difficult optimization problems. The cutting-
edge methods are often tailored for a specific problem domain by the experts in
the area. Such systems are custom-made and, often, costly to build. When ex-
act methods cannot be applied, practitioners and researchers resort to heuristics,
which are ‘rule of thumb’ methods for solving a given optimization problem. There
is a growing interest towards more general, cheaper and intelligent methods. Meta-
heuristics (Sörensen and Glover, 2013) and hyper-heuristics (Burke et al., 2013)
are such methodologies that automate the search process. This section presents the
methods that won the runner-up and the second runner-up prizes in the VeRoLog
Solver Challenge 2016 - 2017. The former method employs a hyper-heuristic tech-
nique and the latter applies an improved genetic algorithm metaheuristic.

3.1 A sequence-based selection hyper-heuristic (Team: akhe)

The main components of selection hyper-heuristics as identified in (Burke et al.,
2013) are (i) heuristic selection which selects a low level heuristic from a pre-defined
set of low level heuristics and applies it to a candidate solution at each decision
point; and (ii) move acceptance which decides whether to continue with the newly
generated solution or the previous solution. A new field of hyper-heuristic methods
embedding data science techniques has recently been developed (Asta and Özcan,
2015). Experiments on a hyper-heuristic benchmark framework (Kheiri and Keed-
well, 2015), urban transit route design problem (Ahmed et al., 2019), wind farm
layout optimization problem (Wilson et al., 2018), high school timetabling prob-
lem (Kheiri and Keedwell, 2017) and on water distribution optimization problem
(Kheiri et al., 2015) have shown that applying a sequence of low level heuristics

8 Ahmed Kheiri et al.

can potentially improve the quality of solutions more than those that simply select
and apply a single low level heuristic.

3.1.1 Overall model

The competing method that took the second place uses a method that applies
sequences of heuristics. To achieve this, each low level heuristic is associated with
two probabilities: a transition probability to move to another low level heuristic
including itself, and another to determine whether to terminate the sequence of
low level heuristics at this point.

Let [llh0, llh1, . . . , llhn−1] be the set of low level heuristics. A transition matrix
(Transition) of size n×n stores scores for each of the n low level heuristics, from
which we calculate the probabilities of moving from one low level heuristic to
another (by normalizing the scores given in the matrix). We also define another
matrix referred to as sequence status matrix (Status) of size n× 2 which specifies
scores for each of the n low level heuristics in one of two options: add and end.

Initially, elements in both matrices (Transition and Status) are assigned the
value 1. Figure 1 shows the initial score values of the two matrices for n = 4 low
level heuristics.

llh0 llh1 llh2 llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 1 1 1

llh3 1 1 1 1

Transition

add end

llh0 1 1

llh1 1 1

llh2 1 1

llh3 1 1

Status

Fig. 1: Initial score values of the two matrices for n = 4 low level heuristics

At first, a randomly selected low level heuristic (assume llh2 is selected) is
added to the sequence of low level heuristics. [SEQUENCE: llh2]

The Status matrix is used to decide whether another low level heuristic will
be selected and added to the sequence or the sequence will end at this point. To
make one of these two choices, a roulette wheel selection method is applied. For
llh2, the probability of adding another low level heuristic is 1/2. Assume that the
chosen status is add. [SEQUENCE: llh2,]

The decision now is to add another low level heuristic to the sequence. This will
be chosen by a selection procedure based on the roulette wheel selection strategy.
In our example, the probability of selecting any low level heuristic, given that the
recently added low level heuristic was llh2, is 1/4. Assume that the chosen low
level heuristic is llh1. [SEQUENCE: llh2, llh1]

The Status matrix is used again to decide whether another low level heuristic
will be selected and added to the sequence or the sequence will end at this point.
For llh1, which is the recently added low level heuristic, the probability of adding
another low level heuristic to the sequence is 1/2. Assume that the chosen status
is end. [SEQUENCE: llh2, llh1].

Tackling a VRP challenge to redistribute scarce equipment within time windows 9

In this case the current sequence of low level heuristics ([llh2, llh1]) will be
applied to the candidate solution in this given order to generate a new solution.

If the new solution improved over the best solution, the scores in both matrices
for the relevant low level heuristics are increased by 1 as a reward. This is illustrated
in Figure 2. If the new solution does not improve the quality of the best solution
in hand, then the scores in the matrices will not be updated. This way we only
increase the chance of selecting the sequences that generate improved solutions.

llh0 llh1 llh2 llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 2 1 1

llh3 1 1 1 1

Transition

add end

llh0 1 1

llh1 1 2

llh2 2 1

llh3 1 1

Status

Fig. 2: Updated score values of the two matrices

We are now at llh1, and we continue with the same strategy to construct and
apply the next sequence of heuristics using the updated scores.

The move acceptance method used in this work is Record-to-Record Travel
(RRT) move acceptance criterion (Dueck, 1993). The idea of RRT is based on
the simple notion that any new solution, which is not much worse than the best
solution recorded, is accepted. A candidate solution is in the form of a three-
dimensional array (days × routes × visits).

Note that the quality of a given solution is evaluated using the main objective
to be minimized and an estimated (secondary) objective depending on which cost
type (described in Section 2.1) of a given problem instance is set highest. As
an example, if the main objective is to minimize the number of vehicles, then
the algorithm will locate the day that has the most number of vehicles (routes)
running and the secondary objective becomes the trip distance of the route that
has the least total distance on that day. Similarly for the number of used vehicles
per day, the algorithm attempts to minimize the number of vehicles used per day
as the main objective, and the trip distance of the route that has the least total
distance as the secondary objective.

The organizers of the challenge provided a set of feasible instances, and con-
firmed that a feasible solution to the problem can be achieved by selecting for each
visit (delivery or pickup) one vehicle to carry out only this visit. Following this,
we developed a greedy algorithm to construct an initial feasible solution. However,
the implemented simple greedy algorithm, which runs in milliseconds, often yields
a poor quality solution requiring further enhancement.

3.1.2 Low level heuristics

The sequence-based selection hyper-heuristic approach in this work controls a set
of 22 low level heuristics to improve the quality of an initially generated solution.

10 Ahmed Kheiri et al.

The low level heuristics are grouped into the following 6 categories: move, swap,
reverse, add, delete and ruin and recreate.

(a) Move inside route (b) Swap inside route

(c) Move between routes (d) Swap between routes

(e) Move block between routes (f) Swap block between routes

(g) Add (h) Delete

(i) Reverse (j) Ruin and recreate

Fig. 3: Straight arcs are visits in the route, dashed arcs are visits removed after
applying the heuristic, curved arcs are visits added after applying the heuristic

Move low level heuristics

– LLH0: Moves a visit (delivery, pickup or depot) into a new location inside a
route (Figure 3a).

Tackling a VRP challenge to redistribute scarce equipment within time windows 11

– LLH1: Selects two random routes, same day, and a random position on each
route. The visit in the first position is moved into the second position on the
second route (Figure 3c).

– LLH2: Selects two random routes from different days and a random position
on each route. The visit in the first position is moved into the second position
on the second route. Corresponding visits (pickup or delivery) will be moved
to satisfy the time window constraint.

