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A B S T R A C T

Basing informed decisions on available, relevant information is essential in all phases
of drug development. This is particularly true in early phase clinical trials, when our
knowledge about toxicity of a new medicine remains limited. Thus, borrowing of
information across seemingly disparate sources is appealing. Statistical literature has
been written about augmenting a new clinical trial with data from historical studies
designed for similar investigational purpose. But very few has looked into leveraging
preclinical data into phase I first-in-man trials.

The work presented in this thesis attempts to fill the gap by providing solutions
in the Bayesian paradigm, with purposes of improving the design and analysis of
adaptive phase I dose-escalation trials. Specifically, our focus is on the transition step
of early drug development, where phase I clinical trials are preceded only with some
preclinical information. We see preclinical data as a special type of historical data, say,
historical animal data. This is not an obvious application of the existing approaches
for data augmentation, since information collected from preclinical studies first needs
to be translated to account for potential physiological differences between animals
and humans. Furthermore, due to their intrinsic variabilities in drug metabolism,
inconsistency between the translated preclinical and clinical data may still emerge
however careful and correct the interspecies translation would be completed. We note
this thesis will exclusively consider toxicity data, assuming that relationship between
dose and risk of toxicity can be adequately described using a two-parameter logistic
regression model.

Grounded in Bayesian statistics, our idea is to represent preclinical data into a prior
distribution for the dose-toxicity model parameters that underpin the human trial(s).
Our aim is to propose robust Bayesian approaches, keeping in mind the possibility
that toxicity in humans could be very different from what we have learnt in one
or multiple animal species even after appropriate translation. The main challenge in
statistical inferences is essentially to address issues of prior-data conflict emerging in
a small trial.

This thesis consists of two perspectives on the robust use of preclinical animal data.
A “sensible” amount of animal data to be leveraged into the phase I human trial(s)
is determined by either (i) assessing the commensurability of the prior predictions
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of human toxicity, which are obtained using animal data alone, with the observed
toxicity outcomes from the ongoing trial(s), or (ii) fitting a hierarchical model with
weakly informative priors placed on the variance parameters. Correspondingly, we
have proposed a Bayesian decision-theoretic approach in Chapter 2 and a robust
Bayesian hierarchical model in Chapter 3, which build the core of this thesis. We
have also extended the Bayesian hierarchical model to address potential heterogeneity
between patient groups in Chapter 4, where the methodology has been illustrated
in the context of bridging strategies considered in phase I clinical trials planned in
various geographic regions.

Throughout, the proposed Bayesian adaptive methods have been elucidated with
representative data examples and extensive simulations. Particular attention has been
paid to balancing the information from different sources to draw robust inferences.
Numerical results show that our proposals have desired properties. More specifically,
preclinical data can be essentially discounted when they are in fact inconsistent with
the toxicity in humans. In cases of consistency, benefits are seen as increased precision
of estimate of the probability of toxicity at a range of doses, and higher proportion of
patients allocated to the target dose(s).
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1
I N T R O D U C T I O N

1.1 overview of drug development

Bringing a new medicine from laboratory experiments eventually to the market is a
long-term, complex, and costly process. This requires expertise from many fields such
as pharmacology, toxicology, medical science and statistics, for substantial progress
to be made. In essence, drug development is a collection of joint effort whereby a
promising compound is identified based on extensive basic research in biochemistry,
and evaluated in a series of preclinical studies (Rogge and Taft [2016]) and clinical
trials (Chow and Liu [2013]). Particularly, within preclinical settings, in vitro (within
the glass, i.e., in a laboratory environment) and in vivo (within a living organism,
such as animals) studies need to be performed for preliminary characterisation of
toxicity and efficacy profiles, along with the understanding of pharmacokinetics that
describes absorption, distribution, metabolisation and elimination of the drug. Pre-
clinical experimental findings pave the way for further evaluation about safety and
efficacy of the drug in clinical trials, which are generally classified into four successive
phases, say, I, II, III and IV.

When moving to phase I clinical trials, also often termed as first-in-man trials,
safety remains a key priority and special concern. The main focus at this stage is
to figure out whether the new drug is tolerable in humans and, more specifically,
to identify effective yet sufficiently safe dose(s) for evaluation in subsequent studies
(Chevret [2006]). The widely accepted maxim is that all therapeutic agents can be
toxic in overdosage: a drug is claimed to be safe as long as the risk of toxicity is under
a certain tolerance level. With several dose levels given for evaluation, phase I clinical
trials are typically designed to estimate the dose associated with a predefined level of
pharmacokinetic target or toxicity, involving a small number of human subjects, say,
between 20 and 60 healthy volunteers (for relatively non-toxic agents) or patients (for
diseases with high mortality). Phase I clinical trials for anticancer therapies usually
recruit patients who have failed other prior treatments. The target dose is generally
described as the maximum tolerated dose (MTD), defined as a dose that leads to
a maximum of certain percentage, for example, 25%, of patients treated with the
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2 introduction

drug to experience dose-limiting toxicities (DLTs). This particularly makes sense in
the oncology setting, where toxicity and clinical effect are assumed to be positively
associated, and both increase monotonically with the dose levels. Throughout this
thesis, we will discuss drug development in oncology as our main example and use
subsequent chapters to describe the methodology motivated in this setting.

A successful phase I oncology trial will lead to a decisive statement about the
MTD, which is generally thought of as the highest dose that could be recommended
for further evaluations in a subsequent phase II clinical trial (Paoletti and Doussau
[2014]). The main interest then becomes to assess the short-term therapeutic effect
and continue monitoring severe adverse events due to the drug, running the study
on a larger group of patients, most commonly, 100 to 300. If considerable evidence
would show that the pharmaceutical product is safe and efficacious, a confirmatory
phase III clinical trial will be encouraged to take place in several hundred to over one
thousand patients (Friedman et al. [1998]). Of primary interest in phase III trials is
whether the drug provides clinical benefit such as increased survival or symptomatic
improvement, compared with either an active control (current standard treatment)
or placebo, in various clinical settings. With completion of phase I–III trials, findings
will be submitted to a regulatory authority, e.g., Food and Drug Administration in
the US or the European Medicines Agency in Europe, for marketing authorisation of
the drug. A phase IV trial will be launched for post-marketing surveillance on the
long-term safety and efficacy.

Despite of recent innovative proposals about combined phase I/II trials (Zohar
and Chevret [2007]) as well as seamless phase II/III trials (Stallard and Todd [2011]),
preclinical studies and phase I-IV trials are conventionally conducted in isolation.
Moreover, data cumulated from previous studies are very rarely incorporated in a
formal manner for decision making in a new clinical trial. In this thesis, we aim to
bridge this gap by coming up statistical solutions for leveraging external data in a new
clinical trial. Majority of our work is devoted to the transition step from preclinical
to phase I first-in-man studies. Nevertheless, the proposed methods could be seen as
an illustration of what can be achieved in other settings.

1.2 fundamentals of early phase clinical trials

The purpose of early phase clinical trials (here, referred to as exploratory studies)
typically includes characterising the toxicity profile of a new medicine in humans



1.2 fundamentals of early phase clinical trials 3

and establishing effective dosage regimens. In monitoring safety, adverse events will
be recorded and graded according to some severity grading scales of adverse events,
such as the National Cancer Institute Common Terminology Criteria (National Can-
cer Institute [2017]). Although a grade 3 (severe) or higher (life-threatening or fatal)
toxicity is generally described as dose limiting, definition of DLTs can vary from
one study to another; for example prolonged grade 2 toxicities can be considered as
DLTs depending on schedule of drug administration. Furthermore, there is no uni-
formity in the definition of DLTs for molecularly targeted agents, which may display
a very distinct toxicity profile following continuous and prolonged administration
compared with cytotoxic agents (Le Tourneau et al. [2011]; Bautista et al. [2017]). In
order to reach timely decision making in the dose recommendation process, either a
DLT or no DLT will be summarised for each patient by the end of the first treatment
cycle. Care needs to be taken for trials where possibility of late-onset toxicities is an
important concern.

For the simplified scenario with a binary safety endpoint, the MTD can be regarded
as a quantile of a dose-toxicity probability curve. Let Yj be the dichotomous outcome
of a patient, who experiences either a DLT (Yj = 1) or no DLT (Yj = 0) on receiving a
dose dj chosen from a predefined discrete dosing set D = {d1, . . . ,dJ}. We note this is
a tool of convenience, and are aware of situations where continuous doses are used
(Diniz et al. [2017]). Suppose there have been nj patients treated per dose dj. We then
know Yj ∼ Bernoulli(pj), where pj is the probability of toxicity at the dose. It is also
reasonable to consider probabilities of toxicity at different doses are correlated and
can be described using a statistical model ψ(·):

pj = P(Yj = 1|dj) = ψ(dj), for yj = 0, . . . ,nj.

On the termination of a phase I trial, the MTD is declared based on probabilistic
inference about the toxicity rate pj implied by the dose-toxicity model ψ(dj), which
describes the randomness of toxicity outcome after administration of a dose. For a
predefined target level of Γ , the MTD, denoted by dM, can be estimated as

dM = ψ−1(Γ),

where the ψ−1(·) is an inverse of the dose-toxicity model. Indeed, this is regarded
as an estimation problem rather than statistical testing of a hypothesis. Different
models can be considered, depending on many aspects including experiment designs,



4 introduction

knowledge of underlying biological mechanism, and possible stochastic effects such
as random errors and “population” variability. Of note, phase I studies are not limited
to the “first-in-man” trials, but there could be subsequent phase Ib studies to evaluate
new administration schedules or combinations of established agents (Weber et al.
[2015]). We will illustrate the key statistical properties of dose-escalation designs for
phase I oncology trials in Section 1.2.1. For keeping it simple, we will restrict our
focus to first-in-man trials for monotherapy in the following.

1.2.1 Design and analysis of dose-escalation trials

In 2013, the World Medical Association released guidelines on ethical considerations
for medical research involving human subjects (World Medical Association [2013]).
Investigators conducting clinical trials must adhere to the ethical norms, despite that
researcher’ goals may differ from those of patients’. A good experimental design for
phase I clinical trials is one that supports efficient estimation of quantiles of interest
without exposing many patients to doses that are overly toxic. This means random
allocation of patients to doses contained in D = {d1, . . . ,dJ} is unacceptable (or more
accurately, unethical) unless all the doses in set D have been proven to have similar
toxicity profiles and are potentially efficacious to different extent. However, sufficient
toxicity data in humans must be accumulated to verify this presumption which may
not always be true. To facilitate the decision making process with the most up-to-date
knowledge about toxicity, phase I clinical trials are often designed in an adaptive way
with specification of

• a safe starting dose, commonly, the lowest dose d1 ∈ D,

• sequential accrual of patients to be treated in small cohorts until reaching the
maximum sample size,

• criteria for interim dose escalation and de-escalation,

• additional stopping rules.

Issues raised in determining a safe starting dose will be discussed in Section 1.3,
while this section will review several classes of dose-escalation designs developed
assuming doses in D are sensible and the focus is placed on statistical inference for
interim decision making.
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Numerous statistical designs have been proposed since 1990s for phase I dose-
escalation trials in oncology. There are two divergent schools: algorithmic and model-
based methods (Braun [2014]). Although algorithmic methods have been criticised
for allocating too many patients to suboptimal doses and giving inaccurate estimate
of the MTD, dose-escalation procedures in this class remain a prevailing approach
due to the simplicity in logistics for clinical investigators to carry out phase I clinical
trials (Le Tourneau et al. [2009]). A diagram for this type of design, termed as “3 + 3”
design (Storer [1989]), is shown in Figure 1.1. As we can see, decisions on escalation,
termination and declaration of MTD essentially come from data of the latest one or
two cohorts, with each constituted by three patients: data collected from previous
patient cohorts, especially those who have received a different dose, are completely
discarded. This leads to myopic decision making and undesirable under- or over-
estimation of toxicity in humans. As evaluated by Lin and Shih [2001], the probability
of toxicity at the dose declared as MTD does not converge to a fixed target, say,
33% that may be anticipated by trialists in favour of the 3 + 3 design. Modified
algorithmic designs have been proposed in response to the outstanding drawback of
the 3 + 3 design; see, for example, a family of accelerated titration dose-escalation
designs (Simon et al. [1997]), the biased coin designs proposed by Durham et al.
[1997], the group up-and-down designs by Gezmu and Flournoy [2006] and so forth.
Despite of the fact that algorithmic designs are implemented by trialists more often
in practice, they are not the most efficient ones and are criticised for not using the
entire trial history with information that has been collected from all patients treated
so far. As an alternative, model-based procedures can facilitate design adaptations for
protecting the ethics of phase I first-in-man trials (Love et al. [2017]). We will focus
on model-based designs in the following.

In a trial that has evaluated a range of ordered doses, more often than not one
may be interested in the underlying dose-toxicity relationship that can be described
using, for example, a logistic regression model. Decisions can be made based on
the established dose-toxicity model, which is to be updated along with new data
accrued from the ongoing trial. The first model-based design for dose-escalation trials
is the continual reassessment method (CRM), which addresses practical and ethical
concerns in a rigorous mathematical framework (O’Quigley et al. [1990]). Iasonos
et al. [2008, 2012] and Jaki et al. [2013] have commented that the CRM has superior
operating characteristics to the algorithmic 3 + 3 design. The main idea of the CRM is
to sequentially assign incoming patients to a dose, at which the probability of toxicity
is closest to the target level, and to update the dose-toxicity relationship with toxicity
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≥ 2/3 DLTs1/3 DLT0/3 DLT

Enter 3 patients

Enter 3 patients Stop the trialEscalate to j+1

1/6 DLT ≥ 2/6 DLT

Stop the trial, conclude on 
dose j-1 as the MTD

Figure 1.1: Escalation scheme for the traditional 3+3 designs.

outcomes observed from all patients that have been treated so far. As the phase I
trial proceeds, a more accurate estimate about the dose-toxicity relationship will be
obtained. In other words, current knowledge can be sequentially updated as the new
information (here, referred to as the toxicity data from a new patient cohort) comes in.
While frequentist approaches can work for this purpose, we will tackle problems in a
Bayesian paradigm, where the posterior distribution fomulates naturally a recursive
estimator to support a transparent decision making process.

Let x(i) denote the dose chosen from D = {d1, . . . ,dJ} that fulfil certain criteria
to treat patient i, and zi is the binary toxicity outcome observed of this patient. Let
xi = {(x(1), z1), . . . , (x(i), zi)} further be the interim data accumulated before we will
make a dose recommendation for the (i+ 1)th patient. Typically, a simple parametric
mathematical model with a parameter vector θ is assumed. The posterior distribution
of θ is derived using Bayes’ rule that

π(θ|xi) =
f(xi|θ)π(θ)∫
f(xi|θ)π(θ)dθ

, (1.2.1)
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where π(θ) is the prior distribution that summarises our preliminary knowledge
about the dose-toxicity relationship before the phase I trial starts, and f(xi|θ) is the
likelihood function given by

f(xi|θ) =

i∏
t=1

{ψ(x(t); θ)}zt{1−ψ(x(t); θ)}1−zt . (1.2.2)

Here, we have linked doses dj ∈ D with the corresponding toxicity rates using the
assumed mathematical model ψ(dj; θ). Selection of dose to be recommended for the
next patient cohort may rely on a loss function denoted by L(·) that

x(i+ 1) = arg min
dk∈D

L(dk), (1.2.3)

where the loss function can be defined on the scale of probability of toxicity. One
widely applied example is the “patient gain criterion”, which minimises the distance
between the actualised posterior probability of toxicity DLT and the target probability
denoted by Γ :

L(dk) =

∣∣∣∣∫ ψ(dk; θ)π(θ|xi)dθ− Γ
∣∣∣∣ . (1.2.4)

In the field, a number of model-based trial designs, which are conceptually similar,
have been proposed since the CRM. These include the designs of escalation with over-
dose control that adopts an asymmetric loss function to penalise more on overdosing
than underdosing by Babb et al. [1998] and the Bayesian logistic regression methods
that employs decision theory by Whitehead [2006]. In Figure 1.2, we use a diagram to
summarise similarity of the decision making process when applying these Bayesian
model-based methods for design and analysis of phase I dose-escalation trials.

Many nonparametric designs have also been developed over the past decades. The
distinction between this class of phase I trial designs and the model-based designs
described above is that no specific parametric assumptions would be required for
the underlying distribution of the toxicity probability in relation to the doses. In the
literature, Gasparini and Eisele [2000] (with correction in Gasparini and Eisele [2001])
presented curve-free designs, where they place a multi-dimensional prior directly
on the vector of risks of toxicity at all available doses. John et al. [2010] develope a
Bayesian procedure that assumes only monotonicity in the dose-toxicity relationship.
Other well-known nonparametric proposals include the modified toxicity probability
interval (mTPI) method developed by Ji et al. [2010] to recommend a dose based
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Select a dose 
for new patients

Figure 1.2: Escalation scheme for the Bayesian model-based designs.

on unit probability mass, and the Bayesian optimal interval (BOIN) designs by Liu
and Yuan [2015] to minimise the probability of incorrect dose selection in a decision-
making framework. Horton et al. [2017] compare CRM with mTPI and BOIN in an
extensive simulation study, where the evaluation of these methods is undertaken
particularly with respect to percentage of correct selection of the true MTD, allocation
of patients to doses at or close to the true MTD, and an accuracy index. It was found
that CRM outperforms these two alternatives, leading to more efficient and ethical
phase I dose-escalation trials, especially when the dose-toxicity curve is characterised
with many dose levels, say, six to eight dose levels. These methods present fairly
similar behaviours when the number of dose levels for evaluation is decreased.

The operating characteristics of model-based designs and nonparametric designs
are comparably good, unless the underlying parametric assumption is substantially
incorrect. An evaluation of the properties of the model-based designs and the curve-
free designs for phase I dose-escalation trials is presented by Jaki et al. [2013]. We
believe in our context it would be beneficial to assume on the form that the entire
dose-toxicity curve may take, as the functional model holds promise for prediction of
the interpolated and extrapolated data on doses that have not yet been evaluated by
the time. We will therefore be concentrated on the model-based approaches in futher
discussion about our proposals.

While both frequentist (for example, see O’Quigley and Shen [1996]) and Bayesian
model-based approaches to the design and analysis for adaptive phase I clinical trials
exist, the Bayesian paradigm offers possibility to integrate prior information, such as
the preliminary knowledge about the dose-toxicity relationship learned from external
studies. One advantage of increasing the amount of information in a phase I first-
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in-man trial is that more efficient and ethical decisions on dose assignment can be
reached. But this would certainly bear an increased risk of selecting the incorrect dose
as the MTD if the prior turns out to be inconsistent with the data. Before we will look
into adaptive approaches to discounting inconsistent priors, we first describe two
types of prior distributions concerned for dose-toxicity models; specifically, they are
operational priors in Chapter 1.2.2 and informative priors in Chapter 1.2.3.

1.2.2 Operational priors for some parametric dose-toxicity models

Let us start with the power model commonly considered for the CRM. Denoting the
probabilities of toxicity at doses dj ∈ D by pj, we write the

ψ(dj; θ) = (pj)
exp(θ), for j = 1, . . . , J,

where θ is an unknown model parameter. Many authors have chosen to use a normal
prior such as N(0, 1.34) for θ (Cheung [2011]), which suggests that with probability
95%, the exponent exp(θ) would fall within the interval (0.103, 9.668), together with
a set of discrete prior probabilities of toxicity, say, πj to ‘impute’ to the toxicity rates
pj. Given the ordered 0 < π1 < · · · < πJ 6 1, sometimes also termed as ‘skeleton’
probabilities, large variability is permitted for the toxicity rate per dose, and this
mathematical model ψ(dj; θ) thus acccommodates flat to very steep dose-toxicity
curves.

When considering a two-parameter sigmoid model, pj = ψ(dj; θ) could follow a
logistic regression form with model parameters θ = (θ1, θ2):

logit(pj) = log(θ1) + θ2 log(dj), θ1, θ2 > 0,

following the parameterisation in Neuenschwander et al. [2008]. Investigators may
consider a flat improper prior for θ such that the posterior is proportional to the
likelihood. However, this would result in undesirable implications when no DLTs
would be observed from the phase I trial (O’Quigley [2002]). Neuenschwander and
his colleagues propose to first formulate prior information on the scale of pj and
approximate the priors expressed for pj by a bivariate normal prior π0(θ). Specifically,
J minimally informative beta priors Beta(1,a) or Beta(b, 1) with a > 1 or b > 1, will
be specified for pj, with the steps listed as follows.



10 introduction

• Specify two prior quantiles q(ζ) for toxicity rates pj at the lowest and highest
doses, respectively, such that P(pj < q(ζ)) = ζ;

– For example, let q(ζ) = 0.4 and ζ = 0.95 for the lowest dose, which means
for d1, with probability 95% (very likely), the toxicity rate p1 is lower than
40%.

– Likewise, let q(ζ) = 0.2 and ζ = 0.05 for the highest dose, which means for
dJ, with probability 5% (very unlikely), the toxicity rate pJ is lower than
20%.

• Obtain a =
ln(1−ζ)

ln(1−q(ζ)) if q(ζ) 6 ζ, or b =
ln(ζ)

ln(q(ζ)) if q(ζ) > ζ;

– This leads to p1 ∼ Beta(1, 5.864) and pJ ∼ Beta(1.861, 1) in our example for
illustration

• The two prior medians denoted by µ1 and µJ are thus known corresponding to
the obtained beta prior distributions;

• Assume the prior medians µ1, . . . ,µJ to be linear in log(dj) on the logit scale;

• Substitute the q(ζ) with the prior medians and let ζ = 0.5, we can obtain other
beta priors to describe the toxicity rate at any medium doses dj.

Whitehead and Williamson [1998] have a similar proposal on specifying priors on
the scale of toxicity rate. They imagine any relevant external data can be expressed
as information that would have been obtained from a total of six patients to describe
the toxicity rates at the lowest and highest doses. Suppose the prior probability of
toxicity at the lowest dose is thought to be π1 and that at the highest dose is πJ. We
may consider setting p1 ∼ Beta(3×π1, 3× (1−π1)) and pJ ∼ Beta(3×πJ, 3× (1−πJ))

for toxicity rates at these two doses, respectively. The joint prior density of p1 and
pJ can be expressed as joint density of θ1 and θ2. The theory following this pseudo-
observations prior on two doses is mathematically tractable and can be used readily
for implementation with standard statistical software.

1.2.3 Specifying an informative prior using historical data

The operational priors describe above are not specified using historical data. Instead,
they represent opinions directly about the parameter(s) of a new trial, and generally
contain least amount of information to advise on plausible values that the new model
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parameters may take. When there exist sufficient relevant historical data, we may be
able to obtain a more informative prior to fit the Bayesian model. With above the
examples, the prior distributions could be more informative by having historical data
to suggest a small standard deviation in the normal prior for the power parameter, or
specify the beta priors with larger effective sample size. However, the trick is to obtain
correct link between the historical and new trial data. Several statistical approaches
have been proposed to incorporating historical data into a new clinical trial. In the
following, we briefly describe how historical data may be represented in a prior for
the new parameter(s).

Let xE = {x01, x02, . . . , x0M} denote the historical data from M existing studies,
and xN denote the data accumulated from a new trial. With θ0i and θ denoting the
trial-specific parameter(s) to underpin either a historical study or a new clinical trial,
we let L0i(θ0i|x0i) and L(θ|xN) be the likelihood functions correspondingly.

• Pocock’s approach to account for bias
The main idea of the approach proposed by Pocock [1976] is to model the bias
between each historical parameter θ0i and the new trial parameter θ. More,
specifically, a bias parameter is defined as a random variable δi = θ− θ0i, i =
1, . . . ,M and that δi ∼ N(0,σ2δ), where σ2δ (commonly assumed to be known)
suggests the amount of between trial heterogeneity. When the new trial data
become available, the posterior distribution can be given by

πP(θ, δ1, . . . , δM|σ2δ, xE, xN) ∝ L(θ|xN)

(
M∏
i−1

f(δi|0,σ2δ)L0i(θ− δi|x0i)

)
π(θ),

where f(·) is the probability density function of a normal variable, and π(θ) is
an uninformative prior for the new trial parameter(s).

• Power prior and modified power prior
Ibrahim and Chen [2000] propose to raise the likelihood of the historical data
to a power a0i ∈ [0, 1], specific to each historical study, defining that

πPP(θ,a01, . . . ,a0M|γ0, xE) ∝

(
M∏
i−1

L0i(θ|x0i)
a0iπ0(a0i|γ0)

)
π(θ),

where a common set of parameters θ for historical and new trial data has been
assumed, and γ represents the hyperparameters for the discount parameters
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a0i. The authors suggest to place a beta or truncated gamma prior on a0i. With
inclusion of new trial data, the posterior yielded by power prior would be

πPP(θ,a01, . . . ,a0M|γ0, xE, xN) ∝ L(θ|xN)

(
M∏
i−1

L0i(θ|x0i)
a0iπ0(a0i|γ0)

)
π(θ).

Duan et al. [2006] and Neuenschwander et al. [2009] noted the initial version of
the power prior πPP(·) violates the likelihood principle, and proposed adding a
normalising constant C(a0) =

∫
θ

(∏M
i−1L0i(θ|x0i)

a0iπ0(a0i|γ0)
)
π(θ)dθ:

πMPP(θ,a01, . . . ,a0M|γ0, xE) ∝
1

C(a0)

(
M∏
i−1

L0i(θ|x0i)
a0iπ0(a0i|γ0)

)
π(θ),

which is later referred to as the modified power prior.

• Commensurate prior
Hobbs et al. [2011] develop the commensurate prior to parameterise explicitly
on the between-trial heterogeneity for cases where there is only one historical
dataset xE = x01. We will use θ0 to denote the single historical parameter here.
Following the proposal of commensurate prior, θ|θ0,σ ∼ N(θ0,σ2), where the
variance σ2 controls the degree of borrowing across trials. The commensurate
prior is conceptually very similar to Pocock’s approach. A conditional prior for
θ can therefore obtained:

πCP(θ|xE,σ) ∝
∫
θ0

f(θ|θ0,σ)π0(σ)π0(θ0)L0(θ0|xE)dθ0,

where f(·) is the probability density function of a normal variable and π0(σ) is
an uninformative prior placed on σ.

• Meta-analytic approach and the robust version
Neuenschwander et al. [2010] consider to leverage historical data into a new
clinical trial based on Bayesian random-effects meta-analysis, assuming that the
historical parameters θ01, . . . , θ0M are exchangeable with the new parameter θ
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under a normal distribution with unknown mean µ and unknown variance τ.
Formally, we would write, for i = 1, . . . ,M,

X0i|θ0i ∼ N(θ0i, s2i )

θ0i|µ, τ ∼ N(µ, τ),

µ ∼ π1(µ),

τ ∼ π2(τ),

where X0i denote the outcome of interest in the historical dataset x01 and s2i are
known variances for the normally distributed historical estimates. Furthermore,
for the new trial parameter, we assume

θ|µ, τ ∼ N(µ, τ).

When xN become available, the meta-analytic posterior is given by

πMA(θ|µ, τ, xE, xN) ∝ L(θ|xN)

(
M∏
i=1

f(θ0i|µ, τ)L0i(X0i|x0i)

)
π(µ)π(τ).

Schmidli et al. [2014] propose a robust version of the meta-analytic prior by
including a weakly informative prior πR

0 to account for probability of non-
exchangeability:

πRMA(θ|µ, τ, xE) = w× πMA(θ|µ, τ, xE) + (1−w)× πR
0 ,

where w is the prior probability that the new trial parameter θ is exchangeable
with its historical counterpart, θ01, . . . , θ0M.

1.3 using preclinical animal data : challenges and opportunities

There are strong scientific and ethical arguments for preliminarily characterising the
toxicity profile of a new compound in animals before it will be evaluated in human
subjects. A typical preclinical development plan often consists of (i) in vitro assays
for the identification of an active chemical compound, (ii) in vivo studies to assess
potential antitumor activity; (iii) toxicology studies to characterise toxicity in animals
of at least two species, say, one rodent and the other non-rodent, and (iv) pharma-
cological studies to elucidate mechanism of the drug action. By definition, (iii) and
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(iv) are in vivo laboratory animal testing. Both can help extrapolate doses, especially
a safe starting dose, for further evaluation of the drug in a first-in-man trial. These
two types of preclinical research are of the most interest in the present thesis topic.

Ideally, preclinical data collected from well-planned animal studies will be used for
predicting a therapeutic range to focus on in the subsequent clinical testing, wishing
that the first tests of drug in humans can be reasonably safe. Several guidelines and
points-to-consider documentations have been issued by regulatory agencies to state
the importance of preclinical safety evaluation to support clinical drug development
(EMA [2005a, 2009, 2011]; FDA [2013]). We give an overview about how preclinical
animal data are used in early drug development in Chapter 1.3.2, and discuss what
could be possibly achieved beyond this in Chapter 1.3.3.

1.3.1 Considerations of animal data for extrapolation

Recent reports (Roberts et al. [2002]; Hackam and Redelmeier [2006]; Hirst et al.
[2015]; Macleod et al. [2015]) have called into questions on the reproducibility and
translatability of preclinical animal studies. One set of criticism surrounds the need to
improve experimental design, conduct and statistical analysis of preclinical research.
Editorial Office of the British Journal of Pharmacology established new guidance
(Curtis et al. [2015]), where a number of important issues relating to the planning
and reporting of animal experiments have been highlighted. The most fundamental
consideration may be the sample size, i.e., number of animals, required to provide
adequate amount of information about the safety and efficacy of the drug. Power
analysis (Festing and Altman [2002]) is favoured as a scientific approach for sample
size calculation. This would require the investigators to assume a desired effect size
and standard deviation, together with a nominal α level of significance and the power
1− β of a specified statistical test, which depends on the objectives of the study in
question. For instance, in a screening experiment that aims to declare superiority of
an active dose versus placebo or a very low dose in terms of the response rates, a chi-
squared statistic or Fisher’s exact test may be suggested; when multiple treatment
groups are involved, it would require tests for the linear trend that can be based on
large-sample chi-square statistic or on exact permutation tests. In practice, logistical
and budgetary constraints also serves to limit the size of animal experiments.

A second fundamental aspect is the allocation of available animals to various
groups of interest in possibly the best way. Investigators could assign animals to each
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dose group equally, which may probably work for most cases. But such balanced
allocation might not be the most optimal strategy. Relating to the allocation, a vital
concern is proper randomisation, which permits fair and valid statistical inferences to
be based on the probability of any observed effects owing to chance alone. To draw
a conclusion that any observed differences between groups of comparison are due
to the treatments themselves rather than to other intrinsic between-group variability,
additional assumptions may be required for animal experiments without randomisa-
tion. For example, bias would be introduced if animals allocated to one group are
more likely to develop tumours than those in another group, but randomisation of
animals to each group can protect against such bias. Bias could also be induced on
a consciousness level, say, the observer bias, when conducting an animal experiment,
which can be coped with by proper blinding.

A recent review of 2 000 published preclinical research showed that these important
statistical design aspects have received very scant attention (Macleod et al. [2015]).
The Editorial Office of the British Journal of Pharmacology has recently established a
new guidance setting up the standard for animal experimental design, analysis and
reporting (Curtis et al. [2015]). Hooijmans et al. [2018] presented a GRADE (Grading
of Recommendations, Assessment, Development, and Evaluation) approach to rate
the certainty in the preclinical evidence that can be used to inform decisions to be
made during a clinical research in humans. The GRADE framework has particularly
valued the specification of patient relevant outcomes, study limitations, risk of bias,
and precision of results (Balshem et al. [2011]; Guyatt et al. [2011c,a,b]). In chapters
where we will describe our proposals, we assume the preclinical animal data have
been carefully selected regarding the quality and reliability.

In practice, the most common scenario for preclinical animal studies remains to
be a comparison between groups (usually less than three) for assessing potential
differences in toxicity or effect of a medicine on a qualitative basis. Sophisticated
animal studies describing the characteristics of a dose-toxicity curve, or even more
specific, a dose-exposure-toxicity curve, in quantitative terms are encouraged to be
established.

1.3.2 Establishing a safe starting dose

It is crucial to the success of a first-in-man trial that a safe but sensible starting dose
can be determined from a preclinical package. Starting with a high dose can result
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in immediate toxicity and early termination of a phase I trial, while a too low dose
would add unnecessary extra testing and also incur ethical concerns that patients may
be treated with sub-optimal doses. FDA draft guideline Estimating the Maximum Safe
Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers advised
on a stepwise algorithm of using preclinical toxicology data to establish a safe starting
dose in first-in-man trials USFDA [2005]. Considerations include selection of the most
appropriate animal species, determination of the no observed adverse effect levels
(NOAELs) in the tested animal species, conversion of NOAELs to human equivalent
doses (HED), and application of a safety factor.

However, there is no “one size fits all” approach to select the most relevant animal
species. Rather, it must be tailored to the specific investigational agent and mean-
time requires the input of subject-matter experts such as translational scientists or
pharmacologists. A particular species is claimed to be appropriate if it provides good
predictability of human toxicity risk, rather than being the most sensitive animal
species to the drug. One necessary but not sufficient condition of achieving satis-
factory predictability is that the DLTs of a given drug in animals are consistent with
those expected in humans. Any preclinical data on the DLTs specific only to the tested
animal species but not to humans should be discarded, as they are of limited value for
human toxicity risk assessment. In situations when all tested animal species predict
comparably similar toxicity in humans or when no further information is available
to aid the selection of animal species, the most sensitive species may be selected to
gauge a most conservative starting dose in human trials.

After preclinical data from the most relevant animal species are made available, a
NOAEL (usually reported in mg/kg) can be determined for each animal study. Such
NOAELs refers to the highest dose level that does not produce significant side effects
compared with the control group. These will then be converted to HEDs: animal
doses are assumed to be scaled well between species when they are normalised to
body surface area. Following the FDA guideline, we have

HED (in mg/kg) = animal dose (in mg/kg)× (BW/BSA)Animal

(BW/BSA)Human
,

where BW denotes the body weight (in kg) and BSA is the body surface area mea-
sured in square metres; see Sharma and McNeill Sharma and McNeill [2009] for
further details and principles of allometric scaling of doses across species. A safety
factor is recommended to be applied to the calculated HED from the most relevant
animal species. This is deemed to provide a marging of safety to address additional
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variability between animal species and humans, avoiding overly toxic initial clinical
dose.

