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ABSTRACT
This paper presents stellar mass functions and i-band luminosity functions for Sloan
Digital Sky Survey (SDSS) galaxies at i < 21 using clustering redshifts, from which we
also compute targeting completeness measurements for the Baryon Oscillation Spec-
troscopic Survey (BOSS). Clustering redshifts is a method of obtaining the redshift
distribution of a sample of galaxies with only photometric information by measuring
the angular crosscorrelation with a spectroscopic sample in different redshift bins. We
construct a spectroscopic sample containing data from the BOSS + eBOSS surveys,
allowing us to recover redshift distributions from photometric data out to z ' 2.5. We
produce k-corrected i-band luminosity functions and stellar mass functions by apply-
ing clustering redshifts to SDSS DR8 galaxies in small bins of colour and magnitude.
There is little evolution in the mass function between 0.2 < z < 0.8, implying the most
massive galaxies form most of their mass before z = 0.8. These mass functions are
used to produce stellar mass completeness estimates for the Baryon Oscillation Spec-
troscopic Survey (BOSS), giving a stellar mass completeness of 80% above M? > 1011.4

between 0.2 < z < 0.7, with completeness falling significantly at redshifts higher than
0.7, and at lower masses. Large photometric datasets will be available in the near fu-
ture (DECaLS, DES, Euclid), so this, and similar techniques will become increasingly
useful in order to fully utilise this data.

Key words: galaxies: luminosity function, mass function – surveys – methods: data
analysis – galaxies: distances and redshifts

1 INTRODUCTION

Large spectroscopic galaxy surveys are extremely useful
tools for studying galaxy evolution. They allow us to deter-
mine stellar masses, star formation histories, and dynamics
for large numbers of galaxies. In particular, deep, small area
surveys such as PRIMUS (Coil et al. 2011), DEEP2 (New-
man et al. 2013), and VIPERS (Guzzo et al. 2014) contain
data for galaxies over a broad range of masses, colours, mor-
phologies, and redshifts, allowing tests of galaxy evolution
on very different objects.

? E-mail: db217@st-andrews.ac.uk (KTS)

These surveys, however, are not ideal for investigating
galaxy evolution at the highest masses, since the number
density of galaxies above, for example, M? > 1011.5M�, is
extremely low. Due to their small area, these pencil-beam
surveys typically only target tens or hundreds of galaxies
above this mass, and are strongly affected by sample vari-
ance.

An ideal approach to study galaxy evolution at these
masses is using large-volume cosmological redshift surveys,
which typically target the highest mass galaxies over very
large regions of the sky. The Baryon Oscillation Spectro-
scopic Survey (BOSS) (Eisenstein et al. 2011; Dawson et al.
2013) is the most extensive of these to date, measuring spec-
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2 D. J. Bates et al.

tra for roughly 1.5 million luminous red galaxies (LRGs) over
10,000 deg2 of sky at z < 0.7. BOSS contains over 100,000
galaxies with stellar masses M? > 1011.5M� (Maraston et al.
2013), so it is able to study this end of the mass function with
very little shot noise. Ongoing and future surveys such as
eBOSS (Blanton et al. 2017; Dawson et al. 2016) and DESI
(DESI Collaboration et al. 2016) will extend this study to
higher redshifts and larger numbers of galaxies, providing
additional data to better probe these masses.

One limitation of these surveys, however, is that they
are optimised for cosmology, not galaxy science. Their target
selection therefore involves a number of complex colour cuts,
leading to samples of galaxies that are incomplete in both
stellar mass and colour. To study galaxy evolution at these
masses, we must quantify this incompleteness.

One method of determining incompleteness is by com-
paring the distribution of galaxies as a function of mass in
one sample, to that of another sample which is complete in
stellar mass. In Leauthaud et al. (2016), they chararacterise
the stellar mass completeness of BOSS using Stripe 82, a
narrow region of the SDSS with deeper ugriz photometry, as
well as near-IR photometry from the UKIRT Infrared Deep
Sky Survey (UKIDSS) (Lawrence et al. 2007), allowing for
more accurate photometric redshifts and stellar masses.

Large-area broad-band photometric surveys such as the
Sloan Digital Sky Survey (SDSS) (York et al. 2000) are com-
plete, provide data over a large area (' 14000 deg2) for
galaxies over a range of magnitudes and colours, so would
be ideal for this purpose. One disadvantage, however, is that
for SDSS-like data, photometric redshifts can be unreliable
(Rahman et al. 2016b). In this paper, we outline a method of
computing luminosity and mass functions (and hence com-
pleteness) from broad-band surveys using a technique known
as clustering redshifts.