– LLH3: Moves a block of visits, that is a set of consecutive visits, into a new
location inside a route.

– LLH4: Moves a block of visits into a randomly selected location from another
route in the same day (Figure 3e).

– LLH5: Moves a block of visits into a randomly selected location from another
route in different day. Corresponding visits will be moved to satisfy the time
window constraint.

– LLH6: Moves a tour, that is visits between two depots, from a route into
another route in the same day.

– LLH7: Moves a tour from a route into another route in different day. Corre-
sponding visits will be moved to satisfy the time window constraint.

Swap low level heuristics

– LLH8: Selects a random route and two random positions and swaps the two
visits in these positions (Figure 3b).

– LLH9: Selects two random routes from a randomly selected day, and a random
position on each route and swaps the visits in these positions (Figure 3d).

– LLH10: Selects two random routes from two different days, and a random
position on each route and swaps the visits in these positions. Corresponding
visits will be moved to satisfy the time window constraint.

– LLH11: Exchanges block of visits inside a route.
– LLH12: Exchanges block of visits between two routes both from the same day

(Figure 3f).
– LLH13: Exchanges block of visits between two routes from different days.

Corresponding visits will be moved to satisfy the time window constraint.
– LLH14: Exchanges two tours in a randomly selected route.
– LLH15: Exchanges two tours in two different routes in a randomly selected

day.
– LLH16: Exchanges two tours in two different routes from different days. Cor-

responding visits will be moved to satisfy the time window constraint.

Reverse low level heuristics

– LLH17: Consists in a chronological reversal of a block of visits in a randomly
selected route (Figure 3i).

Add low level heuristics

– LLH18: Selects a random route and a random position in this route and adds
a depot visit into this position (Figure 3g).

12 Ahmed Kheiri et al.

Delete low level heuristics

– LLH19: Deletes a depot visit (Figure 3h).

Ruin and recreate low level heuristics

– LLH20: Destructs a randomly selected rout generating a partial solution and
then reconstructs a complete solution at random (Figure 3j).

– LLH21: Same as LLH20 but destructs/reconstructs several routes from a ran-
domly selected day.

3.1.3 Additional remarks and conclusions

Although, the ultimate goal of the development of hyper-heuristic methods is to
increase the level of generality, by offering methods that have the ability to work
on a wide range of optimization problems, still it would be interesting to know
the position of hyper-heuristics with respect to other problem-specific solution
methods in a particular optimization problem while still being general. In this
work, a sequence-based selection hyper-heuristic has been developed which aims
to intelligently and effectively control the application of sequences of heuristics as
opposed to simple selection of single heuristic. The method effectively exploits the
features of the problems on the fly as indicated in (Kheiri and Keedwell, 2015).
This is a viable approach considering that at different points during the search,
different sequences of heuristics may be performing well.

Preliminary experiments did indicate that large low level heuristics at tour (or
block of visits) level that tend to move tours around could lead to better results. Of
course better understanding of this effect requires further work and much more ex-
ploration. Final results of the challenge suggest that the low level heuristics would
need significant adjustment to handle the problem more effectively. Interesting fu-
ture work might well try to explore features of instances that are correlated with
the different objectives defined in Section 2.1.

3.2 A genetic algorithm metaheuristic (Team: ADDM)

The proposed algorithm decomposes the problem into two independent parts. The
first part finds a schedule for the delivery day of each request. The second part finds
the routes of the vehicles for each day according to the predetermined schedule.

Scheduling of delivery days

For the scheduling, a genetic algorithm (GA) is used. For a pedagogical introduc-
tion on GA see (Wall, 1996). Hart et al. (2005) provide a review on evolutionary
scheduling literature. The genome sequence represents the day of delivery for each
request. Therefore, the sequence has a length equal to the number of requests.
The day specified for each genome has to be within the delivery time window for
the request. Since every request needs the tools for a specific amount of days, the
corresponding pickup days can be easily determined. As far as the scheduling is
concerned, all necessary information is stored in this sequence. Figure 4 shows an
example of a genome sequence.

Tackling a VRP challenge to redistribute scarce equipment within time windows 13

Fig. 4: An example of a genome sequence for the genetic algorithm

Building a population

For building an initial population, two different approaches are used: a greedy
heuristic and a random schedule generator.

The greedy heuristic picks a request and assigns a delivery day that increases
costs the least for the overall schedule. Here, a cost estimation is used based on
the number of required vehicles and tools. If the resulting sequence is feasible, it
is added to the initial population, otherwise the heuristic restarted. Feasibility is
determined by checking if the required resources are not exceeding the available
limit. To avoid a deterministic heuristic, the order of requests is chosen randomly.

The random schedule generator assigns each request a random day for delivery
as long as it is within the allotted time windows. Therefore, the day for the sequence
is selected between the first and last possible day for delivery. If the sequence is
determined to be feasible, it is added to the initial population.

The size of the population is adapted to the size of the instance, i.e. the number
of requests. Depending on the problem instance, we choose between 70 and 300
individuals. Both the greedy heuristic and the random schedule generator initially
generate a pool of individuals two times the population size. The better half is
kept, the worse half discarded.

Selection, genetic operators and mutation

The parents for reproduction are chosen out of the whole population with decreas-
ing probability the higher the cost of an individual: first, we sort the population by
the score of each individual. The population is then separated into three parts: the
top half and the next two quarters. A parent is then chosen with 1/2 probability
out of the top half, 1/3 probability out of the less-than-average quarter and 1/6
probability out of the worst quarter. The same procedure is used for the second
parent. This way of selecting parents guarantees that individuals with low cost are
chosen most of the time, but also allows for less than average candidates to take
part in the reproduction step. As a consequence, it takes longer for populations to
converge to local optima. Clearly, constructing a selection method is not a rigorous
task and there is a lot of freedom in the exact details of how to choose individuals.
After some testing we settled on the above described selection method due to its
simplicity and because it achieved acceptable results.

For reproduction, a uniform crossover operator is used. Each gene of the child
sequence has an equal probability of being selected from one of the parents. Fig-
ure 5 shows an example of a uniform crossover.

After the crossover, some mutation might occur: we mutate up to 10 random
requests, each having a probability of 1/2 to mutate. The mutation shifts a request
to a different delivery day within the available time windows.

14 Ahmed Kheiri et al.

Fig. 5: An example of a uniform crossover

The genetic algorithm runs up to 400 generations or until the population ‘con-
verges’. We define a population to be converged, if the new generation contains
more than 80 per cent of identical individuals compared to the last generation.

Routing and schedule evaluation

To get the exact score of a schedule, the routing for the whole planning horizon has
to be computed. The routing algorithm has to run very often, because our genetic
approach relies on evaluating the score of a large number of individual schedules
in a short amount of time. In particular, the genetic algorithm might encounter
the same individual more than once during its run. Therefore, the score evaluation
of individual schedules represents the main performance bottleneck of the solver.

