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Abstract 

 

 

In many modern hospitals, resources such as beds, theatre time, medical 

equipment and staff are shared between patients who require immediate care 

and must be dealt with as they arrive (emergency patients), and those whose 

care requirements are known to the hospital some time in advance (elective 

patients). Caring for these two types of patients poses a logistical challenge, 

since some portion of each resource must be set aside for emergency patients 

when planning for the number and type of elective patients to admit. Failing to 

strike this balance can result in negative outcomes, such as patient-stays on 

non-ideal wards, or increased waiting time for elective procedures (in the case 

of public health services). 

The potential benefits of using discrete event simulation (DES) models in 

healthcare are well established, and they are often preferred to other modelling 

approaches because of their ability to emulate the randomness seen in real 

systems, at a level of detail which is necessary for models to be convincing. 

However, their use is often limited to strategic or tactical decision making, and 

few have attempted to produce models which can help hospitals with short-term 

(operational) decision making. This is where Online Discrete Event Simulation 

(ODES) can help. 

An ODES (also known as symbiotic simulation) takes all the components of a 

DES model, and adds the ability to load the state of the real system at run-time 

to make predictions about how the real system might evolve in the short-term. 



Abstract  
 

xii 
 

This thesis reports the development of a whole-hospital, proof-of-concept 

ODES to assess the impact of elective admissions decisions, on wards which 

are shared with emergency patients. The model is parameterised by analysing 

18 months of patient administrative data from an Australian General Hospital. 

Since ODES is a relatively new method, this research focuses on formalising 

the model development process, resulting in a new “black-box” validation 

method for handling conditionally distributed simulation outputs. Additionally, a 

new probabilistic routing method is developed to better represent inter-ward 

dependencies during peaks in bed demand. A statistical analysis of the 

relationship between ward transfers and ward occupancy is conducted on real 

hospital data to parameterise so-called “Dynamic Transition Matrices” for this 

purpose. Finally, the ODES is used to demonstrate how additional patient-level 

information (which might only become available after admission) can affect the 

predicted bed census. Clinicians’ discharge date estimates fit this criterion, and 

the case is made for more scientific use of this type of information, as part of an 

operational ODES model. 
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 Chapter 1 

Introduction 

 

 

1.1 Overview 

In many modern hospitals, resources such as beds, theatre time, medical 

equipment and staff are shared between patients who require immediate care 

and must be dealt with as they arrive (emergency patients), and those whose 

care requirements are partly known to the hospital some time in advance 

(elective patients). Caring for these two types of patients poses a logistical 

challenge in the sense that some portion of each resource must be set aside 

for emergency patients when planning for the number and type of elective 

patients to admit. Hospitals have guidelines for the number of emergency 

patients they might expect to see in each planning period, although the exact 

number is unknown. If too many elective patients are admitted, the hospital’s 

ability to treat emergency patients will be reduced, potentially resulting in 

negative patient outcomes, such as “outliers” - a term which refers to patients 

whose ward might not be ideally suited to their condition. On the other hand, if 

too few elective patients are admitted, patients can be left on waiting lists 

unnecessarily in the case of public health services, or represent a loss of 

income in the case of private health services. 

In terms of bed resources, research has been conducted to better understand 

the relationship between the number of occupied beds and negative patient 

outcomes. Bagust et al. (1999) developed a computer-based model of a 
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hypothetical UK hospital, finding that when the number of occupied beds 

averages 85% of the model’s maximum bed capacity, there is a noticeable 

increase in the risk of a “crisis day”, where at least one patient requiring 

immediate admission cannot be accommodated. In addition, their model 

suggests that crisis days will occur regularly if average bed occupancy 

surpasses 90%. 

Although the relationship between bed occupancy and negative patient 

outcomes is expected to vary between hospitals, NHS England’s bed availability 

statistics (NHS England, 1988-2017) show an increase in the proportion of NHS 

Organisations exceeding the 90% threshold for general and acute sectors. 

Between the years 2000 and 20101, the proportion of hospitals whose average 

occupancy was above 90%, increased from 20% to 31%. The year ending 

March 20161 saw a further increase to 44%. Despite rising occupancy, 

governments are also asking health services to make better use of their funding, 

as part of austerity measures which aim to reduce budget deficits. To this end, 

the NHS reportedly made £2.9 billion worth of so-called “efficiency savings” 

(NHS Improvement, 2016a) between April 2015 and March 2016.  

With increasing demand for service, and without commensurate funding 

increases to public funding, hospitals require (preferably low cost) methods for 

maintaining high patient throughput whilst minimising negative outcomes, such 

                                                           
 

 

1 Annual publication at the organisation-level ceased after 2009, in favour of quarterly 

publication. Annual statistics after 2009 are derived by the author as the average of each year’s 

four constituent quarters, for continuity. 
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as outliers. However, changes to the management, or possibly even the 

capacity of a given hospital resource require some assessment of the expected 

improvement. However, testing competing management options in an 

operational hospital may not be possible for several reasons; including potential 

service disruptions, and most importantly, maintaining patient safety on wards 

which operate with low margins for error, such as Intensive Care.  

The field of Management Science is concerned with answering questions about 

how organisations are affected by management decisions, by using analytical 

methods. One method, is to develop a model of the real organisation (or 

system) which can be used to test the impact of competing options. Generally, 

models of this type are mathematical or computer-based in nature, although the 

chosen approach is influenced by the type of question the researcher or 

manager wishes to answer, and the details of the system being modelled. 

Although many researchers have produced models which focus on specific 

hospital facilities (e.g. Accident and Emergency), or specialisms (e.g. 

Cardiology), few have attempted to build models which encompass broad 

patient types from admission to discharge. Fewer still have attempted to 

produce models which can help hospitals with short-term decision making. Most 

of the hospital modelling literature is concerned with longer-term decisions, 

such as determining the required capacity of each resource, or the creation of 

cyclic elective admissions schedules which optimise resource use on average. 

While this information is likely to be essential for the long-term “health” of a 

hospital system, it does little to help a hospital which is already experiencing 

abnormally high demand.  
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The aim of this research is to develop a proof-of-concept model for operational 

(short-term) decision-making, to help hospital staff maintain an effective 

balance between two broad patient types; elective (planned) and emergency 

(unplanned) inpatients. Decision-making in the short-term benefits from the 

latest information, therefore this research favours a data-driven approach which 

allows the model to be re-calibrated when new data becomes available. An 

added benefit of this approach is that the same type of model could be 

developed for any hospital which collects similar data about its patients’ stay in 

hospital. 

 

1.2 Discrete Event Simulation 

Although several Operations Research/Management Science (OR/MS) 

techniques have been applied to hospital modelling problems, including 

Queueing Theory, Mathematical Programming (Optimisation/Heuristics) and 

System Dynamics, Discrete Event Simulation (DES) offers several advantages, 

making it particularly well-suited to the aims of this research.  

One of the most important advantages of using DES, is that it can emulate the 

randomness seen in the real system (such as the arrival of emergency patients) 

which allows the distribution of any performance indicator to be approximated. 

Approximating the distribution of a given performance indicator is likely to be 

useful in short-term planning scenarios where the user is more interested in the 

probability of an event occurring, rather than estimating average performance.  

DES also offers the greatest degree of flexibility in defining the model’s structure 

and parameterisation. Specifically, DES permits the use of both empirical and 
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closed-form functions for defining arrival and service time distributions, whereas 

queueing-based analytical models often require closed-form distributions, or 

specific classes thereof, to produce tractable results. The flexibility to use 

empirical distributions also aligns closely with the data-driven nature of the 

modelling approach, since the observed data can be used to construct the 

necessary empirical distributions, without the need for additional curve-fitting 

software.  

Finally, DES can operate at a level-of-detail which allows information about 

individual simulation entities to be included in the model. This is important 

because the task of balancing emergency and elective numbers in the short-

term is likely to depend on patient-level information, such as the day and ward 

of admission, and expected length-of-stay. Methods such as System Dynamics, 

which would deal with patient movement between wards as “flows” and “stocks” 

at an aggregate level, are therefore unsuitable. 

 

1.3 Online Discrete Event Simulation 

An Online Discrete Event Simulation (ODES) takes all the components of a DES 

model, and adds the ability to load the state of the real system at simulation run-

time. In contrast, non-terminating DES models typically start “empty and idle” 

and run through a warm-up period before data collection begins. The data 

generated during the warm-up period is often disregarded, since it does not 

represent the normal operating conditions of the system being modelled, 

however in an ODES model, an operational state is loaded at initialisation, 

therefore data collection begins immediately.  
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However, the motivation to create an ODES model is not simply to circumvent 

the warm-up period. Rather, the data generated during the warm-up period 

becomes the modeller’s primary focus, since it represents a set of possible 

“futures” from the initialised state. In this sense, ODES models bear some 

similarity to terminating simulations, which retain data generated during the 

warm-up period and run until a set of termination criteria (such as the 

completion of 𝑛 jobs, or the end of a working day) are met. However, ODES is 

designed to model non-terminating systems, for a sequence of transient periods 

which are initialised with the real system state whenever a run is requested. As 

might be expected, increasing the run-length of an ODES reduces the 

dependence of the simulation outputs on the initial state, so that eventually the 

results might not be statistically distinguishable from that of a non-terminating 

simulation. Therefore, the value of an ODES model is in its ability to test how a 

system might evolve over relatively short periods of time, based on a set of 

recently observed initial conditions.  

 

1.4 Expected Contributions 

ODES has been most widely applied within the manufacturing sector, where 

sensors connected to machines are able to track the location of jobs and their 

progress. A tracking system allows an ODES model to be loaded with the state 

of the system being modelled at any time, however, even if it was feasible, the 

real-time tracking of staff and patient locations in a hospital is likely to be 

considered too intrusive. Nevertheless, patient location and progress 

information is collected on a “semi-real-time” basis, given that manual data entry 
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might be required before the information becomes widely available. Therefore, 

an overarching contribution of this research is to demonstrate that with 

reasonable assumptions about the frequency and the type of data collected, an 

online simulation for the operational management of inpatient beds can help 

hospitals to make better decisions, without the need for additional data 

acquisition systems. 

Theoretical contributions to the ODES methodology are also possible, since 

methods for validating models prior to their operational use have not been 

sufficiently covered by the ODES literature. Specifically, the simulation outputs 

of an ODES are known to be conditionally distributed (conditional on the 

model’s initial state, for example) due to the model’s short run-length, and 

therefore require a different treatment to that of a classical DES model. For this 

reason, this research is also concerned with investigating how an ODES can be 

validated, whilst respecting the conditional nature of the simulation outputs. 

Finally, it is well-known that the occurrence of outlier patients suits neither the 

patient, nor the alternative ward on which they are placed. Although various 

models in the literature have reportedly incorporated outlier placements, none 

(to the author’s knowledge) have done so by utilising a hospital’s patient 

database to inform the way outliers occur during peak bed demand. A model 

where patient placement dynamically responds to the number of occupied beds 

is likely to provide a better representation of the impact of short-term decisions 

across the ward network. 

Methods for validating online simulations via their conditionally distributed 

outputs, and methods for dynamically routing simulation entities through a 
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network, are also likely to have applications beyond hospital modelling. The 

former is likely to be broadly applicable, since checking a model’s performance 

is an important step in its development, regardless of what the model might be 

used for. The latter could be used to model systems where customers can 

select alternative servers (or leave the system altogether) when their current or 

preferred server becomes too busy; a behaviour referred to as “jockeying” in 

the queueing theory literature. While methods exist for modelling systems which 

allow jockeying to occur, the ability to detect behaviour such as this (from real 

data) means no assumptions need to be made about the thresholds at which 

customers will switch servers, or the complexity of the system being modelled. 

 

1.5 Thesis Structure 

The remaining chapters of this thesis are organised in the following way: 

Chapter 2 provides an overview of the hospital modelling research which has 

been conducted within the field of Operations Research/Management Science 

(OR/MS), and discusses the types of control strategies hospitals have at their 

disposal for improving service delivery. The notion of “operational” decision-

making in hospitals is further defined, and some of the medium to short-term 

planning models reported in the literature are examined. The chapter concludes 

that using an ODES model offers several advantages over other modelling 

methods, and the research questions for the thesis are established. 

Chapter 3 describes the backdrop against which this research takes place, 

along with the involvement of the Australian General Hospital (AGH) whose 
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patient database forms the basis of the modelling work. Although this database 

contains information generated by a single hospital and its patients, similar 

information is known to be routinely collected by most modern hospitals. An 

overview of the database extract is provided, along with an explanation of how 

it begins to influence the model’s scope. Any assumptions made, or cleaning 

steps taken in the process of readying the data, are also discussed. 

Chapter 4 describes the development of the ODES model in detail, from 

conceptual design through to testing. Of particular importance, are the steps 

taken to move from a classical (offline) DES model, to an ODES model, and 

their respective validation methods. A newly developed method for validating 

ODES models is described and demonstrated, which aims to account for the 

conditional distribution of the simulation outputs.  

Development of the ODES continues in Chapter 5, with a focus on emulating 

the placement of outlier patients to better reflect the routing behaviour between 

wards during periods of high demand. To this end, the relationship between 

occupied bed numbers and ward placement is investigated statistically, using 

data supplied by the AGH. It is demonstrated that the results of such an analysis 

can be implemented in an ODES, and the effect of doing so is compared against 

a model where this information is not included. 

Chapter 6 demonstrates how the ODES could be used in practice, using two 

case studies. In the first case study, the model is used as an early-detection 

system to anticipate days when an effective balance between emergency and 

elective workloads is not likely to be struck, given the elective arrivals which are 

scheduled over the period in question. In the second case study, the impact of 
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obtaining additional information, outside of what is collected in the patient 

administration database, is investigated. This information could include 

Estimated Date of Discharge (EDD), which is frequently assessed by doctors 

and nurses, although may not be formally entered in any patient database. The 

value of including this type of information is assessed at varying levels of 

accuracy, given its potentially subjective nature. 

Chapter 7 closes the thesis with a summary of its findings, a review of its 

research contributions, and a discussion of further work which could be carried 

out in this area. 
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 Chapter 2 

Literature Review  

 

 

2.1 Introduction 

The purpose of this chapter is to gain an understanding of the bed management 

literature within the field of Operations Research/Management Science, and to 

position this research within the field. The review starts with a discussion of the 

control strategies and the associated “planning levels” which can be employed 

by hospitals. The planning levels provide a means to classify the bed 

management literature and help to distinguish operational planning from other 

planning types. The inpatient bed management literature is then reviewed, with 

a focus on models with similar aims to this research, namely, bed management 

via admissions control. Finally, the ODES literature (not necessarily pertaining 

to hospitals) is reviewed, to gain an understanding of the theoretical work which 

has already been carried out, and some of the practical considerations which 

come with developing a model of this type. The chapter concludes with a 

summary of the review findings, and a statement of the research questions. 

 

2.2 Control Strategies and Planning 

Broadly speaking, there are two ways of managing resources for improving 

hospital performance. Either the supply of resources is controlled and matched 

to the stream of admitted patients, or the demand for service is controlled and 

matched to available resources. Gemmel and Van Dierdonck (1999) refer to 
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these strategies as “Chase Strategies” (supply control) and “Level Strategies” 

(demand control) respectively. 

In practice, the choice to exercise either of these strategies is dependent on the 

mix of elective and emergency patients, and the scope of the changes the 

hospital is willing to commit to. For example, an Emergency Department (ED) 

would have little use for demand control, since the arrival of emergency patients 

is generally unscheduled and to a large extent, uncontrollable. Therefore, if 

improvements are made in an ED, the relevant decision variables are likely to 

be related to managing the supply of resources; such as bed capacity, staff 

numbers and staff schedules. 

Table 2.1, taken from Groot (1993), provides an overview of the types of 

decisions made within a hospital, and the typical planning horizons required to 

implement them. The two highest tiers are described as the “strategic” planning 

level, in which decisions can require years of planning to execute. This level 

would include the construction or expansion of facilities, or changes to the types 

of specialist care which are made available to patients. Next, the capacity 

allocation and capacity scheduling levels form the “tactical” planning level, in 

which short-to-medium term decisions are made. Such decisions might include 

the reallocation of beds between specialties, or the number of theatre hours 

which are available per day/week. Finally, the scheduling of elective patient 

arrivals sits within the “operational” planning level. Although it is possible for 

elective patients to remain on waiting lists for extended periods of time (in the 

case of public health services), the detailed scheduling of procedures takes 

place only once the patient nears the front of the waiting list queue. Scheduling 
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the admission might take place weeks before the patient is due to arrive, 

however decisions to postpone elective treatments can occur with very short 

notice. Hans et al. (2012) note that reacting to unforeseen events, such as bed 

shortages, is a typical feature of planning at the operational level. 

 

Questions Decision Makers Level Horizon 

What is the future 
direction of the 

hospital? 
Board of Directors Strategic Planning 2 – 5 Years 

What will the 
hospital activities 
be in the coming 

period? 

Top management 
Main patient flow 

planning 
1 – 2 Years 

How are the 
capacities 

allocated to 
functions or 

departments? 

Top and middle 
management 

Capacity allocation Months – 1 Year 

How are the 
capacities 

scheduled in time? 

Middle 
management 

Capacity 
scheduling 

Weeks - Months 

Which patient is 
treated at what 

time? 
Admission planner 

Operational 
Planning 

Days - Weeks 

Table 2.1: Production control decisions in a hospital (Groot, 1993, p.16). 

 

In addition to defining the terms “strategic”, “tactical” and “operational”, Table 

2.1 also suggests that demand control is most relevant at the operational 

planning level, since the only example in the table is reserved for the operational 

planning tier. While supply strategies certainly exist within operational planning 

(such as the management of nurse rotas), decisions of this type are likely to be 
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impacted by the number of patients admitted in the planning horizon. Therefore, 

this research focuses on demand control strategies; specifically, the admission 

of elective inpatients, in an operational planning context. 

 

2.3 Bed Management Literature 

Given the importance of achieving reasonable levels of efficiency in hospitals, 

bed management has been an active topic of research in OR/MS for a long 

time, resulting in numerous approaches to the problem and vast quantities of 

related literature. Some of the earliest literature surveys include Milsum et al. 

(1973) whose surveyed papers investigate the relationship between admissions 

scheduling policies and hospital resources; Magerlein and Martin (1978) who 

focus on the surgical scheduling literature, including “multiple constraint” 

models which account for bed numbers and nursing staff; and England and 

Roberts (1978) whose survey covers the use of computer simulation across 

various healthcare systems, including admissions control and bed 

management. 

With the proliferation of more powerful personal computers and programming 

languages, simulation has become one of the most popular tools to aid 

healthcare decision making. So pervasive are simulation studies, that 

numerous literature surveys have tracked the progress of this modelling method 

almost exclusively, including Klein et al. (1993), June et al. (1999), Fone et al. 

(2003), Fletcher and Worthington (2009) and Günal and Pidd (2010). The 

prevalence of simulation is due (in part) to its flexibility, which facilitates the 

modelling of complex systems, such as hospitals. However, a significant body 
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of work within healthcare OR/MS exists outside of simulation, highlighted by 

literature surveys by Rais and Viana (2011) who primarily focus on optimisation 

problems, and Lakshmi and Iyer (2013) who focus on applications of queueing 

theory. 

To help narrow the body of research, the bed management literature is reviewed 

by first focusing on the class of methods and models in which elective hospital 

admissions are treated as a decision variable. Not all the literature in this class 

is intended to be used at the operational planning level, however, an 

understanding of how beds might be managed, via admissions control, remains 

important. The review then focuses on the bed management models which are 

designed to inform operational decision making, before examining the small 

number of reported ODES models used in a healthcare setting. 

 

2.3.1 Bed Management via Admissions Control 

While simulation has been broadly applied in healthcare modelling, few 

simulation models regard the elective admissions schedule as the primary 

decision variable. Since the admission of elective patients can be viewed as a 

scheduling problem, the literature in this domain tends to favour analytical 

methods which aim to provide optimal (or close to optimal) schedules given a 

set of constraints. However, simulation studies do exist in which the relationship 

between elective admissions and bed is investigated; sometimes by comparing 

competing admissions policies, and sometimes by drawing from waiting lists 

which can be user-specified or randomly generated. 
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Early work in this area includes Smith and Solomon Jr (1966), who developed 

a simulation model of a hospital treating narcotics addition. While the type of 

patient differs significantly from the acute patients this research is concerned 

with, the model’s structure bears similarity to an acute hospital through the 

admission of non-authorized (unplanned) and authorized (planned) patients. 

The authors also note that the authorized patient stream is the most easily 

controlled, and therefore the decision variables for the model are based around 

their admission. Three types of admissions policies are analysed; Type A allows 

a fixed number of admissions per day. Type B allows the number of admissions 

to vary proportionally to the number of discharges. Type C allows the number 

of admissions to vary with the number of discharges plus or minus a constant. 

The aim of the work is to minimise variation in the bed census while maintaining 

reasonable occupancy levels, which was achieved by using a constant 

admissions rate (Type A). With no details of a ward network or disaggregation 

of length-of-stay, the success of a simple admissions policy seems reasonable, 

although for a more complex system, some disaggregation of the overall 

admissions rate (into wards or patient types) is probably required. 

Other early work includes Robinson et al. (1968), who use a simulation model 

to test three routines for the development of an automated scheduler for elective 

admissions, with a particular focus on how estimating each patient’s length-of-

stay might improve scheduling decisions. Four scheduling methods are tested. 

The first method is myopic, and schedules patients while giving no 

consideration to expected length of stay. The second schedules a patient only 

if a pre-determined occupancy level is not exceeded during the patient’s 

expected time in hospital. The third determines a conditional probability of 
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occupying a bed. For each day the patient remains after the expected discharge 

date, the hospital census is updated using the probability of remaining in the 

hospital, given LOS so far. Finally, the fourth method allows the initial LOS 

estimates to be revised every three days, and admissions are scheduled based 

on updates to the estimated hospital census. The results are evaluated using a 

cost function which penalises empty beds, overflows and turn-aways. The 

results show that admissions schedules derived from an estimated census in 

which revisions to LOS estimates can be made, minimises the cost function. 

However, only elective patients are considered, and the bed pool is treated as 

homogenous, which could have a significant impact on the ability to admit on 

the scheduled day, when applied to multi-ward hospital. 

Although the work described by Bagust et al. (1999) models only emergency 

admissions, they claim that it can be generalised to accommodate both 

emergency and elective streams. The work is interesting in that negative patient 

outcomes (crisis days and proportion of patients not admitted) are treated as a 

function of bed occupancy for a hypothetical acute English hospital. Several 

different experiments are run. Scenarios include changes to the rate of patient 

arrival, changes to the number of available beds and changes to the discharge 

rate among others. One of the most cited conclusions of the paper is that 

hospitals operating at 90% occupancy or higher will suffer regular crisis days, 

and that operating staffed but empty beds is a necessity for absorbing 

stochastic variation associated with emergency arrivals. However, no mention 

of how to maintain such an occupancy level is offered, and in practice this may 

be a challenge without a method to help balance emergency and elective 

workloads. 
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The simulation model described by Everett (2002) considers both bed and 

operating theatre resources. A detailed waiting list is continually updated by 

draws from Poisson distributions governing each patient type and urgency, with 

rate parameters estimated from historical data. Alternatively, real waiting list 

data can be read in from a file, and used in this way, the model can reportedly 

be used to support real-time decision-making. However, details of how the 

model might be initialised to facilitate real-time decision support are not 

provided. The surgery hours and bed days required for each patient are drawn 

from a Normal distribution, and patients are selected at the beginning of each 

day so that the sum of their expected theatre times does not exceed the total 

time available for that day. An index which represents both the urgency of the 

procedure, and the time spent on the waiting list so far also influences patient 

selection. Although this model contains many of the components deemed to be 

important for this research, its scope is high-level; including multiple hospitals 

which draw from a centralised waiting list. At this level-of-detail, beds are treated 

as a homogenous resource, therefore dependencies between wards within a 

single hospital cannot be modelled.  

While details of a simulation model are also provided, Harper (2002) focuses 

on the development of a generic framework for modelling hospital resources, 

and outlines a number of modelling considerations for OR/MS practitioners 

working in this domain. The cornerstone of the framework is the Classification 

and Regression Tree (CART) analysis to construct homogeneous patient 

groupings, for which modelling parameters, such as arrival rates and lengths-

of-stay, can be estimated. A model which incorporates the prescribed 

framework is developed and used to assess a set of competing theatre 
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scheduling policies, and their downstream effect on bed occupancy. The model 

is also used to estimate the mean number of occupied beds per month using a 

stochastic representation of hospital processes and shows that this can differ 

significantly from estimation methods which only make occupancy estimates 

based on averages. While the simulation only considers surgical beds, similar 

software also appears to have been used in the simulation described by Harper 

and Shahani (2002), in which a multi-ward hospital is modelled. However, this 

model appears to treat the elective admissions as a stream of exogenous 

demand, rather than a decision variable. 

Helm et al. (2009) also report the development of a comprehensive hospital 

simulation framework. One of the most interesting features of the framework is 

the existence of a feedback loop between the state of the hospital and 

admissions decisions; allowing the admissions policy to dynamically respond to 

the state of the simulated hospital. While other models can do this to a degree, 

via patient deferrals when no beds are available, the feedback within the 

framework allows the testing of a policy in which additional patients are admitted 

from short-notice waiting lists during times of low bed occupancy; improving 

efficiency by making better use of unoccupied beds. 

Günal (2008) reports the development of a whole-hospital simulation, designed 

at a level of genericity such that it could be parameterised and applied to most 

modern hospitals. The whole-hospital model (DGHPSim) contains four 

component models which simulate accident and emergency facilities (AE~Sim), 

bed management (BM~Sim), waiting lists (WL~Sim) and outpatient facilities 

(OP~Sim). With the ability to load a user-defined waiting list, the admission of 
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elective patients can be treated as a decision variable. BM~Sim receives 

elective admissions from the waiting list component and emergency admissions 

from the accident and emergency component, which are used to generate 

output statistics which include time spent on waiting lists, elective cancellations 

and the number of patients which become outliers. 

Since scheduling problems are typically approached by using analytical 

methods, it is common that the literature investigates the relationship between 

elective admissions scheduling and bed management in this way. While 

simulation offers the most flexibility in defining the model’s structure, 

analytical/mathematical methods have the potential to generate “optimal” 

schedules or provide exact solutions to well-specified problems. However, 

defining optimality necessarily depends on the problem formulation, and settling 

on a definition can be particularly difficult for systems with multiple objectives, 

like hospitals. 

The analytical model presented by Gallivan and Utley (2005) covers many of 

the modelling elements considered to be important for this research. Elective 

patient admissions are treated as a decision variable, while the emergencies 

arrive at random according to a Poisson distribution, in which the rate parameter 

can vary by day-of-the-week, if necessary. Additionally, no class of length-of-

stay distribution is assumed (as is often the case with queueing models), and 

instead so-called “length-of-stay persistence” distributions are used, which are 

essentially discrete survival distributions.  Mathematical expressions are 

derived for the mean and variance of the number of patients occupying a bed 

for each day of the planning cycle, depending on whether the real hospital treats 
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emergency patients. An optimisation problem is formulated from these results, 

which is used to find a cyclic admissions pattern which maximises minimum 

reserve capacity, thus smoothing the bed census for the planning cycle. While 

the results could be used to improve the use of a single bed pool, it is not clear 

how the model could be extended to a multi-ward hospital, in which there is 

expected to be interactions between wards. 

Work by Adan and Vissers (2002) considers three major inpatient resources 

(beds, operating theatres and nurses) as constraints in an integer linear 

programming formulation. The objective of the model is to meet target 

throughput whilst minimising the difference between the actual utilisation and 

target utilisation of these resources. Instead of classifying patients by their 

condition, patients are classified by the quantity and type of resources they 

require. The formulation is solved for an orthopaedics unit, resulting in a one-

week “admissions profile”, which sets out the number and type of patients to 

admit on each day of the week. However, the authors concede that the main 

weakness of the model is that it does not make allowances for emergency 

patients. Adan et al. (2009) extend the model described in Adan and Vissers 

(2002) by treating length-of-stay as stochastic, rather than deterministic, which 

results in smaller deviations from the target utilisations of each resource. Again, 

this model does not account for the workload generated by emergency patients, 

although the target utilisations are reportedly calibrated such that sufficient 

space is allowed. 

Helm and Van Oyen (2014) develop one of the most comprehensive analytical 

models in terms of elements considered to be important for this research, and 
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is one of the few which captures the entire emergency/elective pathway, whilst 

also modelling the bed census at the ward level. The authors start by developing 

a census model to capture the number of patients present in each ward for 

emergency and elective patients separately. Capacity constraints are then 

“overlaid” on these models to mimic the occurrence of outliers. The probability 

of a given ward containing a certain number of emergency patients is derived 

from the emergency census model and these probabilities feed into a mixed 

integer program which maximises the number of elective patients which can be 

admitted, subject to constraints on the number of outliers permissible. An 

alternative formulation is also presented whose objective is to minimise the 

number of outliers. 

The analytical methods summarised so far have treated the elective admissions 

schedule as a decision variable; working to develop cyclic schedules for the 

number and type of elective admissions per day, which “optimise” the 

downstream use of hospital beds in some way. However, the process of 

scheduling elective admissions is closely related to the task of scheduling 

surgeries. Working from a surgical perspective, research has been carried out 

which pays more attention to the details of scheduling theatre time, whilst also 

keeping post-operative bed management in view. For surgical scheduling, an 

increase in temporal detail is most commonly achieved by considering operating 

room (OR) blocks, which represent subdivisions of a day in the planning 

horizon. OR blocks can be assigned properties of the modeller’s interest, such 

as block duration, length-of-stay and recovery ward, and these properties are 

used to determine feasible assignments of OR blocks to days in the planning 

horizon. 
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Models of this type include Beliën and Demeulemeester (2007) who use 

discrete empirical distributions to govern the number of patients, and length-of-

stay distributions per-block for each surgeon. Blocks are assigned to each day 

in the planning horizon under different solution methods, including mixed-

integer programming and simulated annealing, with the objective of minimising 

the total expected bed shortages. However, the models proposed do not 

account for stochastic variation introduced by the inclusion of an emergency 

patient stream, and beds are treated as a homogeneous resource. The model 

formulation is extended by Beliën et al. (2008) by grouping beds into wards, and 

by allowing block duration to vary by surgeon. 

Van Essen et al. (2012) consider a very similar problem statement to Beliën and 

Demeulemeester (2007), but formulate the objective function in terms of 

minimising the number of beds required. Additionally, “what-if?” scenarios are 

run, in which various constraints are relaxed to assess the impact these have 

on bed requirements. Again, emergency patients are not considered, although 

they claim that the model can include them by estimating the average number 

of emergency surgeries and representing these as “dummy OR blocks.” 

However, doing so might over-simplify the situation, given the stochastic nature 

of emergency arrivals.    

The model reported by Chow et al. (2011) consists of two main components. 

The first is an optimisation component; containing a mixed integer program 

which finds an elective admissions schedule consisting of OR blocks which 

minimises total maximum bed occupancy across all wards. The second 

component is an uncapacitated discrete event simulation which includes 
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recovery, intensive care, day case, short stay and normal inpatient wards. The 

optimisation component generates elective schedules which are run through 

the simulation component. The simulation component generates emergency 

arrivals, whose admissions pattern can be arbitrarily complex. The two patient 

types are combined, resulting in overall bed occupancy statistics for each 

modelled ward. The elective schedule can be re-optimised under different bed 

constraints, should the combination of the two work-streams exceed available 

capacity, thereby leveraging the strengths of simulation and optimisation. 

The research summarised in this section addresses the relationship between 

elective admissions and bed requirements by employing both analytical and 

simulation approaches. However, the insights gained as part of testing 

admissions policies, or by generating optimised admission/surgical schedules, 

are designed to be using on an ongoing basis. Assuming the modelling 

assumptions are not too abstracted from the real process, the insights gained 

from these models have the potential to improve average performance with 

respect to a chosen metric, and therefore serve an important purpose at the 

tactical planning level. However, most hospitals will experience abnormally high 

demand at some point, if only due to normal stochastic variation in the 

emergency arrivals process. In these situations, operational bed management 

techniques come into focus. 

 

2.3.2 Operational Bed Management 

Without employing Online Discrete Event Simulation, methods have been 

reported in the literature which aim to help hospital planners make better 
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operational decisions. In terms of bed management, this necessarily involves 

some knowledge about the currently occupied beds, and potentially information 

about when they might become free. Therefore, the examples of operational 

bed management research summarised in this section are those which consider 

the current bed-state as part of the decision-making process. 

Early work in this area includes Connors (1970), who reports an algorithm for 

managing bed occupancy by controlling the elective admissions process. 

Components of the algorithm bear some similarity to the typical components of 

an optimisation problem. It starts by extrapolating the bed census for the 

planning period by using a status file (which stores the status of all patients 

currently occupying a bed) and the length of stay distributions for each patient. 

The algorithm then looks for a feasible admission date by searching the bed 

census according to a constraint hierarchy. The hierarchy includes constraints 

for the total number of hospital beds, beds within the applicable specialty, and 

rooms containing patients with ailments most closely related to those of the 

admittee. A set of feasible admission days are then evaluated by an objective 

function, weighted by deviations from the requested admission date, and 

deviations from the target occupancy. This use of a status file and length-of-

stay distributions to estimate the short-term bed census is conceptually very 

similar to loading and running the initial conditions of an ODES. However, 

without modelling a ward network, the downstream effect of patient transfers 

will not be captured in the predicted census. The model also assumes that 

emergency patients are allocated separate beds, and resource sharing 

between the emergency and elective patients does not occur. While this may 



Chapter 2 

Literature Review 

 

 

26 
 

be true for some types of hospitals, this research is concerned with modelling 

wards which are shared between these two patient types. 

Kolesar (1970) describes a Markovian decision model for the bed census which 

accounts for both emergency and elective patient streams. The state of the 

model over time is defined as the number of occupied beds; therefore, the 

model’s initial state can be matched to the real bed census. The state at the 

next time-point is equal to the current system state, plus the number of 

emergency arrivals, plus the number of elective arrivals, minus discharges. The 

number of emergency arrivals is a random variable, and the number of elective 

arrivals is treated as a deterministic decision variable. A linear program is 

formulated around the bed census model, to admit elective patients in such a 

way that average occupancy is maximised, whilst constraining patient overflow. 

While the Markov model for the bed census could be used to generate short-

term predictions, the elective schedules derived from the linear program are 

more suitable for tactical planning, rather than operational planning, since they 

are based on the model’s steady-state properties. The author also assumes that 

the arrival and discharge processes are stationary, although empirical evidence 

(Audit Commission, 2003, p.17) suggests that it is common for hospitals to 

experience a decrease in discharge rates over the weekend. 

The bed availability model described by Kusters and Groot (1996) bears some 

similarity with Kolesar (1970). A state equation represents the number of 

available beds over time, which is the summation of current occupancy levels, 

along with elective and emergency admissions, less the number of discharges 

in each discrete time-period. Emergency patients arrive according to a Poisson 
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distribution, whose rate parameter can change for each day in the planning 

horizon. Elective arrivals are treated as deterministic since they have already 

been scheduled some time in advance. Discharges occur according to length-

of-stay distributions, which are conditional on the time already spent in hospital 

for the patients occupying a bed at the start of the prediction window. 

Expressions for the mean and variance of each of these terms are derived, 

which allows the same to be computed for the master equation as a linear 

combination of random variables. Results of 3-day ahead predictions are 

presented in terms of mean bed occupancy, suggesting good performance, 

however the model seems to only consider the number of patients under each 

specialism, rather than their physical location, and assumes that specialism is 

a constant from admission to discharge. 

Koestler et al. (2013) formulate a bed census forecasting model for a neonatal 

intensive care unit (NICU). The “throughput” structure is familiar, with the 

forecast in 𝑘 period’s time equal to the number of current patients, plus the 

number of arrivals, less discharges in the same period. However, the 

formulation of the arrivals and discharge terms are more advanced. The arrivals 

term is itself a forecast, described by a Poisson Autoregressive model. The 

discharge term is particularly interesting, and is influenced by the time already 

spent in the NICU, and a generalized linear model to map patient-level 

covariates to length-of-stay. While the overall structure is intuitively appealing, 

the scope of the model is limited to a single hospital unit, in which all arrivals 

are probably emergencies. 
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Littig and Isken (2007) make heavy use of generalized linear models, to build a 

whole-hospital census analytical forecasting model which includes both elective 

and emergency patients. Five logistic regression models are fitted per hospital 

unit, which provide the probabilities of leaving the ward within 24, 48, 72 and 96 

hours, and one for the likelihood of being transferred internally or discharged. 

Multinomial logistic regression models are also used to govern patient location, 

including the first and subsequent ward stays, should the patient be transferred. 

A linear regression meta-model is developed for each hospital unit based on 

current occupancy, inflow and outflow, to aggregate the patient-level 

information and provide bed census estimates. While this is one of the most 

comprehensive bed census prediction models reported in the literature, the 

quantity of patient-level covariates used to fit the various regression models is 

vast, and only an excerpt of the covariates is presented in the paper. This 

suggests that it might be difficult to recalibrate the model for another hospital if 

the same information is not collected. Without an event-based model of the 

ward network, it might also be difficult to capture the dynamic interactions which 

occur between wards, such as the occurrence of outlier patients. 

Broyles et al. (2010) develop a so-called Discrete Time Markov Chain (DTMC) 

model, designed with the whole-hospital in scope.  While Markov Chain models 

are commonly analysed via their steady-state properties, the authors focus on 

deriving expressions for the transient distributions of bed occupancy. By 

focusing on transient distributions, the theory can be applied to operational 

planning scenarios, rather than their typical use at the tactical planning level. 

The ability to say something about the predicted distribution of bed occupancy 

is clearly more useful than a point estimate, since any summary statistic can be 
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derived from a distribution. While the authors present the results generated by 

their formulation for two hospital units, they note that these are treated in 

isolation, and further work could be carried out so that the bed census can be 

predicted in a network. 

The model described by Yi et al. (2010) is designed to inform operational 

decision making in emergency scenarios, without explicitly capturing the state 

of the hospital at the start of the prediction window. A generic hospital discrete 

event simulation is developed which includes three main parameters; the 

number of beds in the hospital, the number of operating rooms and an OR 

efficiency index. Each of these parameters is tested at three possible levels, 

resulting in 27 possible experiments, although 6 are excluded as unlikely 

combinations. Under each combination, the simulation is “shocked” with an 

increase in the arrival of emergency patients to simulate an earthquake disaster, 

and performance statistics are collected from the transient period that results 

from the sharp increase in arrivals. Rather than recommending the model’s use 

in a real disaster scenario, the transient performance statistics are regressed 

against each of the three simulation parameters. The resulting regression 

equation can be used to assess the impact of an emergency, by substituting the 

parameters of the hospital in question, rather than waiting for simulations runs 

to complete. While a model such as this can generate quick evaluations for 

extreme circumstances, it pays a price in terms of its flexibility, since detailed 

bed-state and patient-level information is not considered. 

The work by Helm et al. (2011) has similar aspirations to that of Yi et al. (2010) 

in the sense that the details of the model are not designed to be run on an 
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operational basis. Instead, the authors formulate a Markov Decision Process 

model (MDP) for the bed census, and make the case for three inpatient streams; 

emergency, elective, and expedited. The expedited patients are essentially 

elective patients who can be admitted at much shorter notice than regular 

elective patients. The MDP is used to determine two thresholds which divide 

bed occupancy into three “zones”. In the lowest “call-in” zone, additional elective 

patients should be admitted from the expedited patient waiting list. In the 

“steady” zone, there is no reason to deviate from the elective admissions 

schedule. In the “cancel” zone, the hospital should consider cancelling planned 

elective procedures. While a zone-based admissions/cancellation policy could 

be straightforward to implement, it is not clear how the thresholds disaggregate 

to the ward level. The hospital might also be willing to explore the effect of other 

types of interventions, such as admitting elective patients to non-ideal wards, 

rather than outright cancellation. A flexible online model would allow for almost 

any type of elective schedule intervention to be assessed as necessary. 

Vanberkel et al. (2011) expand on the surgical block optimisation literature by 

developing a queueing-based analytical model which can be used in both 

tactical and operational planning scenarios. Since master surgical schedules 

are intended to be used on an ongoing basis, the model can be used for tactical 

planning to assess the steady-state workload for each day in the cycle. 

Additionally, information about the actual patients in recovery can be treated as 

an input (along with the proposed surgical schedule) to make short-term bed 

forecasts for operational planning. An important feature of the model is that it 

can be used to derive exact distributions of the bed census, rather than 

restricting the user to point estimates. The authors present examples in which 
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the bed census distributions provide the 90th percentile of surgical bed 

occupancy for each day in the cycle. However, it is unclear how the surgical 

recovery wards interact with other wards in the hospital, since their occupancies 

are estimated in isolation. The model also only accounts for the bed 

requirements of scheduled elective patients, although the authors note that the 

inclusion of non-elective patients is a feasible extension. 

 

2.3.4 Bed Management Summary  

The research summarised in the preceding sections suggests that simulation-

based models which can assess the impact of elective admissions on inpatient 

beds, are most commonly found at the tactical planning level. In these 

applications, simulations are typically used to assess the relative effect of 

admissions policies, or the effect of admissions from a waiting list. However, the 

simulation methodology involves a degree of trial-and-error, therefore analytical 

methods have also been developed to find cyclic admissions patterns which are 

“optimal” in some sense. While these models have the potential to improve 

longer-term bed management, Vanberkel et al. (2011) note that reducing the 

chance of problems occurring does not guarantee that they will not occur. This 

notion necessitates the development of operational models. 

In reviewing the literature, the models classified as “operational” are those 

whose results depend on the hospital’s current state. This allows hospital 

planners to take action based on the most up-to-date information available. 

However, the research in this area tends to focus on analytical models which 

necessarily sacrifice some part of the hospital-wide operational bed 
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management problem in order to be solveable in some sense. While simulation-

based models cannot generate exact solutions, as some of the reported 

analytical methods do (such as distributions of the bed census), fewer 

concessions must be made in terms of the model’s scope in order to generate 

results. 

 

2.4 Online Discrete Event Simulation 

The use of classical (offline) discrete event simulation to model complex 

systems is well established, and healthcare applications can be found as far 

back as the late 1960s (Fetter and Thompson, 1965, Smith and Solomon Jr, 

1966, Barnoon and Wolfe, 1968, Goldman et al., 1968, Robinson et al., 1968, 

Fetter and Thompson, 1969), near the time when simulation languages were 

first becoming available (Nance, 1996, p.376). The term “offline” is used in this 

context to describe simulations which may be parameterised with data 

generated by a real system, although no persistent relationship exists between 

the simulation and the data source. In typical cases, offline DES is used to 

generate estimates of the long-run behaviour of a system (under a set of user-

defined scenarios), and models of this type can provide useful results without 

requiring a deep understanding of analytical modelling methods, or indeed the 

simplifying assumptions needed to make analytical models viable. 

Given the flexibility of offline DES, it is perhaps natural that practitioners would 

adapt the methodology to be able to make predictions about the evolution of 

complex systems in the short-term. However, the ability to do so depends on 

the availability of information about the system being modelled. As with offline 
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DES, historic data can be used for an initial parameterisation of an online DES 

model. Although crucially, very recent or “up-to-the-minute” information is also 

required, if only to define the starting point for any forecasts which might be 

made. With the proliferation of computer systems in almost every aspect of 

human endeavour, this requirement is becoming increasingly easy to satisfy. 

In this section, some of the theoretical contributions to the ODES methodology 

are discussed, along with applications of the method within the healthcare 

arena. It is important to note that the literature often refers to models of this type 

as “real-time” or “symbiotic” simulations, as well as “online”. However, the term 

“real-time” implies a level of temporal granularity which might not be possible to 

achieve with the data acquisition systems commonly found in hospitals. 

Similarly, “symbiotic” implies a close relationship between the real system and 

the parameterisation of the model, as one improves the performance of the 

other. This type of “auto-validation” process (discussed in the next section) is 

out-of-scope of this research. For these reasons, the term “online” is preferred, 

although it is unclear whether an appreciable distinction exists in the field 

presently. Therefore, research under all three naming conventions are within 

the scope of this review. 

 

2.4.1 Online Simulation Methodology 

One of the first, and most comprehensive online simulation frameworks was 

developed by Davis (1998). The author’s schematic, presented in Figure 2.1, 

provides an overview of the framework, and proposes the use of parallel models 

operating under alternative control policies, along with a single model operating 
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under the current control policy. Under this framework, the performance of each 

model is analysed, and the real system adopts the policy which generates the 

“best” simulated results (given the real system’s current state) for the next 

planning period. The framework also includes an “auto-validation” process 

which updates the simulation parameters as new information is gathered about 

the real system. While this framework covers most, if not all the components 

one might include as part of a developing an ODES, not all of them are strictly 

required for a model to be considered “online”, and Davis notes that the 

technology required to implement all the components did not exist at the time 

of writing. In particular, the auto-validation component is out-of-scope for this 

research, since the focus is on developing a proof-of-concept model first, before 

considering the details of ongoing maintenance. 
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Figure 2.1: Schematic for the on-line planning/control process using real-time simulation 

(Davis, 1998) 

 

Other components within the framework simply require clarification of what they 

represent in the hospital context. For instance, an “alternative control policy 

generator” is most likely to be a hospital admissions planner who is aware of 

resource constraints and patient scheduling considerations, rather than a 

computer-based component of a simulation. A similar approach is reported by 

Vanberkel et al. (2011, p.1857): 

“Although a local search heuristic may have found an acceptable (or 

optimal) solution more quickly, it would have required the many surgical 
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department constraints to be modelled and would not have garnered the 

same level of staff understanding and support as this more manual 

process.” 

With manual adjustments to the elective admissions schedule being expected, 

the 𝑅 alternative policies are more likely to be run sequentially, rather than in 

parallel, with the user improving the predicted performance for the planning 

period via iterative attempts. This approach is easily accommodated within 

Davis’s framework, which was designed under the assumption that there may 

not be time for iterative adjustment before a decision must be made, hence the 

parallel execution of alternatives. The operational time-scales considered in this 

research occur over multiple days, therefore the emphasis on obtaining nearly 

instantaneous results is reduced. 

Another important contribution of Davis (1998) is the discussion of “reactive” 

versus “proactive” decision-making using online models. In reactive mode, an 

ODES is used to develop a plan at a point in time (a so-called “decision point”), 

possibly in response to a critical state in the real system, which is implemented 

in the real system until the next decision point occurs. The alternative is a 

“proactive” mode, in which the plan is updated between decision points as the 

real system evolves. While either of these modes of operation could be applied 

to operational bed management in hospitals, they are dependent on the rate at 

which the hospital’s databases can be synchronised with actual bed occupancy. 

For instance, if it is known that up-to-date data entry occurs only once per week, 

the hospital may be limited to reactive planning at weekly decision points. 
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Hanisch et al. (2005) further develop the theory of online simulation by 

considering some of the challenges associated with their initialisation. Since 

ODES models are initialised with a state reflecting the real system (rather than 

starting “empty and idle”) and analysed via their transient behaviour, the 

accuracy of the initial conditions has a direct effect on the results. However, in 

systems where the state descriptors change quickly over time, the current state 

becomes a moving target. The authors describe two initialisation methods. The 

first involves maintaining a continuously synchronised parent model, from which 

any number of child models can be generated and run at any time. The second 

is more simplistic and generates a model from a specially formatted file 

whenever a new simulation run is requested. Since the state of inpatient beds 

is thought to evolve at a slower rate than the example applications described by 

Hanisch et al. (traffic and pedestrian flow modelling), the initialisation method 

envisaged for this research bears more conceptual similarity with the second 

method. Additionally, hospitals may be able to choose times during the day 

when arrivals, discharges and transfers between wards are less likely to occur, 

thereby reducing the chance that the bed-state will change before the results 

are obtained. 