Clustering redshifts is a method of obtaining the red-
shift distribution of set of galaxies via crosscorrelation with
a spectroscopic sample. A number of slightly different tech-
niques have been proposed; however, the main idea is the
same: the two-point angular crosscorrelation is measured be-
tween a photometric sample of galaxies and different redshift
bins of a spectroscopic sample. If the photometric sample
overlaps in redshift with a particular bin of the spectroscopic
sample, then the measured crosscorrelation will have a pos-
itive amplitude. Combining this crosscorrelation with bias
information of the two samples, it is possible to accurately
measure the redshift distribution of a photometric sample of
galaxies.

In this paper we use clustering redshifts to recover the
redshift distributions of samples of galaxies from the SDSS
photometric survey in small bins of magnitude and colour,
isolating galaxies of similar type. After recovering redshift
distributions of bins, we use these colours and redshifts to
compute stellar masses and luminosities by examining sim-
ulated galaxies in the same bins of colour-redshift space.

The layout of this paper is as follows: Section 2 describes
both the real and mock data used in this study. Section 3
presents the clustering redshifts method and bias correction,
and our method of computing stellar masses. In section 4 we
test our clustering redshifts method on mock data, and de-
termine how accurately mass and luminosity functions can
be recovered using this technique. In section 5, this tech-
nique is applied to real SDSS photometry to produce real

mass and luminosity functions. Section 6 presents complete-
ness measurements for BOSS using these computed mass
and luminosity functions. Finally, in section 7, we discuss
these results, and outline possible extensions of this work.

2 DATA

This study uses data from two main sources. We seek to com-
pute mass functions from photometric data. In order to per-
form this task, we apply the clustering redshifts technique,
which requires both an “unknown sample” (i.e. a photomet-
ric sample of unknown redshifts) and a “reference sample” (a
sample over the same region of sky but with spectroscopic
redshifts). The unknown sample is crosscorrelated with the
reference sample to recover the redshift distribution.

2.1 BOSS & eBOSS Reference Sample

As a reference sample, we use data from both the SDSS-
III: BOSS (Eisenstein et al. 2011; Dawson et al. 2013; Gunn
et al. 2006; Smee et al. 2013) and SDSS-IV: eBOSS (Blanton
et al. 2017; Dawson et al. 2016; Gunn et al. 2006; Smee et al.
2013) surveys. BOSS is a cosmological redshift survey that
has measured spectra for ∼ 1.5 million luminous red galaxies
(LRGs) out to z = 0.7, over roughly 10, 000 deg2 of sky. Its
primary aim is to map the spatial distribution of the highest
mass galaxies over large volumes in order to measure the
scale of baryon acoustic oscillations (BAO) in the clustering
of galaxies. eBOSS is the extension of this program, ongoing
at the moment, targeting ∼ 375, 000 LRGs (Prakash et al.
2016) at 0.7 < z < 0.8, and ∼ 740, 000 quasars (Myers et al.
2015) over the range 0.9 < z < 3.5 both over 7, 500 deg2 of
sky.

These samples are ideal for a reference sample, as they
cover a large area and provide continuous, large numbers
of redshifts over the range 0 < z < 3. The reference sam-
ple is therefore a combination of BOSS DR12 (Alam et al.
2015) LRGs in the North Galactic Cap (NGC) covering 6851
deg2 and eBOSS DR14 data (Abolfathi et al. 2018), contain-
ing both the LRG and quasar samples, covering 1011 and
1214 deg2 respectively, within the BOSS NGC area. The to-
tal sample is then 1.1 million galaxies. The number density
of both the individual and combined samples are shown in
figure 1. When computing correlation functions in later sec-
tions, we use large scale structure catalogues from Reid et al.
(2012) for the BOSS LRG sample, Bautista et al. (2017) for
eBOSS LRGs, and Ata et al. (2018) for eBOSS quasars, us-
ing 10x randoms for all samples.