These problems can be solved by choosing a deterministic routing algorithm,
which provides each schedule with a unique set of routes. As a result, two identical
schedules have the same routing and the same score. Once the routes for a schedule
are calculated, the score and a hash value of the schedule can be cached in a lookup
table. The lookup table provides an easy and fast way of checking if a particular
schedule has been encountered before and obtaining its score without running
the routing algorithm again. Furthermore, memory use is also greatly improved
because it is not necessary to store the routes of each schedule in the population.
In the rare event that the exact routes are needed (for example when writing the
best known solution to a file), we simply run the deterministic routing algorithm
again and obtain the same result as before.

The routing algorithm takes a schedule as input and tries to solve the routing
problem for each day individually. Since each vehicle can return to the depot
multiple times within a day, each vehicle route can consist of multiple tours. The
algorithm is comprised of four stages:

1. A modified parallel savings algorithm (Clarke and Wright, 1964; Rand, 2009)
with sij = k(si0 + sj0 − sij) where k > 1, if i is a pickup and j a delivery
of the same tool. Otherwise k = 1. Since the problem has the quite unique
characteristic of allowing tools to be passed on from one customer to the next,
we favor savings where this is the case to minimize tool use. The algorithm
is initialized with single requests tours. Each initial tour starts at the depot,
fulfills a single pickup or delivery request and then returns to the depot. The
savings algorithm is based on merging pairs of tours into increasingly longer

Tackling a VRP challenge to redistribute scarce equipment within time windows 15

tours. For every merge we determine if the capacity constraint is fulfilled by
iterating through the arcs where each pickup reduces the remaining capacity
and each delivery increases the remaining capacity of the vehicle. Addition-
ally, maximum distance constraints are checked by summing over arc lengths.
If constraints are violated, the savings pair is skipped and the next pair is
considered.

2. A 2-opt heuristic (Croes, 1958) using best improvement where all combinations
of arc pairs are selected and the sub-route between the arcs is reversed. Every
time tours are modified we check for capacity and distance constraints.

3. A 3-opt heuristic (Lin and Kernighan, 1973) using best improvement where all
combinations of arc triplets are selected. As with the 2-opt heuristic, we check
for constraint violations.

4. A best fit decreasing bin packing heuristic (Johnson, 1973; Martello and Toth,
1990) to combine tours into vehicles routes with the goal to reduce the amount
of vehicles in use. When packing tours into routes the capacity constraint is
always fulfilled, as each tour starts and ends at the depot. However, the distance
constraint must still be checked.

Stages 2 – 4 use simple cost estimations with different weight parameters for
tool use, vehicle number and route length. Tools of the same type are assumed
to always be passed on from a customer to the next to minimize the number of
tools required from the depot. Depending on the parameter k and the weights,
the results of the routing algorithm can vary dramatically for a given schedule.
The final version of our solver uses 5 different parameter sets, which put emphasis
on particular aspects of the cost function. During the initial stage of the solver,
we choose the parameter set which gives the best average score of the initial
population.

Post optimization for the routing

Once the genetic algorithm finishes (either due to convergence of the population
or due to reaching the time limit) and a candidate schedule has been found, more
computationally intensive improvement heuristics can be used to further improve
the routes that were determined by the deterministic routing algorithm. Our solver
sets aside 20 per cent of the available runtime for this post optimization stage. We
use Variable Neighborhood Descent (VND) (Hansen and Mladenović, 1999) and
the following neighborhoods:

1. Move Moves a random node (delivery or pickup) to another position and/or
tour and/or vehicle route.

2. Swap Swaps two random nodes from randomly selected tours and vehicles.
3. Tour move Moves a random tour to another vehicle.
4. Tour swap Swaps two random tours from randomly selected vehicles.

The VND terminates after n iterations without improvement in each neighborhood
or until available runtime is reached.

3.2.1 Additional remarks and conclusions

The decomposition approach (i.e. ‘scheduling first, routing second’) was chosen
to simplify the problem and accommodate the genetic algorithm. In particular, it

16 Ahmed Kheiri et al.

naturally leads to an appropriate solution representation of individuals in terms
of schedules. The genetic algorithm proves to be a powerful metaheuristic for a
problem like this, where sub-optimal but feasible solutions can easily be found. The
deterministic routing and schedule evaluation ensures that routing calculations are
not needlessly repeated for identical schedules. This results in a great acceleration
of the evaluation of the later generations. Such optimization is especially important
for the (time) resource restricted challenge. The parameter values that account for
the vastly different costs of each instance and the general parameters of the genetic
algorithm were set in a trial-and-error fashion. In the end, participation in the all-
time-best challenge with strong competition from other teams helped us choose
the particular values used in the solver.

4 Competition results

4.1 All-time-best challenge

Table 2 shows the characteristics of the all-time-best instances and the cost of
best obtained solutions. Instances are named using two numbers with the prefixes
r for requests and d for days. The instances range from 100 to 1000 customers and
from 5 to 30 days. The last number indicates which cost type is set highest, with
1: tool cost followed by vehicle cost, 2: tool cost followed by vehicle day cost, 3:
vehicle cost, 4: vehicle day cost and 5: distance cost. For example, the Instance
VeRoLog r100d5 1 has 100 requests over 5 days, with tools having the highest
cost, and vehicle has the second highest cost. The instances also have between 2
and 5 different tool kinds that have to be distributed.

While team mjg - who won the finals - is frequently at the top of the ranking,
there is an example where this team is outperformed6 by team ADDM, who won
third prize in the finals. This happens, for the problem instance VeRoLog r100d5 4
(see Table 3), consisting of 100 requests and a 5 day planning horizon, where
ADDM and mjg provided the second and third best solution respectively. For the
other instances where mjg did not provide the best solution it provided the second
best solution. It is still possible to upload solutions to the all-time-best challenge.

4.2 Restricted resources challenge

Based on the challenge ranking system, the organizers selected potential finalists,
and verified that their reported results could have realistically been produced
by their submitted algorithms. This was done by running the algorithms on the
same ORTEC-late instances and random seeds. Eventually, three participants were
selected as finalists for the second part of the challenge.

Figures 6 to 10 show the performance variation of all competing methods on
all five versions of VeRoLog late r1000d25 dataset. mjg achieved the best results
in all instances. akhe performs better than ADDM on the first three versions, but
ADDM found slightly better results compared to akhe on the last two versions
(i.e. when vehicle day cost and distance cost are highly penalized, respectively).
The same can be observed with the other instances.