Aydt et al. (2008) formalise the use of reactive and proactive modes of 

operation; described by Davis (1998). In reactive mode, an ODES can be 

triggered to assess alternative control policies only when a performance 

indicator of the real system exceeds a critical value. In proactive (or 

preventative) mode an ODES is run periodically as an early warning system, 

and alternative control policies are assessed if the forecasts exceed the same 

critical value. Although it is tempting to say that proactive mode is preferable, 
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forecasts can be wrong, in which case the control policy could be changed 

unnecessarily. The authors develop a metric for comparing reactive and 

proactive response modes, and by considering two types of forecasting error 

(failure to detect a problem or detecting a non-occurring problem) expressions 

are derived for a probability threshold above which a proactive model would 

suggest taking preventative action. This represents a very useful way of 

calibrating ODES models, although it relies on a well-defined set of control 

policies which can be compared under reactive and proactive modes. This set 

is likely to be difficult to define in the context of elective admissions, in which 

admissions planners may have to consider multiple subjective criteria. 

In terms of more application-focused work, one of the biggest areas of research 

interest for online simulation is in the manufacturing arena, including Gupta et 

al. (2002) (plastics processing), Potoradi et al. (2002) (semi-conductor 

manufacturing) and Low et al. (2007) (high-tech manufacturing and service 

networks). Additional areas in which the method has been applied include 

military operations (Hill et al., 2001), pedestrian flow (Hanisch et al., 2003) and 

traffic flow (Mazur et al., 2004). Despite some of the parallels that could be 

drawn between manufacturing and healthcare systems, applications of online 

simulation in the latter domain are relatively scarce, possibly due to differences 

in the data acquisition systems used between the domains. For instance, 

manufacturing plant systems can collect up-to-the-minute information about 

real processes by using sensors and detectors, however data collection at this 

level-of-detail is not commonplace (and is potentially unwelcome) in hospitals. 
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2.4.2 Online Simulation in Healthcare 

Although relatively scarce, online simulations have been developed for use in 

healthcare applications; most commonly for modelling patient flows and 

treatment processes within Emergency Departments, where planning horizons 

are very short (on the scale of hours). 

Hoot et al. (2008) report the development of a generic ED model which uses 

discrete event simulation to make forecasts of seven performance indicators; 

including waiting count, waiting time, occupancy level, length-of-stay, boarding 

count (the number of patients awaiting admission) and boarding time (the time 

between requesting a hospital bed and receiving it). The authors pay particular 

attention to validating the model, reporting the use of a “sliding window” 

technique which partitions their data into fitting and testing subsets which do not 

overlap. The window contains four weeks of ED data which parameterises the 

model and moves forward in time in 10-minute increments, updating the 

simulation parameters as it advances. The outputs generated by the simulation 

are the mean of 1000 replications compared against their counterparts from the 

testing subset via their steady-state distributions (independent of time), and 

Pearson’s 𝑟 coefficient of correlation at 2, 4, 6 and 8-hour forecasts. The 

correlation coefficient indicates how much of the variation in the testing data 

can be explained by the simulation model, and each estimate is benchmarked 

against the autocorrelation at the same intervals from the testing data alone. 

While this shows that the simulation model is likely to outperform an 

autoregressive forecasting model, it may be difficult to diagnose issues during 

development using this statistic. The authors also conduct a residual analysis 

to show that the forecasts are unbiased, although other properties of the 
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distribution of the simulation outputs (such as the variance) are lost if the 

replications are averaged to obtain a forecast. Additionally, the ability to update 

the simulation parameters automatically (typically via an auto-validation 

component) may not be a trivial development for complex simulations. 

Therefore, the sliding window method may be difficult to apply in a more general 

context, especially during early stages of development. 

Tan et al. (2013) also focus on the Emergency Department, developing a 

comprehensive model which aims to improve both the supply of ED resources 

and the management of patient demand. On the supply side, a symbiotic 

simulation is developed which generates demand forecasts based on the 

current ED state (or “snapshot”) along with historical data. The snapshot 

contains current queue conditions, doctors’ availabilities, patients’ statuses and 

arrival rates. The demand estimates from the symbiotic simulation are used to 

generate an optimised schedule for the supply of resources, such as doctors, 

over relatively short planning horizons. The author’s development of an 

symbiotic simulation which informs an optimisation component (and vice versa) 

is the only known application of this type in a healthcare setting, although the 

scope is solely concerned with the Emergency Department. 

Marmor et al. (2009) and Espinoza et al. (2014) also develop real-time 

simulations of Emergency Departments, albeit with slightly different focuses. 

Since EDs normally have one of the highest throughput rates of any hospital 

department, both models disaggregate daily arrival rates into hourly rates to 

facilitate decision making over planning horizons of less that one day. 

Interestingly, both papers report challenges with initialising the models, due to 
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incomplete data to represent the real system’s state at run-time. This is probably 

to be expected given the frequency at which the models are intended to be run, 

coupled with manual data entry by ED receptionists. Both models overcome this 

challenge in a similar way; by running a warm-up period to populate the model 

first, and then by injecting the information associated with patients who are 

observable. Espinoza et al. (2014) refer to models in which the initial conditions 

are imputed in this way as “mixed input” simulations. Additionally, the authors 

investigate various levels of data completeness in order to assess the feasability 

of using their approach in practice. While data availability is clearly an important 

issue when modelling an ED on time-scales of less than one day, this research 

is concerned with the management of inpatient beds, where patients typically 

stay days or weeks before being discharged. On time-scales such as this, data 

availability issues are not expected to be encountered as regularly. 

Bahrani et al. (2013) develop a real-time simulation to aid operational decision 

making over similar planning horizons (4-8 hours) to Hoot et al. The model 

focuses on a subsection of the clinical pathway for cardiac patients who arrive 

as emergencies and uses three metrics to assess the performance of each 

simulation; patient total waiting time, total hospital cost, and percentage of 

patients discharged. The performance metrics are computed under different 

scenarios which can be defined by the user, or from a pre-selected list, including 

the base case (running under the current configuration of the real system), 

additional ED staff, additional cardiac staff, additional beds or reductions in 

these resources. Using a similar approach to Vanberkel et al. (2011), the 

estimates of the three performance indicators are intended to be judged by 
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hospital staff in the light of the criteria considered to be most important at the 

time, before implementation in the real system. 

Finally, Mousavi et al. (2011) report the development of a system for the real-

time monitoring of patient quality-of-care throughout a hospital, using a 

Healthcare Quality Index (HQI) of their formulation. Observed events in the real 

system are tracked over time, which correspond to parameters in a discrete 

event simulation model. The simulation is run under the latest parameter values, 

and the performance statistics which are generated form the basis of the 

aggregate HQI calculation, to provide a real-time indication of quality-of-care. 

 

2.5 Conclusions and Research Questions 

The research examined in the preceding sections, to help with tactical and 

operational bed management, suggests that models which encompass both 

elective and emergency workloads, while keeping the entire ward network 

within scope, are relatively few. The models which do, are largely intended to 

inform tactical planning decisions, rather than being influenced by the current 

state of the hospital. At the operational planning level, bed management tends 

to be addressed via analytical methods, which often consider only a subset of 

acute patient types or pathways, or treat bed resources as homogeneous; 

possibly in aid of mathematical tractability. An important advantage of using 

simulated-based methods for prediction, is that fewer of these simplifying 

assumptions are needed to generate estimates of key performance indicators, 

or to approximate their distributions. 
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One of the trade-offs of using simulation-based methods is that they rely on 

educated trial-and-error to produce improved control strategies, rather than 

solving for them directly via a mathematical formulation. With the elective 

schedule as a decision variable, this might seem like a problem, since there are 

many possible combinations of patient numbers, wards and admission days 

which could be tested. However, in practice, schedules for short-term bed 

management are likely to be constrained by quotas for different patient types, 

staff availability, and the surgical schedule used to book patients in advance. 

Therefore, it is likely that an ODES can be used in an iterative way, via manual 

adjustments to the admissions schedule by hospital planners who are already 

aware of resource constraints. 

In terms of the online simulation literature, a whole-hospital bed management 

model, or indeed a methodology for developing one, is not known to exist. 

Therefore, the first research question for this thesis is: 

RQ1: How can an on-line simulation, which provides estimates of bed 

demand, be developed for the operational management of hospital beds 

at the ward level? 

Since the aim of this research is to develop an ODES for ward-level bed 

management, one of the challenges is to represent the ways in which hospital 

wards might interact with one another. For example, if a simulation is initialised 

with a bed-state from the real hospital which includes a ward near to, or at its 

maximum capacity, this may have short term implications for other wards, 

through the occurrence of outlier patients. Without detailed consultation with 

hospital staff on the nature of this interaction, including the possible locations of 
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diverted patients, this behaviour becomes difficult to model in a meaningful way. 

Additionally, the results of any consultation could reveal diversion “rules” that 

are subjective in nature and would therefore need to be summarised and 

simplified for the purposes of modelling. If this information can be extracted from 

data which is routinely collected, the consultation process can be circumvented, 

and the diversion rules can be summarised into a component of the simulation. 

The second research question is therefore: 

RQ2: Can the effect of hospital busyness on patient-to-ward placement 

decisions be detected in patient administrative data, and can this be 

incorporated in a simulation model? If so, what effect does it have? 

In addition to the patient administrative data collected by most hospitals, 

supplementary patient-level information can also be recorded on a less formal 

basis, such as patient notes, or staff whiteboards, or it can evolve over time 

based on the recovery process of the individual patient. One such example is 

Estimated Date of Discharge, which may or may not be formally recorded, and 

is subject to change throughout a patient’s stay. Information of this type lends 

itself well to inclusion in ODES models which are also designed to be regularly 

updated. Prevailing patient-level knowledge can then be loaded as part of the 

initial conditions. Therefore, the final research question for this thesis is: 

RQ3: How can additional patient information, made available at run-time, 

affect the estimates of bed demand from an online simulation? 

The three research questions formed in this section focus the subsequent 

chapters in this thesis, and are addressed in Chapters 4, 5 and 6 respectively. 
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In the next chapter, collaboration with an Australian General Hospital is 

discussed, along with some of the details of the data extract which forms the 

basis of the ODES development work. 
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 Chapter 3 

A Real Hospital and its Data 

 

 

3.1 Introduction 

With the research questions defined (Section 2.5), the next phase in developing 

the online simulation involved partnering with a real hospital whose staff shared 

our interest in developing a tool for operational bed management. This chapter 

provides an overview of the hospital we worked with, and the collaboration that 

took place to ensure the research focuses on real issues, while also using 

realistic data. The details of the pre-processing steps which ready the data are 

also discussed, along with the scope of the included patient episodes, followed 

by a ward-level analysis based on statistics which are typically used to 

parameterise simulation models. The resulting database informs the model 

development and validation work reported in subsequent chapters of this thesis. 

 

3.2 Background 

Because online simulations are designed to have a close and persisting 

relationship with the systems they model (and their end-users), it was important 

from the outset of this research to work in partnership with a hospital for at least 

three reasons:  

1. To ensure our area of academic interest can be applied in practice.  
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2. To gain subject-matter expertise and guidance so that the model is 

relevant to the challenges faced by hospital staff. 

3. To access any data already collected by the hospital and confirm its 

correct interpretation during analysis and model development. 

To this end, discussions surrounding a collaborative project began with staff at 

an Australian General Hospital (AGH) who expressed interest in participating in 

the research. The AGH is a 300-bed public hospital which provides acute care 

facilities for over 67,000 residents and treats over 24,000 inpatients annually. 

Its services include Cardiology, Renal, Gastroenterology, Haematology-

Oncology, Rehabilitation, General Surgery, Ear/Nose/Throat Surgery, Plastic 

Surgery, Orthopaedics, Radiology and Paediatrics. The facilities also include 

an Emergency Department and an Intensive Care Unit. 

On the 1st of February 2012 the first telephone conference took place with 

managers and staff at the AGH and our group in Lancaster. This first 

conversation was not aimed at clarifying many technical details, however we 

gained some insight into the areas they deemed important and found that these 

aligned closely with our research aims. Specifically, staff expressed interest in 

an early warning system for detecting overcrowding on inpatient wards; for 

which an ODES model is well suited. Additionally, we learned from the AGH 

nursing managers that there is frequent overflow of outlier patients from medical 

to surgical wards, which poses several challenges including relocating 

equipment, and potentially causing staff to work outside their area of expertise. 

The frequent occurrence of outlier patients also coincided with an area of 
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potential research interest, since methods for modelling these patient flows are 

not often reported in the bed management literature. 

After these initial talks, we continued to work with the AGH for approximately 

one year. During this time, we were supplied with an anonymised extract of the 

patient administrative database. Following a preliminary analysis of the data 

and the development of a small-scale simulation, a progress report was sent 

back to the AGH containing information about historic patient activity levels and 

examples of how these can be modelled using simulation. One further 

telephone conference was conducted to discuss the contents of the report; 

giving staff the opportunity to provide feedback on our modelling approach and 

use of their data. However, despite early enthusiasm, we lost contact with the 

AGH after this call, due to changes to key personnel and a lack of resources on 

their part. Because of the lack of contact beyond the early development phase, 

the name of the (previously) participating hospital is suppressed throughout this 

thesis.  

Although further input would have been welcomed, our early interactions with 

the AGH meant that the preliminary stages of model development were more 

grounded than they would have been, had we accessed alternative data sets 

without any consultation process. The remainder of this chapter explains the 

analysis and filtering applied to the raw data we obtained from the AGH, to ready 

it for parameterising an ODES model. 
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3.3 Scope and Filtering 

The patient administrative (PA) data sets supplied by the AGH contain 

information for all patients occupying a bed between the 1st of January 2010, 

and the 30th of June 2012. The data is split into two parts, known as the 

“InpatientStay” and “Inpatient” data sets. The InpatientStay data set contains 

information related to each patient’s location, and additional rows are created 

when these details change within an inpatient visit or “episode”. The Inpatient 

data set has a different structure; containing visit-level information with one row 

per patient, per episode. Because of this structure, any overarching information 

which applies to an entire patient stay (admission to discharge) is recorded 

here, including demographic details such as age and sex, and episode-specific 

information such as admission type, date/ward of admission, date/ward of 

discharge and specialty at admission/discharge. Because this information is 

summarised for each episode, the Inpatient data set is used to determine the 

scope of the data which parameterises the ODES model. Figure 3.1 shows a 

five-row excerpt of the Inpatient data set, and some of the key fields used in the 

preliminary analysis of the data.  
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Figure 3.1: Five inpatient episodes recorded in the Inpatient dataset. Patients with more than 

one episode are recorded under distinct episode identifiers (Inpatient_EpisodeId) but maintain 

their individual patient identifier (Patient_Id). 

 

One of the most important variables in the Inpatient data set is 

Admission_Type_RefId, which categorises patients into three main admission 

statuses: “Urgency status assigned – elective”, “Urgency status assigned – 

emergency” and “Urgency status not assigned”. The data set also includes five 

other admission types, however these make up less than 4% of the total number 

of inpatient episodes.  

The majority of the “Urgency status not assigned” episodes appear to be 

maternity-related, with over 70% having an Admission_SpecialtyId of Obstetrics 

(41.8%) or Paediatric Medicine (29.8%). A potential reason for maternity-related 

cases having this admission type, is because they are not emergency patients, 

nor do they arrive from a waiting list; meaning the scope may be limited for 

managing this type of patient. For this reason, the not-assigned admissions are 

considered to be out of scope, and these records, along with all rarer admission 

types, are removed from the Inpatient data set to focus on only emergency and 

elective patients. 
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Similarly, patients admitted under the “Renal” specialty have also been removed 

from the dataset. The AGH has a separate Renal Unit, and patients rarely 

require treatment on other wards. Because of the simplistic care-pathway, and 

relatively low levels of interaction with other wards, patients under this 

admission specialty have also been excluded. 

Finally, the “Actual_SameDay_Flag” field has been used to remove episodes 

which do not require an overnight stay. One of the most well-known metrics for 

inpatient bed usage is the “midnight bed census” and this is also the focus of 

the modelling work (discussed further in Chapter 4). The midnight census 

counts the number of patients occupying a bed at midnight, however patients 

who are admitted and discharged on the same day will not contribute to this 

metric. Therefore, episodes for which Actual_SameDay_Flag = 1 have been 

removed from the Inpatient data set.  

The InpatientStay data set is linked to the Inpatient data set by the Patient_Id 

and Inpatient_EpisodeId fields. Therefore, the same set of exclusions are 

applied to InpatientStay, using the patient and episode identifiers which remain 

in the Inpatient data set. Since one of the aims of this research is to develop a 

model for ward-level bed management, patients’ location data are central to 

determining the structure and parameterisation of the ODES model. To this end, 

a subset of the InpatientStay data set (which tracks patient locations over time) 

is created based on the filtered Inpatient data set. Figure 3.2 shows an example 

of the InpatientStay data set for the same five episodes shown in Figure 3.1. 
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Figure 3.2: Five inpatient episodes recorded in the InpatientStay dataset. This data set focuses 

on patients’ location details, and a new row is created whenever these details change within an 

inpatient episode. 

 

Figure 3.2 shows how each inpatient episode can be disaggregated into “stay 

segments” when patients’ bed or wards details change during their stay. These 

changes are represented by a set of records for each episode which are 

contiguous over time; meaning the end time of the previous segment 

corresponds to the start time of the next segment. This structure allows each 

patient’s location details to be completely accounted for between admission and 

discharge.  

Although the InpatientStay dataset contains information relating to individual 

bed-stays, this level of detail is finer than is needed for a ward-level bed 

management model. For example, Figure 3.2 shows that during episode 

217336, patient 692 switches from Bed 03 to Bed 06, while remaining on Ward 

01. For ward-level modelling, it is assumed that beds within the same ward form 

a homogeneous group. Therefore, adjacent stay segments on the same ward 

(LocationId) are collapsed into one row; populated with the start time of the first 

stay segment, and the end time of the last stay segment. Finally, the admission 

type field (Admission_Type_RefId) is combined with the stay segment data, 
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thereby classifying each set of segments within an episode to either an 

emergency or elective admission. 

 

3.4 Preliminary Analysis 

As mentioned previously, the midnight bed census is one of the most important 

inpatient metrics, therefore it makes sense to derive its time series from the PA 

data to check for any long-term trends or seasonality. The midnight census is 

derived by counting the number of patients whose admission and discharge 

dates span midnight for each day in the observation period. The resulting series 

also serves as a benchmark for model validation in the chapters which follow. 

Figure 3.3 charts the midnight bed census (or midnight occupancy) over time 

for the emergency and elective admission types, for all hospital wards, after 

filtering the data. The AGH clearly has a greater number of emergency patients 

resident at midnight throughout the observation period, and on average, the 

ratio of emergencies to electives is approximately 5:1. There also appears to be 

some non-stationarity in both the emergency and elective series. For the 

elective patients, a slight downward trend occurs for most of the observation 

period. In the emergency series, the non-stationarity is more noticeable; with an 

upward trend in the first four months, and a decline during the last nine months. 

However, the pattern of decline between October 2011 and February 2012 does 

not appear to occur in the previous year, suggesting reasons other than 

seasonality. 
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Figure 3.3: The emergency and elective midnight bed census during the observation period in 

the PA data. 

 

The existence of longer-term trends in key simulation parameters (such as 

patient arrival rates) are important considerations when developing an ODES. 

However, this research is firstly concerned with developing a proof-of-concept 

model. Additional complexity, such as trends caused by seasonal effects (or 

other reasons) can be added at a later stage, after demonstrating the model’s 

capabilities over the planning horizons it is designed for. For this reason, a set 

of time-based exclusions are also applied to the InpatientStay data set to 

remove some of the trending behaviour seen in Figure 3.3. The result is a 

subset containing the inpatient episodes occurring between the 22nd of March 

2010 and the 3rd of October 2011 (indicated by the period between the vertical 

lines in Figure 3.3) which is less likely to be affected by external or systemic 

factors which change over time. 
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The final dataset contains the stay segments which occur during each inpatient 

episode, with each segment coded to one of 20 wards, and classified by 

admission type (emergency/elective). Table 3.1 summarises the data by ward, 

with statistics derived from the midnight census, along with arrival rate and 

length-of-stay information which is typically used in DES modelling. The 

summary statistics are in descending order of the average midnight census, 

with the top five wards contributing to over 70% of the hospital-wide census for 

emergency and elective patients. In terms of the proportion of occupied beds, 

these five wards experience occupancy levels of approximately 80% or higher 

on average, which could indicate a greater likelihood of encountering capacity-

related issues. Further down the table, some of the wards exhibit very low 

occupancy levels, with the bottom eight rows displaying midnight census levels 

which average less than one patient. This is caused by the exclusions applied 

earlier (in the case of Ward 4O, Ward 4N and the Renal Units), or by the rarity 

of overnight stays (in the case of Theatres and the Day Procedure Unit), rather 

than indicating frequently empty wards. It should be noted that the proportion of 

occupied beds at midnight (third column) is calculated from the highest midnight 

bed census observed in the filtered PA data, rather than the total number of 

physical beds on each ward. Using the total number of beds in the denominator 

would overestimate the capacity available to the within-scope patients.  
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Table 3.1: Summary statistics for each ward with stay segments in the filtered PA data. The 

ranges associated with the midnight census, arrival rates and lengths-of-stay are 95% 

confidence intervals for the means. 

 

The split between emergency and elective patients (fourth column of Table 3.1) 

shows that for most wards, the emergency patients outnumber the elective 

patients in terms of average midnight occupancy, although the proportion 

fluctuates by ward. In terms of absolute occupancy, Ward 5B has the highest 

number of elective patients, averaging approximately 10 occupied beds at 

midnight, closely followed by Ward 5A which averages approximately 9 

occupied beds. The only ward where elective bed occupancy could outnumber 

that of the emergency patients is the Day Procedure Unit. However, overnight 

stays at this location are rare, making it less important from the perspective of 

inpatient bed management. The other locations with higher elective proportions 
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only have a handful of stay segments in the filtered PA data, therefore no 

meaningful conclusion can be drawn about the emergency/elective split. 

As might be expected from the high proportion of beds occupied by emergency 

inpatients hospital-wide, the arrival rate at the Emergency Department (ED) is 

easily the highest among the wards in the PA data (fifth column of Table 3.1), 

and more than doubles the next highest arrival rate (Ward 5B). It should be 

noted that the arrival rates to each ward includes internal transfers from other 

wards, as well as new admissions to the hospital. However, the total row 

includes only new admissions, since internal transfers would not be classed as 

arrivals at the whole-hospital level. Therefore, the sum of the ward-level arrival 

rates is necessarily greater than the whole-hospital arrival in the Total row. 

Of the wards exhibiting higher levels of average occupancy, Ward Northside 

has the highest average length-of-stay (sixth column of Table 3.1) of 

approximately 11 days. All patients admitted to the Northside ward do so under 

the Psychiatry specialty, in which patients often require longer hospital stays 

that those presenting with physical disorders (Mechanic et al., 1998). Two 

locations exist which have average lengths-of-stay higher than Northside 

(“Hospital in the Home” and “The Manor Transitional Unit”), however their 

contribution to overall midnight occupancy is negligible. The Manor Transitional 

Unit has the highest average length-of-stay of all wards in the filtered PA data. 

However, the very low number of observed stay segments (along with the 

influence of potential outliers in the sample) causes the confidence interval to 

be wide relative to its mean, therefore the estimate may not be reliable. 
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Although 20 wards are referenced in the data, some of them make relatively 

small contributions to the hospital’s midnight census (on average) based on the 

patient episodes which are within scope. For this reason, modelling every ward 

as an individual location in the simulation may not be practical, especially if the 

number of observed stay segments is small. Since these types of 

considerations also inform the model’s structure, further discussions about 

selecting wards to be individually modelled take place in the next chapter 

(Section 4.4), where other structural elements of the ODES are characterised.  

 

 

 

 

 



 

59 
 

 Chapter 4 

Model Development 1: From Offline to Online 

 

 

4.1 Introduction 

The purpose of this chapter is to describe the development process which 

results in an online simulation for operational bed management. The process 

starts with a discussion of the requirements for an online simulation, and how 

these apply in the context of hospital planning (Section 4.2). These 

requirements help to inform the subsequent development phases, beginning 

with a conceptual model which outlines the structure, components and level of 

detail needed for an operational planning simulation (Section 4.3). In Section 

4.4, the parameterisation of the simulation takes place by analysing the arrival 

patterns, length-of-stay distributions and ward transitions in the PA data. These 

findings, along with the conceptual model, are combined in the Micro Saint 

Sharp simulation package, resulting in an “offline” model of the AGH. This 

model undergoes the first of two validation steps to check for problems which 

could be detected over longer simulation runs (Section 4.5). Section 4.6 

discusses the necessary additions to move from a stochastic offline simulation 

to a stochastic online simulation. These include defining the system state and 

expressions for sampling from conditional length-of-stay distributions. The 

second validation step takes place in Section 4.7, using novel methods which 

account for the conditional distribution of the performance measures. Methods 

for both discrete and continuous performance measures are developed, and the 
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discrete case is demonstrated for midnight bed occupancy. The chapter ends 

with a discussion of how Research Question 1 has been answered, and the 

conclusions which can be drawn from the model development process (Section 

4.8). 

The focus of this chapter is the development of the core of the simulation model, 

while Chapter 5 and Chapter 6 address the incorporation of two additional 

modelling components which arise as part of answering Research Questions 2 

and 3.  These additional components could be seen as part of the model 

development process (and therefore contribute to answering Research 

Question 1), however they also stand alone as research contributions to the 

online simulation methodology and to patient flow modelling in their own right. 

These additional components are therefore discussed in separate chapters. 

 

4.2 Online Simulation Requirements 

In Chapter 2, an outline of the framework developed by Davis (1998) was 

presented, which describes the generic components, and component 

dependencies of an online simulation. This framework (Figure 2.1), describes 

what could be considered an ideal online simulation, however, not all the 

components are strictly required for a model to be considered “online”. Indeed, 

Davis acknowledges that the technology required to implement all of the 

components in the framework did not exist at the time of writing. 

Conversely, there are some components which are not discretionary if a 

discrete event simulation is to be considered “online”. Hanisch et al. (2005) list 
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three requirements for online simulation control systems and these 

requirements form the basis of the model development process described in 

this chapter, however the requirements are generic, and some discussion is 

necessary in order to clarify how they might be applied in a hospital context. 

Requirement 1: A validated simulation model of the real system in which the 

level of detail of the simulation model must be equivalent to structures in the 

real system. 

This requirement covers the conceptual modelling and parameterisation stages 

of development, using the same methodology that would be applied in the 

development of a non-terminating or steady-state simulation. The resulting 

model is referred to in this thesis as an "offline" simulation, which is initialised 

with an “empty and idle” state. Programmatic adjustments can then be made to 

the offline model to accept initial conditions other than empty and idle. 

One of the expectations of Requirement 1 is that a validated model of the real 

system can be obtained, however it is not immediately clear how a model should 

be validated for online use. Therefore, one of the research contributions of this 

chapter is the development of a two-stage validation process which is 

influenced by online modelling concepts. In the first stage, validity of the offline 

model is considered for the purpose of ruling out any unexpected behaviour in 

the long run, such as systematic bias, which may be difficult to detect in the 

comparatively short runs of an online simulation. In the second stage, the 

simulated and observed data are both treated as draws from conditional 

distributions which depend on the hospital state and the elapsed time from 
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initialisation. These dependencies inform the discussion, development and 

application of a new method for validating online models (Section 4.7). 

Requirement 2: An online connection of the simulation with the real system. 

Requirement 2 ensures that the simulation can be initialised to the state of the 

real system being modelled, and in doing so, be brought online in order to 

investigate how the real system might evolve given its current state. In general, 

having an online connection with the real system means that the real system 

state can be queried by the simulation model at any time, however in a hospital 

setting this may not be possible since data entry into the patient administration 

system may not occur automatically. Unlike manufacturing systems where 

sensors can be used to track jobs and automatically update centralised data 

stores, hospitals often rely on nurses, clinicians and admin staff to enter this 

data manually. Unless this is carried out diligently, the PA data may not be 

synchronised with the real state of the hospital, but in order for an online 

simulation to be of use in the operational planning process, it must be assumed 

that synchronisation occurs at some regular points in time. At these times, it is 

appropriate to initialise the online simulation, but unlike other online simulations, 

it is not assumed that initialisation is always possible. The steps and 

considerations necessary to carry out the periodic initialisation of the offline 

model, thus bringing it online, are discussed in Section 4.6. 

Requirement 3: The simulation engine has to be fast enough to deliver results 

in a period of time that allows using the results in the subsequent decision 

process. 
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For applications of online simulation where the planning horizon may be very 

short, Requirement 3 is important to consider. However, in the context of 

managing inpatient beds, ensuring that the simulation can complete before the 

next decision point is reached is not so important since operational planning in 

this setting occurs with daily/weekly frequency, and this is more than enough 

time to complete a batch of simulation runs. 

The process of meeting Requirements 1 and 2 form the basis of the model 

development described in this chapter. To meet the first requirement, an 

adequate conceptual model is developed and then implemented in a simulation 

software package with the modelled sub-processes (such as arrivals and 

service) suitably parameterised. The resulting offline model is validated using 

standard techniques. The validated offline model is then brought online by 

assuming a frequency at which up-to-date data is available and initialising the 

model at these times. This is a slight modification of the second requirement in 

the sense that the true system state may not be able to be queried at any time; 

however the underlying rationale for using online simulation remains the same;  

that events in the near future are dependent on the (knowable) system state in 

the present. 

 

4.3 Conceptual Model 

Before the development of a simulation can begin using simulation software, 

some consideration must be given to the aspects of the real system which are 

going to be included, and how they should be modelled. This phase of 

development is known as “conceptual modelling”. A conceptual model forms 
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the theoretical basis of the programmed simulation and is largely independent 

of software choices. In this section, a conceptual model is formulated based on 

a discussion of the level of detail required to meet the aims of the research, 

along with the time-scales associated with ward-level inpatient bed 

management.  

 

4.3.1 Level of Detail – Temporal 

Inpatient beds are generally distinguished from other bed types, such as day 

beds, by the amount of recovery time required by the patient occupying it. Day 

beds, as the name suggests, are mainly used for the treatment of day cases, 

where the patient being treated is expected to leave on the same day that they 

arrive. Inpatient beds on the other hand, will generally be occupied for one or 

more nights. Therefore, a key performance measure associated with inpatient 

beds is the number of occupied beds (and its complement; the number of 

available beds) at midnight each day, also known as the “midnight census”. This 

information is currently collected and published by the NHS (for example) on a 

quarterly basis. The midnight census also features as a performance indicator 

in a number of bed management models in the literature, such as Kolesar 

(1970), Esogbue and Singh (1976), McClean and Millard (1995), El‐Darzi et al. 

(1998) and Helm and Van Oyen (2014). 

Given the prevalence of the midnight census as a metric for inpatient bed 

occupancy in both the literature and official statistics, it has also been chosen 

as the key measure of ward-level bed occupancy for this model. Therefore, the 

greatest frequency of data collection from the simulation will be daily collection 
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at midnight, and higher degrees of temporal level-of-detail (such as hourly 

performance indicators) will not be modelled. Since the shortest time interval of 

interest is one day, the simulation runs in discrete time, with each time unit 

representing one day of hospital operations. 

 

4.3.2 Level of Detail – Structural 

The structural level of detail of a simulation determines which of the physical 

processes in the real system are to be included as modelled processes in the 

simulation. Günal (2008) discusses structural level of detail in terms of the level 

of aggregation at which physical processes of an A&E department are included 

in the simulation. At high levels of detail, many of the processes of an A&E can 

be modelled, however, this requires equivalently detailed data collection to 

adequately parameterise them. Günal notes that detailed data requirements 

can be circumvented by modelling at lower levels of detail, although this level 

must not be so low that the modelling objectives can no longer be met. 

Therefore, a balance must be struck when considering the level of detail of the 

structural elements of a simulation.  

Since this project is concerned with estimates of inpatient bed occupancy at the 

ward level, the minimum level of structural detail includes a network of wards. 

Patient stays in the PA data can be disaggregated into ward stay segments to 

parameterise each ward in the simulated network.  

However, modelling every ward which appears in the PA data is not considered 

sensible. For example, there is little point in modelling wards which rarely allow 

overnight stays since this research is concerned with estimates relating to the 
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midnight census. On the other hand, omitting these wards would break the links 

in the ward network. A pragmatic approach is to aggregate information relating 

to these wards into one pseudo-ward in the simulation (referred to as ward 

Other), meaning the population of interest is captured entirely, while modelling 

effort is reserved for wards which are individually significant. The details of this 

process are described in Section 4.4.1.  

It should be noted that it is possible for a ward to have high patient throughput 

and not be included as an individual ward in the simulation (aggregated with 

other wards instead). This would occur if many patients were treated on the 

ward, but most were transferred to another ward when an overnight stay is 

required. Since the midnight census has been chosen as the performance 

measure, it makes sense that it forms the basis of the inclusion criteria for the 

modelled wards. Although this means that wards with high midnight occupancy 

are treated as being more important from a modelling perspective, than say, 

those with high throughput or high patient turnover. 

 

4.3.3 Uncapacitated Wards 

Often when service networks are modelled (using computational or analytical 

methods) each node in the service network has a fixed capacity for the number 

of customers which can be served concurrently. If the number of customers 

requiring service exceeds this number, customers can either queue for service 

or they can be diverted to another service node. 
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For patients within the scope of this research (that is, designated 

emergency/elective inpatients spending one or more nights in hospital), it is 

unlikely that formal queueing behaviour would occur in practice. Instead, it is 

more likely that if the first-choice bed is not available, patients either remain in 

their current bed, or are diverted to a potentially less suitable bed on an 

alternative ward.  

While a model which diverts patients away from full wards has the potential to 

capture ward dependencies known to exist in most general hospitals, no 

consensus has been reached in the literature for modelling this behaviour. The 

lack of agreement on how to divert patients in a model can be attributed to the 

many factors which influence bed placement decisions, such as the sex of the 

patient, their condition, nursing constraints and estimated length of stay, 

therefore simplifications are often made in order make modelling patient 

diversions feasible. 

Examples of models which account for patient diversions include Günal (2008) 

in which patients are routed to alternative wards by setting the probability of 

arriving at a ward when it is full to zero, then rescaling the remaining ward 

probabilities to sum to unity. Harper and Shahani (2002) asked bed managers 

to provide information relating to patient priorities, and these come into effect 

when attempts are made to place a simulated patient on a full ward.  

An alternative to diverting patients is to use so-called “uncapacitated” wards.  

As the name suggests, each modelled ward has theoretically infinite capacity, 

therefore every simulated patient stays on their most appropriate ward. 

Examples of this approach include de Bruin et al. (2010), Chow et al. (2011), 
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Helm and Van Oyen  (2014) and Monks et al. (2016). Monks et al. and de Bruin 

et al. use the infinite capacity assumption to help determine what appropriate 

facility sizes should be, while Chow et al. and Helm and Van Oyen use so-called 

“soft” capacity bounds on infinite capacity wards to determine the number of 

excess patients that would occur. Exceeding one of these bounds flags an 

instance where demand for a ward might need to be reduced and also allows 

for simple estimation of the probability of exceeding ward capacity i.e. the 

number of simulation runs in which the capacity at midnight is exceeded, divided 

by the total number of simulation runs.  

Since the probability of exceeding capacity on a given ward (at midnight) is likely 

to be a key metric in evaluating the quality of any scenario the user might wish 

to simulate, a method which affords simple calculation is preferable. For this 

reason, an uncapacitated approach has been chosen to model the wards in the 

AGH.  

 

4.3.4 Decision Variables (Elective Schedule) 

As argued in Chapter 2, one of the most important operational decisions a 

general hospital must make is the number of elective admissions to schedule. 

Admitting too many elective patients limits the capacity to treat emergency 

patients, potentially causing blockages at the ED. On the other hand, scheduling 

too few elective admissions can leave patients on waiting lists unnecessarily (in 

the case of public health services) and is an inefficient use of expensive 

resources such as nurses and theatre time. 
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Given the impact that the elective admissions schedule has on the operational 

management of inpatient beds, and the potential complexities involved with 

balancing both elective and emergency bed demand, it stands to reason that a 

model capable of quantifying the impact of competing schedules is likely to be 

of value. For this reason, elective admissions occur deterministically by fixing 

the day and ward of arrival for each elective patient in the scheduled planning 

horizon. This information can either be read from the historic schedule occurring 

in the PA data or from a modified schedule supplied by the user. User-define 

schedules allow the relative effect on the midnight census to be investigated for 

a set of plausible alternatives. 

 

4.3.5 Uncontrolled Variables 

While hospitals can exercise a degree of control over the elective admissions 

schedule, there are other factors influencing bed demand which cannot be fully 

controlled, such as the arrival of emergency patients or the variability associated 

with patient recovery times. Because of these uncontrollable factors, hospital 

planners endeavour to schedule elective admissions in such a way that 

allowances are made for unforeseen events, to mitigate the under or over-

utilisation of beds. To adequately represent the uncertainty associated with the 

management of inpatient beds, three factors impacting ward-level bed 

occupancy are treated as random variables in the simulation:  

1. Number of emergency admissions per day  

2. Number of midnights spent on each ward by each patient (ward length 

of stay) 
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3. Location of the next ward stay (or discharge) once the current ward stay 

is complete. 

In contrast to the elective admissions which occur deterministically, the number 

of emergency admissions per day is treated as a random variable, in keeping 

with the random nature of emergency arrivals in a real hospital. Since the 

simulation runs in discrete time, it is not necessary to model the inter-arrival 

times of the emergency patients. Instead a random number of daily arrivals can 

be sampled from the history of daily arrival numbers, and this determines the 

size of the “batch” of emergencies occurring on any given day. 

After being admitted to the hospital, patients occupy a bed for some period 

before being discharged or transferred to a bed on another ward. This period is 

known as the patient’s ward length-of-stay. In the case of elective admissions, 

it may be well estimated by clinicians and planners responsible for scheduling 

procedures (investigated further in Chapter 6). However, it is not unreasonable 

to expect variation in length-of-stay from patient to patient. For emergency 

patients arriving at the hospital, length-of-stay may be even less predictable due 

to the unscheduled nature of their admission. For this reason, ward lengths-of-

stay are modelled as random variables whose discrete distributions (since the 

simulation runs in discrete time) are derived from the PA data. 

Once a patient’s ward stay is over, they may be discharged from hospital or 

they can be transferred to another ward. If a transfer to another ward is 

necessary, the choice of ward is not only dependent on the patient’s clinical 

requirements, but also the availability of the resources needed to treat the 

patient, such as beds, nurses and monitoring equipment. Ideally, a patient’s 
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path through the network of hospital wards would only depend on their clinical 

requirements; however, this is not always the case. The stochastic nature of 

demand for some resources (caused at least in part by the unplanned nature of 

emergency arrivals) means that unforeseeable circumstances can arise in 

which a patient’s ideal ward is at full capacity, and a transfer is not possible. 

Patients’ clinical requirements can also change unexpectedly; due to the 

worsening of existing conditions, or even because of their proximity to other ill 

patients. The potential for uncertainty in the sequence of visited wards, along 

with the unknown types of emergency arrivals occurring in each planning 

horizon, justify the use of stochastic transfers between wards in the simulation. 

Although random, the probabilities which govern these transfers can be 

estimated using PA data, thereby maintaining the average patient flows seen in 

the real hospital. Stochastic methods for modelling ward transfers are discussed 

further in Section 4.4.4. 

 

4.3.6 Conceptual Model Diagram 

The conceptual model described in the preceding sections is summarised in 

Figure 4.1, which represents the first step in meeting the first requirement of an 

online simulation described in Hanisch et al. (2005). The level of detail of the 

conceptual model and the way in which components are to be implemented are 

focused by the structures and processes of interest in the real system. For 

operational bed management purposes, the structures and processes of 

interest are those related to the ward-level midnight census. With a conceptual 
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model developed, implementation and parameterisation of this model in the 

Micro Saint Sharp software package can begin. 

 

 

Figure 4.1: Schematic of the conceptual model to be implemented in Micro Saint Sharp 

simulation software. The 𝜋𝑖,𝑗
𝑡𝑦𝑝𝑒

 represent the transition probabilities from ward 𝑖 to 𝑗 for each 

admission type (emergency/elective). Probabilities will not be designated for routing elective 

patients from the admission node, since the first ward-stay is assigned deterministically by the 

elective admissions schedule. No simulated time is spent at the admission and discharge 

nodes. 

 

4.4 Offline Model Development 

In this section, the conceptual modelling decisions from Section 4.3 are 

implemented in Micro Saint Sharp, and the details of parameterising the model 

with the PA data supplied by the AGH are described. The result is considered 
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to be an “offline” model of the inpatient ward network, in the sense that it is 

always initialised with an empty and idle state, meaning that at this stage of 

development, it is not suitable for use in an operational decision-making context. 

This model does however, form the basis of the eventual “online” model, and 

can be used to ensure that no unexpected long-run behaviours are exhibited in 

the simulation outputs. For example, unexpected behaviour such as a trend in 

the midnight occupancy time-series (when average arrival rates are not known 

to be increasing or decreasing) may be difficult to detect in the comparatively 

short runs of the online model but would be readily seen in the time-series of 

midnight occupancies generated by the offline model. 

 

4.4.1 Modelled Wards 

As has already been mentioned in Section 4.3.2, modelling every ward which 

appears in the PA data is not sensible since not all wards are geared towards 

accommodating patients for overnight stays. For this reason, a pragmatic 

approach towards determining the structure of the ward network was chosen, 

where wards whose midnight census was consistently low were aggregated 

together to form an “Other” ward. By doing this, modelling effort is focused on 

the wards which have the greatest impact on the hospital-wide midnight census, 

while also maintaining the ability to make inferences about the number of beds 

occupied by all emergency and elective patients.  

An entry criterion is used to determine which wards are modelled based on the 

average midnight occupancy for each ward over the period of available PA data. 

The average occupancies are ranked high to low, and the wards which 
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comprise 90% of total midnight occupancy for emergency/elective patients are 

modelled with their own node in the simulation network. The wards which make 

up the remaining proportion of average midnight occupancy are aggregated 

together to form the “Other” ward. Table 4.1 shows the 20 wards in the PA data 

where overnight stays occur, along with their percent average contribution to 

hospital-wide emergency/elective midnight occupancy. The set of possible 

wards is reduced to 10 modelled wards (including “Other”) once the entry 

criterion is applied. Figure 4.2 shows the resulting ward network which is 

implemented in Micro Saint Sharp. 

It is important to note that since the Other ward represents several low 

occupancy wards (for emergency/elective patients), it can be visited reflexively.  

Therefore, patients leaving Other can begin a stay on Other immediately 

afterwards, unlike the individually modelled wards. These reflexive transfers 

represent patient transitions within the lower occupancy wards. The length of 

stay distributions for Other are derived by pooling all LOS data for the shaded 

wards in Table 4.1. 
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Table 4.1: Average midnight census for emergency and elective patients combined. Shaded 

wards are represented by the “Other” ward in the simulation. 

 

 

Figure 4.2: The network of ten individually modelled wards implemented in Micro Saint Sharp 

simulation software forms a complete graph. 
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4.4.2 Modelling Arrivals 

As discussed in Section 4.3.5, the number of emergency patients arriving each 

day is modelled as a random variable, and because the simulation runs in 

discrete time, the time between successive emergency arrivals is not important. 

Therefore, a discrete empirical distribution derived from the PA data can be 

used to generate the number of emergency arrivals on a daily basis. 

As might be expected, not all days of the week are likely to have the same 

average number of emergency arrivals, and if a “day-of-the-week” effect exists 

in the pattern of emergency arrivals, it is likely to have some impact on the day-

to-day management of inpatient beds. In Figure 4.3 the PA data has been used 

to investigate the likelihood of a day-of-the-week (DOW) dependent pattern of 

emergency arrivals. 

 

Figure 4.3: Mean number of emergency admissions to the AGH for the period in which PA data 

is available. Error bars are 95% confidence intervals for the means. K-W has been used since 

homogeneity of variance across weekday groups is not assumed. 
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The mean number of emergency admissions appears to decrease during the 

weekend, supporting the notion that a DOW pattern exists for the emergency 

arrivals. The Kruskal-Wallis Test has been used to test the null hypothesis that 

the distribution of the number of daily arrivals is not dependent on DOW; a 

hypothesis which is rejected at a significance level of 0.001. 

Since the relationship between the distribution of daily emergency arrivals and 

day of arrival can be shown to be statistically significant using the PA data (and 

is likely to have an impact on operational bed management), this pattern has 

been included in the simulation. The number of daily emergency arrivals is 

drawn from one of seven discrete empirical distributions derived from arrivals 

recorded in the PA data on each day of the week. 

In contrast to the randomly generated emergency arrivals, the elective 

admissions occur deterministically, which can be used to test the effect of 

competing elective schedules on bed demand for the planning horizon in 

question. For validating the offline model, the simulation uses 560 days of actual 

elective admissions. To run this observed schedule through the simulation, the 

number of elective patients arriving on each ward, during each day of 

observation is taken from the PA data.  

 

4.4.3 Modelling Length of Stay 

Once a patient has been assigned to a ward bed (by either admission or transfer 

from another ward), the bed is occupied for some period of time before the 

patient is either discharged or transferred to another ward. The amount of time 
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a patient occupies a bed is known as the patient’s length-of-stay (LOS) and this 

can potentially be influenced by a number of factors. The most obvious of these 

is the type and severity of a patient’s condition, but others might include bed 

blocking, (the patient is required to wait until space on a more suitable ward 

becomes available) or the hospital’s ability to discharge the patient (in cases 

where the patient requires help leaving the hospital). 

Naturally, not all factors which influence a patient’s LOS are recorded in the PA 

data, and even if very detailed information was available, it would not rule out 

uncertainty in LOS altogether. For this reason, LOS for both the emergency and 

elective patients are treated as discrete random variables which represent the 

number of midnights a patient will stay on a particular ward. 

While it may be unreasonable to expect that detailed LOS information (such as 

delays caused by bed blocking) is recorded in the PA data, other standard 

information is available. As has already been mentioned, the PA data contains 

patient stay records with specialty, ward and admission type information along 

with the times at which the status of any of these changes. This means the pool 

of patient level LOS records can be disaggregated to form samples of similar 

patients from which LOS distributions can be derived. 

Since the purpose of the model is to provide estimates of ward-level bed 

demand, the pool of all LOS observations is first disaggregated by ward. This 

also goes some way towards grouping patients of similar specialty, although it 

is not uncommon for wards to provide beds for multiple specialties. The next 

disaggregation occurs at the admission type level, meaning LOS for elective 

and emergency patients on the same ward will be drawn from distinct 
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distributions. Further disaggregation by specialty is theoretically possible by 

using the specialty categorisation in the PA data; however, each level of 

disaggregation has the effect of diminishing the sample size of each patient 

group, making any statistical inference (such as analysing the relationship 

between midnight occupancy and transition probability) less meaningful. 

Therefore, discrete empirical LOS distributions for the number of midnights 

spent on each ward are derived at the ward and admission type 

(emergency/elective) level. 

As has already been shown in Section 4.4.2, it is likely that some day-of-the-

week dependent effect exists for the distribution of emergency arrivals. In a 

similar way, it might be reasonable to expect that a patient’s LOS is also affected 

by the day of the week on which he or she is admitted. Such an analysis has 

already been carried out by the UK Audit Commission (Audit Commission, 

2003) in which LOS records generated by NHS Trusts across England and 

Wales were grouped by weekday of admission. The Audit Commission found 

that patients admitted on a Thursday stayed in hospital for a significantly longer 

period than patients admitted on any other day of the week, citing the reduced 

availability of support and diagnostic departments, along with reduced numbers 

of senior staff capable of making discharge decisions over the weekend as likely 

causes. 

If evidence suggests that a relationship exists between LOS and weekday of 

admission in the AGH being modelled, then capturing this relationship has the 

potential to improve bed demand estimates. In Figure 4.4, the Total LOS 

observations (that is, the amount of time spent as an inpatient from admission 
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to discharge, regardless of ward placement) are grouped by weekday of 

admission to investigate the likelihood of such a relationship. 