1.3.3 Incorporating the whole toxicity profile

Current approaches to using preclinical animal data culminate in a safe starting dose
for a phase I first-in-man trial. This underutilises the toxicity data accumulated from
the animal studies. We see preclinical animal data as a special type of historical data
for a phase I clinical trial designed to evaluate the same drug in human subjects. A
neat way to incorporate the whole toxicity profile characterising the animal data is
indeed to summarise such information with a dose-toxicity model parameter (vector),
say, θA. Likewise, we would have a separate dose-toxicity model parameter (vector)
to underpin the phase I human trial, denoted by θH. We have briefly reviewed several
existing statistical approaches in Chapter 1.2.3 to associating the new trial parameter
with historical parameters. However, since the dose-toxicity curves learnt from animal
studies may be defined in a dose region that is completely inapproapriate for humans,
it is not suitable to substitute the historical parameters in Chapter 1.2.3 with θA.

This motivates our investigation of the feasibility of Bayesian adaptive methods
for leveraging animal data on toxicity into phase I clinical trials. Challenges mainly
include how to proper address the (i) uncertainty that surrounds the current practice
in translating animal data to an equivalent human dosing scale, and (ii) possibility
that inconsistency between preclinical and clinical data could occur even after very
careful selection of animal data and correct interspecies translation.

1.4 thesis organisation

The remainder of the thesis evolves as follows. In Chapter 2, we propose a Bayesian
decision-theoretic approach to adaptively incorporiate preclinical animal data, which
are captured as an informative component of a mixture prior for the dose-toxicity
parameters that underpin the phase I first-in-man trial. Particularly, we assess the
prior mixture weight allocated to the preclinical data prior dynamically as the trial
progresses, based on how commensurate the prior predictions of human responses
would be with the actual observations. Such prior predictions are optimal in the sense
of maximising the prior expected utility, by assigning correct predictions a utility of 1,
incorrect predictions a utility of 0, or a utility between 0 and 1, depending on whether
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animal data underestimate, or overestimate, the toxicity in humans. The attained
predictive utility of the preclinical data, expressed as a fraction of the maximum
utility achieved when all observations are correctly predicted, is then used to quantify
the prior mixture weight when determining the dose to be recommended for the next
patient cohort.

In Chapter 3, we propose a Bayesian hierarchical model to synthesise animal and
human toxicity data, using scaling factors to translate the animal doses administered
to different species onto an equivalent human dosing scale. Parameters of logistic
models for the dose-toxicity relationship in any tested animal species and humans
can therefore be interpreted on a common scale. Prior distributions are specified to
describe uncertainty about the magnitude of the translation factor appropriate for
each species. Within an animal species, the study-specific dose-toxicity parameters
are assumed to be exchangeable. Furthermore, the population parameters specific to
each animal species, which have also been expressed on the common scale, say, the
human-equivalent scale, are assumed to be exchangeable and thus can be modelled
with a “supra-species” random-effects distribution to allow for increased borrowing
of information between animal species. Finally, robust borrowing of information from
animals to humans is permitted by modelling the parameters of a future phase I first-
in-man trial as exchangeable with those standardised animal parameters: for each
animal species, a prior mixture weight is defined representing our prior scepticism
about the plausibility of an exchangeability assumption, while the option of non-
exchangeability with animals is also considered. In this way, information is borrowed
only from the most relevant animal species.

In Chapter 4, we generalise the methodology proposed in Chapter 3 to supplement
phase I dose-escalation trials with co-data, which comprise (i) preclinical animal data
from multiple species and (ii) toxicity data from, either completed or ongoing, phase
I clinical trials that recruit and treat patients in other geographic regions. We reserve
translation parameters in our Bayesian hierarchical model to address the intrinsic
differences in toxicity of the drug between animals and humans, and the potential
variability across various human subgroups, arising due to differences in genetics,
metabolism or factors relating to diet and environment exposure. The human study-
specific parameters are then assumed to be drawn from a common exchangeability
distribution, where the means are determined by the animal data and the unknown
covariance matrix pertinent would explain the extrinsic heterogeneity between the
patient ethnic subgroups. Moreover, we permit the possibility of non-exchangeability
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for each dose-toxicity parameter vector that underpins a phase I clinical trial, to avoid
excessive shrinkage for an extreme stratum.

All the Bayesian models newly proposed in this thesis are fitted using Markov
chain Monte Carlo and can be implemented with software such as OpenBUGS. We
provide an example OpenBUGS code for each of our models in the technical notes
for each chapter. Numerical results presented in this thesis have been generated from
R software (version 3.4.4) (R Core Team [2017]) using the package R2OpenBUGS
(Thomas [2017]) based on two parallel chains, with each contributing 15 000 MCMC
samples and sacrificing the first 5 000 iterations as burn-in. This thesis is closed by a
discussion of impact of our research work as well as any limitations of the method-
ologies, and a brief proposal for future research work.





2
A B AY E S I A N D E C I S I O N - T H E O R E T I C A P P R O A C H T O U S I N G
P R E C L I N I C A L I N F O R M AT I O N

Summary. Leveraging animal data for a phase I first-in-man trial is appealing yet
challenging. A prior based on preclinical information may place large probability
mass on values of the dose-toxicity model parameter(s), which appear infeasible in
light of data accrued from the ongoing phase I clinical trial. In this paper, we seek to
leverage preclinical information to improve decision making in a model-based phase
I dose-escalation procedure in oncology. Animal data are incorporated via a robust
mixture prior for the parameters of the dose-toxicity relationship. This prior changes
dynamically as the trial progresses. After completion of treatment for each cohort, the
weight allocated to the informative component based on animal data is updated using
a decision-theoretic approach to assess the commensurability of the animal data with
the human toxicity data observed thus far. Specifically, we measure commensurability
as a function of the utility of optimal predictions, obtained based on animal data
alone, for the human responses on each administered dose. The proposed approach
is illustrated through several examples and an extensive simulation study. Results
show that our proposal can address difficulties in coping with prior-data conflict
commencing in sequential trials with a small sample size.

Keywords: Bayesian logistic regression; Decision theory; Phase I dose-finding; Prior-
data conflict.

2.1 introduction

Phase I oncology trials are performed to characterise the toxicity profile of an anti-
cancer therapy in humans. Regulatory authorities require these first-in-man trials to
be preceded with preclinical testing of a range of doses involving at least two animal
species; moreover, extrapolation of safe doses for a human trial should be based on
nonclinical safety studies in the most sensitive and relevant animal species (USFDA
[2005]; EMA [2008]). We can therefore reasonably well anticipate some animal data
will be made available as preliminary knowledge about toxicity in humans before a

21
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phase I clinical trial to be undertaken. Nonetheless, trialists often face the dilemma of
using preclinical animal data. On the one hand, there has been a call to design more
ethical and efficient phase I clinical trials, basing decision making on all relevant
information (O’Quigley et al. [1990]; Neuenschwander et al. [2016a]). On the other
hand, using animal data that are inconsistent to the human toxicity could seriously
jeopardise the safety of patients to be treated in the phase I clinical trial if failing
to disprove the presumption of predictability (Stephen et al. [2007]; Dresser [2009];
Balkwill et al. [2011]). This motivates an investigation of the feasibility of leveraging
preclinical animal data into a phase I first-in-man trial.

We see this research question as falling within discussions of the literature on the
use of historical data, which could be acquired from external studies under similar
circumstances, in a new clinical trial. To date, a number of adaptive methods have
been proposed such as power priors (Ibrahim and Chen [2000]; Duan et al. [2006])
and meta-analytic approaches (Neuenschwander et al. [2010]). A primary focus of
these methods is on discounting historical data to a proper extent in response to the
degree of inconsistency with the newly accrued trial data. In particular, power priors
offer a solution of down-weighting external data by raising the historical likelihood to
either a fixed or random exponent defined on the interval [0, 1]. Whilst meta-analytic
approaches are concerned with between-study heterogeneity that model parameters
underpinning the historical trials and that of a new clinical trial are assumed to be
conditionally i.i.d. random variables. Historical data are tenuated by large values
of the variance that describes parameters which underpin both the historical and
new trials. Sophisticated modifications to these methodologies have been proposed.
Hobbs et al. [2011, 2012] suggest to explicitly parameterise the commensurability of
historical and new data such that a commensurate prior will strongly shrink the new
parameter(s) towards the historical parameters when the evidence tends to suggest
commensurability. Schmidli et al. [2014] and Neuenschwander et al. [2016a,b]) dis-
cuss robust borrowing of information from historical datasets by adopting a mixture
prior, which consists of an informative meta-analytic prior and a weakly informative
prior, to accommodate scenarios of non-exchangeability of the parameters.

What causes concern in this work is the possibility of erroneous prediction about
the human toxicity based upon animal data alone that a dose is safe to administer.
Conclusions drawn from preclinical experiments must come along the acknowledged
levels of uncertainty. One particular issue encompassing our research question is that
preclinical data first need to be translated onto an equivalent human dosing scale.
Current practice uses allometric scaling to convert animal doses onto an equivalent
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human dosing scale through a fixed constant specific to each tested animal species,
which is applied to adjust for differences in size (USFDA [2005]). This has incurred
controversy, as simple allometry can produce very inaccurate predictions (Sharma
and McNeill [2009]). Moreover, despite the best efforts devoted for a very accurate
translation across species, conflicts between preclinical and clinical data may still
arise due to the intrinsic physiological differences. A plausible solution seems to
be formulating a dynamic prior for the human dose-toxicity parameters using the
translated animal data, wishing that a flexible down-weighting of animal data, when
inconsistent, can be achieved at any stage in an adaptive phase I clinical trial.

In this chapter, we seek to quantify the commensurability of preclinical data with
the accumulating human toxicity data using Bayesian decision theory, which has
been widely used for clinical trial designs (Brunier and Whitehead [1994]; Muller
et al. [2006]; Mandrekar and Sargent [2009]; Saville et al. [2014]). Our context seems
to be an ideal setup to apply Bayesian decision methods because investigators are
to make a decision, whether or not to incorporate animal data, and the loss has
to be set against the risk that more patients may be treated with excessively toxic
doses when prior-data conflict commences. We therefore propose a Bayesian decision-
theoretic framework to justify adaptive borrowing of preclinical data in an ongoing
phase I dose-escalation trial. A set of possible utility functions are specified. Namely,
correct prior predictions, made based on animal data alone, will be assigned with a
utility value of 1, whilst incorrect prior predictions are penalised with a small utility
value. Predictive utility of animal data is then computed across doses of interest after
observing patients’ outcomes to validate such prior predictions.

The remainder of the chapter is structured as follows. We begin with a motivating
example in Section 2.2, and explain how preclinical animal data available on two
doses can be represented in a bivariate normal prior for the dose-toxicity parameters
of the human trial in Section 2.3. In Section 2.4, we propose a Bayesian decision-
theoretic method to adaptively leverage animal data according to a formal assessment
of commensurability. We then retrospectively design and analyse the example trial
applying the proposed methodology in Section 2.5, and describe a simulation study
performed to evaluate the operating characteristics in Section 2.6. Specific focus is
to see whether the proposed methodology is responsive to a prior-data conflict in
small trials. We close with a discussion of our findings and future research interest
in Section 2.7.
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2.2 motivating example

A phase I first-in-man trial of the anticancer therapy AUY922 was performed in 101

patients with the aim of estimating the maximum tolerated dose (MTD) (Sessa et al.
[2013]). A set containing nine doses were available for evaluation, D = { 2, 4, 8, 16,
22, 28, 40, 54, 70} mg/m2. This original dose-escalation trial was conducted with a
Bayesian logistic regression model, treating patients sequentially in cohorts of size
three (Neuenschwander et al. [2008]). A weakly informative prior (Gelman et al.
[2008]) was formulated in light of preclinical data from dog studies, of which the
median probabilities of DLTs are about 0.1% and 33% at the doses 2 and 28 mg/m2,
respectively. Fairly limited external information was incorporated such that Bayesian
inference will be dominated by the accumulating data from the current trial. We will
term such type as "operational priors" hereafter, since they are generally calibrated to
ensure that the dose-escalation procedure has acceptable operating characteristics. A
dose were to be chosen for the next cohort according to a prespecified probabilistic
overdose criterion that

d
(h)
sel = max{di : P(pi > 0.33|x

(h−1)
H ) 6 0.25}. (2.2.1)

In order to preclude too fast escalation, an additional constraint was imposed that
the recommended dose should not exceed a maximum of two-fold increase in the
current dose.

This example prompts the following questions: (i) How can we develop a formal
approach to incorporate animal data into prior distributions for dose-toxicity model
parameters; (ii) How can we dynamically update our prior in response to observed
prior-data conflicts, particularly in the early stages of a sequential dose-escalation
study when there is much uncertainty. These questions will be taken to motivate the
methodology developed in Sections 2.3 and 2.4, to which solutions will be given in
Section 2.5 applying the proposed approach.

2.3 representing animal data into a prior

In this section, we first formally describe a logistic dose-toxicity model that will be
considered to guide the Bayesian dose-escalation procedure, and discuss obtaining
an informative prior distribution based on available preclinical data on two animal
doses.
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Let the set D = {d1, . . . ,dI;dt1 < dt2 for 1 6 t1 < t2 6 I} contain all doses available
for evaluation. Furthermore, let ni and ri denote the number of patients who receive
dose di ∈ D and the number of those who experience a DLT, respectively. We assume
that the risk of a DLT on dose di, denoted by pi, increases monotonically with dose
and that this relationship can be adequately described using a two-parameter logistic
regression model:

ri|pi,ni ∼ Binomial(pi,ni), for i = 1, . . . , I,

logit(pi) = θ1 + exp(θ2) log(di/dRef),
(2.3.1)

where dRef is a predefined reference dose drawn from D. Therefore, θ1 is the log-
odds of toxicity at dRef. Estimating the model parameters θ = (θ1, θ2) to perform
probabilistic inference about pi is centre of main interests.

In the Bayesian paradigm, preclinical data, when relevant, can be incorporated into
the prior distribution for the model parameters θ, and later updated with the toxicity
data from an ongoing phase I human trial. Let xA = {dAj; tj, vj, j = 0,−1,−2, . . . }
denote the animal data that comprise information of binary toxicity outcomes on
animal doses dAj recorded on the original (untranslated) scale: amongst all animal
subjects receiving dose dAj, tj experience a toxicity and vj did not. The minimum
requirement is that animal data must involve at least two doses and some toxicities
must have been observed on the highest dose. We translate the animal doses onto an
equivalent human dosing scale by applying, for example, allometric scaling on the
basis of body surface area (USFDA [2005]). Thus, we deduce that the risk of a DLT
in animals on dose dA−1 is thought to be similar to the risk of a DLT for humans
given dose d−1. Similarly, animal dose dA0 is translated to a human equivalent dose
of d0. We note that the pseudo doses d−1 and d0, expressed on the equivalent human
dosing scale, are not necessarily contained in the set D. On the basis of the animal
data and this interspecies translation, we stipulate independent priors pj ∼ Beta(tj, vj)
to describe preliminary knowledge about the risks of toxicity at doses dj (Whitehead
and Williamson [1998]). According to these priors, the translated preclinical data
on doses dAj are taken to represent observations on (tj + vj) patients on dose dj,
j = −1, 0.

Given the independent Beta priors on p−1 and p0, we apply the Jacobian transfor-
mation to derive the joint probability density of pi, risk of DLT at a dose di ∈ D,
where i = −1, 0, and θ2, which is given as:
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gi(pi, θ2) =
1

pi(1− pi)
exp(θ2)

∣∣∣∣log
(
d−1
d0

)∣∣∣∣× 0∏
j=−1

[1+ exp(−zji)]−tj [1+ exp(zji)]−vj

B(tj, vj)
,

(2.3.2)
where zji = logit(pi) + exp(θ2) log(dj/dRef), j = −1, 0, and B(a,b) in the denomi-
nator is the Beta function evaluated at (a,b). We give details on deriving (2.3.2) in
the technical notes of this chapter, i.e., Section 2.8.1. The prior distribution of pi is
obtained as:

fi(pi) =

∫+∞
−∞ gi(pi, θ2)dθ2, (2.3.3)

and the prior cumulative distribution function for pi is given as

Fi(x) =

∫x
0

fi(pi)dpi =
∫x
0

∫∞
−∞ gi(pi, θ2)dθ2dpi, 0 < x 6 1. (2.3.4)

Note that such I prior distributions of pi can be approximated by a bivariate normal
prior for the model parameters θ, by taking the steps stipulated for optimisation
as follows. The general idea that one may approximate prior information on the
scale of toxicity risks using a prior for dose-toxicity parameters θ was first due to
Neuenschwander et al. [2008].

(i) For each dose di, the prior for risk of toxicity can be summarised using K

percentiles:

qik = {q(ti1), . . . ,q(tiK)}, i = 1, . . . , I, k = 1, . . . ,K.

In particular, the (100tik)th percentiles of the distribution, denoted by q(tik),
can be given by

tik = Pi(pi 6 q(tik)) =
∫q(tik)
0

∫∞
−∞ gi(pi, θ2)dθ2dpi.

Thus with any target 0 < tik < 1, we may calculate the percentile as

q(tik) = inf{q(tik) ∈ (0, 1) : tik 6 Pi(pi 6 q(tik))}.

(ii) A bivariate normal prior for θ is found such that the implied percentiles, de-
noted by q ′ik, is in good agreement with qik. This is an optimisation problem as
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we aim to minimise the absolute distance between two sets of I×K percentiles,
defined as

δ(qik − q
′
ik) =

∑
i,k

|qik − q
′
ik|, i = 1, . . . , I, k = 1, . . . ,K.

We note that three (or more) percentiles of distribution for pi per dose would
be needed for a good approximation. In our illustrative examples, we would
consider using the median and the limits of 95% credible interval, i.e., qik =

{q(0.025),q(0.500),q(0.975)}.

We represent the preclinical information on potential dose-toxicity relationship in
humans by a bivariate normal prior for θ, which we hereafter refer to as π0(θ|xA).
We would like to add one more note here that the least requirement for leveraging
preclinical information is to have animal data on two doses. However, if we had
animal data on more than two doses tested in the same preclinical study, we would
derive independent beta priors for the probability of toxicity on each tested animal
doses, calculate the quantiles of these beta priors, and then approximate them with a
bivariate normal prior following the steps developed above. This π0(θ|xA) can then
be used as the prior distribution which may be updated through the Bayes’ Theorem,
as new human data will accumulate in the phase I trial. However, it is possible that
the accumulating human toxicity data may conflict with the prior obtained from
animal data.

Figure 2.1 illustrates four possible ways in which preclinical data may conflict with
the true (unknown) dose-toxicity relationship in humans. Particularly, preclinical data
can constantly (A) over-predict, or (B) under-predict the human DLT risks, or a mix-
ture of (A) and (B) as shown in the panels (C) and (D), across the therapeutic dosing
interval where doses have a risk close to the typical target level Γ of 0.25. We want
to leverage the preclinical data to inform inferences about θ only if strong evidence
shows consistency in toxicity between animals and humans. Another concern is that
the consequence of a prior-data conflict in one direction shown in Figure 2.1A may
be quite different to that of a conflict in a reversed direction presented in Figure 2.1B.
We thus wish to make decisions on using preclinical information informed by the
learning about unknown type of prior-data conflict during the course of an adaptive
phase I clinical trial.

For a robust borrowing of information, a mixture prior coupling the informative
component, π0(θ|xA) in our case, with a weakly informative component, denoted by
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Animal priors Human toxicity

C. Animal data suggest a shallow dose−toxicity curve D. Animal data suggest a steep dose−toxicity curve

A. Animal data consistently over−predict human risk B. Animal data consistently under−predict human risk
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Figure 2.1: Potential commensurability issues for incorporating preclinical information into phase I first-in-man trials.
On each dose, the blue point represents the prior median and the endpoints of the bar represent the 95%
credible intervals for the risk of DLT, while the orange point suggests the true risk of DLT in humans.

m0(θ), is generally adopted to cope with prior-data conflict issues; see Schmidli et al.
[2014]; Wadsworth et al. [2018]; Gamalo-Siebers et al. [2017] for example. Denoting
the prior weight attributed to the informative component by w, a mixture prior can
be written as

µ0(θ|xA) = w · π0(θ|xA) + (1−w) ·m0(θ). (2.3.5)

Here, a weakly informative m0(θ) for routine applied use can be defined to place
large probability mass on plausible values of the model parameters. In the motivating
example presented in Section 2.2, the original trial was conducted by having m0(θ)
alone. With a dose-toxicity model in the form of (2.3.1), specification of m0(θ) is
straightforward:

• set dRef as a dose chosen from D that is most likely to be associated with risk of
toxicity at the target level Γ ∈ (0, 1);

• calibrate a normal prior for θ1 so that the prior median equal to the target
level Γ and the 95% prior credible interval for the risk of toxicity at dose dRef is
sufficiently wide, say, ranging from 0.01 to 0.95;

• consider a normal prior for θ2 to accommodate very flat to steep dose-toxicity
curves.

In our illustrative examples as well as the simulation study, we will set θ1 ∼ N
(
logit(Γ), 22

)
,

θ2 ∼ N(0, 12), and a correlation coefficient of 0 for the weakly informative m0(θ).
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2.4 leveraging preclinical data using a mixture prior with dynami-
cally chosen weights

In this section, we propose to consider a mixture prior, of which the prior mixture
weight for each new patient cohort will be dynamically updated, based on our current
knowledge about the commensurability of preclinical data with human toxicity data
accured so far. Specifically, developed from (2.3.5), we consider for cohort h of the
trial that

µ
(h)
0 (θ|xA) = w(h) · π0(θ|xA) + (1−w(h)) ·m0(θ), (2.4.1)

where π0(θ|xA) and m0(θ) are as defined, and the formulations do not depend on
the cohort number h. The prior mixture weights will be dynamically assessed for
the flexibility of discarding preclinical data entirely when they are found to be com-
pletely inconsistent with human toxicity at any stage of the trial. The cohort-specific
prior mixture weight w(h) ∈ [0, 1] attributed to π0(θ|xA) determines the amount of
preclinical animal data to be leveraged. This fraction can be interpreted as investiga-
tors’ confidence about the commensurability of animal data with the human toxicity.
In the following, we develop a Bayesian decision-theoretic framework for choosing
w(h) during an ongoing trial. The objective is to optimise learning about unknown
prior-data conflict without undermining the safety of patients.

2.4.1 Assessment of commensurability using a Bayesian decision theoretic approach

Define the random variable Yi as the binary DLT outcome of a new patient assigned
dose di ∈ D, such that Yi = 1when a patient experiences a DLT, and Yi = 0 otherwise.
Furthermore, let ỹi denote the realisation of Yi. The prior predictive probability mass
function (Vehtari and Ojanen [2012, 2014]) of Yi given the animal data is written as:

Pi(Yi = ỹ|xA) =

∫
f(ỹ|pi)fi(pi|xA)dpi

=

∫1
0

p
ỹ
i · (1− pi)

1−ỹfi(pi|xA)dpi, for ỹ ∈ {0, 1}.
(2.4.2)

Before a patient’s response has been observed, one could use the prior predictive
distribution in (2.4.2) to derive a prediction for Yi, labelled ηi, where ηi ∈ {0, 1}. Then,
after the patient has been treated and followed-up, we can compare the prediction
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Table 2.1: Cross-tabulation of utilities for the predicted versus actual human binary DLT outcomes.

Observation (ỹ)
No-DLT DLT

Prior prediction (η̂) No-DLT u00 u10
DLT u01 u11

with the response actually observed. Table 2.1 lists the possible configurations of the
predicted and observed outcomes. Let U(ỹi,ηi) denote the utility function that can
take values of u`s contained in the cells of Table 2.1. Before Yi is observed, the optimal
prior prediction based on the animal data alone is

η̂i = arg max
ηi∈{0,1}

∑
ỹi∈{0,1}

U(ỹi,ηi)Pi(Yi = ỹi). (2.4.3)

Fouskakis and Draper [2002] suggest a metric quantifying discrepancy between
predicted and actual values needs to be defined for assessing the accuracy of a
model’s prediction. In our problem, we believe the commensurability is closely linked
with predictability of human toxicity using animal data alone. We would therefore
wish to establish a formal assessment of predictive accuracy of preclinical data, and
interpret this as a quantification method of commensurability between toxicities of
the drug to animals and humans. As the observed human toxicity outcomes accrue
along with time, the assessment is best to be carried out dynamically. To be more
specifically, once a patient has been treated and their response observed, the optimal
prior predictions made based upon preclinical data will be compared with the actual
observations accrued thus far to assess the predictive accuracy of animal data. In the
following, we will define a dynamic metric for commensurability in the context of an
adaptive phase I clinical trial.

Let a subset D ′(h− 1) ⊆ D contain the doses that have been tested after cohort
(h − 1) has been enrolled and treated. At each administered dose di ∈ D ′(h − 1),
we summarise the counts of patients by the first (h− 1) cohorts, denoted by n(h−1)

`s ,
for whom the preclinical data led to an optimal prediction η̂ = ` and their observed
outcome was ỹ = s, with ` ∈ {0, 1} and s ∈ {0, 1}. For i = 1, . . . , I, define the predictive
utility of preclinical information on an administered dose di as

G
(h−1)
i (u`s,n

(h−1)
`s ) =

1∑
`=0

1∑
s=0

u`sn
(h−1)
`s , (2.4.4)
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where the utilities u`s remain constant across doses and cohorts and are derived as
U(ỹ = `, η̂i = s) = u`s. Values of u`s are stipulated to penalise incorrect predictions
and reward correct ones. In what follows, we therefore allocate a utility of 0 (1) to an
incorrect (correct) prediction, that is, in our notation, we set u10 = 0 and u00 = u11 =
1. For an incorrect prediction of DLT, we consider a utility of u01 = b, 0 < b < 1 since
predicting a no DLT as DLT, unlike predicting a DLT as no DLT, will not undermine
patients’ safety but only bring in additional caution. We do not allocate a utility as
large as 1 in light of the potential drawback that a conservative dose-escalation might
be resulted in.

By the time, commensurability of the given preclinical information with human
toxicity on a particular dose can be characterised as

c
(h−1)
i (u`s,n

(h−1)
`s ) =

G
(h−1)
i (u`s,n

(h−1)
`s )∑1

l=0

∑1
s=0 n

(h−1)
`s

, (2.4.5)

where the denominator is the maximum utility that would be achieved if all prior
predictions were correct. A measurement describing the predictive accuracy of the
animal data for the human DLT data at doses of most interest from the first (h− 1)

cohorts can be defined by taking the average of c(h−1)i (u`s,n
(h−1)
`s ) across T (h−1)

doses in D ′(h− 1) that have been administered so far and those either falling in the
neighbourhood of, or more toxic than, the current best estimate of MTD:

κ(h−1)(u`s,n
(h−1)
`s ) =

1

T (h−1)

∑
i

c
(h−1)
i (u`s,n

(h−1)
`s ). (2.4.6)

The interpretation is that we would be more interested in commensurability of prior
predictions, or say, animal data, and human toxicity locally at the target dose. The so-
called neighbourhood throughout will be confined as one dose level removed from
an estimated target dose in our implementation. Considering the assessment at high
doses in D is helpful for distinguishing penalisation to animal data that have either
over-predicted or under-predicted human toxicity. Here, we particularly prefer not to
compute the predictive accuracy at low doses when they are estimated to be much
safer the target dose. This is because, in such a scenario, differences between the
animal and human dose-toxicity relationships are present but too small to result in
discrepancies between prior predictions based on animal data and human outcomes.
Including those very safe low doses in D ′(h−1) will then lead to an undesirably large
value of the average predictive accuracy. The quantity κ(h−1) will then be used to
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determine the cohort-specific mixture weight w(h) to be attributed to the informative
animal prior, π0(θ|xA), such that value of preclinical information and knowledge
about the commensurability can be exploited.

2.4.2 Choosing an appropriate tuning parameter

One concern arising here is that κ(h−1)(u`s,n
(h−1)
`s ) assessed using the accumulating

human data can be a noisy estimator. This issue could perhaps be outstanding at
early stages of a phase I trial when few doses have been tried and few patients have
been tested. With accrual of the human data, the assessment on predictive accuracy
becomes more convincing. Taking account of this, we wish to come up with a sensible
formulation of the mixture weight w(h) in (2.4.1) defined as a function of κ(h−1). We
restrict our attention to a power-law functional relationship

w(h) = {κ(h−1)(u`s,n
(h−1)
`s )}λ, (2.4.7)

in which λ is a time-varying tuning parameter, which increases from 0 to 1 as more
human data accumulate. We consider two ad-hoc choices for λ in the following.

A simple proposal is to relate λ explicitly to the trial information time N/nh, for
example, in a convex decreasing function on the interval of [1,N] such as λ =

√
N/nh,

where N and nh are the maximum sample size of the trial and the total number of
patients in the first h cohorts, respectively. This power law function for λ has been
used in a different context by Thall and Weathen for response adaptive randomisation
schemes (Thall and Wathen [2007]). We note this is not uncommon to alter a scientific
assessment so as to meet an ethical preference.

As an alternative, one may wish to define λ in a way to suggest how noisy our
prediction of c(h)i could be, looking ahead to the next patient cohort. More specifically,
we suppose d(h) is the dose selected for cohort h based on certain criterion. Optimal
prior prediction for the corresponding toxicity outcome η̂i of a patient receiving a
known d(h) is unambiguous, while the observable toxicity outcome is random that
Yi (here, i = d(h)) takes value of either 0 or 1. The predictive accuracy c(h)i is hence
a discrete random variable: if η̂i = 0, predictive utility can take the values u00 or
u10, with probabilities Pr(Yi = 0) and Pr(Yi = 1), respectively. Similarly, if η̂i = 1,
predictive utility takes values u01 or u11, with probabilities Pr(Yi = 0) and Pr(Yi = 1),
respectively. These probabilities will be approximated by the current best estimate of
the risk of toxicity at dose d(h), say, the prior predictive probability when h = 1 and
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the posterior probability when h > 2. We can then derive standard deviation of the
predictive accuracy given randomness of Yi to be observed from the newly treated
patient. Let H be the maximum number of cohorts that trialists have planned. We
will then simulate binary outcomes for patients of cohort (h+ 1) to H, assuming that
they would all be treated with the current best estimate of MTD which is dose d(h).
Finally, we stipulate

λ =
σ{c

(h)
i (u`s, ñ

(h)
`s )}

σ{c
(H)
i (u`s, ñ

(H)
`s )}

, (2.4.8)

where ñ(·)
`s denote the counts of patients actually treated on the trial and the future

patients whose toxicity outcomes are simulated. This formulation of λ reflects how
noisy our prediction of c(h)i is, compared to what would be the case at the end of
the trial when data from N patients have been collected. It takes account of trial
information time implicitly in that λ is given a large value at the beginning but it
converges to 1 by the end of the phase I trial.

2.5 design and analysis for the example trial incorporating animal

data

In this section, we illustrate how the proposed method can incorporate preclinical
information into a phase I dose-escalation study. Here, we define the target dose as
one associated with a risk of toxicity of 0.25.

2.5.1 Prior distributions based on preclinical information

For illustrative purpose, we suppose that preclinical animal data are available on
doses 0.1 and 2.7 mg/kg which have been used in 30 dogs each, and that there are 1

and 17 toxicities observed from each dosage group. Following the allometric scaling
approach that standardises body weight (BW) by body surface area (BSA), one may
calculate the equivalent human doses of these two animal doses using

Equivalent human dose (mg/m2) = Animal dose (mg/kg)×
(

BW
BSA

)
Animal

,

as specified in the USFDA [2005] draft guideline Estimating the Maximum Safe Starting
Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteer. Appropriate for
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dogs, we substitute the BW and BSA with fixed constants 10 and 0.5, respectively,
and obtain the equivalent human doses as 2 mg/m2 (labelled dose d−1) and 54

mg/m2 (labelled dose d0), respectively. We further express the dogs data as pseudo-
observations such that p−1 ∼ Beta(1, 29) and p0 ∼ Beta(17, 13).

Since we do not directly have data on di ∈ D, we derive the prior distributions
for pi, based on the dogs data, under an assumption that the dose-toxicity model
follows a logistic regression in log dose. Following the steps outlined in Section 2,
the 2.5th, 50th and 97.5th percentiles of the marginal prior distributions for pi are
presented in Figure 2.2A, together with the corresponding fitted probabilities from
the approximated bivariate normal prior for θ that

θ|xA ∼ BVN

((
−0.524
0.147

)
,

(
0.151 −0.008

−0.008 0.001

))
.

As we can see from Figure 2.2A – 2.2B, our hypothetical preclinical information
suggests that dose 16 and 22 mg/m2 have a risk of toxicity in humans close to the
target level of 0.25, when no robustification is concerned. We further summarise each
of the prior distributions for the risks of toxicity in Figure 2.2B, with three interval
probabilities: (i) probability of underdosing, where pj ∈ [0, 0.16), (ii) probability that
pj lies in the target interval [0.16, 0.33), and (iii) probability of overdosing, where pj
exceeds 0.33 (Neuenschwander et al. [2008]). Figure 2.2C presents the prior proba-
bility density curves for the low doses. In our illustrative examples, we set dose 4

mg/m2 as the starting dose, as it appears to be safe given animal data with xA that
P(p2 < 0.1|xA) = 0.825.

To evaluate the effective sample size (ESS) (Morita et al. [2008]) of each marginal
prior distributions for each pi on each dose implied by π0(θ|xA), we approximate
each prior with a Beta(a,b) distribution, where the parameters are chosen to match
the first two moments of the prior. The ESS is then found as (a+b). Table 2.2 lists the
prior ESSs suggesting the preclinical data provide information on the risks of toxicity
on low doses equivalent to that which would be obtained from 16.4 – 20.1 humans
on the risk of toxicity on medium to high doses. This may overwhelm accumulating
data from an ongoing phase I trial with small sample size. It is thus important to see
whether the proposed method can effectively down-weight preclinical information in
situations when it is inconsistent with observed human toxicity data. We will now
illustrate the behaviour of dose-escalation procedures using our method to integrate
preclinical data via several data examples.
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Figure 2.2: Summaries of priors based on preclinical information. Panel A shows median and 95% CI of the marginal
prior distributions for the probability of toxicity in blue bars, together with the fitted probabilities in pink
dashed lines from the bivariate normal prior π0(θ|xA) found with our optimiser. Panel B gives an
overview about interval probabilities, where the background red curve indicates the prior medians for
probability of toxicity per dose. Panel C presents prior densities for the risks of toxicity at candidate
starting doses.

Table 2.2: Effective sample sizes of marginal prior distributions for risk of toxicity based on animal data summarised
by π0(θ|xA).