6 At the time of writing this article, after the all-time-best challenge has ended.

Tackling a VRP challenge to redistribute scarce equipment within time windows 17

Table 2: The characteristics of the all-time-best instances and the cost of best
obtained solutions

Instance Customers Tools Capacity Max distance Best solution Obtained by

VeRoLog r100d5 1 100 3 50 20000 1,552,435,049 mjg
VeRoLog r100d5 2 100 2 40 20000 996,709,544 mjg
VeRoLog r100d5 3 100 4 40 20000 119,957,689 mjg
VeRoLog r100d5 4 99 5 30 15000 1,359,088,350 Success
VeRoLog r100d5 5 100 2 45 16000 300,125,049,016 mjg

VeRoLog r100d10 1 100 3 50 16000 1,313,786,538 mjg
VeRoLog r100d10 2 100 5 35 20000 1,555,438,898 mjg
VeRoLog r100d10 3 100 2 40 17000 155,316,178 mjg
VeRoLog r100d10 4 100 4 45 15000 1,114,888,217 Success
VeRoLog r100d10 5 98 3 35 16000 43,871,262,004 Success

VeRoLog r500d15 1 494 4 35 15000 3,256,089,143 mjg
VeRoLog r500d15 2 491 3 35 20000 3,800,352,751 mjg
VeRoLog r500d15 3 490 2 45 15000 402,839,699 mjg
VeRoLog r500d15 4 487 3 35 17000 2,807,990,462 mjg
VeRoLog r500d15 5 488 3 45 15000 251,378,880,010 mjg

VeRoLog r1000d25 1 950 2 45 15000 7,004,087,706 mjg
VeRoLog r1000d25 2 943 4 35 16000 6,486,405,100 mjg
VeRoLog r1000d25 3 944 3 50 17000 207,087,083 mjg
VeRoLog r1000d25 4 949 4 30 17000 5,598,405,178 mjg
VeRoLog r1000d25 5 951 3 50 16000 161,446,120,006 mjg

VeRoLog r1000d30 1 940 5 40 15000 5,220,068,560 mjg
VeRoLog r1000d30 2 942 4 35 15000 5,181,409,255 mjg
VeRoLog r1000d30 3 945 4 40 20000 187,843,389 mjg
VeRoLog r1000d30 4 930 4 40 16000 4,562,837,156 mjg
VeRoLog r1000d30 5 948 3 35 16000 257,497,762,007 mjg

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

mjg
akhe

ADDM
Sunbeams

Success
Tau17

MLS
NSA
AG

Fig. 6: VeRoLog late r1000d25 1

Figure 11 shows the mean rank of the teams that submitted in the restricted
resources challenge (on the so-called “ORTEC late instances”). The figure shows a
large gap between the third and fourth place, which lead to the organizer’s decision
to allow precisely three participants in the finale.

Table 4 shows the characteristics of the hidden instances and the cost of the
current best-known solutions. As before, the last integer in the instance name
denotes the type of most penalized cost as described in 4.1.

Table 5 summarizes the results. We performed Mann-Whitney-Wilcoxon test
(Kruskal, 1957; Fagerland and Sandvik, 2009) with a 95% confidence level to com-
pare pairwise performance variations of two given competing methods statistically.
The following notations are used: Given competing method A1 versus competing
method A2, (i) A1 > (<) A2 denotes that A1 (A2) is better than A2 (A1) and this

18 Ahmed Kheiri et al.

Table 3: The costs of the best five solutions achieved by the competitors and the
date the solutions were submitted during the all-time-best challenge

Instance First Team Second Team Third Team Fourth Team Fifth Team

VeRoLog r100d5 1
Team mjg Success akhe ADDM Sunbeams
Cost 1,552,435,049 1,552,437,090 1,552,472,997 1,552,667,702 1,552,674,956
Date 10/04/2017 12/06/2017 22/03/2017 24/03/2017 13/05/2017

VeRoLog r100d5 2
Team mjg akhe Sunbeams ADDM Success
Cost 996,709,544 997,125,464 997,131,853 997,536,075 997,975,026
Date 17/04/2017 22/03/2017 19/05/2017 24/03/2017 13/03/2017

VeRoLog r100d5 3
Team mjg Success ADDM Sunbeams EquipoMLS
Cost 119,957,689 119,999,604 120,174,619 125,484,960 141,027,538
Date 17/04/2017 15/06/2017 08/03/2017 13/05/2017 30/05/2017

VeRoLog r100d5 4
Team Success ADDM mjg Sunbeams EquipoMLS
Cost 1,359,088,350 1,359,171,004 1,388,155,986 1,506,904,422 1,599,316,230
Date 12/03/2017 10/03/2017 13/04/2017 03/05/2017 30/05/2017

VeRoLog r100d5 5
Team mjg Success ADDM Sunbeams EquipoMLS
Cost 300,125,049,016 302,122,548,017 302,145,047,015 312,987,048,016 324,679,054,017
Date 17/04/2017 15/06/2017 02/03/2017 03/05/2017 26/05/2017

VeRoLog r100d10 1
Team mjg Success Sunbeams ADDM VeRoLog050
Cost 1,313,786,538 1,313,800,238 1,313,843,042 1,383,818,456 1,404,313,470
Date 05/03/2017 17/06/2017 19/05/2017 09/03/2017 03/03/2017

VeRoLog r100d10 2
Team mjg Success Sunbeams VeRoLog050 ADDM
Cost 1,555,438,898 1,555,866,637 1,556,076,294 1,608,781,502 1,616,279,307
Date 14/02/2017 15/04/2017 19/05/2017 02/03/2017 09/03/2017

VeRoLog r100d10 3
Team mjg Success ADDM Sunbeams TeamTau2017
Cost 155,316,178 155,451,452 155,606,071 155,859,870 156,154,622
Date 13/04/2017 30/03/2017 09/03/2017 19/04/2017 02/06/2017

VeRoLog r100d10 4
Team Success mjg ADDM TeamTau2017 goc-ar
Cost 1,114,888,217 1,152,790,895 1,192,096,909 1,350,637,725 1,351,320,617
Date 09/05/2017 28/04/2017 06/03/2017 02/06/2017 09/12/2016

VeRoLog r100d10 5
Team Success mjg ADDM Sunbeams goc-ar
Cost 43,871,262,004 43,901,664,004 45,036,866,004 52,393,174,005 52,474,576,006
Date 23/04/2017 13/04/2017 10/03/2017 28/04/2017 05/12/2016

VeRoLog r500d15 1
Team mjg Sunbeams Success VeRoLog050 ADDM
Cost 3,256,089,143 3,288,333,346 3,346,228,685 3,487,816,461 3,506,242,192
Date 03/05/2017 09/06/2017 20/04/2017 03/03/2017 06/03/2017

VeRoLog r500d15 2
Team mjg Sunbeams Success ADDM VeRoLog050
Cost 3,800,352,751 3,811,482,643 3,888,199,515 3,951,378,786 4,052,471,132
Date 03/05/2017 14/06/2017 13/04/2017 07/03/2017 03/03/2017

VeRoLog r500d15 3
Team mjg ADDM goc-ar Success TeamTau2017
Cost 402,839,699 454,318,339 511,857,243 558,690,479 607,429,601
Date 03/05/2017 07/03/2017 29/12/2016 02/04/2017 02/06/2017

VeRoLog r500d15 4
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 2,807,990,462 2,892,747,784 3,652,534,665 3,732,841,802 4,051,526,171
Date 03/05/2017 02/03/2017 31/12/2016 02/06/2017 01/06/2017

VeRoLog r500d15 5
Team mjg ADDM goc-ar TeamTau2017 VeRoLog050
Cost 251,378,880,010 259,677,305,009 306,490,210,012 312,221,625,011 330,726,465,011
Date 03/05/2017 02/03/2017 17/12/2016 02/06/2017 03/03/2017

VeRoLog r1000d25 1
Team mjg Sunbeams akhe ADDM VeRoLog050
Cost 7,004,087,706 7,166,663,786 7,469,954,246 7,494,227,661 7,546,340,291
Date 03/05/2017 05/06/2017 14/04/2017 12/03/2017 02/03/2017