 

Figure 4.4: Mean Total LOS for emergency and elective patients in the observation period. 

Error bars are 95% confidence intervals for the means. K-W testing has been used since 

homogeneity of variance across weekday groups is not assumed. 

 

On average, Total LOS appears to be greatest for patients admitted on a Friday, 

closely followed by those admitted on a Thursday, and these patients stay in 

hospital for approximately one day more than those arriving on a Monday or a 

Tuesday. The weekly LOS pattern is similar to the pattern reported by the Audit 

Commission (2003), indicating that the AGH may also suffer from a lack of 

resources and staff over the weekend, resulting in a decreased rate of 

discharge. The Kruskal-Wallis test has been used to test the null hypothesis 

that the distribution of LOS is not dependent on weekday of admission, and this 

hypothesis is rejected with a significance level of 0.0005. 
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Because the relationship between weekday of admission and the distribution of 

total LOS is statistically significant and likely to have an impact on midnight bed 

occupancy numbers, it makes sense to model this relationship in the simulation. 

However, it is worth noting that although the analysis of this relationship was 

based on Total LOS (all wards) and both admission types, LOS in the simulation 

is modelled at a lower level of detail. Rather than carrying out the analysis for 

each of the ward and admission type combinations, the findings of this pooled 

analysis are treated as being valid for all levels of detail, since disaggregation 

would result in smaller sample sizes and potentially insufficient statistical power 

on which to base a conclusion.  

With 10 modelled wards, 2 admission types and 7 possible admission days, 

each ward LOS can be drawn from one of 140 possible LOS distributions. The 

LOS generation process has been simplified by assuming that each ward LOS 

draw is independent of all other simulated patients and any time spent on other 

wards. It should also be noted that although elective (planned) arrivals are 

treated as deterministic, their LOS is treated as a random variable at this stage 

of model development.  

 

4.4.4 Modelling Ward Transitions 

Given the potential complexity and uncertainty associated with assigning 

patients to wards (Section 4.3.5), an algorithm which accounts for all the factors 

considered by hospital staff cannot be obtained based on the information 

commonly contained within PA databases. However, a number of methods exist 

in the literature for approximating patient routing behaviour stochastically, 



Chapter 4 

MD1: From Offline to Online 

 

 

82 
 

based on data obtained from the hospital being modelled. For example, Chow 

et al. (2011) employ a so-called “trace-driven” approach, in which entire patient 

pathways (including lengths-of-stay) are sampled for each simulated patient 

from a database of observed hospital stays. Gallivan and Utley (2005) and Helm 

and Van Oyen (2014) derive “persistence matrices” from available data, which 

return the probability of being on a particular ward given the amount of time the 

patient has already spent in hospital. Günal  (2008) computes “transition 

matrices” which contain the estimated probability of transitioning between any 

two wards, based patient transitions observed in the hospital data.  

While persistence matrices treat patient routing as a function of time, and 

transition matrices treat patient routing as a function of location, it is not difficult 

to think of other factors which might influence routing decisions in a real 

hospital. For example, it is expected that transferring a patient to a ward with no 

available beds should be less likely than transferring the patient to a ward on 

which beds are available. For this reason, a preferred ward routing policy is one 

which can be generalised to respond to other factors which might influence 

patient transitions. 

In this chapter, fixed or “static” transition matrices (STMs) will be used in the 

simulation model under consideration. This method captures not only the 

potential uncertainty associated with a given patient’s path through the hospital 

network, but also the average rate of transition between any two wards.  The 

term “static” is used here to indicate that the probability of transitioning between 

any two wards is estimated independently of time or any other variable which 

might influence the likelihood of transitioning between wards. However, 
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transition matrices are expected to be able to be formulated as functions of 

other factors which influence patient routing, if necessary. This is because a 

snapshot of the hospital can be taken from the PA data at the time of any 

recorded transition. Persistence matrices on the other hand, only incorporate 

ward location information at pre-determined times after admission, meaning any 

information relating to what might have caused a particular transition is lost. 

Patient routes generated by a trace-driven approach, clearly cannot respond to 

the state of the modelled system, because the entire ward-stay trajectory is 

sampled when the simulation entity is created. 

As shown in Figure 4.2, the modelled wards form a complete graph, meaning 

each ward is connected to every other ward once implemented in Micro Saint 

Sharp. The STMs govern the likelihood of a patient transitioning to other wards 

once the LOS on their current ward has ended. For newly arriving emergency 

patients, a set of entry transition probabilities govern which ward a patient is 

admitted to on arrival. For the elective patients, the ward of admission and 

weekday of arrival are considered to be part of the elective schedule; therefore, 

it is not necessary to estimate the probability of arriving on a particular ward for 

this admission type.  

While all the modelled wards are connected to one another in Micro Saint 

Sharp, the probability is allowed to be zero if there is no evidence of it occurring 

in the PA data; effectively disconnecting the two wards. The transition 

probabilities are estimated from the PA data in the following way: 

 𝜋̂𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑖,𝑘
𝑤+1
𝑘=1

  for  𝑖, 𝑗 ∈ {1, … , 𝑤} (Eq. 4.1) 
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𝜋̂𝑖,𝑗 is the estimated probability of transitioning from ward 𝑖 to 𝑗, while 𝑤 is the 

number of modelled wards. The (𝑤 + 1)th ward corresponds to being 

discharged from the hospital, rather than being a modelled ward in its own right. 

The 𝑛𝑖,𝑗 represent the number of observed transitions from 𝑖 to 𝑗 in the PA data. 

Bed transfers within the same ward are modelled as a single LOS period, 

therefore 𝜋̂𝑖,𝑖 = 0 for all wards except Other, where reflexive transfers represent 

transfers between the smaller wards of which Other is composed. The 𝜋̂𝑖,𝑗 are 

calculated for each of the two admission types (emergency and elective), and 

these form two separate transition matrices to account for the likely differences 

in pathways through the hospital for the two patient groups. 

The STMs shown in Tables 4.2 and 4.3 are used in the offline model, and the 

outcome of patient transfers from “row” wards to “column” wards are drawn from 

these distributions. Since reflexive transfers are not considered to be ward 

transfers, entries where the row and column wards match are zeroed. Entry and 

Exit are dummy wards which cannot be revisited, therefore they only occur as 

row and column wards respectively. It is also worth noting that the entry row of 

the transition matrix does not apply to elective patients, since their first ward is 

decided by the elective admissions schedule and is therefore deterministic. 

While STMs of the type shown in Tables 4.2 and 4.3 are fixed with respect to 

other factors which might influence patient placement decisions, it has already 

been mentioned that matrices of constant probabilities such as these might be 

generalisable to matrices of functions of the state of the hospital. This is made 

possible because draws from transition matrices (static or otherwise) occur at 

the same time as the simulated transition occurs, meaning it is possible for the 
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state of the hospital to influence the probability of transition at that time. This 

concept is explored further in Chapter 5, in which relationships between ward 

level occupancy and transition probability are sought from the PA data to 

emulate the effect of outliers in the simulation. The outputs generated by this 

simulation are compared against the outputs generated by the simulation using 

STMs in this chapter to assess the relative effect of modelling transition 

probability as a function of occupancy. 

 

 

Table 4.2: The Static Transition Matrix estimated for the emergency patients. 

 

 

Table 4.3: The Static Transition Matrix estimated for the elective patients. 
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4.5 Offline Model Validation 

The term “validation” used in this section refers to the “black-box” type of 

analysis defined in Pidd (2009) in which the model outputs are compared to 

some historic data generated by the real system in order to confirm that the 

model displays similar performance characteristics when run under similar 

operating conditions. This type of validation is distinct from the “open-box” 

validation conducted in the conceptual modelling phase, where subject matter 

experts are consulted (where possible) to ensure that the structures and 

processes in the simulation constitute a suitable representation of the real 

system. 

The model components already described in Sections 4.4.1 to 4.4.4 form the 

offline basis of the eventual online mode, once combined. While the creation of 

an offline model can be seen as a single step in the online model development 

process, it is important to note that the offline model should also be a good 

representation of the inpatient ward network in the hospital being modelled, 

albeit over a longer period of time. Significant differences between statistics 

which summarise longer periods could help to diagnose problems with the 

modelling assumptions or component parameterisations which may be difficult 

to detect in the comparatively short runs of an online simulation. On the other 

hand, if no significant differences are found, this indicates that the offline model 

is performing as expected, on average, thereby contributing towards meeting 

the first online simulation requirement described by Hanisch et al. (2005). 
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4.5.1 Run Configuration 

While the details of each of the offline modelling elements (such as arrival 

pattern, ward lengths of stay and transitions) have been discussed earlier in 

Section 4.4 (Offline Model Development), Table 4.4 provides a summary of the 

implementation of these elements for the model being checked for validity. Their 

implementation, together with the chosen values of the decision variables form 

the configuration of the model at run-time.  

  Treatment 

Offline Modelling 

Element 
Emergency Elective 

Arrivals/Admissions 
Empirical Distributions 

(Stochastic) 

Observed Schedule 

(Deterministic) 

Ward Length of Stay 
Empirical Distributions 

(Stochastic) 

Empirical Distributions 

(Stochastic) 

Ward Transitions 
Static Transitions 

(Stochastic) 

Static Transitions 

(Stochastic) 

Table 4.4: Treatment of each of the major modelling elements in the offline simulation, grouped 

by admission type. 

 

As with any model validation process, the values chosen for the decisions 

variables should be the same as those which generated the observed data in 

order to carry out a fair comparison. The decision variable for this model is the 

elective schedule, therefore the same schedule which contributed towards the 

observed values of the midnight occupancy censes should also be run in the 

offline model. Since the lowest temporal resolution of the simulation is “daily”, 

the elective schedule which is executed consists of the observed number of 

elective patients to be admitted to each ward, each day. 
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Because the PA database contains 560 days of useable data, a 560-day 

elective admissions schedule can be continuously simulated. If the number of 

daily elective admissions had been drawn from empirical distributions in the 

same way that the emergency admissions are generated, there would be no 

limit on the number of days which could be simulated; however, this would also 

mean that the elective admissions schedule could no longer be treated as a 

decision variable once the offline simulation is brought online.  

 

4.5.2 The Warm-Up Period 

The notion of a warm-up period has little meaning in the context of online 

simulation since online models are designed to be initialised to an operational 

state by querying the state of the real system. However, the offline model 

discussed in this section contains no such “state-matching” component; each 

simulation run is initialised with an empty-and-idle state. This being the case, 

the output data generated by the offline model will contain warm-up periods at 

the start of each run, and this data will bias estimates of the midnight census if 

it is included in the analysis. 

With 100 simulation runs, each midnight has 100 simulated occupancy 

observations with which the distribution of midnight occupancy can be 

approximated. The median, along with 5th and 95th percentiles generated for 

each midnight have been plotted in Figure 4.5 to provide an indication of how 

the distribution of ward occupancy for all wards and both admission types 

evolves from an empty and idle state.  Visual inspection of the time series 

suggests that the model has a warm-up period of approximately five simulated 
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weeks, therefore in all further analyses of the offline model the first 5 weeks of 

data is discarded to keep the warm-up period from biasing the results. 

 

Figure 4.5: The median midnight census for 100 runs of the first 200 simulated days, along with 

5th and 95th percentiles. Observations to the left of the dashed line will be treated as occurring 

within the warm-up period. 

 

Naturally, the time series of actual midnight occupancy does not exhibit a warm-

up period, since it is not generated by a simulation model. This means that once 

the warm-up period is removed from simulation data, a 35-day discrepancy 

exists between the simulated elective pattern and the observed elective pattern. 

In order compare sets of midnight occupancy observations generated (in part) 

from the same elective admissions pattern, the first 35 days have been 

excluded from the time series of actual midnight occupancy in all further checks 

of offline model validity. 
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4.5.3 Mean Midnight Occupancy 

To identify bias or any other problems within the offline simulation, mean 

midnight occupancy over the observation period can be estimated from the PA 

data, and subsequently compared with mean midnight occupancy generated by 

the offline simulation over the same number of days. Since it is expected that 

weekday-dependent behaviour is associated with both the emergency arrival 

pattern and the length-of-stay of all patients, it makes sense to carry out such a 

comparison on a day-of-the-week basis. The bar charts in Figures 4.6 to 4.8 

compare the observed mean midnight occupancy (by day of the week) with 

realisations of mean midnight occupancy derived from the simulation outputs 

for emergency and elective patients, both separately and combined. The error 

bars within the bar charts are two-tailed 90% prediction intervals for the mean 

midnight occupancy derived from the simulation. Since the observed mean 

midnight occupancies are fixed for this extract of the PA database, it makes 

more sense to consider variation coming from the simulation. The use of 

prediction intervals as opposed to confidence intervals is deliberate, since the 

bounds are derived empirically, through repeated simulation, rather than 

parametrically. The same can be said of the 5th and 95th percentiles of simulated 

midnight occupancy added to the observed midnight occupancy time series. 

The median (50th percentile) has also been plotted for an indication of central 

tendency. 

Figure 4.6a compares mean midnight occupancy observed in the PA data with 

the prediction intervals constructed from the simulation outputs for the 

emergency patients only. The hypothesis that the mean emergency 
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occupancies observed in the PA data for each day of the week come from the 

empirical distributions of mean occupancy from the simulation would not be 

rejected for any day of the week, at the 10% significance level. 

 

 

 

However, observed mean occupancy for the emergency patients appears to 

tend toward the lower end of the prediction intervals for the days later in the 

week. This is caused in part by the decreased number of emergency 
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Figure 4.6: [a] Mean midnight bed occupancy by weekday. [b] Time series comparison of 

observed and simulated midnight occupancy for the emergency patients. 

 



Chapter 4 

MD1: From Offline to Online 

 

 

92 
 

admissions around Christmas 2010, shown by the trough in Figure 4.6b around 

day 280. A sudden change in the arrival pattern such as this would not be 

mimicked by the emergency arrival pattern in the offline model, thereby 

contributing to the discrepancy.  

Despite the drop in emergency admissions around Christmas, the midnight 

census time series for the emergency patients appears to sit within the 90% 

prediction intervals generated by the offline most of the time. In fact, for this set 

of 100 simulation runs, 88.3% of observed midnight occupancies fall within the 

corresponding prediction interval generated by the offline model, indicating that 

the prediction intervals are performing as expected. 

Figure 4.7 compares the simulated and observed midnight census for the 

elective patients in the same way. Figure 4.7a shows that the difference 

between simulated and observed mean midnight occupancy for each day of the 

week is negligible for the elective patients, and the hypothesis that the observed 

mean occupancies come from the empirical distributions derived from the 

simulation is not rejected for any day of the week. The reason for this close 

agreement becomes clear when looking at Figure 4.7b, which shows that the 

time series of 90% prediction intervals for the elective midnight census is much 

narrower than the time series of the same prediction intervals generated for the 

emergency series in Figure 4.6b. This close agreement can be attributed to the 

fact that the same pattern of elective admissions is present in both the 

simulation and the PA data, and the stochastic elements of elective stays in the 

simulation come only from ward length of stay and ward transitions. Despite 
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narrowing, they continue to perform as expected, with 90.9% of elective census 

observations falling within their corresponding 90% prediction interval. 

 

 

 

 

 

Finally, Figure 4.8 compares the midnight occupancy data for the emergency 

and elective patients in combination. These occupancy observations are the 

sums of their emergency and elective parts, and as such, are not expected to 

show any misspecification of the model given that their summands do not. 
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Figure 4.7: [a] Mean midnight bed occupancy by weekday. [b] Time series comparison of 

observed and simulated midnight occupancy for the elective patients. 
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Looking at the time series in Figure 4.8b, the median of the midnight occupancy 

realisations generated on each day appears to follow some of the features of 

the observed series (such as the trough caused by a lowered admissions rate 

over the Christmas period), although not as closely as the simulated time series 

for elective occupancy follows its observed series. This is to be expected since 

the elective arrivals are generated deterministically as opposed to the 

emergency arrivals which occur randomly, and this effectively adds noise to the 

elective admissions pattern. For this reason, the simulated median occupancy 

time series for the combination of admission types shares a greater estimated 

correlation coefficient with its observed time series (𝜌̂𝑡𝑜𝑡𝑎𝑙=0.395) than the 

emergency time series does (𝜌̂𝑒𝑚𝑒𝑟=0.331), although it is not as highly 

correlated as the median occupancy time series for elective patients is with its 

corresponding observed series (𝜌̂𝑒𝑙𝑒𝑐=0.832). 
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4.5.4 Offline Validation Summary 

The analyses carried out in this section show that at the 10% significance level, 

there doesn’t appear to be any misspecification of the offline model in terms of 

mean occupancy on each day of the week at the admission type level 

(emergency/elective). However, it is worth noting that Research Question 1 was 

posed in terms of the development of a model for the operational management 
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Figure 4.8: [a] Mean midnight bed occupancy by weekday. [b] Time series comparison of 

observed and simulated midnight occupancy for both admission types. 
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of hospital beds at the ward level. Ward-level analyses have been conducted 

with emergency and elective patients pooled together, and these yield similar 

results to those already presented at the admission type level, that is; there is 

very little statistical evidence to suggest that action should be taken regarding 

the parameterisation of the offline model. Therefore, the bar charts containing 

the results of the ward-level analysis have been omitted in this section but are 

included in Appendix A, in Figures A.1.1 to A.1.10. 

In summary, the offline model described in this section appears to behave as 

expected with respect to the tests of validity which have been conducted. While 

it is possible to consider other statistical tests which might be performed, tests 

of mean midnight occupancy for the whole observation period, are sufficient at 

this stage of model development. Further checks of model validity will also be 

carried out in Section 4.7, after the model is brought online. 

 

4.6 Bringing the Model Online 

With a validated offline model in hand, the process of augmenting the model to 

meet the second online simulation requirement can begin. Strictly speaking, a 

connection with a real, operational database is needed to meet this 

requirement, however setting up such a connection is not a trivial task, and may 

require the creation of customised software or queries in order to facilitate 

communication between the simulation software and the database. Instead, 

while the model is still in its testing and validation phase, it makes more sense 

to set up a connection with the readily available historic data, to generate 

estimates of midnight occupancy on each ward from historic system states. 
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In this section, the information and steps required to initialise the offline model 

with an operational state (at a commensurate level of detail) are described, thus 

bringing it online. A method for validating the online model is then proposed 

based on assumptions about the length of a useful planning horizon and the 

fact that the true state of the hospital can be queried retrospectively from the 

PA database extract at any time during the observation period. 

 

4.6.1 System State Data 

While the notion of a “system state” has been alluded to in this chapter, the 

information that such a state might contain has not yet been described. In 

general terms, when an online simulation is initialised, the state data which is 

loaded should completely describe the simulation at a point in time (including 

the state of each simulated server/node and each simulated entity) while also 

being a snapshot of the real system. Therefore, it is necessary to determine the 

information which completely determines the model’s state and extract this 

information from the PA database. For the offline model described in Section 

4.4, the state at any time during a simulation run can be described completely 

by obtaining the following information:  

1. The number of emergency patients resident on each ward. 

2. The number of elective patients resident on each ward. 

3. The day of the week on which each patient was admitted to the ward 

they occupy. 

4. The amount of time already spent on the current ward for each patient at 

the time the state data is collected. 
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The first and second pieces of information are likely to be the most obvious 

requirements when attempting to describe the state of the model. The third 

piece of information relates to the way in which ward length-of-stay is modelled. 

More specifically, a statistically significant relationship was found between the 

day of the week on which a patient was admitted, and the length of time they 

subsequently spent in hospital (see Section 4.4.3). Thus, day of admission 

information is required for each patient’s ward length of stay to be drawn from 

the appropriate empirical distribution. 

The fourth piece of information ensures that the patients who are resident on a 

ward when the state data is captured are loaded as simulation entities who have 

spent the same amount of time on the ward. It is worth noting that the state data 

only captures the time spent on the current ward for each resident patient, rather 

than the total time spent in the hospital (possibly) during previous ward stays. 

Capturing the total time spent in the hospital as part of the state data is not 

necessary, since each ward length of stay is sampled independently of all 

previous ward stays – a simplifying assumption made during the development 

of the offline model (see Section 4.4.3). 

 

4.6.2 Conditional Length of Stay 

In systems where each “job” has a known service time, any job currently in 

service when the simulation is initialised should be loaded into the model with 

its remaining time. However, ward length-of-stay in this model is treated as a 

random variable, therefore remaining length-of-stay is stochastic, and cannot 

be known at run-time. However, remaining LOS is likely to be dependent on the 
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time already spent on the ward. The dependence between “time already spent” 

and “time remaining” necessitate the use of conditional LOS distributions, rather 

than sampling all patients as new admissions. 

The conditional LOS distribution for each resident patient is straightforward to 

derive, given their time already spent on the ward, and the marginal distribution 

(which accounts for admission type, weekday of admission and hospital ward) 

applicable to the patient if they were a new arrival. Suppose the random variable 

𝑇 represents the total number of nights a given patient will spend on the ward, 

and that when the simulation is initialised, the patient has already been on the 

ward for 𝑠 midnights. The random variable 𝑅 = 𝑇 − 𝑠 therefore represents the 

number of midnights the patient remains on the ward after the simulation is 

initialised. The CDF 𝐹𝑇(𝑡) is the empirical distribution from which LOS would be 

drawn if the patient had just arrived on the ward (1 of the possible 140 empirical 

distributions mentioned in Section 4.4.3). From this, the conditional CDF 

𝐹𝑇(𝑡, 𝑠) = ℙ{𝑇 ≤ 𝑡|𝑇 ≥ 𝑠}  can be obtained using the formula: 

 𝐹𝑇(𝑡, 𝑠) = ℙ{𝑇 ≤ 𝑡|𝑇 ≥ 𝑠} =
𝐹𝑇(𝑡) − 𝐹𝑇(𝑠 − 1)

1 − 𝐹𝑇(𝑠 − 1)
 (Eq. 4.2) 

Since 𝑅 is the difference between 𝑇 and 𝑠, the sampling distribution for 𝑅 is 

readily given by: 

 𝐹𝑅(𝑟, 𝑠) =
𝐹𝑇(𝑠 + 𝑟) − 𝐹𝑇(𝑠 − 1)

1 − 𝐹𝑇(𝑠 − 1)
 (Eq. 4.3) 

For a given 𝑠, realisations of 𝑅 can then be drawn from 𝐹𝑅(𝑟, 𝑠) using the inverse 

sampling method, and these realisations represent remaining length of stay on 
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the ward, given length of stay already spent on the ward, at the time the 

simulation is initialised.  

It is worth noting that conditional length of stay does not need to be considered 

for models whose service times are best described using exponential 

distributions (when service times are continuous) or geometric distributions 

(when service times are discrete), due to the memoryless property. However, 

memorylessness does not extend to the empirical distributions from which LOS 

is drawn in this model.  

 

4.7 Online Model Validation 

With the requirements for the system state data specified, and a method in hand 

for generating ward-level length of stay realisations from conditional length of 

stay distributions, the offline model can be initialised with system states 

extracted from the historic PA database to investigate properties of the online 

model. This process goes some way towards meeting the second online 

simulation requirement described in Section 4.2, which calls for an online 

connection to the real system to be made available, although stops short of 

rolling out the system to an operational database, in favour of connecting to a 

historic database to conduct checks of online model validity.  

The online validation methods discussed in this section are considered to be 

distinct from the so-called “auto-validation” modules within the online modelling 

framework proposed in Davis (1998). While both are concerned with the validity 

of online models, auto-validation is intended for use in an operational 
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environment where problems with the model must be diagnosed and fixed very 

quickly; preferably before the next decision point. To do this in a timely way, 

both the checks of validity and scope of model adjustments are pre-defined 

within an auto-validation module. If the model is found to fail one or more of 

these checks, the pre-defined adjustments are carried out automatically. For 

example, Hill et al. (2001) re-fit the statistical distributions which govern the 

processes within their simulation based on newly available data from the real 

system. The re-fitting can occur automatically, or the model can prompt the user 

to decide whether re-fitting is necessary. The possibility of re-fitting the 

distributions occurs when the model’s predictions begin to deviate significantly 

from observations of the real system. 

While auto-validation is likely to play an important part in the ongoing 

maintenance of an online simulation, it is not the focus of this research. The 

validation in this section is instead focused on developing methods for 

comparing the model to the historic data in an “online way”, prior to any 

connection being made with the real system. This is motivated by the change 

that occurs in the dependence structure of the simulation outputs when an 

offline model is brought online. Where statistical techniques employed for offline 

validation might treat realisations from a single run as being independent of 

initial conditions, simulation time, and possibly even each other for 

mathematical convenience, this independence should not be assumed for 

realisations from an online model which uses this information to inform its 

predictions. For these reasons, an online validation method should account for 

these dependencies where possible; treating each realisation of the 

performance indicators as a conditionally distributed random variable. While the 
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validation methods of Hoot et al. (2008) go some way towards this goal, 

information about the full distribution of the simulation outputs is lost if only the 

mean of each set of replications is retained. 

If no significant issues arise from the online validation process, the model can 

then be connected to the real system in such a way that information deemed 

relevant by the modeller can be transferred to the simulation. This could include 

system state data, or historic data to be used by an auto-validation module if 

required. As mentioned in Section 4.2, an online connection with the real system 

generally means that this information can be queried by the simulation model 

at any time, however in a hospital setting, it may not always be the case that a 

patient information database reflects the true state of the hospital. In reality, 

updates to patients’ electronic records are likely to be carried out by hospital 

staff when it is next convenient to do so rather than when changes occur, 

creating points in time when a hospital database might not be able to accurately 

relay state information. Nevertheless, the output statistics generated by an 

online simulation are necessarily dependent on accurate state information 

being input at run-time, therefore it is assumed that this is achievable at a point 

in time prior to the execution of a given elective admissions schedule for the 

model to be used in practice. 

While the rate at which the operational PA database is synchronised with the 

true state of the hospital may pose challenges in a practical setting, it does not 

pose a challenge for an online validation process in which model is connected 

to the historical PA data instead of an operational database. It is assumed that 

the PA data is a correct account of the evolution of the state of the hospital 
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during the observation period, therefore the state of the hospital can be queried 

at any time, retrospectively. For this reason, restrictions about the rate of 

synchronicity of the operational database will be imposed where it is necessary 

to illustrate properties of the model in a practical setting (or an approximation to 

it), although these restrictions can be dropped (since system state information 

is always available in retrospect) for the purpose of black-box validation. 

 

4.7.1 Run Configuration 

The configuration of the model used in this section is no different to that of the 

offline model used in Section 4.5.1, aside from the addition of loadable system 

states at run-time, and the ability to generate realisations from conditional LOS 

distributions. This configuration is summarised in Table 4.5.  

  Treatment 

Online Modelling 

Element 
Emergency Elective 

Arrivals/Admissions 
Empirical Distributions 

(Stochastic) 

Observed Schedule 

(Deterministic) 

Ward Length of Stay 
Cond. Emp. Distributions 

(Stochastic) 

Cond. Emp. Distributions 

(Stochastic) 

Ward Transitions 
Static Transitions 

(Stochastic) 

Static Transitions 

(Stochastic) 

Table 4.5: Treatment of each of the major modelling elements in the online simulation, grouped 

by admission type. 

 

4.7.2 Variation in Midnight Occupancy as a Function of Run Length 

As has already been mentioned, the primary feature which distinguishes the 

online model from the offline model is the ability to match system states at 

particular points in time. As might be expected, this has an impact on the 
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variance of the realisations of the midnight census since each replication returns 

the same midnight census value when the matching occurs, thereby setting the 

variance at that point in time to zero. Figure 4.9 illustrates this effect by 

comparing the prediction intervals generated by running the offline model for 

100 replications (with the same run configuration) with the online model, also 

with 100 replications. 

 

Figure 4.9: Comparison of the 90% prediction intervals generated from the offline and online 

models for all wards and both admission types.  

 

In this simulation experiment, it is assumed that the PA database accurately 

reflects the true state of the hospital every Monday, and since the simulation 

runs in discrete time, the state matching must occur at midnight in conjunction 

with the midnight occupancy observations, meaning the online simulation is re-

initialised every Monday at 00:00am in continuous time. This process is clearly 
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seen in Figure 4.9 where the 5th and 95th percentiles (and all other possible 

percentiles) of midnight occupancy generated by the online model collapse to 

the observed midnight occupancy every seven days, since this is the only value 

generated by each replication of the simulation at these times. 

As might be expected, the width of the prediction intervals generated by the 

online simulation appear to be narrower than those from the offline model, since 

the offline model is subject to random variation for 𝑡 days, for any given time 𝑡 

after initialisation, while the online simulation is subject to random variation for 

a maximum of 6 days at a time, before it is re-initialised on the 7th day. This is 

more clearly illustrated in Figure 4.10, which shows the standard deviation of 

the midnight occupancy realisations over time for both the offline and online 

models. The standard deviation of midnight occupancy is lower for the sample 

of realisations generated by the online model, compared to the sample of 

realisations generated by the offline model for most simulated days.  This is to 

be expected, since the online model is subjected to the sources of random 

variation in the system for fewer days at a time, however it is interesting to note 

that the levels of variation seen in the offline and online models are similar 

toward the end of the 7-day planning horizon. This suggests that predictions 

made by the online model beyond one week are unlikely to be influenced by the 

system state which is loaded at initialisation. Therefore, efforts to validate the 

model in an online way by considering only the first six midnights from 

initialisation, are reasonable. 
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Figure 4.10: Estimated standard deviation of midnight census realisations over time for both 

the online and offline models. 

 

Figure 4.11 further illustrates the degree to which variation in the midnight 

census across all modelled wards increases, on average, over the course of a 

one-week planning horizon when the online model is initialised every Monday 

at midnight. Since the distribution of midnight occupancy is clearly changing as 

a function of time, an online validation process should endeavour to check that 

this evolution is in some way consistent with the system it is intended to model. 
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Figure 4.11: The estimated standard deviation of simulated midnight occupancy for each day 

in the observation period is averaged for the day of the week on which it occurs. Standard 

deviation on Monday is necessarily zero since each of the 100 simulation replications returns 

the same value on the day of initialisation. 

 

4.7.3 The Conditional Distribution of Midnight Occupancy 

In Section 4.5.3, checks of model validity were conducted by comparing mean 

midnight occupancy coming from the offline model with equivalent statistics 

from the PA data, and in this analysis, weekday and admission type were likely 

to be important factors influencing the distribution of midnight occupancy. In an 

online simulation context, the set of factors influencing the distribution of the key 

performance indicator is augmented to include the state of the system when it 

is most recently initialised, and the elapsed simulation time since this occurred, 

therefore the validation of an online model necessarily involves the validation of 

a set of conditional distributions of the performance indicators.  

0

2

4

6

8

10

12

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

M
ea

n
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

Mean Standard Deviation of Midnight Occupancy 
(Emergency & Elective)

Online



Chapter 4 

MD1: From Offline to Online 

 

 

108 
 

In an ideal situation, a sample of observations generated under the same set of 

conditions could be used to validate the conditional distributions generated by 

the model. However, this is likely to pose a statistical challenge when, for 

example, the state space of possible initial conditions is large. When this is the 

case, it is unlikely that any observed system state will be revisited during the 

observation period, resulting in a single recorded trajectory from each of these 

states. An observation at each time point in the trajectory is clearly insufficient 

for drawing conclusions about the goodness-of-fit of the conditional distributions 

from the online model corresponding to each of these time points. Therefore, 

some pooling of the observations is necessary to achieve a suitable sample 

size. 

However, some care must be taken when pooling observations generated 

under different initial conditions or at different elapsed times, since these 

observations are not strictly realisations from the same conditional distribution. 

The observations should therefore be normalised in some way to account for 

these differences. If observations are pooled with no normalisation to account 

for the difference in conditional distribution, then the validation is effectively no 

different to an offline validation analysis, in which some of the factors influencing 

the distribution of the observations (such as previous system states) are 

aggregated. 

One way of conducting a normalised comparison of the observed and simulated 

output data, which accounts for differences in initial conditions, is by computing 

the proportion of observations which are less than a chosen percentile from the 

simulated (hypothesised) distribution. For example, regardless of initial 
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conditions or time from initialisation, if an online simulation is performing as 

expected, approximately 20% of the observations from the data should fall 

below their simulated 20th percentile, and this idea can be extended to a range 

of percentiles to assess the validity of the online model. 

By working with cumulative probability as opposed to raw values, the simulated 

and observed data points can be normalised in such a way that a comparison 

between them can be conducted for the entire observation period, while 

accounting for the factors influencing their distribution (initial conditions and the 

elapsed time from initialisation). However, doing this comparison involves the 

inverse empirical CDF for each simulated day to count how many real midnight 

observations are below a chosen percentile. If the simulated distributions are 

discrete, as is the case for midnight occupancy, inverting these distributions can 

result in the same percentile being returned for a range of cumulative 

probabilities; resulting in what appears to be overestimation of the proportion of 

observations less than the chosen percentile. This is particularly evident when 

the simulated distributions are supported by a small range of values. For 

example, the 10th percentile might equal the 20th percentile for many of the 

simulated days. If the simulation models the real system well, the proportion of 

observed midnight occupancies which are less than their corresponding 10th 

percentile will also be closer to 20%, since these percentiles are equal. 

Therefore, in this example, arguing that 10% of the real observations should be 

less or equal to their simulated 10th percentile leads to the conclusion that the 

model is not performing well, when it is not the simulation at fault. This situation 

is also possible when working with continuous performance indicators, although 
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it is easily mitigated by increasing the number of replications, which increases 

the resolution of the support of the simulated CDFs.  

Because of the challenges associated with normalising discrete quantities (the 

number of occupied beds at midnight) in a way which accounts for the effect of 

the initial conditions and the elapsed time from initialisation, checks of online 

model validity in the next section will focus on comparing the simulated and 

observed distributions as functions of elapsed time only. The investigation of 

normalisation methods which allow the pooling of discrete observations 

generated by different initial conditions is left as further work. 

 

4.7.4 The 𝚫-Occupancy Method for Validating Time-Dependent 

Distributions 

Figures 4.10 and 4.11 in Section 4.7.2 illustrate how the standard deviation of 

the distribution of midnight occupancy coming from the online model changes 

as a function of the elapsed time from initialisation, which is to be expected, 

given that estimates further in the future are subject to random variation for a 

greater period of time than those near the time of initialisation. This is also true 

of the observed midnight census series relative to some previous system state, 

although this effect cannot be directly observed since the PA data contains only 

one observation of midnight occupancy each day. It can however, be observed 

indirectly, by considering the distribution of the difference between observed 

midnight occupancies ℎ days apart. This random variable shall be referred to 

henceforth as the Δℎ-occupancy on ward 𝑤, with each realisation being defined 

as follows: 
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 Δ𝑡,ℎ
𝑤 = 𝑀𝑡

𝑤 − 𝑀𝑡+ℎ
𝑤  (Eq. 4.4) 

where 𝑀𝑡
𝑤 represents midnight occupancy 𝑡 days from the start of the 

observation period on ward 𝑤.  

With a 560-day observation period, there are 560 − ℎ realisations of Δℎ-

occupancy on each ward (Δ1,ℎ
𝑤 , Δ2,ℎ

𝑤 , … , Δ560−ℎ,ℎ
𝑤 ) which can be derived from the 

PA data. The same number of Δℎ-occupancy realisations can be generated by 

each replication of the online model by using the elective schedule which was 

observed over the same period.  

If the online model is initialised at each time 𝑡, then 𝑀𝑡
𝑤 will take the same value 

in both the simulation and the PA data. A comparison of the distributions of Δℎ-

occupancy coming from the simulation and the PA data is therefore an 

assessment of how similar the distribution of ward occupancy is as a function 

of elapsed time from initialisation, thereby providing an indication of online 

model validity. 

If the length of the planning horizon is assumed to be one week and the online 

model is initialised weekly, then there are 6 empirical distributions of Δℎ-

occupancy (one for each day of the planning horizon (Δ1, … , Δ6) from both the 

PA data and the simulation outputs which it makes sense to compare. If 

𝐹𝑠𝑖𝑚(𝛿ℎ
𝑤 ) and 𝐹𝑑𝑎𝑡𝑎(𝛿ℎ

𝑤 ) denote these empirical cumulative distribution 

functions over the support of Δℎ
𝑤, denoted by 𝛿ℎ

𝑤, then the coordinates 

(𝐹𝑠𝑖𝑚(𝛿ℎ
𝑤 ), 𝐹𝑑𝑎𝑡𝑎(𝛿ℎ

𝑤 )) form a so-called probability-probability plot or P-P plot. If 

the distributions are similar, the coordinates will lie close to the identity line (𝑦 =

𝑥), providing a visual indication of the similarity of the distributions of Δℎ-
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occupancy at each possible elapsed time ℎ from initialisation, or equivalently, 

on each of the ℎ days in the planning horizon. By using P-P plots, a comparison 

of the simulation outputs and the data for each ℎ can be presented in one graph, 

rather than analysing six (in this case) pairs of histograms (simulation vs. 

observed data). Having good agreement in distribution (as opposed to only 

having agreement in central tendency, for example) allows the user to estimate 

the probability of exceeding capacity thresholds during each day of the planning 

horizon; a metric which could be used to assess the quality of a given elective 

schedule.  

 

4.7.5 Online Validation Using  𝚫-Occupancy 

Rather than presenting the P-P plots of Δℎ-occupancy for all ten of the modelled 

wards, for brevity, the results from two wards (which are broadly representative 

of the others) are included in this section, while results for the remaining wards 

are included in Appendix A. Accompanying these P-P plots are histograms of 

raw midnight occupancy in which the time-dependent nature of the distribution 

of the simulation outputs is ignored (by pooling the midnight occupancy 

realisations over ℎ) to illustrate the agreement between the simulated and 

observed data in a more familiar format. 

Figure 4.12a compares the cumulative distributions of Δℎ-occupancy observed 

in the historic data, with equivalent distributions generated by the output of 100 

replications of the online model, for Ward 5D. This ward has the highest average 

midnight census over the observation period (29 occupied beds), split between 

emergency (83%) and elective (17%) patient types. 
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The P-P plots show that the distributions from the observed data have less 

cumulative probability than the simulated distributions below their respective 
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Figure 4.12: [a] The cumulative distributions of Δℎ-occupancy observed in the historic data, 

plotted against the cumulative distributions generated by simulation outputs for Ward 5D at 

each time from initialisation (ℎ). [b] Histogram of midnight occupancies recorded on Ward 5D 

during the 560-day observation period, overlaid with the estimated p.m.f generated by the 
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medians (for the same values of the support), however this difference reduces 

towards the point (0.5,0.5), and changes to a positive difference above it. With 

both the simulated and observed data having very similar medians for each 

value of ℎ, this pattern is indicative of lower variance in the distributions plotted 

on the vertical axis, compared to the distributions plotted on the horizontal axis. 

The lower variance of the Δℎ-occupancy distributions generated by the PA data 

are likely to be a consequence of the maximum capacity which exists on the 

real ward. This upper bound has the effect of curtailing occupancy when the 

demand for beds exceeds the ward’s capacity, creating the negative-skew 

distribution shown in Figure 4.12b. The simulation on the other hand, employs 

an uncapacitated modelling approach which leaves midnight occupancy free to 

vary above the real maximum, contributing to the heavier right tail in the 

distribution of simulated midnights. The lighter left tail of the distribution of 

observed midnight occupancies may be the result of interventions made by the 

hospital to accommodate outliers from other wards, thereby decreasing the 

likelihood that the real ward will be found at lower occupancy levels. Such 

interventions are not made in the simulation in its current form, increasing the 

likelihood of simulating lower midnight occupancy levels relative to the observed 

data. 

In contrast to Ward 5D, Figure 4.13a shows good agreement for the Emergency 

Department when comparing the empirical distributions of Δℎ-occupancy across 

a six-day planning horizon. Figure 4.13b shows that midnight occupancy on this 

ward is positively-skewed, and therefore less likely to be near, or at its maximum 

capacity than the other two wards. This means the existence of an upper bound 
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on the number of occupied beds is likely to have little impact on the distribution 

of midnight occupancy for the levels of bed demand that ED typically 

experiences. However, emergency departments are well-known to be one of 

the busiest in the hospital, therefore the time of census collection (midnight) 

might play a part in this result. Also, having a busy emergency department might 

not necessarily correspond to high bed occupancy, since walk-in patients are 

accommodated in waiting rooms, depending on the seriousness of their 

condition. 
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Figure 4.13: [a] The cumulative distributions of Δℎ-occupancy observed in the historic data, 

plotted against the cumulative distributions generated by simulation outputs for the ED at each 

time from initialisation (ℎ). [b] Histogram of midnight occupancies recorded on the ED during 

the 560-day observation period, overlaid with the estimated p.m.f generated by the simulation 

(ignoring time-dependence). 
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4.7.6 Online Validation Summary 

This section has focused on the development of an online simulation validation 

technique in which the time-dependence of the simulation outputs is accounted 

for, rather than using offline validation techniques in which only the “long-run” 

performance characteristics of the model are considered. By defining the Δℎ-

occupancy random variable, the observed midnight occupancies can be pooled 

in such a way that comparisons can be made with the simulated midnight 

occupancies, whose distribution evolves with time-from-initialisation. Since Δℎ-

occupancy is analysed via a comparison of the entire empirical distribution 

function, differences in trend, variability, or cycling behaviour which may occur 

over time, can all be detected. 

Within each ward, the P-P plots presented in this section (and in Appendix A), 

show very similar patterns for each value of ℎ, suggesting that where 

differences occur between the simulated and observed distributions, they are 

consistent as a function of the elapsed time from initialisation. These differences 

are caused (in part) by the conceptual modelling decision (Section 4.3.3) to treat 

each simulated ward as an uncapacitated node (heavier right tails), and the 

increased likelihood of finding the simulated wards at low midnight occupancy 

(heavier left tails), which could be attributable to the lack of any policy for 

distributing patient load between wards. Modelling the wards using an 

uncapacitated approach facilitates straightforward estimation of the degree to 

which a ward is over-subscribed (given historical levels of demand), although 

the patient diversions when this happens will not be modelled. 
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However, modelling non-ideal patient placements is likely to be important for 

operational planning purposes, and based on the histograms presented in this 

section, interventions such as these could be taking place in the real system 

when attempting to admit patients to wards which are frequently found near 

their maximum capacity, such as Ward 5D. The same can be said of Ward 4D 

and Ward 5B (Figure A.2.1b and Figure A.2.2b) whose histograms of observed 

midnight occupancy are clearly negative-skew, and to a lesser extent Intensive 

Care, Ward 5A and Ward 6D (Figures A.2.3b, A.2.4b and A.2.5b), which display 

some negative-skewness, although not to the same degree. These wards in the 

real hospital can also act as outlier wards for each other; absorbing patient 

placements when they cannot be accommodated at their “first-choice” ward. 

This behaviour contributes to the lighter left tails in the observed distributions, 

compared to their simulated counterparts, where it does not exist. 

On the other hand, not all simulated wards over-estimate the variance of 

midnight occupancy. As Figure 4.13 shows, the Emergency Department is one 

ward in which the fit between the simulated and observed distributions is good 

for all times from initialisation, indicated by only small departures from the 

dashed line 𝑦 = 𝑥. Similarly, Ward 4K, Northside, and the aggregate Other 

ward, also display good agreement for all times from initialisation, shown by 

Figures A.2.6a, A.2.7a and A.2.8a in Appendix A. Interestingly, the samples of 

observed midnight occupancy for these wards are positively skewed (Figures 

A.2.6b and A.2.8b), or fairly symmetric in the case of Northside (Figure A.2.7b), 

indicating that these wards are not near their maximum capacity as often as 

other wards, and are therefore less likely to turn patients away. This allows the 

agreement between the simulated and observed empirical distributions to be 
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quite good, without the existence of rules for diverting patients during peak 

demand. 

 

4.8 Discussion and Conclusions 

To answer Research Question 1, that is; “How can an on-line simulation, which 

provides estimates of bed demand, be developed for the operational 

management of hospital beds at the ward level?”, six stages of development 

have been described within this chapter, including a novel method for 

conducting “black-box” type validation of an online model, prior to its “real-world” 

implementation, and before any connection to the real system is established.  

In the first stage of development, the requirements of an online simulation are 

discussed, to assess the feasibility of online modelling in the hospital context. 

At the second stage, a conceptual model of the hospital is developed at a level 

of detail which is capable answering questions associated with ward-level bed 

management, such as the likelihood of reaching a given ward’s maximum 

capacity. The conceptual model developed at this stage is not dissimilar from a 

conceptual model developed for an offline or non-terminating simulation, 

although special attention is paid to temporal level-of-detail modelling decisions, 

in addition to structural level-of-detail modelling decisions, since the outputs of 

the eventual online model are necessarily time-dependent. This includes 

decisions regarding the frequency at which results are to be collected from the 

model, along with the time-scale of the possible decision variables which could 

be used to run alternative scenarios.  
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In the third stage of development, the conceptual model is implemented in the 

Micro Saint Sharp simulation package, and the PA data used to parameterise 

the model is analysed for the existence of time-dependent patterns which might 

affect the midnight census at the finest temporal level-of-detail (one day). 

Statistically significant relationships are found between emergency patient 

arrival rates and day-of-the-week, along with patient length-of-stay and 

weekday of admission when both patient types are pooled, therefore these 

relationships are included in the offline model.  

The parameterised offline model is then run for the entire observation period, 

and the summary statistics generated by the realisations of midnight occupancy 

are compared with those observed in the PA data, after discarding the results 

from the warm-up period. These checks of offline model validity represent the 

fourth stage of model development which are intended to provide an indication 

that the model is performing as expected, by analysing simulation outputs 

generated by greater run lengths than the online model is likely to use. No 

statistically significant differences are found when comparing the mean 

midnight occupancy generated by the offline model with the PA data for each 

admission type (emergency/elective) across all wards. The variability of the 

model also seems comparable with the time-series of observed midnight 

occupancy for each admission type, with 88.3% of emergency patient censes 

falling within their corresponding 90% prediction interval, and 90.9% of elective 

patient censes doing the same (Section 4.5.3). 

The penultimate stage of development sees the offline model augmented with 

the ability to be loaded with observed system states at initialisation. For the 
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model to be used in practice, Requirement 2 calls for these states to be loaded 

via an online connection to the real system, however, for the purpose validating 

the online model, a connection is made to a historic set of system states instead. 

The ability to load these states necessitates the inclusion of conditional length 

of stay distributions from which realisations of remaining length of stay can be 

drawn. 

Finally, methods for black-box validation of the online model are developed by 

assuming a sensible length for the planning horizon, and re-initialising the online 

model using system states observed in the PA data at the beginning of each 

planning horizon period. These methods contribute towards clarifying 

Requirement 1 in terms of obtaining a validated model for online use and offer 

techniques for comparisons of the distribution of the performance indicators, 

rather than comparing summary statistics.  This type of online validation is 

distinct from the “auto-validation” sometimes associated with online models in 

the literature, since it allows for the assessment of the model’s performance in 

an “online way” prior to its connection with the real system, while it is still 

possible to make complex adjustments to the model, if needed. 

As mentioned in Section 4.7.3, the development of the Δℎ-occupancy random 

variable used to compare the distributions of midnight occupancy as they evolve 

over time, is a by-product of the discrete nature of the performance indicator 

(midnight census). This situation is not unique to the hospital setting; therefore, 

this method could be generalised to any online simulation in which the 

performance measure can be thought of as a discrete quantity. Although this 

method pools observations generated under different initial conditions (on 
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which each distribution of simulated midnight occupancy is known to depend), 

it goes further than typical validation techniques, by evaluating the fit of the 

model with the observed data over time. For models with continuous 

performance indicators, it is possible to pool the simulated and observed data 

in such a way the initial conditions are accounted for, by first normalising the 

data, using the percentiles method described in Section 4.7.3. The validation 

method in the continuous-case assesses the agreement in distribution (as does 

Δℎ-occupancy), rather than simply assessing the similarity of summary 

statistics. 