Dose (mg/m2)
d1 d2 d3 d4 d5 d6 d7 d8 d9
2 4 8 16 22 28 40 54 70

Prior means 0.034 0.065 0.120 0.211 0.267 0.314 0.393 0.463 0.526

Prior std dev. 0.022 0.038 0.061 0.089 0.101 0.109 0.117 0.119 0.118

ESS 67.1 41.7 27.6 20.1 18.2 17.2 16.5 16.4 16.9
a 2.3 2.7 3.3 4.2 4.9 5.4 6.5 7.6 8.9
b 64.8 39.0 24.3 15.9 13.3 11.8 10.0 8.8 8.0
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2.5.2 Hypothetical data examples

With Figure 2.2B, we see that doses up to 16 mg/m2 comply with the escalation
criterion defined in (2.2.1) if the preclinical information is to be fully incorporated.
We will now adopt a mixture prior with dynamically chosen weight to implement
the Bayesian dose-escalation procedure. A utility of u01 = 0.6 is specified for quick
discounting of preclinical information that predicts a no-DLT as DLT. Based on the
animal data summarised by the bivariate normal prior π0(θ|xA) defined in equation
(2.4.1) and the utilities u00 = u11 = 1,u10 = 0,u01 = 0.6, the optimal predictions
for DLT outcomes in humans are: patients receiving doses di in the set {2, 4, 8, 16}
will not experience a DLT (Yi = 0); patients who receive doses {22, 28, 40, 54, 70} will
experience a DLT.

We simulated three data examples consistent with (i) negligible prior-data conflict,
(ii) a prior-data conflict, where preclinical information under-estimates the DLT risk
in humans, and (iii) a prior-data conflict, where preclinical information over-estimates
the DLT risk in humans. In particular, each of these data examples are one of the
realisations setting doses 22, 4 and 40 mg/m2 as the true MTD, respectively. Said in
another way, the risk of toxicity at these doses across data examples is set to be 25%.

Figure 2.3 presents the trial history and dynamic updates of the prior mixture
weight attributed to π0(θ|xA) for these three data examples, assuming that patients
were recruited in cohorts of size three. Interim dose recommendations were made us-
ing the proposed robust Bayesian model stipulating the tuning parameter in the form
of (2.4.8). We assume each hypothetical trial recruits a maximum of 11 cohorts; that
is, the maximum sample size N = 33. After completion of treatment for each patient
cohort, the cohort-specific mixture weights will be updated with the newly accrued
data via the Bayes’ Theorem as the posterior probability of relevance, denoted by
w

(h)
∗ ,

µ(h)(θ|xA, x(h)H ) = w
(h)
∗ · π(h)(θ|xA, x(h)H ) + (1−w

(h)
∗ ) ·m(h)(θ|x

(h)
H ), (2.5.1)

where x(h)H denote the human data collected from the first h cohorts.
Across the three hypothetical trials, we see that the given preclinical animal data

are incorporated for interim dose recommendations with a prior mixture weight of
w(h) = 1 until the first discrepancy occurs between the prior predictions, made based
on animal data together with the investigators’ utilities, and the observed human
outcomes. This occurs in the forth cohorts in data examples 1 and 3, and the first
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Figure 2.3: Trajectory of dose recommendations (Panel A) and dynamic update of mixture weight attributed to
preclinical information (Panel B) during the course of each hypothetical data example.
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cohort in data example 2. Indeed, a disagreement between predictions and observed
data can take a few cohorts to emerge, even when there is a conflict between the
human dose-toxicity curve and our opinions (illustrated in Figure 2.2A) based on
animal data alone. This is because low doses in D will generally be very safe. Thus,
there is little chance of observing a DLT in the first few cohorts treated with low
doses, meaning prior predictions of no-DLT outcomes based on animal data will be
correct.

The prior mixture weight decreases after the first disagreement is observed, which
is generally followed with a small trend of increase for the last several cohorts. This
is because the predictive accuracy κ(h−1)(u`s,n

(h−1)
`s ) assess at the target dose and

its neighbourhood is unlikely to vary substantially while the tuning parameter λ
reduces to 1 as the trial progresses. In data examples 1–3, the phase I trial terminated
declaring the dose 22, 4, and 40 mg/m2 as the target dose, respectively. Moreover, for
the last cohort of each scenario, we see the prior mixture weight is assessed to be the
largest that w(11) = 0.778 in data example 1 for prior-data consistency, and smaller
that w(11) = 0.505 and 0.574 in data examples 2 and 3, respectively. We will now be
particularly focused onto data examples 2 and 3 to evaluate property of the proposed
method in situations of a prior-data conflict.

In data example 2, the increase in w(h) to 0.767 for cohort h = 4 after the rapid
discounting of preclinical information at the beginning of the trial was due to correct
predictions on the two lowest doses. Preclinical information was penalised drastically
after erroneously predicting DLT as no-DLT for all three patients treated in the forth
cohort, that the prior probability of relevance was quantified as 0.247 for the fifth
cohort. Data example 3 shows how the procedure reacts to a data-conflict when the
DLT risks in humans are much lower than predicted by the animal data. Cohorts 1–5

escalate up to 28 mg/m2 and no DLTs are observed, which turned out to contradict
the prior predictions based on animal data on doses 22 and 28 mg/m2. Consequently,
w(h) drops from 1 to 0.294 for cohort h = 6. Reduced borrowing from animal data
resulted in an escalation to dose 54 mg/m2, at which one out of three patients was
observed with a DLT. A de-escalation to 40 mg/m2 then took place, and estimate
of the target dose eventually converges at this dose level. Finally, we note using our
approach leads to compromises between full pooling and complete discarding of
preclinical animal data. Results of these assessments are available in Figure 2.6 in the
Supplementary Materials.
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2.5.3 Specifying a run-in period

As was illustrated in Section 2.5.2, the proposed approach described in Section 2.4
tends to implement full borrowing of preclinical information in early stages of the
phase I trial when human toxicity outcomes at low doses can be correctly predicted.
However, it is counterintuitive that we assign full weight to preclinical data in the
early stages of a trial when few human data are available to assess commensurability.
This is particularly true since we know the agreement between prior predictions,
based on animal data alone, and the observed human data is an artefact of starting
the trial with very safe doses rather than a reflection of a genuine agreement. If the
dose-toxicity relationship in humans has a very steep slope, placing full weight on the
animal prior could lead to overly aggressive escalation and observation of unexpected
DLTs once we enter the therapeutic dosing range.

To this end, we consider implementing a constrained version of the proposed
decision-theoretic approach by introducing a run-in period. We note this is an ad-hoc
solution that we will set the prior mixture weight w(h) = 0 until the first discrepancy
between prior predictions and actually observed outcomes. In other words, a weakly
informative operational priorm0(θ), instead of an informative animal prior π0(θ|xA),
will be used to start off the phase I dose-escalation trial. Preclinical information will
then come into play, serving as a component of a mixture prior µ(h)0 (θ) rather than
guiding the escalation scheme on its own. The ethical stance here, which is clearly
associated with efficiency terms, is that, until the data tend to suggest the presence of
difference between toxicity of the drug in animals and humans, scepticism towards
preclinical information holds. On another note, when trials may be designed with
additional early stopping rules to conclude on a MTD, robust inference is achieved
in that available animal data are unlikely to override the sparse data accumulated
from a phase I human trial at any stage.

To reach a fair comparison about properties of the constrained and unconstrained
versions of our methodology, we present three new data examples in Figure 2.4 that
have been simulated from same parameter settings used for those in Figure 2.3: a
vector of binary outcomes on each dose were simulated and then sampled without
replacement as each new patient was assigned to a dose in the dose-escalation study.
For instance, in terms of data examples with the same label, the first patient assigned
a dose of 28 mg/m2 in Figure 2.3 will have the same simulated toxicity outcome as the
first patient assigned to the same dose in Figure 2.4. Therefore, we can observe what
may be resulted in by having a run-in period to constrain the proposed approach.



40 a bayesian decision-theoretic approach

Data example 1 Data example 2 Data example 3

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

2

4

8

16

22

28

40

54

70

Cohort number

D
os

e 
(m

g
m

2 )

DLT data 0/3 1/3 2/3 3/3
A

Data example 1 Data example 2 Data example 3

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

0.0

0.2

0.4

0.6

0.8

1.0

Cohort number

M
ix

tu
re

 w
ei

gh
t

Prior, w(h)     Posterior, w*
(h)B

Figure 2.4: Trajectory of dose recommendations (Panel A) and dynamic update of mixture weight attributed to
preclinical information (Panel B) during the course of each hypothetical data example with a two-stage
design, with a run-in period characterised in the first stage and dose-escalation procedure driven by a
mixture prior in the second stage.
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As shown in data examples 1 and 3 presented in Figure 2.4, this permits skipping
the dose 22 mg/m2 so long as the probabilistic overdose control criterion is met after
observations on dose 16 mg/m2. In data example 3, allocation of doses to patients
entering the trial changed, along with decreased borrowing of preclinical information
at the interims. No particular changes are noticed for data example 2, representative
to trials in which prior prediction for outcome(s) of the first cohort is not entirely
correct: a prior mixture weight w(h) < 1 was allocated to the preclinical component
for every following cohort where an interim dose recommendation is needed. By the
end of each simulated trial implementing the constrained version of our approach,
we observed the prior mixture weights w(11) < have been assessed to be the same
value as those implementing the unconstrained version. This is because of our way to
simulate the human toxicity data presented in Figures 2.3 and 2.4, together with the
assessment, which let data to speak, is solely based on the compatibility of preclinical
and clinical trial data. Nevertheless, we noticed that dose escalations tend to be less
restrictive especially at the early stages of the simulated trials, leading to different
interim dose recommendations.

2.6 simulation study

2.6.1 Basic settings

In this section, we evaluate the operating characteristics of phase I dose-escalation tri-
als which are designed and conducted basing inferences on the robustified mixture
prior described in Sections 2.3 and 2.4 with the decision-theoretic weights (with and
without a run-in period). Comparisons are made with trials basing inferences on mix-
ture priors with fixed weights. We stipulate the following alternative dose-escalation
procedures for comparison:

• Procedure A: no run-in period; Bayesian mixture prior with decision-theoretic
weights

• Procedure B: run-in period; Bayesian mixture prior with decision-theoretic weights

• Procedure C: no run-in period; Bayesian mixture prior with fixed weightsw(h) =

0.5, for h = 1, 2, . . .

• Procedure D: Bayesian informative prior with fixed weights w(h) = 1, for h =

1, 2, . . .
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• Procedure E: Bayesian model not permitting borrowing of preclinical dataw(h) =

0, for h = 1, 2, . . .

Here we note that the justification of prior mixture weight set as 0.5 in Procedure C
was somewhat subjective but presumptively to be sufficient to respond to a prior-data
conflict in most cases.

Further, we assume the preclinical information described in Section 2.5.1 is avail-
able prior to the phase I dose-escalation trial. To evaluate the behaviour of fast dis-
counting in cases of prior-data inconsistency, we simulate phase I trials with very
small sample size: there are in total seven cohorts planned (each comprising three
patients) for evaluating doses contained in set D. For reasons previously stated, dose
4 mg/m2 is chosen as the starting dose for patients in the first cohort of the trial.
Interim dose recommendations are made according to criterion (2.2.1), with the same
caveats on maximum two-fold escalation step defined. Trials end when all 21 patients
have been treated and observed, or after any cohort h, if the lowest dose is found to
be excessively toxic that P(p1 > 0.33|xA, x(h)H ) > 0.25. These two subsets of simulated
trials will later be referred to as complete or stopped early trials, respectively.

Phase I oncology trials are simulated under the eight human toxicity scenarios
shown in Table 3.4. In Scenario 3, the true probabilities of toxicity are consistent with
the prior median estimates obtained from the animal data, summarised in Figure 2.2A
and derived assuming the dose-toxicity curve follows a logistic regression model. In
none of the other toxicity scenarios were human DLT probabilities derived from a
logistic regression model. For each Bayesian procedure A–E, results will be presented
based on 1000 simulated trials per toxicity scenario.

At the end of a complete trial, we estimate the MTD with the point estimate (say,
posterior median) of the DLT risk, denoted by p̃i, defining that

d̂M = arg min
di∈Dc

|p̃i − 0.25|,

where Dc ⊆ D comprises all the doses that have been administered to humans during
the trial and comply with our overdose control criterion. For each scenario, we report
the percentage of complete trials (which make a definitive declaration of a dose as
MTD), and the percentage of trials stopped early for safety without a MTD declaration.
For the group of complete trials, we report the PCS of procedures A–E. We use the
optimal nonparametric design as a benchmark for comparisons. Moreover, we report
the average number of patients allocated to each dose across the 1000 simulated trials.
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Table 2.3: Simulation scenarios for the true probability of DLT in humans. The figure in bold indicates the dose
closest to the true MTD.

Dose (mg/m2)
d1 d2 d3 d4 d5 d6 d7 d8 d9
2 4 8 16 22 28 40 54 70

Scenario 1 0.11 0.25 0.35 0.41 0.47 0.52 0.58 0.63 0.70

Scenario 2 0.08 0.16 0.25 0.35 0.42 0.45 0.53 0.60 0.70

Scenario 3 0.02 0.05 0.14 0.25 0.35 0.42 0.51 0.60 0.68

Scenario 4 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55

Scenario 5 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60

Scenario 6 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47

Scenario 7 0.35 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97

Scenario 8 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

2.6.2 Results

Numerical results are recorded in Table 2.4 in the Supplementary Materials (Section
2.9), where properties of our approach considering a small utility of u01 = 0.2 have
also been evaluated. Figure 2.5 visualises the operating characteristics of simulated
phase I dose-escalation trials (using u01 = 0.6), in which interim inferences were
made based on Procedures A – E, respectively. We can see that the constrained ver-
sion of our methodology, Procedure B, performs reasonably well across all the toxicity
scenarios. Procedure A performs similarly in nearly all scenarios except Scenario 8,
where the true MTD is the highest dose. Animal data in this scenario over-predict
the toxicity in humans; incorporating them thus results in a more conservative dose-
escalation scheme. Accordingly, in Scenario 8, Procedure A (with no run-in period)
was more cautious and treated more patients in the early stages at quite safe lower
doses, at which the prior predictions were mostly correct; while in contrast, Proce-
dure B (with a run-in period) allowed quicker escalation than Procedure A, since the
given animal data come into play only after escalation has reached to high doses and
enough human data have been cumulated for assessment of commensurability. This
explains the results in Panel (ii) that on average only 1.3 out of 21 patients were al-
located to 70 mg/m2 with Procedure A, while slightly more (2.4 out of 21) were to
this true MTD when using Procedure B. Substantial difference in the PCS, displayed
in Panel (i), between these two procedures in Scenario 8 is therefore not surprising.
We observe this difference is even larger if taking a smaller utility such as u01 = 0.2.
Same explanation will be given to address the different behaviours of Procedures A
and B in Scenario 6. In the other scenarios, similar operating characteristics were ob-
served, as overall commensurability assessed by the end of a trial simulated from the
same toxicity scenario converges.
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Figure 2.5: Operating characteristics of phase I clinical trials designed using the dose-escalation Procedures A - E.
The vertical black line indicates the true MTD in humans in each simulation scenario.
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Comparisons between Procedures B and C illustrate one advantage of our decision-
theoretic approach to setting the prior mixture weight: Procedure B permits increased
borrowing of information in cases of prior-data consistency, while behaving equally
well in response to a prior-data conflict. For example, an increase in PCS is seen
from 38.1% to 48.7% in Scenario 3. However, there is no free lunch. Our proposal,
especially the unconstrained version without stipulating a run-in period, experiences
problem in discounting quickly the animal data that provide correct prior predictions
but suggest a different dose to be the MTD in humans. Precisely, this happens when
differences between dose-toxicity relationships are present but too small to result in
discrepancies between predictions based on animal data and human outcomes, and
sometimes also due to choice of the user utilities for prediction. This is illustrated by
Scenario 8, where we read that Procedures A claimed dose 40 mg/m2 to be the MTD
for most of the simulated trials. Based on additional simulations, of which the results
are not shown here, Procedure B appears to be more advantageous than Procedure
C with a fixed prior weight chosen to be smaller than 0.5 in scenarios of a severe
prior-data conflict.

Procedure D outperforms all other Procedures for using preclinical data only in
Scenarios 2 – 4, because of the prior-data consistency to a certain degree. Whereas,
in Scenarios 1 as well as 5 – 8, a dose-escalation procedure based on Procedure D
appears to be very restrictive since the inconsistent animal data dominated inferences.
Procedure B compromises between incorporating and discarding entirely the animal
data is demonstrated to be flexible enough across all these toxicity scenarios: it comes
close to Procedure D in the prior-data consistency scenarios, while shows similar
property to Procedure E in the prior-data conflict scenarios.

Readers may notice there is a high proportion of trials stopped early in Scenario
1 when implementing the dose-escalation designs except Procedure E: about 35%
of the simulated trials were terminated before reaching the maximum sample size
planned. This is because we apply a very constrained criterion for early stopping,
P(p1 > 0.33|xA, x(h)H ) > 0.25. It means that the first-in-man trial has to be terminated,
if potentially more than 25% of the patients receiving the lowest dose, 2 mg/m2

which is not the starting dose in our numerical examples, will have more than 33%
of possibility to experience a DLT. When trialists expect fewer trials will be stopped
earlier to correctly select the starting dose, 4 mg/m2, as the MTD, it will work to
either (i) relax the definition of overdose, increasing 0.33 in the criterion to a larger
value such as 0.45, or (ii) increase the acceptable bound, for example, setting P(p1 >

0.33|xA, x(h)H ) > 0.5. Alternatively, investigators may set a very safe dose, lower than
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2 mg/m2 in our numerical examples, below the starting dose. Once DLTs may be
observed from patients receiving the starting dose, it will de-escalate to the back-up
dose, giving chances to escalate from this dose to the true MTD at later stages of the
trial. For allocation of patients to doses available for evaluation and average sample
size used, our approach (Procedures A and B) permits more patients to be treated
with the true MTD in scenarios of prior-data consistency, while it performs equally
well with Procedures C and E in scenarios of a prior-data conflict.

Results shown in Figure 2.5 were derived with the tuning parameter specified in
the form of (2.4.8) for Procedures A and B. However, we can confirm the validity
of its alternative setting the tuning parameter in relation with trial information time
explicitly that λ =

√
N/nh, which produces consistent numerical results and will

not modify the conclusions. We have also run simulations setting the maximum trial
sample size as 33 (i.e., 11 patient cohorts) and 45 (i.e., 15 patients cohorts). We present
the simulation results with a larger sample size than discussed above in Figure 2.8,
as we can see similar conclusions are drawn, with the exception that differences
between Procedures A and B for the PCS in scenario 8 becomes smaller with increase
of the sample size. This is because as the number of human cohorts increases, we
eventually escalate up to reach the highest dose in Scenario 8 when using Procedure
A. On the other hand, if we had more informative preclinical animal data than the
one currently in use for illustration purpose, adopting Procedure B becomes more
advantageous than Procedure C for its assessment of commensurability to determine
the amount of information to borrow.

In addition to the eight toxicity scenarios, we have also evaluated the performance
of our dose-escalation procedures in situations, where the true dose-toxicity curve
in humans is very steep or shallow. We do not present the numerical results from
these evaluations, as they are well expected. In the investigated scenario with a steep
human dose-toxicity curve, say, there is a sudden increase in the DLT risk from one
dose level to the next level, animal data underpredict the human DLT risk at the
high doses and will therefore be discounted very quickly by using our methodology.
With the escalation criterion set based on the interval probability of overdose, it is
unlikely that the dose will be escalated to the level that has very high DLT risk. In
contrast, in the investigated scenario with a shallow human dose-toxicity curve, say,
the difference between DLT risks at two doses that are next to each other is about
5%, the shape of the dose-toxicity relationship learned from the animal data will
offer information to discern differences between the doses. When there is a clear
discrepancy between the true DLT risks and the predicted DLT risks at the human
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doses, animal data will also be down-weighted to certain extent, depending on the
magnitude of such discrepancy as well as the type of erroneous prior prediction.

2.7 discussion

The question of using historical data in a new trial has been discussed elsewhere,
but in the context of leveraging preclinical information in a phase I first-in-man trial,
there are unique circumstances to be taken care of. Indeed, the challenge is to address
potential prior-data conflicts, arising from the intrinsic difference between toxicity of
a drug to animals and humans, which emerge in a sequential trial planned with a
small sample size. Particularly, “small” is meant in relation to the prior effective sam-
ple size. In this chapter, we have outlined solutions for translating preclinical animal
data recorded on their original scale to predict and facilitate efficiently estimating the
toxicity in humans, especially at the doses available to be administered to patients,
and proposed a Bayesian decision-theoretic approach to using such information in
an ongoing phase I dose-escalation trial in an adaptive way. Commensurability of the
translated animal data with the newly accrued human toxicity data is successively
assessed to determine a sensible amount of borrowing. A formal quantification of the
commensurability was proposed with respect to how correct the prior predictions
based on animal data may be, by comparing them with the observed outcomes to
be collected later on. Incorrect predictions will be penalised by giving a small utility
value to quickly discount animal data during the course of a phase I clinical trial.

In current practice of phase I first-in-man trials, a strategy called sentinel dosing is
often considered so that one human subject in the first cohort is dosed in advance of
the full study. This ensures fewer human subjects to be impacted in situations when
DLTs would manifest very quickly. This would fit the use of our approach nicely:
the outcome observed from this sentinel subject may be compared with the prior
prediction, obtained using animal data, to learn about the commensurability between
toxicity in animals and humans, and therefore decide how much prior weight would
be allocated to the animal data. When a run-in period would be incorporated to use
our approach, having a sentinel subject will not influence directly in recommendation
of a suitable dose for the next patient(s). The benefit is simply to allow sufficient time
between dosing for a more ethical first-in-man trial.

Illustrative examples and the simulation study have shown that the proposed
methodology leads to sensible borrowing of preclinical information to aid decision
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making in a phase I clinical trial, and is responsive to a prior-data conflict emerges
any time during the trial. We note that obtaining robust inference does not seem to
be readily possible in a most basic kind of borrowing based on the Bayes’ Theorem,
which incorporates preclinical information as what it is entirely. Conventionally, if
desired to be used in a new phase I clinical trial, preclinical animal data would be
down-weighted to contain least amount of information in the first place, so as to
avoid overriding data from the trial. Whereas, our approach provides a possibility
to borrow strength from preclinical animal data adaptively. It is a developed version
of mixture prior with feasible mid-course modification of the prior mixture weight.
As we have observed from the simulations comparing our approach with its origin,
potential benefit includes the increased borrowing in cases of prior-data consistency
and the capability of discounting any inconsistent prior even quicker.

When formulating the research problem, we have assumed that animal data were
available from two interesting doses, as quite a few preclinical animal studies are
conducted to evaluate the toxicity on a qualitative basis. However, this should not be
taken as a restriction of applying the proposed methodology. When richer preclinical
animal data are available from a number of preclinical in vivo studies performed in
one species, information may be synthesised using meta-analysis to derive the prior
predictive distribution for probability of toxicity per dose to be evaluated in humans,
and used to make optimal prior predictions for assessing the commensurability of the
synthesised animal data with human toxicity data. The discussion of using animal
data collected from preclinical studies involving multiple animal species is beyond
the scope of this paper. In such a more challenging case, we may wish to allocate
larger prior mixture weights to animal species that are more relevant to humans than
others, whereas the decision-theoretic approach proposed at present does not allow
us to draw the distinction. This is where we look toward for the future work to extend
the methodology. We are also currently pursuing the use of animal pharmacokinetic
information by establishing a Bayesian dose-exposure-toxicity model in light of the
growing interest in better understanding and characterisation of the dose-toxicity
relationship based on mechanisms of pharmacological action (USFDA [2003]; José
and Stephen [2009]).
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2.8 technical notes

2.8.1 Deriving the marginal probability density function for pj

We consider to express the preclinical animal data for predicting the risks of toxicity
at human doses as pseudo-data. Thus, at these two pseudo dose levels j = −1, 0,
uncertainty surrounding the risks of toxicity pj could be described using Beta distri-
butions with parameters tj and vj. The joint prior probability density function (pdf)
of p−1 and p0 is given by

f(p−1,p0) =
0∏

j=−1

p
tj−1
j (1− pj)

vj−1

B(tj, vj)
,

where B(·, ·) is the beta function.
Given the logistic dose-toxicity model, the joint pdf f(p−1,p0) can be expressed in

terms of the model parameters θ1 and θ2 via Jacobian transformation,

h(θ1, θ2) = f(p−1,p0)×
∂(p−1,p0)
∂(θ1, θ2)

. (2.8.1)

From
log
(

pj

1− pj

)
= θ1 + exp(θ2) log(dj/dRef),

we can easily derive

∂pj

∂θ1
= pj(1− pj) and

∂pj

∂θ2
= pj(1− pj) exp(θ2) log(dj/dRef).

Thus, the joint prior pdf of θ1 and θ2 can be written as

h(θ1, θ2) = exp(θ2)
∣∣∣∣log

(
d−1
d0

)∣∣∣∣× 0∏
j=−1

p
tj
j (1− pj)

vj

B(tj, vj)
,

where the two pseudo doses d−1 and d0 correspond to the lowest and highest human
doses in our context. Substituting the pj with the logistic model parameters, we can
write this joint prior pdf more explicitly:

h(θ1, θ2) = exp(θ2)
∣∣∣∣log

(
d−1
d0

)∣∣∣∣× 0∏
j=−1

[1+ exp(−zj)]−tj [1+ exp(zj)]−vj

B(tj, vj)
,
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where zj = θ1 + exp(θ2) log(dj/dRef).
By applying Jacobian transformation again, we can further derive the joint prior

pdf of pi and θ2; for i = 1, . . . , I,

gi(pi, θ2) = h(θ1, θ2)×
∂(θ1, θ2)
∂(pi, θ2)

.

With 
θ1 = log

(
pi

1− pi

)
− exp(θ2) log(di/dRef)

θ2 = θ2

we can write

∂θ1
∂pi

=
1

pi(1− pi)
,

∂θ1
∂θ2

= 0,

∂θ2
∂pi

= 0,
∂θ2
∂θ2

= 1,

such that

gi(pi, θ2) = h(θ1, θ2)×
∂(θ1, θ2)
∂(pi, θ2)

,

=
1

pi(1− pi)
· exp(θ2)

∣∣∣∣log
(
d−1
d0

)∣∣∣∣× 0∏
j=−1

[1+ exp(−zji)]−tj [1+ exp(zji)]−vj

B(tj, vj)
,

where zji = θ1 + exp(θ2) log(dj/dRef).
Because θ1 in zj can be expressed with θ2 and pi given the logistic regression

model that
zji = log

(
pi

1− pi

)
+ exp(θ2) log

(
dj

di

)
,

the joint prior pdf gi(pi, θ2) can therefore be parameterised with only pi and θ2. The
marginal probability density function for pj, the risk of toxicity at dose di, i = 1, . . . , I,
can then be derived by integrating out the nuisance parameter θ2:

fi(pi) =

∫
gi(pi, θ2)dθ2.
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2.8.2 Implied percentiles on the scale of pj, given a bivariate normal prior for θ

For log
(
p
1−p

)
= z, the 95% credible interval for p is bounded by

(
exp(zL)
1+exp(zL)

, exp(zU)
1+exp(zU)

)
should we have known the lower and upper limits of z. Here z can be seen as a trans-
formed random variable, as following our parameterisation z = θ1+exp(θ2) log(d/dRef).

The first two moments of the transformed random variable z

The expectation for z is E(z) = E[θ1+exp(θ2) log(d/dRef)] = E(θ1)+ log(d/dRef)E(exp(θ2)).
By Taylor expansion, we know

E(exp(θ2)) ≈ exp(E(θ2)) +
1

2
exp(E(θ2)) ·Var(θ2)

= exp(E(θ2))[1+
1

2
Var(θ2)]

≈ exp
[

E(θ2) +
1

2
Var(θ2)

]
.

The last step follows the Taylor approximation exp(x) ≈ 1+ x, which works well for
small x. Having x = 1

2Var(θ2) leads to exp(E(θ2))[1+ x] ≈ exp(E(θ2) + x). Thus, the
first moment for z is approximated as

E(z) = E(θ1) + log(d/dRef) exp
[

E(θ2) +
1

2
Var(θ2)

]
. (2.8.2)

Since z2 = θ21 + 2θ1 exp(θ2) log(d/dRef) + exp(2θ2)[log(d/dRef)]
2, the second mo-

ment is then given by

E(z2) = E(θ21) + 2 log(d/dRef) ·E(θ1 · exp(θ2)) + [log(d/dRef)]
2 ·E(exp(2θ2))

= Var(θ1) + [E(θ1)]
2 + 2 log(d/dRef)[Cov(θ1, exp(θ2)) + E(θ1)E(exp(θ2))]

+ [log(d/dRef)]
2 ·E(exp(2θ2)),

(2.8.3)

while we have

[E(z)]2 = [E(θ1)]
2 + 2 log(d/dRef) ·E(θ1)E(exp(θ2)) + [log(d/dRef)]

2[E(exp(θ2))]2.
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Thus,

Var(z) = E(z2) − [E(z)]2

= Var(θ1) + 2 log(d/dRef) ·Cov(θ1, exp(θ2))

+ [log(d/dRef)]
2[E(exp(2θ2)) − E(exp(θ2))]2

= Var(θ1) + 2 log(d/dRef) ·Cov(θ1, exp(θ2)) + [log(d/dRef)]
2 ·Var(exp(θ2)).

(2.8.4)

For the Cov(θ1, exp(θ2)) in (2.8.4), with Stein’s Lemma, it holds that

Cov(θ1, exp(θ2)) = E(exp(θ2)) ·Cov(θ1, θ2)

≈ exp
[

E(θ2) +
1

2
Var(θ2)

]
·Cov(θ1, θ2).

For the Var(exp(θ2)) in (2.8.4),

Var(exp(θ2)) = E(exp(2θ2)) − [E(exp(θ2))]2

≈ exp(2E(θ2) + 2Var(θ2)) − exp(2E(θ2) + Var(θ2))

= exp(2E(θ2) + Var(θ2)) · exp(Var(θ2)) − exp(2E(θ2) + Var(θ2))

= exp(2E(θ2) + Var(θ2))[exp(Var(θ2)) − 1].

The lower and upper limits of z

With (2.8.2) and (2.8.4), the lower and upper limits of z are

zL = E(z) − 1.96
√

Var(z),

zU = E(z) + 1.96
√

Var(z).

Obtaining the implied percentiles denoted by q ′jk, we can then easily code up the
optimiser used to find a bivariate normal prior π(θ) given the prior probabilities qjk
obtained following steps described in Section 2.

2.8.3 OpenBUGS code for implementation

model{

# sampling model
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for(j in 1:Ncohorts){

lin[j] <- theta[1] + exp(theta[2])*log(doseH[j]/dRef)

logit(pTox[j]) <- lin[j]

NtoxH[j] ~ dbin(pTox[j], NsubH[j])

}

for(i in 1:MdoseH){

lin.star[i] <- theta[1] + exp(theta[2])*log(doseH[i]/dRef)

logit(pTox.star[i]) <- lin.star[i]

pCat[i, 1] <- step(pTox.cut[1] - pTox.star[i])

pCat[i, 2] <- step(pTox.cut[2] - pTox.star[i])

- step(pTox.cut[1] - pTox.star[i])

pCat[i, 3] <- step(1 - pTox.star[i]) - step(pTox.cut[2] - pTox.star[i])

}

theta[1:2] ~ dmnorm(thetaMu[which, 1:2], thetaPrec[which, 1:2, 1:2])

which ~ dcat(wMix[1:2])

# to monitor the exchangeability probability

# in the course of the new human trial

for(k in 1:2){

prob.ex[k] <- equals(which, k)

}

thetaMu[1, 1:2] ~ dmnorm(PriorA[1:2], thetaPrec[1, 1:2, 1:2])

cov.A[1, 1] <- PriorA[3]

cov.A[1, 2] <- PriorA[4]

cov.A[2, 1] <- cov.A[1, 2]

cov.A[2, 2] <- PriorA[5]

thetaPrec[1, 1:2, 1:2] <- inverse(cov.A[1:2, 1:2])

thetaMu[2, 1:2] ~ dmnorm(Prior.mw[1:2], thetaPrec[2, 1:2, 1:2])

cov.rb[1, 1] <- pow(Prior.sw[1], 2)

cov.rb[2, 2] <- pow(Prior.sw[2], 2)
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cov.rb[1, 2] <- Prior.sw[1]*Prior.sw[2]*Prior.corr

cov.rb[2, 1] <- cov.rb[1, 2]

thetaPrec[2, 1:2, 1:2] <- inverse(cov.rb[1:2, 1:2])

}

2.9 supplementary materials

2.9.1 Data examples for no borrowing or full pooling of animal information

In Section 2.5.2, we simulated three hypothetical phase I clinical trials to exemplify
interim dose recommendations, using the proposed method to leverage preclinical
data without undermining patients’ safety. Here, we show in Figure 2.6 how doses
would have been recommended in an alternative Bayesian dose-escalation procedure
driven by either an operational prior m0(θ) or an animal prior π0(θ|xA).

Data example 1 Data example 2 Data example 3

O
perational prior

A
nim

al prior
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Figure 2.6: Trajectory of dose recommendations under alternative Bayesian dose-escalation procedures.

These new data examples presented in Figure 2.6 were simulated from the same pa-
rameter settings used for those presented in Figures 2.3 and 2.4 of the main manuscript
for a fair comparison: a vector of binary outcomes on each dose were simulated and
then sampled without replacement as each new patient was assigned to a dose in the
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dose-escalation study. For example, looking at data examples with the same label, the
first patient receiving dose 28 mg/m2 in Figures 2.3 and 2.4 and Figure 2.6, involved
in different Bayesian dose-escalation procedures will have the same simulated binary
toxicity outcome. We may therefore observe what could have been the consequence
by adopting different priors in a Bayesian dose-escalation procedure.

From this comparison, we can see the impact of leveraging the preclinical data
on decision making in an adaptive phase I clinical trial. Using our approach leads to
compromises between full pooling and complete discard of preclinical animal data. In
the simulated trials labelled with data example 1, we observe that behaviours of the
trial using our approach is similar with that implemented with Bayesian approach
fully incorporating animal data in the prior, as under this prior-data consistency
scenario a large prior mixture weight will be attributed to animal data based upon our
assessment of commensurability. Advantages of using our approach are also evident
in scenarios of a prior-data conflict: unlike a trial with animal data fully incorporated,
less patients were allocated with overly toxic dose 8 mg/m2 in data example 2, while
more patients will have chance to escalate to a true target dose which is dose 40

mg/m2 in data example 3.