VeRoLog r1000d25 2
Team mjg Sunbeams NSA ADDM VeRoLog050
Cost 6,486,405,100 6,811,349,274 7,177,503,250 7,229,613,701 7,232,820,503
Date 03/05/2017 05/06/2017 12/05/2017 06/03/2017 02/03/2017

VeRoLog r1000d25 3
Team mjg ADDM goc-ar EquipoMLS TeamTau2017
Cost 207,087,083 239,642,618 246,934,382 298,214,337 308,695,312
Date 03/05/2017 10/03/2017 09/12/2016 03/06/2017 02/06/2017

VeRoLog r1000d25 4
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 5,598,405,178 6,205,511,061 7,553,650,631 8,204,868,671 8,857,593,182
Date 03/05/2017 03/03/2017 09/12/2016 02/06/2017 08/06/2017

VeRoLog r1000d25 5
Team mjg ADDM goc-ar TeamTau2017 EquipoMLS
Cost 161,446,120,006 174,254,946,006 196,592,076,007 218,038,116,009 234,970,338,008
Date 03/05/2017 03/03/2017 09/12/2016 02/06/2017 08/06/2017

VeRoLog r1000d30 1
Team mjg Sunbeams Success ADDM Eva
Cost 5,220,068,560 5,545,670,163 5,572,741,083 5,919,953,818 6,029,750,153
Date 03/05/2017 05/06/2017 14/04/2017 06/03/2017 16/05/2017

VeRoLog r1000d30 2
Team mjg Sunbeams VeRoLog050 Success ADDM
Cost 5,181,409,255 5,363,167,525 5,696,835,520 5,703,651,327 5,736,716,754
Date 03/05/2017 10/06/2017 02/03/2017 13/04/2017 06/03/2017

VeRoLog r1000d30 3
Team mjg ADDM EquipoMLS TeamTau2017 goc-ar
Cost 187,843,389 219,104,500 282,173,474 284,664,999 285,062,660
Date 03/05/2017 12/03/2017 29/04/2017 02/06/2017 05/12/2016

VeRoLog r1000d30 4
Team mjg ADDM goc-ar TeamTau2017 Success
Cost 4,562,837,156 5,139,734,143 6,157,957,481 6,367,255,071 6,644,215,518
Date 03/05/2017 02/03/2017 09/12/2016 02/06/2017 12/06/2017

VeRoLog r1000d30 5
Team mjg ADDM goc-ar Success TeamTau2017
Cost 257,497,762,007 287,103,606,008 353,163,918,012 367,894,412,012 380,128,952,013
Date 03/05/2017 03/03/2017 31/12/2016 12/06/2017 02/06/2017

Tackling a VRP challenge to redistribute scarce equipment within time windows 19

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

mjg
akhe

ADDM
Sunbeams

Success
Tau17

MLS
NSA
AG

Fig. 7: VeRoLog late r1000d25 2

1 1.5 2 2.5 3 3.5

mjg
akhe

ADDM
Sunbeams

Success
Tau17

MLS
NSA
AG

Fig. 8: VeRoLog late r1000d25 3

1 1.5 2 2.5 3 3.5

mjg
akhe

ADDM
Sunbeams

Success
Tau17

MLS
NSA
AG

Fig. 9: VeRoLog late r1000d25 4

performance variance is statistically significant, (ii) A1 ' A2 indicates that there
is no statistically significant difference between A1 and A2.

Overall, it is clear that there is an unambiguous hierarchy: mjg (mean rank
1.02) performs better than akhe (rank 2.16) and akhe performs better than ADDM
(rank 2.82). However, there are some exceptions to this and we focus on some
differences between the second and third place. For the instances of type 4 (highest
cost are of the type vehicle day) and type 5 (highest cost are of the type distance)
the difference in performance between akhe and ADDM is less significant. This
can also be observed in the late instances submitted by the participants. This
suggests that the submitted solvers performed in a stable and consistent manner.

20 Ahmed Kheiri et al.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

mjg
akhe

ADDM
Sunbeams

Success
Tau17

MLS
NSA
AG

Fig. 10: VeRoLog late r1000d25 5

m
jg

A
D

D
M

ak
h
e

S
u
n
B

ea
m

s
S
u
cc

es
s

T
au

17

M
L

S

N
S
A

A
G

1

2

3

4

5

6

7

8

9

1

3.44
3.6

5.32 5.4
5.64 5.76 5.84

8.92

1

3.44
3.6

1

Team

m
ea

n
ra

n
k

Fig. 11: Mean rank per team, as computed according to the challenge rules. These
results are based on the submissions of the restricted resources challenge (late
instances). The leftmost three bars correspond to the teams that reached the
finale.

With regards to instances with high tool cost (represented by type 1 and 2),
akhe performed better than ADDM. One particular characteristic of the challenge
problem is that tool cost can be avoided if tools are not directly delivered to a
customer from the depot but transferred between customers instead. The results
of the late and hidden instances indicate that ADDMs solver prioritizes distance
cost over tool cost and therefore generally performs worse in such cases.

Tackling a VRP challenge to redistribute scarce equipment within time windows 21

Table 4: The characteristics of the hidden instances and the cost of best obtained
solutions

Instance Customers Tools Capacity Max distance Best known

VeRoLog hidden r500d10 1 485 4 50 17000 8365884102
VeRoLog hidden r500d10 2 492 2 35 16000 5770640038
VeRoLog hidden r500d10 3 491 3 40 20000 744495928
VeRoLog hidden r500d10 4 489 5 40 20000 3774764460
VeRoLog hidden r500d10 5 492 3 40 20000 166281961014

VeRoLog hidden r500d15 1 490 4 35 16000 2696765455
VeRoLog hidden r500d15 2 491 3 45 15000 5295158689
VeRoLog hidden r500d15 3 486 5 50 15000 216780767
VeRoLog hidden r500d15 4 492 3 35 17000 2019397633
VeRoLog hidden r500d15 5 493 2 50 16000 153864525012

VeRoLog hidden r1000d20 1 950 4 30 17000 8176085650
VeRoLog hidden r1000d20 2 950 3 50 20000 4487557411
VeRoLog hidden r1000d20 3 942 5 50 16000 452935897
VeRoLog hidden r1000d20 4 946 5 35 16000 1816133429
VeRoLog hidden r1000d20 5 950 3 35 17000 673881241010

VeRoLog hidden r1000d25 1 947 2 40 15000 2476429490
VeRoLog hidden r1000d25 2 961 4 40 16000 5953632945
VeRoLog hidden r1000d25 3 952 4 40 16000 176042639
VeRoLog hidden r1000d25 4 952 2 35 16000 7253854432
VeRoLog hidden r1000d25 5 952 2 45 20000 445754474005

VeRoLog hidden r1500d30 1 1379 4 40 17000 6446878020
VeRoLog hidden r1500d30 2 1372 5 40 16000 6483597038
VeRoLog hidden r1500d30 3 1373 2 45 20000 115134924
VeRoLog hidden r1500d30 4 1374 3 40 16000 10599076534
VeRoLog hidden r1500d30 5 1382 4 50 20000 1138250720007