With Δℎ-occupancy defined, the quality of the fit of the distribution of the 

performance measure (midnight census) from the simulation is assessed 

against that of the data, for each time ℎ (in days) from initialisation. While the 

quality of the fit does not change significantly with ℎ, differences worthy of 

consideration are found to exist on wards which are more likely to be found at 

high levels of midnight bed occupancy, relative to their maximum capacity. The 

midnight occupancies generated for these wards by the online simulation are 

found to have higher sample variances than their PA data counterparts – a likely 

consequence of using uncapacitated simulation nodes to model wards in which 

the maximum capacity is more regularly encountered, coupled with the inability 

of the simulation to distribute patient load among free beds on other wards. 

Research Question 1 has been answered in this chapter, through the 

development and validation of an online simulation for ward-level bed 

management. However, the development of additional model components 

remains to be discussed. Specifically, a method for modelling patient diversions 
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during times of peak bed demand is proposed and evaluated in the next 

chapter. While these components could be viewed as part of the model 

development process, they also contribute to answering Research Questions 2 

and 3 and are therefore discussed in the chapters which follow. 
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 Chapter 5 
Model Development 2: The Effect of Busyness on Patient Routing  

 

 

5.1 Introduction 

As part of the model development process described in Chapter 4, assumptions 

were made regarding the nature of patient-to-ward placement decisions. These 

assumptions included the choice to model hospital wards as uncapacitated 

nodes in the simulated ward network, along with the choice to assign patients 

to wards stochastically, based on so-called Static Transition Matrices (STMs). 

While these assumptions have merit in many modelling contexts (for example, 

STMs are likely to play an important role in systems which can be modelled 

using the theory of Markov processes), their combined usage does not fully 

address the dependencies which occur in real hospitals when one or more 

wards reach full capacity. In practice, many hospitals will divert patients to non-

ideal wards when beds are unavailable on an ideal ward, however 

uncapacitated nodes in a simulation network will always accept new 

admissions. 

Nevertheless, the ability to capture patient diversions in an operational bed 

management model is likely to play an important role in the estimation of ward-

level bed demand over the course of a planning horizon in which the hospital 

experiences busy periods. A survey of midday bed censuses carried out by the 

Audit Commission (2003, p.7) found that on average, 7.5% of surgical beds 

were occupied by medical patients in NHS Trusts across England and Wales, 
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and similar situations are not unique to the UK. Staff from the Australian General 

Hospital participating in this study also indicated (during early discussions) that 

the prevalence of so-called “outlier” patients on their wards posed several 

significant challenges for staff, such as relocating necessary equipment and 

forcing nurses to work outside their areas of expertise. Additionally, Harper and 

Shahani (2002) argue that outlier patients effectively represent unexpected 

emergency demand for the wards on which they are placed, and that such 

placements cause distress to the patient as well as having consequences for 

elective waiting lists.  

Given the impact that periods of high bed demand or busyness are likely to have 

on patient routing policies through the inpatient ward network, the aim of this 

chapter is to address Research Question 2, that is; “Can the effect of hospital 

busyness on patient-to-ward placement decisions be detected in patient 

administrative data, and can this be incorporated in a simulation model? If so, 

what effect does it have?” 

Research Question 2 is addressed in this chapter in the following way. First, the 

methods employed for routing patients in response to high occupancy within 

bed management models found in the literature are briefly discussed in Section 

5.2. A novel patient routing method is then proposed in Section 5.3, and this 

provides a framework for the statistical analysis of the relationship between 

ward-level busyness and patient routing. In Section 5.4, this new method 

(parameterised by the PA data) is implemented in the online model, and the 

effect is examined via a comparison with the previous online model, in which 
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Static Transition Matrices govern patient routing. Section 5.5 concludes this 

chapter with a discussion of the results and answers to the research question. 

 

5.2 Background 

While outlier patients are likely to have a negative impact on the wards on which 

they are placed, modelling the entire decision process undertaken by a hospital 

which results in placement on a ward is not possible. As has been mentioned 

in Chapter 4, patient placement decisions are influenced by several factors, 

including the sex of the patient, their condition, nursing requirements and 

estimated length of stay, therefore some simplification of this process is 

inevitable for modelling purposes. 

Inpatient models in the simulation literature employ a variety of different 

methods and simplifying assumptions for modelling patient routing through a 

network of wards, although in general, the assignment of patients to wards can 

be viewed as a two-step process in which a ward is chosen for a given patient, 

then the patient is admitted if some admission criteria are met. These criteria 

often relate to the availability of ward beds, but could be related to other 

resources limitations, such as nursing time. Models which include admission 

criteria can capture between-ward dependencies, since patients which are 

turned away must be placed elsewhere in the ward network.  

In Günal (2008), this is achieved by deleting the ward which is at maximum bed 

occupancy from the relevant row in the transition matrix, and rescaling the 

remaining probabilities to sum to unity. The next ward is then sampled from this 
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updated transition matrix. While this is a pragmatic solution to modelling a 

complex process, it assumes that the most likely ward (other than the ward 

which the patient has been turned away from), remains the most likely 

alternative ward in the event first choice ward is full. However, there is no reason 

why some other ward could not become the most likely choice, once it is 

observed that the first-choice ward is full.  

Harper and Shahani (2002) asked bed managers to provide information relating 

to patient priorities, and these come into effect when attempts are made to place 

a simulated patient on a full ward. Assuming this information is representative 

of how the priorities are applied in practice, this might be a good way of 

determining where to place outlier patients in the simulation. However, this 

method requires detailed information to be provided by hospital staff, and the 

process of updating priorities obtained in this way cannot be automated if they 

were to change over time. 

For uncapacitated models, such as the one developed in Chapter 4, each 

ward’s admission criteria will always be met, therefore modelling the interaction 

between wards through the occurrence of patient turn-aways is not possible. 

This means ward admission criteria must be accounted for in the first step of 

the patient placement process, when the ward is being chosen by the patient 

placement algorithm, rather than responding to turn-aways when they occur. 

For the model described in Chapter 4, this means modifying the transition 

matrices which govern patient placements.  

In contrast to the Static Transition Matrices (STMs) which contain fixed 

probabilities for each simulation run, Dynamic Transition Matrices (DTMs) are 
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developed and evaluated in this chapter. DTMs contain functions rather than 

fixed probabilities and are designed to route patients according to occupied bed 

numbers on each ward; assessed at the time of transfer. 

 

5.3 Transition Probability as a Function of Occupancy 

At one end of the data-requirements spectrum, Günal (2008) makes 

assumptions about the nature of patient diversions by re-drawing from a set of 

possible wards when the first selected ward is not available. An algorithm such 

as this is relatively straightforward to implement in the simulation, however it is 

not informed by the diversion behaviour taking place in the real hospital. At the 

other end of this spectrum, Harper and Shahani (2002) collect detailed patient 

priority information from hospital experts. While this information can potentially 

improve the approximation of the routing behaviour within the simulation, its use 

rests on the assumption that the hospital is following the processes described 

by the expert in question, and that a different expert would not provide a different 

set of priorities. Additionally, there can be no automated process for collecting 

this data, should it change over time. 

It may be possible to balance the trade-offs of both methods and strike some 

middle ground in terms of data requirements. Specifically, if the relationship 

between patient routing behaviour and ward level occupancy can be inferred 

from the administrative data, then doing so has the potential to improve the 

model’s quality, without the need to rely on expert opinion. Some hospitals even 

flag the occurrence of outlier ward stays in their PA databases, which could also 

be used to inform a patient routing model. However, many do not, including the 
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AGH whose data was supplied for this research, although this information would 

be straightforward to incorporate within the statistical framework used in the 

next section. 

 

5.3.1 Multinomial Logistic Regression 

The online model developed in Chapter 4 contains 10 modelled wards, along 

with Entry and Exit nodes which are visited each time a simulated patient is 

admitted or discharged respectively. These nodes can be viewed as categories, 

and therefore techniques for the statistical analysis of categorical data can be 

applied to investigate the relationship between transition probability and ward-

level busyness. Multinomial Logistic Regression (MLR) is a statistical technique 

for analysing the probability of categorical outcomes which may be influenced 

by other factors, such as ward occupancy. MLR is a generalisation of the more 

widely known Logistic Regression model, in that more than two outcomes can 

be considered. In this application, the outcomes are the destinations of patients 

after leaving their current ward or exit (discharge). The influencing factors 

(explanatory variables) are the occupancies of the 10 modelled wards. The 

general form of the MLR equation for this application is as follows: 

 𝑙𝑛 (
𝜋𝑖,𝑗(𝑿)

𝜋𝑖,𝑤+1(𝑿)
) = 𝜷𝑖,𝑗

T 𝑿  for  𝑖, 𝑗 ∈ {1, … , 𝑤} (Eq. 5.1) 

where 𝑤 is the number of modelled wards, and 𝑿 = [1 𝑋1 … 𝑋𝑛] is a vector of 

explanatory variables, namely ward occupancies and products of the 

occupancies of pairs of wards (i.e. two-factor interactions). Hence 𝜷𝑖,𝑗 =

[𝛽0,𝑖,𝑗 𝛽1,𝑖,𝑗 … 𝛽𝑛,𝑖,𝑗] is the vector of regression coefficients associated with 
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transitions from ward 𝑖 to ward 𝑗 which can be estimated using statistical 

software. 𝜋𝑖,𝑗(𝑿) represents the probability of transitioning from ward 𝑖 to ward 

𝑗 as a function of these coefficients and ward occupancies. To apply the MLR 

approach, a reference outcome must be chosen, which is used to fit the log-

odds of observing any other outcome in Equation 5.1. The Exit node (ward 𝑤 +

1) has been used as the reference outcome for convenience, although the 

choice is arbitrary. 

Equation 5.1 is the form of the model that is fitted in most statistical software 

packages (such as R or SAS), however some rearrangement is needed to 

provide the probability of transition 𝜋𝑖,𝑗(𝑿). By making use of the requirement 

that the probabilities of the outcomes must sum to unity, Equation 5.1 can be 

written in terms of 𝜋𝑖,𝑗(𝑿) so that it can be used in the simulation. This gives the 

probability of transition as a function of the regression coefficients and ward 

occupancies (including products). 

 𝜋̂𝑖,𝑗(𝑿) =
𝑒𝜷̂𝑖,𝑗

T
𝑿

∑ 𝑒𝜷̂𝑖,𝑘
T

𝑿𝑤+1
𝑘=1

 (Eq. 5.2) 

For each source ward 𝑖, Equation 5.2 can be thought of as providing the 11 

probabilities associated with the 𝑗 = 1 to 11 possible destinations (10 modelled 

wards plus exit). Since there are 10 modelled wards, plus the dummy Entry 

node from which transitions can occur, 𝑖 also ranges from 1 to 11, and 11 MLR 

models must be fitted to fully describe the DTM for each patient type 

(emergency/elective). As with STMs, reflexive transfers are only permissible 

from the ‘Other’ ward, therefore 𝜋𝑖,𝑖(𝑿) = 0 identically, for all wards except 

‘Other’. 
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With this framework for modelling the relationship between transition 

probabilities and ward occupancies, statistical software can be used to estimate 

the regression coefficients which are the basis of the MLR models. In the next 

section, the model fitting process is explained, using the Emergency 

Department as an example source ward. 

 

5.3.2 Fitting the MLR Models 

In order to estimate the regression coefficients and fit the MLR models, the data 

must be transformed in such a way that each observed patient transition is 

mapped to a set of ward occupancies. A dataset of this type can be constructed 

by querying the occupancy levels in the PA data at a time just before each 

transition occurs. This timing is important, as the more natural post-transition 

observation time causes the occupancy levels to be confounded by the 

transition itself.  

Figure 5.1 shows an example of a dataset constructed in this way, which 

contains the details of ten transitions away from the Emergency Department. 

The field “Next_LocationID” is the dependent variable and stores the location of 

subsequent ward stays. The ten numeric fields (ED, IC,…,Other) contain the 

occupancy levels one second before the recorded transition time. These fields 

form the set of potential explanatory variables. 
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Figure 5.1: An example of ten transitions from the dataset used the fit the MLR for the 

Emergency Department. 

 

SAS software is used to fit the MLR models. The fitting procedure conducts a 

stepwise search over the set of possible explanatory variables (ED, 

IC,…,Other), and selects the combination of variables which minimise the 

Akaike Information Criterion (AIC). AIC is used as the model selection criteria, 

since the goal is to include all variables which increase the predictive capability 

of the models, whilst penalising over-fitting. However, by default, SAS uses p-

values as the selection criteria while conducting the stepwise search, rather 

than the AIC. Therefore, some additional processing is required. The method of 

Shtatland et al. (2003) modifies the default SAS procedure to use the AIC as 

the selection criteria via a two-stage process. In stage one, selection is carried 

out using the default stepwise procedure, but with high p-values (such as 𝑝 = 

0.5) to eliminate the least significant variables from further consideration. In 

stage two, the model which minimises the AIC is chosen from the models which 
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were encountered during the search in stage one. An alternative to this process 

is to evaluate the AIC for all possible combinations of the explanatory variables, 

and then select the minimum. However, total enumeration over all possible 

combinations becomes less feasible as the number of candidate variables 

increases. An interested reader can find the SAS code for carrying out the two-

stage selection process which is used to fit all of the MLR models, in Appendix 

D. 

The model which achieves the minimum AIC for each ward of departure is used 

to estimate the regression coefficients. Figure 5.2 shows the set of coefficients 

which are estimated for the Emergency Department, for the MLR model which 

minimises the AIC. This model has 18 effects, 10 of which are two-factor 

interaction terms. Note that the reference outcome “Exit” is not seen in the 

“Response” field because the coefficients for the reference outcome are set to 

zero by the fitting procedure.  
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Figure 5.2: Regression coefficients for each of the 18 effects (plus intercepts) in the final MLR 

model for the Emergency Department and the emergency patient type. 

 

After obtaining the regression coefficients of the selected model, the final step 

is to implement the MLR equations in the simulation. Since Equation 5.2 is 

written in terms of the transition probabilities 𝜋𝑖,𝑗(𝑿), this form is used in the 

ODES. As an example, the form of the equation which governs the probability 

of transitioning from the Emergency Department to the Intensive Care Unit (for 
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the emergency patients) can be written with fitted regression coefficients as 

follows: 

𝜋̂𝐸𝐷,𝐼𝐶(𝑿) =
1

𝜅
𝑒𝑥𝑝 (9.334 + 0.012𝑋𝐸𝐷 − 1.812𝑋𝐼𝐶

− 0.292𝑋4𝐷 + 0.061𝑋4𝐷𝑋𝐼𝐶 − 0.011𝑋4𝐷𝑋5𝐵

− 0.067𝑋4𝐾 − 0.288𝑋5𝐴 + 0.646𝑋5𝐵

− 0.001𝑋5𝐵𝑋5𝐴 − 0.013𝑋5𝐵𝑋6𝐷 − 0.254𝑋5𝐷

+ 0.001𝑋5𝐷𝑋4𝐷 + 0.003𝑋5𝐷𝑋4𝐾

+ 0.008𝑋5𝐷𝑋5𝐴 − 0.001𝑋5𝐷𝑋𝑂𝑡ℎ𝑒𝑟

+ 0.369𝑋6𝐷 − 0.071𝑋𝑂𝑡ℎ𝑒𝑟

− 0.003𝑋𝑂𝑡ℎ𝑒𝑟𝑋𝐸𝐷) (Eq. 5.3) 

 

The denominator 𝜅 is used in Equation 5.3 for brevity, although it represents 

the sum of the numerator in this expression, and the numerators in the 

equivalent expressions for 𝜋̂𝐸𝐷,𝑗(𝑿). In a more general sense, 𝜅 is equivalent to 

the expression in the denominator of Equation 5.2. In Micro Saint Sharp, the 

MLR code follows the form of Equation 5.3 closely, and the precise syntax is 

listed in Appendix D. The appendix includes the equations for the Emergency 

Department, in which the coefficients are consistent with the values presented 

in Figure 5.2, and the equations for all other wards and patient types. 
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5.3.3 Summary of the MLR Models 

As with any regression model, it is possible to make inferences about the 

relationship between the dependent variable (in this case the likelihood of 

transitioning to a particular ward) and the explanatory variables (ward 

occupancies), however there are a number of ways in which the inference 

procedure is imperfect. There may well be occasions when there is a real 

relationship, but there is not enough evidence of it in the data for it to be 

detected. On the other hand, whilst the use of AIC is designed to prevent over-

fitting, this is not guaranteed, and it is possible that relationships ‘detected’ in 

the data are spurious. Tables 5.1 and 5.2 summarise the MLR models for each 

ward and patient type, including the wards whose occupancies, and products 

of occupancies, were determined to be predictors by the MLR fitting process. 

 

  Explanatory variables (midnight ward occupancies) in each MLR model 

Ward MLR Emergency Patients’ MLR 

Entry ED, ED*5B, IC, IC*5B, IC*Other, 4D, 4D*Northside, 4K, 4K*5A, 4K*5B, 5A, 5B, 
5B*5D, 5D, 5D*6D, 5D*Northside, 6D, Northside, Other 

Emergency 
Department (ED) 

ED, IC, 4D, 4D*IC, 4D*5B, 4K, 5A, 5B, 5B*5A, 5B*6D, 5D, 5D*4D, 5D*4K, 
5D*5A, 5D*Other, 6D, Other, Other*ED 

Intensive Care (IC) IC, 4D, 5A, 5B, 5D 

Ward 4D IC, 4D, 5A, 5B, 5D, 5D*5A, 6D, Other, Other*5B 

Ward 4K Other 

Ward 5A ED, ED*6D, ED*Northside, IC, IC*Northside, 4D, 4D*5B, 4K, 4K*5A, 5A, 
5A*6D, 5B, 5B*6D, 5B*Northside, 5D, 5D*Northside, 5D*Other, 6D, 
Northside, Northside*Other, Other 

Ward 5B IC, 4D, 5B, 5B*6D, 5D, 6D, 6D*4D, Other 

Ward 5D IC, 5A, 5D, Other 

Ward 6D 6D, Other 

Northside IC, IC*6D, IC*Northside, IC*Other, 4D, 4D*5A, 4D*6D, 5A, 5B, 5B*Northside, 
5D, 6D, Northside, Other 

Other ED, IC, 4D, 4K, 5D, 5D*ED, Other 

Table 5.1: Summary of the effects which minimise the AIC in each of the 11 MLR models for 

the emergency patients. 
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  Explanatory variables (midnight ward occupancies) in each MLR model 

Ward MLR Elective Patients’ MLR 

Entry N/A 

Emergency 
Department (ED) 

NULL 

Intensive Care (IC) 5A, 5B, Other 

Ward 4D 5A, 5B, 5D 

Ward 4K 5D, Northside 

Ward 5A IC, 5D, Other 

Ward 5B IC, 5B, 5D, Other 

Ward 5D 4K, Northside 

Ward 6D ED, 5A, 6D 

Northside NULL 

Other IC, 4D, 4K, 5A, 5A*5B, 5B, 5B*IC, 5B*Northside, 5D, 6D, Northside, Other, 
Other*5B 

Table 5.2: Summary of the effects which minimise the AIC in each of the 11 MLR models for 

the elective patients. 

 

The “N/A” entry for the elective patients’ Entry model (Table 5.2) is to signify 

that the first location to which elective patients arrive is part of the elective 

admissions schedule, which is treated as a decision variable rather than a 

random variable. The two “NULL” entries in Table 5.2 identify two wards for the 

elective patients for which the null model (intercept only) achieved the lowest 

AIC. These are the Emergency Department and the Northside ward. In fact, 

these combinations also have the two smallest samples of transitions in the PA 

data (108 transitions and 9 transitions respectively). Hence, the inability to find 

any significant explanatory variables for these wards could well be due to a lack 

of statistical power. The remaining non-null models indicate that it is possible to 

detect some relationship between ward-level busyness and transition 

probability, although there may be some unavoidable examples of overfitting. 
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5.4 The Effect of Implementing Dynamic Transition Matrices 

Regardless of whether the transition matrices are static or dynamic, the 

probabilistic routing structure used in DES is always “forward-looking”, i.e. 

transition probabilities govern where a simulated patient is sent to, rather than 

where they are received from. Since DTMs modify the way in which patients are 

sent to wards, they must be implemented across all wards at once to gauge 

their impact. In this section, the results generated by the simulation including 

DTMs are analysed via the Δℎ-occupancy random variable defined in Chapter 

4, and the impact of their inclusion is assessed against the results generated by 

the model in which STMs are used.  

With each of the 21 MLR models fitted, each vector of estimated regression 

coefficients  𝜷̂𝑖𝑗 can be taken from SAS and used to create the functions 𝜋̂𝑖,𝑗(𝑿) 

in Micro Saint Sharp. At the end of each ward-stay for each simulated patient, 

the next ward (or discharge, through the Exit node) is drawn from the set of 

probabilities {𝜋̂𝑖,1(𝑿) , … , 𝜋̂𝑖,𝑤+1(𝑿)} where 𝑿 is a vector of ward occupancies 

collected at the time the simulated patient completes their stay on the current 

ward. Although the simulation runs in discrete time, the arrivals within each 

arrival batch are staggered with a negligible amount of random simulation time 

so that subsequent patient transitions do not occur in unison. This allows the 

ward occupancies, and therefore the transition probabilities, to update with each 

transition.  
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5.4.1 Run Configuration 

With the DTMs implemented in the online model, a new set of midnight 

occupancies can be generated and used for analysis. Table 5.2 summarises 

the configuration of the simulation experiment, from which another 100 

replications of the 560-day observation period are run. 

  Treatment 

Online Modelling 

Element 
Emergency Elective 

Arrivals/Admissions 
Empirical Distributions 

(Stochastic) 

Observed Schedule 

(Deterministic) 

Ward Length of Stay 
Cond. Emp. Distributions 

(Stochastic) 

Cond. Emp. Distributions 

(Stochastic) 

Ward Transitions 
Dynamic Transitions 

(Stochastic) 

Dynamic Transitions 

(Stochastic) 

Table 5.3: Treatment of each of the major modelling elements in the online simulation, grouped 

by admission type. 

 

5.4.2 DTMs vs STMs: Empirical Results 

To assess the effect of implementing DTMs in the online model, P-P plots are 

used to display comparisons of the Δℎ-occupancy distributions with those of the 

PA data, for the static and dynamic models. These are stacked to provide a 

visual comparison of how the distributions from both simulations compare to the 

data, for all times from initialisation. As in Chapter 4, histograms of midnight 

occupancy are also provided which present the distributions (irrespective of 

time) in a more familiar format. The wards whose figures are included in this 

chapter are chosen in such a way that their results are representative of the 

remaining wards, for brevity. However, summary statistics for all wards are 

tabulated in this chapter for an overall comparison of the two transition models. 

The figures associated with the remaining wards are included in Appendix B. 
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Figure 5.3 shows the P-P plots generated by the online model with DTMs, and 

the online model with STMs respectively, for both patient types on Ward 5D. An 

analysis of this ward was also presented in Chapter 4, since it has the largest 

number of occupied beds at midnight (on average) of the ten modelled wards.  
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Figure 5.3: P-P plots comparing cumulative distributions of Δℎ-occupancy generated by the 

historic data and the simulation outputs for Ward 5D, under [a] static and [b] dynamic patient 

transition policies. 
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Comparing the P-P plots, there is a noticeable shift in median Δℎ-occupancy 

under DTMs, which is now found near the upper-quartile of the corresponding 

distributions derived from the PA data. Under STMs, the simulated and 

observed distributions share a very similar median for all times from 

initialisation. Also of note is the improved agreement in the left tails of the 

distributions under DTMs. The right tails however, are heavy for STMs and 

DTMs when compared to the Δℎ-occupancy distributions coming from the data 

– a pattern which is consistent for all times from initialisation. 

While the P-P plots are useful for identifying differences across the planning 

horizon, it is not immediately clear from these plots which set of simulated 

distributions fit the observed data the best. Figure 5.4 pools the occupancy data 

for all values of ℎ to generate a histogram of the observed midnight censuses 

on Ward 5D, and the estimated probability mass functions from each of the two 

simulations. In this format, the large variance under STMs, and the increased 

median under DTMs (identified by the P-P plots) can be seen, along with a 

reduction in variance when DTMs are used. This reduction noticeably improves 

the fit with the PA data and exists because the model can divert and accept 

patients to and from Ward 5D in response to its occupancy; thereby reducing 

the likelihood that the midnight census is found at extreme levels. Although this 

effect is most readily seen in Figure 5.4, the standard deviation for each Δℎ-

occupancy distribution is calculated in Table 5.4b at the end of this section, 

which confirms a reduction in variability for all ℎ, relative to the outputs 

generated by the model in which STMs are used. 
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Figure 5.4: Histogram of midnight occupancies recorded on Ward 5D during the 560-day 

observation period, overlaid with the estimated p.m.f generated by the online simulations using 

STMs and DTMs (ignoring time-dependence). 

 

Although the use of DTMs appears to have a desirable effect, the P-P plots in 

Figure 5.3b highlight differences in the cumulative distributions which warrant 

explanation. These differences increase as Δℎ-occupancy increases (for most 

of its range) and are largely the result of comparing a symmetric distribution 

(simulated census) with one which is negatively skewed (observed census). 

While it has been shown that the DTMs reduce the likelihood that simulated 

occupancy will be found at levels beyond its real maximum, the effect is not as 

pronounced as the effect that a fixed capacity has on the real ward, which 

causes the observed distribution to become noticeably skewed. When these 

two distributions are compared via P-P plots, the left-hand side of the 

distributions are similar, although the skewed real data means that the 
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cumulative distributions increase faster than that of the simulation, resulting in 

the patterns seen in Figure 5.3b. 

The inability of DTMs to completely reproduce this skewness also explains the 

shift in median, identified by the P-P plots. Although the likelihood of generating 

high occupancies has been reduced, the simulation with DTMs still creates 

midnight occupancies beyond what is possible in the real system, which in-turn 

increases the median, relative to the sample of observed midnights. While this 

is also true of the model using STMs (in fact, it is more likely to occur when 

STMs are used), the high occupancies are offset by low occupancies; which 

occur in the simulation more frequently than hospital staff would allow in 

practice (in the presence of busy wards elsewhere in the hospital). The result is 

a comparable median, and symmetric P-P plots, but significantly overestimated 

variance in midnight occupancy, when STMs are used. 

In addition to the improved fit offered by DTMs for Ward 5D, there are also 

significant improvements for Ward 4D and Ward 5B; most readily seen in 

Figures B.2 and B.4 in Appendix B. Together, the figures for these three wards 

show the most noticeable improvements in fit compared to the STM-based 

model. Interestingly, the observed midnight occupancies obtained over the 560-

day observation period for these three wards are the three highest, on average, 

while also being the most negative-skew. These results indicate that DTMs 

seem to have the greatest impact on wards which frequently experience high 

bed utilisation and are therefore the most likely to be influencing the use of 

outlier beds. 
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In Figure 5.5, the same analysis is presented for the Intensive Care ward, 

whose observed midnight occupancies are also negative-skew, although not to 

the extent of the three wards discussed so far. The most noticeable feature of 

Figure 5.5b, is that although the variance of the Δℎ-occupancy distributions 

appears to be quite similar under DTMs and STMs, median Δℎ-occupancy is 

increasing with time from initialisation, causing a greater disparity between the 

simulated and observed distributions than if STMs are used. To investigate this, 

ten simulations of the 560-day observation period were run in which each 

patient-pathway was collected as a string of visited wards. No re-initialisation of 

the system was carried out, since this would necessarily interrupt the collection 

of the pathways. This data revealed that averaged over the ten simulation runs, 

the number of visits to the Intensive Care ward increased by approximately 10% 

by moving from STMs to DTMs, which represents the second largest increase 

of all modelled wards and corresponds to an extra 73 visits to the ward per 

simulated year. This rate of extra patient accrual is around 1.4 per week using 

DTMs and is broadly in-line with the increase in mean Δℎ-occupancy by weeks-

end (ℎ = 6) of 1.12, when compared to mean Δℎ-occupancy using STMs (Table 

5.4a). This suggests that the added visits are the source of the trending 

behaviour. 
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One explanation for this effect, is that although it might be possible for Intensive 

Care to accommodate outliers from other wards (contributing to the reduced 

likelihood of the ward being found at low occupancy, however expensive), 

patients are unlikely to be turned-away from Intensive Care once sufficient 
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Figure 5.5: P-P plots comparing cumulative distributions of Δℎ-occupancy generated by the 

historic data and the simulation outputs for Intensive Care, under [a] static and [b] dynamic 

patient transition policies. 
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clinical need is established. The logistic regression models from which the 

DTMs are derived use only ward-level occupancy as explanatory variables, 

thereby ignoring what might be the most important factor affecting admission to 

Intensive Care; the severity of a patient’s condition. While the distribution of 

observed ward occupancy is negatively skewed, indicating that bed availability 

is likely to play some part in admission considerations, the inability of DTMs to 

meaningfully reduce the likelihood of occupancy beyond the real maximum 

(illustrated by the heavier right tail in Figure 5.6), compared to STMs, suggests 

some information relating to the management of beds in Intensive Care is 

missing. 

 

 

Figure 5.6: Histogram of midnight occupancies recorded in Intensive Care during the 560-day 

observation period, overlaid with the estimated p.m.f generated by the online simulations using 

STMs and DTMs (ignoring time-dependence). 
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Other wards which exhibit moderate negative-skewness include Ward 5A and 

Ward 6D (Figures B.6 and B.8). While the skewness of observed midnight 

occupancy is negative, these wards both feature distributions of a peculiar 

shape, making for a challenging modelling task, and possibly signalling bed 

management rules specific to these wards, an unusual patient case-mix, or 

some combination of the two. The shapes of the P-P plots for Ward 5A (Figure 

B.5) are similar to those of Ward 5D, in which DTMs appear to offer an improved 

fit with the observed data, however the histograms and overlaid empirical 

distributions for this ward (Figure B.6) offer less certainty. The DTMs make 

some attempt to reduce the variance of the simulated distributions, although the 

right-tail of the distribution remains too heavy, even with respect to the model in 

which STMs are used. The STM model on the other hand, performs poorly in 

terms of its variance, although it approximates the right-tail of the observed 

distribution well because of its strange shape, which could be useful for 

modelling the likelihood of exceeding the ward’s capacity. Ward 6D on the other 

hand, while not experiencing a large improvement under DTMs, sees a notable 

improvement in fit for all midnight occupancy distributions (compared to their 

STM counterparts), owing to a reduction in variance of the simulated midnights. 

This is most readily seen in Figure B.8 in Appendix B, with variance estimates 

calculated in Table 5.4b, at the end of this section. 

Finally, Figure 5.7 contains the P-P plots associated with the Emergency 

Department. In Chapter 4, the Δℎ-occupancy distributions for the ED (generated 

by the STM-based model), were shown to fit their observed counterparts well, 

which is also true of the model in which DTMs are used.  
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Figure 5.8 shows that distribution of observed midnights is positively skewed, 

indicating that for the Emergency Department, the likelihood of encountering 

capacity issues at midnight is small. Consequently, the use of dynamic 

transitions has very little effect on the way the ward is modelled by the 

simulation, since patients are almost always able to be accommodated. A 
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Figure 5.7: P-P plots comparing cumulative distributions of Δℎ-occupancy generated by the 

historic data and the simulation outputs for the Emergency Department, under [a] dynamic and 

[b] static patient transition policies. 
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similar effect is seen on Ward 4K and Northside. Ward 4K is positively skewed 

(Figure B.10), while Northside is fairly symmetric (Figure B.12). Consequently, 

both wards also show good agreement between the simulation and the PA data, 

for all ℎ, under both STMs and DTMs (Figures B.9 and B.11). 

 

 

Figure 5.8: Histogram of midnight occupancies recorded in the Emergency Department during 

the 560-day observation period, overlaid with the estimated p.m.f generated by the online 

simulations using STMs and DTMs (ignoring time-dependence). 
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the P-P plots for this ward (Figure B.13) suggest that under DTMs, on average, 
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 2 4 6 8 10 12 14 16 18 20 22 24

R
el

at
iv

e 
Fr

eq
u

en
cy

Number of Occupied Beds

Chart Title

Observed Static Dynamic

Distribution of Midnight Occupancy on ED (Emergency & Elective)

Skewness
𝛾 = 0.731 (3 dp)



Chapter 5 

MD2: The Effect of Busyness on Patient Placement 

 

 

150 
 

estimate it towards the end. This trending behaviour is similar to that of the 

Intensive Care Unit after DTMs are implemented, and like Intensive Care, this 

ward also sees an increase in simulated visits. In fact, Other and Intensive Care 

are subject to the two largest increases in ward visits under DTMs. For the Other 

ward, this is likely to be caused by lost information, due to the aggregate nature 

of the ward i.e. any relationship between the likelihood of transition to one of the 

sub-wards within Other, and the occupancy of that sub-ward, will always be 

confounded by the summation of occupancy levels on other sub-wards. 

However, in an operational setting, the performance of this ward may prove 

immaterial, since its creation was primarily to maintain adequate sample sizes 

for parameterising the model, and along with completeness of the ward network. 
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Part 1: Ward-Level Summary of 𝜟𝒉-occupancy 

Ward 𝒉 
Mean Std. Deviation 

Obs. STM DTM Obs. STM DTM 

ED 

1 -0.01 0.05 0.29 4.31 4.71 4.66 
2 -0.02 0.06 0.30 5.10 5.16 5.16 

3 -0.03 0.04 0.35 5.44 5.37 5.43 

4 0.00 0.08 0.38 5.64 5.43 5.46 

5 0.02 0.08 0.41 5.44 5.26 5.32 

6 0.03 0.10 0.43 5.35 4.99 5.06 

IC 

1 0.01 -0.01 0.16 1.45 1.86 1.79 
2 0.03 -0.02 0.45 1.75 2.35 2.23 

3 0.03 -0.05 0.70 1.92 2.58 2.46 

4 0.03 -0.04 0.88 1.95 2.72 2.57 

5 0.03 -0.02 1.01 2.05 2.82 2.66 

6 0.03 -0.01 1.11 2.11 2.89 2.73 

Ward 4D 

1 0.01 0.04 -0.04 1.88 3.20 2.69 
2 0.02 0.09 0.23 2.52 4.14 3.27 

3 0.02 0.15 0.40 2.88 4.57 3.47 

4 0.02 0.21 0.52 3.11 4.82 3.56 

5 0.02 0.25 0.61 3.19 4.96 3.63 

6 
 
 

6 

0.03 0.31 0.72 3.19 5.05 3.69 

Ward 4K 

1 0.00 -0.01 -0.17 3.03 2.98 3.03 
2 0.00 -0.01 0.08 3.72 3.70 3.85 

3 0.00 0.00 0.33 4.08 4.05 4.33 

4 0.01 0.01 0.54 4.18 4.31 4.67 

5 0.02 0.00 0.70 4.25 4.47 4.92 

6 0.03 0.01 0.83 4.26 4.54 5.04 

Ward 5A 

1 0.00 0.04 0.77 2.09 3.21 2.75 
2 0.00 0.05 1.09 2.40 4.10 3.28 

3 0.00 0.06 1.35 2.65 4.61 3.63 

4 0.01 0.09 1.55 2.85 4.93 3.88 

5 0.01 0.09 1.70 2.92 5.07 3.99 

6 0.02 0.14 1.79 2.94 5.20 4.09 

Table 5.4a: Summary statistics of observed Δℎ-occupancy, along with their STM and DTM 

counterparts for five wards. Light blue cells denote the simulated value closest to its observed 

counterpart. 

 

 

 

 

 



Chapter 5 

MD2: The Effect of Busyness on Patient Placement 

 

 

152 
 

Part 2: Ward-Level Summary of 𝜟𝒉-occupancy 

Ward 𝒉 
Mean Std. Deviation 

Obs. STM DTM Obs. STM DTM 

Ward 5B 

1 0.02 0.02 -0.09 2.40 3.69 3.00 
2 0.03 0.03 0.16 2.90 4.56 3.49 

3 0.03 0.01 0.45 3.16 5.04 3.81 

4 0.05 0.05 0.69 3.49 5.35 4.03 

5 0.05 0.09 0.90 3.62 5.57 4.20 

6 0.06 0.10 1.04 3.75 5.67 4.28 

Ward 5D 

1 0.00 -0.01 0.71 1.40 2.84 2.22 
2 -0.01 0.00 1.02 1.74 3.80 2.53 

3 -0.01 -0.03 1.16 1.89 4.35 2.69 

4 -0.01 -0.04 1.22 2.01 4.69 2.77 

5 0.00 -0.05 1.21 2.06 4.88 2.81 

6 0.00 -0.05 1.16 2.05 5.00 2.84 

Ward 6D 

1 0.00 0.00 0.23 1.31 2.34 2.22 
2 -0.01 0.00 0.36 1.68 3.16 2.84 

3 -0.01 0.02 0.40 1.87 3.66 3.20 

4 -0.01 0.01 0.38 1.99 3.97 3.41 

5 -0.01 0.00 0.32 2.05 4.18 3.58 

6 -0.02 -0.02 0.27 2.08 4.33 3.71 

Northside 

1 0.01 0.00 -0.01 1.52 1.55 1.58 
2 0.01 0.02 0.04 2.06 2.10 2.21 

3 0.03 0.04 0.07 2.38 2.43 2.63 

4 0.04 0.04 0.06 2.62 2.68 2.96 

5 0.04 0.05 0.05 2.80 2.88 3.20 

6 0.04 0.05 0.03 2.94 3.02 3.40 

Other 

1 -0.01 0.06 -0.49 1.94 2.28 2.18 
2 -0.01 0.13 -0.40 2.63 2.92 2.89 

3 -0.01 0.16 -0.16 3.04 3.29 3.32 

4 -0.01 0.20 0.16 3.22 3.52 3.64 

5 -0.02 0.22 0.51 3.41 3.65 3.90 

6 -0.03 0.23 0.84 3.53 3.77 4.12 

Table 5.4b: Summary statistics of observed Δℎ-occupancy, along with their STM and DTM 

counterparts for five wards. Light blue cells denote the simulated value closest to its observed 

counterpart. 

 

5.4.3 DTMs vs STMS: Overall Evaluation 

The results of this section have shown that Dynamic Transition Matrices provide 

the greatest improvement in distribution-fit for the wards which are most likely 

to cause outliers. Given that fixed capacities are known to exist in the real 

system, these wards are the ones which exhibit the largest degree of negative 
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skewness. The primary contribution that DTMs make in improving the fit of the 

simulated distributions with the data is a reduction in variance; reducing the 

likelihood that the simulated realisations of midnight occupancy take very low 

or very high values. Indeed, the three most negative-skew wards are also those 

which show the biggest improvement in distribution-fit (via visual inspection) 

with the data gathered from the AGH. 

As negative skewness reduces (approaches symmetry), so too will the 

frequency with which the hospital will be required to turn away patients from the 

ward, thereby decreasing the impact of using DTMs. Three wards were 

identified as being moderately skewed; Intensive Care, Ward 5A and Ward 6D. 

For Intensive Care, the trend identified in the outputs generated by the 

simulation meant that DTMs offered no improvement in fit, over the use of 

STMs. For Ward 5A, the peculiarity of the empirical distribution from the PA 

data meant that neither STMs nor DTMs performed particularly well, suggesting 

other factors, not included in the simulation, influence the distribution of 

midnight occupancy on this ward. For Ward 6A, the DTMs offer a clear 

improvement in the fit of the midnight occupancy distributions. 

For the wards on which the distribution of midnight occupancy is positive-skew 

or symmetric, the performance of the two routing policies is so similar that the 

modeller is likely to be indifferent. These wards include the Emergency 

Department, Ward 4K and Northside. The aggregate Other ward is positively 

skewed, although the increase in average occupancy over time means that 

DTMs offer no improvement in terms of fit with the PA data, relative to the use 

of STMs.  
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In summary, if a modeller is only interested in predicting measures of central 

tendency over the course of the planning horizon, then given the choice 

between STMs and DTMs, and based on the estimates of mean Δℎ-occupancy 

shown in Table 5.4, STMs should be the routing policy of choice. They 

outperform DTMs in terms of absolute error of the simulation mean relative to 

the observed mean and require no statistical modelling to derive. However, if 

more information is required about the distribution of midnight occupancy then 

DTMs should be used. By using a routing model which is informed by 

occupancy, DTMs provide a better representation of the patient diversion 

strategy employed by many hospitals during peaks in bed demand, thereby 

improving the overall fit with the PA data, for the wards most frequently causing 

such diversions. Although most wards see a small overestimation in the value 

of mean/median midnight occupancy under DTMs (due to comparing skewed 

and symmetric distributions, in most cases), this is offset by improved 

estimation of the variability of the occupancy distributions. This in-turn improves 

estimates of the likelihood that a ward is found above a given capacity threshold 

during the planning horizon, on the assumption that the busyness-dependent 

routing behaviour estimated from the PA data will continue in a similar way. 

 

5.5 Discussion and Conclusions 

To answer the first part of Research Question 2, which is; “Can the effect of 

hospital busyness on patient-to-ward placement decisions be detected in 

patient administrative data, and can this be incorporated in a simulation 

model?”, a statistical model (Multinomial Logistic Regression) was chosen 
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which allowed the extent of the relationship between occupancy and transition 

probability to be quantified, for each ward.  The use of a generalized linear 

model (along with appropriate statistical analysis software) means the detection 

of a relationship between the explanatory and response variables becomes part 

of the model fitting process. In this application, a relationship between ward-

level occupancy and transition probability is detected by using a stepwise 

search, with AIC as the model selection criteria. 

Tables 5.1 and 5.2 show that for all but two of the ward and patient type 

combinations, it is possible to improve the predictive capability of the transition 

model by incorporating occupancy information collected at a time just prior to 

the occurrence of a transition between wards. Therefore, it is possible to 

statistically detect the effect of hospital busyness on patient placement, when 

busyness is gauged by the number of occupied beds on each ward just prior to 

ward transition, and the transitions themselves are framed in terms of their 

probability of occurring. 

As with any generalized linear model, once the regression coefficients have 

been estimated, the modeller is left with a functional relationship between the 

explanatory and response variables which can be used for prediction. Such an 

equation can be used in any simulation package which is flexible enough to 

define transition rules in terms of a mathematical equation. Therefore, the effect 

of hospital busyness on patient-to-ward placement decisions can always be 

incorporated in a simulation model provided the effects can be approximated by 

a set of formulae (such as Dynamic Transition Matrices) and the chosen 

simulation software offers sufficient flexibility when defining the routing policy. 
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The second part of Research Questions 2 asks, “If so, what effect does it 

have?”. In terms of simulation run-time, using DTMs increases the real time 

taken to run 100 parallel 560-day simulations (re-initialising once per simulated 

week) by approximately 22%, adding around 2.5 minutes to a 12-minute 

simulation experiment in which STMs are used. However, the full 560-day run 

is solely for validation purposes, and in practice, the simulation would only be 

run for the length of the planning horizon. Therefore, the impact of the additional 

run time will be inconsequential for a simulation running on time-scales such as 

this. 

In terms of the simulation outputs, the empirical results from this chapter show 

that for the wards whose simulated distributions provide a better fit to the data, 

the improvement is largely the result of a reduction in variability once DTMs are 

implemented, meaning the wards are less likely to be found at both very low 

and very high occupancies. Reduced probability in the right-tail of the 

distributions may be an expected result since one of the primary reasons for 

using DTMs is to redistribute arrivals and transfers at times when the ward is 

experiencing busyness. However, there is also a reduction in probability in the 

left-tails of the simulated distributions (compared to the model in which STMs 

are used), indicating that wards experience fewer days at low occupancy once 

the routing policy allows for outlier patients to occupy alternative beds, along 

with those which would have spent time on the ward regardless of busyness. 

In addition to the model’s improved ability to represent the impact of outlier 

patients for the largest wards, the statistical framework used to produce the 

DTMs (Multinomial Logistic Regression) allows patient diversion behaviour to 
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be estimated directly from the hospital’s PA database, rather than being derived 

from separately collected information, or assumed, for modelling convenience. 

A data-driven approach also allows the model to be easily recalibrated in the 

presence of new data, or if the routing procedures are believed to have changed 

appreciably after the model development phase. A data-driven approach to 

approximating the routing behaviour also means that a DTM recalibration 

procedure could theoretically be included within a so-called “auto-validation” 

module which automatically updates the simulation parameters as necessary. 
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 Chapter 6 

Case Studies 

 

 

6.1 Introduction 

In this chapter, two case studies are presented which demonstrate how the 

ODES developed in earlier chapters, could be used in practice. Motivated in 

part by the needs of the AGH participating in this study, the first case study 

demonstrates how the model could be used as an early-warning system to 

anticipate days in the planning horizon when the demand for beds is at risk of 

exceeding the maximum capacity of the wards. A particularly busy week is 

chosen from the PA database, and the ODES is used to assess the likelihood 

of demand exceeding capacity for the observed elective schedule. Since the 

elective admissions schedule is the decision variable for this model, a set of 

alternative schedules are developed (based on the initial results) and tested to 

illustrate how the model might be used to reduce the likelihood of excessive bed 

demand; thereby balancing emergency and elective workloads. 

The second case study aims to answer Research Question 3 by investigating 

the potential for improving the results generated by the ODES by making use 

of clinicians’ discharge date estimates. However, the subjective and potentially 

changeable nature of these estimates, compounded by informal collection 

methods (such as staff whiteboards or hand-written patient notes) means this 

information is often overlooked from a modelling perspective. While no survey 

has been carried out to collect clinicians’ estimates from the AGH participating 
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in this study, a post-hoc analysis can be conducted using patients’ actual length-

of-stay to assess the value of including information like this in an ODES model. 

For both case studies, the ODES uses DTMs to model patient transitions. In 

practice, hospital management could choose either routing model (DTMs or 

STMs) according to whether they want predictions which incorporate historic 

dynamic behaviour, or alternatively want predictions which ignore possibly 

undesirable patient diversions. 

 

6.2 Case Study 1: High Risk Plans 

In this case study, the ODES is loaded with the initial conditions and elective 

schedule of a busy week during the 560-day observation period. The purpose 

of loading a particularly busy week is to demonstrate that the ODES can identify 

wards and days in the planning horizon which are likely to experience high 

occupancy, ahead of time. The second aim is to show how the ODES can be 

used to evaluate plausible changes to the elective schedule, and therefore 

reduce the likelihood of demand exceeding capacity for the wards which are 

most at risk. 

The busy week chosen for analysis using the ODES, occurs 47 weeks into the 

observation period. This week was identified by counting the number of 

midnights each ward spends above its 90% occupancy threshold (listed in the 

second column of Table 6.1). The remaining columns of Table 6.1 show the 

observed midnight occupancies for each ward during Week 47, with those 

exceeding the 90% threshold shaded red. 
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Busy Week Midnight Occupancies 

Ward 90% 
Occ. 

Mon Tue Wed Thu Fri Sat Sun 

ED 19.8 14 13 15 17 4 9 8 

IC 10.8 11 9 10 8 9 10 10 

Ward 4D 27.9 29 28 27 30 31 30 30 

Ward 4K 21.6 5 7 14 7 10 11 9 

Ward 5A 28.8 25 25 28 30 31 30 30 

Ward 5B 29.7 32 32 32 31 31 32 33 

Ward 5D 29.7 32 31 31 31 31 31 31 

Ward 6D 28.8 27 27 27 27 26 26 27 

Northside 18.0 14 11 11 13 12 13 14 

Other 20.7 11 9 10 12 12 14 12 

Table 6.1: Midnight occupancy during Week 47 of the observation period. Red cells denote 

midnights which exceed 90% of maximum ward occupancy. 

 

The corresponding elective schedule for this week was extracted from the PA 

data by counting the number of elective arrivals on each of the modelled wards 

for each day of the week. The number of arrivals per day, per ward, is shown in 

Table 6.2. 

Observed Elective Schedule 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

ED - - 1 - 1 - - 

Ward4D - - - - 1 - - 

Ward4K 2 3 - 1 - - - 

Ward5A - 1 - 1 - - 1 

Ward5D - - - 2 - - - 

Other 6 8 6 12 4 - - 

Table 6.2: Number of elective arrivals by ward and day-of-the-week for Week 47. 