2.9.2 Numerical results of all evaluate scenarios

The performance of trials using BLRM-guided dose-escalation Procedures A – E are
compared with that of the optimal non-parametric benchmark design by Maccario
et al. [2002]. The optimal design is defined using the ’complete’ toxicity profile of each
patient, created by assuming there are Ji? clones of a patient given doses spanning
the dosing set Di? . A toxicity tolerance thereshold εn is generated from U[0, 1] for
the nth patient, which determines the corresponding toxicity outcome at the jth dose
as

Rjn = 1(εn 6 pi?j), 1 6 n 6 N, 1 6 j 6 Ji? ,

where 1(·) is the indicator function. An unbiased estimate for pi?j is thus R̄j(N) =
1
N

∑N
n=1 Rjn for a trial of which the maximum sample size is N. Consequently, the

estimated MTD under the benchmark design is

d̂
opt
M = arg min

j=1,...,Ji?
|R̄j(N) − 0.25|.
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Procedure A B C D E
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Figure 2.7: Operating characteristics of phase I clinical trials designed using the dose-escalation Procedures A - E,
where the tuning parameter is stipulated explicitly relating to the trial information time for Procedures
A and B. The vertical black line indicates the true MTD in humans in each simulation scenario.
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Procedure A B C D E

Scenario 5 Scenario 6 Scenario 7 Scenario 8

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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Figure 2.8: Operating characteristics of phase I clinical trials, setting the maximum trial sample size as 33 (i.e., 11

patient cohorts), designed using the dose-escalation Procedures A - E. The vertical black line indicates the
true MTD in humans in each simulation scenario.
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Table 2.4: Comparison of alternative analysis models in terms of the percentage of selecting a dose as MTD at the
end of the trials, percentage of early stopping for safety, average patient allocation, and average number of
patients with toxicity. For each simulated trial, we specify the maximum sample size as 21.

Sc. Design
% dose declared as MTD & average patient allocation

DLT N̄
di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None

2 4 8 16 22 28 40 54 70

1 pTox 0.11 0.25 0.35 0.41 0.47 0.52 0.58 0.63 0.70

Optimal Sel 18.2 54.2 19.8 5.6 1.5 0.4 0.1 0 0

A u01 = 0.6 Sel 4.2 18.2 35.7 6.6 0.7 0.1 0 0 0 34.5
Pts 1.6 6.8 5.8 1.6 0.2 0 0 0 0 4.7 16.0

u01 = 0.2 Sel 4.2 18.2 35.8 6.4 0.8 0.1 0 0 0 34.5
Pts 1.6 6.8 5.8 1.5 0.2 0 0 0 0 4.7 15.9

B u01 = 0.6 Sel 3.8 18.8 36.0 5.6 1.0 0 0 0 0 34.8
Pts 1.5 6.6 6.0 1.5 0.1 0.1 0 0 0 4.6 15.8

u01 = 0.2 Sel 3.8 18.8 35.9 5.7 1.0 0 0 0 0 34.8
Pts 1.5 6.6 6.0 1.4 0.2 0.1 0 0 0 4.7 15.8

C Sel 5.7 26.0 28.5 4.4 1.3 0.4 0 0 0 33.7
Pts 0.9 7.0 6.6 1.4 0.1 0.1 0 0 0 4.8 16.1

D Sel 0 2.2 76.4 20.3 1.1 0 0 0 0 0

Pts 0 3.1 13.0 4.7 0.2 0 0 0 0 7.3 21.0

E Sel 9.7 31.0 20.7 2.4 1.3 0.7 0 0.1 0 34.1
Pts 2.2 7.2 4.9 1.1 0.1 0.2 0 0 0 4.3 15.7

2 pTox 0.08 0.16 0.25 0.35 0.41 0.45 0.52 0.58 0.63

Optimal Sel 4.3 28.1 39.8 20.3 4.9 1.7 0.7 0.1 0.1

A u01 = 0.6 Sel 1.4 9.5 45.6 22.7 4.4 0.8 0.1 0 0 15.5
Pts 1.0 5.4 7.8 3.6 0.7 0.1 0 0 0 4.5 18.6

u01 = 0.2 Sel 1.4 9.5 46.3 21.8 4.6 0.9 0 0 0 15.5
Pts 1.0 5.4 7.8 3.6 0.7 0.1 0 0 0 4.5 18.6

B u01 = 0.6 Sel 1.4 9.5 45.9 21.9 4.2 1.6 0 0 0 15.5
Pts 1.0 5.4 7.8 3.6 0.5 0.3 0.1 0 0 4.5 18.7

u01 = 0.2 Sel 1.4 9.5 46.0 21.4 5.2 0.9 0.1 0 0 15.5
Pts 1.0 5.4 7.8 3.6 0.6 0.3 0.1 0 0 4.5 18.8

C Sel 1.5 17.0 48.3 16.6 3.9 0.7 0.1 0 0 11.9
Pts 0.4 6.2 8.9 2.9 0.5 0.2 0 0 0 4.6 19.1

D Sel 0 0 49.3 45.7 5.0 0 0 0 0 0

Pts 0 3.0 9.3 8.1 0.6 0 0 0 0 5.8 21.0

E Sel 2.1 24.1 38.8 10.0 5.0 2.2 0.3 0.3 0.2 17.0
Pts 1.3 6.5 6.9 2.5 0.4 0.6 0 0.1 0 4.2 18.3

3 pTox 0.02 0.05 0.14 0.25 0.35 0.42 0.51 0.60 0.68

Optimal Sel 0 1.0 24.5 46.3 21.5 5.3 1.3 0.1 0

A u01 = 0.6 Sel 0 1.0 24.0 49.0 19.0 4.1 0.9 0.1 0 1.9
Pts 0.2 3.8 6.7 6.9 2.4 0.6 0 0 0 3.9 20.6

u01 = 0.2 Sel 0 1.0 24.9 47.1 21.2 3.9 0 0 0 1.9
Pts 0.2 3.8 6.8 7.0 2.5 0.4 0 0 0 4.5 20.7

B u01 = 0.6 Sel 0 1.0 23.9 48.7 19.4 4.3 0.8 0 0 1.9
Pts 0.2 3.8 6.7 7.0 1.8 1.1 0.1 0 0 4.0 20.7

u01 = 0.2 Sel 0 1.0 24.6 47.6 21.1 3.7 0.1 0 0 1.9
Pts 0.2 3.8 6.7 7.0 1.8 1.1 0.1 0 0 4.0 20.7

C Sel 0 1.8 34.5 38.1 17.1 6.2 0.7 0.2 0.1 1.3
Pts 0 3.9 7.9 5.9 1.7 1.2 0.2 0 0 4.0 20.8
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Table 2.4 – Continued.

Sc. Design
% dose declared as MTD & average patient allocation

DLT N̄
di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None

2 4 8 16 22 28 40 54 70

D Sel 0 0 11.6 61.6 26.7 0.1 0 0 0 0

Pts 0 3.0 4.7 10.9 2.4 0 0 0 0 4.3 21.0

E Sel 0 4.0 39.3 26.8 17.5 8.8 1.5 0.5 0.4 1.2
Pts 0.4 4.2 7.6 5.2 1.3 1.9 0.1 0.2 0 3.9 20.9

4 pTox 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55

Optimal Sel 0 0.4 6.7 23.8 37.5 20.7 8.5 2.1 0.3

A u01 = 0.6 Sel 0 0 9.4 34.6 34.3 15.2 4.4 0.4 0.3 1.4
Pts 0.2 3.6 5.2 6.5 3.4 1.6 0.1 0.1 0 3.2 20.7

u01 = 0.2 Sel 0 0 10.3 34.9 36.8 16.6 0 0 0 1.4
Pts 0.2 3.6 5.3 6.7 3.6 1.5 0 0 0 3.1 20.9

B u01 = 0.6 Sel 0 0 9.5 34.0 35.5 16.4 3.0 0.1 0.1 1.4
Pts 0.2 3.6 5.2 6.6 2.6 2.1 0.4 0 0.1 3.3 20.8

u01 = 0.2 Sel 0 0 10.1 35.7 37.3 13.8 1.1 0.5 0.1 1.4
Pts 0.2 3.6 5.2 6.5 2.8 2.0 0.4 0 0.1 3.3 20.8

C Sel 1.2 0 0.3 13.3 34.6 27.9 20.0 1.5 0.9 0.3
Pts 0 3.6 6.0 5.8 2.6 2.3 0.5 0 0.1 3.4 20.9

D Sel 0 0 0 2.0 43.6 53.7 0.7 0 0 0

Pts 0 3.0 3.6 9.7 4.6 0.1 0 0 0 3.2 21.0

E Sel 0 2.0 17.1 21.6 25.0 20.1 9.9 1.5 1.5 1.3
Pts 0.4 3.8 5.5 5.2 1.7 3.1 0.3 0.6 0.1 3.4 20.7

5 pTox 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60

Optimal Sel 0 0 0.1 8.4 24.6 44.2 20.4 2.2 0.1

A u01 = 0.6 Sel 0 0 0.7 12.4 38.5 38.5 7.8 1.8 0.3 0

Pts 0 3.1 3.5 5.1 4.9 3.5 0.4 0.4 0.1 2.7 21.0

u01 = 0.2 Sel 0 0 0.8 11.8 43.2 44.2 0 0 0 0

Pts 0 3.1 3.5 5.3 5.4 3.7 0 0 0 2.5 21.0

B u01 = 0.6 Sel 0 0 0.7 13.6 38.8 40.3 6.1 0.1 0.4 0

Pts 0 3.1 3.5 5.3 3.6 4.3 1.1 0 0.2 2.9 21.0

u01 = 0.2 Sel 0 0 0.7 14.8 43.5 37.4 2.7 0.5 0.4 0

Pts 0 3.1 3.5 5.2 3.7 4.2 1.0 0 0.2 2.9 20.9

C Sel 0 0 1.2 16.3 32.4 41.1 6.7 1.2 1.1 0

Pts 0 3.1 3.7 5.3 3.2 4.3 1.1 0.1 0.2 2.9 21.0

D Sel 0 0 0 12.0 81.1 6.9 0 0 0 0

Pts 0 3.0 3.0 6.8 7.8 0.4 0 0 0 2.1 21.0

E Sel 0 0 2.5 11.0 28.7 35.3 17.9 1.7 2.9 0

Pts 0.1 3.1 3.7 5.0 2.0 5.2 0.7 1.1 0.1 3.1 21.0

6 pTox 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47

Optimal Sel 0 0 0.6 3.2 7.6 15.1 49.5 20.6 3.4

A u01 = 0.6 Sel 0 0 1.4 7.5 25.1 37.5 20.4 6.4 1.3 0.4
Pts 0 3.2 3.9 4.8 3.9 3.6 0.6 0.7 0.2 2.1 20.9

u01 = 0.2 Sel 0 0 1.4 8.2 26.5 63.5 0 0 0 0.4
Pts 0 3.2 3.9 4.8 4.5 4.5 0 0 0 1.8 20.9

B u01 = 0.6 Sel 0 0 1.4 7.6 22.2 44.1 21.9 0.1 2.3 0.4
Pts 0 3.2 3.9 4.8 2.2 4.4 1.7 0.2 0.5 2.3 20.9

u01 = 0.2 Sel 0 0 1.4 8.5 27.0 46.4 10.6 3.5 2.2 0.4
Pts 0 3.2 3.9 4.8 2.5 4.1 1.8 0.2 0.5 2.3 21.0

C Sel 0 0 1.1 7.4 18.0 45.7 17.1 5.1 5.6 0
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Table 2.4 – Continued.

Sc. Design
% dose declared as MTD & average patient allocation

DLT N̄
di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None

2 4 8 16 22 28 40 54 70

Pts 0 3.2 4.1 4.4 2.4 4.5 1.6 0.2 0.6 2.3 21.0

D Sel 0 0 0 9.8 73.6 16.6 0 0 0 0

Pts 0 3.0 3.1 6.4 7.8 0.7 0 0 0 1.7 21.0

E Sel 0 0.1 3.1 4.5 11.1 31.8 27.9 8.0 13.2 0.3
Pts 0.2 3.2 4.0 4.0 1.1 4.7 1.2 2.0 0.5 2.6 20.9

7 pTox 0.35 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97

Optimal Sel 93.9 5.7 0.4 0 0 0 0 0 0

A u01 = 0.6 Sel 3.4 6.4 1.4 0 0 0 0 0 0 88.8
Pts 1.5 5.1 1.5 0.1 0 0 0 0 0 3.6 8.2

u01 = 0.2 Sel 3.4 6.4 1.4 0 0 0 0 0 0 88.8
Pts 1.5 5.1 1.5 0.1 0 0 0 0 0 3.6 8.2

B u01 = 0.6 Sel 3.4 6.4 1.4 0 0 0 0 0 0 88.8
Pts 1.5 5.1 1.5 0.1 0 0 0 0 0 3.6 8.2

u01 = 0.2 Sel 3.4 6.4 1.4 0 0 0 0 0 0 88.8
Pts 1.5 5.1 1.5 0.1 0 0 0 0 0 3.6 8.2

C Sel 4.1 6.9 0.7 0 0 0 0 0 0 88.3
Pts 1.0 6.1 1.5 0.1 0 0 0 0 0 3.9 8.7

D Sel 0.1 59.6 40.3 0 0 0 0 0 0 0
Pts 0 5.8 14.8 0.4 0 0 0 0 0 11.7 21.0

E Sel 6.0 5.1 0 0 0 0 0 0 0 88.9
Pts 2.1 4.6 1.0 0.1 0 0 0 0 0 3.3 7.8

8 pTox 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

Optimal Sel 0.3 0 0 0 0.6 0.6 9.2 29.4 59.9

A u01 = 0.6 Sel 0 0 0 0.3 3.3 22.6 27.9 25.6 20.3 0

Pts 0 3.1 3.1 3.3 3.5 4.1 1.1 1.5 1.3 1.1 21.0

u01 = 0.2 Sel 0 0 0 0.3 4.3 95.4 0 0 0 0

Pts 0 3.1 3.1 3.4 3.9 7.5 0 0 0 0.6 21.0

B u01 = 0.6 Sel 0 0 0 0.3 3.0 24.4 38.0 0.5 33.8 0

Pts 0 3.1 3.1 3.4 0.9 4.6 2.8 0.7 2.4 1.4 21.0

u01 = 0.2 Sel 0 0 0 0.3 4.3 30.2 20.7 11.0 33.5 0

Pts 0 3.1 3.1 3.3 1.1 4.3 3.0 0.7 2.4 1.4 21.0

C Sel 0 0 0 0.1 2.1 23.5 26.2 13.3 34.8 0

Pts 0 3.0 3.1 3.3 0.9 4.5 3.1 0.7 2.4 1.4 21.0

D Sel 0 0 0 0.3 46.2 53.5 0 0 0 0

Pts 0 3.0 3.0 3.7 9.4 1.9 0 0 0 0.6 21.0

E Sel 0 0 0 0.3 0.6 6.8 21.1 13.2 58.0 0

Pts 0.1 3.0 3.1 3.2 0.3 4.1 1.5 3.1 2.6 1.6 21.0

Sc.: Scenarios; pTox: true probability of toxicity in humans; Sel: proportion of times of declaring a dose as MTD; Pts: average number of patients allocated

to a dose; N̄: average number of patients treated per simulated trial; None: proportion of trials that have been stopped early without a declaration of MTD.
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A R O B U S T B AY E S I A N M E TA - A N A LY T I C M O D E L T O
I N C O R P O R AT E P R E C L I N I C A L A N I M A L D ATA

Summary. Before a first-in-man trial is conducted, preclinical studies are performed
in animals to help characterise the safety profile of the new medicine. We propose
a robust Bayesian hierarchical model to synthesise animal and human toxicity data,
using scaling factors to translate doses administered to different animal species onto
an equivalent human scale. After scaling doses, the parameters of dose-toxicity mod-
els intrinsic to different animal species can be interpreted on a common scale. A
prior distribution is specified for each translation factor to capture uncertainty about
differences between toxicity of the drug in animals and humans. Information from
animals can then be leveraged to learn about the relationship between dose and risk
of toxicity in a new phase I trial in humans. The model allows human dose-toxicity
parameters to be exchangeable with the study-specific parameters of animal species
studied so far or non-exchangeable with any of them. This leads to robust inferences,
enabling the model to give greatest weight to the animal data with parameters most
consistent with human parameters, or discount all animal data in the case of non-
exchangeability of parameters. The proposed model is illustrated using a case study
and simulations. Numerical results suggest that our proposal improves the precision
of estimates of the toxicity rates when animal and human data are consistent, while
it discounts animal data in cases of inconsistency.

Keywords: Bayesian hierarchical model; Historical data; Oncology; Phase I clinical
trials; Robustness.

3.1 introduction

There has been much recent interest in methods leveraging historical information for
the design and interpretation of new clinical trials (Viele et al. [2014]; Eichler et al.
[2013, 2016]; Neuenschwander et al. [2016a]; van Rosmalen et al. [2017]). Information
may be available from clinical trials, epidemiological studies, medical research or
routine clinical practice. For example, patients randomised to standard of care or
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placebo in historical trials can be used to augment (Hobbs et al. [2013]; French et al.
[2010, 2012]) or, in exceptional circumstances, substitute entirely (Eichler et al. [2016])
for the control arm of a new trial, thus enabling more ethical or smaller studies, or
studies which learn more about the novel therapy. Methods for leveraging historical
information have applications to trials in small or difficult to study populations, for
example, paediatric trials (Wadsworth et al. [2018]) or studies of antibiotics for drug
resistant pathogens (Dane and Wetherington [2014]). In the context of early phase
trials, Takeda and Morita [2018] incorporate data from a completed phase I trial
into a subsequent dose-escalation study performed in a different patient population.
Cunanan and Koopmeiners [2017] discussed possibilities of combining information
across patient populations for a more accurate characterisation of the toxicity profile
of a new compound in oncology. These proposals attempt to use historical data to
inform decision making when the new phase I trial data are sparse.

When leveraging historical data, it is always possible that a conflict will emerge
between the historical and the new trial data. In view of this, several approaches
have been developed which down-weight the historical data either to a degree that
is fixed ahead of time, or determined dynamically based upon the extent of the ob-
served prior-data conflict. Power priors by Ibrahim and Chen [2000] with a fixed
exponent are examples of ‘static priors’ (Viele et al. [2014]) while power priors with
random exponents (Duan et al. [2006]), commensurate priors (Hobbs et al. [2011,
2012]), and meta-analytic analyses based on Bayesian hierarchical random-effects
models (Neuenschwander et al. [2010, 2016a]; Schmidli et al. [2014]) are examples
of dynamic approaches. This manuscript will consider a meta-analytic approach to
incorporate animal data from preclinical studies into a phase I oncology study.

Bayesian model-based designs for phase I dose-escalation studies in oncology use
all accumulated trial data for interim decision making. These designs have shown
superior operating characteristics to the traditional algorithmic 3+3 design (Storer
[1989]), correctly identifying the true maximum tolerated dose (MTD) with higher
probability and allocating a higher proportion of patients to this dose (Jaki et al.
[2013]). So far numerous Bayesian procedures based upon one- or two-parameter
models for the dose-toxicity relationship have been proposed, such as the continual
reassessment method (O’Quigley et al. [1990]; Paoletti and Kramar [2009]), proce-
dures implementing escalation with overdose control (Babb et al. [1998]), and Bayesian
decision theoretic approaches which make dose recommendations to maximise a gain
function (Whitehead [2006]) at interims.
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Whilst a one-parameter model may provide an adequate local approximation to the
dose-toxicity relationship, when linking dose-toxicity relationships in animals and
humans we will find it helpful to have a more complete description of how risk varies
with dose, and so adopt a two-parameter Bayesian logistic regression model (BLRM)
(Whitehead and Williamson [1998]; Neuenschwander et al. [2008]). A BLRM can be
implemented with either ‘operational priors’, so-called because they are chosen to
ensure that a dose-escalation procedure has favourable operating characteristics, or
priors representing substantive knowledge. Formulating informative priors for model
parameters can be challenging since there may be little relevant human data to draw
upon before a phase I study is performed. However, this is not to say that no relevant
information will exist as phase I trials are always preceded by preclinical studies
evaluating a medicine’s safety profile in animals (USFDA [2005]). The question is
whether, and how, we can incorporate these data into a phase I trial.

A challenge one faces when synthesising data across species is that the safe doses
associated with an acceptable risk of toxicity in humans and different animal species
may cover very different dosing intervals. To overcome this obstacle, we will use
allometric scaling (West and Brown [2005]; Sharma and McNeill [2009]), which is a
technique often used to transform an animal dose, such as the no observed adverse
event level, into a human equivalent dose by adjusting for differences in size (Baker
et al. [2002]). As far as we are aware, little has been written on quantitative methods
for augmenting phase I trials with animal data. Instead attention has focused on
using preclinical data to inform the choice of a safe starting dose for a phase I trial
(USFDA [2005]; Reigner and Blesch [2001]).

The remainder of the chapter is structured as follows. In Chapter 3.2, we propose
a Bayesian meta-analytic model to borrow information from one or more animal
species into human trials. In Chapter 3.3, we present a case study illustrating how
the proposed hierarchical model can be used to analyse animal and human data at
a single analysis. In Chapter 3.4, we use examples to explore how the model can be
used to leverage animal data for interim decision making in a dose-escalation trial
and interprete the results of a simulation study evaluating trial operating character-
istics in Chapter 3.5. Particular attention is given to evaluating the model’s ability to
react to a conflict between the animal data and accruing human data. We conclude in
Section 6 with a discussion of possible extensions of the proposed methodology.
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3.2 bayesian hierarchical models for using historical data

This section describes the ideas underlying Bayesian hierarchical models when used
as a means to augment phase I clinical trials with historical data. In Chapter 3.2.1,
we review standard meta-analytic models for the incorporation of historical data
that are accrued from external phase I dose-escalation studies performed in humans.
In Chapter 3.2.2, we propose a robust hierarchical extension to accommodate the
scenario, where historical data are measurements from preclinical studies involving
multiple animal species.

3.2.1 Standard Bayesian meta-analytic models

Let us focus on the dose-toxicity data that are routinely collected in early phase
drug development, where the primary toxicity endpoint is typically dichotomous, so
that a patient experiences either a dose-limiting toxicity (DLT) or no-DLT. Suppose
that dose-toxicity data, denoted by Y1, . . . , YM, are available from M historical dose-
escalation studies. For i = 1, . . . ,M, historical study i evaluated in total Ji doses,
which are indexed by the discrete set of increasing doses Di = {di1, . . . ,diJi}. Let
rij and nij denote the number of subjects experiencing a DLT and the total number
receiving the dose dij ∈ Di, respectively.

Throughout, we will assume there is a monotonic increasing relationship between
dose and the risk of toxicity. In this setting, a two-parameter logistic regression
model is commonly adopted to analyse the binary outcome data (Whitehead and
Williamson [1998]; Neuenschwander et al. [2008]). Specifically, the dose-toxicity data
from the ith study can be modelled as

rij|pij,nij ∼ Binomial(pij,nij),

logit(pij) = θ1i + exp(θ2i) log(dij/dRef),

θi|µ,Ψ ∼ BVN(µ,Ψ), for i = 1, . . . ,M,

(3.2.1)

where dRef is a predefined reference dose invariant across studies and pij denotes the
probability of toxicity at dose dij. With this parameterisation, θi = (θ1i, θ2i) can be
handily interpreted. Namely, θ1i is the log-odds of a DLT at the reference dose dRef.
Model (3.2.1) comprises a “data model” as the first level and a “parameter model”
as the second level. In particular, the second level of the hierarchy stipulates that θis
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are conditionally independent samples from a common bivariate normal distribution
with unknown mean µ and covariance matrix Ψ.

Parameters µ and Ψ can be inferred as part of the model-fitting process from a
frequentist perspective (DerSimonian and Laird [1986]; Knapp and Hartung [2003]),
while this can be quite challenging in situations when only a few historical stud-
ies are to be analysed (Gonnermann et al. [2015]; Röver et al. [2015]; Friede et al.
[2017]). Alternatively, one may analyse the data by fitting a Bayesian model (Sutton
and Abrams [2001]; Lunn et al. [2013]; Turner et al. [2015]). A third level will then be
added to specify priors for the hyperparameters. In our parameterisation, the priors
are particularly to be placed on the elements of µ and Ψ. From this point onwards,
we will focus on establishing Bayesian hierarchical models for flexible borrowing of
information from historical studies.

This can be thought of as a compromise between two limiting cases: (i) complete
pooling of historical datasets, which occurs when the main diagonal elements of Ψ
approach 0; and (ii) no borrowing of information, which occurs when the main diag-
onal elements of Ψ tend towards ∞. Therefore, the covariance matrix Ψ controls the
degree of borrowing across all historical studies. In the Bayesian paradigm, our choice
of the priors for the elements of Ψ is crucial. Gelman [2006] discuss the prior specifi-
cation for variance parameters in hierarchical models. Rhodes et al. [2016] highlight
choices of the prior placed on the between-study variance in Bayesian random-effects
meta-analyses. We note any default priors cannot be taken for granted and must be
checked.

Let us consider to incorporate historical dose-toxicity data available from humans
to inform design and analysis of a new phase I clinical trial using a standard Bayesian
hierarchical model. In line with the notations defined above, let Yi? and θi? denote
the binary DLT outcomes and the parameter vector which underpins the new phase
I trial, respectively. We would assume that the new parameter vector θi? = (θ1i? , θ2i?)
is exchangeable with the historical study-specific parameter vectors, θ1, . . . ,θM, which
lays a foundation to implement the historical borrowing. The Bayesian hierarchical
model can thus accommodate data from the historical studies i = 1, . . . ,M and the
new study indexed by i?. The second level, say, random-effects model for the study-

specific parameters now becomes θ1, . . . ,θM,θi? |µ,Ψ
i.i.d.
∼ BVN(µ,Ψ). Inference for

θi? can be performed in either a prospective or retrospective manner:

(i) a meta-analytic predictive (MAP) approach quantifies prospectively the prior
knowledge about θi? at the design stage of the new clinical trial i? by the prior
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predictive probability density function (pdf), f(θi? |Y1, . . . , YM), which will later
be updated with the newly accrued data Yi? using Bayes Theorem.

(ii) a meta-analytic combined (MAC) analysis is retrospective in the sense that once
the new phase I study is complete, a random-effects meta-analysis is performed
to synthesise the historical data Y1, . . . , YM and the new data Yi? . Beliefs about
the new parameter vector θi? are then represented by the posterior pdf, denoted
by f(θi? |Y1, . . . , YM, Yi?).

It is important to note that the MAC and MAP analyses lead to equivalent results
(Neuenschwander et al. [2016a]). Yet, along with the description written above, the
MAP approach requires two steps for implementation. This is because f(θi? |Y1, . . . , YM)

must be represented as a prior distribution, but it cannot be derived analytically in
most cases. One approach to overcome this challenge is to approximate the prior
predictive pdf with a mixture of conjugate distributions, which is then taken to be
the prior for θi? so as to derive the posterior using Bayes’ Theorem; see Schmidli
et al. [2014] for technical details. At the design stage when only historical data are
available, implementing the MAP analysis can be beneficial. However, MAC offers
considerable convenience to analyse ongoing adaptive trials with accumulating data,
as no approximation step is needed given the equivalence property of MAC and
MAP. Without loss of generality, throughout this paper we refer to both methods as
the meta-analytic (MA) approaches.

Borrowing of information from historical data is likely to offer precision gains for
estimating θi? only if the exchangeability assumption for parameters across different
subgroups holds. However, this could sometimes be unrealistic in certain situations.
Neuenschwander et al. [2016b] propose a robust mixture extension of MA models
with partial exchangeability structures, considering the possibility that parameters
may not be a priori exchangeable. Nonparametric approaches with similar motivation
can be found in Leon-Novelo et al. [2012] and Müller and Mitra [2013]. We note these
methods work well in most cases when the historical data are measurements on
the same scale while under the risk of excessive borrowing. But, if by any chance
the historical data and new data are not readily on a similar basis, even a partial
exchangeability assumption of θis would appear to be sceptical.

One example precluding the straightforward use of standard MA models or their
extensions has emerged in the field of early drug development. Specifically, when
historical data are collected from preclinical studies performed in animals to inform
decision making in a subsequent phase I first-in-man study, assuming the study-
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specific parameters to be fully or partially exchangeable may be problematic. We
thus propose a flexible Bayesian MA model in the following to address additional
challenges in our context.

3.2.2 A robust model for borrowing strength across species

Suppose that M preclinical studies have been performed in K animal species, with
K 6 M, and let S = {S1, . . . ,SK} contain labels for the K species studied so far. Fur-
thermore, we assume that a single animal species Ai ∈ S was investigated in study
i, for i = 1, . . . ,M. Let Yi = (Yi1, . . . , Yini) denote the vector listing the binary dose-
limiting toxicity (DLT) outcomes (DLT or no DLT) of the ni animals treated in study
i. Finally, we suppose that the Ji doses contained in the set Di = {di1, . . . ,diJi ;dit1 <
dit2 for 1 6 t1 < t2 6 Ji} were evaluated in study i, where rij out of nij animals
that received dose dij experienced a DLT. In each study i = 1, . . . ,M, we assume that
the risk of experiencing a DLT increases monotonically with dose and that this rela-
tionship is adequately described by a two-parameter logistic model with parameters
θi = (θ1i, θ2i). Letting pij denote the DLT risk on dose dij, we model study i data
as:

rij|pij,nij ∼ Binomial(pij,nij), for j = 1, . . . , Ji

logit(pij) = θ1i + exp(θ2i) log(δAidij/dRef)

θi|µAi ,Ψ ∼ BVN(µAi ,Ψ) with Ai ∈ {S1, . . . ,SK},

(3.2.2)

where dRef is a reference dose invariant across studies, defined below, and for each
k = 1, . . . ,K,

µSk =

(
µ1Sk

µ2Sk

)
and Ψ =

(
τ21 ρτ1τ2

ρτ1τ2 τ22

)
.

Variances in Ψ represent between-trial heterogeneity within an animal species. Model
(3.2.2) stipulates that the intercept of the dose-toxicity model in study i is θ1i +
exp(θ2i) log(δAi), and therefore depends upon the animal species studied. For k =

1, . . . ,K, the term δSk in (3.2.2) attempts to translate the doses administered to species
Sk onto a common equivalent human dosing scale. After translation of animal data,
similar intervals of values should characterise acceptably safe doses in each animal
species and humans. Thus, θ1i and θ2i in (3.2.2) can be thought of, in an approxi-
mate sense, as the parameters that would have applied in study i had humans been
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studied rather than animal species Ai. The translation factor δSk reflects the relative
potency of a compound in species Sk and humans; that is, if δSk > 1 (0 < δSk < 1),
the same dose of a drug has a higher (lower) DLT risk in species Sk than in humans.
A special case is δSk = 1, which implies a drug has a similar potency in species Sk
and humans.

Now let i? index the phase I first-in-man trial which will evaluate doses in the
set Di? = {di?1, . . . ,di?Ji? }. For completeness, we refer to humans as species H and
define the label Ai? = H, denoting that humans will be studied in the new trial.
Furthermore, let θi? = (θ1i? , θ2i?) denote the model parameters that will underpin
the new trial. We model data from study i? as:

ri?j|pi?j,ni?j ∼ Binomial(pi?j,ni?j), for j = 1, . . . , Ji?

logit(pi?j) = θ1i? + exp(θ2i?) log(di?j/dRef),
(3.2.3)

where we stipulate δAi? = 1 since human doses are already expressed on the common
human dosing scale, and dRef ∈ Di? is the same reference dose specified in (3.2.2).

Specification of the translation factors embedded in (3.2.2) can be informed by
allometric scaling, assuming that size-related differences in drug metabolism and
pharmacokinetics explain differences in DLT risk between animals and humans given
the same dose. However, there will usually be uncertainty about the precise reason
for differences. Treating such translation factors as random variables robustifies the
borrowing of information from animals to humans in case our prior understanding
of differences between species is incorrect. We propose placing a log-normal prior
on each δSk . Table 3.1 lists log-normal priors specified using information from the
FDA draft guideline Estimating the Maximum Safe Starting Dose in Initial Clinical Trials
for Therapeutics in Adult Healthy Volunteers (USFDA [2005]); details on the derivation
of these priors can be found in Technical notes 3.7.1. Model(3.2.2) assumes that for
each k, translation factor δSk applies across all studies performed in species Sk since
δSk is intended to capture intrinsic differences between species Sk and humans. We
may consider refining this assumption if the different studies performed in species
Sk focused on distinct subgroups, e.g., mature versus juvenile animals.

Recall that if translation factors in (3.2.2) are appropriately specified, the study-
specific parameters will be expressed on a common human dosing scale and there
will be similarities between the population means of the θis across various animal
species. Assuming population means µS1 , . . . ,µSK are exchangeable, we stipulate a
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Table 3.1: Log-normal priors for species-specific translation factors, δAi
∼ LN(λ,γ2), specified using body surface

area (BSA) and body weight (BW) data documented in the FDA draft guidelines (FDA, 2005).

Species BW (kg)
BSA (m2)

HED in mg/kg HED in mg/m2

Reference Working range λ γ λ γ

Mouse 0.02 (0.011, 0.034) 0.007 -2.562 0.298 1.050 0.283

Hamster 0.08 (0.047, 0.157) 0.016 -2.002 0.302 1.609 0.287

Rat 0.15 (0.080, 0.270) 0.025 -1.820 0.323 1.792 0.309

Ferret 0.30 (0.160, 0.540) 0.043 -1.669 0.323 1.943 0.309

Guinea pig 0.40 (0.208, 0.700) 0.050 -1.532 0.315 2.079 0.301

Rabbit 1.80 (0.900, 3.000) 0.150 -1.127 0.290 2.485 0.274

Dog 10 (5, 17) 0.500 -0.616 0.301 2.996 0.286

Primates:
Monkeys 3 (1.400, 4.900) 0.250 -1.127 0.273 2.485 0.256

Marmoset 0.35 (0.140, 0.720) 0.060 -1.848 0.401 1.764 0.389

Squirrel monkey 0.60 (0.290, 0.970) 0.090 -1.715 0.269 1.897 0.252

Baboon 12 (7, 23) 0.600 -0.616 0.306 2.996 0.291

Micro-pig 20 (10, 33) 0.740 -0.315 0.284 3.297 0.268

Mini-pig 40 (25, 64) 1.140 -0.054 0.258 3.558 0.240

bivariate normal ‘supra-species’ random-effects distribution, to allow for increased
borrowing of information across species, that is, for Sk, k = 1, . . . ,K,

µSk |m,Σ ∼ BVN(m,Σ), (3.2.4)

with

m =

(
m1

m2

)
and Σ =

(
σ21 κσ1σ2

κσ1σ2 σ22

)
.