VeRoLog hidden r1500d40 1 1375 3 40 15000 3598635808
VeRoLog hidden r1500d40 2 1370 5 40 20000 6035110304
VeRoLog hidden r1500d40 3 1367 3 50 16000 253836767
VeRoLog hidden r1500d40 4 1373 4 35 15000 2670813271
VeRoLog hidden r1500d40 5 1385 2 40 15000 1610263788013

VeRoLog hidden r2000d50 1 1785 2 45 16000 5029970838
VeRoLog hidden r2000d50 2 1785 5 30 16000 4290045748
VeRoLog hidden r2000d50 3 1791 5 40 16000 323926260
VeRoLog hidden r2000d50 4 1792 4 35 16000 18321969466
VeRoLog hidden r2000d50 5 1777 4 40 16000 1047956765006

VeRoLog hidden r2000d65 1 1776 2 40 16000 3989738288
VeRoLog hidden r2000d65 2 1773 4 50 16000 2457293730
VeRoLog hidden r2000d65 3 1782 5 40 16000 195384322
VeRoLog hidden r2000d65 4 1767 3 35 17000 15891623281
VeRoLog hidden r2000d65 5 1799 5 45 16000 1370590324007

VeRoLog hidden r2500d70 1 2166 3 45 16000 4751728213
VeRoLog hidden r2500d70 2 2164 5 35 16000 5599542429
VeRoLog hidden r2500d70 3 2181 2 35 15000 354579316
VeRoLog hidden r2500d70 4 2170 4 50 20000 14479189673
VeRoLog hidden r2500d70 5 2140 5 40 17000 1177525804008

VeRoLog hidden r2500d75 1 2160 4 40 15000 5591086150
VeRoLog hidden r2500d75 2 2160 3 35 16000 3520404346
VeRoLog hidden r2500d75 3 2147 5 50 15000 300634318
VeRoLog hidden r2500d75 4 2185 3 45 17000 15283897582
VeRoLog hidden r2500d75 5 2192 2 50 17000 1625596820006

22 Ahmed Kheiri et al.

Table 5: Summary of the competition results (hidden instances)

Instance
ADDM (A) akhe (B) mjg (C)

A vs B A vs C B vs C
Avg. cost Rank Avg. cost Rank Avg. cost Rank

VeRoLog hidden r500d10 1 Infeasible 3 8543852756 2 8365899289 1 < < <
VeRoLog hidden r500d10 2 7301404930 3 5903916399 2 5771493723 1 < < <
VeRoLog hidden r500d10 3 863711081 3 814843760 1 819673854 2 < < '
VeRoLog hidden r500d10 4 4561034407 2 4587216376 3 3799479893 1 ' < <
VeRoLog hidden r500d10 5 1.95044E+11 2 2.20579E+11 3 1.70088E+11 1 ' < <

VeRoLog hidden r500d15 1 3267429112 3 2838813151 2 2697367524 1 < < <
VeRoLog hidden r500d15 2 6264518370 3 5518848425 2 5311310871 1 < < <
VeRoLog hidden r500d15 3 300157427 3 258486750 2 217665073 1 < < <
VeRoLog hidden r500d15 4 2333125167 2 2603742796 3 2071346776 1 > < <
VeRoLog hidden r500d15 5 1.79542E+11 2 1.79855E+11 3 1.55013E+11 1 ' < <

VeRoLog hidden r1500d30 1 7848014014 3 6881717534 2 6467120269 1 < < <
VeRoLog hidden r1500d30 2 7788925107 3 7127091955 2 6489993680 1 < < <
VeRoLog hidden r1500d30 3 131376619 3 127751602 2 115315364 1 ' < <
VeRoLog hidden r1500d30 4 13173341132 3 13166641854 2 10703447930 1 ' < <
VeRoLog hidden r1500d30 5 1.31728E+12 2 1.34828E+12 3 1.15184E+12 1 > < <

VeRoLog hidden r1500d40 1 4320649929 3 3865210740 2 3599106687 1 < < <
VeRoLog hidden r1500d40 2 7316145898 3 6535928682 2 6081597171 1 < < <
VeRoLog hidden r1500d40 3 378641946 3 316000036 2 266249047 1 < < <
VeRoLog hidden r1500d40 4 3568036772 3 3269104825 2 2688601902 1 < < <
VeRoLog hidden r1500d40 5 1.92543E+12 2 2.03423E+12 3 1.62762E+12 1 > < <

VeRoLog hidden r2000d50 1 5810784719 3 5298648594 2 5030224679 1 < < <
VeRoLog hidden r2000d50 2 5328466675 3 4866236414 2 4308682151 1 < < <
VeRoLog hidden r2000d50 3 486474150 3 418201601 2 324847201 1 < < <
VeRoLog hidden r2000d50 4 25001890955 3 23252981136 2 18510562245 1 < < <
VeRoLog hidden r2000d50 5 1.28428E+12 3 1.25324E+12 2 1.05629E+12 1 < < <

VeRoLog hidden r2000d65 1 4810734214 3 4294615936 2 3990007875 1 < < <
VeRoLog hidden r2000d65 2 3083403319 3 2702857405 2 2465266227 1 < < <
VeRoLog hidden r2000d65 3 261437817 3 238093078 2 195919946 1 < < <
VeRoLog hidden r2000d65 4 20897565143 2 21949270729 3 16051327503 1 > < <
VeRoLog hidden r2000d65 5 1.64544E+12 3 1.61752E+12 2 1.38209E+12 1 > < <

VeRoLog hidden r2500d70 1 5923449374 3 5114335854 2 4751953813 1 < < <
VeRoLog hidden r2500d70 2 7171256068 3 6556981185 2 5643936333 1 < < <
VeRoLog hidden r2500d70 3 519502106 3 469897674 2 354745805 1 < < <
VeRoLog hidden r2500d70 4 18895390762 3 18836590052 2 14619186238 1 ' < <
VeRoLog hidden r2500d70 5 1.51888E+12 3 1.4329E+12 2 1.18559E+12 1 < < <

VeRoLog hidden r2500d75 1 6952945996 3 6156231838 2 5597113528 1 < < <
VeRoLog hidden r2500d75 2 4335142495 3 4135070761 2 3556430390 1 < < <
VeRoLog hidden r2500d75 3 428374927 3 383930752 2 301433094 1 < < <
VeRoLog hidden r2500d75 4 20347372369 3 19519419317 2 15493912178 1 < < <
VeRoLog hidden r2500d75 5 2.01467E+12 3 1.9737E+12 2 1.63357E+12 1 < < <

Average ranking 2.82 2.16 1.02

4.3 Convergence comparison

In this section, we compare akhe and ADDM algorithms on all five versions
of VeRoLog late r1000d25 dataset. Our experiments are performed on Intel(R)
Core(TM) i7-6500U CPU with a 2.50GHz, 2.60GHz and 8.00GB of RAM. The
convergence curves of the two algorithms on the selected instances is illustrated in
Figure 12. In all the cases, the hyper-heuristic method (akhe) improves the quality
of the candidate solutions at the beginning of the search process rapidly, and then
the process slows down when reaching the local optimum. The employment of the
sequence-based strategy seems to lead the search to jump from local optima in
some cases (e.g. VeRoLog late r1000d25 5), allowing further improvement to the
quality of the solutions. Note that the plotted objective values for ADDM start
slightly later than akhe. This is due to the initial phase of the solver: before start-
ing the genetic algorithm, the initial population is evaluated using the routing
algorithm with different parameter sets. Each parameter set is geared towards dif-
ferent cost priorities. The parameter set with the best average score is then chosen
for the rest of the evolution. As this takes up some time, the objective value curves
start only once this phase is completed.