 

It is worth noting that although Table 6.1 shows Ward 4D, 5A, 5B and 5D to be 

the most highly occupied (in percentage terms) during the week, these wards 

have relatively few elective arrivals. Instead, Table 6.2 shows that the Other 
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ward is responsible for the largest number of elective arrivals during Week 47. 

During the conceptual development of the model, the Day Procedure Unit (see 

Table 4.1) was grouped with several wards which also display low average 

midnight occupancy, to form the Other ward in the simulation. Since the Day 

Procedure Unit (DPU) sees many of the elective arrivals, but displays relatively 

low midnight occupancy, the DPU arrivals occur on the Other ward under this 

conceptual model. 

 

6.2.1 Run Configuration 

To assess the likelihood of bed demand exceeding the capacity on each ward 

during the week, the ODES is loaded with the state of the hospital at 00:00am 

on Monday of Week 47. On each of the seven days which follow, elective 

patients arrive onto the simulated wards based on the elective schedule shown 

in Table 6.2. Since the length of each simulation run is only required to be seven 

days, the number of replications can be significantly increased compared to the 

experiments conducted in Chapters 4 & 5. For the simulation experiments 

reported in this section, 400 seven-day replications were run, with the 

configuration outlined in Table 6.3.  

  Treatment 

Online Modelling 

Element 
Emergency Elective 

Arrivals/Admissions 
Empirical Distributions 

(Stochastic) 

Observed Schedule 

(Deterministic) 

Ward Length of Stay 
Cond. Emp. Distributions 

(Stochastic) 

Cond. Emp. Distributions 

(Stochastic) 

Ward Transitions 
Dynamic Transitions 

(Stochastic) 

Dynamic Transitions 

(Stochastic) 

Table 6.3: Treatment of each of the major modelling elements in the online simulation, grouped 

by admission type. 
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6.2.2 The Observed Elective Schedule  

By transforming the simulated realisations of midnight occupancy into 

histograms for each ward and day-of-the-week, the model can be used to 

assess the likelihood of demand for beds exceeding each ward’s maximum 

capacity, or some other threshold of interest.  

Figure 6.1 shows the histograms for each day during Week 47 for two of the 

modelled wards. For brevity, only Wards 5B and 5D have been included since 

their observed midnight occupancies sit above their respective 90% capacity 

thresholds for every day during the week; making them suitable for 

demonstrating the simulation’s use as an early warning system. In this example, 

the dashed red line represents the 90% occupancy threshold, while the solid 

red line represents the maximum occupancy of the ward. The solid blue cells 

indicate the actual level of midnight occupancy which the ward experienced. 

For both wards, the distributions derived from the simulation outputs indicate 

that midnight occupancy is more likely to be above the 90% occupancy 

threshold, rather than below, for most days of the week. Therefore, the ODES 

could have been used to warn hospital staff of the high probability of high 

midnight occupancy. 

In addition to indicating the days when midnight occupancy is likely to be above 

the 90% threshold, Figure 6.1 also shows that the ODES can be used to 

anticipate days where the demand for beds might be more than the number of 

beds which can be offered, due to the uncapacitated nature of the model. While 

it clearly isn’t possible for wards to exceed their own capacity in practice (short 

of using hallway beds which are assigned to the ward), a high probability of 
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over-occupancy in the simulation can indicate times during the week when the 

hospital is more likely to need to take some sort of preventative action, such as 

devising an alternative elective schedule. 

 

Figure 6.1: Distributions of midnight occupancy generated by the ODES for Week 47, on Ward 

5B and 5D. The dashed red lines indicate the 90% capacity thresholds. The solid red lines 

indicate the wards’ maximum capacity. 

 

Although charts like Figure 6.1 are useful for visualising the midnight occupancy 

distributions for a small number of wards, the likelihood of demand exceeding 

capacity should be assessed for every ward, in a holistic way. This is especially 

true when gauging the merits of competing schedules, in the knowledge that 
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dependencies between wards exist. Additionally, a method for quantifying any 

improvement offered by an elective schedule, across all wards, is also 

desirable. 

Figure 6.2 charts the probability of bed demand exceeding the maximum 

capacity on every simulated ward, for the observed elective schedule shown in 

Table 6.2. Since the real hospital cannot exceed their own maximum capacities, 

the probabilities on Monday (when the simulation is initialised) are identically 

zero and have therefore been excluded. Also added to the chart, are the bed-

midnights over capacity; a metric based on Chow et al. (2011), who computed 

bed-days over capacity by summing the number of beds in excess of a user-

specified bed capacity for each day in the planning horizon2. Since bed-

midnights over capacity (BMOC) are realisations of a random variable for each 

replication, the values presented hereafter are the mean of a sample of 400 

runs. 

                                                           
 

 

2 Midnights are distinguished from days, since the former is a point in time, while the latter is a 

duration. 
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Figure 6.2: ODES estimates of the probability of the demand for beds exceeding total capacity 

on each of the ten modelled wards during Week 47. 

 

Figure 6.2 clearly shows that during Week 47 (according to the ODES), Ward 

5B is the most likely ward to encounter capacity issues for four of the six days 

of the week and is a very close second to the ICU on the other two. Whilst the 

next most likely ward is the Intensive Care Unit, the model validation analyses 

conducted in Chapter 5 showed that the use of Dynamic Transition Matrices 

tends to slightly overestimate midnight occupancy on the ICU, despite offering 

significant improvements on other wards. Therefore, the probability of running 

into capacity issues on the ICU is likely to be lower than is presented. 

It is important to note that although the estimated BMOC for this week is 5.45, 

the real hospital cannot exceed the maximum capacities on each ward. 

Therefore, interventions (such as early discharges or unusual ward placements) 

could have been made by the hospital to cope with the prevailing bed demand, 
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which are not modelled by the ODES. Nevertheless, charts such as Figure 6.2, 

in conjunction with estimated BMOC, serve as indicators for evaluating the 

quality of an elective schedule for each planning horizon, and may be related to 

the number of interventions needed to manage bed capacity during the week. 

 

6.2.3 Alternative Elective Schedules 

In this section, the ODES is used to investigate the effect of modifying the 

elective schedule for Week 47, to illustrate how the model might be used in 

practice. By using the observed elective schedule as a starting point, a set of 

alternative schedules are developed and tested in an iterative way, based on 

the results of the previous run.  

For the sake of maintaining patient throughput and efficiency, the hospital might 

consider postponements until later in the week to be preferable to cancellations. 

Therefore, the first schedules investigated in this section will focus on 

postponements within Week 47. 

Based on the results in Figure 6.2 from running the observed elective schedule, 

Ward 5B is the ward most likely to benefit from help in the form of schedule 

modifications, despite having no direct admissions to the ward during the week. 

However, almost 50% of patients who arrive at the Other ward (via direct 

admission or transfer) transition to Ward 5B (see table 4.3). Since the Other 

ward sees the largest number of elective admissions during Week 47, 

modifications to the elective schedule for the Other ward are likely to have an 

impact on Ward 5B. 
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The observed elective schedule in Table 6.2 shows that the days with the 

highest number of admissions to the Other ward are Tuesday (8 admissions) 

and Thursday (12 admissions). Similarly, Figure 6.2 shows spikes in the 

probability of exceeding capacity on Ward 5B on Wednesday (19%) and Friday 

(25%). Therefore, it is reasonable to expect that the peaks in the elective 

schedule, and the peaks in probability, are related, albeit one day later. 

Figure 6.3 shows the probability of demand exceeding capacity, for all wards, 

by running a possible Postponement Schedule. In this schedule, three 

postponements are made which aim to reduce the predicted peaks in probability 

on Wednesday and Friday, in comparison to the observed schedule. The first 

postponement reschedules one Tuesday admission to Wednesday, and the 

next two postponements reschedule Thursday admissions to Friday. Two 

postponements are made on Thursday to reduce the higher Friday peak in 

probability, seen in Figure 6.2. Rescheduling the arrivals to the day on which 

peak probability is predicted to occur might seem counter-intuitive, however, 

Figure 6.2 and the observed elective schedule suggest that patients may not 

arrive on Ward 5B until the following day. 
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Postponement Schedule 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

ED - - 1 - 1 - - 

Ward4D - - - - 1 - - 

Ward4K 2 3 - 1 - - - 

Ward5A - 1 - 1 - - 1 

Ward5D - - - 2 - - - 

Other 6 8-1=7 6+1=7 12-2=10 4+2=6 - - 

Figure 6.3: ODES estimates of the probability of demand exceeding maximum capacity for 

Week 47, and the accompanying elective schedule. 

 

The results for the Postponement Schedule show that the peaks in probability 

on both Wednesday and Friday for Ward 5B have been noticeably reduced. 

Since the schedule has been modified by postponing, rather than cancelling, an 

increase in probability is seen on Thursday and Saturday, however these two 

days are in a better position to accommodate additional patients than 

Wednesday and Friday. With the Wednesday and Friday peaks reduced, 
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estimated BMOC also sees a decrease of 0.49 bed-midnights, suggesting a net 

improvement across all wards using this schedule for Week 47. 

Although it may be possible to postpone more of Thursday’s admissions to 

reduce the Friday peak on Ward 5B, further increases in probability over the 

weekend might be unacceptable if staff numbers are reduced over Saturday 

and Sunday. To further reduce the Friday peak on Ward 5B, without continuing 

to increase the probability over the weekend, the hospital might consider 

cancellation instead of postponement.  Cancellation in this setting means that 

the patient will not be treated in the current planning horizon, however in 

practice, this is more likely to represent a postponement to a later planning 

horizon. 

Figure 6.4 shows the effect of cancelling one admission to the Other ward 

during Week 47, in addition to the postponements which have already been 

made. The cancellation has the effect of further reducing the probability of Ward 

5B encountering capacity issues by approximately 5%, and BMOC by 0.29. At 

first glance, a larger reduction in BMOC might be expected, given the removal 

of one patient from the admissions schedule. However, cancelling admissions 

to Other has consequences for all the wards, not just Ward 5B, because of the 

other routes the cancelled patient might have taken. The Intensive Care ward 

also sees a small increase in probability on Friday, which is likely to be caused 

by new sets of occupancies (based on the patient cancellation) which influence 

the transition probabilities generated by the DTMs.  
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Cancellation Schedule 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

ED - - 1 - 1 - - 

Ward4D - - - - 1 - - 

Ward4K 2 3 - 1 - - - 

Ward5A - 1 - 1 - - 1 

Ward5D - - - 2 - - - 

Other 6 8-1=7 6+1=7 12-3=9 4+2=6 - - 

Figure 6.4: ODES estimates of the probability of demand exceeding maximum capacity for 

Week 47, and the accompanying elective schedule. 

 

6.2.4 Case Study 1: Summary 

The alternative elective schedules presented in this case study demonstrate 

how the ODES could be used in practice to help hospital planners decide on 

potential elective admissions schedules in a more informed way. This is 

achieved by identifying the wards which are most at risk of running short of 

beds, along with peaks and troughs in the probability of demand exceeding 

capacity throughout the week. By modifying an initial elective schedule in an 

0%

5%

10%

15%

20%

25%

30%

Tuesday Wednesday Thursday Friday Saturday Sunday

Si
m

u
la

te
d

 P
ro

b
ab

ili
ty

Week 47: Probability of Bed Demand Exceeding Capacity (Cancel Schedule)

ED IC Northside Other Ward4D

Ward4K Ward5A Ward5B Ward5D Ward6D

BMOC = 4.67



Chapter 6 

Case Studies 

 

 

171 
 

iterative way, the examples in this section show that reductions in the probability 

of encountering capacity issues can be achieved for an example busy week 

with minimal changes to the total number of elective admissions. 

Although only two types of schedule modifications have been considered for 

creating alternative schedules, the hospital might have a range of possible 

actions that they could consider. Some of these actions can be framed as 

postponements or cancellations, and can be investigated directly using the 

ODES, while some are likely to be subtler. More subtle actions, such as 

changing the ward of first admission, have not been explored in the examples 

in this section, since they are likely to involve the use of extra information or 

expert judgement about specific patients. However, if this information is 

available, the hospital stands an even greater chance of lowering the risk of 

running out of beds, without reducing the planned workload, and the ODES can 

again be used to investigate the impact of such actions. 

Finally, the Week 47 example is necessarily an artificial one, since the observed 

elective schedule is a record of actual patient arrivals during the week. 

Therefore, it is possible that hospital planners already made modifications to a 

planned elective schedule, which is unobservable in the data. Nevertheless, the 

example clearly demonstrates how the ODES could be used in practice. 

 

6.3 Case Study 2: Additional Information 

In the second case study, the ODES is used to answer Research Question 3, 

which is; “How can additional patient information, made available at simulation 
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run-time, affect the estimates of bed demand from an online simulation?" In this 

case study, the additional information being considered is the length-of-stay of 

patients on the elective admissions schedule, and the remaining length-of-stay 

of any patient (emergency or elective) who has a bed when the ODES is 

initialised. This information is used as a proxy for the Estimated Date of 

Discharge (EDD) which NHS Improvement (2016b) emphasises is an essential 

care coordination tool within the UK. 

While other types of patient information could be considered “additional” with 

respect to the data already used in the model, the EDD (and thus, estimated 

length-of-stay) aligns with the ODES method particularly well. New system state 

data is already read into the model at regular intervals, and this can easily be 

augmented with information about a patient’s condition (i.e. how long they are 

expected to stay) as it unfolds. 

For the incoming elective patients, clinicians will have approximate EDDs in 

mind to help manage hospital resources, and to inform prospective patients of 

the time they can expect to spend in hospital. Additionally, NHS Improvement 

(2016b) recommends that an EDD should be set at the first consultant review, 

and set no later than the first consultant ward round the following morning. 

Therefore, estimates length-of-stay should be available for the scheduled 

elective arrivals, and remaining length-of-stay estimates should be available for 

most, if not all patients occupying a bed. 

However, clinician’s assignment of an EDD is by no means a guarantee that the 

corresponding patient will be discharged on their estimated date. Factors such 

as variation in individual recovery times, and complications associated with 
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treatment, can contribute to differences between the EDD and the actual date 

of discharge. Therefore, as part of assessing the value of using discharge date 

estimates in an ODES, it is also important to consider how accurate they might 

be.  

Although estimates of LOS/EDD were not explicitly provided by the AGH 

participating in this study, the actual length-of-stay can be loaded from the PA 

data, retrospectively. However, using actual observations would represent a 

scenario in which clinicians were able to perfectly predict LOS. This level of 

accuracy is clearly not attainable; therefore, modelling different levels of 

prediction error is necessary to test the impact of using length-of-stay estimates 

in a more realistic way. 

Since the EDD should be assigned by clinicians before, or shortly after 

admission, the estimated LOS which is derived from the EDD is a total length-

of-stay (TLOS) i.e. the duration of a patient’s stay in hospital from admission to 

discharge. The structure of the ODES is such that each simulated patient’s 

TLOS is the sum of individual ward lengths-of-stay (WLOS), and each WLOS is 

a random draw from an empirical LOS distribution. For the sake of simplicity, 

the PA data which is loaded into the model (to emulate clinician’s estimates) 

are observations of WLOS, rather than TLOS. This data is loaded for the first 

ward-stay of the incoming elective patients (to reflect clinicians’ prior knowledge 

about scheduled arrivals) and the current ward for patients which occupy a bed 

at initialisation (to reflect clinician’s knowledge about patients which are already 

admitted). 
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Adding first/current WLOS information to the ODES is simpler than adding 

TLOS, since there is no need to divide TLOS among a set of stochastically 

generated ward-stays. However, if patients are not discharged from the 

first/current ward, this method only adds a portion of the available TLOS 

information to the simulation. Nevertheless, the results of running a model in 

which partial information is added, can serve as a lower bound on the types of 

improvements one might see in a more complex model in which TLOS 

estimates (via EDD) can be applied, across multiple wards. 

In the sections which follow, simulation experiments are conducted which aim 

to show the effect of additional LOS information on the distributions of midnight 

occupancy, thereby answering Research Question 3. In the first experiment 

(see subsections 6.3.1 to 6.3.3), the observed elective schedule for Week 47 is 

revisited, to gain an understanding of the effect the additional information can 

have in a given planning horizon. The elective schedule modifications made 

earlier for this week, in Section 6.2.3, are re-tested to see if they would still be 

deemed useful or if a different set of modifications should be considered. In the 

second experiment (see subsection 6.3.4) the full 560-day observation period 

is run for the purpose of estimating how much the additional WLOS information 

can reduce the variation seen in the simulated distributions of midnight 

occupancy. 

 

6.3.1 Run Configuration 

The ODES is again loaded with the state of the hospital at 00:00am on Monday 

of Week 47, along with the accompanying observed elective schedule. The 
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state data is augmented with the remaining WLOS for each loaded patient 

(emergency and elective), and the elective schedule is augmented with the 

observed WLOS for the ward of admission. Table 6.4 outlines the configuration 

of the ODES, and the treatment of length-of-stay for patients which have a bed 

at initialisation (Initialised), those which are admitted during the planning horizon 

(New Admission), and their subsequent ward stays (Subsequent Wards). To 

emulate the errors that could be made by clinicians when setting EDDs, the 

additional WLOS information is not included deterministically. Instead it is used 

with a fixed probability; the details of which are described in the next section. 

For this reason, the term ‘semi-stochastic’ is used to describe its 

implementation. The lengths-of-stay for subsequent ward stays are drawn from 

empirical LOS distributions using the same treatment used in Chapters 4 & 5. 

The ODES is run for 400 replications of Week 47. 

  Treatment 

Online Modelling 

Element 
Emergency Elective 

Arrivals/Admissions 
Empirical Distributions 

(Stochastic) 

Observed Schedule 

(Deterministic) 

Ward Length of Stay 

Initialised: Additional WLOS 

Information (Semi-

stochastic) 

Initialised: Additional WLOS 

Information (Semi-

stochastic) 

New Admission: Empirical 

Distributions (Stochastic) 

New Admission: Additional 

WLOS Information (Semi-

stochastic) 

Subsequent Wards: 

Empirical Distributions 

(Stochastic) 

Subsequent Wards: 

Empirical Distributions 

(Stochastic) 

Ward Transitions 
Dynamic Transitions 

(Stochastic) 

Dynamic Transitions 

(Stochastic) 

Table 6.4: Treatment of each of the major modelling elements in the online simulation, grouped 

by admission type. 
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6.3.2 Additional Information and Observed Schedules 

To model the uncertainty associated with clinicians’ LOS estimates, the 

simulation adds random variation to the WLOS observations taken from the PA 

data.  To add this variation, a patient’s length-of-stay comes from either the 

WLOS observations, with probability 𝑑, or it is drawn from the empirical LOS 

distributions, with probability 1 − 𝑑; resulting in ‘semi-stochastic’ LOS 

realisations. By modelling variation in this way, different levels of WLOS 

accuracy can be set before each simulation run. The interpretation of modelling 

prediction error in this way, is that the clinicians’ estimates are correct 

(𝑑 × 100)% of the time, and no better than guesses for the remainder. 

Figure 6.5 shows the probability of the demand for beds exceeding maximum 

capacity on each ward for Week 47 (under the observed elective schedule) for 

𝑑=0.5. Noticeable features of Figure 6.5 (compared to Figure 6.2 in which no 

additional information is included) are the increases in probability on Tuesday 

for Ward 5D, and on Wednesday for Ward 5B and the ICU. For wards such as 

Ward 5A, Ward 5D and the ICU, the probabilities appear to either stay the same 

or increase for most days of the week. As might be expected from visual 

inspection, BMOC also sees an increase, from 5.45 to 6.56. 
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Figure 6.5: ODES estimates of the probability of the demand for beds exceeding maximum 

capacity during Week 47. Actual WLOS for the first/current ward for each patient is used with 

probability 0.5. 

 

Similar features to Figure 6.5 are also seen in Figure 6.6 when the accuracy of 

the WLOS data is increased to 75%. Additionally, the probability on Wednesday 

for Ward 5B has surpassed the second peak on Friday; signalling that these 

days may require equal attention in terms of adjustments to the elective 

schedule. Ward 5D on Tuesday sees a further increase in the probability of 

exceeding capacity, making it the ward and day most affected by the inclusion 

of WLOS data, with 3% when 𝑑=0 (no addition information), 12% when 𝑑=0.5, 

and finally 19% when 𝑑=0.75. The rise in probability as a function of WLOS 

accuracy suggests the existence of at least one simulated patient who was 

(according the empirical LOS distributions) very likely to have been discharged 

or transferred from Ward 5D by midnight on Tuesday, but whose actual length 

of stay on Ward 5D was longer than the average. The early-week increases on 
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these wards contribute to a further 0.12 increase in average BMOC, compared 

to results generated when 𝑑=0.5.  

 

Figure 6.6: ODES estimates of the probability of the demand for beds exceeding maximum 

capacity during Week 47. Actual WLOS for the first/current ward for each patient is used with 

probability 0.75. 

 

Since WLOS on the first/current ward is being taken from the true value in the 

PA data with increasing frequency, it stands to reason that the distributions of 

midnight occupancy should see a reduction in variance. However, the 

probability of demand exceeding capacity is shown to increase in some cases, 

indicating an upwards shift in mean midnight occupancy as well. With all other 

factors being held equal, an increase in mean midnight occupancy suggests 

that several incoming elective patients, or patients loaded at initialisation, have 

a greater actual LOS than the average LOS which would be drawn from the 

empirical distributions in the ODES, during Week 47. 
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Although the additional information added during Week 47 suggests that the 

observed schedule poses a greater risk to exceeding ward capacity than initially 

expected, the ODES will also be able to show situations in which the clinicians’ 

estimates might decrease the likelihood of demand exceeding capacity. This 

would occur when the LOS information added to the model is less than the 

average LOS, for a group of patients. 

By way of contrast, Figure 6.7 charts the probability of demand exceeding 

capacity across all wards, for the observed elective schedule in Week 53, rather 

than Week 47. For this run of 400 replications, no additional LOS information 

has been added to the model, hence 𝑑=0. During Week 53, the ODES is 

predicting that the probability of bed demand exceeding maximum capacity on 

Ward 5B is almost 35% on Wednesday; higher than any day observed in Week 

47. However, this week would not be considered as busy as Week 47 overall, 

judging by the BMOC and the levels of actual midnight occupancy seen in the 

PA data. 
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Figure 6.7: ODES estimates of the probability of the demand for beds exceeding maximum 

capacity for Week 53. Actual WLOS for the first/current ward is not used. 

 

Figures 6.8 and 6.9 show the results of running the observed elective schedule 

for Week 53 again, this time with 𝑑=0.5 and 𝑑=0.75, respectively. Figure 6.8 

shows that with 50% accuracy of the additional WLOS information, the peak in 

probability on Wednesday can be reduced from 34% to 26%. However, if higher 

levels of prediction accuracy can be achieved, Figure 6.9 shows that the 

probability of demand exceeding capacity is again reduced; to 21% on 

Wednesday. A reduction of the same size is seen on Thursday, with a 13% 

difference between the 𝑑=0 and 𝑑=0.75 runs. With no changes to the 

simulation, other than the value of 𝑑, the results of Figures 6.8 and 6.9 suggest 

that several patients have an actual WLOS which is less than the average 

WLOS which would have been drawn from the empirical distributions in the 

ODES, causing the simulated beds to become available earlier in the week. 
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Figure 6.8: ODES estimates of the probability of the demand for beds exceeding maximum 

capacity for Week 53. Actual WLOS for the first/current ward for each patient is used with 

probability 0.5. 

 

 

Figure 6.9: ODES estimates of the probability of the demand for beds exceeding maximum 

capacity during Week 53. Actual WLOS for the first/current ward for each patient is used with 

probability 0.75. 
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The results presented in this section for Week 47 and Week 53 show that by 

including additional LOS information, it is possible for an ODES to generate 

noticeably different results for a given elective schedule than if LOS is drawn at 

random from LOS distributions. Although it might be expected that including 

additional LOS information would simply reduce the variance of the distributions 

of midnight occupancy, the results show that the mean can also be impacted, 

resulting in shifts of the distributions which necessarily effect the probability of 

exceeding capacity. 

In the examples presented, the values of  𝑑 have been chosen arbitrarily, 

however, realistic values could be calibrated for a hospital (or even for each 

ward) by collecting clinician’s LOS estimates and comparing those to the actual 

LOS once the patient is discharged. For a hospital willing to explore the use of 

an ODES model to help with bed management decisions, this might be 

particularly important for weeks like Week 53, in which several patients have 

unusually short stays. If LOS estimates are available, and 𝑑 is calibrated 

accordingly, the reduced levels of risk reflected in the ODES outputs can 

mitigate the need for deviations from the planned elective schedule, or other 

types of interventions. 

Although the inclusion of additional information for Week 53 resulted in a 

reduction in probability for Ward 5B, Week 47 saw the probability increase for 

several wards. In the next section, the modified elective schedules from Section 

6.2.3 are re-run to demonstrate their effect when combined with the additional 

WLOS information. 
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6.3.3 Additional Information and Alternative Schedules 

In Section 6.2.3 (Alternative Elective Schedules), two types of modifications 

were made to the elective admissions schedule (postponement and 

cancellation) to demonstrate the way in which the ODES could be used to 

reduce the probability of bed demand surpassing maximum capacity. However, 

for Week 47, the results generated by including the additional length-of-stay 

information indicates that the risk of running into capacity issues might be higher 

than is predicted by the model in which empirical LOS distributions are used 

exclusively. This section aims to investigate whether the elective schedule 

modifications used in Section 6.2.3 have similar benefits, given the additional 

LOS information, or if a different set of schedule modifications might be 

preferable.  

During Week 47, the ODES model in which no additional WLOS information 

was read from the PA data (𝑑=0) identified Ward 5B to be the most at risk of 

running into capacity issues, particularly on Wednesday and most markedly 

Friday. Three postponements were made; one to reduce the Wednesday peak, 

and two to reduce the higher peak on Friday. However, the results of running 

the observed schedule in the ODES model with 𝑑=0.75, indicated that the risk 

of excessive bed demand on Wednesday and Friday were similar, therefore the 

distribution of postponements throughout the week warrants revisiting. 

Figure 6.10 charts the probability of bed demand exceeding maximum capacity, 

by running the Postponement Schedule used earlier, in Section 6.2.3. The 

results show that with one postponement on Tuesday, it remains possible to 

reduce the Wednesday peak to levels seen the previous day; an outcome which 
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is consistent with the 𝑑=0 model. However, the probability over these two days 

remains approximately 5% higher for the 𝑑=0.75 model than the 𝑑=0 model, 

due to patients with greater WLOS than the average. The two postponements 

which were made on Thursday in the 𝑑=0 model had the effect of reducing the 

Friday peak in probability on Ward 5B from 25% to 20%. However, after 

including these two postponements in the 𝑑=0.75 model, there appears to be 

little change in the probability on Friday for Ward 5B. Although these 

postponements appear to have little effect, they offset the Tuesday 

postponement which would otherwise increase the probability on Friday. They 

also have the effect of decreasing the Friday probability for Ward 4D and Ward 

5A, resulting in an overall decrease in BMOC. 
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Postponement Schedule 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

ED - - 1 - 1 - - 

Ward4D - - - - 1 - - 

Ward4K 2 3 - 1 - - - 

Ward5A - 1 - 1 - - 1 

Ward5D - - - 2 - - - 

Other 6 8-1=7 6+1=7 12-2=10 4+2=6 - - 

Figure 6.10: ODES estimates of the probability of demand exceeding maximum capacity for 

Week 47, and the accompanying elective schedule. Actual WLOS for the first/current ward for 

each patient is used with probability 0.75. 

 

Since the Friday peak for Ward 5B remains present in the results generated by 

running the Postponement Schedule using the 𝑑=0.75 model, the Thursday 

cancellation is again applied to the elective admissions schedule. Figure 6.11 

charts the probabilities generated by the ODES during Week 47 by running the 

Cancellation Schedule, as per Section 6.2.3, in the 𝑑=0.75 model. The results 

show that the Thursday cancellation reduces the peak by approximately the 

same amount as the 𝑑=0 model and brings the Friday probability broadly in-line 
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with previous days of the week. However, the average probability across Week 

47 for Ward 5B remains noticeably higher in the 𝑑=0.75 model than the 𝑑=0 

model with the same elective schedule applied. 

 

Cancellation Schedule 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

ED - - 1 - 1 - - 

Ward4D - - - - 1 - - 

Ward4K 2 3 - 1 - - - 

Ward5A - 1 - 1 - - 1 

Ward5D - - - 2 - - - 

Other 6 8-1=7 6+1=7 12-3=9 4+2=6 - - 

Figure 6.11: ODES estimates of the probability of demand exceeding maximum capacity for 

Week 47, and the accompanying elective schedule. Actual WLOS for the first/current ward for 

each patient is used with probability 0.75. 

 

The results presented in this section show that the schedule modifications used 

in Section 6.2.3 to reduce the Wednesday and Friday peaks for Ward 5B, also 

reduce the peaks in probability which result from running the 𝑑=0.75 model. 
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However, the inclusion of LOS information also indicates that the risk of 

encountering capacity issues on Ward 5B, with the schedule modifications 

applied, is higher than initially expected. Therefore, it is possible that further 

modifications to the elective schedule might be desirable. For example, the 

probability of exceeding capacity for Ward 5D on Tuesday was estimated at 

only 3% by the 𝑑=0 model, although it increases to 19% when 𝑑=0.75. Clearly, 

the inclusion of additional LOS information enables the consideration of further 

actions which could reduce this probability. 

The changes in probability which occur as a result of including the additional 

LOS information (for Week 47 and Week 53) have been largely driven by shifts 

in the midnight occupancy distributions i.e. changes in the mean. However, 

including additional LOS information also has the potential to reduce the 

variance of the midnight occupancy distributions. Therefore, the degree to 

which this might occur is investigated in the next section. 

 

6.3.4 Variance Reduction 

If clinicians’ LOS estimates are more informative than draws from LOS 

distributions, then using this type of information should also reduce the variance 

of the midnight occupancy distributions (in addition to potentially shifting the 

mean, as seen previously), resulting in more precise inferences about the 

planning horizon in question. While any reduction in variance is clearly 

dependent on the accuracy of the additional LOS information, it is also likely to 

be related to the elapsed time from initialisation due to the gradual discharge of 

initialised patients for whom additional LOS information is available. 
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For example, Figure 6.12a charts the average variance of the distributions of 

midnight occupancy for Ward 5B, for one-week planning horizons initialised on 

Monday. The average variance is estimated by simulating the 560-day 

observation period 100 times, then averaging the daily variance estimates by 

day-of-the-week. Figure 6.12b charts the percentage reduction in variance, 

relative to the results generated by the 𝑑=0 model.  

Figure 6.12a shows that the additional information has the effect of reducing the 

variance of midnight occupancy over the average planning horizon, and Figure 

6.12b shows that the information has the greatest relative effect immediately 

after the simulation is initialised. The diminishing effect throughout the week 

occurs as the initialised patients (who all have WLOS information) are 

discharged from hospital. While some of these discharges are replaced by 

elective arrivals who have LOS estimates for the first ward they are admitted to, 

most of the arrivals during the week are emergency patients for whom no 

additional information is available at run-time.  

The results for the 𝑑=1 model set an upper limit on how much the variance can 

be reduced if additional LOS information is included. For this model, Figure 

6.12b shows that the diminishing benefits of extra information are quite marked, 

and that a similar (but weaker) pattern exists for the 𝑑=0.75 model.  For 𝑑=0.5, 

the diminishing effect is not apparent, and for 𝑑=0.25 the effect is also very 

small. Together, Figures 6.12a and 6.12b suggest that when the accuracy of 

the WLOS information is 25% or less (𝑑 ≤ 0.25), the additional information has 

little impact on the variance of midnight occupancy. 
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For the sake of brevity, charts of the reduction in variance have not been 

included for all wards, since in most cases, they resemble those generated for 

Ward 5B. However, estimates of the reduction in variance for all wards, for an 

average week (initialised on Monday) are provided in Table 6.5. Summary 
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Figure 6.12: [a] The estimated variance of simulated midnight occupancy for each day in the 

observation period is averaged over the day of the week on which it occurs. [b] The percentage 

reduction in variance, relative to the results generated by the 𝑑=0 model. 
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statistics across the average week are included, rather than tabulating the 

estimated variance reductions for each day of the week. 

Reduction in Variance for a 1-Week Planning Horizon (Average) 

Ward 
 

Avg. LOS 

(Days) 

Stat 

 

𝒅=0.25 𝒅=0.5 𝒅=0.75 𝒅=1 

ED 0.4 
Max 

 

-1% 4% 1% 5% 

Mean 

Min 

 

-2% 0% 1% 1% 

Min 

 

-3% -2% -1% -2% 

IC 4.0 
Max 

 

3% 10% 20% 35% 

Mean 

Min 

 

1% 6% 13% 21% 

Min 

 

-2% 3% 8% 14% 

Ward 4D 5.3 
Max 

 

5% 11% 19% 38% 

Mean 

Min 

 

3% 8% 13% 25% 

Min 

 

1% 5% 8% 16% 

Ward 4K 2.7 
Max 

 

3% 12% 26% 40% 

Mean 

Min 

 

2% 9% 17% 27% 

Min 

 

1% 7% 10% 20% 

Ward 5A 4.4 
Max 

 

3% 10% 21% 40% 

Mean 

Min 

 

1% 6% 14% 27% 

Min 

 

-2% 2% 9% 19% 

Ward 5B 3.8 
Max 

 

6% 10% 25% 40% 

Mean 

Min 

 

2% 9% 16% 25% 

Min 

 

0% 6% 11% 15% 

Ward 5D 7.0 
Max 

 

3% 13% 23% 42% 

Mean 

Min 

 

2% 8% 16% 28% 

Min 

 

-1% 3% 10% 18% 

Ward 6D 9.1 
Max 

 

3% 14% 25% 42% 

Mean 

Min 

 

0% 13% 21% 35% 

Min 

 

-1% 12% 19% 25% 

Northside 10.9 
Max 

 

4% 14% 29% 53% 

Mean 

Min 

 

3% 13% 20% 36% 

Min 

 

2% 12% 16% 28% 

Other 1.4 
Max 

 

4% 14% 28% 49% 

Mean 

Min 

 

2% 11% 19% 35% 

Min 

 

-2% 7% 12% 24% 

Table 6.5: Average LOS for each ward (in days) computed from the PA data, along with 

summary statistics of the percentage reduction in variance for an average week, relative to the 

𝑑=0 model.  

 

As with Ward 5B, Table 6.5 shows that for the other modelled wards, the 

reduction in variance of the midnight occupancy distributions is very small when 

𝑑=0.25. In fact, for this level of WLOS accuracy, some of the estimated 
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reductions are negative. However, these instances are more likely to be the 

result of comparing distinct sets of simulation runs i.e. sampling error; rather 

than a material increase in variance. 

While an appreciable reduction in variance can be seen for most wards as 

additional WLOS information accuracy increases, the Emergency Department 

is a clear exception, and appears to be relatively unaffected by the values of 𝑑 

in Table 6.5. Figure 6.13 expands on these results and charts the variance over 

an average week for the Emergency Department, again showing little difference 

in the variance of midnight occupancy over the course of an average simulated 

week. 

 

Figure 6.13: The estimated variance of simulated midnight occupancy for each day in the 

observation period is averaged over the day of the week on which it occurs. 

 

Since the average LOS in the Emergency Department is short compared to the 

other wards, and patient turnover is high, patients who are initialised at the ED 

with additional information quickly move on to other wards or are discharged. 

0

2

4

6

8

10

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

A
ve

ra
ge

 V
ar

ia
n

ce

Average Variance of Midnight Occupancy (ED)

d=0 d=0.25 d=0.5 d=0.75 d=1



Chapter 6 

Case Studies 

 

 

192 
 

Therefore, the simulated ED reaches a state consisting of randomly generated 

emergency patients (for whom no additional information is included) shortly 

after initialisation. For these reasons, the results in Figure 6.13 suggest that 

clinicians’ EDD/TLOS estimates do not need to include time spent in the 

Emergency Department, to be used in an ODES of this type. 

In contrast, the summary statistics for the 𝑑=1 model in Table 6.5 indicate that 

the Northside ward has the greatest potential for reducing the variance of the 

midnight occupancy distributions. Table 6.5 also shows that the Northside ward 

also has the longest average LOS of any of the ten modelled wards, closely 

followed by Ward 6D, for which the reductions in variance are also high 

compared to the other wards. It is reasonable to expect that wards with greater 

average LOS would see greater reductions in variance, since a greater 

proportion of patients present at initialisation (for whom WLOS is estimable), 

will also be present throughout the planning horizon. On the other hand, Table 

6.5 shows the Other ward to be the exception to this trend, with the second 

shortest average LOS, but with one of the largest reductions in variance for the 

values of 𝑑 which have been simulated. This is caused by the contribution of 

the Day Case Unit; which is one of a group of wards aggregated to form Other 

as part of the conceptual modelling process. While the Day Case Unit has a 

short average LOS, it is the first ward-stay for many of the elective arrivals, 

therefore the additional WLOS information is used with probability 𝑑. Since 

many of the simulated patients with additional WLOS information arrive at Other 

throughout the week, it experiences a more significant reduction in variance 

than the other modelled wards, despite its relatively short average LOS. 
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6.3.5 Case Study 2: Summary 

Research Question 3 has been answered in this case study, by specifying a 

type of additional patient information which could become available with 

relatively short-notice, and then testing the effect this information has on the 

simulation outputs, at different levels of accuracy. Sections 6.3.2 and 6.3.3 

show that including additional LOS information for just the first/current ward, 

can result in upwards or downwards shifts in the predicted distributions of 

midnight occupancy, depending on how its net effect (across all 

resident/incoming patients) compares to the average LOS which otherwise 

would have been assumed. If clinician’s LOS estimates are for a set of patients 

with greater-than-average LOS, incorporating this into the ODES could notify 

hospital planners that further action must be taken to reduce busy wards to an 

acceptable level of risk. Conversely, the same type of information for a set of 

patients with lower-than-average LOS could also be used to satisfy hospital 

planners that an otherwise high-risk schedule has risks which are within an 

acceptable range. 

In addition to the shifts in the midnight occupancy distributions which can occur, 

Section 6.3.4 also showed that the variance of the distributions can be reduced, 

depending on the accuracy of clinicians’ estimates, the ward’s average LOS, 

and the number of elective arrivals for whom additional LOS information is 

available. For wards with very short average LOS, such the Emergency 

Department, even 100% WLOS accuracy has little effect on the on the variance 

of the midnight occupancy distributions, since any LOS information which is 

added quickly dissipates when the initialised patients are transferred or 
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discharged. On the other hand, assuming the same level of prediction accuracy 

is possible, wards with higher LOS tend to see greater reductions in variance 

due to a larger proportion of initialised patients being present throughout the 

planning horizon. The number of elective admissions also plays a role in 

reducing the variance, as shown by the Other ward. Other has one of the 

highest potential variance reductions, despite a relatively short average LOS, 

due to the large number of elective arrivals for whom WLOS is estimable. 

In terms of additional information accuracy, the results showed that if WLOS 

could not be estimated correctly more than 25% of the time, then the impact it 

has on the variance of midnight occupancy is negligible. However, if WLOS 

estimates can be 50% accurate, the mean reduction in variance over six days 

(not including the day of initialisation) for an average week ranges from 0% (ED) 

to 13% (Ward 6D and Northside). At 75% accuracy, the range is extended from 

1% (ED) to 21% (Ward 6D). 

Although the value of 𝑑 has been set globally for the scenarios considered in 

this section, 𝑑 could be calibrated for different wards and patient types. For 

example, there is likely to be greater uncertainty in estimating the LOS for wards 

where patients typically stay for longer periods. Similarly, clinicians can 

probably provide more accurate estimates for elective patients, than they can 

for those requiring emergency care. Therefore, if a hospital wanted to include 

information such as EDD, in an operational ODES model for bed management, 

it would also make sense to conduct a small study to estimate the rate at which 

clinicians’ estimates are expected to be correct; disaggregated to an 

appropriate level of detail for the model. As demonstrated in this section, it is 
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then possible to assess whether this information, with 𝑑 calibrated based on 

evidence, has a large enough effect to become a permanent part of the 

operational ODES. 

 

6.4 Discussion and Conclusions 

In this chapter, two case studies have been presented which demonstrate how 

the ODES developed in Chapters 4 & 5 could be used in practice. In Case Study 

1, a particularly busy week is chosen from the PA data, whose corresponding 

system state (on Monday) and observed elective schedule is loaded and run by 

the ODES. In the first instance, the simulation outputs are used to produce 

estimates of the probability of bed demand exceeding ward capacity. Based on 

these results, modified elective schedules are developed and tested, to 

demonstrate how the model could be used by hospital planners to help balance 

emergency and elective workloads. 

Using Week 47 as an example, it is worth noting that although the ODES 

predicts fairly high probabilities for Ward 5B and an average BMOC of 5.45, the 

table of observed occupancies (Figure 6.1) shows that this ward had between 

one and two unoccupied beds at midnight for most days of the week. Therefore, 

an important part of using the ODES in practice, is to determine the probability 

thresholds beyond which the hospital should take preventative action; such as 

modifying the elective schedule. One way to estimate such a threshold for a 

given ward, is to run a set of historical weeks in which the ward experienced 

high occupancy. While this would preferably be done in consultation with 

hospital staff to determine what “high occupancy” looks like, it could be carried 
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out independently by making some basic assumptions. The probabilities 

generated by the ODES under these conditions could then be used as 

indicators of high risk for future planning horizons. A similar exercise could also 

be carried out to calibrate an acceptable BMOC threshold, and use this as a 

summary metric for the risk associated with a proposed elective schedule. 

However, implementation details such as this, are left as further work. 

In Case Study 2, additional patient level information (in the form of ward length-

of-stay data) is added to the ODES as a proxy for the EDD assessments 

regularly made by clinicians. Research Question 3 is answered by investigating 

the effect that this information has on the midnight occupancy distributions. The 

results show that including this sort of information has the potential to shift the 

predicted distributions of midnight occupancy up or down, depending on how 

the added WLOS information compares to the average WLOS that would 

otherwise be assumed by the model. As a result, days in the planning horizon 

can be identified as being potentially problematic for one or more wards, which 

might otherwise have gone undetected. Conversely, the predicted probability of 

running into capacity issues could be reassuring if several patients are expected 

to have a shorter-than-average WLOS. Case Study 2 also showed that 

clinicians’ estimates of LOS tend to reduce the variance of the predicted 

distributions of midnight occupancy. However, the results suggest a minimum 

accuracy of 25% is required (when WLOS information is incorporated for the 

first/current ward) before the variance is noticeably reduced. 

While the structure of the ODES lends itself well to including ward-level or 

patient-level information, information relating to multiple wards is more 
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challenging to incorporate. An EDD (or its equivalent; TLOS) falls into the latter 

category, since the total time spent in hospital potentially spans multiple wards; 

whereas Case Study 2 considers only first/current ward LOS information. One 

way to incorporate fuller information in the ODES would be for clinicians to 

provide an expected pathway through the hospital, as well as an EDD. In this 

case the ODES would need to be modified to include classes of patients whose 

visited wards follow a deterministic sequence. 
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 Chapter 7 

Conclusions 

 

 

7.1 Summary 

This research was motivated by the need for a model which could help hospital 

staff maintain an effective balance between emergency and elective patient bed 

demand. While there are several examples in the literature of models which 

could help to achieve this balance on average, models designed for use on an 

operational basis are scarcer. Further, the breadth of patient types within scope 

of this research (emergency and elective patients) requires multiple wards 

within a hospital to be modelled to avoid treating beds as a homogenous 

resource. After considering these requirements in tandem, Online Discrete 

Event Simulation was identified as method which could offer the flexibility to 

model a network of wards (and any potential interactions), while also accounting 

for recent events — one of the key features of operational decision making. The 

relative modernity of ODES as a field of research (at least compared to classical 

DES) also necessitated the development of novel modelling and validation 

techniques. In this section, the earlier chapters of this thesis are summarised, 

along with the answers to the research questions for each chapter, where 

applicable. 

In Chapter 2, the hospital modelling literature is focused by defining the levels 

at which planning decisions in hospitals can be made. At the operational level, 

decision-making is impacted by the number of patients currently occupying a 
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bed, or those who are scheduled to arrive in the short-term. Therefore, the 

literature review first focuses on reported models which aim to manage bed 

occupancy via the elective or surgical schedule, before discussing models 

designed to inform operational planning by taking the current bed-state into 

account. The review concludes that models which account for both emergency 

and elective patient workloads, while keeping the whole ward network in scope, 

are relatively few. Fewer still, are models within this class which are designed 

to inform operational decision-making, and an online simulation of this type is 

not known to exist. The chapter closes by setting out the following three 

research questions which form the basis of the work reported in Chapters 4, 5 

and 6: 

RQ1: How can an on-line simulation, which provides estimates of bed 

demand, be developed for the operational management of hospital 

beds at the ward level? 

RQ2: Can the effect of hospital busyness on patient-to-ward placement 

decisions be detected in patient administrative data, and can this be 

incorporated in a simulation model? If so, what effect does it have? 

RQ3: How can additional patient information, made available at run-time, 

affect the estimates of bed demand from an online simulation? 

Chapter 3 discusses the participation of the Australian General Hospital who 

supplied the anonymised data for this research. The assumptions and data 

cleaning steps which ready the database are described, along with the process 

for deriving the real midnight occupancy time series from a database of 
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individual patient stays. When disaggregated by ward and patient type, these 

series form the benchmark which the ODES is validated against in subsequent 

chapters. Additionally, an analysis of the cleaned data is carried out to get a 

better understanding of each ward, based on statistics which would typically 

inform the development of a simulation model. 

In Chapter 4, Research Question 1 is answered by describing the development 

and validation process for the core ODES model. The chapter begins with a 

discussion of the three requirements for developing an online simulation set out 

by Hanisch et al. (2005), and how they could be met in the context of hospital 

modelling. Requirement 1 posits the need for a validated model, in which the 

level of detail is equivalent to the structures in the real system. While validation 

techniques for classical “offline” simulations are well-researched, the validation 

of models for online use appears to be an open area in the literature. This leads 

to a two-stage validation process. In the first stage, the validity of the offline 

model is assessed via comparisons of mean midnight occupancy for each day 

of the week. Since there is little statistical evidence to suggest there are 

problems with the model’s parameterisation, the offline model is brought online 

with the ability to load specific bed-states at initialisation. Conditional LOS 

distributions are also added, which model patients’ remaining time on the ward, 

given the length-of-stay already accrued at the time of initialisation. The second 

stage of validation is conducted by assuming a frequency at which the ODES 

will be run, and by using the bed-states observed in the PA database as initial 

conditions. Since the probability of the demand for beds exceeding maximum 

capacity is a key output of the model, the online validation focuses on 
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comparisons of the distribution of the midnight census, rather than summary 

statistics alone.  

Comparing the simulated and observed empirical distributions requires some 

aggregation of the observed data. However, the distribution of midnight 

occupancy on any given day is dependent on the bed-state of the preceding 

days. To better respect these dependencies, the Δ-occupancy random variable 

is defined (for use with discrete performance measures) and the observations 

of midnight occupancy are pooled for each day in the planning horizon, relative 

to the day on which the ODES is initialised. P-P plots compare the simulated 

and observed distributions of Δ-occupancy for each day-of-the-week, along with 

histograms which chart the occupancy distributions irrespective of time. While 

the P-P plots do not suggest any time-dependent differences in the Δ-

occupancy distributions, the variance of simulated midnight occupancy is 

noticeably higher than that of that of the data for the wards which are more likely 

to be found near their maximum capacity (negative-skew). This is partly due to 

the decision to model each ward as an uncapacitated node in the simulation, 

and partly due to the lack of any mechanism for distributing patient load among 

the free beds on other wards. While the discrepancy in variance leaves room 

for further improvements, the steps described in this chapter formalise the 

process for the development and validation of ODES models. The result is an 

ODES for operational bed management at the ward-level, and the answering of 

Research Question 1. 