The random-effects distribution in (3.2.4) accounts for between-species differences in
average dose-toxicity model parameters. Differences may arise due to misspecifica-
tion of one or more δSk ; if there are size-dependent and size-independent differences
between an animal species and humans, the latter may not be completely captured
by δSk , but can be addressed by variances in Σ.

The Bayesian hierarchical model for the preclinical data is completed by specifying
prior distributions for the hyperparameters, where we implement the model setting

m1 ∼ N(v1, s21), m2 ∼ N(v2, s22),

τ1 ∼ HN(z1), τ2 ∼ HN(z2), ρ ∼ U(−1, 1),

σ1 ∼ HN(c1), σ2 ∼ HN(c2), κ ∼ U(−1, 1).

(3.2.5)
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Here, HN(z) denotes a half-normal distribution formed by truncating a N(0, z2) prior
distribution to cover the interval (0,∞). Although it will not be considered here, one
could allow the between-study variances in Ψ to vary across species.

We have yet to say how we relate the human study-specific parameter vector θi?

to the animal study-specific parameters θ1, . . . ,θM. We require robust borrowing of
information across species, meaning that we should down-weight information from
animal species with dose-toxicity model parameters dissimilar to those in humans,
and discount all preclinical data if no animal species appears similar to humans. Then,
for each k = 1, . . . ,K, we stipulate

θi? |µSk ,Ψ ∼ BVN(µSk ,Ψ) with prior probability wSk ,

so that wSk represents the prior plausibility that θi? is exchangeable with the study-
specific parameters in species Sk. Note that we have defined exchangeability at the
level of the study-specific model parameters since θi? is a study-specific, rather than
population mean, parameter. To robustify inferences about θi? , we stipulate

θi? ∼ BVN(m0,R0) with prior probability wR,

where wR = 1−
∑K
k=1wSk is a prior non-exchangeability weight and BVN(m0,R0) is

a weakly informative prior distribution. In practice, specification of wS1 , . . . ,wSK will
require the input of subject-matter experts such as pharmacologists or translational
scientists. The robust hierarchical model is fitted using Markov chain Monte Carlo,
and thus can be implemented with software such as OpenBUGS (Lunn et al. [2009]).

We note that adding a ‘supra-species’ level to the Bayesian hierarchical model in
equation (3.2.4) allows for increased, but robust, borrowing of information across
species. When all the θis are similar to both each other and θi? , we can borrow
strength across the related animal species to estimate the animal population mean
parameters with greater precision, and thus gain additional precision for estimating
θi? . Such borrowing is robust in the sense that if we place weakly informative priors
on elements of Σ and find that, say, study-specific parameters of only one animal
species are similar to θi? , posterior distributions for elements of Σ will place larger
probability mass on large between-species variances. This leads to less borrowing
across animal species to estimate the µSks, and we tend to borrow from the most
relevant animal species to learn about θi? .
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Table 3.2: Ocular toxicities observed from treated patients during a phase I first-in-man trial of AUY922. Estimated
risks are derived from a logistic regression model fitted to the pooled human data alone.

Dose (mg/m2)

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9
2 4 8 16 22 28 40 54 70

Number of patients 3 3 4 6 11 8 16 18 24

Number of ocular AEs 0 0 0 0 0 0 0 0 2

Ocular AE risk 0.001 0.002 0.004 0.008 0.012 0.015 0.023 0.033 0.045

3.3 illustrative example

In this section, we apply the proposed Bayesian hierarchical model to a retrospective
example, synthesising preclinical and clinical ocular toxicity data on AUY922, an
experimental compound intended to treat cancer (Roman et al. [2016]; Sessa et al.
[2013]).

3.3.1 Animal data

The safety profile of AUY922 was evaluated in several preclinical studies prior to its
evaluation in humans. For this compound, ocular adverse events (AEs) were thought
to potentially occur in humans. Thus, the risk of this type of event was investigated in
four studies performed in a total of 152 Wistar and Brown Norway rats (Roman et al.
[2016]), which we will hereafter refer to as ‘rats’. The ocular AE data are displayed in
Figure 3.1. The first two datasets are outcomes from Studies 1 and 2 reported in Ro-
man et al. [2016]. Since Study 1 involved male and female rats but Study 2 involved
only males, we use only the male rat data from Study 1. It was not possible to extract
the ocular AE data of Studies 3 and 4 from Roman et al. [2016]. Therefore, Figure 3.1
shows simulated, but plausible, data for these studies instead (slight modifications to
the doses for these studies have also been made so that we will have data on various
doses to fit the logistic model for rats). Data from the phase I study of AUY922 were
published in Sessa et al. [2013] and are listed in Table 3.2. During the phase I trial,
doses from the set Di? = {2, 4, 8, 16, 22, 28, 40, 54, 70} mg/m2 were available for ad-
ministration. The dose-escalation study was performed according to a BLRM-guided
procedure monitoring DLTs, defined as the occurrence of any clinically relevant drug-
related AE or abnormal lab value. Ocular AEs were also reported separately in the
clinical paper (Sessa et al. [2013]).
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Figure 3.1: Preclinical data from four studies in rats. The height of the bar represents the number of rats studied, and
the height of the dark grey segment counts the number experiencing an ocular toxicity. Doses listed in
brown are the doses (mg/kg) administered to rats. Doses listed in black are the human-equivalent doses
(mg/m2). Projections are made by scaling animal doses using the prior median of δRat.

In Chapter 3.3.2, we describe what would have been the predictive priors for the
risk of an ocular AE in the phase I trial given the rat data. In this example, since
animal data were available from only one species, we implement the robust Bayesian
hierarchical model from Chapter 3.2.2 setting K = 1. We note that our model can
accommodate the special case that K = 1 if weakly informative priors are adopted for
diagonal elements of Σ. In Chapter 3.3.3, we refit the hierarchical model to incorporate
both the rat and human data collected during the AUY922 phase I trial, and derive
posterior distributions for the risk of an ocular AE in the human trial.

3.3.2 Predictive priors for the risk of ocular toxicity in humans

Setting dRef = 28 mg/m2, we use the four rat datasets to fit the hierarchical model
proposed in Chapter 3.2 with the following priors. We set m1 ∼ N(−1.099, 1.982)
which implies a 95% prior credible interval for the risk of toxicity at 28 mg/m2

is 0.007 to 0.942 and prior median 0.250. Furthermore, we set m2 ∼ N(0, 0.992) to
permit flat to very steep dose-toxicity curves. These are weakly informative priors
that place probability mass on plausible values of the model parameters Gelman et al.
[2008]. A similar approach is used to specify the parameters of the BVN(m0,R0) non-
exchangeability prior. For the variance parameters, we set τ1 ∼ HN(0.5) assuming
substantial variability between the study-specific θi1s, and τ2 ∼ HN(0.25), assuming a
smaller degree of variability between the slopes of study-specific dose-toxicity curves.
Larger values are specified for the half-normal priors placed on σ1 and σ2 to preclude
giving definitive information. More details are given in Technical notes 3.7.2 on the
prior specification of hyperparameters. Finally, we stipulate δRat ∼ LN(1.792, 0.3092).



3.3 illustrative example 73

0

25

50

75

100

2 4 8 16 22 28 40 54 70 140

Dose (mg m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

wR = 0 wR = 0.5 wR = 1
A

0

25

50

75

100

2 4 8 16 22 28 40 54 70 140

Dose (mg m2)

P
rio

r 
in

te
rv

al
 p

ro
ba

bi
lit

y 
(%

)

Overdose Target interval Underdose
B

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40

Probability of toxicity (%)

P
rio

r 
de

ns
ity

4 mg m2 8 mg m2
C

0

25

50

75

100

2 4 8 16 22 28 40 54 70 140

Dose (mg m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

wR = 0 wR = 0.5 wR = 1
D

0

25

50

75

100

2 4 8 16 22 28 40 54 70 140

Dose (mg m2)

P
os

te
rio

r 
in

te
rv

al
 p

ro
ba

bi
lit

y 
(%

)

Overdose Target interval Underdose
E

0.00

0.05

0.10

0.15

0 10 20 30 40

Probability of toxicity (%)

P
os

te
rio

r 
de

ns
ity

70 mg m2 140 mg m2
F

Figure 3.2: Results of the Bayesian meta-analysis, corresponding to the synthesis of ocular toxicity data in rats with-
out and with the human data, respectively. Panels A and D show median and 95% CI of the marginal
distributions for the probability of ocular toxicity. Panels B and E describe the marginal distributions
of wR = 0.5 using interval probabilities. The background red curve shows the median probability of
toxicity of each human dose. Panels C and and F display the entire marginal distributions for the risk of
ocular toxicity on doses of particular interest.

Figure 3.2A summarises predictive priors of the risk of an ocular AE in humans
in the new phase I trial. Priors are derived at each human dose under a range of
non-exchangeability weights. Each predictive prior is summarised by its median and
95% credible interval. Setting wR = 0, predictive priors are derived assuming full
exchangeability between human and animal study-specific parameters. Increasing
wR to 0.5 suggests a large degree of prior skepticism about the plausibility of such
exchangeability assumption. Setting wR = 1 means we discard the rat data entirely
so that the prior for θi? is the weakly informative operational prior. Figure 3.2B
further summarises priors derived settingwR = 0.5 by three interval probabilities. We
characterise the predictive prior for each dose by the probability: (i) of underdosing,
which is said to occur if the DLT risk is less than 0.16; (ii) that the DLT risk lies in the
target interval [0.16, 0.33); and (iii) of overdosing, which is said to occur if the DLT
risk lies in the interval [0.33, 1] (Neuenschwander et al. [2008]). Figure 3.2C presents
the predictive prior probability densities of DLT risks on two low doses, 4 and 8

mg/m2, when wR = 0.5. Such visualisations may be useful for teams to consider
when selecting the starting dose for a phase I trial.
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Table 3.3: Summaries of marginal predictive priors derived from the rat data setting wR = 0.5. Also reported are
the parameters of the Beta(a, b) approximates used for ESS calculations.

Dose (mg/m2)

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 di?10
2 4 8 16 22 28 40 54 70 140

Prior means 0.062 0.080 0.107 0.150 0.179 0.209 0.259 0.300 0.335 0.424

Prior std dev. 0.148 0.166 0.189 0.219 0.237 0.254 0.284 0.305 0.317 0.330

ESS 1.7 1.7 1.7 1.7 1.6 1.5 1.4 1.3 1.2 1.2
a 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.5
b 1.6 1.5 1.5 1.4 1.3 1.2 1.0 0.9 0.8 0.7

To calculate the effective sample size (ESS) (Morita et al. [2008]) of the predictive
prior for the risk of an ocular AE on each human dose in the phase I human trial, we
approximate each prior by a Beta(a, b) distribution with parameters chosen to match
the first two moments of the prior. The ESS is then found as (a+ b). This follows
because a Beta(a, b) prior can be thought of as representing opinion on the risk of
an ocular AE after a out of (a+ b) patients allocated to a dose experience a toxicity,
assuming nothing was known about the risk a priori (Zhou and Whitehead [2003]).
After approximation, ESSs of predictive priors derived under wR = 0.5 are listed in
Table 3.3. The information represented by each prior is equivalent to that would be
obtained from approximately 1.2 – 1.7 human patients, and so it is clear that there is
heavy discounting of the preclinical data from 152 rats.

3.3.3 Synthesising data on the termination of the first-in-man trial

We now apply the proposed methodology to synthesise ocular AE data from both
rats and the data from humans available on termination of the phase I human trial.
Posterior distributions for the risk of an ocular AE on each human dose derived
under models with different non-exchangeability weights are summarised in Figure
3.2D. Figures 3.2E-F summarise the posteriors derived setting wR = 0.5.

With wR = 0.5, the posterior probability of exchangeability between the rat and hu-
man study-specific parameters increases from the prior value of 0.5 to 0.82, suggest-
ing that rat and human ocular AE data are more consistent than expected. Posterior
median probabilities of an ocular AE in the human phase I study at doses 70 and
140 mg/m2 are 0.048 (95% CI: [0.014, 0.118]) and 0.096 (95% CI: [0.025, 0.329]), re-
spectively. These are slightly more cautious and narrower than the posterior medians
and 95% CIs that would have been obtained had we discarded the rat data entirely
from our inferences. Setting wR = 1, the posterior median probabilities of an ocular
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AE (95% CIs) at 70 mg/m2 and 140 mg/m2 are 0.045 [0.010, 0.137] and 0.087 [0.015,
0.558], respectively. The marginal posterior distributions of the risk of an ocular AE
in the human trial at the two highest doses when wR = 0.5 are shown in Figure 3.2F.

3.4 leveraging animal data in adaptive phase i clinical trials

In this section, we illustrate how our Bayesian hierarchical model can be used to
leverage animal data for decision making in a hypothetical phase I dose-escalation
trial.

3.4.1 Trial design and determination of a safe starting dose

Suppose a phase I dose-escalation study, labelled i?, is to be performed to estimate
the MTD in humans, defined here as the dose associated with a risk of a DLT (of
any type) of 25%. During the phase I trial, doses (in mg/m2) from the set Di? =

{2, 4, 8, 16, 22, 28, 40, 54, 70} will be available for administration. We suppose that at
the time of designing the dose-escalation study, three studies have been conducted in
dogs. Simulated data from these hypothetical studies are presented in Figure S1 in the
Web-based Supplementary Materials. In our notation, these data are represented by
Y1,Y2,Y3. We analyse these data by fitting the Bayesian hierarchical model with priors
setting τ1 ∼ HN(0.25) and τ2 ∼ HN(0.125), to assume moderate to small between-
study variabilities for θ1i and θ2i, respectively, and δDog ∼ LN(2.996, 0.2862). Priors
for other parameters remain unchanged from Chapter 3.3.2.

Figure 3.3A summarises the prior predictive distributions for the DLT risk in the
new human study i? on each dose in Di? . Setting wR = 0.3, the prior median for
the DLT risk on dose 22 mg/m2 is 0.252, with 95% CI [0.011, 0.800]. Figure 3.3B
summarises these prior predictive distributions by presenting probabilities that the
DLT risk lies in each of the three intervals (underdosing; target; and overdosing)
defined in Section 3.2. We see that doses up to and including 16 mg/m2 are associated
with a prior predictive probability of overdosing of less than 25%. All hypothetical
phase I dose-escalation studies start by allocating the first cohort 4 mg/m2, with the
possibility to de-escalate to 2 mg/m2. On the basis of the dog data and our prior
beliefs about their relevance with human data, 4 mg/m2 appears very safe with
P(pi?2 < 0.1 | Y1,Y2,Y3) = 0.790.
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Figure 3.3: Summaries about the Bayesian analyses of the binary DLT data in dogs. Panel A shows median and 95%
CI of the marginal prior predictive distribution for the probability of toxicity in the future human phase I
trial, for a range of doses to be assessed. Prior predictive distributions are derived from a Bayesian meta-
analysis of the dog data alone, settingwR = 0, 0.3 or 1. Panel B gives an overview on the toxicity interval
probabilities predicted based on a robust meta-analysis of dog data, setting wR = 0.3. The background
red curve shows the prior median probability of toxicity per human dose. Panel C presents prior densities
for the risks of toxicity at potential starting doses.

3.4.2 Hypothetical dose-escalation studies

Suppose that patients enter the phase I trial in cohorts of size three and that all
patients within a cohort receive the same dose. After each cohort has been treated
and observed, an interim analysis is performed, at which point all dog and human
data are analysed to recommend a dose for the next cohort. Cohort h = 1 receives 4

mg/m2. Letting Y(h−1)i? denote the vector of outcomes from the first (h− 1) human
cohorts, the escalation rule recommends that cohort h > 2 receives dose

d
(h)
sel = max{di?j ∈ Di? : P(pi?j > 0.33|Y1,Y2,Y3,Y(h−1)

i? ) 6 0.25}. (3.4.1)

Dose recommendations are also subject to the additional constraint that escalation
is restricted to a maximum two-fold increase in the current dose. For the dosing set
considered here, this constraint implies that if the previous cohort received a dose
di?j 6 16 mg/m2, the next cohort can escalate by at most one dose level so long as
the overdose control criterion is satisfied.

Figure 3.4 summarises the progress of eight hypothetical phase I trials run with
simulated data, which are analysed using the proposed hierarchical model setting
wR = 0.3. Figure 3.4A traces dose-escalation recommendations while Figure 3.4B
records how the posterior probability of exchangeability between the new human
and dog study-specific parameters evolves as the study progresses. For reasons of
parsimony, we monitor each simulated trial until any dose is recommended for a
third time.
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Figure 3.4: Trajectory of dose recommendations (Panel A) and posterior probabilities of exchangeability (Panel B)
during the course of each hypothetical phase I trial in data examples 1 to 8.
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In examples 1 to 5, data were simulated so as to be largely consistent with the prior
opinion illustrated in Figure 3.3A (when wR = 0.3) that the DLT risk in humans given
22 mg/m2 in the new trial will be close to 25%, while we are confident that the risks
of toxicity on 2, 4 and 8 mg/m2 will all be well below 33%. This consistency leads to
higher posterior exchangeability probabilities, as shown in Figure 3.4B. In contrast,
examples 6 to 8 represent cases where there is a conflict between the human data and
what was anticipated based on the analysis of the dog data.

In examples 6 and 7, the simulated human data appear consistent with a higher
DLT risk at lower doses than what was predicted a priori. In example 6, one out
of three patients in the second cohort treated with 8 mg/m2 are observed with a
DLT; we escalated to administer 16 mg/m2 to the third cohort and all three patients
experienced a DLT. Preclinical data from dog studies were then discounted, with a
drop in the posterior probability of exchangeability from 0.810 to 0.358. A similar
response to early observations of DLTs on low doses was seen in example 7.

In example 8, the first DLT was observed only after dosing reached 54 mg/m2, so
that the DLT risk at high doses appeared to be lower than what was predicted on the
basis of the dog data. This prior-data conflict resulted in the posterior probability of
exchangeability shifting from its prior value of 0.7 to 0.266 once data were available
from the first six cohorts. Since the prior predictive distribution derived from the
dog data suggested that the human MTD in the new study would likely lie in the
neighbourhood of 22 mg/m2, it is not surprising that dose escalation slowed down
as we approached this dosing range. After completion of the forth cohort, posterior
probabilities of overdose at doses 28 and 40 mg/m2 were 0.085 and 0.293, respectively.
Thus, despite the fact that no human DLTs had been observed, the procedure repeated
administration of 28 mg/m2 to the fifth cohort.

We would like to add one more note here regarding the coherence concerns in
the dose-escalation procedure. Specifically, a de-escalation (an escalation) of dose is
said to be coherent only when the previous patient does (does not) experience a DLT
(Cheung [2005, 2011]). This can be understood as an allocation restriction for more
ethical escalations and de-escalations that

P(d
(h)
sel − d

(h−1)
sel > 0|Q(h−1) > q) = 0, (3.4.2)
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whereQ(h−1) denote the number of DLTs observed from the (h− 1)-th patient cohort,
and q is the threshold over which the escalation would be prohibited, as well as that

P(d
(h)
sel − d

(h−1)
sel < 0|Q(h−1) < q) = 0. (3.4.3)

Escalation after observing one out of three patients to experience a DLT in examples
1 – 4 and 6, as was shown on Figure 3.4, may be considered as coherence violations
when setting q = 1. In dose-escalation procedures that use our hierarchical model
for leveraging preclinical animal data, this is most likely to happen when allocating a
very small wR, the prior probability of non-exchangeability, in the presence of severe
inconsistency between preclinical and clinical data. One may carefully calibrate the
start-off value for wR to maintain coherence in dose escalation and de-escalation.
Alternatively, a more diffuse prior distribution may be considered on the variance
parameters, especially τ1 and τ2, which take account of heterogeneity between the
standardised animal studies and the phase I first-in-man trial. This would essentially
be a case-by-case issue: we recommend investigators who are interested in using our
Bayesian model to evaluate their dose-escalation procedures in terms of the coherence
property before applying them in a real trial.

3.5 simulation study

We performed a simulation study to evaluate the operating characteristics of a phase
I dose-escalation procedure. We simulate trials which proceed sequentially, recruiting
patients in cohorts of size three. Trials proceed using the Bayesian hierarchical model
of Chapter 3.2 to leverage the dog data illustrated in Figure S1. The preclinical data
are held fixed in the analysis of all simulated trials. At each analysis, we fit the
Bayesian hierarchical model with four choices for wR:

• Model A: Full exchangeability between the θis and θi? (wR = 0);

• Model B: High level of prior confidence in the exchangeability assumption
(wR = 0.3);

• Model C: Prior ambivalence about the exchangeability assumption (wR = 0.5);

• Model D: No borrowing of information from the dog data (wR = 1).

Interim dose recommendations are made according to rule (4.3.1), with the same
caveats as described in Chapter 3.4.2. Trials end: i) once 45 patients have been treated
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Table 3.4: Scenarios for the true probability of DLT in humans. For each scenario, the figure in bold indicates the
target dose closest to the true MTD.

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9
2 4 8 16 22 28 40 54 70

Scenario 1 0.08 0.16 0.25 0.35 0.41 0.45 0.52 0.58 0.63

Scenario 2 0.01 0.04 0.11 0.25 0.35 0.44 0.55 0.65 0.73

Scenario 3 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55

Scenario 4 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60

Scenario 5 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47

Scenario 6 0.003 0.006 0.01 0.02 0.05 0.08 0.15 0.25 0.37

Scenario 7 0.25 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97

Scenario 8 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

and observed; or ii) at any interim analysis if the lowest dose would be found as
excessively toxic, that is, the trial stops at interim analysis (h− 1) if P(pi?1 > 0.33 |

Y1,Y2,Y3,Y(h−1)
i? ) > 0.25. This early stopping rule has been chosen for conservatism,

meaning that the first-in-man trial has to be terminated, if potentially there is a 25%
chance that a patient receiving the lowest dose, d0 which is not the starting dose, will
have unacceptably high (here, defined as > 33%) possibility to experience a DLT. It
corresponds to the escalation rule defined in criterion (4.3.1): we would expect for
a very early stopping, when the dose has been de-escalated to the lowest level and
limited evidence suggests for an escalation. These two subsets of simulated trials will
later be referred to as complete and stopped early trials, respectively.

We consider eight different simulation scenarios, shown in Table 3.4, for the true
dose-toxicity relationship in the new phase I trial. These toxicity scenarios are not
identical with those specified in Chapter 2. In particular, we chose these scenarios
with respect to the predictive priors obtained from toxicity data of the available an-
imal studies, looking towards the behaviour of our approaches when faced with a
prior-data conflict. These include scenarios which are consistent with the predictive
prior derived from the dog data, as well as scenarios in which the drug is more (or
less) toxic than would be expected from the dog data. For each scenario and model,
results are based on 2000 simulated trials.

Define p̃i?j as the point estimate (posterior median) of the DLT risk on dose di?j ∈
Di? . Then at the end of a completed trial, we estimate the MTD as:

d̂M = arg min
di?j∈D ′i?

|p̃i?j − 0.25|,

where D ′i? ⊆ Di? comprises all the doses that have been administered to humans
during the trial and satisfy the probabilistic overdose criterion. In each simulation
scenario, we record the percentage of studies which identify each dose as the MTD.
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We also record the percentage of trials which stop early without a MTD declaration.
Furthermore, averaging across the 2000 simulated trials, we report the average num-
ber of patients allocated to each dose.

Figure 3.5 compares dose-escalation procedures implemented using Models A –
D in terms of the percentage of trials which correctly select the MTD (PCS), the
percentage of trials which stop early for safety; and the average number of patients
allocated to the true MTD. Procedures underpinned by Models B and C perform
reasonably well across all eight simulation scenarios. In cases where there is a strong
prior-data conflict, for example in Scenarios 6 and 8, procedures based on Model
C tend to slightly outperform those based on Model B. When there is prior-data
consistency, such as in Scenario 3, the relative performances are reversed, although
differences between the models remain small across all scenarios.

Comparing Models B and C with Model D, we see that by leveraging the dog data
we can make gains for the PCS and average number of patients assigned to the true
human MTD when the dog data are predictive of DLT risks in the new phase I trial.
For example, we see an increase in PCS of at least 12.9% in Scenario 3. However,
Model D clearly outperforms Models B – C in Scenario 8, in terms of the average
number of patients allocated to the true MTD, although smaller differences emerge
in terms of the PCS.

Comparing Models B and C with Model A, we may observe the advantages of
robustification in Scenarios 6 and 8, where the assumption of full exchangeability
leads to underestimation of the MTD, and allocation of a higher average number
of patients to lower doses. The impact of robustification when an assumption of
exhangeability is appropriate is seen in Scenario 3, when PCS decreases from 55.6%
(wR = 0) to 45.8% (wR = 0.5). In Scenario 7, Model A appears to be much more
advantageous than the rest on correctly selecting the dose 2 mg/m2 as MTD at the
end of the phase I trial. Reasons for Models B – D leading to a large proportion of
trials to be terminated without a declaration of MTD are largely from the conservative
early stopping criterion, together with our choice of the starting dose to be 4 mg/m2

for the phase I clinical trials. Most of the simulated trials, implemented based on
Models B – D, are stopped after administration of 4 mg/m2, which is an overly toxic
dose. In particular, the specified (de-)escalation rule does not recommend patients in
the next cohort to be treated with dose 2 mg/m2, at which the probability of overdose
is unacceptable according to our definition. Many trials are therefore stopped early, as
there appears to be no safe dose available for administration.
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Figure 3.5: Operating characteristics of BLRM-guided dose-escalation procedures basing inferences on Models A-D,
defining δDog as a random variable. The vertical black line indicates the true MTD in humans in each
simulation scenario.
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For analysis Models A-C, we estimate δDog by the median of its posterior obtained
at the end of each complete trial. Figure 3.6 compares in each simulation scenario the
distribution of posterior median estimates of δDog with the prior median represented
by the solid horizontal line. The deviation of the posterior median estimate from
the prior median reflects the prior-data conflict. For example, in Scenarios 1 and 2

when preclinical data under-predict the potency of the drug in the phase I study,
the posterior estimates of δDog tend to decrease from the prior estimate to adjust for
this emerging conflict. Treating δDog as a random variable provides a mechanism to
respond to prior-data conflicts and therefore further robustifies borrowing of infor-
mation across species. The posterior estimates of δDog in Scenario 7 appear to be less
dispersed, because few trials were completed in this highly toxic scenario. Within
a scenario, the size of the shift in posterior estimates decreases across Models A –
C. As wR increases, the need to respond to the prior-data conflict by updating δDog

becomes less as the prior weight on the exchangeability scenario decreases.
Another interesting evaluation is to compare two variants on Models A – C treating

δDog as either a random variable or a fixed constant adopted in current practice. The
optimal non-parametric benchmark design (Maccario et al. [2002]) is also considered
for comparison to assess potential gains of leveraging preclinical data in different
simulation scenarios. Given different analysis models, we also investigated the bias,
mean squared error and coverage probability of the central 95% credible interval of
the posterior estimate of the DLT risk at the true MTD. Results of these assessments
are available in Figures S2 and S3 in the Supplementary Materials. Furthermore, we
have re-run selected simulations setting τ2 ∼ HN(0.25) instead of τ2 ∼ HN(0.125).
As expected, a larger value of the scale parameter leads to reduced borrowing of
information from the preclinical data while general conclusions for the comparison
of different models are unchanged. Finally, we notice in practice there are situations
where a phase I trial may be implemented with early stopping rules to declare the
MTD. We thus consider dose-escalation procedures based on Models A – D with
rules permitting early stopping when specified conditions are met. Corresponding
results to demontrate trial operating characteristics are summarised in Figure S4 in
the Supplementary Materials.
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Figure 3.6: Boxplots of poesterior medians of the translation parameter δDog under each meta-analytic model over
all complete trials. The horizontal black line represents the prior median of δDog.

3.6 discussion

Bayesian meta-analytic approaches provide a framework to augment a clinical trial
with historical data. In this paper, we have proposed a robust Bayesian hierarchical
model to augment a first-in-man trial with data from preclinical toxicology studies
in animals. The simulations presented in Section 3.5 show that our methodology
enables robust borrowing of information from animals to humans, and is responsive
to prior-data conflicts. We note, however, that when there is a substantial prior-data
conflict, using our approach may lead to a decrease in precision of the estimate,
regardless of how small the prior weight assigned to the animal data is. In addition,
the high proportion of trials terminated early for safety particularly in Scenario 7

was due to the conservative early stopping criterion, rather than the nature of our
methodology. Investigators may relax either the bound of overdose interval or the
target level, above which the trial has to be terminated if the lowest dose is thought
to be overly toxic. Finding the best trade-off for correctly identifying the true MTD
at the low doses, say, the least toxic two doses, without undermining the safety of
patients is not the priority of our assessment. Rather, the purpose of our simulation
study was to compare the proposed methodology with its alternatives that reflect
opinions of (i) fully pooling the translated animal data and (ii) completely discarding
relevant dose-toxicity information from the animal experiments.
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Our data examples and the simulation study presented in Sections 3.3 – 3.5 have
preclinical data collected from only one animal species. Additional simulations have
been performed (results not reported here) to verify the performance of the meta-
analytic model for cases that K = 2 and K = 3. They supported similar conclusions
to those shown in this paper, namely that borrowing of information from animals
to humans is robust and is led by data from the most relevant species. Having a
larger number of preclinical studies involving multiple animal species is no doubt
more advantageous for estimating the variance parameters that are associated with
between-study and between-species heterogeneity. We also note, in a hierarchical
model that assumes full exchangeability of the population means, learning about
the variance parameters in the ‘supra-species’ level is needed to facilitate sharing of
information between different species to an appropriate extent.

High quality preclinical data are essential to design an ethical phase I clinical trial
(Dresser [2009]; Cook et al. [2015]). In current practice, preclinical data are used
mostly to establish a safe starting dose for a phase I clinical trial. To the best of
our knowledge, this paper represents a first proposal for incorporating dose-toxicity
data learnt from animals into human trials. We have presented our methodology
based on a two-parameter logistic regression model adopted to describe the dose-
toxicity relationship. However, more sophisticated models such as physiologically
based pharmacokinetic model (Gueorguieva et al. [2006]) may be considered. For
the species-appropriate translation parameter introduced in our model, we assume
that allometric scaling principles adjusting for body surface area (Kouno et al. [2003];
Gerina-Berzina et al. [2012]) adequately describe physiological differences between
animals and humans. Additional work would be needed to verify appropriateness
of this approach or refine it, since it may be inappropriate in some circumstances,
for example, when the compound is a monoclonal antibody (Department of Health
[2006]) or a biological agent (Tang et al. [2004]).

In this thesis, we specifically focus on the transition step from preclinical to clinical
studies in early drug development, but the methodology proposed in Chapter 3.2
can be applied more broadly: it can be used to augment a clinical trial with historical
data that have been recorded on a different measurement scale. Further research
will extend the proposed Bayesian model to accommodate heterogeneity amongst
humans. Potential applications include the case that phase I dose-escalation bridging
studies to be carried out in different geographic regions. Alternatively, there may be
differences between age groups, for example, between children and adults, or adults
and geriatrics.
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3.7 technical notes

3.7.1 Specifying a log-normal prior for the translation factor δAi

One common approach for extrapolating doses across species in practice is allometric
scaling performed on the basis of body surface area (BSA). USFDA [2005] proposed
calculating a human-equivalent dose (HED) by multiplying the animal dose by a
factor reflecting the relationship between metabolic rate and mass in mammals:

HED (mg/kg) = Animal dose (mg/kg)× (BW/BSA)Animal
(BW/BSA)Human

, (3.7.1)

where BW denotes the body weight (kg) and BSA is measured in square metres.
In the notation of this chapter, δAi = ((BW/BSA)Animal/(BW/BSA)Human) is indeed

the interspecies translation factor. As noted in Section 3.2, we fit models treating each
δSk as a random variable rather than a fixed constant to formally take account of
uncertainty about translation factors. An independent log-normal prior is placed on
each δSk consistent with the translation factor in (3.7.1). Body weight is commonly
modelled by a log-normal distribution, whilst for present purposes, we assume the
body surface area has negligible variation in animals and humans. As both numerator
and denominator of (3.7.1) are log-normally distributed, the translation factor can be
described using a log-normal distribution.

Given the species-specific body weight and body surface area information available
from the FDA draft guideline, displayed at the left of Table 3.1, we derive log-normal
priors, based on an optimiser, so that medians and 95% CIs are in good agreement
with the reference and working range of body weight. This is seen as an optimisation
problem in the sense that we aim to minimise the distance between the summaries
(reference and working range) and the key percentiles (namely, the 2.5th, 50th and
97.5th percentiles) of the log-normal prior. Specifically,

• For each animal species, BW/BSA can be summarised as Q = {qL,qM,qU}, in
which qM corresponds to the reference value and [qL,qU] as the limits of the
working range

• The reference value is taken as median of the log-normal prior

• The log-normal variance is approximated such that the absolute distance be-
tween the implied 2.5th and 97.5th percentiles and qL and qU is minimised,
respectively
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• Likewise, derive the log-normal prior for BW/BSA in humans

• Depending on the unit of human dose, either mg/kg or mg/m2, the log-normal
prior for δAi is therefore obtained.

3.7.2 Priors for other parameters

Weakly informative priors for the robust component and population means m:

• Prior for θ1i? : m01 ∼ N(log
(
0.25
1−0.25

)
, 22). This suggests that prior median for

the probability of toxicity at dRef = 28 mg/m2 is 0.25 and the 95% credible
interval is (0.007, 0.944).

• Prior for θ2i? : m02 ∼ N(0, 12). This prior for the slope parameter is weakly
informative as it allows for flat to very steep curves. Under this specification,
when doubling the dose, the odds of a DLT is multiplied by 2exp(0) = 2 (prior
median), and the 95% credible interval for this multiplier is (1.1, 137.1).

• Priors for m1 and m2: m1 ∼ N(log
(
0.25
1−0.25

)
, 1.982), and m2 ∼ N(0, 0.992). These

priors are similar to the ones for the robust component and therefore are also
weakly informative.

Half-normal distributions are chosen for elements of the covariance matrix Ψ and Σ
as follows.

• Priors for τ1 and τ2 that control borrowing within same species: τ1 ∼ HN(0.5),
of which the key summaries, say, median and 95% credible interval, are 0.337

and (0.016, 1.121), respectively. This allows for substantial between-study hetero-
geneity for the intercept parameter, θ1i. τ2 ∼ HN(0.25), of which the key sum-
maries, say, median and 95% credible interval, are 0.169 and (0.008, 0.560), re-
spectively. This allows for moderate between-study heterogeneity for the slope
parameter, θ2i.