Tackling a VRP challenge to redistribute scarce equipment within time windows 23

0 10 20 30

5.5

6

6.5

7

7.5
·109

time [min]

o
b

je
ct

iv
e

akhe

ADDM

(a) VeRoLog late r1000d25 1

0 10 20 30
5

6

7

·109

time [min]

o
b

je
ct

iv
e

akhe

ADDM

(b) VeRoLog late r1000d25 2

0 10 20 30
0.4

0.6

0.8

1

1.2
·109

time [min]

o
b

je
ct

iv
e

akhe

ADDM

(c) VeRoLog late r1000d25 3

0 10 20 30

2

4

6

·109

time [min]

o
b

je
ct

iv
e

akhe

ADDM

(d) VeRoLog late r1000d25 4

0 10 20 30

0.5

1

1.5

·1012

time [min]

o
b

je
ct

iv
e

akhe

ADDM

(e) VeRoLog late r1000d25 5

Fig. 12: Comparison of the convergence profile of akhe and ADDM algorithms on
VeRoLog late r1000d25 dataset

24 Ahmed Kheiri et al.

5 Conclusion

In this paper, two heuristic algorithms were proposed to solve a vehicle routing
problem with inter-route and intra-route challenges. This problem was the topic
of a recent competition, referred to as VeRoLog Solver Challenge 2016 - 2017. It
is based on a real-life problem of a cattle improvement company that combines
routing, scheduling and inventory aspects. Instances differed, apart from size, in
cost penalties, making the problem potentially relevant from a multi-objective
point of view. 28 teams participated worldwide in the all-time-best challenge that
ran for 8 months and 9 teams participated in a restricted resources challenge.

Academic challenges, such as the one described in this paper, have the pleasant
property that algorithms can be compared objectively. Since it is ensured that (1)
all researchers are working on exactly the same, well-defined problem, (2) there
is compensation for run times on different machines, and (3) each algorithm is
applied to many different problem instances.

We described two different solution methods for the problem central to the
challenge: the first method, by team akhe, is based on finding promising combi-
nations of low level heuristics. These heuristics, such as move, swap or reverse,
are combined in sequences that are randomly drawn with probabilities that are
updated in a tuning process that depends on the problem instance. This algorithm
is rather generic, in the sense that applying it to different problems would require
relatively few changes (as long as it is easy to find initial feasible solutions for the
problem).

The second method, by team ADDM, focuses on decomposing the problem.
This means that the algorithm is explicitly tackling the problem of assigning tasks
to days. It spends the first 80% of the computation time on finding good day to
day schedules using a genetic algorithm. The last 20% of time is spent on Variable
Neighborhood Descent in order to improve the routing given a certain day to day
schedule. One might say this approach is intuitive, because the decomposition
explicitly deals with the scheduling and the routing aspects of the problem.

We can observe differences and similarities between the two approaches. Let us
focus on the most obvious difference first: team ADDM decomposed the problem
whereas team akhe did not. While the two approaches appear quite different alto-
gether, we can still find several similarities. First of all, the ‘low level heuristics’ as
mentioned in akhe’s approach overlap with the heuristics used in team ADDM’s
neighborhood search. Furthermore, both teams made use of the fact that initial
feasible solutions were easy to find. Finally, both approaches were randomized and
allowed for trying moves that appeared to be unlikely to improve the solution -
albeit with a smaller probability than those moves that appeared promising.

The ability to compare algorithms objectively makes a challenge a valuable
opportunity to gain insights into state-of-the-art solution techniques. In this paper,
we demonstrated that the two solution approaches - although altogether different -
were both effective in solving the NP-hard optimization problem that underlined
the VeRoLog Solver Challenge 2016 - 2017.

Acknowledgements We express our gratitude to the VeRoLog board as well as the organiz-
ing committee for the VeRoLog Conference that was held in Amsterdam, Netherlands, July
10-12, 2017. The last three authors wish to thank Gerhard Post and Daniël Mocking for co-
organizing the VeRoLog Solver Challenge 2017. Alina G. Dragmir and David Mueller (team

Tackling a VRP challenge to redistribute scarce equipment within time windows 25

ADDM) have achieved their results for the all-time-best challenge using the Vienna Scientific
Cluster. Additionally, Alina G. Dragomir would like to gratefully acknowledge the financial
support by FWF the Austrian Science Fund (Project number P 27858).

Appendix A Challenge rules

We summarize the challenge rules, which were originally published in (Dullaert
et al., 2017). The challenge consisted of three parts, and the first two ran partially
parallel in time.

Appendix A.1 All-time-best challenge

The organizers disclosed 25 instances in December 2016: the “all-time-best in-
stances”. Participants were invited to submit a solution to an instance if it was
better than the best solution submitted so far for this instance. Progress, i.e., the
cost of the best solution over time, was shown to the participants. This informa-
tion is still visible on the website, and it shows that different instances are won by
different participants.

The all-time-best challenge ran till July 2, 2017 and the participants were
rewarded in two ways: for every week during the all-time-best period that their
solution was the best, and additionally for having the best solution at the end of
the challenge. In this part of the challenge, any means, resources and time, were
allowed.

Appendix A.2 Restricted resources challenge

This challenge had a more “traditional” form: the resources were restricted, es-
pecially the computing time. The time Tlimit (seconds) that each algorithm was
allowed to run on the organizers’ single core machine is limited by the formula
Tlimit = 10 + 2|R|. Here |R| is the number of (delivery) requests in the instance.
The organizers provided a calibration tool, so that each participant could estimate
the equivalent time on his or her local machine. In addition, it was not allowed to
use any software that is not freely available for commercial use. In particular, this
means that for example the use of commercial MILP solvers was forbidden. Each
algorithm had to run on a new set of 25 instances (available since April 1 2017).
Furthermore, each solver had to run on each instance, using nine different random
seeds, in order to reduce the variance coming from randomized algorithms. Non
randomized algorithms could also profit from the random seeds: they were known
to be between 108 and 109 with a different starting digit for each seed, and hence
it was possible to detect this and run 9 different deterministic algorithms. The
corresponding results and solver binaries were submitted on May 8, 2017.

The evaluation of algorithms in the restricted resources challenge was done
as follows. A rank score was calculated per instance for each solver. First, per
instance, the two best solutions and the two worst solutions found by the solver
were removed. The remaining five solutions were used to compute the score of the
solver. If these five solutions were all feasible, their average counted as the score
of the solver. Alternatively, if there were infeasible solutions among the middle

26 Ahmed Kheiri et al.

5 solutions, that solver was first ranked with respect to the number of feasible
solutions, and secondary by the average cost of the feasible ones. Finalists were
announced on June 1.