Chapter 5 addresses Research Question 2 by investigating the relationship 

between ward occupancy and patient transitions between wards. Since 
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transitions can be viewed a result of ten possible outcomes (ten wards other 

than the current ward, including Exit), a categorical data analysis technique 

(Multinomial Logistic Regression) is applied to the PA data. The fitted models 

for each ward and patient type show that for most cases (except ED and 

Northside wards for elective patients), there is a detectable relationship 

between transition probability and ward-level bed occupancy. Together, the 

systems of fitted MLR equations form the Dynamic Transition Matrices which 

are implemented in the simulation. The validation techniques developed in 

Chapter 4 are re-applied to compare the results generated by STMs and DTMs 

respectively, with the results showing that for eight of the ten modelled wards, 

the use of DTMs offers a comparable or improved fit with the empirical 

distributions of midnight occupancy from the PA data. DTMs are especially 

effective when modelling wards which are likely to be found near their maximum 

capacity (negative-skew occupancy distributions) which could require more 

frequent interventions from hospital staff. The chapter concludes that if the 

modeller is only interested in predicting measures of central tendency over the 

course of the planning horizon (such as mean occupancy on each day of the 

week) then STMs should be used. However, if more information is required 

about the distribution of midnight occupancy, such as the probability of demand 

exceeding capacity on each ward, then the model using DTMs provides a better 

overall fit with the empirical distributions of midnight occupancy from the PA 

data. For this reason, all simulation experiments conducted in the remainder of 

the thesis use DTMs as the default routing mechanism. 

In Chapter 6, two case studies are presented which demonstrate how the ODES 

could be used in practice. In the first case study, the ODES is used to assess 
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the impact of an observed elective schedule (and modifications to it) on the 

likelihood of bed demand exceeding each ward’s capacity during a particularly 

busy week. The results of the simulation suggest that Ward 5B is the most likely 

ward to experience capacity problems for that week. An iterative process of 

modifying and re-testing elective schedules is demonstrated, and the results 

show that by postponing three elective patient admissions to other days during 

the week, peaks in the predicted probability of exceeding capacity are 

noticeably reduced (along with estimated BMOC) while maintaining total patient 

throughput. The effect of cancelling a patient is also investigated, which further 

reduces the peak in probability seen on Friday while maintaining low 

probabilities over the weekend. Other types of schedule modifications, such as 

changing the admitting ward for a set of patients, could also be tested using the 

ODES, although this sort of modification would probably require input from 

hospital staff to determine the most appropriate alternative. The examples in 

this case study demonstrate the potential for ODES models to predict the time 

and location of short-term problems (or other events) which might arise in 

complex systems such as hospitals, with the ability to test the impact of actions 

which could prevent them. 

The second case study answers Research Question 3 by testing the effect of 

additional patient-level information on the predicted midnight occupancy 

distributions. One piece of information which aligns particularly well with the 

ODES method, is the Estimated Date of Discharge (EDD), which is equivalent 

to Total Length of Stay (TLOS) from the date of admission. EDDs are routinely 

set for planned and recently admitted patients, and depending on their 

accuracy, they have the potential to improve the bed demand estimates 



Chapter 7 

Conclusions 

 

 

204 
 

generated by an ODES model. In the second case study, additional LOS 

information is added for the first ward for the incoming elective patients, and the 

current ward for patients who occupy a bed at initialisation. While this approach 

only uses a portion of the available ward-stay information, it serves as a lower 

bound for the effects which might be seen in a more complex model in which 

EDD/TLOS is applied across multiple wards.  

To represent potential inaccuracies in clinicians’ estimates of the discharge day, 

the simulation draws from the actual ward LOS with probability 𝑑, or from the 

assumed (empirical) LOS distributions with probability 1 − 𝑑. The results show 

that by including this information, it is possible to detect days and wards within 

a planning horizon which pose a greater risk than would otherwise be detected 

with the empirical LOS distributions alone (𝑑 = 0). Conversely, it is also possible 

that the predicted risk could be reduced by using this information, e.g. when a 

cohort of patients are expected to stay for a shorter-than-average amount of 

time. In this scenario, hospital planners could be satisfied that an otherwise 

high-risk schedule results in acceptable risks, or even choose to admit 

additional patients from short-notice waiting lists. The results also show that the 

inclusion of additional information can reduce the variance of the simulated 

midnight occupancy distributions, thereby improving the accuracy of the 

model’s predictions. With these potential benefits, the ability to make use of 

patient-level information as it unfolds should be an important consideration for 

any ODES developed for operational bed management. In cases where this 

information may be subjective, such as Estimated Date of Discharge, an ODES 

can also be used to simulate the impact of inaccuracies in the data (as 

demonstrated in Case Study 2) to determine the case for its continued use. 
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7.2 Discussion 

During the early stages of model development, Chapter 4 discusses the three 

requirements set out by Hanisch et al. (2005), which help to define the nature 

of an online simulation. The first of the three requirements plays an important 

role in this thesis, in part by prompting further discussion about appropriate 

methods for validating online models. However, the literature relating to 

validation methods for online simulation is scarce. In the cases where validation 

methods are discussed, the authors are usually referring to auto-validation 

methods in which the simulation parameters are periodically updated with new 

values based on new data. Even still, these methods are sometimes only 

described in passing, or with simple diagrams which show the data flows 

between the real system and the model.  

Two publications do offer more detail. Hill et al. (2001) provide a description of 

the auto-validation procedure, in which deviations between the model’s 

predictions and real world events trigger the simulation parameters to be 

updated, using new data to re-fit the appropriate probability distributions. 

However, diagnostic information about how often the simulation makes correct 

predictions, for example, or how the quality of the predictions change over time, 

is not offered.  

On the other hand, Hoot et al. (2008) fully describe their online validation 

procedure and results, which are based on two separate analyses. The first 

method uses Pearson’s 𝑟 coefficient of correlation at 2, 4, 6 and 8-hour 

forecasts to indicate how much of the variation in the testing data can be 

explained by the simulation model. Each realisation of 𝑟 is benchmarked against 
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the autocorrelation at the same intervals from the testing data alone. For the 

second method, the authors conduct a residual analysis to check that the 

forecasts are unbiased, which averages the predictions from each replication 

and compares them to the real observations at the same time point and hence 

takes some account for the time-dependence of the simulation outputs. 

However, the use of Pearson’s 𝑟 coefficient as a summary statistic could make 

it difficult to diagnose problems with a simulation during early development, 

since it lacks any “physical” interpretation. Therefore, this approach is probably 

best suited to providing a simple check on a simulation that works well, rather 

than for diagnosing problems when it does not. To that end, the authors 

supplement this approach with a residual analysis, which again takes some 

account of time dependence. However, the results from each replication are 

averaged and then compared to the real data, therefore any information about 

the variability of the simulation outputs, for example, is lost.  

In contrast, the Δ-Occupancy method, pools the simulated results and the real 

observations (separately) at the same time from initialisation. Therefore, it is 

possible to compare the variation using this method, and both empirical 

distribution functions, if desired. However, it is worth noting that the Δ-

Occupancy method (as described in Chapter 4) currently relies on visual 

inspection of the P-P plots to make inferences about the quality of the fit 

between the simulation and the real data. If this approach was to be 

operationalised as part of an auto-validation component, a method for 

quantifying the quality of the fit at each time point would be required, possibly 

via standard statistical tests such as Pearson’s chi-squared test, or 

Kolmogorov-Smirnov tests.  
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Although the first part of Requirement 1 (Hanisch et al.) has triggered the 

validation developments in this thesis, the second part of this requirement 

(which specifies that the level of detail of the model must be equivalent to the 

structures in the real system) seems to be more questionable. A literal 

interpretation of this would mean modelling the minutiae of ward-level 

processes, which is neither pragmatic nor feasible given the data available. 

Instead a more practical approach to determining a model’s structure has been 

adopted, which recognises that all models are abstractions at some level of 

detail. In this way the, level of detail is informed by the questions the model aims 

to answer, rather than attempting model every possible subprocess. For the 

ODES reported in this thesis, that means modelling the largest individual wards 

(structural level of detail) and observing occupancy levels once each day at 

midnight (temporal level of detail). So, while Requirement 1 is a useful starting 

point for thinking about ODES development, a more lenient interpretation of 

structural equivalence is recommended for most, if not all applications. 

In Chapter 5, Multinomial Logistic Regression is used to model the relationship 

between ward occupancy and transition probability, and subsequently derive 

Dynamic Transition Matrices. While MLR has been shown in Chapter 5 to be a 

useful method for modelling ward transitions, other methods exist for 

addressing the so-called Multiclass Classification problem, which ward 

placement is surely an instance of. These alternative methods predominantly 

reside within the field of Machine Learning/ Data Mining. One of the benefits of 

using MLR, is that if none of the explanatory variables are significant predictors 

of transition probability, the model reduces to a set of fixed probabilities which 

sum to unity i.e. the 𝑖th row of the Static Transition Matrix. This is important, 
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because even if no relationship is detected, average patient flows will be 

maintained, and continue to be modelled in a stochastic way. For this reason, 

MLR is preferable to machine learning methods which classify outcomes 

deterministically. 

There are also machine learning methods which classify outcomes 

probabilistically, such as Multinomial naïve Bayes. However, a naïve Bayes 

formulation requires that every combination of the dependent and explanatory 

variables (“classes” and “features” respectively, in machine learning parlance) 

for which probabilities are estimated, occurs at least once in the data used to fit 

(or train) the model. This is unlikely to occur in practice, since ward occupancies 

are integer-valued. MLR on the other hand, will simply interpolate between 

missing values of the ward occupancies, with no extra adjustment to the fitting 

procedure.  

Some more advanced machine learning methods, such as Multiclass Multilayer 

Perceptrons, will also be able to probabilistically assign patients to wards based 

on occupancy data. However, implementing this type of technique is likely to 

require a specialist user who can code it “from scratch”, since at present, the 

overlap between discrete event simulation software and data mining/machine 

learning software is limited (although open source packages for both are 

available in Python). In contrast, an MLR implementation is essentially a system 

of linear equations, which is straightforward to code, and is generally 

understood by a modeller with a reasonable grasp on applied statistics.  

After fitting the appropriate MLR models and implementing the DTMs, Chapter 

5 uses the Δ-Occupancy method to comment on the accuracy of the results 
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generated by the DTM model, and to compare them with the results generated 

by the STM model. Although DTMs are shown to perform well for most of the 

wards, the Intensive Care Unit highlights some limitations that remain with this 

approach. The widening disagreement between the simulated and observed 

occupancy distributions under DTMs suggest that ward occupancies alone are 

not enough to help explain the distribution of midnight occupancy seen in the 

data. For cases like this,  methods which include closer consultation with bed 

managers, such as the priority lists developed in Harper and Shahani (2002), 

could reveal bed placement procedures which are difficult to detect without any 

input from hospital staff. Therefore, a mixed approach, in which data-driven 

methods (e.g. DTMs) are used alongside special-case routing procedures 

informed by expert opinion, might provide a better fit with the data for some 

aspects of the model. 

 

7.3 Conclusions and Further Work 

This thesis has reported the development of a proof-of-concept ODES which 

aims to help hospitals balance emergency and elective bed demand within 

operational planning horizons. Both the conceptual model and the 

parameterisation of the model’s components are data-driven; meaning a 

comparable model could be developed for any hospital collecting similar types 

of data. Additionally, the data requirements are thought to be straightforward to 

satisfy, as the ODES is developed using information which is likely to be 

collected in most modern hospitals. 
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As a result of developing the model, this thesis lays out an overall approach for 

ODES development and validation. Much of this approach is a natural extension 

of DES development, however model validation is a more substantial challenge. 

While validation techniques for classical or “offline” simulations are well-

established, research concerning the validation of online models is much less 

commonplace. This thesis contributes to the theory of online simulation by 

developing a so-called “black-box” method which can be used to validate 

simulations in an online way, where the simulation outputs are treated as time-

dependent. While this is not the first online validation method to do so (Hoot et 

al. (2008) also account for time), this method goes a significant step further by 

carrying out the validation based on empirical distribution functions, rather than 

reducing the comparison to summary statistics. If for example, the modeller’s 

primary interest is in measures of central tendency over time, the difference 

may not be important. However, if more detailed features of the simulated 

distributions are important, as in this application, the Δ-Occupancy method (or 

Δ-Metric method more generally) can help to achieve this. 

This thesis contributes a second technique to the discrete event simulation 

“tool-kit” by demonstrating how Multinomial Logistic Regression can be used to 

detect and model the relationship between server busyness and transition 

probabilities. As Chapter 5 demonstrates, the ward-level distributions of 

midnight occupancy are noticeably improved under DTMs compared to STMs 

(for most wards), in terms of their agreement with the historic data. Additionally, 

the wards which benefit most from this approach are the wards most frequently 

found near their maximum capacity (i.e. with negative skew real occupancy 

distributions). However, the relationship between busyness and entity routing is 
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not unique to hospitals, and parallels can be drawn with systems where 

customers can switch servers if they think they might be served sooner (also 

known as “jockeying”). In more simplistic cases where the servers are 

homogenous resources, or the deferral rules are known, modelling jockeying 

behaviour may not necessitate an MLR-based analysis. However, in more 

complex cases, such as hospitals, simple deferral to the emptiest server (or 

ward) is not always appropriate, and alternative routing rules can be unclear. In 

cases of this type, a data-driven way of obtaining this information reduces the 

modeller’s reliance on subjective sources such as expert opinion (which may 

also be prone to obsolescence), or assumptions in the absence of anything 

else. 

Although Chapter 5 showed that DTMs can be fitted and implemented with 

positive results, it is also worth noting that their use can affect the traceability of 

patient transitions. For example, under STMs, it is a straightforward task to 

understand where the largest patient flows to a particular ward are coming from. 

However, when the probabilities are no longer fixed, this task becomes more 

challenging. Littig and Isken (2007) convey a similar sentiment, noting that their 

predictive occupancy model (POM) is essentially a “black-box” due to 

aggregating the results of many statistical sub-models. This situation can be 

difficult to work with, especially in the context of debugging. One useful method 

is to add tracing variables to the simulation which can help tackle 

parameterisation or debugging issues. For example, a “PreviousWard” entity 

attribute was used in the ODES during early development to better understand 

differences in patient flows between STMs and DTMs, in instances where the 

model was thought to behave unexpectedly. This helped to understand where 
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the new sources of bed demand on each ward were coming from. Hence, if a 

dynamic routing procedure is deemed to be an advantageous modelling 

approach, then liberal collection of diagnostic information should also be 

considered. 

The second case study in Chapter 6 answers the third research question by 

investigating the impact of additional patient information, such as Estimated 

Date of Discharge (EDD), on the estimates generated by the ODES. Since real 

estimates from hospital staff are not present in the patient administrative data, 

patients’ actual length-of-stay, and an accuracy parameter 𝑑, are used together 

to create proxy LOS estimates, whose reliability can be adjusted to reflect the 

subjective nature of setting EDDs. The results show that clinicians’ estimates 

could play an important role in improving the estimates generated by an online 

model, by allowing the detection of days and wards which pose a greater risk 

than would otherwise be detected using the LOS distributions fitted from 

historical data. Conversely, this information can also reduce the predicted risk 

of encountering capacity issues, if for example, hospital staff correctly estimate 

a shorter-than-average LOS for a cohort of patients. 

Chapter 6 also examines the relationship between the accuracy of the additional 

LOS/EDD information and the estimates generated by the ODES. In a series of 

simulation experiments, the accuracy parameter 𝑑 is increased from 0% to 

100% in 25% increments, to represent the reliability of the LOS/EDDs provided 

by hospital staff. The accuracy of the simulation outputs is assessed for each 

value of 𝑑, by calculating the variance of the realisations of midnight occupancy. 

The results show a clear relationship between average LOS and variation, with 
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higher LOS wards seeing greater variance reductions, for the same value of 𝑑. 

This is due to a larger proportion of initialised patients (for whom additional LOS 

information is available) being present throughout the planning horizon, due to 

their longer stays. The results also suggest that if hospital staff cannot correctly 

estimate LOS/EDD more than 25% of the time (approximately), then using this 

information has a negligible effect on the variance of the midnight occupancy 

distributions, and hence the model’s accuracy. Interestingly, this observation 

appears to hold true for all modelled wards, regardless of average LOS. 

If real estimates of LOS/EDD from hospital staff are to be incorporated in an 

operational ODES model, it makes sense that realistic values of 𝑑 should be 

chosen to model the instances where staff make incorrect predictions. To better 

understand the accuracy of EDD assignment, Ou et al. (2011) compare EDDs 

with ADDs (Actual Date of Discharge), using data collected at a tertiary referral 

centre in Australia. Although differences in scope (and obviously collection site) 

mean their results are not directly comparable with this research, the authors 

find that on general wards, 46.5% of patients are discharged on the date of their 

original EDD (the analysis does not include EDD revisions). For stays of up to 

seven days, EDDs are reported to be correct 63.2% of the time, which is an 

encouraging statistic when compared to the minimum required accuracy of 25% 

reported in Chapter 6. However, as might be expected, EDD accuracy sharply 

declines as LOS increases, which suggests that in practice, calibrating 𝑑 at the 

ward level should be considered if average LOS is known to differ by ward. 
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7.3.1 Further Work: Implementation 

While the ODES model reported in this thesis has the potential to help clinicians 

maintain an effective balance between emergency and elective workloads, it 

remains a proof-of-concept which is implemented in specialist discrete event 

simulation software. To be used in an operational environment by non-specialist 

users, steps would need to be taken to improve user-friendliness. An important 

first step would be the inclusion of a graphical user interface for entering the 

details of a proposed elective admissions schedule and any other patient-level 

details, such as EDD. Additionally, a system for collating the midnight 

occupancy realisations into an easily interpretable results dashboard is also 

required, and the contents of such a dashboard would need to be decided in 

consultation with hospital staff. The model might also require re-coding in open-

source software to facilitate wider adoption. 

Another area which would need to be addressed, is the nature of the connection 

with the “live” hospital database which allows the initial conditions of the ODES 

to be loaded at run-time. While a direct software connection would certainly 

facilitate ease-of-use, this could require the development of software so that the 

patient database and the simulation can communicate with each other. Different 

hospitals might also use different brands of database software, potentially 

adding to the challenge. However, with the time-scales on which the simulations 

run (days/weeks), the ability to instantaneously query the hospital database 

might not be as important as it is in other applications. One solution could be to 

read the current bed-state from a formatted text file. While this requires an extra 
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step by the user (exporting the file), the ability to generate a delimited text file 

from a saved query is a common feature in many types of database software. 

Although the ODES has been parameterised to a specific hospital, further work 

is required to calibrate the model for operational use. For instance, the Week 

47 example in Chapter 6 indicated that the demand for beds could exceed 

available capacity by 5.45 bed-midnights (the average over 400 simulation runs) 

over the course of the week, using the elective schedule observed in the PA 

data. This is possible due to the “soft” maximum capacities applied to the 

uncapacitated wards, but in practice these patients would become outliers. The 

Dynamic Transition Matrices contribute towards a more realistic representation 

of outlier patient placement; although it is not possible to completely model a 

process of this complexity. Therefore, a comparison of high occupancy in the 

simulation versus high occupancy in the real hospital should be carried out 

(preferably in consultation with hospital staff) to calibrate the thresholds at which 

preventative action should be taken. In addition to calibrating occupancy-based 

thresholds, the accuracy of any additional (and potentially subjective) 

information should also be calibrated. 

 

7.3.2 Further Work: Research and Development 

In terms of the technical aspects of the ODES, there are a few areas which 

could benefit from further work and development.  

In addition to the “black-box” validation methods which have been used to 

investigate the model’s performance, Pidd (2009) also suggests the use of 
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“open-box” validation, where the structure and components of the model are 

discussed in partnership with real-system experts, to confirm it can address the 

issues they are concerned with. The structure of the ward network, described 

in Chapter 4 as part of the conceptual modelling phase, could potentially benefit 

from this type of validation. An entry criterion (highest average occupancy) was 

used to select a set of modelled wards, which is a pragmatic solution based on 

the contribution of each ward to the performance indicator of interest (midnight 

occupancy). However, some verification of the resulting structure should also 

take place with hospital staff before the model becomes operational. Wards 

such as the Day Case Unit, which have high patient throughput but low average 

occupancy, will not be selected for individual modelling by an occupancy-based 

entry criterion, although they could be relevant to hospital staff for other 

reasons. Further consultation as part of an open-box validation process could 

ensure a mixture of high occupancy wards and wards of special significance, 

are included in the final ODES. 

Although auto-validation methods have not been the focus of this research, an 

appropriate auto-validation component (of the type described by Davis (1998)) 

would be required in operational version of the ODES, to periodically update the 

simulation parameters. Although models exist in the literature which reportedly 

contain such components, such as Hill et al. (2001), the theoretical aspect of 

their development remains a relatively open area of research. Open issues 

include determining when simulation parameters should be updated, and how 

these “update rules” relate to the various components of a discrete event 

simulation; such as arrival patterns, service times and transitions between 

nodes. The functionality of an auto-validation component is also likely to depend 
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on how the ODES connects with the real-system, so these aspects should be 

considered in parallel. 

The patient type classification (emergency/elective) in the model is intentionally 

coarse; focusing on the detail of patients’ locations, rather than their speciality 

or treatment group. While this is a useful starting point for illustrating how 

emergency/elective workloads could be managed, there remains scope for 

further disaggregation into finer patient groupings.  By employing the type of 

classification analysis (CART) proposed by Harper (2002), or another system 

of classification already used by the hospital, there is potential to reduce the 

variance of the simulated midnight census even further. However, this type of 

disaggregation would only be meaningful for the patients on the elective 

admissions schedule, or patients who occupy a bed at run-time. For these 

patients, the benefits of disaggregation could be realised through more accurate 

length-of-stay estimation, or by narrowing the choice of subsequent wards, or 

both. However, it is important to note that disaggregating the simulated 

emergency arrivals is not expected to offer any improvement over the current 

approach, since these patients cannot be classified to a patient type at 

initialisation. 

There are authors (Fetter and Thompson, 1969, Chow et al., 2011) who argue 

that modelling patient transitions based on the current ward oversimplifies the 

patient transition process and does not preserve within-patient correlations 

between patient type, length of stay and patient pathway. Both authors adopt a 

so-called “trace-driven” approach, which samples an entire patient pathway 

from historical data; thereby maintaining these relationships. While the authors’ 
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criticism may be justified, the trace-driven alternative cannot model conditional 

events (such as the occurrence of outlier patients) since the sequence of wards 

is fixed for each simulated patient. However, it may be possible to strike some 

middle ground by adding different types of explanatory variables to the DTMs, 

in addition to ward occupancy. Categorical variables, such as previously visited 

wards, could be added to see if they have any significant relationship with 

transition probability; allowing more complex within-patient dependence 

structures to be modelled. This usage highlights another strength of the MLR-

based approach, since within-patient and between-patient effects on transition 

probability can be modelled alongside each other. 

In Chapter 6, additional LOS information is only applied to the first/current ward 

because patient pathways through the hospital are stochastically generated. 

This make it difficult to split an estimate of total LOS or date of discharge across 

a sequence of wards which is only partially known when the estimate becomes 

available. However, clinicians might also have an idea of the wards each patient 

can expect to visit during their stay, to which an EDD can be applied. While this 

level of detail has not been assumed to exist for the simulation experiments in 

Chapter 6, further consultation with hospital staff could be carried out to assess 

the feasibility of collecting this information as well. As with EDDs, indications of 

ward placement are not expected to be perfectly accurate, and the ODES could 

again be used to model the impact of these inaccuracies. 

Finally, it has been that the impact of alternative schedules could be 

investigated in an iterative way by hospital staff, similar to the process described 

by Vanberkel et al. (2011). However, the structure of the schedules also lend 
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themselves to being formulated as mathematical programmes. If constraints on 

the feasible postponements, cancellations or other types of patient swaps could 

be determined in consultation which hospital staff, an optimisation component 

could be added to the ODES to expedite the search for a schedule which 

minimises BMOC or the probability of demand exceeding maximum capacity. 

Admissions planners would naturally make the final decision as to whether the 

“optimised” schedule should be followed verbatim, or if further adjustments 

should be made, however a component of this type could speed up the search. 

Additionally, since online simulation and simulation-optimisation are both 

relatively new fields of study, considering the intersection of the two might yield 

new areas for research. 

 

 

 



 

220 
 

 Appendix A 

Appendix to Chapter 4 

 

 

Figure A.1.1: Emergency Department 

 

 

Figure A.1.2: Intensive Care 
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Figure A.1.3: Ward 4D 

 

 

Figure A.1.4: Ward 4K 
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Figure A.1.5: Ward 5A 

 

 

Figure A.1.6: Ward 5B 
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Figure A.1.7: Ward 5D 

 

 

Figure A.1.8: Ward 6D 
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Figure A.1.9: Northside 

 

 

Figure A.1.10: Other 
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Figure A.2.1: Ward 4D 
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Figure A.2.2: Ward 5B 
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Figure A.2.3: Intensive Care 
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Figure A.2.4: Ward 5A 
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Figure A.2.5: Ward 6D 
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Figure A.2.6: Ward 4K 
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Figure A.2.7: Northside 
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Figure A.2.8: Other 
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Figure B.1: Ward 4D 
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Figure B.2: Ward 4D 
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Figure B.3: Ward 5B 
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Figure B.4: Ward 5B 
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Figure B.5: Ward 5A 
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Figure B.6: Ward 5A 
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Figure B.7: Ward 6D 
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Figure B.8: Ward 6D 
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Figure B.9: Ward 4K 
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Figure B.10: Ward 4K 
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Figure B.11: Northside 
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Figure B.12: Northside 
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Figure B.13: Other 
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Figure B.14: Other 
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The purpose of this appendix is to summarise the simulation study in a way 

which facilitates the review and reproduction of the model and experiments as 

necessary. In the interest of standardisation, the summary is framed using the 

STRESS-DES Guidelines recommended by Monks et al. (2018). In instances 

where the content of the thesis already satisfies the guidelines, links are 

provided to the relevant sections. 

 

C.1 Objectives 

C.1.1 Purpose of the model 

The online discrete-event simulation (ODES) reported in this thesis is designed 

to investigate the impact of admissions scheduling decisions on short-term bed 

demand (via the midnight bed census), within a network of wards where bed 

resources may be pooled for emergency and elective care. For further details 

see Section 1.4 (Expected Contributions) and Section 2.5 (Research 

Questions). 

 

C.1.2 Model Outputs 

The primary output generated by the ODES are the realisations of the midnight 

bed census for each modelled ward and patient type (emergency/elective 

admission status). Key transformations of this data include: 
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1. The Δ-occupancy random variable for validating simulations whose 

outputs follow time-dependent distributions (see Section 4.7.4) 

2. The estimated probability of bed demand exceeding available capacity 

(see Section 6.2.2) 

3. Bed-Midnights Over Capacity (BMOC) which summarises (across all 

wards) the average number of midnights for which bed demand exceeds 

available capacity, multiplied by the extra beds which would be required 

to satisfy demand (see Section 6.2.2).  

The computation of other statistics, such as prediction intervals which help to 

assess the validity of the offline model, are sufficiently described in the relevant 

sections of this thesis. 

 

C.1.3 Experimentation Aims 

Seven simulation experiments are conducted and reported in the body of this 

thesis: 

• Experiment 1 - Offline Model Validation: This experiment assesses the 

validity of the offline model over longer simulation runs before the state-

matching component of the online model is added. The Base Model 

(offline) with Static Transition Matrices (STMs) is used in this simulation 

experiment. For further details, see Section 4.5. 

• Experiment 2 - Online Model Validation: This experiment assesses the 

validity of the online model over one-week intervals, initialised with each 

of the 560 hospital states observed in the patient administration 

database. This experiment also demonstrates the use of the Δ-
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occupancy technique for validating models with time-dependent outputs. 

Performance is judged on how well the Δ-occupancy distributions fit the 

same distributions generated by the PA data. The Base Model (online) 

with STMs is used in this simulation experiment. For further details, see 

Section 4.7. 

• Experiment 3 - STMs vs DTMs: In this simulation experiment, the effect 

of implementing Dynamic Transition Matrices (DTMs) which respond to 

bed occupancy levels, is investigated. The Base Model (online) with 

STMs is compared against the same model, instead using the DTM 

routing policy. Performance is judged on how well the Δ-occupancy 

distributions fit with the same distributions generated by the PA data. For 

both the STM and DTM runs, the structure of the experiment (initial 

conditions, run length and number of replications) is the same as 

Experiment 2. For further details, see Section 5.4. 

• Experiment 4 - High Risk Plans: This scenario-based experiment 

demonstrates how the ODES could be used to reduce the risk of 

encountering capacity related issues over the course of a one-week 

planning horizon. The Base Scenario is the online model (with DTMs), 

using the elective admissions pattern which is observed in the PA data 

during Week 47. Two alternative scenarios are tested. The 

Postponement Schedule allows postponements to be made with respect 

to the observed schedule. The Postponement and Cancellation 

Schedule allows both postponements and cancellations to be made with 

respect to the observed schedule. Performance is judged on the 
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estimated probability of bed demand exceeding available capacity, and 

BMOC. For further details, see Section 6.2. 

• Experiment 5 - Additional Information and Observed Schedules: This 

scenario-based experiment assesses how clinicians’ estimates of length-

of-stay could affect the estimated probability of bed demand exceeding 

capacity. Two Base Scenarios are considered using the online model 

with DTMs; the pattern of observed elective admissions for Week 47 and 

Week 53.  For each Base Scenario, alternative scenarios are tested by 

increasing the accuracy of clinicians’ estimates from 𝑑=0 to 𝑑=0.5, and 

again to 𝑑=0.75, to illustrate the impact of incorporating additional length-

of-stay information from clinicians, on the probability of encountering 

capacity issues. Performance is judged on the estimated probability of 

bed demand exceeding available capacity, and BMOC. For further 

details, see Section 6.3.2. 

• Experiment 6 - Additional Information and Alternative Schedules: This 

scenario-based experiment combines alternative scenarios from 

Experiment 4 and Experiment 5, to test the effect of using additional 

information (𝑑=0.75) on the Postponement and Cancellation Schedule. 

The purpose is to assess whether further action could be taken to reduce 

the probability of encountering capacity issues, while also considering 

clinicians’ estimates of length-of-stay. For further details, see Section 

6.3.3. 

• Experiment 7 - Variance Reduction: This scenario-based experiment 

assesses how the accuracy of clinicians’ estimates of length-of-stay, 

translate to reductions in the variance of the midnight bed census. The 
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Base Scenario is the online model with DTMs and 𝑑=0, initialised every 

Monday, and run for the entire 560-day observation period. Alternative 

scenarios are generated by increasing 𝑑 from 0 to 1 by 0.25 increments. 

Performance is judged on the variance of midnight occupancy, averaged 

over each day of the week, and the reduction in average variance, 

relative to the 𝑑=0 model. For further details, see Section 6.3.4. 

 

C.2 Logic 

C.2.1 Base model overview diagram 

A diagram of the generic model structure can be found in Section 4.3.6 

(Conceptual Model Diagram). A diagram of the wards which have been selected 

for individual modelling (from the PA data) can be found in Section 4.4.1 

(Modelled Wards). 

 

C.2.2 Base model logic 

The base model logic is described in this thesis two parts. The first part consists 

of a description of the offline model, including arrival patterns (Section 4.4.2), 

length-of-stay (Section 4.4.3) and transitions between wards (Section 4.4.4). 

The second part consists of a description of the components required to bring 

the offline model online, including loading the real hospital state at initialisation 

(Section 4.6.1) and conditional length-of-stay distributions (Section 4.6.2). 
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C.2.3 Scenario logic 

Two alternative scenarios are tested which change the base model’s logic. The 

first alternative is the use of Dynamic Transition Matrices to govern patient 

transfers between wards (see Chapter 5). The second alternative evaluates the 

impact of using additional information to make better LOS predictions. This is 

applied to the patients occupying a bed at the time the ODES is initialised, and 

the elective patients which arrive during the planning period (see Chapter 6: 

Case Study 2). Other alternative scenarios are tested which include changes to 

the elective admissions schedules, however these do not change the logic of 

the base model. 

 

C.2.4 Algorithms 

Two important algorithms are used to draw realisations from empirical length of 

stay distributions. These algorithms are not included in Micro Saint Sharp by 

default. 

1. SampleECDF: Uses the so-called Inversion Method (Devroye, 1986) to 

draw realisations from an empirical distribution function. In the C# code 

below, “ECDF” is a list containing values of the cumulative distribution. 

For example, the entry in the list for which ECDF{i}=0.5 is the median.  

double U=Distributions.Rectangular(0.5,0); 

int index=0; 

double Prob=ECDF[index]; 

while(U>Prob){ 

index++; 

Prob=ECDF[index];  

} 

return index; 
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2. ScaleECDF: Re-scales the ECDF to account for time already spent on 

the ward for the simulated patients loaded at initialisation. The algorithm 

requires an ECDF to be passed to it in the form of a list (as does 

SampleECDF), and an integer number of midnights already spent on the 

ward at the time of initialisation (ScaleTo). The algorithm returns a 

conditional distribution in the form of a new list which can be passed to 

SampleECDF for sampling remaining LOS. This is an implementation of 

Equation 4.3 (see Section 4.6.2). 

//Handles the instance where no scaling is required. 

if(ScaleTo==0){return ECDF;} 

 

//Handles the instance where LOS_to_Date is already greater 

than the support of the LOS distribution.  

//In this case patients’ remaining LOS should be zero. 

else if((int)ScaleTo>=ECDF.Count){ 

 var SubECDF = new List<double>(); 

 SubECDF.Add(1); 

 return SubECDF; 

} 

//Handles the case where LOS_to_Date is non-zero, but 

within the range of the empirical distribution. 

else{ 

 var SubECDF = new List<double>(); 

 SubECDF=ECDF.GetRange((int)ScaleTo,(int)(ECDF.Count

-ScaleTo)); 

 for(int i=0; i<=SubECDF.Count-1; i++){ 

  SubECDF[i]=SubECDF[i]-ECDF[(int)ScaleTo-1]; 

 } 

 for(int i=0; i<=SubECDF.Count-1; i++){ 

  SubECDF[i]=SubECDF[i]/(1-ECDF[(int)ScaleTo-

1]); 

 } 

 return SubECDF; 

} 
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C.2.5 Components 

C.2.5.1 Entities 

Patients are represented by simulation entities. All simulation entities in the 

model represent patients moving through the ward network. Every simulation 

entity is given the following attributes listed in Table C.1 upon creation. 

 

Attribute Description Values 

Entity.PatientType Identifies whether an entity 
has emergency or elective 
admission status. 

“Emer”, “Elec”. 

Entity.ArrivalDay Weekday of arrival to the 

current ward. This informs 

the distribution from which 

realisations of LOS are 

drawn. 

“Monday”, “Tuesday”, 

“Wednesday”, 

“Thursday”, “Friday”, 

“Saturday”, “Sunday”. 

Entity.FirstWard For elective patients, this is 

the ward identifier for the 

scheduled ward of arrival. 

The wards are identified 

using numbered strings. 

Defaults to blank for 

emergency patients. 

“1” (ED), “2” (IC), “3” 

(4D), “4” (4K), “5” (5A), 

“6” (5B), “7” (5D), “8” 

(6D), “9” (Northside), 

“10” (Other). 

Entity.PrevWard Identifier for the previously 
visited ward. This is 
especially important for the 
patients loaded at 
initialisation, and the first 
ward-stay for the elective 
patients, since it determines 
whether additional LOS 
information will be used. 

“Loaded”,”Scheduled”, 
“1” (ED), “2” (IC), “3” 
(4D), “4” (4K), “5” (5A), 
“6” (5B), “7” (5D), “8” 
(6D), “9” (Northside), 
“10” (Other). 

Entity.LOS_to_Date Assigns the time already 
spent on the current ward 
for the entities loaded at 
initialisation, in whole 
midnights. Defaults to zero 
for patients which are 
created after initialisation. 

Integer ≥ 0 

Entity.LOS_Rem Assigns the estimate of 
remaining LOS on the 
current ward (initialised 

Integer ≥ 0 
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Attribute Description Values 

entities) or the estimate of 
LOS on the first ward 
(elective entities), in whole 
midnights. In practice, this 
would be loaded with 
clinicians’ estimates. 
Presently, it is loaded with 
real midnights-remaining 
from the PA data. 

Table C.1: Attributes of each simulation entity or simulated patient. 

 

C.2.5.2 Activities 

Simulation entities (patients) engage in a series of ward stays between 

admission and discharge (Entry/Exit). The sequence of ward stays is governed 

by routing probabilities, except for the current/first ward for the loaded/elective 

entities. The details of the routing probabilities when Static Transition Matrices 

are used are detailed in Section 4.4.4. Dynamic Transition Matrices are also 

used to govern patient transitions in a way which responds to ward occupancy. 

An overview of the multinomial logistic regression models which compute the 

transition probabilities as a function of ward occupancy is provided in Section 

5.3.2. Details of the equations, including estimated regression coefficients, are 

listed in Appendix D in Section D.1 for the emergency patients and Section D.2 

for the elective patients.  

 

C.2.5.3 Resources 

The resources used by the simulated patients are the ten modelled wards 

detailed in Section 4.4.1. 
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C.2.5.4 Queues 

There are no queues modelled in the simulation since all wards are treated as 

uncapacitated servers. 

 

C.2.5.5 Entry/Exit Points 

For the emergency patients, a dummy entry node exists (with a service time of 

zero) which routes patients to their first ward based on the transition 

probabilities estimated from the data (STMs and DTMs). For the elective 

patients, a dummy node also exists, although the routing rules are deterministic, 

based on the admission ward from the elective admissions in the PA data.  

Details of the arrival mechanisms are discussed in Section 4.4.2. 

 

C.3 Data 

C.3.1 Data Sources 

The data which parameterises the ODES is an extract of the patient 

administration database from an Australian General Hospital, which is routinely 

collected. The raw extract contains information for all patients who occupy a 

bed between the 1st of January 2010, and the 30th of June 2012. 

 

C.3.2 Pre-processing 

The pre-processing steps which ready the database for use in parameterising 

the ODES model are discussed in Section 3.3 (Scope and Filtering) and Section 

3.4 (Preliminary Analysis). After the data pre-processing is complete, the 
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database which is used to parameterise the model covers the period from the 

22nd of March 2010 to the 3rd of October 2011, and contains data relating to 

16,276 distinct inpatient episodes. 

 

C.3.3 Input parameters 

The main input parameters for the ODES model are the arrival processes, 

length-of-stay distributions and ward transition probabilities. Since the details of 

the ward transition probabilities have already been discussed earlier within this 

appendix (Section C.2.5.2), this section focuses on the details of patient arrivals 

to simulated hospital, and the length-of-stay distributions used on each ward. 

 

Emergency Admissions 

As discussed in Section 4.3.5 (Uncontrolled Variables) and Section 4.4.2 

(Modelling Arrivals), the number of emergency admissions per day is 

determined by empirical distributions generated from the PA data. Within-day 

admission patterns are not considered because bed occupancy is only captured 

at once per day, at midnight. Figure C.1 charts the empirical CDFs which govern 

the number of emergency arrivals for each day of the week. Table C.2 lists the 

values of the ECDFs explicitly. 
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Figure C.1:  Empirical CDFs of the number of emergency admissions per day, by day of the 

week. The ODES draws from one of these CDFs each day, depending on the week day being 

simulated. 

 

 Cumulative Distribution of the Number of Emergency Admissions 

Admissions Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

10 0.000 0.000 0.000 0.000 0.000 0.013 0.013 

11 0.000 0.000 0.000 0.000 0.000 0.013 0.013 

12 0.013 0.000 0.013 0.000 0.000 0.013 0.025 

13 0.013 0.000 0.025 0.000 0.000 0.038 0.050 

14 0.025 0.025 0.038 0.000 0.050 0.100 0.113 

15 0.025 0.025 0.050 0.013 0.088 0.150 0.188 

16 0.075 0.038 0.100 0.050 0.113 0.200 0.250 

17 0.100 0.075 0.125 0.075 0.150 0.288 0.350 

18 0.138 0.175 0.238 0.113 0.188 0.400 0.500 

19 0.163 0.250 0.300 0.175 0.263 0.538 0.613 

20 0.213 0.300 0.350 0.250 0.350 0.688 0.713 

21 0.263 0.375 0.388 0.338 0.413 0.775 0.763 

22 0.338 0.438 0.488 0.488 0.500 0.813 0.788 

23 0.463 0.538 0.588 0.600 0.613 0.888 0.850 

24 0.563 0.588 0.663 0.638 0.675 0.975 0.875 

25 0.663 0.750 0.725 0.750 0.738 0.988 0.938 

26 0.763 0.775 0.800 0.850 0.775 0.988 0.963 

27 0.813 0.825 0.838 0.875 0.838 0.988 0.963 

28 0.863 0.850 0.875 0.900 0.888 0.988 0.975 

29 0.925 0.875 0.900 0.913 0.963 0.988 0.988 

30 0.925 0.900 0.925 0.938 0.975 0.988 1.000 

31 0.925 0.950 0.938 0.963 0.988 0.988  

32 0.938 0.975 1.000 0.975 0.988 1.000  

33 0.950 0.975  0.975 0.988   
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 Cumulative Distribution of the Number of Emergency Admissions 

Admissions Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

34 0.975 0.975  1.000 0.988   

35 0.975 0.988   1.000   

36 0.988 0.988      

37 0.988 0.988      

38 0.988 0.988      

39 0.988 0.988      

40 0.988 0.988      

41 0.988 0.988      

42 0.988 0.988      

43 0.988 0.988      

44 0.988 1.000      

45 0.988       

46 0.988       

47 0.988       

48 0.988       

49 1.000       

Table C.2: Listing of the values of the ECDFs from which the number of emergency admissions 

each day is drawn. 

 

Elective Admissions 

The elective admissions occur deterministically from schedule stored as an 

array within the ODES model. The “base case” data is the admissions pattern 

extracted from the PA data. Alternatives can be tested by entering user-defined 

schedules, as is the case for Experiment 4 and Experiment 6 (see Section C.1.3 

of this appendix). Any admissions schedule consists of one row for each 

admitted patient and requires the admission date as an integer and the 

admission ward using its numeric identifier. Additionally, the schedule can 

contain an estimate of the LOS (in midnights) for the admitting ward, as is the 

case for Experiments 5 - 7.  

Storing the admission date as an integer is a common way of handling date 

calculations in data software such as Microsoft Excel or SAS. In Excel, dates 

are stored as the number of days since January 1st, 1900 which is also how 
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dates are stored in the elective admissions schedule. Table C.3 shows an 

example schedule in which two patients are admitted on two different days.  

Admission Day 
Ward of First Admission 

(Entity.FirstWard) 
Estimated LOS on First Ward 

(Entity.LOS_Rem) 

40588 (14/02/2011) “4” (Ward 4K) 3 

40589 (15/02/2011) “6” (Ward 5B) 1 

Table C.3: Example elective admissions schedule in which two patients are admitted over two 

days. The column headings indicate the entity attributes set by the schedule. 

 

Length of Stay 

The length of stay distributions for each modelled ward are graphed and listed 

in Appendix E; in Section E.1 for the emergency patients, and Section E.2 for 

the elective patients. 

 

Accuracy of Length of Stay (d) 

In Experiments 5 – 7 (Section 6.3.2 – Section 6.3.4) additional LOS information 

is added to the simulation via the elective admissions schedule and the state 

loaded at initialisation. Since this information is taken from the observations of 

LOS in the PA data, the parameter 𝑑 is used to model the uncertainty associated 

with clinicians’ LOS estimates. This parameter could also be used in an 

operational setting, if calibrated by real estimates of clinicians’ LOS prediction 

accuracy. In the ODES model, 𝑑 is a single floating-point number, set globally 

by the user for the whole hospital. For further details, refer to the simulation 

experiments reported in Chapter 6 (Case Study 2) which make use of this input 

parameter. 
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C.3.4 Assumptions 

Few assumptions are made in the development on the ODES, since the level 

of detail of the conceptual model is well supported by the PA data. However, 

one abstraction is the use of “uncapacitated” or “infinite server” nodes in the 

simulation to represent wards in the real hospital. Modelling wards in this way 

allows for the straightforward calculation of the probability of bed demand 

exceeding available capacity, and other capacity-related metrics such as the 

average bed-midnights over capacity (BMOC). See Section 4.3.3 

(Uncapacitated Wards) for a discussion of the use of uncapacitated wards, and 

the case studies reported in Chapter 6 for examples of how they can be used 

to inform operational decision making. 

 

C.4 Experimentation 

C.4.1 Initialisation 

The ability to load the current system state at initialisation is one of the core 

properties of an online simulation. In this application, the initial conditions are 

loaded from a patient-level array which contains one record (or row) for each 

patient occupying a bed at run-time. Within each row, the columns set the 

attributes of each initialised patient; including initialisation time, the ward 

identifier for where the patient is staying, the day of the week when the ward-

stay began, and the time already spent on the ward. Separate arrays are 

created for the emergency and elective patients; therefore, the patient type 

attribute is set based on which array is queried at run-time.  
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In its current form, the ODES contains sets of initial conditions (deterministic), 

taken from the PA data, which can be queried at run-time for the purpose of 

validation and experimentation. However, in practice, a connection with the real 

patient database should be established to initialise the model, including queries 

to transform the raw data as necessary. Table C.4 provides an example of an 

array which would load three patients at initialisation on the 23rd of March 2010. 

Initialisation 

Day 

Current Ward 
(Entity.FirstWard) 

Midnights spent 

on Current Ward  
(Entity.LOS_to_Date) 

Weekday of 

Arrival on 

Current Ward 
(Entity.ArrivalDay) 

Estimated 

remaining LOS 

on Current Ward 
(Entity.LOS_Rem) 

40259 

(22/03/2010) 
“2” (ICU) 1 “Sunday” 0 

40259 

(22/03/2010) 
“5” (Ward 5A) 37 “Saturday” 7 

40259 
(22/03/2010) 

“6” (Ward 5B) 16 “Saturday” 18 

Table C.4: Example array which would load three patients to three distinct wards at initialisation. 

The column headings indicate the entity attributes set by the array of initial conditions. 

 

For the experiments using the ODES, the simulation terminates after seven 

days. However, this run length is not determined by any physical property of the 

system being modelled (such as closing time, or scheduled jobs completed) but 

rather the period for which the initial conditions continue to influence the 

simulation outputs. In Section 4.7.2, it is shown that the variance of the midnight 

occupancy predictions is similar to that of an equivalent offline model after 

running for more than seven days. Therefore, the value of using this ODES 

model lies within one-week (or shorter) planning horizons. 

Although the ODES is used for most of the simulation experiments reported in 

this thesis, Experiment 1 is concerned with validating the offline model, and 
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therefore warm-up period data is generated during this experiment. The length 

of the warm-up period is determined visually, by charting the midnight census 

time-series. See Section 4.5.2 for the details of the warm-up period associated 

with the offline model. 

 

C.4.2 Run length 

Run length and number of replications are noted within the run configuration 

section which precedes each simulation experiment. Experiments either 

simulate the full 560-day observation period or selected one-week planning 

horizons. See Section C.1.3 of this appendix for references to each of the 

experimentation sections, which state the run length and number of replications. 

 

C.4.3 Estimation Approach 

All simulation experiments use multiple replications to account for stochastic 

variation in the output data (midnight occupancy). When the full 560-day 

observation period is simulated (offline and online models), 100 replications are 

executed. When one-week planning horizons are simulated to investigate the 

impact of alternative admissions schedules, or the effect of additional patient 

information, 400 replications are executed. The shorter run length means that 

computational effort can be allocated to increasing the number of replications, 

resulting in smoother approximations of the distributions of midnight occupancy. 
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C.5 Implementation 

C.5.1 Software or programming language 

The simulation models reported in this thesis are developed and run in Micro 

Saint Sharp version 3.6 (build 3.6.4.528). Micro Saint Sharp is a commercial 

DES software package and is not open source. 