• Priors for σ1 and σ2 that control borrowing across different animal species:
σ1 ∼ HN(15), of which the median and 95% credible interval are 10.117 and
(0.470, 33.621), respectively; σ2 ∼ HN(5), of which the median and 95% credible
interval are 3.372 and (0.157, 11.207), respectively. These are diffused priors used
in the paper for the special case K = 1.

• Priors for the correlation coefficients: ρ ∼ U(−1, 1) and κ ∼ U(−1, 1).
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3.7.3 OpenBUGS code to implement the robust Bayesian meta-analytic approach

model{

# likelihood/sampling model

# Mdoses: total number of doses tested in animal studies

for(j in 1:Mdoses){

linA[j] <- theta[Study[j], 1]

+ exp(theta[Study[j], 2])*log(delta[Species[j]]*DosesA[j]/DoseRef)

logit(pToxA[j]) <- linA[j]

NtoxA[j] ~ dbin(pToxA[j], NsubA[j])

}

zero[1] <- 0

zero[2] <- 0

# theta=(theta1, theta2) derived from each animal study are ready for the use

# on the human equivalent scale

for(i in 1:Nstudy){

for(j in 1:Ndoses){

lin[i, j] <- theta[i, 1] + exp(theta[i, 2])*log(DosesH[j]/DoseRef)

}

# theta = (theta1, theta2)

# parameters of the dose-toxicity model for each single study

# random effects for all studies

# sp.ind[i]: index function to specify

# which species the Study i belongs to

theta[i, 1] <- mu.ex.sp[sp.ind[i], 1] + re[i, 1]

theta[i, 2] <- mu.ex.sp[sp.ind[i], 2] + re[i, 2]

re[i, 1:2] ~ dmnorm(zero[1:2], prec.ex[1:2, 1:2])

# PInd[]: matrice of the trivial/non-trivial weights

# trivial weights for animals, no local robustification

# to assure theta_i are fully exchangeable within same species
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sp.ind[i] ~ dcat(PInd[i, 1:(n.sp+1)])

}

# species cluster

for(k in 1:n.sp){

delta[k] <- exp(Prior.mn.delta[k] + Prior.sd.delta[k]*log.delta01[k])

log.delta01[k] ~ dnorm(0, 1)

mu.ex.sp[k, 1] <- m.ex[1] + re.m[k, 1]

mu.ex.sp[k, 2] <- m.ex[2] + re.m[k, 2]

re.m[k, 1:2] ~ dmnorm(zero[1:2], prec.sigma[1:2, 1:2])

theta.predH[k, 1] <- mu.ex.sp[k, 1] + re.h[k, 1]

theta.predH[k, 2] <- mu.ex.sp[k, 2] + re.h[k, 2]

re.h[k, 1:2] ~ dmnorm(zero[1:2], prec.ex[1:2, 1:2])

}

# default weakly-informative prior for robustification

theta.predH[(n.sp+1), 1:2] ~ dmnorm(Prior.mw[1:2], prec.sw[1:2, 1:2])

cov.rb[1, 1] <- pow(Prior.sw[1], 2)

cov.rb[2, 2] <- pow(Prior.sw[2], 2)

cov.rb[1, 2] <- Prior.sw[1]*Prior.sw[2]*Prior.corr

cov.rb[2, 1] <- cov.rb[1, 2]

prec.sw[1:2, 1:2] <- inverse(cov.rb[1:2, 1:2])

# MA prediction

theta.star[1] <- theta.predH[which, 1]

theta.star[2] <- theta.predH[which, 2]

# wMix[]: non-trivial weights for humans to borrow strength from animals

which ~ dcat(wMix[1:(n.sp+1)])

# to monitor the exchangeability probability

# in the course of the new human trial

for(k in 1:(n.sp+1)){
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prob.ex[k] <- equals(which, k)

}

# human data

for(j in 1:Ndoses){

linH[j] <- theta.star[1] + exp(theta.star[2])*log(DosesH[j]/DoseRef)

logit(pToxH[j]) <- linH[j]

NtoxH[j] ~ dbin(pToxH[j], NsubH[j])

pCat[j, 1] <- step(pTox.cut[1] - pToxH[j])

pCat[j, 2] <- step(pTox.cut[2] - pToxH[j])

- step(pTox.cut[1] - pToxH[j])

pCat[j, 3] <- step(1 - pToxH[j])

- step(pTox.cut[2] - pToxH[j])

}

# priors: Prior.mt1, Prior.mt2

prec.mt1 <- pow(Prior.mt1[2], -2)

prec.mt2 <- pow(Prior.mt2[2], -2)

# numerical stability:

# constrained to -10 and +10 (mt1), -5 and 5 (mt2)

m.ex[1] ~ dnorm(Prior.mt1[1], prec.mt1)I(-10, 10)

m.ex[2] ~ dnorm(Prior.mt2[1], prec.mt2)I(-5, 5)

# Priors for hyper parameters of the covariance matrix prec.ex[1:2, 1:2]

prec.tau1 <- pow(Prior.tau.HN[1], -2)

prec.tau2 <- pow(Prior.tau.HN[2], -2)

tau[1] ~ dnorm(0, prec.tau1)I(0.001,)

tau[2] ~ dnorm(0, prec.tau2)I(0.001,)

cov.ex[1, 1] <- pow(tau[1], 2)

cov.ex[2, 2] <- pow(tau[2], 2)

cov.ex[1, 2] <- tau[1]*tau[2]*rho
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cov.ex[2, 1] <- cov.ex[1, 2]

prec.ex[1:2, 1:2] <- inverse(cov.ex[1:2, 1:2])

rho ~ dunif(Prior.rho[1], Prior.rho[2])

# Priors for hyper parameters of the covariance matrix prec.sigma[1:2, 1:2]

prec.sigma1 <- pow(Prior.sigma.HN[1], -2)

prec.sigma2 <- pow(Prior.sigma.HN[2], -2)

sigma[1] ~ dnorm(0, prec.sigma1)I(0.001,)

sigma[2] ~ dnorm(0, prec.sigma2)I(0.001,)

cov.sig[1, 1] <- pow(sigma[1], 2)

cov.sig[2, 2] <- pow(sigma[2], 2)

cov.sig[1, 2] <- sigma[1]*sigma[2]*kappa

cov.sig[2, 1] <- cov.sig[1, 2]

prec.sigma[1:2, 1:2] <- inverse(cov.sig[1:2, 1:2])

kappa ~ dunif(Prior.kappa[1], Prior.kappa[2])

}

3.8 supplementary materials

3.8.1 The hypothetical dog data

In Chapter 3.4, we suppose that prior to the phase I first-in-man trial, historical data
are available from three hypothetical preclinical toxicology studies in dogs. Figure
3.7 shows the binomial data that we have used in Section 3.4, with the prior effective
sample size described in Table 2.2.

Table 3.5: Summaries of marginal predictive priors derived from the dog data setting wR = 0.3. Also reported are
the parameters of the Beta(a,b) approximtes used for ESS calculation

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9
2 4 8 16 22 28 40 54 70

Prior means 0.057 0.085 0.135 0.223 0.282 0.338 0.431 0.509 0.573

Prior std dev. 0.118 0.133 0.153 0.176 0.186 0.195 0.212 0.222 0.226

ESS 3.0 3.4 4.0 4.6 4.9 4.8 4.4 4.1 3.8
a 0.2 0.3 0.5 1.0 1.4 1.6 1.9 2.1 2.2
b 2.8 3.1 3.5 3.6 3.5 3.2 2.5 2.0 1.6



92 a robust bayesian meta-analytic model

0.6 1 4 80.6 1 4 8 0.1 2 50.1 2 5 0.3 1.5 3 60.3 1.5 3 6

Dog study 1 Dog study 2 Dog study 3

2 4 8 16 28 54 100 200 2 4 8 16 28 54 100 200 2 4 8 16 28 54 100 200

0

2

4

6

8

Dose (mg m2)

N
um

be
r 

of
 a

ni
m

al
s

Number without toxicity   Number with DLTs

Figure 3.7: Preclinical data from three hypothetical studies in dogs. The height of the bar represents the number
of dogs studied, and the height of the dark grey segment counts the number experiencing an ocular
toxicity. Doses listed in brown are the doses (mg/kg) administered to dogs. Doses listed in black are the
human-equivalent doses (mg/m2). Projections are made by scaling animal doses using the prior median
of δDog.

3.8.2 Additional simulation results

3.8.2.1 Numerical results of all evaluated scenarios

The performance of trials using BLRM-guided dose-escalation under Models A – D
are compared with that of the optimal non-parametric benchmark design by Maccario
et al. [2002]. The optimal design is defined using the ’complete’ toxicity profile of each
patient, created by assuming there are Ji? clones of a patient given doses spanning
the dosing set Di? . A toxicity tolerance thereshold εn is generated from U[0, 1] for
the nth patient, which determines the corresponding toxicity outcome at the jth dose
as

Rjn = 1(εn 6 pi?j), 1 6 n 6 N, 1 6 j 6 Ji? ,

where 1(·) is the indicator function. An unbiased estimate for pi?j is thus R̄j(N) =
1
N

∑N
n=1 Rjn for a trial of which the maximum sample size is N. Consequently, the

estimated MTD under the benchmark design is

d̂
opt
M = arg min

j=1,...,Ji?
|R̄j(N) − 0.25|.

Improvements beyond this bound are generally not possible unless strong para-
metric assumptions are made about dose-response relationships. In our context, we
wish to quantify the gains that can be made over the benchmark designs, in part due
to borrowing strength from the preclinical data.
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Two variants of analysis Model A – C are evaluated, either treating the δDog as a
random variable with a log-normal prior, or a fixed constant taking the median of the
log-normal prior. Table 3.6 provides a complete listing of all the simulation results
for analysis models defined in Section 5 and the optimal benchmark design.
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Table 3.6: Comparison of alternative analysis models in terms of the percentage of selecting a dose as MTD at the
end of the trials, percentage of early stopping for safety, average patient allocation, and average number of
patients with toxicity.

Sc. Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None
2 4 8 16 22 28 40 54 70

1 pTox 0.08 0.16 0.25 0.35 0.41 0.45 0.52 0.58 0.63

Optimal Sel 0.4 19.2 58.7 19.3 1.9 0.4 0.1 0 0

Model A Par Sel 0 4.3 64.6 27.6 3.3 0.2 0 0 0 0

Pts 0 4.4 22.9 13.7 3.6 0.4 0 0 0 12.9 45.0

Fix Sel 0 3.0 52.4 39.4 5.1 0.1 0 0 0 0

Pts 0 4.0 17.0 17.9 5.7 0.4 0 0 0 13.7 45.0

Model B Par Sel 0.4 10.2 52.4 22.4 4.4 0.2 0 0 0 10.0
Pts 0.6 6.2 18.9 11.4 3.1 0.6 0 0 0 11.3 40.8

Fix Sel 0.4 10.9 44.8 28.8 4.7 0.2 0 0 0 10.2
Pts 0.6 6.2 15.9 12.6 5.0 0.6 0 0 0 11.3 40.9

Model C Par Sel 0.4 12.4 50.0 18.6 3.6 0.3 0 0 0 14.7
Pts 0.3 7.3 18.0 10.0 2.8 0.6 0.1 0 0 10.6 39.1

Fix Sel 0.5 14.0 43.0 22.7 4.8 0.2 0 0 0 14.8
Pts 0.4 7.5 15.6 10.8 4.1 0.8 0 0 0 10.6 39.2

Model D Sel 0.6 26.0 47.3 7.5 1.9 0.4 0 0 0 16.3
Pts 1.7 12.5 17.6 4.6 1.1 0.8 0.1 0 0 9.0 38.4

2 pTox 0.01 0.04 0.11 0.25 0.35 0.44 0.55 0.65 0.73

Optimal Sel 0 0 8.3 70.1 20.2 1.4 0 0 0

Model A Par Sel 0 0 9.0 60.4 28.1 2.5 0 0 0 0

Pts 0 3.0 6.7 20.6 12.5 2.2 0 0 0 11.3 45.0

Fix Sel 0 0 5.2 60.4 32.2 2.2 0 0 0 0

Pts 0 3.0 4.7 18.0 17.0 2.3 0 0 0 12.1 45.0

Model B Par Sel 0 0 14.5 56.9 26.2 2.0 0 0 0 0.4
Pts 0 3.1 8.6 19.9 10.8 2.4 0 0 0 10.9 44.8

Fix Sel 0 0 10.9 54.9 32.1 1.7 0 0 0 0.4
Pts 0 3.1 7.0 17.5 14.7 2.5 0 0 0 11.6 44.8

Model C Par Sel 0 0 20.9 53.1 23.2 2.2 0 0 0 0.6
Pts 0 3.2 10.3 18.6 9.8 2.6 0.2 0 0 10.0 44.7

Fix Sel 0 0 16.9 50.9 29.5 2.1 0 0 0 0.6
Pts 0 3.3 8.6 17.0 12.9 3.0 0 0 0 10.8 44.8

Model D Sel 0 0.4 42.2 40.3 13.9 2.2 0.3 0 0 0.7
Pts 0.4 4.0 17.3 14.6 5.0 3.0 0.3 0.1 0 9.1 44.7

3 pTox 0.03 0.05 0.10 0.16 0.25 0.32 0.40 0.48 0.55

Optimal Sel 0 0 1.1 19.5 50.6 23.7 4.8 0.3 0

Model A Par Sel 0 0 1.0 19.7 55.6 22.9 0.8 0 0 0

Pts 0 3.0 4.1 11.2 18.2 8.3 0.1 0 0 10.0 45.0

Fix Sel 0 0 0.4 17.6 60.9 21.1 0 0 0 0

Pts 0 3.0 3.4 8.8 21.2 8.6 0 0 0 10.0 45.0

Model B Par Sel 0 0 1.5 20.3 51.4 24.9 1.0 0 0 0.8
Pts 0 3.0 4.6 11.6 15.8 9.2 0.4 0 0 9.9 44.6

Fix Sel 0 0 1.2 17.3 57.6 22.8 0.3 0 0 0.8
Pts 0 3.0 4.0 9.0 18.8 9.7 0.2 0 0 9.9 44.7

Model C Par Sel 0 0.1 1.4 22.7 45.8 26.0 3.4 0.1 0 0.8
Pts 0 3.2 4.5 9.6 17.1 9.9 0.4 0 0 9.7 44.7
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Table 3.6 – Continued.

Sc. Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None
2 4 8 16 22 28 40 54 70

Fix Sel 0 0.1 2.0 19.1 54.4 22.9 0.6 0 0 0.8
Pts 0 3.2 4.5 9.6 17.1 9.9 0.4 0 0 9.7 44.7

Model D Sel 0 0.2 13.4 25.1 32.9 22.4 3.3 0.9 0.4 1.4
Pts 0.4 3.9 9.8 10.8 8.6 8.2 1.9 0.5 0.3 8.8 44.4

4 pTox 0.001 0.005 0.03 0.10 0.16 0.25 0.38 0.50 0.60

Optimal Sel 0 0 0 1.2 22.2 62.0 14.4 0.2 0 0

Model A Par Sel 0 0 0 1.5 27.4 65.6 5.5 0 0 0

Pts 0 3.0 3.1 4.5 13.1 20.4 0.9 0 0 8.1 45.0

Fix Sel 0 0 0 0.8 33.3 65.0 0.9 0 0 0

Pts 0 3.0 3.0 3.7 13.5 21.7 0.1 0 0 8.1 45.0

Model B Par Sel 0 0 0 1.9 29.1 64.3 4.3 0.4 0 0

Pts 0 3.0 3.1 5.0 12.0 20.3 1.5 0.1 0 8.2 45.0

Fix Sel 0 0 0 1.0 32.4 64.8 1.6 0.2 0 0

Pts 0 3.0 3.1 4.0 12.5 21.7 0.6 0 0.1 8.2 45.0

Model C Par Sel 0 0 0.2 2.8 28.1 63.8 4.9 0.2 0 0

Pts 0 3.0 3.3 5.3 11.7 18.8 2.5 0.3 0.1 8.3 45.0

Fix Sel 0 0 0.1 2.1 30.4 64.6 2.6 0.2 0 0

Pts 0 3.0 3.2 4.5 11.8 21.1 1.2 0.1 0.1 8.3 45.0

Model D Sel 0 0 1.4 7.2 32.3 50.6 7.6 0.8 0.1 0

Pts 0 3.1 4.3 7.0 9.7 16.0 3.8 0.7 0.4 8.5 45.0

5 pTox 0.01 0.02 0.05 0.08 0.11 0.14 0.25 0.37 0.47

Optimal Sel 0 0 0 0.2 2.4 11.9 67.2 17.8 0.6 0

Model A Par Sel 0 0 0 0.3 4.5 48.4 44.8 2.0 0 0

Pts 0 3.0 3.1 4.1 7.7 20.9 6.1 0.2 0 5.9 45.0

Fix Sel 0 0 0 0.2 5.3 75.2 19.1 0.2 0 0

Pts 0 3.0 3.0 3.5 8.1 25.8 1.6 0 0 5.4 45.0

Model B Par Sel 0 0 0.2 0.4 4.6 51.0 38.1 4.4 1.1 0.2
Pts 0 3.0 3.3 4.2 5.7 19.9 7.2 1.2 0.4 6.4 44.9

Fix Sel 0 0 0 0.2 5.1 62.8 25.9 4.2 1.6 0.2
Pts 0 3.0 3.1 3.6 6.2 23.2 4.5 0.7 0.6 6.1 44.9

Model C Par Sel 0 0 0.2 0.5 4.5 50.3 36.4 6.5 1.4 0.2
Pts 0 3.0 3.3 4.2 5.2 18.3 8.4 1.8 0.6 6.7 44.8

Fix Sel 0 0 0 0.4 4.5 58.2 29.5 4.9 2.3 0.2
Pts 0 3.0 3.2 3.7 5.2 21.6 6.0 1.2 1.0 6.5 44.9

Model D Sel 0 0 0.7 1.1 6.9 39.6 34.8 13.2 3.5 0.3
Pts 0.2 3.3 4.4 4.7 3.5 13.5 9.6 3.4 2.4 7.7 45.0

6 pTox 0.003 0.006 0.01 0.02 0.05 0.08 0.15 0.25 0.37

Optimal Sel 0 0 0 0 0 0.4 18.3 63.8 17.6

Model A Par Sel 0 0 0 0 0 7.5 59.9 30.8 1.8 0

Pts 0 3.0 3.0 3.1 4.1 15.9 13.2 2.6 0.1 4.2 45.0

Fix Sel 0 0 0 0 0 31.6 62.3 5.2 0.9 0

Pts 0 3.0 3.0 3.0 4.2 24.9 6.7 0.2 0 3.4 45.0

Model B Par Sel 0 0 0 0 0.2 10.3 44.5 34.1 10.9 0

Pts 0 3.0 3.0 3.1 1.7 13.6 11.8 6.0 2.8 5.4 45.0

Fix Sel 0 0 0 0 0.2 19.2 40.2 27.4 13.0 0

Pts 0 3.0 3.0 3.0 1.7 18.1 9.1 3.7 3.4 5.0 45.0

Model C Par Sel 0 0 0 0 0.2 10.7 38.2 38.3 12.7 0
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Table 3.6 – Continued.

Sc. Design δSk

% dose declared as MTD & average patient allocation
DLT N̄

di?1 di?2 di?3 di?4 di?5 di?6 di?7 di?8 di?9 None
2 4 8 16 22 28 40 54 70

Pts 0 3.0 3.0 3.1 1.6 10.3 12.4 7.8 3.9 6.0 45.0

Fix Sel 0 0 0 0 0.2 14.8 38.5 32.2 14.2 0

Pts 0 3.0 3.0 3.0 1.2 14.6 9.9 5.4 4.9 5.7 45.0

Model D Sel 0 0 0 0.2 1.8 8.3 30.4 41.2 18.1 0

Pts 0.1 3.1 3.1 3.3 1.0 7.3 10.9 8.5 7.7 7.1 45.0

7 pTox 0.25 0.42 0.60 0.75 0.82 0.88 0.91 0.94 0.97

Optimal Sel 90.5 9.5 0 0 0 0 0 0 0

Model A Par Sel 42.3 27.5 0.1 0 0 0 0 0 0 30.2
Pts 10.7 18.9 8.5 0.4 0 0 0 0 0 16.0 38.5

Fix Sel 40.7 24.7 0.2 0 0 0 0 0 0 34.4
Pts 10.3 16.9 9.3 1.3 0 0 0 0 0 16.2 37.8

Model B Par Sel 10.8 3.8 0.1 0 0 0 0 0 0 85.4
Pts 4.1 6.5 3.4 0.4 0 0 0 0 0 6.1 14.4

Fix Sel 9.8 3.4 0 0 0 0 0 0 0 86.8
Pts 4.1 6.3 3.4 0.4 0 0 0 0 0 5.9 14.2

Model C Par Sel 6.6 2.6 0 0 0 0 0 0 0 90.8
Pts 2.1 5.8 2.8 0.4 0 0 0 0 0 4.9 11.1

Fix Sel 6.8 2.1 0 0 0 0 0 0 0 91.1
Pts 2.2 5.7 2.7 0.4 0 0 0 0 0 4.9 11.0

Model D Sel 8.6 2.8 0 0 0 0 0 0 0 88.6
Pts 4.3 6.3 1.2 0.1 0 0 0 0 0 4.5 11.9

8 pTox 0.001 0.005 0.01 0.02 0.04 0.05 0.10 0.16 0.25

Optimal Sel 0 0 0 0 0 0 1.6 20.7 77.8

Model A Par Sel 0 0 0 0 0 2.0 41.2 47.9 8.8 0

Pts 0 3.0 3.0 3.1 3.8 13.1 14.2 4.5 0.3 3.1 45.0

Fix Sel 0 0 0 0 0 11.9 71.7 12.5 3.9 0

Pts 0 3.0 3.0 3.0 3.9 21.5 10.1 0.5 0 2.4 45.0

Model B Par Sel 0 0 0 0 0.1 4.9 20.5 32.1 42.4 0

Pts 0 3.0 3.0 3.0 1.2 14.1 8.0 4.3 8.4 4.7 45.0

Fix Sel 0 0 0 0 0.1 7.6 21.4 26.9 44.0 0

Pts 0 3.0 3.0 3.0 1.2 14.1 8.0 4.3 8.4 4.4 45.0

Model C Par Sel 0 0 0 0 0.1 4.6 15.0 31.5 48.8 0

Pts 0 3.0 3.0 3.1 1.1 7.4 9.2 8.0 10.2 5.3 45.0

Fix Sel 0 0 0 0 0.1 5.5 17.2 25.4 51.8 0

Pts 0 3.0 3.0 3.0 0.8 11.0 7.6 5.4 11.2 5.1 45.0

Model D Sel 0 0 0 0 0.6 3.5 9.0 28.2 58.7 0

Pts 0.1 3.0 3.1 3.2 0.5 5.2 6.9 6.7 16.3 6.2 45.0

Sc.: Scenario; pTox: true probability of toxicity in humans; Sel: proportion of times of declaring a dose as MTD; Pts: average number of patients allocated

to a dose; Par: one variant of the meta-analytic model treating δDog as a random variable; Fix: another variant of the meta-analytic model treating δDog as

a fixed constant, i.e., prior median of δDog in our implementation.
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3.8.2.2 Improved estimation precision

In our way of declaring a dose to be MTD, precision of the posterior estimate of
the DLT risk is decisive. We thus evaluate different analysis models by examining
the bias, mean squared error (MSE) and coverage probability (CP) of the central 95%
credible interval of the posterior median of the DLT risk at the true MTD. Figure 3.8
visualised the comparison in terms of these metrics. As illustrated, inference based
on the analysis Models A-C reports smaller bias and MSE than Model D, except the
Scenarios 1 and 8.

Figure 3.9 visualised the comparison in terms of the CP of central 95% credible
interval at the true MTD by applying analysis Models A-C to incorporate preclinical
data versus Model D to entirely discard them. We observe that at least 95% CP was
attained for almost all simulation scenarios except Scenario 1. The low convergence
probability of analysis models A-C in Scenario 1 is explainable, as risk of toxicity at
the dose 16 mg/m2 tends to be underestimated and thus easier to be concluded as the
MTD in humans after synthesising the dog data, which advise a safer toxicity profile
of the drug to humans. Across the scenarios considered here, Model A tends to attain
lowest CP for scenarios when there is a discrepancy between the prediction of human
toxicity based on Bayesian meta-analysis of the dog data and the true MTD. This is
because large weight placed on preclinical data would lead to excessive shrinkage to
the animal parameter, although on the equivalent human dosing scale. In addition,
a fixed constant of δDog in general would produce an estimate of toxicity rate at the
target dose with less accurate confidence interval.

Another interesting comparison is investigated between two variants of Bayesian
meta-analytic Models A – C, by treating the translation factor δDog as a random vari-
able or fixed constant. As shown in both Figures 3.8 and 3.9, it is not surprising that
meta-analytic models constrained with fixed δDog would lead to increased precision
in Scenarios 3 and 4 due to prior-data consistency. In other simulation scenarios, how-
ever, those models experience problems because of ineffective down-weighting of the
dog data. This is especially true for Scenarios 6 and 8, when the prior predictions
mismatch the true human MTD and, meanwhile, incorporating preclinical data that
overestimate the human toxicity leads to more conservative dose escalations.
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Figure 3.8: Comparison of the performance in terms of bias and mean squared error of the toxicity rate estimator at
the true human MTD, based on different analysis Models A – D. Solid plotting symbols correspond to
analysis models with δDog defined as a random variable. Transparent ones correspond to the counterparts
defined with δDog as a fixed constant.

3.8.3 Comparisons with additional early stopping rules applied

In Figure 3.10, we show operating characteristics based on 2000 simulated phase I
clinical trials under the same escalation rules, defined in Section 4.2, and the same
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Figure 3.9: Comparison of the performance in terms of coverage probability of central 95% credible interval of the
toxicity rate estimator at the true human MTD, based on different analysis Models A – D. Solid plot-
ting symbols correspond to analysis models with δDog defined as a random variable. Transparent ones
correspond to the counterparts defined with δDog as a fixed constant.

basis of declaring a dose to be MTD as defined in Section 5. The difference is that
trials will be terminated earlier if criteria (a)-(c), specified as follows, are satisfied:

(a) There have been at least 8 cohorts (24 patients) recruited

(b) The dose selected for the next cohort is the same as the current dose

(c) At least 6 patients have been treated with this dose
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Figure 3.10: Operating characteristics of BLRM-guided dose-escalation procedures basing inferences on Models A-D,
when additional early stopping rules may be applied.
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A U G M E N T I N G P H A S E I O N C O L O G Y T R I A L S W I T H C O - D ATA :
A N A P P L I C AT I O N T O B R I D G I N G S T U D I E S

Summary. Phase I oncology trials may be undertaken in various geographic regions,
as ethnic differences could impact on toxicity of a new medicine in distinct patient
groups. This has stimulated discussions on appropriate use of external information.
However, very few have looked towards incorporating preclinical animal data in such
a trial setting. We fill the gap by presenting a Bayesian hierarchical model to combine
information from heterogeneous sources, where intrinsic differences in toxicity of
a drug between species and patient groups are addressed. Preclinical animal data
are used to inform location(s) of the exchangeability distributions, from which the
human dose-toxicity parameters are plausibly drawn. Our methodology is robust as
it permits each dose-toxicity parameter vector that underpins a human trial to be
exchangeable with similar parameter vectors or non-exchangeable with any of them,
avoiding excessive shrinkage for an extreme patient group. We illustrate our Bayesian
model using several representative dose-escalation trial examples in the context of
bridging studies, and a simulation study to evaluate the operating characteristics.
Numerical results show that our approach is responsive to both conflicts between
animals and humans, and variability between patient groups.

Keywords: Bayesian hierarchical models; Bridging; Ethnic differences; Phase I clinical
trials; Co-data.

4.1 introduction

Bridging strategies are increasingly being used in the paradigm of global clinical drug
development (Huang et al. [2012]; Tsong [2012]; Li and Wang [2012]; Viergever and
Li [2015]), aiming to minimise duplication of clinical research without disregarding
heterogeneity between patient groups. Typically, a bridging study with potentially
reduced trial sample size is conducted in a new geographic region such as Japan to
evaluate similarity of the performance of a medicine, which has likely been approved
in other parts of the world, say, Europe, based upon a thorough drug development

101
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process from preclinical to clinical phase I-IV studies. The International Conference
on Harmonisation [1998, 2006] (ICH) E5 guideline has discussed whether and when
foreign data, generated from the original region to evaluate the drug, could meet
the regulatory requirements of a new region where sponsors seek regitration. The
amount of foreign data to be leveraged, ranging from none to full, could often be a
matter of negotiations between sponsors and local regulatory authorities. Well estab-
lished bridging strategies could consequently mitigate the drug lag problem (de Haen
[1975]; Wileman and Mishra [2010]; Ueno et al. [2013]), and expedite supplying of
new medicines to patients globally, by intergrating information from various sources,
hereafter termed as co-data (Neuenschwander et al. [2016a]) to refer to all relevant,
historical and concurrent, data from external studies under similar circumstances.

Over the past few decades, the Pharmaceuticals and Medical Devices Agency in
Japan [2007] has been devoted to promote synchronisation of drug development
with other countries. They particularly encourage domestic sponsors to participate
in global clinical trials from exploratory phase I dose-finding studies, as the safety
profile of a drug might be different in Caucasian and Asian patients (Morita [2011];
Ogura et al. [2014]). Both intrinsic factors, for example, racial genetic background, and
extrinsic factors such as diagnostic criteria and environmental exposures, can impact
on the tolerability of the drug. Mizugaki et al. [2015] reviewed 54 phase I oncology
trials at the National Cancer Center Hospital between 1995 and 2012, comparing the
toxicity profiles characterised based on the western and Japanese phase I clinical tri-
als evaluating the same single agent, and have drawn a conclusion on considerable
similarity in toxicity of single agent in Japan and the West.

Statistical literature has been written to discuss the impact from ethnic differences
in phase I trial designs. Liu et al. [2015] develop a bridging continual reassessment
method (CRM) that uses the dose-toxicity data from a completed historical trial to
generate multiple sets of ‘skeleton’ probabilities for a new trial in another region, and
apply the Bayesian model averaging approach (Yin and Yuan [2009]) to reconcile this
information. Takeda and Morita [2018] present a Bayesian model-based design for
a new phase I trial to use information from an external trial adaptively through a
’historical-to-current’ parameter, informed by the degree of between-trial heterogene-
ity. In their approach, available trial data are used to formulate a suitable, but weakly
informative, prior distribution at the outset of the second study; so-called weakly
informative because the effective sample size (Morita et al. [2008]) of the prior is
considerably small compared with the number of patients that the phase I trial will
recruit.
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Alternatively, relevant co-data can be generated from other relevant phase I trials
which are run concurrently (or initiated in a staggered manner) to the original trial
of interest, or one could leverage data on a related patient subgroup enrolled in the
same trial. O’Quigley et al. [1999] propose a two-sample CRM to facilitate inferences
about the maximum tolerated dose (MTD) for two distinct groups of patients simulta-
neously. A shift model has been further discussed in the context of bridging studies
by O’Quigley and Iasonos [2014], in which the recommended dose in the second
group is constrained to be the same as or several levels shifted away from what is
estimated in the first group. Wages et al. [2015] extended this shift model to design
a phase I/II trial of stereotactic body radiation therapy, including uncertainty that
surrounds the ‘true shift’.

Either performed sequentially or staggerd in time, phase I bridging trials raise
an interesting research question about sharing of information between external and
current trials, which may be complete or ongoing, to improve statistical inferences.
One major concern is to balance available information so that decision making in a
single trial, as part of the global drug development, will neither be outweighed by that
made in another, nor be left to its own device for analyses. When ethnic differences
have a non-negligible impact on the dose-toxicity relationship, the main objective of
the phase I bridging trials would correspondingly become estimating region-specific
MTDs of the drug. The goal of this research project is to propose a robust Bayesian
approach that makes efficient use of available evidence, while adequately addresses
heterogeneity between patient groups in phase I bridging trials.

Since no phase I clinical trials would ever be planned in a vacuum, data that pre-
liminarily characterise the toxicity profile of a drug are commonly available from
preclinical animal studies before it will be evaluated in humans (USFDA [2005]). It
therefore appears to be appealing to use preclinical information, especially in above
the second type of bridging studies, such that dose recommendations at early stages
of the trials can also be backed up with sufficient evidence. In Chapter 3, we have
discussed incorporation of animal data from multiple animal species into an ongoing
phase I first-in-man trial for more ethical dose recommendations, using a Bayesian
hierarchical model.

In this chapter, we propose a robust extension of their methodology to augment
phase I bridging trials with co-data, which in our context consist of (i) historical
animal data from complete preclinical studies before the phase I trials begin, (ii)
concurrent external data from ongoing trials conducted in other geographic regions
or ethnic subgroups. Figure 4.1 shows graphically what available co-data look like
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Figure 4.1: Representation of co-data for global phase I clinical trials in two patient groups.

when only two patient groups are involved. We wish to base the statistical inferences
about a target dose on information from various sources, and meanwhile expect our
approach to be responsive to (i) conflicts between preclinical animal data and human
data from the phase I clinical trials, and (ii) possible incorrect bridging assumption
that the newly generated human data from different regions may not agree with each
other.

The remainder of this chapter is structured as follows. In Section 4.2, we build our
work on a Bayesian hierarchical model proposed to leverage preclinical animal data
into phase I trials, and discuss a robust extension to address potential heterogeneity
between patient groups. In Section 4.3, we show several illustrative examples using
our methodology to prospectively design global phase I trials simultaneously in two
geographic regions. This is followed by a simulation study to evaluate the property
of our proposal with alternative approaches used to back up statistical inferences in
adaptive phase I trials in Section 4.4. In Section 4.5, we describe an application of
our methodology in the context of sequential bridging studies. Finally, we discuss
relevant issues raised and look towards future research in Section 4.6.

4.2 methods

The Bayesian hierarchical model proposed in Chapter 3 permits borrowing of infor-
mation from preclinical studies in different animal species to a phase I first-in-man
trial. In this section, we discuss how this random-effects model may be extended to
accommodate heterogeneity between patient groups during ongoing phase I clinical
trials.