2.2 SDSS Photometric Survey

Our photometric survey (i.e., the sample for which we wish
to compute redshift distributions, along with masses and lu-
minosities) consists of data from the SDSS photometric sur-
vey (York et al. 2000; Gunn et al. 1998). We use photometry
from DR8 (Aihara et al. 2011) which contains u, g, r, i and
z band information. We select only objects morphologically
classified as galaxies, and only use data from the primary
survey (i.e., the best observation for each object). To create
our catalogues, we use g, r and i band modelMag magnitudes
(see Stoughton et al. (2002)). We also constrain the sample
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Figure 1. The comoving number density of three different spec-
troscopic galaxy samples described in section 2.1: At low redshift,

BOSS DR12 LRGs (blue), intermediate redshifts, eBOSS DR14

LRGs (magenta), and higher redshifts, eBOSS DR14 quasars
(red). The number density for the combination of these three

samples is shown as the black dotted line.

to i < 21 to avoid incompleteness, and only include galaxies
in the same region as the BOSS NGC DR12 footprint us-
ing the following masks detailed in Anderson et al. (2012):
The survey geometry mask, and veto masks for bright stars
mask, unphotometric seeing and bright objects. Finally, we
remove all galaxies that are also in our reference sample,
leaving 53 million galaxies over ∼ 7000 deg2. We create ran-
dom catalogues for this sample using the MANGLE software
(Swanson et al. 2008), using 10x randoms.

2.3 Mock Surveys

In Section 4, we assess the reliability of our method on mock
data, which requires both a mock reference sample and pho-
tometric survey. In later sections, we also use semi-analytic
models to compute masses from colours and redshifts. Both
these purposes require mock samples, and hence lightcones
from two semi-analytic models (SAMs). We firsly take data
from LGalaxies (Henriques et al. 2015). This lightcone cov-
ers 1/8th of the sky and is run on the Millennium simu-
lation (Springel et al. 2005) rescaled to Planck cosmology
(Planck Collaboration et al. 2014). Magnitudes are com-
puted using Maraston & Strömbäck (2011) stellar popula-
tion models (SSPs), using a Kroupa et al. (2001) initial mass
function (IMF). We also use a smaller lightcone from SAGE
(Croton et al. 2016) covering (100 deg2 Area), run on the
MultiDark MDPL2 simulation (Klypin et al. 2016; Knebe
et al. 2018), with SEDs and magnitudes also computed us-
ing Maraston & Strömbäck (2011) SSPs and a Kroupa et al.
(2001) IMF. Both catalogues have angular positions, red-
shifts, SDSS magnitudes (apparent and absolute) with red-
dening applied (Calzetti et al. 2000), and present day stellar
masses.

We add photometric errors to the magnitudes of both
SAMs by looking at how the error on a fitted magnitude
in the SDSS varies as a function of that magnitude (i.e. g

vs σg, r vs σr, i vs σi). For every mock galaxy, we use its

magnitude to compute the mean error at this magnitude in
SDSS, then draw a Gaussian random error using this value
as the standard deviation. We compute errors for all mock
galaxies in the g, r and i bands, and add these errors to our
mock galaxy magnitudes.

From these simulated galaxy catalogues, we define a
mock reference sample and photometric survey. We define
our reference sample by applying the colour and magnitude
cuts of the BOSS survey described in Dawson et al. (2013) to
both our LGalaxies and SAGE catalogues. This procedure
produces samples with comparable redshift distribution to
the BOSS survey and is further discussed in section 4.3. We
refer to these samples as BOSSLGalaxies and BOSSSAGE . To
create mock SDSS photometric samples, we cut both cata-
logues to i < 21 as in section 2.2, and also remove all galaxies
present in our mock reference sample. We refer to these mock
photometric surveys as SDSSLGalaxies and SDSSSAGE .

3 METHOD

Crosscorrelations have long been used to test for physical
association (Seldner & Peebles 1976); however, the idea of
using crosscorrelations to produce accurate redshift distribu-
tions has only become common over the last decade, partly
due to the increase in data from large volume spectroscopic
and photometric surveys.

Phillipps et al. (1985) investigated determining corre-
lation functions from samples with only partial redshift in-
formation; later, in Phillipps & Shanks (1987), luminosity
functions are computed given the assumption that galax-
ies close in the sky are likely at the same redshift. Schnei-
der et al. (2006) more generally investigate this technique
by measuring crosscorrelations with galaxies binned by pho-
tometric redshift. This approach is built on more formally
in Newman (2008), and later Matthews & Newman (2010)
and Matthews & A. (2012), where a method is outlined for
computing redshift distributions by measuring the angular
crosscorrelation between a photometric sample and different
redshift bins of a spectroscopic sample. The amplitude of the
crosscorrelation is fitted by an analytical form; since the red-
shift distribution inferred also depends on the evolution in
bias of both samples, an iterative technique is employed to
correct for this, assuming that clustering amplitude is pro-
portional in both the spectroscopic and photometric sample.