 

C.5.2 Random sampling 

To generate pseudo-random numbers Micro Saint Sharp uses the 

System.Random call within the Microsoft .NET framework. The algorithm 

implemented within this class is based on the subtractive random number 

generator reported by Knuth (1998). 

 

C.5.3 Model execution 

The parallel execution facility within Micro Saint Sharp has been used for all 

simulation experiments to decrease real experiment run time. 

 

C.5.4 System specification 

All simulation experiments in were conducted on a Windows 7 PC using an Intel 

Core i3 CPU (2.4 GHz, 2 Cores) with 4 GB of installed physical memory. 

Approximate run-times for each simulation experiment are listed in Table C.5. 

 

 

 



Appendix C 

Reviewer’s Guide (STRESS-DES) 

 

 

265 
 

 Run Length 
Number of 

Replications 
Run-time 

Experiment 1 560 simulated days 100 ~12 minutes 

Experiment 2 560 simulated days 100 ~12.5 minutes 

Experiment 3 560 simulated days 100 ~15 minutes 

Experiment 4 7 simulated days 400 ~40 seconds 

Experiment 5 7 simulated days 400 ~40 seconds 

Experiment 6 7 simulated days 400 ~40 seconds 

Experiment 7 560 simulated days 100 ~15 minutes 
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Appendix D 

Fitted MLR Models 

 

In this appendix, the systems of equations which define the Dynamic Transition 

Matrices are reported in detail, including estimates of the regression 

coefficients, and an example of the SAS code used to fit them. In Sections D.2 

and D.3, the left-hand side of each equation is defined in terms of the numeric 

identifier for the ward. The concordance between numeric identifier and ward 

name is as follows: 

1. Emergency Department 

2. Intensive Care Unit 

3. Ward 4D 

4. Ward 4K 

5. Ward 5A 

6. Ward 5B 

7. Ward 5D 

8. Ward 6D 

9. Northside ward 

10. Other ward 

11. Exit/Discharge 

In instances where an equation is set identically equal to zero, this is to either 

prevent reflexive transfers, or because no transfer between the wards was 

observed in the PA data. 
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D.1 MLR Fitting using AIC 

The following SAS code fits the MLR which governs transitions away from the 

Emergency Department, for the emergency patients, which can be thought of 

as a single row of probabilities in the DTM. The same procedure is used for all 

other wards. 

*1. Read in data of the form shown in Figure 5.1, keeping records for 

the emergency patients who transition from the Emergency Department; 

PROC LOGISTIC DATA = TransfersOccupancy 

       (WHERE = (LocationID="ED" and Admission_Type=’Emer’)); 

*2. Specify Next_LocationID as a categorical variable, with "Exit" as 

the reference outcome; 

CLASS Next_LocationID (REF = "Exit") / PARAM = REF; 

*3. Set the dependent (LHS) and explanatory (RHS) variables and the 

link function between them (generalised logit). All wards are to be 

considered in the sequential search, including their two-factor 

interaction terms (using the “@ 2” syntax); 

MODEL Next_LocationID = ED | IC | WARD4D | WARD4K | WARD5A | WARD5B |  

WARD5D | WARD6D| NORTHSIDE | OTHER @ 2 /  

LINK = GLOGIT; 

*4. Set the variable selection method and the p-values for entering 

and remaining in the model. As mentioned previously, p-values are not 

the primary selection criteria, however setting relatively high p-

values eliminates the least significant variables from the search and 

speeds up the procedure. 

SELECTION = Stepwise SLENTRY=0.5 SLSTAY=0.5; 

*5. Create two datasets which contain the results of the procedure. 

SUM reports the variables which enter or are removed during the stepwise 

search. FIT contains the AIC which is evaluated each time a variable 

enters or is removed.  

ODS OUTPUT ModelBuildingSummary=SUM; ODS OUTPUT FitStatistics=FIT; 

RUN; 
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*6. Select the model summary which minimises the AIC, by combining the 

SUM and FIT datasets. 

PROC SQL; 

 CREATE TABLE OPT_AIC1 AS SELECT 

  A.CRITERION, 

  A.INTERCEPTONLY, 

  A.INTERCEPTANDCOVARIATES, 

  A.STEP AS MODEL_NUM, 

  B.STEP AS VAR_NUM, 

  B.EFFECTENTERED, 

  B.EFFECTREMOVED, 

  B.NUMBERINMODEL, 

  MIN(A.INTERCEPTANDCOVARIATES) AS OPT_AIC 

 FROM FIT AS A LEFT JOIN SUM AS B 

 ON A.STEP>=B.STEP 

WHERE A.CRITERION='AIC' AND A.INTERCEPTANDCOVARIATES LT 

A.INTERCEPTONLY 

 ORDER BY A.STEP,B.STEP; 

  

 CREATE TABLE OPT_AIC2 AS SELECT * FROM OPT_AIC1 

 WHERE INTERCEPTANDCOVARIATES=OPT_AIC;  

QUIT;  
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D.2 MLR models for the Emergency Patients 

 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Entry 

Num1=Math.Exp(39.196+0.0731*ED+-0.7421*IC+0.1368*Ward4D+0.0598*Ward4K+-

0.0418*Ward5A+0.00465*Ward4K*Ward5A+-0.082*Ward5B+-0.00431*ED*Ward5B+0.02*IC*Ward5B+-

0.00671*Ward4K*Ward5B+-1.1998*Ward5D+0.00101*Ward5B*Ward5D+-

1.4196*Ward6D+0.049*Ward5D*Ward6D+0.5473*Northside+-0.0111*Ward4D*Northside+-

0.00734*Ward5D*Northside+-0.1143*Other+0.0127*IC*Other); 

 

Num2=Math.Exp(5.9939+-0.3115*ED+-

0.1582*IC+0.0882*Ward4D+0.6134*Ward4K+0.2665*Ward5A+-

0.0241*Ward4K*Ward5A+0.1213*Ward5B+0.0074*ED*Ward5B+-

0.00175*IC*Ward5B+0.00335*Ward4K*Ward5B+-0.4628*Ward5D+-0.0096*Ward5B*Ward5D+-

1.522*Ward6D+0.0538*Ward5D*Ward6D+1.9607*Northside+0.000207*Ward4D*Northside+-

0.064*Ward5D*Northside+-0.0159*Other+0.00237*IC*Other); 

 

Num3=Math.Exp(8.1549+-0.096*ED+0.368*IC+0.3982*Ward4D+0.5289*Ward4K+-0.0372*Ward5A+-

0.00353*Ward4K*Ward5A+-0.0151*Ward5B+0.00341*ED*Ward5B+-0.00037*IC*Ward5B+-

0.017*Ward4K*Ward5B+-0.8133*Ward5D+0.00581*Ward5B*Ward5D+-

0.8593*Ward6D+0.0263*Ward5D*Ward6D+1.6016*Northside+-0.0466*Ward4D*Northside+-

0.0135*Ward5D*Northside+0.2842*Other+-0.03*IC*Other); 

 

Num4=Math.Exp(-4.0615+-0.3726*ED+1.1627*IC+0.0778*Ward4D+0.4858*Ward4K+-

0.0469*Ward5A+0.00481*Ward4K*Ward5A+0.6352*Ward5B+0.0127*ED*Ward5B+-
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

0.0363*IC*Ward5B+-0.0236*Ward4K*Ward5B+-0.4283*Ward5D+-0.00648*Ward5B*Ward5D+-

0.5797*Ward6D+0.0205*Ward5D*Ward6D+0.2423*Northside+-

0.00728*Ward4D*Northside+0.000435*Ward5D*Northside+0.0878*Other+-0.00134*IC*Other); 

 

Num5=Math.Exp(7.2811 +0.0772*ED +0.114*IC +0.1268*Ward4D +1.0425*Ward4K 

+0.0482*Ward5A +-0.0256*Ward4K*Ward5A +0.0815*Ward5B +-0.00452*ED*Ward5B 

+0.0184*IC*Ward5B +-0.0166*Ward4K*Ward5B +-0.6802*Ward5D +-0.00078*Ward5B*Ward5D +-

0.8563*Ward6D +0.0308*Ward5D*Ward6D +0.6534*Northside +-0.0115*Ward4D*Northside +-

0.0111*Ward5D*Northside +0.3302*Other +-0.0415*IC*Other); 

 

Num6=Math.Exp(17.8118 +0.0705*ED +0.3421*IC +0.0738*Ward4D +0.4051*Ward4K +-

0.2515*Ward5A +0.0177*Ward4K*Ward5A +0.8477*Ward5B +-0.00483*ED*Ward5B +-

0.0162*IC*Ward5B +-0.0309*Ward4K*Ward5B +-0.8286*Ward5D +-0.0157*Ward5B*Ward5D +-

1.5996*Ward6D +0.0552*Ward5D*Ward6D +0.9986*Northside +-0.0151*Ward4D*Northside +-

0.0218*Ward5D*Northside +0.0221*Other +0.000692*IC*Other); 

 

Num7=Math.Exp(8.409 +-0.1707*ED +0.115*IC +0.3511*Ward4D +0.8396*Ward4K +-

0.0257*Ward5A +-0.00036*Ward4K*Ward5A +0.3826*Ward5B +0.00687*ED*Ward5B +-

0.00393*IC*Ward5B +-0.0312*Ward4K*Ward5B +-0.805*Ward5D +-0.00471*Ward5B*Ward5D +-

1.317*Ward6D +0.0435*Ward5D*Ward6D +1.9163*Northside +-0.035*Ward4D*Northside +-

0.0348*Ward5D*Northside +0.1488*Other +-0.00906*IC*Other); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Num8=Math.Exp(-27.2634 +0.0893*ED +1.1856*IC +0.3954*Ward4D +0.6745*Ward4K +-

0.00679*Ward5A +-0.0122*Ward4K*Ward5A +0.3578*Ward5B +-0.00241*ED*Ward5B +-

0.0304*IC*Ward5B +-0.0189*Ward4K*Ward5B +0.1691*Ward5D +0.0025*Ward5B*Ward5D 

+0.5028*Ward6D +-0.023*Ward5D*Ward6D +0.541*Northside +-0.0362*Ward4D*Northside 

+0.0179*Ward5D*Northside +0.1594*Other +-0.0177*IC*Other); 

 

Num9=Math.Exp(19.9881 +0.0456*ED +-0.662*IC +-0.0322*Ward4D +0.3854*Ward4K 

+0.0885*Ward5A +-0.00516*Ward4K*Ward5A +0.8242*Ward5B +-0.00256*ED*Ward5B 

+0.0181*IC*Ward5B +-0.00991*Ward4K*Ward5B +-0.6182*Ward5D +-0.0303*Ward5B*Ward5D +-

1.793*Ward6D +0.0623*Ward5D*Ward6D +0.3051*Northside +0.00232*Ward4D*Northside +-

0.0113*Ward5D*Northside +-0.0775*Other +0.0092*IC*Other); 

 

Num10=1/(1 +Num1 +Num2 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num9); 

 

if(Location==1){return Num1*Num10;} 

else if(Location==2){return Num2*Num10;} 

else if(Location==3){return Num3*Num10;} 

else if(Location==4){return Num4*Num10;} 

else if(Location==5){return Num5*Num10;} 

else if(Location==6){return Num6*Num10;} 

else if(Location==7){return Num7*Num10;} 

else if(Location==8){return Num8*Num10;} 

else if(Location==9){return Num9*Num10;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

else if(Location==10){return Num10;} 

else{return 0;} 

Emergency Department (ED) 

Num2=Math.Exp(9.3342 +-0.2542*Ward5D +-0.0705*Other +-0.2915*Ward4D +0.6459*Ward5B +-

0.2878*Ward5A +0.0122*ED +0.3688*Ward6D +-1.8121*IC +0.0607*Ward4D*IC +-0.0666*Ward4K 

+-0.0111*Ward4D*Ward5B +0.0011*Ward5D*Ward4D +-0.00105*Ward5B*Ward5A 

+0.00834*Ward5D*Ward5A +-0.00101*Ward5D*Other +0.00252*Ward5D*Ward4K +-

0.00343*Other*ED +-0.0128*Ward5B*Ward6D); 

  

Num3=Math.Exp(20.9576 +-0.379*Ward5D +-0.2206*Other +-0.2097*Ward4D +0.2967*Ward5B +-

0.6219*Ward5A +-0.0346*ED +0.1574*Ward6D +-0.9896*IC +0.0324*Ward4D*IC +0.3454*Ward4K 

+-0.0099*Ward4D*Ward5B +0.00164*Ward5D*Ward4D +0.00509*Ward5B*Ward5A 

+0.0137*Ward5D*Ward5A +0.00591*Ward5D*Other +-0.0132*Ward5D*Ward4K +-0.00209*Other*ED 

+-0.00589*Ward5B*Ward6D); 

 

Num4=Math.Exp(23.5242 +-0.2879*Ward5D +0.0702*Other +-0.5232*Ward4D +0.1753*Ward5B +-

0.5369*Ward5A +-0.0319*ED +0.2024*Ward6D +-1.3928*IC +0.049*Ward4D*IC +0.0584*Ward4K 

+0.00549*Ward4D*Ward5B +-0.00342*Ward5D*Ward4D +-0.00373*Ward5B*Ward5A 

+0.0182*Ward5D*Ward5A +-0.00652*Ward5D*Other +-0.00249*Ward5D*Ward4K +-

0.00211*Other*ED +-0.00728*Ward5B*Ward6D); 

 

Num5=Math.Exp(36.5854 +-0.6878*Ward5D +0.0975*Other +-0.7564*Ward4D +0.1786*Ward5B +-

0.9159*Ward5A +-0.077*ED +0.1982*Ward6D +-1.4821*IC +0.0528*Ward4D*IC +0.1057*Ward4K 

+0.00608*Ward4D*Ward5B +0.00554*Ward5D*Ward4D +-0.0051*Ward5B*Ward5A 



 

 

2
7

3
 

 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

+0.0287*Ward5D*Ward5A +-0.00747*Ward5D*Other +-0.00383*Ward5D*Ward4K +-0.001*Other*ED 

+-0.00683*Ward5B*Ward6D); 

 

Num6=Math.Exp(15.6085 +-0.3905*Ward5D +-0.1693*Other +-0.6054*Ward4D +0.4031*Ward5B 

+-0.353*Ward5A +-0.0779*ED +0.561*Ward6D +-1.0994*IC +0.0384*Ward4D*IC +0.2871*Ward4K 

+0.00575*Ward4D*Ward5B +0.00396*Ward5D*Ward4D +-0.00675*Ward5B*Ward5A 

+0.0149*Ward5D*Ward5A +0.00196*Ward5D*Other +-0.00975*Ward5D*Ward4K +-

0.00019*Other*ED +-0.0192*Ward5B*Ward6D); 

 

Num7=Math.Exp(21.4872 +-0.2098*Ward5D +-0.4093*Other +-0.00375*Ward4D +0.0471*Ward5B 

+-0.7331*Ward5A +-0.1485*ED +0.3275*Ward6D +-0.9867*IC +0.0344*Ward4D*IC 

+0.3966*Ward4K +0.0059*Ward4D*Ward5B +-0.0182*Ward5D*Ward4D +0.00471*Ward5B*Ward5A 

+0.0177*Ward5D*Ward5A +0.00885*Ward5D*Other +-0.0141*Ward5D*Ward4K +0.00426*Other*ED 

+-0.0117*Ward5B*Ward6D); 

 

Num8=Math.Exp(13.6554 +0.0778*Ward5D +-0.3028*Other +-0.4661*Ward4D +0.2107*Ward5B +-

0.1989*Ward5A +-0.129*ED +0.289*Ward6D +-1.1415*IC +0.0368*Ward4D*IC +0.532*Ward4K 

+0.00113*Ward4D*Ward5B +0.000421*Ward5D*Ward4D +0.00403*Ward5B*Ward5A +-

0.0018*Ward5D*Ward5A +0.00609*Ward5D*Other +-0.0186*Ward5D*Ward4K +0.00471*Other*ED 

+-0.0139*Ward5B*Ward6D); 

 

Num9=Math.Exp(-112.1 +2.0455*Ward5D +0.6539*Other +4.5601*Ward4D +1.9038*Ward5B +-

0.5062*Ward5A +-0.2237*ED +0.4332*Ward6D +0.771*IC +-0.0226*Ward4D*IC +-0.0567*Ward4K 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

+-0.0827*Ward4D*Ward5B +-0.0691*Ward5D*Ward4D +0.0305*Ward5B*Ward5A +-

0.0233*Ward5D*Ward5A +-0.0303*Ward5D*Other +0.0108*Ward5D*Ward4K +0.00765*Other*ED +-

0.0206*Ward5B*Ward6D); 

 

Num10=Math.Exp(16.534 +-0.2193*Ward5D +-0.00022*Other +-0.412*Ward4D +0.1271*Ward5B 

+-0.4875*Ward5A +-0.0757*ED +0.2532*Ward6D +-0.8757*IC +0.0294*Ward4D*IC 

+0.2889*Ward4K +-0.00091*Ward4D*Ward5B +0.00619*Ward5D*Ward4D +0.00538*Ward5B*Ward5A 

+0.00821*Ward5D*Ward5A +-0.00317*Ward5D*Other +-0.0102*Ward5D*Ward4K 

+0.00284*Other*ED +-0.0099*Ward5B*Ward6D); 

 

Num11=1/(1 +Num2 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num9 +Num10); 

  

if(Location==1){return 0;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return Num9*Num11;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 



 

 

2
7

5
 

 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Intensive Care (IC) 

Num1=Math.Exp(-18.8178 +0.2415*Ward5D +0.1667*Ward4D +0.0682*Ward5A +-0.0987*Ward5B 

+0.5496*IC); 

 

Num3=Math.Exp(-5.9834 +0.0749*Ward5D +-0.129*Ward4D +0.0417*Ward5A +0.0919*Ward5B 

+0.2822*IC); 

 

Num4=Math.Exp(-6.721 +0.1773*Ward5D +0.000626*Ward4D +0.1056*Ward5A +-0.1154*Ward5B 

+-0.0132*IC); 

 

Num5=Math.Exp(-6.5708 +0.1952*Ward5D +0.0894*Ward4D +-0.1718*Ward5A +0.05*Ward5B 

+0.1459*IC); 

 

Num6=Math.Exp(-7.7565 +0.0795*Ward5D +0.1714*Ward4D +0.0639*Ward5A +-0.1102*Ward5B 

+0.1435*IC); 

Num7=Math.Exp(1.2798 +-0.1198*Ward5D +-0.0217*Ward4D +0.0148*Ward5A +-0.0329*Ward5B 

+0.1981*IC); 

 

Num8=Math.Exp(-0.2804 +-0.0352*Ward5D +0.0673*Ward4D +-0.0374*Ward5A +-0.0395*Ward5B 

+0.0525*IC); 

 

Num10=Math.Exp(-6.7065 +0.0787*Ward5D +0.0048*Ward4D +-0.0663*Ward5A +0.0818*Ward5B 

+0.2321*IC); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Num11=1/(1 +Num1 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num10); 

 

if(Location==1){return Num1*Num11;} 

else if(Location==2){return 0;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 4D 

Num1=Math.Exp(-26.2331 +0.2164*IC +0.1205*Ward6D +-0.1927*Other +0.5519*Ward5D 

+0.1883*Ward4D +-0.00358*Ward5B +0.000771*Other*Ward5B +0.4561*Ward5A +-

0.0168*Ward5D*Ward5A); 

Num2=Math.Exp(3.9475 +-0.0263*IC +0.00248*Ward6D +-0.8402*Other +0.0782*Ward5D 

+0.0546*Ward4D +-0.2801*Ward5B +0.0251*Other*Ward5B +-0.0936*Ward5A 

+0.00161*Ward5D*Ward5A); 

 

Num4=Math.Exp(-50.6975 +0.33*IC +0.7564*Ward6D +-0.1778*Other +1.0506*Ward5D 

+0.1654*Ward4D +-0.5286*Ward5B +-0.00134*Other*Ward5B +1.7709*Ward5A +-

0.0589*Ward5D*Ward5A); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

 

Num5=Math.Exp(-55.6678 +-0.125*IC +0.1082*Ward6D +0.1755*Other +1.7038*Ward5D 

+0.0948*Ward4D +0.1611*Ward5B +-0.00764*Other*Ward5B +1.7319*Ward5A +-

0.0668*Ward5D*Ward5A); 

 

Num6=Math.Exp(-29.6492 +-0.0142*IC +0.0681*Ward6D +0.1493*Other +0.7441*Ward5D 

+0.0591*Ward4D +0.0213*Ward5B +-0.0063*Other*Ward5B +1.061*Ward5A +-

0.0351*Ward5D*Ward5A); 

 

Num7=Math.Exp(-15.7105 +0.0928*IC +0.0221*Ward6D +0.2008*Other +0.3404*Ward5D 

+0.0113*Ward4D +0.1682*Ward5B +-0.00821*Other*Ward5B +0.45*Ward5A +-

0.0191*Ward5D*Ward5A); 

 

Num8=Math.Exp(-36.1964 +0.0446*IC +-0.1798*Ward6D +0.3728*Other +1.196*Ward5D +-

0.1229*Ward4D +0.2919*Ward5B +-0.0162*Other*Ward5B +1.3436*Ward5A +-

0.0471*Ward5D*Ward5A); 

 

Num10=Math.Exp(-21.0388 +0.1595*IC +0.0297*Ward6D +-0.4333*Other +0.7433*Ward5D 

+0.0206*Ward4D +-0.1755*Ward5B +0.0148*Other*Ward5B +0.8303*Ward5A +-

0.027*Ward5D*Ward5A); 

 

Num11=1/(1 +Num1 +Num2 +Num4 +Num5 +Num6 +Num7 +Num8 +Num10); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return 0;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 4K 

Num1=Math.Exp(-9.1618 +0.1487*Other); 

Num2=Math.Exp(-0.9123 +-0.2639*Other); 

Num3=Math.Exp(-8.323 +0.084*Other); 

Num5=Math.Exp(-3.8061 +-0.1265*Other); 

Num6=Math.Exp(-5.5714 +0.0254*Other); 

Num7=Math.Exp(-2.8102 +-0.3501*Other); 

Num10=Math.Exp(-4.8001 +0.0122*Other); 

Num11=1/(1 +Num1 +Num2 +Num3 +Num5 +Num6 +Num7 +Num10); 

  

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;}  



 

 

2
7

9
 

 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

else if(Location==4){return 0;} 

else if(Location==5){return Num5*Num11;}  

else if(Location==6){return Num6*Num11;}  

else if(Location==7){return Num7*Num11;}  

else if(Location==8){return 0;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5A 

Num1=Math.Exp(-42.2601 +1.4058*ED +-0.8243*IC +-1.5569*Ward4D +1.2621*Ward4K 

+2.037*Ward5A +-0.037*Ward4K*Ward5A +-1.8189*Ward5B +0.0503*Ward4D*Ward5B 

+0.7643*Ward5D +0.8792*Ward6D +-0.0636*ED*Ward6D +-0.0512*Ward5A*Ward6D 

+0.0347*Ward5B*Ward6D +2.2841*Northside +0.0115*ED*Northside +0.0447*IC*Northside +-

0.0126*Ward5B*Northside +-0.0498*Ward5D*Northside +0.4962*Other +-

0.00347*Ward5D*Other +-0.0534*Northside*Other); 

 

Num2=Math.Exp(-4.3541 +-0.8145*ED +0.1688*IC +-0.3686*Ward4D +-0.2117*Ward4K 

+0.2291*Ward5A +0.00928*Ward4K*Ward5A +-0.7851*Ward5B +0.0142*Ward4D*Ward5B 

+0.9233*Ward5D +-0.4365*Ward6D +0.028*ED*Ward6D +-0.0137*Ward5A*Ward6D 

+0.0183*Ward5B*Ward6D +1.2752*Northside +0.00952*ED*Northside +-0.028*IC*Northside 

+0.0141*Ward5B*Northside +-0.0576*Ward5D*Northside +0.4283*Other +-

0.0227*Ward5D*Other +0.0081*Northside*Other); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Num3=Math.Exp(-71.5623 +0.5846*ED +-0.6811*IC +0.3282*Ward4D +1.1955*Ward4K 

+2.243*Ward5A +-0.0439*Ward4K*Ward5A +0.3542*Ward5B +-0.0182*Ward4D*Ward5B 

+0.308*Ward5D +0.952*Ward6D +-0.0149*ED*Ward6D +-0.0593*Ward5A*Ward6D 

+0.0259*Ward5B*Ward6D +0.2923*Northside +-0.0182*ED*Northside +0.0595*IC*Northside +-

0.0371*Ward5B*Northside +0.00488*Ward5D*Northside +0.7163*Other +-0.0359*Ward5D*Other 

+0.02*Northside*Other); 

 

Num6=Math.Exp(-17.6825 +-0.0561*ED +0.5753*IC +-0.2864*Ward4D +-0.0512*Ward4K +-

0.1988*Ward5A +0.0038*Ward4K*Ward5A +0.6709*Ward5B +0.0124*Ward4D*Ward5B +-

0.0871*Ward5D +0.8651*Ward6D +0.00824*ED*Ward6D +0.013*Ward5A*Ward6D +-

0.0497*Ward5B*Ward6D +0.5034*Northside +-0.0168*ED*Northside +-0.0443*IC*Northside 

+0.00733*Ward5B*Northside +0.00401*Ward5D*Northside +-0.00372*Other 

+0.00155*Ward5D*Other +-0.0162*Northside*Other); 

 

Num7=Math.Exp(11.6783 +0.1118*ED +-0.165*IC +0.3967*Ward4D +0.0792*Ward4K +-

0.7557*Ward5A +-0.0029*Ward4K*Ward5A +-0.0734*Ward5B +-0.0152*Ward4D*Ward5B 

+0.3347*Ward5D +-1.244*Ward6D +0.00671*ED*Ward6D +0.0352*Ward5A*Ward6D 

+0.00854*Ward5B*Ward6D +0.8726*Northside +-0.0214*ED*Northside +-0.00121*IC*Northside 

+0.0355*Ward5B*Northside +-0.0575*Ward5D*Northside +-0.0303*Other +-

0.00114*Ward5D*Other +-0.00223*Northside*Other); 

 

Num8=Math.Exp(-24.1009 +0.4183*ED +0.3342*IC +0.0209*Ward4D +1.5828*Ward4K 

+2.1419*Ward5A +-0.061*Ward4K*Ward5A +-0.7781*Ward5B +0.000437*Ward4D*Ward5B +-
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

0.4944*Ward5D +0.7478*Ward6D +-0.0244*ED*Ward6D +-0.0594*Ward5A*Ward6D 

+0.0249*Ward5B*Ward6D +-1.5345*Northside +0.0187*ED*Northside +-0.0152*IC*Northside 

+0.028*Ward5B*Northside +0.0325*Ward5D*Northside +0.1328*Other +-0.00315*Ward5D*Other 

+-0.0121*Northside*Other); 

 

Num10=Math.Exp(-103.8 +-0.2286*ED +-0.0182*IC +1.1647*Ward4D +-0.3293*Ward4K 

+1.0876*Ward5A +0.0138*Ward4K*Ward5A +1.9915*Ward5B +-0.0438*Ward4D*Ward5B 

+0.6534*Ward5D +2.3143*Ward6D +0.00717*ED*Ward6D +-0.0438*Ward5A*Ward6D +-

0.044*Ward5B*Ward6D +-0.2205*Northside +0.00203*ED*Northside +0.00479*IC*Northside 

+0.0295*Ward5B*Northside +-0.0169*Ward5D*Northside +0.7091*Other +-

0.0236*Ward5D*Other +-0.00566*Northside*Other); 

 

Num11=1/(1 +Num1 +Num2 +Num3 +Num6 +Num7 +Num8 +Num10); 

 

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return 0;} 

else if(Location==5){return 0;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5B 

Num1=Math.Exp(-41.2994 +0.5407*IC +-0.1851*Other +3.2985*Ward5B +0.1595*Ward5D 

+0.9699*Ward6D +-2.6031*Ward4D +-0.1263*Ward5B*Ward6D +0.1065*Ward6D*Ward4D); 

 

Num2=Math.Exp(-40.2378 +-0.164*IC +-0.1094*Other +0.1685*Ward5B +-0.0233*Ward5D 

+1.4801*Ward6D +1.2753*Ward4D +-0.0064*Ward5B*Ward6D +-0.0462*Ward6D*Ward4D); 

Num3=Math.Exp(-25.0483 +0.1638*IC +-0.026*Other +1.4451*Ward5B +-0.1064*Ward5D 

+0.8796*Ward6D +-0.6623*Ward4D +-0.0513*Ward5B*Ward6D +0.021*Ward6D*Ward4D); 

 

Num4=Math.Exp(-26.3134 +-0.1945*IC +-0.1343*Other +1.4149*Ward5B +-0.0557*Ward5D 

+1.04*Ward6D +-0.8568*Ward4D +-0.0482*Ward5B*Ward6D +0.0244*Ward6D*Ward4D); 

 

Num5=Math.Exp(-50.649 +0.1295*IC +-0.1424*Other +1.3026*Ward5B +-0.0398*Ward5D 

+1.8915*Ward6D +0.4207*Ward4D +-0.0485*Ward5B*Ward6D +-0.0181*Ward6D*Ward4D); 

 

Num7=Math.Exp(-31.0874 +-0.3136*IC +-0.0544*Other +0.446*Ward5B +-0.3022*Ward5D 

+1.3154*Ward6D +1.0993*Ward4D +-0.00486*Ward5B*Ward6D +-0.0495*Ward6D*Ward4D); 

 

Num8=Math.Exp(-37.2694 +0.1118*IC +-0.0154*Other +1.7686*Ward5B +-0.172*Ward5D 

+1.4191*Ward6D +-0.2768*Ward4D +-0.0678*Ward5B*Ward6D +0.0108*Ward6D*Ward4D); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Num10=Math.Exp(-38.6545 +0.1891*IC +-0.0314*Other +1.4395*Ward5B +-0.0593*Ward5D 

+1.3058*Ward6D +-0.2025*Ward4D +-0.0486*Ward5B*Ward6D +0.00351*Ward6D*Ward4D); 

 

Num11=1/(1 +Num1 +Num2 +Num3 +Num4 +Num5 +Num7 +Num8 +Num10); 

  

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return 0;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5D 

Num1=Math.Exp(-7.5182 +-0.0698*Other +-0.0383*Ward5A +0.1548*Ward5D +0.0276*IC); 

Num2=Math.Exp(-3.106 +-0.1662*Other +0.0955*Ward5A +0.043*Ward5D +-0.2363*IC); 

Num3=Math.Exp(-8.6175 +0.0106*Other +-0.1297*Ward5A +0.3127*Ward5D +-0.1333*IC); 

Num5=Math.Exp(0.0766 +-0.0891*Other +-0.1827*Ward5A +0.0381*Ward5D +0.0441*IC); 

Num6=Math.Exp(-15.4544 +-0.111*Other +0.2655*Ward5A +0.1941*Ward5D +-0.0344*IC); 

Num8=Math.Exp(1.0021 +-0.0866*Other +-0.1131*Ward5A +-0.0511*Ward5D +0.1187*IC); 

Num9=Math.Exp(4.1817 +-0.6313*Other +-0.54*Ward5A +0.18*Ward5D +0.4077*IC); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

Num10=Math.Exp(-5.4195 +-0.0136*Other +-0.0119*Ward5A +0.043*Ward5D +0.205*IC); 

Num11=1/(1 +Num1 +Num2 +Num3 +Num5 +Num6 +Num8 +Num9 +Num10); 

  

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return 0;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return 0;} 

else if(Location==8){return Num8*Num11;}  

else if(Location==9){return Num9*Num11;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 6D 

Num1=Math.Exp(-2.0408 +-0.1226*Other +-0.0216*Ward6D); 

Num2=Math.Exp(-5.209 +-0.1845*Other +0.1695*Ward6D); 

Num3=Math.Exp(-6.5853 +-0.0738*Other +0.1538*Ward6D); 

Num5=Math.Exp(1.74 +-0.1311*Other +-0.1759*Ward6D); 

Num6=Math.Exp(-2.0972 +-0.0335*Other +-0.1249*Ward6D); 

Num7=Math.Exp(-4.2361 +-0.035*Other +0.0486*Ward6D); 

Num10=Math.Exp(-0.7425 +0.0237*Other +-0.1039*Ward6D); 

Num11=1/(1 +Num1 +Num2 +Num3 +Num5 +Num6 +Num7 +Num10); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;}  

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return 0;} 

else if(Location==5){return Num5*Num11;}  

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;}  

else if(Location==8){return 0;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Northside 

Num10=Math.Exp(-806.4 +-8.6194*IC +33.4079*Ward4D +18.2874*Ward5A +-

0.6433*Ward4D*Ward5A +-2.3045*Ward5B +3.5748*Ward5D +21.6555*Ward6D +-

1.0326*IC*Ward6D +-0.6889*Ward4D*Ward6D +-19.4019*Northside +1.4505*IC*Northside 

+0.3421*Ward5B*Northside +-6.433*Other +0.7233*IC*Other); 

 

Num11=1/(1 +Num10); 

  

if(Location==1){return 0;}  

else if(Location==2){return 0;}  

else if(Location==3){return 0;}  

else if(Location==4){return 0;}  

else if(Location==5){return 0;}  
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

else if(Location==6){return 0;}  

else if(Location==7){return 0;}  

else if(Location==8){return 0;}  

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Other 

Num1=Math.Exp(-16.2345 +0.0382*Ward4D +-0.0888*Other +0.3834*Ward5D +0.00698*Ward4K 

+0.1593*IC +1.1336*ED +-0.0353*Ward5D*ED); 

 

Num2=Math.Exp(-7.3461 +0.0432*Ward4D +-0.0878*Other +0.2186*Ward5D +0.0138*Ward4K +-

0.0882*IC +0.7623*ED +-0.0257*Ward5D*ED); 

 

Num3=Math.Exp(2.654 +-0.1684*Ward4D +-0.00379*Other +0.0167*Ward5D +-0.0462*Ward4K 

+0.0747*IC +0.2634*ED +-0.00806*Ward5D*ED); 

 

Num4=Math.Exp(-5.575 +0.1157*Ward4D +-0.1177*Other +0.0206*Ward5D +-0.00124*Ward4K 

+0.0986*IC +-0.3071*ED +0.0111*Ward5D*ED); 

 

Num5=Math.Exp(-3.9681 +-0.0317*Ward4D +-0.096*Other +0.1283*Ward5D +0.0236*Ward4K 

+0.0648*IC +0.3072*ED +-0.00965*Ward5D*ED); 

 

Num6=Math.Exp(-11.3779 +0.0397*Ward4D +-0.0859*Other +0.3329*Ward5D +0.0288*Ward4K +-

0.0257*IC +1.0714*ED +-0.0362*Ward5D*ED); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

 

Num7=Math.Exp(-0.2562 +-0.0751*Ward4D +-0.0801*Other +0.00209*Ward5D +0.0391*Ward4K 

+0.1292*IC +0.8127*ED +-0.0298*Ward5D*ED); 

Num8=Math.Exp(-2.2676 +-0.0798*Ward4D +-0.0305*Other +0.0805*Ward5D +-0.013*Ward4K 

+0.0764*IC +0.4232*ED +-0.0143*Ward5D*ED); 

 

Num9=Math.Exp(2.5029 +-0.0452*Ward4D +0.0808*Other +-0.3051*Ward5D +0.1923*Ward4K +-

0.3909*IC +-2.0728*ED +0.0747*Ward5D*ED); 

 

Num10=Math.Exp(1.0515 +-0.0114*Ward4D +-0.0719*Other +-0.0445*Ward5D +0.0479*Ward4K 

+-0.0373*IC +-0.0404*ED +0.00234*Ward5D*ED); 

 

Num11=1/(1 +Num1 +Num2 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num9 +Num10); 

  

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return Num9*Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Emergency Patients) 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

 

 

D.3 MLR models for the Elective Patients 

 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

Entry Not Applicable. Entry location is pre-determined by the elective admissions schedule. 

Emergency Department (ED) 

Num2=Math.Exp(-1.0986); 

Num3=Math.Exp(0.7472); 

Num4=Math.Exp(0.2007); 

Num5=Math.Exp(0.636); 

Num6=Math.Exp(0.2877); 

Num7=Math.Exp(0.3677); 

Num8=Math.Exp(-0.1178); 

Num10=Math.Exp(0.5754); 

Num11=1/(1 +Num2 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num10); 

  

if(Location==1){return 0;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Intensive Care (IC) 

Num3=Math.Exp(-0.0243 +-0.335*Ward5A +0.3173*Ward5B +-0.1454*Other); 

Num4=Math.Exp(-17.2985 +0.000485*Ward5A +-0.0265*Ward5B +0.6518*Other); 

Num5=Math.Exp(4.6775 +-0.3175*Ward5A +0.2225*Ward5B +-0.1*Other); 

Num6=Math.Exp(2.8084 +-0.0456*Ward5A +-0.0187*Ward5B +-0.0537*Other); 

Num7=Math.Exp(-11.2662 +-0.352*Ward5A +0.6585*Ward5B +-0.093*Other); 

Num8=Math.Exp(-10.5568 +0.206*Ward5A +0.017*Ward5B +0.0419*Other); 

Num10=Math.Exp(-19.711 +-0.1084*Ward5A +0.7349*Ward5B +-0.0425*Other); 

Num11=1/(1 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num10); 

  

if(Location==1){return 0;} 

else if(Location==2){return 0;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;} 

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 4D 

Num2=Math.Exp(4.694 +-0.2468*Ward5A +0.1323*Ward5B +-0.2083*Ward5D); 

Num5=Math.Exp(-20.3779 +-0.2828*Ward5A +0.986*Ward5B +-0.2262*Ward5D); 

Num6=Math.Exp(-37.8228 +-0.1258*Ward5A +-0.0698*Ward5B +1.2506*Ward5D); 

Num7=Math.Exp(4.2453 +-0.00832*Ward5A +0.1704*Ward5B +-0.4266*Ward5D); 

Num8=Math.Exp(-25.7001 +-0.9624*Ward5A +1.4312*Ward5B +0.1044*Ward5D); 

Num10=Math.Exp(-13.8597 +0.1528*Ward5A +0.1351*Ward5B +0.1763*Ward5D); 

Num11=1/(1 +Num2 +Num5 +Num6 +Num7 +Num8 +Num10); 

  

if(Location==1){return 0;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return 0;} 

else if(Location==4){return 0;}  

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

Ward 4K 

Num2=Math.Exp(-32.8616 +1.0679*Ward5D +-0.4435*Northside); 

Num6=Math.Exp(112.8 +-5.5697*Ward5D +1.3863*Northside); 

Num7=Math.Exp(8.7037 +-0.3802*Ward5D +-0.4579*Northside); 

Num10=Math.Exp(8.1868 +-0.5271*Ward5D +0.2271*Northside); 

Num11=1/(1 +Num2 +Num6 +Num7 +Num10); 

  

if(Location==1){return 0;}  

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return 0;}  

else if(Location==4){return 0;} 

else if(Location==5){return 0;}  

else if(Location==6){return Num2*Num11;} 

else if(Location==7){return Num2*Num11;} 

else if(Location==8){return 0;}  

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5A 

Num2=Math.Exp(-2.483 +-0.2113*IC +0.0809*Ward5D +-0.0524*Other); 

Num3=Math.Exp(-0.729 +-0.3183*IC +0.0278*Ward5D +-0.1751*Other); 

Num4=Math.Exp(-15.0357 +-0.5156*IC +0.1573*Ward5D +0.3539*Other); 

Num6=Math.Exp(-1.1305 +0.1895*IC +-0.0456*Ward5D +-0.1496*Other); 

Num7=Math.Exp(-2.7808 +0.7667*IC +-0.2025*Ward5D +-0.2774*Other); 

Num8=Math.Exp(13.899 +1.0024*IC +-1.1295*Ward5D +-0.00508*Other); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

Num10=Math.Exp(2.8823 +-0.1342*IC +-0.1554*Ward5D +-0.0338*Other); 

Num11=1/(1 +Num2 +Num3 +Num4 +Num6 +Num7 +Num8 +Num10); 

  

if(Location==1){return 0;}  

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return 0;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5B 

Num2=Math.Exp(-2.6303 +-0.2471*IC +0.1066*Ward5B +-0.0278*Ward5D +-0.0956*Other); 

Num3=Math.Exp(1.8069 +0.5178*IC +0.0645*Ward5B +-0.477*Ward5D +-0.1594*Other); 

Num4=Math.Exp(-2.2164 +-0.2348*IC +0.9444*Ward5B +-1.0798*Ward5D +-0.2494*Other); 

Num5=Math.Exp(-2.761 +-0.2655*IC +0.1381*Ward5B +-0.1191*Ward5D +-0.00206*Other); 

Num7=Math.Exp(-3.8224 +-0.4196*IC +0.3719*Ward5B +-0.2786*Ward5D +-0.1319*Other); 

Num8=Math.Exp(33.6531 +-1.336*IC +-0.5659*Ward5B +-0.3199*Ward5D +-1.1736*Other); 

Num10=Math.Exp(-5.4036 +-0.2176*IC +0.3295*Ward5B +-0.1806*Ward5D +-0.07*Other); 

Num11=1/(1 +Num2 +Num3 +Num4 +Num5 +Num7 +Num8 +Num10); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

if(Location==1){return 0;}  

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return 0;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 5D 

Num2=Math.Exp(-19.3482 +0.3326*Ward4K +0.6064*Northside); 

Num3=Math.Exp(-7.1686 +0.3512*Ward4K +-0.3334*Northside); 

Num6=Math.Exp(-0.9916 +0.0737*Ward4K +-0.6058*Northside); 

Num8=Math.Exp(3.1519 +-0.3294*Ward4K +-0.609*Northside); 

Num10=Math.Exp(-3.0849 +0.1599*Ward4K +-0.1713*Northside); 

Num11=1/(1 +Num2 +Num3 +Num6 +Num8 +Num10); 

  

if(Location==1){return 0;}  

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return 0;}  

else if(Location==5){return 0;}  
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

else if(Location==6){return Num6*Num11;}  

else if(Location==7){return 0;} 

else if(Location==8){return Num8*Num11;} 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 

Ward 6D 

Num5=Math.Exp(13.2326 +-0.3103*Ward6D +-0.4115*Ward5A +0.1555*ED); 

Num6=Math.Exp(-11.9763 +0.5757*Ward6D +-0.3412*Ward5A +0.0369*ED); 

Num7=Math.Exp(-12.1527 +0.43*Ward6D +-0.00372*Ward5A +-0.191*ED); 

Num10=Math.Exp(-12.8545 +-0.0506*Ward6D +0.5369*Ward5A +-0.2921*ED); 

Num11=1/(1 +Num5 +Num6 +Num7 +Num10); 

  

if(Location==1){return 0;}  

else if(Location==2){return 0;}  

else if(Location==3){return 0;}  

else if(Location==4){return 0;}  

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;}  

else if(Location==7){return Num7*Num11;}  

else if(Location==8){return 0;} 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

Northside 

Num11=1; 

 

if(Location==1){return 0;}  

else if(Location==2){return 0;}  

else if(Location==3){return 0;}  

else if(Location==4){return 0;}  

else if(Location==5){return 0;}  

else if(Location==6){return 0;}  

else if(Location==7){return 0;}  

else if(Location==8){return 0;}  

else if(Location==9){return 0;} 

else if(Location==10){return 0;}  

else{return Num11;} 

Other 

Num1=Math.Exp(-3.3644 +-3.2767*Other +-0.1186*Ward5A +0.21*Ward5B 

+0.00179*Ward5A*Ward5B +3.0313*IC +-0.3481*Ward4D +-0.1077*Ward5B*IC +0.177*Ward5D +-

0.0752*Ward4K +0.1207*Ward6D +0.1019*Other*Ward5B +1.7318*Northside +-

0.0521*Ward5B*Northside); 

 

Num2=Math.Exp(-32.1102 +0.3476*Other +1.0311*Ward5A +1.3743*Ward5B +-

0.0388*Ward5A*Ward5B +0.22*IC +-0.0991*Ward4D +-0.0174*Ward5B*IC +0.0612*Ward5D +-

0.0532*Ward4K +-0.0348*Ward6D +-0.0154*Other*Ward5B +0.1263*Northside +-

0.00195*Ward5B*Northside); 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

Num3=Math.Exp(-24.0151 +0.4441*Other +1.0863*Ward5A +1.1525*Ward5B +-

0.0377*Ward5A*Ward5B +-1.1529*IC +-0.2291*Ward4D +0.0393*Ward5B*IC +0.0435*Ward5D +-

0.1032*Ward4K +-0.0764*Ward6D +-0.0202*Other*Ward5B +0.5051*Northside +-

0.0164*Ward5B*Northside); 

 

Num4=Math.Exp(4.1552 +-0.1881*Other +0.0546*Ward5A +-0.1537*Ward5B +-

0.00473*Ward5A*Ward5B +-0.1344*IC +-0.0563*Ward4D +0.0139*Ward5B*IC +0.00934*Ward5D 

+-0.0537*Ward4K +-0.0301*Ward6D +0.00409*Other*Ward5B +0.00341*Northside 

+0.00662*Ward5B*Northside); 

 

Num5=Math.Exp(-37.8795 +0.1339*Other +1.0209*Ward5A +1.6499*Ward5B +-

0.0454*Ward5A*Ward5B +0.2958*IC +-0.0648*Ward4D +-0.0106*Ward5B*IC +0.0277*Ward5D +-

0.0798*Ward4K +0.0374*Ward6D +-0.00641*Other*Ward5B +0.896*Northside +-

0.029*Ward5B*Northside); 

 

Num6=Math.Exp(-37.6681 +0.1805*Other +1.176*Ward5A +1.5415*Ward5B +-

0.0431*Ward5A*Ward5B +0.6189*IC +-0.1044*Ward4D +-0.0235*Ward5B*IC +-0.0163*Ward5D +-

0.0508*Ward4K +0.00578*Ward6D +-0.0057*Other*Ward5B +0.9139*Northside +-

0.03*Ward5B*Northside); 

 

Num7=Math.Exp(-2.1014 +0.2438*Other +0.3863*Ward5A +0.44*Ward5B +-

0.0152*Ward5A*Ward5B +-0.8123*IC +-0.1075*Ward4D +0.0295*Ward5B*IC +-0.1538*Ward5D 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

+0.0143*Ward4K +-0.073*Ward6D +-0.0149*Other*Ward5B +0.4879*Northside +-

0.0135*Ward5B*Northside); 

 

Num8=Math.Exp(2.5699 +0.1957*Other +0.1536*Ward5A +0.1007*Ward5B +-

0.00399*Ward5A*Ward5B +0.0302*IC +-0.1616*Ward4D +0.00357*Ward5B*IC +-0.0282*Ward5D 

+-0.0697*Ward4K +-0.1249*Ward6D +-0.00995*Other*Ward5B +-0.244*Northside 

+0.0136*Ward5B*Northside); 

 

Num10=Math.Exp(-10.9359 +-0.4616*Other +0.7108*Ward5A +0.3454*Ward5B +-

0.025*Ward5A*Ward5B +0.2327*IC +0.00713*Ward4D +-0.00918*Ward5B*IC +0.1227*Ward5D +-

0.00145*Ward4K +-0.0714*Ward6D +0.0136*Other*Ward5B +-0.3774*Northside 

+0.0139*Ward5B*Northside); 

 

Num11=1/(1 +Num1 +Num2 +Num3 +Num4 +Num5 +Num6 +Num7 +Num8 +Num10); 

  

if(Location==1){return Num1*Num11;} 

else if(Location==2){return Num2*Num11;} 

else if(Location==3){return Num3*Num11;} 

else if(Location==4){return Num4*Num11;} 

else if(Location==5){return Num5*Num11;} 

else if(Location==6){return Num6*Num11;} 

else if(Location==7){return Num7*Num11;} 

else if(Location==8){return Num8*Num11;} 
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 Fitted Multinomial Logistic Regression models by ward of departure (Elective Patients) 

else if(Location==9){return 0;}  

else if(Location==10){return Num10*Num11;} 

else{return Num11;} 
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Appendix E 

Length of Stay Distributions 

 

 

Length of stay is disaggregated by the weekday of admission to the ward. 