Let there be a total of M preclinical studies performed in K animal species, labelled
with S = {S1, . . . ,SK}. These are complete studies preceding the phase I clinical trials
to be conducted in different patient groups. Indexed by i = 1, . . . ,M, each animal
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study has evaluated doses dij contained in set Di = {di1, . . . ,diJi ;dit1 6 dit2 for 1 6
t1 6 t2 6 Ji}. On receiving a dose chosen from Di, outcome of each patient is
recorded as either a dose-limiting toxicity (DLT) or no DLT. Let nij and rij be the
number of animals treated with doses dij and the number of those experiencing a
DLT, respectively. A monotone increasing in probability of toxicity, denoted by pij,
along with the sorted doses dij, is assumed. We describe dose-toxicity relationship
of each study i using a two-parameter logistic regression model (Whitehead and
Williamson [1998]; Neuenschwander et al. [2008]), embedded with a translation pa-
rameter δAi , Ai ∈ S:

rij|pij,nij ∼ Binomial(pij,nij), for j = 1, . . . , Ji,

logit(pij) = θ1i + exp(θ2i) log(δAidij/dRef),
(4.2.1)

where θi = (θ1i, θ2i) are the study-specific parameters estimated on an equivalent
human dosing scale, and dRef is a reference dose invariant across all dose-toxicity
studies. Appropriate for each animal species, we have suggested setting log-normal
priors for δAi , which captures intrinsic differences between animal species Sk and
humans.

Random-effects distributions are further stipulated on the second level of the meta-
analytic model to facilitate borrowing of information between animal studies:

θi|µAi ,Ψ ∼ BVN(µAi ,Ψ), (4.2.2)

with

µAi =

(
µ1Ai

µ2Ai

)
and Ψ =

(
τ21 ρτ1τ2

ρτ1τ2 τ22

)

for Ai ∈ {S1, . . . ,SK}. Variances in Ψ suggest between-study heterogeneity within
an animal species. A ’supra-species’ random effects distribution is stipulated, so as
to enable increased borrowing of information between animal species. For species
Sk, k = 1, . . . ,K,

µSk |m,Σ ∼ BVN(m,Σ), (4.2.3)

with
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m =

(
m1

m2

)
and Σ =

(
σ21 κσ1σ2

κσ1σ2 σ22

)
.

The random-effects distribution in (4.2.3) specifically accouts for differences between
an animal species and humans that may not be exhaustively addressed by δSk .

Likewise, we let ` index the new human trials designed to evaluate doses contained
in set D`. Model (4.2.1) is also applicable to describe the human toxicity data Y`, only
that we may stipulate the translation parameter δH = 1 for the reason that doses in
D` are already expressed on the common scale; here, we have referred to humans
as species H such that A` = H. Thinking of the setting where phase I trials are
to be performed in some distinct patient groups of various regions, we introduce
a region parameter ε` into the logistic dose-toxicity model to account for potential
ethnic differences. The rationale is quite the same as that for having translation factors
in Model (4.2.1); that is, the dose-toxicity curve specific to a region may have its own
distinct intercept. Thus, denoting the dose-toxicity parameters that underpin phase I
clinical trials ` = 1, . . . ,L by γ` = (γ1`,γ2`),

r`j|p`j,n`j ∼ Binomial(p`j,n`j), for j = 1, . . . , J`,

logit(p`j) = γ1` + exp(γ2`) log(ε`d`j/dRef),
(4.2.4)

where dRef is the same reference dose used to fit Model (4.2.1).
We imagine a ‘landmark’ region will be chosen, which the first phase I clinical trial

to launch will enroll from. Hereafter, without loss of generality, we will simplify to fo-
cus on the case L = 2, and label the landmark human trial as study RL and the second
bridging trial as study RB. It is then reasonable to stipulate ε` = 1 for the landmark
trial RL, and treat any other ε` as a random variable in Model (4.2.4) for study RB.
In this way, toxicity data collected on the doses used in the briding region RB can
be translated onto an equivalent dose-toxicity scale concerned in the landmark pa-
tient population. A prior with symmetric probability distribution may best serve our
motivating problem, unless there is a strong evidence that patients from one region
is more susceptible than the other. For bridging dose-finding studies, the region-
specific MTDs are most likely to be the same or one dose level difference; much less
frequently, the distance could be two dose levels (Liu et al. [2015]; O’Quigley and
Iasonos [2014]). Distance between region-specific MTDs greater than two dose levels
would cast doubt on the reliability of the assumption for bridging studies. We thus
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propose setting a normal prior ε` ∼ N(1, 0.2552) truncated for non-negative values,
which centres at the value of 1 and, with probability about 95%, it covers the interval
(0.5, 1.5). Specifications of this region parameter ε` suggest, with large prior prob-
ability, that the target doses to be estimated from trials in other regions are within
0.5-fold change of that in the landmark trial(s).

Furthermore, we offer flexibility to share information between the animal studies,
analysed on the common scale, and the human trials by stipulating K random-effects
distributions for exchangeability (EX), as well as a weakly informative prior for non-
exchangeability (NEX) to inform estimation of the human study-specific parameters
γ`. This robust hierarchical extension for leveraging co-data in phase I clinical trials is
in nature an EX-NEX approach, first discussed by Neuenschwander et al. [2016b] in
the context of early phase clinical trials with multiple strata. Specifically, for human
dose-toxicity parameters γ`, ` = 1, . . . ,L, we have

(i) K EX distributions:

γ`|µSk ,Φ ∼ BVN(µSk ,Φ), with prior probability w`Sk ,

where each of the K random-effects distributions has the unknown means consis-
tent with those estimated by animal data of species S1, . . . ,SK, and the unknown

covariance matrix Φ =

(
τ23 ητ3τ4

ητ3τ4 τ24

)
specifically to describe between-trial

heterogeneity of the human data;

(ii) NEX distribution:

γ` ∼ BVN(m0,R0), with prior probability w`R,

where we define w`R = 1 −
∑
w`Sk for robustifying the analyses, as human

parameters may be dissimilar with any of those animal parameters estimated
on the common scale. Instead, they would follow their own prior BVN(m0,R0)
independently formulated for each trial `.

We will stipulate same set of prior probabilities w`Sk and w`R for all the L phase I
trials at the outset, with a lack of preliminary knowledge that the parameters γ` are
more likely to follow a particular EX distribution, of which the location is informed
by animal studies of species Sk. Allocating a large prior mixture weight w`Sk to
an EX distribution BVN(µSk ,Φ) reflects a high level of prior confidence in both the
bridging assumption and relevance of animal data of species Sk. We note these prior
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probabilities will need opinions from translational scientists or pharmacologists in
practice.

There are advantages to establishing an EX-NEX model following our formulation
to supplement phase I trials with co-data. We have linked the new human data with
the translated animal data per species by specifying same population means µSk ,
but split discussions about the between-study heterogeneity for animals and humans
with Ψ and Φ, respectively. As differences between toxicity of a drug to humans
and animals may not be exhaustively explained by δSk , variances in Ψ take account
of differences after such translation, suggesting how far the θis are deviated from
the population means that are suitable to describe the average ‘true’ dose-toxicity
relationship on the human dosing scale. Investigators may feel more comfortable to
assume the human study-specific parameters γ`s are samples from a less diffuse
random-effects distribution when the bridging assumption holds. Each dose-toxicity
parameter vector γ` also has its own NEX distribution. This permits discussions on
the possibility that estimates of γ` underpinning a trial in any region might diverge
from the average effects of the drug even after adjusting intrinsic and extrinsic ethnic
variabilities across regions through ε` and Φ, respectively.

To complete our Bayesian model, we specify priors for the hyperparameters. Weakly
informative priors are considered for hyperparameters of the ‘supra-species’ random-
effects distribution that we set m1 ∼ N(b1, s21) and m2 ∼ N(b2, s22). In particular,
parameters b1, s1 and b2, s2 will be chosen to place probability mass on plausible
values of the model parameters (Gelman et al. [2008]). Priors chosen for the variance
parameters should reflect opinions on the degree of heterogeneity at different levels
of our model. Here, we propose setting

τ1 ∼ HN(z1), τ2 ∼ HN(z2), τ3 ∼ HN(z3), τ4 ∼ HN(z4),

σ1 ∼ HN(c1), σ2 ∼ HN(c2), ρ ∼ U(−1, 1), κ ∼ U(−1, 1), η ∼ U(−1, 1),
(4.2.5)

where HN(z) denotes a half-normal prior distribution formed by truncating a normal
distribution N(0, z2) to fall within (0,∞). This proposed robust Bayesian hierarchical
model can be fitted using Markov chain Monte Carlo. We provide the OpenBUGS
code in the Technical notes (Section 4.7) for implementation of our methodology.
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4.3 illustrative example

In this section, we use the proposed robust Bayesian hierarchical model to retrospec-
tively design a trial, which aims to characterise the toxicity profile of GSK3050002

(GlaxoSmithKline [2016]), an antibody for treating patients with psoriatic arthritis.
The original trial enrolled a total of 49 human subjects recruited from United King-
dom. To illustrate our approach, we suppose the evaluation was performed in the
paradigm of global drug development that consist of one western trial and one east-
ern trial, labelled with RL and RB as mentioned, respectively. With this, we presume
the western dose-escalation study RL to be the landmark trial, and therefore have
ε` = 1 for the western trial. Accordingly, for present purposes, the principal aim is
now modified as estimating region-specific MTDs, defined as doses associated with
a risk of DLT (of any type) of 25%. We will first show how to obtain the predictive
priors for human toxicity based on animal data in Section 4.3.1, and illustrate how
our robust Bayesian hierarchical model may be used to guide the dose-escalation
procedure for the global phase I trials in Section 4.3.2.

4.3.1 Hypothetical preclinical data and predictive priors for human toxicity

We will now apply the proposed Bayesian model to a hypothetical example, for which
the choice of animal species, animal doses and human doses will be informed by the
set-up and background to a real phase I clinical trial evaluating safety, tolerability
and pharmacokinetics of GSK3050002 (GlaxoSmithKline [2018]). Preclinical studies
have been performed in monkeys and rats, among which monkeys were thought to
be the most relevant animal species for predicting toxicity in humans. Animal doses
1, 10, 30, 100 mg/kg were tested in two monkey studies. The first study used four
monkeys per dose group, and the second one used 10 – 12 per dose group. It was
not possible to identify what dose levels were tested in rats, nor could we know the
exact number of animal subjects treated and the number of toxicities observed from
the trial protocol. We therefore simulated possible animal datasets according to the
available but limited information. Presented in Figure 4.2, these hypothetical animal
data will be used to derive predictive priors for the risk of toxicity at doses from the
set D` = {0.1, 0.5, 1, 5, 10, 20} mg/kg available for evaluation in both phase I clinical
trials.
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Figure 4.2: Hypothetical preclinical data in rats and monkeys. The height of the bar represents the number of animal
subjects treated, and the height of the dark grey segment counts the number of toxicity. Doses listed
in brown are those administered to either rats and monkeys, which are translated onto an equivalent
human dosing scale in black. Projections are made by scaling animal doses using the prior median of
δRat or δMonkey.
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We first derive predictive priors for human dose-toxicity parameters based on an-
imal data of each species separately, since it will be helpful to examine whether our
methodology can borrow (discount) information quickly from a particular species,
which is found to be genuinely consistent (inconsistent) with the human toxicity
learned from the ongoing phase I trials. Throughout the illustrative examples, we
set dRef = 10 mg/kg and use the hypothetical preclinical datasets to fit our robust
Bayesian hierarchical model proposed in Section 4.2 with the following priors. For
the ‘supra-species’ random-effects distribution, we set m1 ∼ N(−1.099, 1.982) and
m2 ∼ N(0, 0.992) for the global means, and stipulate σ1 ∼ HN(1) and σ2 ∼ HN(0.5)
for variance parameters in Σ, to permit robust borrowing of information between
animal species. We have considered half-normal priors HN(z) with a smaller z for
parameter of slope than that of intercepts, which correspond to our desire of more in-
formation to be borrowed in shapes of dose-toxicity curves compared with locations.
Likewise, for the main elements in Ψ and Φ, we let τ1 ∼ HN(0.5), τ2 ∼ HN(0.25) to
take account of moderate-to-substantial heterogeneity between animal studies, and
τ3 ∼ HN(0.25), τ4 ∼ HN(0.125) of small-to-moderate heterogeneity between human
groups.

Following the Bayesian meta-analytic approach elucidated in Chapter 3, we set
δRat ∼ LN(−1.820, 0.3232) and δMonkey ∼ LN(−1.127, 0.2732) to bring the animal data
onto a common scale. A normal prior ε` ∼ N(1, 0.2552) truncated to fall within (0, ∞)
is placed on the region parameter. The NEX priors BVN(m0,R0) are specified for tri-
als RL and RB, independently, setting m01 ∼ N(−1.099, 22) and m02 ∼ N(0, 12), with
a zero correlation for m01 and m02. Predictive priors for the human dose-toxicity pa-
rameters γ` can be obtained based on animal data from a single source of information
(e.g., rat studies), by specifying the prior mixture weights, e.g., w`Rat = 1, w`Monkey =

0, w`R = 0. When animal data are not desired to be used, we may choose w`R = 1

and retain the rest as 0. Figure 4.3 show summaries of these predictive priors corre-
spondingly.

Stand-alone analysis of animal data from a single species suggest that rat and
monkey data predict doses 1 mg/kg and 5 mg/kg are likely to result in a DLT risk
close to 25% when given to human subjects, respectively. Moreover, after translation
of the animal doses, rat data are mainly projected on the low doses of D`. Predictive
priors obtained from rat data are thus more diffuse at high doses such as 10 mg/kg
and 20 mg/kg, at which monkey data in contrast have resulted in predictive priors
with narrower credible intervals for the DLT risks. We may also observe that patients
in trial RB are predicted to have quite the same level of DLT risks compared with
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Figure 4.3: Summaries about the predictive priors for human toxicity derived based on animal data from a single
species (Panels A and B) or the weakly informative prior not incorporating any animal data at all (Panel C).
Medians together with 95% credible intervals of the marginal prior predictive distributions are presented.

their counterpart in trial RL based on these animal data. This is because of the same
prior probabilities of EX and NEX chosen for each human trial at the outset.

To leverage all available animal data, we wish to distinguish different animal
species for their comparative relevance with human toxicity at the outset of trials
RL and RB. Here, we stipulate w`Rat = 0.20, w`Monkey = 0.65 and w`R = 0.15. Robust
predictive priors are then obtained and described using medians and 95% credible
intervals in Figure 4.4A. In addition, we are also interested in probabilities that a
patient may be (i) underdosed, if the DLT risk is less than 0.16, (ii) correctly dosed
that the DLT risk fall within the target interval [0.16, 0.33), and (iii) overdosed if the
DLT risk is greater than 0.33 Neuenschwander et al. [2008]. The third interval prob-
ability of each dose is generally the most essential for recommending a safe dose to
patients in the next cohort. We thus present in Figure 4.4B the prior probabilities of
overdose at a range of interesting doses to be evaluated in both western and eastern
trials RL and RB. We suppose investigators would also be interested in extrapolat-
ing a safe starting dose using animal data. Presenting the prior densities of potential
candidates can therefore be helpful. In this illustrative example, we show that of the
lowest two doses in Figure 4.4C, and suggest choosing 0.1 mg/kg for both trials RL

and RB to start with since this dose appears to be quite safe, based on the prior
probabilities of underdose that P(p`1 < 0.16|Y1, . . . ,Y5) = 0.837 for trial RL, and
P(p`1 < 0.16|Y1, . . . ,Y5) = 0.840 for trial RB, respectively.

As rich preclinical information may be leveraged into the phase I trials typically
planned with a small sample size, we wish our EX-NEX approach is capable to dis-
count any irrelevant animal data effectively. A fair comment on this must be based
on assessment of the effective sample size (ESS) Morita et al. [2008] for each marginal
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Figure 4.4: Summaries about the robust predictive priors for human toxicity based on the robust Bayesian analysis
of available animal data in rats and monkeys. Panel A shows median and 95% credible interval of the
marginal predictive prior for human toxicity at each dose. Panel B presents the prior interval probability
of overdose, and Panel C displays prior densities for the risks of toxicity at potential starting doses.

Table 4.1: Effective sample sizes of marginal predictive priors for the DLT risk, based on robust Bayesian analysis of
animal data, in the global phase I trials RL and RB.

Western trial, RL Eastern trial, RB
dL1 dL2 dL3 dL4 dL5 dL6 dB1 dB2 dB3 dB4 dB5 dB6
0.1 0.5 1 5 10 20 0.1 0.5 1 5 10 20

Prior means 0.093 0.145 0.177 0.280 0.343 0.416 0.093 0.144 0.175 0.278 0.341 0.413

Prior std dev. 0.084 0.104 0.114 0.143 0.158 0.179 0.086 0.106 0.116 0.145 0.160 0.180

ESS 11.0 10.5 10.2 8.9 8.1 6.6 10.4 10.0 9.7 8.6 7.8 6.5
a 1.0 1.5 1.8 2.5 2.8 2.8 1.0 1.4 1.7 2.4 2.7 2.7
b 10.0 9.0 8.4 6.4 5.3 3.9 9.4 8.6 8.0 6.2 5.1 3.8

predictive prior for DLT risk per dose, before any new data will be generated from
the phase I trials. Each predictive prior for the risk of DLT in humans per dose can be
approximated by beta distributions with parameters a and b, for the convenience of
calculating the ESS as (a+ b). On deriving the Beta(a+ b) for both p`j, we match the
first two moments with the original robust predictive priors obtained using animal
data. Table 4.1 lists the ESSs suggesting information represented in each marginal
prior, which is thought as equivalent to what would be acquired from 6.5 – 11 human
subjects treated with the doses in each trial. We note that priors are not different for
the two phase I trials, as we have set same values to be taken when specifying the
priors used to fit the Bayesian hierachical EX-NEX model.

4.3.2 Design and conduct of two phase I trials in different geographic regions

Suppose that equal trial sample size, say, 24 will be planned, and that the global
drug development program will start off by recruiting patients in small cohorts of
three to the western trial RL, which is followed by the eastern trial RB with a small
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Figure 4.5: Trial trajectory of hypothetical phase I trials performed in two geographic regions, in which trial data
were simulated from a divergency scenario.

delay in time. We use h`? and h` to index the regional cohort number of trials RL

and RB, respectively. Let the human toxicity data accumulating from the first h`?

cohorts of trial RL be Y(h`?)
L , and likewise their counterpart of trial RB be Y(h`)

B .
Furthermore, we suppose that these two trials have same recruitment rate and that
trial RB begins after completion of the first cohort of trial RL. As a result, treatment
of patients in both trials RL and RB will be undertaken in turns if integrated into one
clinical drug development program, as illustrated in Figure 4.5. Each regional cohort
number consequently may be recoded in the global paradigm that cohort h`? of the
western trial becomes cohort (2h`? − 1) and cohort h` of the eastern trial becomes
cohort 2h`. In the following, we will stick with the regional cohort number when
describing inferences at interims. However, it is important to clarify that a dose to be
recommended to cohort h`? > 2 will then be based on the first (h`? − 1) cohorts of
the western trial RL and the first (h` − 1) cohorts, where h` > 2, of the estern trial
RB.

Recall that we have estimated dose 0.1 mg/kg as a suitable starting dose for pa-
tients in the first regional cohort of each trial. For h`? > 2 and h` > 2, a dose will be
recommended for the next regional cohort according to the criterion:

d̂
(h`?)
L = max{d`j ∈ D` : P(p`j > 0.33|Y1, . . . ,Y5,Y(h`?−1)

L ,Y(h`−1)
B ) 6 0.25},

d̂
(h`)
B = max{d`j ∈ D` : P(p`j > 0.33|Y1, . . . ,Y5,Y(h`?)

L ,Y(h`−1)
B ) 6 0.25}.

(4.3.1)
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Figure 4.6: Dose-escalation scheme in each phase I clinical trial designed simultaneously using the proposed robust
Bayesian hierarchical model.

To prevent too fast escalations, additional constraints such as “never skipping a dose
during the escalation” may apply in practice. This means, in our illustrative example,
one cannot skip dose 0.5 mg/kg to recommend 1 mg/kg for patients in cohort h`? =
2, even the first three doses all comply with the caveat defined in (4.3.1).

We display four illustrative data examples for dose (de-)escalation of both trials
RL and RB in Figure 4.6. Correspondingly, key summaries of the marginal poste-
rior distributions for the DLT risk per evaluated dose on termination of each phase
I trial, together with the posterior probability assigned to each of the underlying
distributions of EX or NEX, are shown in Figure 4.7. These data examples were sim-
ulated under different scenarios for human toxicity and analysed using the Bayesian
EX-NEX model proposed in Section 4.2. In both data examples 1 and 2, we have
simulated the human toxicity data from a consistency scenario, where monkey data
present very high predictability. Bridging assumption holds in all data examples, ex-
cept data example 3, where considerable probability of non-exchangeability has been
assigned to guide the dose-escalation procedure in the western trial RL, whilst the
model parameters that underpin the eastern trial RB have shrunk more towards the
population means estimated from rat data. Data example 4 is also an interesting sce-
nario that there exists consistency of toxicity between patient groups but conflicts
between preclinical animal data and human toxicity. Using our methodology, preclin-
ical information from rat studies, which suggests the drug to be more toxic than it
actually is, was discounted substantially: as we can see by the end of each trial, the
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Figure 4.7: Summaries about the posteriors for probability of toxicity synthesising preclinical animal data and human
toxicity data (Panel A) and posterior probabilities of exchangeability or non-exchangeability by the end
of the hypothetical global trials (Panel B).

posterior probabilities allocated to the EX distribution relating to rat data have been
updated as 0.013 and 0.052, respectively. In this scenario, between-trial heterogeneity
was acknowledged by compromising between the EX distribution relating to monkey
data and the NEX distribution. At the end, dose 20 mg/kg was correctly estimated
as the MTD for both trials. We note that incoherent escalation and de-escalation of
doses occur in the eastern trial of data examples 4 and 3, respectively. This was due
to the relatively informative prior distributions placed on the variance parameters τ3
and τ4, which resulted in too much sharing of information between the two phase
I trials. The dose-escalation procedure can be improved to be coherent by adopting
less weakly informative priors for τ3 and τ4, or choosing larger prior probability of
NEX for each phase I trial.

4.4 simulation study

In this section, we compare operating characteristics of the global phase I dose-
escalation trials, conducted and analysed using either the proposed methodology
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Table 4.2: Simulation scenarios for the true probability of toxicity in humans set for the phase I trials RL and RB.

Western trial, RL Eastern trial, RB
dL1 dL2 dL3 dL4 dL5 dL6 dB1 dB2 dB3 dB4 dB5 dB6
0.1 0.5 1 5 10 20 0.1 0.5 1 5 10 20

Scenario 1 0.01 0.03 0.10 0.25 0.34 0.47 0.01 0.03 0.10 0.25 0.34 0.47

Scenario 2 0.01 0.03 0.10 0.25 0.34 0.47 0.05 0.12 0.25 0.37 0.50 0.60

Scenario 3 0.01 0.03 0.10 0.25 0.34 0.47 0.01 0.03 0.07 0.15 0.25 0.37

Scenario 4 0.01 0.03 0.05 0.08 0.15 0.25 0.02 0.05 0.07 0.12 0.25 0.36

Scenario 5 0.25 0.34 0.47 0.55 0.65 0.75 0.40 0.50 0.60 0.70 0.80 0.90

Scenario 6 0.01 0.03 0.05 0.08 0.15 0.25 0.10 0.25 0.36 0.50 0.60 0.68

or alternative Bayesian models that may be considered. This simulation study was
designed straightly from the illustrative data examples in Section 4.3: we held the
animal data and the structure of trials RL and RB unchanged for all simulated trials.
The Bayesian analysis models for comparison are defined as follows.

• Model A: the EX-NEX approach newly proposed in this chapter, where the
phase I trials RL and RB, respectively, have their own NEX distribution for
addressing possibility of inconsistency between preclinical and clinical data.
Here, we stipulate a high level of prior confidence in the available animal data;

• Model B: a standard hierarchical model that assumes full exchangeability of the
dose-toxicity parameters γ` underpining the phase I trials. Animal data are not
incorporated in this model;

• Model C: stratified analysis, where phase I trials RL and RB are conducted and
analysed separately. Animal data are not incorporated in this model;

• Model D: stratified analysis, where phase I trials RL and RB are conducted and
analysed separately. Animal data are leveraged using the Bayesian hierarchical
model proposed in Chapter 3 with high level of prior confidence.;

• Model E: Pooling data from trials RL and RB, setting a weakly-informative prior
to implemente the dose-escalation procedure. In other words, animal data are
discarded completely.

For each iteration of the simulation study, dichotomous toxicity outcomes were
generated for each cohort of patients treated with a dose d̂(h`?)L or d̂(h`)B in their own
region, which fulfils the criterion defined in (4.3.1), from a binary distribution given
the true probability of toxicity listed in Table 4.2. Six representative scenarios were
considered to characterise the cases of consistency or inconsistency within the patient
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groups, and that between animal and human toxicity data. The simulated phase I tri-
als may be (i) terminated early for the drug being overly toxic even at the lowest dose,
specifically, when, for example P(p`1 > 0.33|Y1, . . . ,Y5,Y(h`?−1)

L ,Y(h`−1)
B ) > 0.25 at

any interim analysis, or (ii) ended after 24 patients were treated with a declaration of
MTD for each trial. These two subsets of trials will later be referred to as stopped early
and completed trials, respectively. We base the inference on the region-specific MTD
on the point estimate (posterior median) of the posterior distribution for the DLT risk
on any dose d`j ∈ D`, denoted by p̃`j, at the end of a completed trial `:

d̂`M = arg min
d`j∈D ′`

|p̃`j − 0.25|,

where D ′` ⊆ D` contains all the doses that have been given to treat patients and
meanwhile satisfy the defined overdose criterion by the end of a completed trial `.

For each toxicity scenario in humans and Bayesian analysis model, we simulated
2 000 adaptive phase I dose-escalation trials in each geographic region. Results were
reported by summarising across the simulated trials in each geographic region in
terms of percentage of trials that were stopped early for safety, and percentage of trials
that claimed on each dose in the dosing set as MTD. Moreover, we also report the
average number of patients allocated to each dose in trials RL and RB, respectively,
across the 2 000 simulated trials; that is, both the completed and stopped early trials
were counted. This makes sense as investigators need to know how many patients
would be involved in an excessively toxic scenario such as Scenario 5, especially for
the eastern trial RB.

To elucidate the strength and weakness of the proposed methodology for leverag-
ing co-data, we particularly focus on the comparison of performance of Models A – C
in the main manuscript. Nevertheless, complete numerical results of this simulation
study are listed in Table 4.3 of the Supplementary Materials. Figure 4.8 presents the
operating characteristics of phase I dose-escalation trials designed based on Models
A – C, respectively. We see that Model A in general is the winner across nearly all
the simulation scenarios: it performs well in percentage of correct selection (PCS) of
the region-specific MTDs and allocates most patients in a trial to dose(s) associated
with the DLT risk(s) falling into the target interval [0.16, 0.33). In Scenario 5 where
the drug is overly toxic in patients of the eastern trial, Model A yielded 33.1% and
51.3% of the 2 000 simulated trials in each region to stop early, and another 36.7% to be
completed with a correct declaration of MTD for the western trials. Scenarios 4 and
6 are more demanding in trial sample size, compared with the rest, as the true MTD
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Figure 4.8: Operating characteristics of the adaptive phase I dose-escalation trials in two geographic regions, con-
ducted and analysed using Models A – C. The vertical black solid (dotted) line indicates the true MTD in
the western trial RL (eastern trial RB) under each simulation scenario.
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for the western trial is the highest dose in set D`. With the “no-skipping-of-dose"
restriction, more patients will be needed so that dose for administration can escalate
up to 20 mg/kg. It is then not surprising that dose 10 mg/kg was more often claimed
to be the MTD for western trials in these two simulation scenarios, as we can read
very few patients have been treated with dose 20 mg/kg.

Comparing Model A with Model B in Scenarios 1 – 4 where bridging assumption
is correct, benefit from leveraging preclinical animal data and enabling possibility of
non-exchangeability is obvious. In Scenario 1, more patients were treated with dose
1 mg/kg than the true MTD 5 mg/kg, due to conservative rules adopted for dose
escalations and for concluding on the MTD. Consequently, more trials were ended
with a safer dose to be declared as the MTD. In Scenarios 2 – 4, Model B experienced
difficulty to distinguish the region-specific MTDs when difference is small. Indeed, it
led to excessive sharing of information between the two phase I clinical trials. Model
A, in contrast, has reacted sensibly that as a consequent the PCS in both regions
was significantly increased. In Scenario 5, more trials designed using Model B were
stopped early for safety. These two analysis models gave very divergent results in
Scenario 6: Model A spot the evident difference in toxicity of the drug to patients
in different regions, while Model B underestimated the degree of heterogeneity and
ended up with concluding on a dose in the middle ground.

Comparing Model A with Model C, we perceive how much merit is to be attributed
to (i) bridging strategies and/or (ii) sharing of information between animals and
humans. Under Model C, the PCS for Scenario 1 was 37.5% for simulated trials in
each region. This figure increased to 51.6% and 48.4%, respectively, if Model A had
been used. In Scenario 2, the gains were mainly from leveraging consistent animal
data to facilitate estimating the MTDs. When the drug is overly toxic to patients,
Model C tend to be more cautious then Model A, which incorporated animal data
suggesting the drug to be safer than it actually was in this simulation study. In the
rest of the simulation scenarios, we observed that Model A outperformed Model C
for making use of external information.

Results generated from phase I adaptive trials designed using Model D or Model E
are given in the Supplementary Materials. Readers may compare Models A and D to
see gains from using bridging strategies, and compare Models C and D to see whether
leveraging animal data would help estimate dose-toxicity parameters of human trials.
When using Model E, estimating region-specific MTDs is not possible, as this is a
one-size-fits-all solution. Instead, a single MTD will be concluded. This approach is
certainly inappropriate especially in cases of Scenario 6.
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Figure 4.9: Boxplots that depict the posterior means of the region parameter ε` estimated by the end of completed
trials, designed using Model A or Model B. The horizontal black line represents the prior mean of ε`.

We have introduced a region parameter ε` into the logistic dose-toxicity model to
take account of intrinsic ethnic differences between patient groups. It would be inter-
esting to estimate this parameter by the end of a completed trial. Figure 4.9 shows the
boxplots depicting the point estimate (posterior mean) of ε` obtained from the simu-
lated trials have completed treatment for 24 patients in each region. These posterior
means are to be compared with the prior mean marked with a horizontal black line
that a large difference challenges the appropriateness of using bridging strategies in
the global phase I clinical trials. For example, in Scenario 6, when assuming full ex-
changeability of model parameters γ` (under Model B), most posterior means took
a value greater than the prior mean. This indicates that the drug appears to be more
toxic in patients of the eastern trial than those of the western trial. Within the same
scenario, same interpretation works for the posterior means of ε` obtained under
Model A.

Across all the simulation scenarios except Scenario 5, the size of the shift from
the prior to posterior under Model A is smaller than Model B, as inconsistency can
also be addressed by the non-exchangeability distribution following specification of
Model A. In Scenario 5, more trials were completed with correct estimation of the
region-specific MTDs under Model A than under B; posterior means of ε` suggest
there was a difference in toxicity of the drug. Wheras, in the same scenario, Model
B yielded 74.4% and 75.4% of the simulated western and eastern trials to stop early
for safety, respectively, leaving other 21.8% and 22.5% to proceed until reaching the
maximum planned sample size. Model B failed to spot the difference between the
region-specific MTDs but concluded on an identical dose by the end of those com-
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pleted trials. Very small update from prior mean to posterior mean of ε` in Scenario
5 has also suggested the drawback of Model B that it implements excessive sharing
of information, as we interpreted earlier. In Scenario 1, no substantial difference be-
tween prior and posterior means of ε` was observed, reflecting the correctness of the
bridging assumption.

Saving sample size may be appealing to investigators especially when the bridging
assumption is correct. We have evaluated possibility of our methodology to permit
the second trial to stop early for precision of estimators. Average number of patients
needed for the second trial could be reduced in consistency scenarios. We have also
run simulations where a different level of prior confidence in the animal data for
Model A is considered, namely, setting w`Rat = 0.10, w`Monkey = 0.40 and w`R = 0.50.
Conclusions are similar with those written in Chapter 3, and thus will not be repeated
in the present chapter.

4.5 application to trials with a sequential bridging strategy

In the hypothetical data examples and the simulation study, we have supposed the
second trial would begin before the termination of the first trial. Numerical results
elucidated advantages of our approach compared with alternative analysis models.
In this section, we consider application of this robust Bayesian hierarchical model to
phase I trials with a sequential bridging strategy. Specifically, design and analysis of
the first and the second trials are concerned in a row.

Suppose that a total of 24 patients will be recruited and treated in a sequence of
eight cohorts in the western trial RL. From the nineth global cohort, of which the
regional cohort number h` = 1 if coded locally, and onwards is the timeline for
the eastern trial RB. Throughout the clinical drug development program, complete
information from animal studies (same as what was used in Sections 3 and 4) has
been made available. The dose escalation criterion at the interims is then updated as:

d̂
(h`?)
L = max{d`j ∈ D` : P(p`j > 0.33|Y1, . . . ,Y5,Y(h`?−1)

L ) 6 0.25},

d̂
(h`)
B = max{d`j ∈ D` : P(p`j > 0.33|Y1, . . . ,Y5,YL,Y(h`−1)

B ) 6 0.25}.
(4.5.1)

Stipulating same priors for the parameters needed to implement the model, we gen-
erate four hypothetical trial examples following a sequential strategy. Particularly,
these new trial examples were simulated from same specification of true toxicities in
humans as that was considered in Figure 4.6 of Chapter 4.3.2.
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Figure 4.10: Dose-escalation scheme in each phase I clinical trial designed sequentially using the proposed Bayesian
EX-NEX model.

Figure 4.10 gives an overview of how these trials may progress. Here, we have
forced both trials to start with a safe dose 0.1 mg/kg and not permitted escalation
with skipping of a dose. We observe that the trial trajectories were not much differ-
ent from what was obtained under a parallel bridging strategy adopted in previous
sections of this paper. This suggest inferences based on our methodology are robust
to the toxicity data of current trial. During the course of the western trial RL, no
dose-toxicity data were generated from the eastern trial RB for the period of global
cohort 1 – 8. There were thus no information to update priors for the heterogeneity
between human trials. But this does not preclude implementation of our model, as
we have used proper priors that integrates to 1 for probablistic inferences. We would
like to use these additional data examples to generalise the conclusions obtained from
previous numerical evaluations where the trial setting appears to be a bit restrictive.