Some variants on this method have subsequently ap-
peared. For example, Schmidt et al. (2013) and Ménard
et al. (2013), propose a similar technique, measuring angu-
lar crosscorrelations with a spectroscopic sample, but over
constant physical scale. Furthermore, bias evolution is cor-
rected for by assuming a bias evolution law, and the ef-
fect of this assumption is tested, down to non-linear scales.
More recent studies applying these methods include Rah-
man et al. (2015), Rahman et al. (2016a), Rahman et al.
(2016b), Scottez et al. (2016), and Scottez et al. (2018). van
Daalen & White (2018) present a model for computing lumi-
nosity functions using clustering information and apparent
magnitudes.

In Gatti et al. (2018) the performance of three of these
methods are investigated: Newman (2008), Schmidt et al.
(2013) and Ménard et al. (2013). They by apply all meth-
ods to simulated Dark Energy Survey (DES) data, finding

MNRAS 000, 1–14 (2017)
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that Newman (2008) method produces slightly noisier red-
shift distributions due to having two extra degrees of free-
dom when fitting the crosscorrelation amplitude; further-
more, they report that the proportional bias assumption is
not always accurate.

In our preliminary tests, the noise of all techniques was
largely due to noise in the crosscorrelation functions; the
choice of method made only small differences to the noisiness
of the recovered n(z)s. The main difference between methods
is how the bias evolution correction is applied.

Since, firstly, Gatti et al. (2018) find that Menard
method appears to produce slightly less noisy distributions,
and secondly, we will be applying our own bias correction
computed from semi-analytic models, we choose to adopt a
method based on Ménard et al. (2013).

3.1 Clustering Redshifts Methodology

The method is detailed in Ménard et al. (2013) (hereon
M13); we summarise the important points here, along with
our alterations. The method is centered around computing
the crosscorrelation between a photometric or “unknown”
sample, and a number of redshift bins of a spectroscopic or
“reference” sample.

Using the simplest Peebles & Hauser (1974) estimator,
the angular crosscorrelation between two samples, 1 and
2, can be defined as, ω12(θ) = D1D2(θ)/R1R2(θ) − 1, where
D1D2(θ) is the number of galaxies in sample 1 separated by
an angular distance θ from galaxies in sample 2. R1R2(θ) is
the same statistic, but instead for two purely randomly dis-
tributed sets of points. The crosscorrelation function there-
fore describes, as a function of angle, the excess probability
that galaxies in one sample will be situated a particular dis-
tance from galaxies in another. If the two samples considered
overlap in redshift, they will occupy the same density field,
and their positions will be correlated, hence this crosscorre-
lation will have a positive amplitude.

To produce an n(z) measurement, we therefore need to
measure the angular crosscorrelation, ωur (θ, z), between an
unknown sample, and different redshift bins of a reference
sample. Since we are interested in how the amplitude of this
quantity evolves with redshift, we integrate over θ to produce

ω̄ur (z) =
∫ θmax

θmin

dθW(θ)ωur (θ, z) (1)

where W(θ) is the weight function, W(θ) = θ−1, designed
to optimise the signal-to-noise ratio. In order to probe the
same physical scale at all redshifts, θmin and θmax are com-
puted differently for each redshift, such that they correspond
the same physical scales rp,min and rp,max .

From M13, the integrated crosscorrelation is,

ω̄ur (z) ∝
dNu

dz
(z)b̄u(z)b̄r (z)ω̄DM (z) (2)

where dNu
dz (z) is the redshift distribution of the unknown

sample, b̄u(z) and b̄r (z) are the evolution in bias of the un-
known and reference samples, respectively, over the same
scales, and ω̄DM (z) is the equivalent evolution in the inte-
grated dark matter correlation function.