Appendix A.3 The finals

The finalists’ solvers were run by the organizers on a set of 50 not previously
disclosed (the so-called hidden) instances. Again, per solver per instance but equal
for each finalist, nine runs with different random seeds were done, again with nine
different starting digits. A solver ranking per instance was made with the same
rules as above, as well as a ranking of the solvers based on these scores. The winner
of the challenge was the participant whose solver had the lowest mean of the ranks.

References

Ahmed L, Mumford C, Kheiri A (2019) Solving urban transit route design prob-
lem using selection hyper-heuristics. European Journal of Operational Research
274(2):545–559

Asta S, Özcan E (2015) A tensor-based selection hyper-heuristic for cross-domain
heuristic search. Information Sciences 299:412–432

Battarra M, Cordeau JF, Iori M (2014) Pickup-and-delivery problems for goods
transportation. In: Toth P, Vigo D (eds) Vehicle Routing, chap 6, pp 161–191,
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.ch6

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013)
Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society 64(12):1695–1724

Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research 12(4):568–581

Coelho LC, Cordeau JF, Laporte G (2014) Thirty years of inventory routing.
Transportation Science 48(1):1–19

Cordeau JF, Laporte G (2007) The dial-a-ride problem: models and algorithms.
Annals of Operations Research 153(1):29–46

Croes GA (1958) A method for solving traveling-salesman problems. Operations
Research 6(6):791–812

Dethloff J (2001) Vehicle routing and reverse logistics: The vehicle routing problem
with simultaneous delivery and pick-up. OR-Spektrum 23(1):79–96

Dror M, Fortin D, Roucairol C (1998) Redistribution of self-service electric cars:
A case of pickup and delivery. Tech. Rep. RR-3543, INRIA

Dueck G (1993) New optimization heuristics: the great deluge algorithm and the
record-to-record travel. Journal of Computational Physics 104(1):86–92

Dullaert W, Gromicho J, van Hoorn J, Post G, Vigo D (2017) The VeRoLog Solver
Challenge 2016–2017. Journal on Vehicle Routing Algorithms pp 1–3, DOI 10.
1007/s41604-016-0001-7, URL https://doi.org/10.1007/s41604-016-0001-7

Fagerland MW, Sandvik L (2009) The Wilcoxon–Mann–Whitney test under
scrutiny. Statistics in Medicine 28(10):1487–1497

Fishman E (2016) Bikeshare: A review of recent literature. Transport Reviews
36(1):92–113

https://epubs.siam.org/doi/pdf/10.1137/1.9781611973594.ch6
https://doi.org/10.1007/s41604-016-0001-7

Tackling a VRP challenge to redistribute scarce equipment within time windows 27

Gromicho JA, Haneyah S, Kok L (2015) Solving a real-life vrp with inter-route
and intra-route challenges http://dx.doi.org/10.2139/ssrn.2610549

Hansen P, Mladenović N (1999) An introduction to variable neighborhood search.
In: Meta-heuristics, Springer, pp 433–458

Hart E, Ross P, Corne D (2005) Evolutionary scheduling: A review. Genetic Pro-
gramming and Evolvable Machines 6(2):191–220

Jian N, Freund D, Wiberg HM, Henderson SG (2016) Simulation optimization for
a large-scale bike-sharing system. In: Proceedings of the 2016 Winter Simulation
Conference, IEEE Press, Piscataway, NJ, USA, WSC ’16, pp 602–613

Johnson DS (1973) Near-optimal bin packing algorithms. PhD thesis, Mas-
sachusetts Institute of Technology

Kheiri A, Keedwell E (2015) A sequence-based selection hyper-heuristic utilising a
hidden Markov model. In: Proceedings of the 2015 on Genetic and Evolutionary
Computation Conference, GECCO ’15, pp 417–424

Kheiri A, Keedwell E (2017) A hidden markov model approach to the prob-
lem of heuristic selection in hyper-heuristics with a case study in high school
timetabling problems. Evolutionary Computation 25(3):473–501

Kheiri A, Keedwell E, Gibson MJ, Savic D (2015) Sequence analysis-based hyper-
heuristics for water distribution network optimisation. Procedia Engineering
119:1269–1277, computing and Control for the Water Industry (CCWI2015)
Sharing the best practice in water management

Kruskal WH (1957) Historical notes on the Wilcoxon unpaired two-sample test.
Journal of the American Statistical Association 52(279):356–360

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21(2):498–516

Martello S, Toth P (1990) Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics 28(1):59–70

Masson R, Lehuede F, Peton O (2014) The dial-a-ride problem with transfers.
Computers & Operations Research 41:12–23

Min H (1989) The multiple vehicle routing problem with simultaneous delivery
and pick-up points. Transportation Research Part A: General 23(5):377 – 386,
DOI https://doi.org/10.1016/0191-2607(89)90085-X

Montané FAT, Galvão RD (2006) A tabu search algorithm for the vehicle rout-
ing problem with simultaneous pick-up and delivery service. Computers & OR
33:595–619

Parragh S, Doerner K, Hartl R (2008) A survey on pickup and delivery prob-
lems: Part II: Transportation between pickup and delivery locations. Journal fr
Betriebswirtschaft 58:81–117, DOI 10.1007/s11301-008-0036-4

Pfrommer J, Warrington J, Schildbach G, Morari M (2014) Dynamic vehicle re-
distribution and online price incentives in shared mobility systems. IEEE Trans-
actions on Intelligent Transportation Systems 15(4):1567–1578

Rainer-Harbach M, Papazek P, Hu B, Raidl GR (2013) Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf M, Blum
C (eds) Evolutionary Computation in Combinatorial Optimization, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 121–132

Rand GK (2009) The life and times of the savings method for vehicle routing
problems. ORiON 25(2):125–145

Raviv T, Kolka O (2013) Optimal inventory management of a bike-sharing station.
IIE Transactions 45(10):1077–1093

http://dx.doi.org/10.2139/ssrn.2610549

28 Ahmed Kheiri et al.

Schilde M, Doerner K, Hartl R (2011) Metaheuristics for the dynamic stochastic
dial-a-ride problem with expected return transports. Computers & Operations
Research 38(12):1719–1730

Schuijbroek J, Hampshire R, van Hoeve WJ (2017) Inventory rebalancing and ve-
hicle routing in bike sharing systems. European Journal of Operational Research
257(3):992–1004

Sörensen K, Glover FW (2013) Metaheuristics. In: Gass SI, Fu MC (eds) En-
cyclopedia of Operations Research and Management Science, Springer US, pp
960–970

Wall MB (1996) A genetic algorithm for resource-constrained scheduling. PhD
thesis, Massachusetts Institute of Technology

Wilson D, Rodrigues S, Segura C, Loshchilov I, Hutter F, Buenfil GL, Kheiri A,
Keedwell E, Ocampo-Pineda M, Özcan E, Pena SIV, Goldman B, Rionda SB,
Hernandez-Aguirre A, Veeramachaneni K, Cussat-Blanc S (2018) Evolutionary
computation for wind farm layout optimization. Renewable Energy 126:681–691

	Introduction
	Problem description
	Competitors' algorithms
	Competition results
	Conclusion
	Challenge rules