4.6 discussion

Bridging studies have been widely discussed in the statistical literature (Wadsworth
et al. [2018]), as they show promise to demonstrate drug behaviours using fewer
resources rather than establishing an independent package of clinical drug develop-
ment. To date, much methodology work to extrapolate foreign clinical data to the
population of a new region has focused on settings of phase II and phase III trials;
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see, for example, Hsiao et al. [2004]; Chow et al. [2012]; Tsou et al. [2012]; Zhang et al.
[2017]. Discussion on this topic in the context of phase I dose-escalation trials was
limited. In this chapter, we have presented a flexible Bayesian EX-NEX approach for
leveraging co-data available from preclinical animal studies and phase I clinical trials,
either completed or ongoing, in a different region. For illustration, we showed nu-
merical studies considering two phase I trials to be undertaken in distinct geographic
regions, while the methodology can certainly be used for design and analysis of more
phase I clinical trials to estimate the region-specific MTDs.

When evaluating properties of our Bayesian EX-NEX approach in Chapters 4.3 and
4.4, we have assumed same recruitement rate for all trials involved in the global
program. However, this is not a requirement to implement the model, as potentially
heterogeneous preclinical and clinical data are synthesised through the K EX distri-
butions for model parameters (rather than the data), stipulated in the top hierarchies.
We also note current version of our model is not readily to give accurate estimates
of population-averaged effects in humans, as we did not explicitly parameterise any
population means specific to humans for summarising findings of several trials con-
ducted in the same region.

The methodology proposed in this work may also be applied in exploratory phase
basket trials (Thall et al. [2003]; Berry et al. [2013]). Historical data would need to
be carefully selected to formulate the EX distributions for the parameters underpin-
ning each basket, where the co-data are to be generated. We imagine that leveraging
co-data on different endpoints across baskets would increase complexity. While our
Bayesian EX-NEX approach is limited in this aspect, further research to extend this
model to accommodate correlated but not identical endpoints could be of interest.

4.7 technical notes

4.7.1 OpenBUGS code for implementation

model{

# likelihood/sampling model

# MdoseA: total number of doses tested in animal species

for(j in 1:MdoseA){

linA[j] <- theta[StudyA[j], 1]

+ exp(theta[StudyA[j], 2])*log(deltaA[Species[j]]*DoseA[j]/DoseRef)
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logit(pToxA[j]) <- linA[j]

NtoxA[j] ~ dbin(pToxA[j], NsubA[j])

}

zero[1] <- 0

zero[2] <- 0

# theta=(theta1, theta2) derived from each animal study are ready for the use

# on the human equivalent scale

for(i in 1:NstudyA){

for(j in 1:MdoseH){

lin[i, j] <- theta[i, 1] + exp(theta[i, 2])*log(DoseH[j]/DoseRef)

}

# sp.ind[i]: index function to specify

# which species the Study i belongs to

theta[i, 1] <- mu.sp[sp.ind[i], 1] + re.A[i, 1]

theta[i, 2] <- mu.sp[sp.ind[i], 2] + re.A[i, 2]

re.A[i, 1:2] ~ dmnorm(zero[1:2], prec.Psi[1:2, 1:2])

# PInd[]: matrice of the trivial/non-trivial weights

# trivial weights for animals, no local robustification

# to assure theta_i are fully exchangeable within the same species

sp.ind[i] ~ dcat(PInd[i, 1:(n.sp+1)])

}

# Animal species cluster

for(k in 1:n.sp){

deltaA[k] <- exp(Prior.mn.deltaA[k]

+ Prior.sd.deltaA[k]*log.deltaA01[k])

log.deltaA01[k] ~ dnorm(0, 1)

mu.sp[k, 1] <- mu[1] + re.m[k, 1]

mu.sp[k, 2] <- mu[2] + re.m[k, 2]

re.m[k, 1:2] ~ dmnorm(zero[1:2], prec.Sigma[1:2, 1:2])

theta.predH[k, 1] <- mu.sp[k, 1] + re.h[k, 1]
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theta.predH[k, 2] <- mu.sp[k, 2] + re.h[k, 2]

re.h[k, 1:2] ~ dmnorm(zero[1:2], prec.Phi[1:2, 1:2])

}

# default weakly-informative prior for robustification

theta.predH[(n.sp+1), 1:2] ~ dmnorm(Prior.mw[1:2], prec.sw[1:2, 1:2])

cov.rb[1, 1] <- pow(Prior.sw[1], 2)

cov.rb[2, 2] <- pow(Prior.sw[2], 2)

cov.rb[1, 2] <- Prior.sw[1]*Prior.sw[2]*Prior.corr

cov.rb[2, 1] <- cov.rb[1, 2]

prec.sw[1:2, 1:2] <- inverse(cov.rb[1:2, 1:2])

# Meta-analytic prediction

for(i in 1:n.sb){

theta.star[i, 1] <- theta.predH[exch.index[i], 1]

theta.star[i, 2] <- theta.predH[exch.index[i], 2]

# latent mixture indicators:

# exch.index: categorical 1, ..., (n.sp+1)

exch.index[i] ~ dcat(wMix[1:(n.sp+1)])

for(ii in 1:(n.sp+1)){

each[i, ii] <- equals(exch.index[i], ii)

}

# ADD HUMAN DATA HERE

for(j in 1:MdoseH){

linH[i, j] <- theta.star[i, 1]

+ exp(theta.star[i, 2])*log(deltaH[i]*DoseH[j]/DoseRef)

logit(pToxH[i, j]) <- linH[i, j]

NtoxH[i, j] ~ dbin(pToxH[i, j], NsubH[i, j])

pCat[i, j, 1] <- step(pTox.cut[1] - pToxH[i, j])

pCat[i, j, 2] <- step(pTox.cut[2] - pToxH[i, j])

- step(pTox.cut[1] - pToxH[i, j])

pCat[i, j, 3] <- step(1 - pToxH[i, j])

- step(pTox.cut[2] - pToxH[i, j])
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}

deltaH[i] <- Prior.mn.deltaH[i] + Prior.sd.deltaH[i]*deltaH01[i]

deltaH01[i] ~ dnorm(0, 1)I(-3.921, 3.921)

}

# priors: Prior.mt1, Prior.mt2

prec.mt1 <- pow(Prior.mt1[2], -2)

prec.mt2 <- pow(Prior.mt2[2], -2)

# numerical stability:

# constrained to -10 and +10 (mt1), -5 and +5 (mt2)

mu[1] ~ dnorm(Prior.mt1[1], prec.mt1)I(-10, 10)

mu[2] ~ dnorm(Prior.mt2[1], prec.mt2)I(-5, 5)

# Priors for hyper parameters of the covariance matrix

# say, prec.Psi[1:2, 1:2]

prec.tau1 <- pow(Prior.tau.HN[1], -2)

prec.tau2 <- pow(Prior.tau.HN[2], -2)

tauA[1] ~ dnorm(0, prec.tau1)I(0.001,)

tauA[2] ~ dnorm(0, prec.tau2)I(0.001,)

covA.ex[1, 1] <- pow(tauA[1], 2)

covA.ex[2, 2] <- pow(tauA[2], 2)

covA.ex[1, 2] <- tauA[1]*tauA[2]*rhoA

covA.ex[2, 1] <- covA.ex[1, 2]

prec.Psi[1:2, 1:2] <- inverse(covA.ex[1:2, 1:2])

rhoA ~ dunif(Prior.rho[1], Prior.rho[2])

# Priors for hyper parameters of the covariance matrix

# say, prec.Sigma[1:2, 1:2]

prec.sigma1 <- pow(Prior.sigma.HN[1], -2)

prec.sigma2 <- pow(Prior.sigma.HN[2], -2)

sigma[1] ~ dnorm(0, prec.sigma1)I(0.001,)

sigma[2] ~ dnorm(0, prec.sigma2)I(0.001,)
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covA.sig[1, 1] <- pow(sigma[1], 2)

covA.sig[2, 2] <- pow(sigma[2], 2)

covA.sig[1, 2] <- sigma[1]*sigma[2]*kappaA

covA.sig[2, 1] <- covA.sig[1, 2]

prec.Sigma[1:2, 1:2] <- inverse(covA.sig[1:2, 1:2])

kappaA ~ dunif(Prior.kappa[1], Prior.kappa[2])

# Priors for hyper parameters of the covariance matrix

# say, prec.Phi[1:2, 1:2]

prec.tau3 <- pow(Prior.tau.HN[3], -2)

prec.tau4 <- pow(Prior.tau.HN[4], -2)

tauH[1] ~ dnorm(0, prec.tau3)I(0.001,)

tauH[2] ~ dnorm(0, prec.tau4)I(0.001,)

covH.ex[1, 1] <- pow(tauH[1]], 2)

covH.ex[2, 2] <- pow(tauH[2], 2)

covH.ex[1, 2] <- tauH[1]*tauH[2]*rhoH

covH.ex[2, 1] <- covH.ex[1, 2]

prec.Phi[1:2, 1:2] <- inverse(covH.ex[1:2, 1:2])

rhoH ~ dunif(Prior.rho[1], Prior.rho[2])

}

4.8 supplementary materials

4.8.1 Graphical representation of the toxicity scenarios investigated in humans

4.8.2 Additional simulation results

Leveraging co-data, which are consistent with current trial data, should improve the
accuracy of posterior estimates for the probability of toxicity, compared with analysis
without borrowing of information at all. On the other hand, when co-data would
be inconsistent with current trial data, we are certainly much concerned with the
performance of posterior estimates. To this end, we obtain the point estimates (poste-
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Figure 4.11: Toxicity scenarios in humans that have been considered in the simulation study, overlaying the predictive
priors obtained from the animal studies or weakly informative priors.

rior medians) by the end of the completed trials, which constitute one subset of the 2

000 simulated trials in each region, and compute the arithmetic means of such point
estimates per human dose under the analysis models A – E.
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Figure 4.12: Average fitted dose-toxicity curves obtained under Models A – E, based on the completed trials only.
The black cross marks the true probability of toxicity per human dose of interest for the six simulation
scenarios. The horizontal gray line indicates the target level, at which the MTD is defined.
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Figure 4.12 visualises how close the estimated dose-toxicity relationships (obtained
by averaging across the completed trials) would be, to the true probability of toxicicty
in humans marked with black cross per dose of interest. Since it was not possible to
estimate region-specific MTDs under Model E which pools western and eastern data
together for analysis, the average fitted curves in red for Model E displayed in two
regions are identical within same simulation scenario.

As we can see, Model B and Model E have presented less satisfactory performance,
compared with the rest, across nearly all the simulation scenarios. The dose-toxicity
curves fitted using these two models are severely deviated from the true dose-toxicity
relationship when the region-specific MTDs are very divergent, such as in Scenario
6. Model B bears excessive sharing of information, which as a result is inappropriate
for the divergent scenarios. In contrast, Models A, C – D give quite robust estimates
about the dose-toxicity relationship in most cases. Moreover, these models converge
well to the true MTD. Scenario 5 corresponds to an overly toxic situation, where
most simulated trials are meant to be stopped early. The complement subset, i.e., com-
pleted trials, are those suggested the drug to be less toxic given fewer DLTs observed.
Consequently, the fitted curves obtained from the *completed* trials only tend to
underestimate the true probability of toxicity.

In the main mauscript, we have interpreted gains from Model A over Model C as
a mixture of advantages to the use of both animal data and bridging strategy. Here,
we add Model D into the comparison to see how much gains should be attributed
to using animal data (comparing Models C and D), and the robust bridging strategy
(comparing Models A and D). Figure 4.13 show operating characteristics of the global
phase I dose-escalation trials, planned using Models A, C – D. Numerical results of
all the analysis models are listed in Tabel 4.3, where we have also included the non-
parametrical optimal benchmark design (O’Quigley [2002]) for comparison. Across
all the analysis models, our proposed Model A presents very similar behaviour in
PCS with that of the benchmark design in consistency scenarios. In Scenario 2, where
animal data are very consistent with human data and the bridgin assumption holds,
we see that the dose-escalation design based on Model A defeats the benchmark
design in PCS for the eastern trial. In contrast, referring to the results in Scenario
6, enabling incorporation of co-data from external studies does not help much in
identifying the true MTD. This leads to a larger deviation between properties of the
dose-escalation design based on Model A and the optimal benchmark design.
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Figure 4.13: Operating characteristics of the adaptive phase I dose-escalation trials in two geographic regions, con-
ducted and analysed using Models A, C, D. The vertical black solid (dotted) line indicates the true MTD
in the western trial RL (eastern trial RB) under each simulation scenario.
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Table 4.3: Comparison of alternative analysis models in terms of the percentage of selecting a dose as MTD at the end of the trials, percentage of early stopping for
safety, average patient allocation, and average number of patients with toxicity.

Design

% dose declared as MTD & average patient allocation

N̄L N̄BWestern trial, RL Eastern trial, RB

dL1 dL2 dL3 dL4 dL5 dL6 None
dB1 dB2 dB3 dB4 dB5 dB6 None

0.1 0.5 1 5 10 20 0.1 0.5 1 5 10 20

Scenario 1 pTox 0.01 0.03 0.10 0.25 0.34 0.47 0.01 0.03 0.10 0.25 0.34 0.47

Benchmark Sel 0 0.3 14.6 59.1 22.0 4.0 0 0.3 14.6 59.1 22.0 4.0

Model A Sel 0 0 25.2 51.7 22.3 0.9 0 0 0 26.4 48.4 23.5 1.7 0

Pts 3.0 3.0 7.0 7.9 3 0.1 3.0 3.0 6.7 8.2 3.0 0.1 24.0 24.0

Model B Sel 0 0 52.2 39.0 7.7 1.1 0 0 0 53.5 37.1 8.3 1.1 0

Pts 3.0 3.1 10.2 6.2 1.4 0.1 3.0 3.1 10.3 6.2 1.3 0.1 24.0 24.0

Model C Sel 0 0.6 50.8 37.5 9.1 1.8 0.2 0 0.6 50.8 37.5 9.1 1.8 0.2
Pts 3.1 3.2 9.5 6.3 1.7 0.1 3.1 3.2 9.5 6.3 1.7 0.1 23.9 23.9

Model D Sel 0 0 26.8 50.0 22.1 1.1 0 0 0 26.8 50.0 22.1 1.1 0

Pts 3.0 3.0 7.4 7.7 2.8 0.1 3.0 3.0 7.4 7.7 2.8 0.1 24.0 24.0

Model E Sel 0 0 59.7 33.1 5.9 1.1 0 - - - - - - -
Pts 6.0 6.2 21.8 11.8 1.9 0.2 - - - - - - 47.9 -

Scenario 2 pTox 0.01 0.03 0.10 0.25 0.34 0.47 0.05 0.12 0.25 0.37 0.50 0.60

Benchmark Sel 0 0.3 14.6 59.1 22.0 4.0 0.7 18.9 56.8 21.4 2.2 0

Model A Sel 0 0 37.8 46.0 15.4 0.8 0 0.2 7.9 67.9 21.1 2.8 0.1 0

Pts 3.0 3.0 7.9 7.7 2.3 0.1 3.0 3.5 12.5 4.4 0.6 0 24.0 24.0

Model B Sel 0 0.5 80.7 16.2 2.1 0.5 0 0.2 4.2 80.0 13.4 1.8 0.4 0

Pts 3.2 3.4 13.0 3.7 0.6 0.1 3.1 4.1 13.4 2.9 0.4 0.1 24.0 24.0

Model C Sel 0 0.6 50.8 37.5 9.1 1.8 0.2 3.0 22.4 63.9 7.4 0.8 0.1 2.4
Pts 3.1 3.2 9.5 6.3 1.7 0.1 4.5 5.7 11.2 1.8 0.3 0 23.9 23.5

Model D Sel 0 0 26.8 50.0 22.1 1.1 0 0.5 7.3 72.9 16.2 3.0 0 0.1
Pts 3.0 3.0 7.4 7.7 2.8 0.1 3.2 3.6 13.2 3.5 0.5 0 24.0 24.0

Model E Sel 0 1.1 84.6 12.0 0.9 0.3 1.1 - - - - - - -
Pts 6.1 7.4 27.7 5.4 0.7 0.1 - - - - - - 47.4 -

Scenario 3 0.01 0.03 0.10 0.25 0.34 0.47 0.01 0.03 0.07 0.15 0.25 0.37

Benchmark Sel 0 0.3 14.6 59.1 22.0 4.0 0 0 2.1 26.7 48.0 23.1

Model A Sel 0 0 21.6 47.2 28.6 2.6 0 0 0 7.1 38.4 46.6 7.9 0

Pts 3.0 3.0 6.7 7.7 3.5 0.1 3.0 3.0 4.7 7.5 5.3 0.5 24.0 24.0
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Table 4.3 – Continued.

Design

% dose declared as MTD & average patient allocation

N̄L N̄BWestern trial, RL Eastern trial, RB

dL1 dL2 dL3 dL4 dL5 dL6 None
dB1 dB2 dB3 dB4 dB5 dB6 None

0.1 0.5 1 5 10 20 0.1 0.5 1 5 10 20

Model B Sel 0 0 37.6 45.4 14.1 2.9 0 0 0 34.0 44.5 17.5 4.0 0

Pts 3.1 3.1 9.2 6.6 1.9 0.1 3.0 3.1 8.4 6.9 2.3 0.3 24.0 24.0

Model C Sel 0 0.6 50.8 37.5 9.1 1.8 0.2 0 0.1 24.1 42.9 26.2 6.5 0.2
Pts 3.1 3.2 9.5 6.3 1.7 0.1 3.1 3.1 7.0 6.9 3.4 0.4 23.9 23.9

Model D Sel 0 0 26.8 50.0 22.1 1.1 0 0 0 7.3 40.9 44.8 7.0 0

Pts 3.0 3.0 7.4 7.7 2.8 0.1 3.0 3.0 5.3 7.2 5.1 0.4 24.0 24.0

Model E Sel 0 0 41.2 41.4 14.3 2.9 0.2 - - - - - - -
Pts 6.0 6.1 18.1 13.7 3.4 0.6 - - - - - - 47.9 -

Scenario 4 0.01 0.03 0.05 0.08 0.15 0.25 0.02 0.05 0.07 0.12 0.25 0.36

Benchmark Sel 0.2 0 0.4 3.5 29.3 66.6 0 0.5 1.7 17.3 56.4 24.1

Model A Sel 0 0 1.1 11.8 55.6 31.5 0 0 0 4.0 21.2 53.8 21.0 0

Pts 3.0 3.0 4.0 5.2 7.4 1.4 3.0 3.0 4.2 6.5 6.0 1.3 24.0 24.0

Model B Sel 0 0 8.9 25.5 44.7 20.9 0 0 0 9.0 31.1 39.9 20.0 0

Pts 3.1 3.1 6.0 5.6 5 1.2 3.1 3.1 5.6 6.1 4.7 1.4 24.0 24.0

Model C Sel 0 0.1 8.9 25.4 45.9 19.5 0.2 0.1 0.2 21.6 39.7 30.6 7.3 0.4
Pts 3.0 3.0 5.4 5.9 5.1 1.4 3.2 3.2 7.3 6.1 3.6 0.5 23.8 23.9

Model D Sel 0 0 1.3 17.7 52.6 28.4 0 0 0 5.4 40.1 45.9 8.6 0

Pts 3.0 3.0 4.3 5.7 6.8 1.2 3.0 3.0 5.4 6.8 5.4 0.4 24.0 24.0

Model E Sel 0 0 11.9 29.1 39.1 19.6 0.3 - - - - - - -
Pts 6.0 6.2 11.6 12.4 8.6 3.0 - - - - - - 47.8 -

Scenario 5 0.25 0.34 0.47 0.55 0.65 0.75 0.40 0.50 0.60 0.70 0.80 0.90

Benchmark Sel 74.0 21.9 3.8 0.2 0 0 98.4 1.4 0.2 0 0 0

Model A Sel 36.7 24.9 5.1 0.2 0 0 33.1 37.7 9.4 1.6 0 0 0 51.3
Pts 7.5 7.3 5.8 0.1 0 0 7.4 5.0 2.2 0 0 0 20.7 14.6

Model B Sel 21.8 3.1 0.8 0 0 0 74.3 22.5 1.8 0.4 0 0 0 75.3
Pts 8.9 2.3 0.6 0 0 0 4.7 1.5 0.2 0 0 0 11.8 6.4

Model C Sel 25.2 11.5 3.5 0 0 0 59.8 5.9 0.4 0.2 0 0 0 93.5
Pts 8.4 3.7 2.3 0.1 0 0 6.2 1.2 0.5 0 0 0 14.5 7.9

Model D Sel 29.9 33.4 16.1 0.2 0 0 20.4 19.9 7.8 0.6 0 0 0 71.7
Pts 7.4 6.4 7.7 0.2 0 0 8.5 4.0 2.8 0 0 0 21.7 15.3
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Table 4.3 – Continued.

Design

% dose declared as MTD & average patient allocation

N̄L N̄BWestern trial, RL Eastern trial, RB

dL1 dL2 dL3 dL4 dL5 dL6 None
dB1 dB2 dB3 dB4 dB5 dB6 None

0.1 0.5 1 5 10 20 0.1 0.5 1 5 10 20

Model E Sel 11.1 0.8 0 0 0 0 88.1 - - - - - - -
Pts 11.6 3.2 0.4 0 0 0 - - - - - - 15.2 -

Scenario 6 0.01 0.03 0.05 0.08 0.15 0.25 0.10 0.25 0.36 0.50 0.60 0.68

Benchmark Sel 0.2 0 0.4 3.5 29.3 66.6 14.7 60.6 22.2 2.5 0 0

Model A Sel 0 0 5.1 24.6 50.9 19.4 0 7.6 34.6 52.5 3.5 0.5 0 1.3
Pts 3.0 3.0 4.8 6.2 5.9 1.1 3.7 5.8 12.3 1.8 0.1 0 24.0 23.7

Model B Sel 0.1 1.2 76.9 14.8 4.9 1.9 0.2 7.0 21.2 57.5 12.2 1.3 0.4 0.4
Pts 3.3 3.6 13.2 2.8 0.9 0.2 3.9 6.2 10.9 1.9 0.3 0 24.0 23.2

Model C Sel 0 0 8.9 25.4 45.9 19.5 0.3 26.7 34.2 25.6 0.8 0.1 0 12.6
Pts 3.1 3.1 5.4 5.9 5.1 1.4 7.9 6.9 6.6 0.5 0 0 24.0 21.9

Model D Sel 0 0 1.3 17.7 52.6 28.4 0 9.0 36.1 51.3 2.4 0 0 1.2
Pts 3.0 3.0 4.3 5.7 6.8 1.2 4.3 6.0 12.5 1.0 0 0 24.0 23.8

Model E Sel 0.6 6.2 79.3 8.3 1.8 0.4 3.4 - - - - - - -
Pts 7.0 10.7 25.1 3.2 0.5 0.1 - - - - - - 46.6 -

pTox: true probability of toxicity in humans; Sel: proportion of times of declaring a dose as MTD; Pts: average number of patients allocated to a dose; Benchmark: Non-parametrical optimal benchmark design by O’Quigley

[2002].



5
C O N C L U S I O N S , L I M I TAT I O N S A N D F U T U R E W O R K

5.1 summary of our methodologies

Eliciting an informative prior is a widely discussed topic in the Bayesian inference.
In this thesis, we have followed the maxim that Today’s posterior is tomorrow’s prior,
as Lindley [1972] put it. Focusing on the transition step in early drug development,
we have shown how preclinical animal data, seen as a special type of historical data
for a new phase I clinical trial, can be used to learn about the toxicity of the same
drug in humans. This setting raises several interesting questions. First, how could we
translate preclinical animal data that have been recorded on a different dosing scale
onto a suitable one to predict toxicity in humans. Second, after careful selection and
translation of relevant animal data, how would we cope with the intrinsic differences
between toxicity of the drug in animals and humans. Third, what could we do if
the predictability of human toxicity varies across animal species, when preclinical
data are available from more than one species. Fourth, how could we improve trial
efficiency and balance the information from heterogeneous sources when, preceded
by preclinical studies, there are more than one phase I dose-escalation trials to be
designed.

From Chapter 2 to Chapter 4, we have addressed several facets of these interesting
research problems, by developing novel Bayesian adaptive methods to use preclinical
animal data in a robust manner during the course of ongoing phase I clinical trials.
To the best of our knowledge, our work represents the first applications of Bayesian
approaches to leveraging historical data across species, or say, more generally, any
historical datasets that have been recorded in very different measurement scales, in
human trials. The methodologies relax the requirement which is essential to apply
most data augmentation techniques existing in the statistical literature: the source
data and the target data for synthesis can be dissimilar with intrinsic and extrinsic
variabilities. Our proposals written in different chapters share similarities in that they
consist of: (i) informative priors for the toxicity in humans, (ii) a weakly informative
prior for the possibility that animal data are not relevant at all, and (iii) a set of
prior mixture weights to be allocated to the informative animal priors and the robust

135



136 conclusions , limitations and future work

prior, respectively. The presented methodologies are, however, quite differential in
technical details and how we are concerned with heterogeneity both between studies
and between species.

In Chapter 2, we follow the current practice of translational sciences to convert
animal doses into equivalent human doses, but formally describe uncertainty that
surrounds this translation as well as predictability of the available animal data. The
question “Is the drug more toxic in humans than what we have expected from animal
studies?” has been asked throughout the phase I first-in-man trial. We have proposed
a procedure to assess the commensurability between preclinical and clinical data in a
quantifiable manner as the phase I trial progresses. Comparing the prior predictions,
obtained based on animal data alone, with the observed toxicity outcomes of patients
after treatment, we penalise (reward) incorrect (correct) prior predictions through a
small (large) utility. In particular, for the incorrect prior predictions, a smaller utility
will be allocated if the accumulating evidence suggests animal data underestimate,
rather than overestimate, toxicity in humans. Predictive accuracy of animal data is
computed at each human dose for evaluation, and later summarised using an overall
quantity to determine the amount of preclinical information to be incorporated. A
large prior mixture weight will consequently be allocated to the informative animal
prior, comprised in a mixture prior, when the preclinical information gives correct
prediction towards human toxicity, and likewise a small prior mixture when it does
not. Our Bayesian procedure is shown to be responsive to prior-data conflicts in small
trials.

In Chapter 3, we develop a Bayesian meta-analytic approach to incorporate animal
data from multiple species into a phase I oncology trial. Since the risk of toxicity
could vary drastically across different animal species and humans given the same
dose, the exchangeability assumption for model parameters required to establish a
hierarchical model would not always hold. We introduce a translation factor into the
dose-toxicity models to translate the animal doses onto an equivalent human dosing
scale. The model parameters in any tested animal species and humans can then be
interpreted on a common scale. Unlike current practice that adopts fixed constants to
extrapolate a dose evaluated in animals, we treat the translation factor, appropriate
for each animal species, to be a random variable with a log-normal prior to capture
uncertainty about the magnitude of such translation across species. Random-effects
distributions are stipulated for the parameters, expressed on the common scale, to
take account of heterogeneity both between studies and between species. A prior
mixture weight is specified representing our prior scepticism about the plausibility
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of an exchangeability assumption for the human parameters with those estimated
from animal studies in a particular species. The possibility of non-exchangeability
between human parameters and those of any animal species is also considered. Our
methodology is not limited to this particular setting, but can be applied more broadly
when the source data have been recorded on a measurement scale different from one
where the target data would be generated.

Chapter 4 extends the methodology proposed in Chapter 3 from “M-to-1” settings
applied to incorporate preclinical animal data from several studies and species for
inference in a phase I first-in-man trial to “M-to-L” settings wherein the decision
making pertains to a number of phase I dose-escalation trials. We have illustrated
potential applications of our generalised model in the context of phase I clinical trials
to be designed and analysed in various geographical regions. A region parameter is
introduced to account for intrinsic ethnic differences that could impact on toxicity of
a medicine in distinct patient subgroups. We use preclinical animal data to estimate
the means of the exchangeability distribution, where the dose-toxicity parameters of
human trials could possibly be drawn, but the new human trial data exclusively to
estimate the variance matrix. This means, we split discussions about between-study
heterogeneity for the animal datasets and the human datasets. To avoid excessive
shrinkage towards the population means for an extreme stratum, we consider a non-
exchangeability distribution for each parameter vector that underpins a phase I trial.

5.2 significance of the work

While in statistical literature there exists a number of Bayesian adaptive methods to
supplement a new clinical trial with historical data, most rely on the assumption that
historical and new trial data are sufficiently similar so that the model parameters
can be assumed to be exchangeable. Our research has relaxed this assumption and
enabled the possibility of leveraging historical data from heterogeneous data sources.
We restrict our attention to the transition step in early drug development to discuss
a special type of historical data, which serves as both a motivating and illustrative
example for our methodologies. To the best of our knowledge, this thesis comprise
three very first proposals to leverage preclinical animal data into human trials given
different settings. As phase I clinical trials are generally planned with small sample
size, the notorious prior-data conflict can be outstanding than ever.
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The Bayesian decision-theoretic approach proposed in Chapter 2 addresses some
of the concerns over the sceptisism that whether preclinical data are commensurate
enough to be incorporated into a phase I first-in-man trial. This is assessed in a
sequential manner, as the clinical trial data accrue. Investigator utilities need to be
specified to penalise the inconsistent animal data, which could be identified based
on incorrect preclinical predictions of the toxicity in humans. We have provided two
forms of a tuning parameter specified to correctly reflect the relevance of the animal
data, as our estimator of the overall commensurability between clinical and clinical
data can be noisy at early stages of the phase I trial when human toxicity data are
sparse. Readers can certainly explore alternatives on their own following this concept.
The methodology is suitable to be implemented when animal data are from a single
species, while it does not have restriction on the number of animal studies.

The robust Bayesian hierarchical model presented in Chapter 3 suppose animal
data are available from a number of preclinical studies performed in different species
before the drug is evaluated in humans. Preclinical animal data are translated onto an
equivalent human dosing scale, while accounting for uncertainty that surrounds our
preliminary knowledge about the intrinsic differences between an animal species and
humans. The methodology formalises the process of using historical data that have
been recorded in different measure scales. For each animal species, we assume the
dose-toxicity parameters of a phase I first-in-man trial to be exchangeable with the
parameters of the animal studies, expressed on the common scale. Prior probabilities
of exchangeability are formulated to reconcile preclinical information from different
animal species. To obtain robust inferences about the dose-toxicity parameters in
humans, we have also considered probability of non-exchangeability given a weakly
informative prior specifically for the phase I clinical trial. The simulation study was
designed to check how our methodology would behave in one of the most extreme
scenarios when animal data are accumulated from one species. In an easier scenario
when we have animal data from multiple species, better estimates about the between-
species heterogeneity can be obtained.

Finally, the generalised Bayesian hierarchical model in Chapter 4 offers a pragmatic
solution to integrative subgroup analysis concerned in phase I dose-escalation trials.
The issues of data inconsistency could arise between animal species and humans
as well as between distinct human subgroups. Our approach promotes efficiency of
design and analysis of the new phase I trials while acknowledging heterogeneity in
different aspects. They can be undertaken simultaneously or sequentially in different
geographic regions. However, none of them will be left on their own devices to draw
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a conclusion, nor would any trial data override the inferences in another trial. Our
Bayesian model works well to achieve the principal goal of estimating region-specific
MTDs, while we have noted it cannot be used to describe population-averaged effects
of a drug in patients of the same subgroup. This could be possible and we would
recommend readers to explore extensions to widen the scope of our investigation.

5.3 limitations and future work

Throughout this thesis, we considered using preclinical animal data, from single or
multiple species, to improve efficiency of estimating the MTD(s) for phase I clinical
trials, assuming that the historical animal and concurrent human data are generated
on the same binary endpoint, i.e., DLT or no DLT, but toxicity data are generally
recorded in various dimensions, with different types, grades of severity, attribution
and times of occurrence. Phase I dose-escalation trials could be better planned under
a new toxicity endpoint paradigm rather than adopting a simplified binary toxicity
endpoint. A variaty of toxicity scoring system have been proposed for novel designs
for phase I clinical trials; see for example Bekele and Thall [2004]; Yuan et al. [2007];
Cheng et al. [2010]; Ezzalfani et al. [2013]. As one possibility of extending our propos-
als, investigators may take account of this high dimensional nature of toxicity profile,
and more importantly, relate the animal and human toxicity data on each dimension
of the toxicity measurement to obtain a more accurate assessment, or preliminary un-
derstanding, of the commensurability between preclinical and clinical data that we
are interested in.

We have discussed leveraging preclinical animal data exclusively in settings of
phase I oncology trials, where efficacy is generally believed to be highly associated
with toxicity and therefore the dose-toxicity relationship is of primary interest. In
our proposals, we have adopted a two-parameter Bayesian logistic regression model
and constrained the activity, specifically, toxicity, of the drug to be monotonically
increasing as the dose increases. This works particularly well for cytotoxic agents,
whereas we imagine strategies will have to be modified for cancer immunotherapies
and molecular targeted agents, as more often than not the dose-efficacy relationship
in these fields is unknown and can display a plateau or umbrella shape (Conolly
and Lutz [2004]; Jain et al. [2010]). Quite a few trial designs have been proposed
to consider both toxicity and efficacy endponits for decision making (Braun [2002];
Nebiyou Bekele and Shen [2005]; Yeung et al. [2015, 2017]; Cai et al. [2014]; Wages and
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Tait [2015]; Riviere et al. [2018]; Mozgunov and Jaki [2019]). Extending our Bayesian
methodologies to accommodate different endpoints would be interesting, given that
collecting preclinical animal data on both toxicity and efficacy endpoints are not
uncommon. In accounting for situations concerned with bivariate endpoints, one
could evaluate each individually and combine the information through a trade-off
function, or jointly model the correlated endpoints based on a copula model (Nelsen
[1999]). It would be interesting to explore borrowing of information from animal data,
since they could be predictive of either endpoint, or both, of the human trial data to
different extent.

In Chapter 4, we have discussed leveraging preclinical data into phase I clinical
trials in presence of group heterogeneity. The methodology has been illustrated in
the context of phase I bridging trials performed in different geographic regions, for
which we do not expect potential ordering between the patient groups. There are
situations where we may have quite strong evidence concerning which of the patient
group(s) would have higher level of MTD. This could be motivated by the interest of
conducting a pediatric phase I trial following adult phase I trials (Smith et al. [1998];
EMA [2017]). We imagine incorporating additional information about the direction
and the magnitude of the potential differences between patient groups can improve
efficiency of the phase I clinical trials to be designed. EMA [2005b] also suggest to
perform non-clinical studies in juvenile animals to predict effects on growth and/or
development in the intended age groups, when standard preclinical studies using
adult animals and safety data from adult trials cannot well predict toxicity of the
drug in all paediatric age groups. We believe this would be worth discussions to
make our research more complete.
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