Therefore, seven distributions are required to draw a realisations of LOS for 

each patient type. The rationale for disaggregating by weekday of admission is 

discussed in Section 4.4.3 (Modelling Length of Stay). Each empirical 

distribution is represented in the ODES through its cumulative distribution 

function, from which realisations are drawn using the Inversion Method. For 

further details of this method, see Section C.2.4 (Algorithms). 

In this appendix, the length of stay distributions used in the ODES are charted 

and tabulated. Although the full distributions populate the tables, the charts may 

be right-truncated to improve their readability near the vertical axis. To avoid 

excessively long tables, only the changes in the values of the ECDFs are 

included, therefore the first column of each table (number of midnights) may not 

be continuous. 
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E.1 Length of Stay Distributions for the Emergency Patients 

Emergency Department 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.624 0.610 0.622 0.637 0.715 0.696 0.635 

1 0.954 0.959 0.982 0.989 0.988 0.952 0.973 

2 0.995 0.994 0.998 0.999 0.995 0.992 0.996 

3 1.000 1.000 1.000 1.000 0.999 0.998 0.999 

4     1.000 1.000 1.000 
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Intensive Care Unit

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.082 0.056 0.056 0.096 0.127 0.092 0.079 

1 0.373 0.310 0.379 0.357 0.321 0.266 0.307 

2 0.590 0.476 0.589 0.574 0.515 0.514 0.535 

3 0.709 0.619 0.653 0.617 0.672 0.688 0.693 

4 0.754 0.698 0.694 0.722 0.746 0.771 0.792 

5 0.784 0.746 0.750 0.826 0.836 0.807 0.842 

6 0.799 0.770 0.815 0.896 0.873 0.844 0.861 

7 0.858 0.778 0.831 0.913 0.925 0.853 0.881 

8 0.881 0.810 0.887 0.930 0.925 0.853 0.911 

9 0.903 0.849 0.911 0.930 0.925 0.853 0.921 

10 0.903 0.857 0.911 0.930 0.933 0.890 0.941 

11 0.925 0.865 0.911 0.930 0.955 0.917 0.970 

12 0.933 0.889 0.919 0.930 0.955 0.954 0.970 

13 0.940 0.897 0.919 0.939 0.955 0.954 0.970 

14 0.963 0.905 0.919 0.939 0.955 0.963 0.970 

15 0.970 0.937 0.919 0.939 0.955 0.963 0.980 

16 0.978 0.944 0.952 0.957 0.955 0.963 0.980 

17 0.985 0.944 0.952 0.957 0.955 0.963 0.980 

18 0.985 0.944 0.960 0.957 0.955 0.963 0.990 

20 0.985 0.952 0.968 0.965 0.955 0.963 0.990 

21 0.985 0.952 0.968 0.965 0.970 0.972 1.000 

22 0.985 0.960 0.968 0.965 0.970 0.972  

23 0.985 0.968 0.968 0.965 0.970 0.972  

24 0.985 0.976 0.968 0.965 0.970 0.972  

25 0.985 0.976 0.968 0.974 0.970 0.972  

26 0.985 0.976 0.976 0.974 0.970 0.982  

27 0.985 0.984 0.976 0.983 0.970 0.982  

29 0.985 0.992 0.976 0.983 0.970 0.982  

31 0.985 0.992 0.976 0.983 0.985 0.982  

32 0.985 0.992 0.976 0.983 0.993 0.982  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

33 0.985 0.992 0.984 0.983 0.993 0.982  

37 0.985 0.992 0.984 0.983 0.993 0.991  

38 1.000 0.992 0.984 0.983 0.993 0.991  

40  0.992 0.984 0.991 0.993 0.991  

45  0.992 0.984 1.000 0.993 0.991  

49  0.992 0.992  0.993 0.991  

51  1.000 0.992  0.993 0.991  

62   0.992  1.000 0.991  

76   1.000   0.991  

79      1.000  
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Ward 4D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.066 0.084 0.069 0.097 0.110 0.065 0.059 

1 0.284 0.342 0.275 0.403 0.203 0.163 0.248 

2 0.516 0.489 0.520 0.487 0.254 0.344 0.399 

3 0.611 0.624 0.555 0.503 0.504 0.535 0.523 

4 0.725 0.640 0.569 0.599 0.587 0.633 0.601 

5 0.741 0.651 0.658 0.684 0.693 0.716 0.680 

6 0.741 0.733 0.741 0.740 0.746 0.772 0.706 

7 0.791 0.780 0.785 0.778 0.823 0.777 0.706 

8 0.837 0.820 0.818 0.839 0.833 0.786 0.765 

9 0.873 0.851 0.868 0.852 0.837 0.837 0.817 

10 0.886 0.880 0.870 0.857 0.866 0.847 0.843 

11 0.908 0.880 0.875 0.875 0.884 0.888 0.863 

12 0.912 0.880 0.899 0.901 0.900 0.907 0.889 

13 0.914 0.900 0.917 0.913 0.907 0.912 0.902 

14 0.930 0.920 0.925 0.926 0.913 0.912 0.902 

15 0.958 0.929 0.941 0.929 0.915 0.912 0.922 

16 0.969 0.942 0.947 0.931 0.917 0.916 0.928 

17 0.971 0.953 0.947 0.934 0.933 0.935 0.935 

18 0.974 0.953 0.949 0.944 0.943 0.953 0.948 

19 0.974 0.953 0.953 0.957 0.947 0.953 0.974 

20 0.974 0.960 0.957 0.967 0.955 0.958 0.974 

21 0.974 0.962 0.968 0.972 0.959 0.967 0.974 

22 0.974 0.962 0.974 0.972 0.959 0.967 0.974 

23 0.980 0.967 0.974 0.972 0.959 0.967 0.987 

24 0.982 0.969 0.976 0.972 0.963 0.977 0.987 

25 0.982 0.971 0.976 0.982 0.967 0.977 0.993 

26 0.982 0.971 0.978 0.982 0.972 0.977 1.000 

27 0.982 0.976 0.982 0.987 0.976 0.977  

28 0.982 0.978 0.986 0.987 0.978 0.977  

29 0.987 0.980 0.986 0.990 0.978 0.977  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

30 0.991 0.982 0.986 0.990 0.978 0.977  

31 0.991 0.984 0.986 0.990 0.984 0.981  

32 0.991 0.984 0.986 0.990 0.986 0.981  

33 0.991 0.984 0.988 0.990 0.986 0.981  

34 0.991 0.987 0.988 0.990 0.986 0.986  

35 0.991 0.987 0.988 0.992 0.986 0.986  

36 0.991 0.987 0.988 0.997 0.986 0.986  

37 0.991 0.987 0.992 0.997 0.986 0.986  

38 0.996 0.987 0.994 0.997 0.986 0.986  

39 0.996 0.987 0.994 0.997 0.986 0.991  

40 0.996 0.987 0.996 0.997 0.988 0.991  

41 0.996 0.987 0.996 0.997 0.990 0.991  

42 0.996 0.987 0.996 0.997 0.992 0.991  

43 0.996 0.987 0.998 0.997 0.992 0.991  

45 0.996 0.989 0.998 0.997 0.992 0.991  

46 0.998 0.989 0.998 0.997 0.994 0.995  

47 0.998 0.989 0.998 1.000 0.994 0.995  

50 0.998 0.991 1.000  0.994 0.995  

54 0.998 0.991   0.996 0.995  

55 0.998 0.993   0.996 0.995  

58 0.998 0.996   0.996 0.995  

60 0.998 0.996   0.998 0.995  

75 0.998 0.998   0.998 0.995  

84 1.000 0.998   0.998 0.995  

93  0.998   0.998 1.000  

132  1.000   0.998   

172     1.000   
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Ward 4K 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.056 0.068 0.051 0.042 0.050 0.026 0.037 

1 0.467 0.503 0.440 0.448 0.493 0.430 0.500 

2 0.711 0.705 0.670 0.663 0.702 0.691 0.699 

3 0.819 0.828 0.777 0.759 0.865 0.823 0.857 

4 0.864 0.877 0.821 0.851 0.908 0.883 0.897 

5 0.899 0.890 0.879 0.897 0.929 0.902 0.930 

6 0.899 0.919 0.930 0.946 0.954 0.932 0.956 

7 0.916 0.925 0.949 0.962 0.968 0.955 0.963 

8 0.934 0.938 0.956 0.973 0.968 0.962 0.974 

9 0.948 0.945 0.963 0.981 0.968 0.981 0.982 

10 0.951 0.948 0.971 0.981 0.979 0.989 0.982 

11 0.958 0.958 0.971 0.989 0.986 0.996 0.985 

12 0.958 0.964 0.974 0.989 0.989 0.996 0.989 

13 0.962 0.964 0.974 0.992 0.989 0.996 0.989 

14 0.972 0.964 0.974 0.992 0.993 0.996 0.989 

15 0.979 0.974 0.978 0.992 0.993 0.996 0.996 

16 0.983 0.974 0.978 0.992 0.993 0.996 0.996 

17 0.983 0.977 0.978 0.992 0.993 0.996 1.000 

18 0.983 0.977 0.982 0.992 0.996 0.996  

19 0.986 0.977 0.982 0.992 0.996 0.996  

20 0.986 0.977 0.982 0.996 0.996 0.996  

21 0.986 0.981 0.982 0.996 0.996 0.996  

28 0.986 0.987 0.982 0.996 0.996 0.996  

29 0.986 0.990 0.985 0.996 0.996 0.996  

31 0.986 0.990 0.989 0.996 0.996 0.996  

34 0.986 0.990 0.993 0.996 0.996 0.996  

36 0.986 0.994 0.993 0.996 0.996 0.996  

37 0.990 0.994 0.996 0.996 0.996 0.996  

41 0.990 0.994 1.000 0.996 0.996 0.996  

42 0.990 0.997  0.996 0.996 0.996  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

43 0.993 0.997  0.996 0.996 0.996  

44 0.993 0.997  1.000 0.996 0.996  

50 0.997 0.997   0.996 0.996  

52 0.997 1.000   0.996 0.996  

59 0.997    0.996 1.000  

71 1.000    0.996   

150     1.000   
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Ward 5A 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.064 0.070 0.071 0.064 0.066 0.062 0.052 

1 0.279 0.289 0.299 0.299 0.234 0.220 0.259 

2 0.494 0.512 0.527 0.463 0.401 0.410 0.475 

3 0.648 0.659 0.609 0.560 0.553 0.596 0.607 

4 0.733 0.732 0.665 0.678 0.661 0.683 0.702 

5 0.788 0.756 0.740 0.758 0.737 0.776 0.810 

6 0.803 0.808 0.808 0.809 0.813 0.832 0.866 

7 0.839 0.847 0.865 0.849 0.868 0.848 0.879 

8 0.870 0.885 0.886 0.893 0.882 0.857 0.908 

9 0.903 0.913 0.911 0.906 0.901 0.916 0.928 

10 0.915 0.920 0.915 0.913 0.921 0.935 0.957 

11 0.933 0.930 0.918 0.930 0.934 0.935 0.964 

12 0.948 0.934 0.936 0.950 0.947 0.950 0.970 

13 0.952 0.937 0.954 0.960 0.961 0.953 0.970 

14 0.961 0.944 0.972 0.970 0.967 0.953 0.970 

15 0.973 0.951 0.979 0.973 0.967 0.957 0.977 

16 0.976 0.958 0.986 0.973 0.967 0.957 0.984 

17 0.976 0.969 0.986 0.973 0.974 0.957 0.984 

18 0.976 0.969 0.986 0.977 0.980 0.960 0.987 

19 0.976 0.969 0.993 0.993 0.980 0.960 0.987 

20 0.976 0.972 0.993 0.993 0.984 0.963 0.987 

21 0.979 0.976 0.993 0.993 0.984 0.966 0.987 

22 0.982 0.976 1.000 0.993 0.984 0.966 0.987 

23 0.985 0.976  0.993 0.984 0.966 0.987 

24 0.985 0.976  0.993 0.990 0.966 0.990 

25 0.985 0.976  0.993 0.993 0.966 0.990 

26 0.985 0.976  0.993 0.993 0.972 0.990 

27 0.985 0.979  0.993 0.993 0.975 0.990 

28 0.985 0.979  0.993 0.993 0.978 0.990 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

30 0.985 0.979  0.993 0.993 0.978 0.993 

33 0.985 0.979  0.997 0.997 0.978 0.993 

34 0.985 0.983  0.997 0.997 0.978 0.993 

35 0.985 0.990  0.997 0.997 0.978 0.993 

36 0.988 0.990  0.997 0.997 0.978 0.993 

38 0.988 0.990  0.997 0.997 0.984 0.993 

40 0.988 0.990  0.997 0.997 0.991 0.993 

42 0.988 0.993  0.997 0.997 0.991 0.993 

44 0.988 0.993  0.997 0.997 0.994 0.993 

50 0.988 0.997  0.997 0.997 0.994 0.997 

56 0.994 0.997  0.997 0.997 0.994 0.997 

59 0.994 0.997  0.997 0.997 0.994 1.000 

60 0.997 0.997  0.997 0.997 0.994  

66 0.997 0.997  0.997 1.000 0.994  

81 1.000 0.997  0.997  0.994  

87  0.997  1.000  0.994  

116  0.997    0.997  

171  1.000    0.997  

216      1.000  
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Ward 5B 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.062 0.062 0.076 0.055 0.042 0.063 0.056 

1 0.327 0.325 0.340 0.348 0.257 0.266 0.365 

2 0.503 0.509 0.546 0.452 0.379 0.462 0.558 

3 0.651 0.644 0.615 0.516 0.544 0.606 0.690 

4 0.744 0.696 0.656 0.626 0.653 0.701 0.762 

5 0.775 0.716 0.732 0.710 0.729 0.772 0.815 

6 0.787 0.772 0.808 0.777 0.798 0.845 0.820 

7 0.843 0.841 0.866 0.812 0.849 0.856 0.828 

8 0.892 0.882 0.887 0.858 0.859 0.864 0.862 

9 0.904 0.907 0.914 0.875 0.862 0.891 0.894 

10 0.923 0.927 0.924 0.887 0.881 0.913 0.907 

11 0.941 0.931 0.924 0.907 0.899 0.932 0.923 

12 0.948 0.931 0.935 0.930 0.918 0.946 0.937 

13 0.951 0.941 0.948 0.951 0.942 0.959 0.939 

14 0.957 0.955 0.959 0.962 0.950 0.962 0.942 

15 0.963 0.965 0.966 0.968 0.952 0.962 0.950 

16 0.963 0.969 0.976 0.968 0.952 0.967 0.966 

17 0.975 0.972 0.976 0.968 0.955 0.973 0.976 

18 0.978 0.972 0.976 0.971 0.960 0.981 0.979 

19 0.978 0.972 0.976 0.980 0.963 0.989 0.984 

20 0.978 0.976 0.979 0.983 0.968 0.992 0.984 

21 0.978 0.979 0.979 0.986 0.968 0.992 0.984 

22 0.978 0.979 0.983 0.988 0.968 0.992 0.984 

23 0.981 0.983 0.990 0.988 0.971 0.992 0.989 

24 0.981 0.983 0.990 0.991 0.971 0.992 0.992 

25 0.981 0.983 0.990 0.994 0.973 0.992 0.997 

26 0.981 0.983 0.993 0.994 0.976 0.992 0.997 

27 0.981 0.983 0.997 0.994 0.979 0.992 0.997 

28 0.988 0.983 0.997 0.994 0.979 0.992 0.997 

30 0.988 0.986 0.997 0.994 0.979 0.992 0.997 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

32 0.988 0.986 0.997 0.997 0.979 0.995 0.997 

33 0.988 0.986 0.997 0.997 0.981 0.995 0.997 

34 0.988 0.986 0.997 0.997 0.987 0.995 0.997 

35 0.991 0.990 0.997 0.997 0.989 0.995 0.997 

36 0.991 0.990 0.997 0.997 0.989 0.995 1.000 

38 0.997 0.990 0.997 0.997 0.989 0.995 1.000 

39 0.997 0.990 0.997 0.997 0.995 0.995 1.000 

41 0.997 0.993 1.000 0.997 0.997 0.997 1.000 

42 0.997 0.997 1.000 0.997 0.997 0.997 1.000 

49 1.000 0.997 1.000 1.000 0.997 0.997 1.000 

52 1.000 0.997 1.000 1.000 0.997 1.000 1.000 

56 1.000 0.997 1.000 1.000 1.000 1.000 1.000 

70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Ward 5D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.035 0.080 0.055 0.046 0.031 0.033 0.075 

1 0.173 0.207 0.195 0.212 0.117 0.089 0.209 

2 0.259 0.355 0.348 0.271 0.142 0.215 0.254 

3 0.349 0.502 0.390 0.311 0.305 0.374 0.358 

4 0.486 0.526 0.421 0.394 0.443 0.481 0.455 

5 0.522 0.550 0.534 0.483 0.542 0.612 0.612 

6 0.549 0.602 0.622 0.606 0.618 0.696 0.612 

7 0.635 0.665 0.683 0.677 0.720 0.710 0.627 

8 0.706 0.729 0.726 0.738 0.735 0.724 0.724 

9 0.761 0.789 0.787 0.748 0.738 0.762 0.776 

10 0.796 0.833 0.790 0.760 0.794 0.808 0.821 

11 0.835 0.845 0.799 0.803 0.840 0.860 0.881 

12 0.843 0.845 0.829 0.831 0.863 0.874 0.896 

13 0.847 0.869 0.848 0.868 0.891 0.897 0.896 

14 0.863 0.880 0.881 0.892 0.908 0.907 0.896 

15 0.890 0.904 0.887 0.902 0.908 0.907 0.903 

16 0.910 0.928 0.905 0.908 0.911 0.911 0.918 

17 0.922 0.936 0.905 0.911 0.913 0.930 0.925 

18 0.933 0.944 0.912 0.926 0.921 0.935 0.925 

19 0.933 0.944 0.927 0.926 0.931 0.939 0.933 

20 0.933 0.952 0.933 0.935 0.939 0.949 0.933 

21 0.941 0.956 0.942 0.945 0.947 0.949 0.933 

22 0.945 0.956 0.957 0.954 0.952 0.949 0.940 

23 0.945 0.956 0.960 0.954 0.952 0.967 0.948 

24 0.953 0.964 0.963 0.954 0.957 0.967 0.955 

25 0.953 0.964 0.966 0.957 0.959 0.972 0.970 

26 0.957 0.964 0.976 0.960 0.964 0.977 0.970 

27 0.957 0.964 0.976 0.969 0.975 0.977 0.970 

28 0.961 0.964 0.979 0.972 0.975 0.977 0.970 

29 0.961 0.968 0.979 0.978 0.975 0.977 0.970 

30 0.969 0.976 0.982 0.978 0.975 0.977 0.985 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

31 0.973 0.980 0.982 0.978 0.977 0.977 0.985 

32 0.976 0.980 0.985 0.982 0.980 0.981 0.985 

33 0.976 0.980 0.985 0.991 0.985 0.981 0.985 

34 0.976 0.980 0.988 0.991 0.987 0.986 0.985 

35 0.976 0.980 0.991 0.991 0.987 0.986 0.985 

36 0.980 0.984 0.991 0.991 0.987 0.986 0.985 

37 0.984 0.988 0.991 0.991 0.987 0.986 0.985 

38 0.984 0.992 0.991 0.991 0.992 0.986 0.993 

40 0.984 0.992 0.991 0.994 0.992 0.986 0.993 

41 0.984 0.992 0.997 0.994 0.992 0.986 0.993 

42 0.984 0.992 1.000 0.994 0.995 0.986 0.993 

43 0.984 0.996  0.994 0.995 0.991 0.993 

45 0.984 0.996  0.994 0.995 0.991 1.000 

46 0.988 0.996  0.994 0.995 0.995  

47 0.988 0.996  0.997 0.995 0.995  

50 0.992 0.996  0.997 0.995 0.995  

51 0.996 0.996  0.997 0.995 0.995  

52 1.000 0.996  0.997 0.995 0.995  

57  0.996  1.000 0.995 0.995  

62  0.996   0.995 1.000  

66  0.996   0.997   

68  0.996   1.000   

139  1.000      
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Ward 6D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.036 0.025 0.067 0.067 0.047 0.085 0.068 

1 0.205 0.167 0.223 0.231 0.138 0.106 0.176 

2 0.321 0.297 0.420 0.290 0.185 0.261 0.297 

3 0.433 0.423 0.461 0.302 0.296 0.387 0.432 

4 0.527 0.456 0.480 0.376 0.387 0.472 0.554 

5 0.554 0.469 0.554 0.494 0.502 0.507 0.649 

6 0.567 0.527 0.628 0.565 0.579 0.549 0.662 

7 0.634 0.586 0.673 0.631 0.640 0.563 0.662 

8 0.688 0.665 0.714 0.725 0.643 0.570 0.716 

9 0.754 0.720 0.743 0.725 0.650 0.613 0.716 

10 0.790 0.766 0.747 0.737 0.690 0.662 0.743 

11 0.808 0.770 0.755 0.776 0.731 0.704 0.811 

12 0.813 0.774 0.803 0.804 0.768 0.732 0.865 

13 0.813 0.799 0.829 0.827 0.778 0.746 0.865 

14 0.839 0.824 0.844 0.855 0.805 0.746 0.865 

15 0.853 0.862 0.859 0.890 0.811 0.746 0.878 

16 0.875 0.887 0.866 0.894 0.815 0.782 0.892 

17 0.897 0.904 0.866 0.898 0.828 0.796 0.905 

18 0.902 0.912 0.866 0.902 0.845 0.817 0.905 

19 0.902 0.912 0.874 0.910 0.848 0.831 0.919 

20 0.902 0.912 0.896 0.910 0.875 0.838 0.919 

21 0.911 0.925 0.900 0.914 0.875 0.859 0.919 

22 0.915 0.925 0.911 0.937 0.875 0.859 0.932 

23 0.915 0.937 0.918 0.937 0.875 0.866 0.932 

24 0.915 0.941 0.922 0.941 0.886 0.880 0.946 

25 0.920 0.941 0.922 0.953 0.886 0.880 0.946 

26 0.924 0.941 0.933 0.957 0.892 0.880 0.946 

27 0.924 0.941 0.944 0.957 0.902 0.894 0.946 

28 0.933 0.941 0.952 0.961 0.906 0.894 0.946 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

29 0.933 0.954 0.963 0.961 0.916 0.894 0.946 

30 0.938 0.954 0.963 0.961 0.916 0.901 0.946 

31 0.942 0.954 0.967 0.961 0.919 0.908 0.959 

32 0.946 0.954 0.967 0.961 0.923 0.915 0.959 

33 0.946 0.954 0.967 0.965 0.929 0.930 0.959 

34 0.946 0.954 0.967 0.969 0.939 0.937 0.959 

35 0.951 0.954 0.967 0.969 0.946 0.937 0.959 

36 0.955 0.954 0.974 0.969 0.949 0.937 0.959 

37 0.955 0.962 0.974 0.973 0.949 0.937 0.973 

39 0.960 0.962 0.974 0.973 0.953 0.937 0.973 

40 0.960 0.962 0.978 0.976 0.953 0.937 0.973 

41 0.960 0.967 0.978 0.976 0.953 0.937 0.973 

42 0.960 0.967 0.978 0.980 0.953 0.937 0.973 

43 0.969 0.967 0.978 0.980 0.953 0.937 0.973 

44 0.978 0.971 0.981 0.980 0.953 0.937 0.973 

45 0.978 0.971 0.985 0.980 0.956 0.944 0.973 

46 0.987 0.971 0.985 0.980 0.960 0.944 0.973 

47 0.987 0.971 0.985 0.988 0.963 0.944 0.973 

48 0.987 0.971 0.985 0.992 0.966 0.944 0.973 

49 0.987 0.975 0.989 0.992 0.966 0.944 0.973 

50 0.987 0.979 0.989 0.996 0.966 0.944 0.973 

51 0.987 0.979 0.993 0.996 0.966 0.944 0.973 

53 0.987 0.979 0.993 0.996 0.970 0.951 0.973 

54 0.987 0.983 0.993 0.996 0.973 0.951 0.973 

55 0.987 0.983 0.993 0.996 0.980 0.958 0.973 

56 0.991 0.983 0.993 0.996 0.980 0.958 0.973 

57 0.991 0.992 0.993 0.996 0.980 0.958 0.973 

59 0.991 0.992 0.993 0.996 0.983 0.958 0.973 

62 0.991 0.992 0.996 0.996 0.987 0.958 0.973 

66 0.991 0.992 0.996 0.996 0.990 0.958 0.973 

67 0.991 0.992 0.996 0.996 0.990 0.958 0.986 

68 0.991 0.992 0.996 0.996 0.990 0.972 1.000 

69 0.991 0.992 0.996 0.996 0.993 0.972  

70 0.991 0.992 0.996 0.996 1.000 0.972  

71 0.991 0.996 0.996 0.996  0.979  

74 0.991 0.996 0.996 0.996  0.986  

86 0.991 1.000 0.996 0.996  0.986  

87 0.996  0.996 0.996  0.986  

89 0.996  0.996 0.996  0.993  

117 0.996  0.996 1.000  0.993  

123 0.996  0.996   1.000  

185 1.000  0.996     

208   1.000     
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Northside Ward 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.000 0.000 0.000 0.000 0.000 0.017 0.013 

1 0.143 0.135 0.141 0.172 0.023 0.100 0.250 

2 0.276 0.240 0.313 0.226 0.080 0.350 0.355 

3 0.343 0.323 0.323 0.258 0.250 0.467 0.434 

4 0.476 0.323 0.333 0.441 0.352 0.533 0.513 

5 0.514 0.354 0.404 0.516 0.420 0.600 0.592 

6 0.514 0.448 0.505 0.581 0.477 0.617 0.605 

7 0.571 0.469 0.566 0.613 0.557 0.650 0.605 

8 0.590 0.563 0.586 0.688 0.557 0.650 0.671 

9 0.619 0.615 0.616 0.699 0.557 0.667 0.671 

10 0.657 0.635 0.626 0.699 0.636 0.700 0.697 

11 0.724 0.635 0.626 0.753 0.682 0.717 0.697 

12 0.724 0.635 0.667 0.774 0.716 0.733 0.697 

13 0.724 0.677 0.677 0.817 0.727 0.767 0.697 

14 0.743 0.698 0.707 0.839 0.750 0.767 0.697 

15 0.790 0.729 0.727 0.860 0.750 0.767 0.724 

16 0.810 0.771 0.747 0.860 0.761 0.800 0.763 

17 0.848 0.792 0.747 0.860 0.773 0.817 0.789 

18 0.886 0.792 0.747 0.871 0.784 0.833 0.829 

19 0.886 0.802 0.758 0.882 0.795 0.850 0.855 

20 0.886 0.823 0.798 0.882 0.795 0.883 0.855 

21 0.886 0.854 0.808 0.882 0.818 0.883 0.855 

22 0.895 0.865 0.808 0.892 0.818 0.883 0.855 

23 0.914 0.875 0.838 0.892 0.818 0.917 0.855 

24 0.914 0.885 0.838 0.892 0.830 0.917 0.855 

25 0.924 0.885 0.838 0.903 0.841 0.933 0.855 

26 0.924 0.885 0.859 0.914 0.864 0.933 0.855 

27 0.924 0.896 0.879 0.946 0.864 0.933 0.855 

28 0.933 0.906 0.899 0.946 0.886 0.933 0.855 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

29 0.943 0.927 0.909 0.946 0.886 0.933 0.882 

30 0.943 0.938 0.919 0.946 0.886 0.933 0.882 

31 0.952 0.969 0.919 0.946 0.886 0.967 0.882 

32 0.952 0.969 0.919 0.946 0.909 0.983 0.882 

33 0.952 0.969 0.929 0.957 0.920 0.983 0.882 

35 0.971 0.969 0.939 0.957 0.932 0.983 0.882 

37 0.971 0.969 0.949 0.957 0.932 0.983 0.882 

38 0.981 0.969 0.949 0.957 0.932 0.983 0.895 

39 0.981 0.969 0.949 0.957 0.943 0.983 0.908 

40 0.981 0.969 0.960 0.968 0.955 0.983 0.921 

41 0.981 0.969 0.960 0.978 0.955 0.983 0.921 

42 0.981 0.979 0.960 0.978 0.966 0.983 0.921 

43 0.990 0.979 0.970 0.978 0.966 0.983 0.934 

44 0.990 0.979 0.970 0.978 0.966 0.983 0.947 

45 0.990 0.979 0.970 0.978 0.966 0.983 0.974 

49 0.990 0.979 0.980 0.978 0.977 0.983 0.974 

50 1.000 0.979 0.980 0.978 0.977 0.983 0.974 

54  0.979 0.990 0.978 0.977 0.983 0.974 

57  0.979 0.990 0.989 0.977 0.983 0.974 

59  0.990 0.990 0.989 0.977 0.983 0.974 

60  0.990 0.990 0.989 0.989 0.983 0.974 

65  1.000 0.990 0.989 0.989 0.983 0.987 

67   0.990 0.989 0.989 1.000 0.987 

71   0.990 0.989 0.989  1.000 

75   1.000 0.989 0.989   

98    1.000 0.989   

119     1.000   
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Other Ward 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.594 0.535 0.635 0.501 0.590 0.416 0.345 

1 0.781 0.729 0.775 0.693 0.705 0.579 0.585 

2 0.836 0.817 0.851 0.756 0.745 0.674 0.750 

3 0.887 0.871 0.873 0.783 0.808 0.787 0.850 

4 0.917 0.884 0.884 0.821 0.846 0.855 0.890 

5 0.922 0.895 0.914 0.854 0.871 0.891 0.920 

6 0.924 0.912 0.918 0.882 0.885 0.914 0.930 

7 0.931 0.938 0.930 0.887 0.911 0.919 0.930 

8 0.942 0.944 0.938 0.914 0.917 0.919 0.950 

9 0.947 0.959 0.954 0.914 0.917 0.932 0.965 

10 0.952 0.972 0.954 0.919 0.923 0.937 0.980 

11 0.952 0.974 0.954 0.929 0.925 0.946 0.980 

12 0.956 0.974 0.958 0.947 0.931 0.950 0.985 

13 0.959 0.974 0.962 0.960 0.937 0.955 0.985 

14 0.959 0.976 0.970 0.970 0.952 0.955 0.985 

15 0.959 0.978 0.974 0.972 0.952 0.959 0.990 

16 0.961 0.978 0.976 0.972 0.952 0.968 0.990 

17 0.968 0.981 0.976 0.975 0.956 0.977 0.990 

18 0.972 0.981 0.976 0.977 0.956 0.977 0.995 

19 0.972 0.981 0.976 0.980 0.956 0.982 0.995 

20 0.972 0.985 0.976 0.982 0.960 0.982 0.995 

21 0.975 0.987 0.978 0.985 0.970 0.982 0.995 

22 0.977 0.987 0.978 0.987 0.970 0.986 0.995 

23 0.979 0.987 0.980 0.987 0.970 0.986 0.995 

24 0.984 0.987 0.980 0.987 0.970 0.986 1.000 

25 0.984 0.987 0.980 0.987 0.976 0.986  

26 0.984 0.987 0.980 0.987 0.978 0.986  

27 0.984 0.991 0.982 0.990 0.986 0.986  

28 0.986 0.991 0.984 0.990 0.986 0.986  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

29 0.988 0.991 0.984 0.990 0.986 0.986  

30 0.988 0.991 0.988 0.990 0.986 0.986  

31 0.988 0.994 0.988 0.990 0.986 0.991  

32 0.993 0.994 0.988 0.990 0.986 0.991  

33 0.993 0.994 0.990 0.992 0.988 0.991  

35 0.993 0.994 0.990 0.995 0.988 0.991  

36 0.995 0.996 0.994 0.997 0.988 0.991  

38 0.995 0.996 0.994 0.997 0.988 0.995  

39 0.995 0.996 0.994 1.000 0.990 0.995  

40 0.995 0.996 0.994  0.994 0.995  

41 0.995 0.996 0.994  0.996 0.995  

42 0.998 0.996 0.994  0.996 0.995  

43 0.998 0.996 0.996  0.996 0.995  

46 0.998 0.996 0.998  0.996 1.000  

52 0.998 0.996 0.998  0.998   

53 1.000 0.996 0.998  0.998   

74  0.996 0.998  1.000   

83  0.996 1.000     

84  0.998      

157  1.000      
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E.2 Length of Stay Distributions for the Elective Patients 

Emergency Department 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.625 0.667 0.400 0.692 0.500 0.813 0.333 

1 0.958 1.000 0.900 1.000 1.000 1.000 1.000 

2 1.000  1.000     
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Intensive Care Unit 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.022 0.071 0.074 0.018 0.053 0.125 0.143 

1 0.467 0.514 0.611 0.455 0.404 0.500 0.571 

2 0.689 0.714 0.852 0.655 0.632 0.875 0.714 

3 0.800 0.900 0.907 0.727 0.807 1.000 0.857 

4 0.844 0.900 0.944 0.800 0.842  0.857 

5 0.867 0.929 0.944 0.836 0.895  0.857 

6 0.867 0.929 0.981 0.873 0.930  0.857 

7 0.911 0.929 0.981 0.909 0.930  0.857 

8 0.956 0.957 0.981 0.927 0.930  0.857 

9 0.978 0.957 0.981 0.945 0.965  0.857 

10 0.978 0.971 0.981 0.945 0.982  0.857 

11 0.978 0.971 0.981 0.945 1.000  0.857 

12 0.978 0.971 0.981 0.964   0.857 

13 1.000 0.971 0.981 0.964   0.857 

16  0.986 0.981 0.964   0.857 

19  0.986 1.000 0.964   1.000 

33  1.000  0.964    

48    0.982    

58    1.000    
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Ward 4D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.054 0.104 0.075 0.091 0.156 0.000 0.000 

1 0.432 0.625 0.425 0.591 0.375 0.200 0.000 

2 0.676 0.750 0.650 0.591 0.375 0.600 0.250 

3 0.811 0.833 0.700 0.591 0.594 0.800 0.250 

4 0.838 0.854 0.725 0.682 0.719 0.800 0.250 

5 0.865 0.854 0.725 0.682 0.813 0.800 0.500 

6 0.892 0.854 0.800 0.727 0.844 0.800 0.500 

7 0.919 0.875 0.825 0.727 0.906 0.800 0.500 

8 0.919 0.896 0.875 0.773 0.906 0.800 0.500 

9 0.919 0.938 0.950 0.818 0.906 0.800 0.750 

10 0.919 0.938 0.950 0.818 0.938 1.000 1.000 

12 0.919 0.938 0.950 0.864 0.938   

13 0.919 0.958 0.950 0.864 0.938   

14 0.919 0.958 1.000 0.909 0.969   

15 0.946 0.958  1.000 0.969   

21 0.946 0.958   1.000   

23 1.000 0.979      

24  1.000      
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Ward 4K 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.013 0.023 0.031 0.019 0.068 0.000 0.000 

1 0.699 0.840 0.773 0.654 0.695 0.400 0.733 

2 0.804 0.937 0.856 0.731 0.814 0.800 0.800 

3 0.824 0.966 0.887 0.769 0.864 0.800 0.933 

4 0.915 0.966 0.887 0.808 0.932 0.800 0.933 

5 0.922 0.966 0.897 0.846 0.932 1.000 0.933 

6 0.922 0.966 0.897 0.865 0.932  0.933 

7 0.935 0.977 0.907 0.865 0.932  1.000 

8 0.935 0.977 0.928 0.865 0.932   

9 0.935 0.983 0.948 0.865 0.932   

10 0.967 0.983 0.959 0.885 0.949   

11 0.967 0.989 0.959 0.981 0.949   

12 0.974 0.989 0.969 0.981 0.949   

13 0.974 0.989 0.969 0.981 0.966   

14 0.987 0.994 0.979 0.981 0.966   

15 0.993 0.994 0.979 0.981 0.966   

16 0.993 0.994 0.990 0.981 0.966   

18 0.993 0.994 0.990 0.981 0.966   

19 0.993 0.994 0.990 0.981 0.983   

21 0.993 0.994 0.990 0.981 1.000   

25 1.000 0.994 0.990 0.981    

33  0.994 0.990 1.000    

63  1.000 0.990     

72   1.000     
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Ward 5A 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.022 0.033 0.045 0.047 0.058 0.018 0.051 

1 0.289 0.479 0.395 0.268 0.397 0.250 0.322 

2 0.400 0.688 0.643 0.443 0.476 0.446 0.339 

3 0.461 0.758 0.703 0.511 0.619 0.518 0.356 

4 0.600 0.813 0.752 0.630 0.698 0.625 0.458 

5 0.667 0.846 0.820 0.715 0.783 0.679 0.525 

6 0.694 0.896 0.861 0.783 0.852 0.750 0.559 

7 0.783 0.925 0.898 0.838 0.889 0.750 0.627 

8 0.844 0.933 0.910 0.872 0.889 0.750 0.678 

9 0.917 0.954 0.936 0.881 0.894 0.804 0.729 

10 0.928 0.971 0.940 0.885 0.931 0.875 0.814 

11 0.944 0.971 0.944 0.932 0.952 0.893 0.831 

12 0.944 0.971 0.959 0.957 0.963 0.911 0.864 

13 0.950 0.971 0.962 0.970 0.963 0.929 0.864 

14 0.961 0.971 0.966 0.979 0.968 0.929 0.864 

15 0.967 0.975 0.974 0.979 0.974 0.929 0.915 

16 0.972 0.975 0.981 0.983 0.974 0.946 0.949 

17 0.983 0.979 0.981 0.983 0.974 0.946 0.949 

18 0.983 0.979 0.981 0.991 0.974 0.964 0.966 

19 0.983 0.979 0.992 0.991 0.974 0.964 0.966 

20 0.983 0.979 0.992 0.991 0.979 0.982 0.966 

21 0.983 0.983 0.996 0.991 0.984 0.982 0.966 

22 0.983 0.983 0.996 0.991 0.984 0.982 0.983 

24 0.983 0.988 1.000 0.991 0.984 0.982 0.983 

25 0.983 0.988  0.991 0.989 0.982 1.000 

26 0.983 0.988  0.996 0.989 0.982  

27 0.989 0.988  0.996 0.995 0.982  

28 0.994 0.988  0.996 1.000 0.982  

29 0.994 0.992  0.996  0.982  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

30 1.000 0.996  0.996  1.000  

31  0.996  1.000    

73  1.000      
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Ward 5A 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.022 0.033 0.045 0.047 0.058 0.018 0.051 

1 0.289 0.479 0.395 0.268 0.397 0.250 0.322 

2 0.400 0.688 0.643 0.443 0.476 0.446 0.339 

3 0.461 0.758 0.703 0.511 0.619 0.518 0.356 

4 0.600 0.813 0.752 0.630 0.698 0.625 0.458 

5 0.667 0.846 0.820 0.715 0.783 0.679 0.525 

6 0.694 0.896 0.861 0.783 0.852 0.750 0.559 

7 0.783 0.925 0.898 0.838 0.889 0.750 0.627 

8 0.844 0.933 0.910 0.872 0.889 0.750 0.678 

9 0.917 0.954 0.936 0.881 0.894 0.804 0.729 

10 0.928 0.971 0.940 0.885 0.931 0.875 0.814 

11 0.944 0.971 0.944 0.932 0.952 0.893 0.831 

12 0.944 0.971 0.959 0.957 0.963 0.911 0.864 

13 0.950 0.971 0.962 0.970 0.963 0.929 0.864 

14 0.961 0.971 0.966 0.979 0.968 0.929 0.864 

15 0.967 0.975 0.974 0.979 0.974 0.929 0.915 

16 0.972 0.975 0.981 0.983 0.974 0.946 0.949 

17 0.983 0.979 0.981 0.983 0.974 0.946 0.949 

18 0.983 0.979 0.981 0.991 0.974 0.964 0.966 

19 0.983 0.979 0.992 0.991 0.974 0.964 0.966 

20 0.983 0.979 0.992 0.991 0.979 0.982 0.966 

21 0.983 0.983 0.996 0.991 0.984 0.982 0.966 

22 0.983 0.983 0.996 0.991 0.984 0.982 0.983 

24 0.983 0.988 1.000 0.991 0.984 0.982 0.983 

25 0.983 0.988  0.991 0.989 0.982 1.000 

26 0.983 0.988  0.996 0.989 0.982  

27 0.989 0.988  0.996 0.995 0.982  

28 0.994 0.988  0.996 1.000 0.982  

29 0.994 0.992  0.996  0.982  
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

30 1.000 0.996  0.996  1.000  

31  0.996  1.000    

73  1.000      
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Ward 5B 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.019 0.022 0.022 0.015 0.017 0.000 0.000 

1 0.409 0.550 0.420 0.402 0.366 0.300 0.217 

2 0.550 0.746 0.602 0.544 0.501 0.650 0.522 

3 0.713 0.861 0.669 0.637 0.654 0.750 0.522 

4 0.804 0.900 0.734 0.746 0.766 0.800 0.522 

5 0.865 0.922 0.836 0.843 0.862 0.950 0.652 

6 0.884 0.951 0.915 0.915 0.904 0.950 0.739 

7 0.945 0.958 0.955 0.940 0.938 0.950 0.739 

8 0.961 0.963 0.973 0.967 0.952 0.950 0.739 

9 0.972 0.976 0.993 0.967 0.955 1.000 0.783 

10 0.975 0.983 0.993 0.967 0.963  0.826 

11 0.983 0.983 0.993 0.979 0.969  0.826 

12 0.986 0.988 0.993 0.982 0.977  0.826 

13 0.986 0.995 0.993 0.988 0.983  0.826 

14 0.989 0.995 0.993 0.988 0.986  0.826 

15 0.989 0.995 0.995 0.991 0.986  0.826 

16 0.992 0.995 0.998 0.991 0.986  0.826 

17 0.992 0.995 0.998 0.991 0.992  0.826 

18 0.994 0.995 0.998 0.991 0.994  0.913 

19 0.994 0.995 0.998 0.994 0.994  0.913 

20 0.994 0.995 0.998 0.994 0.997  0.913 

22 0.997 0.995 1.000 0.994 0.997  0.913 

23 1.000 0.995  0.994 0.997  0.957 

25  0.995  0.994 0.997  1.000 

26  0.995  0.997 0.997   

29  0.998  1.000 0.997   

32  0.998   1.000   

71  1.000      
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Ward 5D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.024 0.000 0.035 0.038 0.019 0.200 0.000 

1 0.098 0.202 0.209 0.346 0.346 0.400 0.222 

2 0.358 0.442 0.430 0.462 0.365 0.600 0.500 

3 0.504 0.673 0.535 0.474 0.442 0.800 0.611 

4 0.610 0.750 0.605 0.564 0.481 0.800 0.667 

5 0.707 0.769 0.686 0.628 0.519 1.000 0.778 

6 0.756 0.808 0.744 0.705 0.558  0.833 

7 0.805 0.837 0.791 0.718 0.615  0.833 

8 0.837 0.865 0.826 0.756 0.615  0.833 

9 0.846 0.875 0.826 0.782 0.615  0.833 

10 0.870 0.875 0.826 0.782 0.654  0.889 

11 0.886 0.875 0.826 0.795 0.788  0.889 

12 0.886 0.875 0.860 0.821 0.788  0.889 

13 0.886 0.885 0.872 0.833 0.827  0.889 

14 0.886 0.904 0.884 0.846 0.885  0.889 

15 0.902 0.904 0.884 0.897 0.885  0.889 

16 0.927 0.913 0.895 0.910 0.885  0.889 

17 0.927 0.913 0.895 0.923 0.885  0.889 

18 0.976 0.913 0.895 0.936 0.904  0.889 

19 0.976 0.913 0.907 0.949 0.923  0.889 

20 0.976 0.913 0.919 0.962 0.942  0.889 

21 0.984 0.913 0.930 0.962 0.942  0.889 

22 0.984 0.923 0.942 0.974 0.942  0.889 

23 0.984 0.933 0.942 0.974 0.942  0.944 

24 0.984 0.942 0.942 0.974 0.962  0.944 

25 0.984 0.952 0.942 0.974 0.962  0.944 

26 0.984 0.952 0.953 0.974 0.981  0.944 

28 0.984 0.962 0.953 0.974 0.981  0.944 

29 0.984 0.971 0.965 0.974 0.981  0.944 
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

30 0.984 0.981 0.965 0.974 0.981  0.944 

31 0.984 0.981 0.965 0.974 1.000  0.944 

33 0.984 0.981 0.965 0.987   1.000 

34 0.984 0.990 0.977 0.987    

35 1.000 0.990 0.988 1.000    

41  0.990 1.000     

63  1.000      
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Ward 6D 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.091 0.000 0.087 0.000 0.067 0.500 0.000 

1 0.273 0.690 0.478 0.588 0.533 0.500 0.500 

2 0.500 0.759 0.739 0.647 0.667 1.000 0.500 

3 0.591 0.793 0.739 0.706 0.667  0.500 

4 0.727 0.793 0.739 0.824 0.733  0.500 

5 0.818 0.793 0.783 0.882 0.800  0.500 

6 0.818 0.793 0.826 0.882 0.800  0.500 

7 0.909 0.897 0.826 0.882 0.800  0.500 

8 0.909 0.897 0.826 0.941 0.800  0.500 

9 0.955 0.897 0.957 0.941 0.800  0.500 

10 0.955 0.931 0.957 0.941 0.800  0.500 

11 1.000 0.931 0.957 0.941 0.867  0.500 

12  0.931 0.957 0.941 0.867  1.000 

14  0.966 1.000 0.941 0.933   

15  0.966  1.000 0.933   

16  1.000   0.933   

180     1.000   
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Northside Ward 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.000 0.000 0.000 0.000 1.000 1.000 1.000 

1 0.500 0.000 0.000 0.000    

2 0.500 1.000 0.250 0.000    

4 0.500  0.500 1.000    

6 0.500  1.000     

29 1.000       
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Other Ward 

 

 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

0 0.891 0.931 0.928 0.926 0.913 0.526 0.600 

1 0.945 0.978 0.982 0.963 0.946 0.632 0.900 

2 0.961 0.984 0.990 0.968 0.956 0.684 0.900 

3 0.969 0.990 0.990 0.968 0.971 0.737 0.900 

4 0.976 0.991 0.992 0.975 0.979 0.789 0.900 

5 0.978 0.993 0.992 0.982 0.979 0.842 1.000 

6 0.980 0.993 0.993 0.984 0.981 0.842  

7 0.985 0.994 0.995 0.986 0.983 0.842  

8 0.987 0.996 0.995 0.988 0.983 0.842  

9 0.987 0.996 0.995 0.988 0.983 0.895  

10 0.987 0.996 0.995 0.988 0.985 0.947  

11 0.987 0.996 0.995 0.991 0.985 0.947  

12 0.987 0.996 0.995 0.993 0.985 0.947  

14 0.989 0.996 0.995 0.993 0.988 0.947  

15 0.991 0.997 0.995 0.995 0.988 0.947  

16 0.993 0.999 0.995 0.995 0.988 1.000  

17 0.993 1.000 0.995 0.995 0.988   

18 0.993  0.995 0.995 0.990   

19 0.993  0.995 0.998 0.990   

21 0.993  0.995 0.998 0.994   

23 0.993  0.997 0.998 0.994   

29 0.996  0.997 0.998 0.994   

30 0.996  0.998 0.998 0.994   

31 0.996  0.998 0.998 0.996   

40 0.996  0.998 0.998 0.998   

41 0.996  0.998 1.000 0.998   

43 0.998  0.998  0.998   

46 0.998  0.998  1.000   

47 0.998  1.000     
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 Cumulative Distribution of Length-of-Stay 

Midnights Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

92 1.000       
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