3.2 Correcting for Bias Evolution

In order to compute a redshift distribution, we need an esti-
mate of b̄u(z), b̄r (z), and ω̄DM (z). Assuming linear biasing,
the integrated autocorrelations of the unknown and refer-
ence samples as a function of redshift can be written as
ω̄uu(z) = b̄2

u(z)ω̄DM (z) and ω̄rr (z) = b̄2
r (z)ω̄DM (z) respec-

tively. We were able to measure both ωuu(z) and ωrr (z),
so we can substitute these in to equation 2, producing,

dNu

dz
(z) ∝ ω̄ur (z)√

ω̄uu(z)ω̄rr (z)
(3)

We can measure ω̄ur (z), the integrated crosscorrelation
between the unknown sample and each bin in redshift of the
reference sample, and also ω̄rr (z), the integrated autocorre-
lation of the reference sample over the same redshift bins and
physical scale. We can also remove the constant of propor-
tionality by normalising dNu

dz (z) to the number of galaxies in
the unknown sample. The only parameter we cannot com-
pute is ω̄uu(z), since we have no redshift information for the
unknown sample.

M13 show in their figure 1 that for a range of assumed
bias evolutions of the unknown sample, if the redshift dis-
tribution is narrow, σz < 0.2, the effects of bias evolution
on the recovered distribution are small, and therefore the
distribution can be estimated as dNu

dz (z) ∝ ω̄ur (z). Some pa-
pers choose to assume this relation, e.g. M13, Schmidt et al.
(2013), or factor any deviation from this into their error
budgets Gatti et al. (2018).

We will be eventually applying this approach to many
different bins of galaxies, and as shown in section 4.1, while
distributions are generally narrow, they can often be wider
than σz < 0.2. For this reason, we choose instead to correct
for this evolution by examining how the bias (or more accu-
rately ω̄uu(z)) evolves in semi-analytic models (SAMs). Note
that for all our correlation function measurements, we use
the Landy & Szalay (1993) estimator. Furthermore, where
cosmology is needed we assume Planck Collaboration et al.
(2014) best fit cosmological parameters.

3.3 Computing a Bias Correction

To correct for the bias evolution of the unknown sample, we
investigate how this evolves for different samples of galaxies
in the LGalaxies SAM described in section 2.3. We must first
measure the integrated autocorrelation, ω̄uu(z) as a func-
tion of redshift. We choose to measure the autocorrelation
for several galaxy samples in different bins of i-band mag-
nitude, so we can apply a correction as a function of their
brightness, as the clustering of galaxies of different luminosi-
ties will likely be very different.

We measure ω̄uu(z) for 10 bins of i-band magnitude of
width ∆i = 0.25 between 17 < i < 20 and ∆i = 0.125 between
20 < i < 21 (since we have significantly more galaxies at
fainter magnitudes). For each magnitude bin, we measure
ω̄uu(z) in redshift bins of width ∆z = 0.1/3, as this is the
binning we will apply to test our data in section 4.1. This
integrated autocorrelation is shown for three different mag-
nitude bins, and for both small scales (0.5<rp<1.5 Mpc)
and large scales (5<rp<15 Mpc) in figure 2, along with the
redshift distributions of the three magnitude bins.

MNRAS 000, 1–14 (2017)
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Figure 2. (left) The normalised redshift distributions of three different magnitude bins of LGalaxies data: 18.75 < i < 19 (blue),
19.75 < i < 20 (magenta), and 20.875 < i < 21 (red). The middle and right hand side plots show the integrated angular autocorrelation

function, ω̄uu (z), as a function of redshift for these three bins. The distributions are shown for small scales, 0.5 < rp < 1.5 Mpc (middle)

and large scales, 5 < rp < 15 Mpc, (right). Since the clustering redshifts method only depends on the evolution of ω̄uu (z), not the overall
amplitude, integrated correlation functions for are normalised such that the minimum value is 1.

Looking at both small scale and large scale clustering,
in all bins of magnitude, there is a significant increase in the
clustering amplitude towards lower redshifts. This behavior
is particularly noticeable in the two faintest magnitude bins.
There is also, in all magnitude bins, an increase in clustering
amplitude towards higher redshifts, although in general this
evolution is smaller at larger scales. Since this evolution is
very different for different magnitude bins, we suggest that
evolution in b̄2

u(z) is driving this result, rather than ω̄DM (z).
The reason that the clustering amplitude increases at

low redshift is due to the fact that we have magnitude-
limited samples. For a given magnitude, galaxies at high
redshift will be intrinsically luminous, and likely to be cen-
trals, where as low redshift galaxies will be dim and likely
satellites. This change in satellite fraction would lead to a
substantial difference in the clustering amplitude, particu-
larly at small scales, as seen in figure 2. This evolution is
more significant in faint magnitude bins where galaxies span
a larger range of redshifts, and therefore luminosities. The
increase in amplitude towards higher redshift is likely due
to the fact that for a given magnitude bin, the highest red-
shift galaxies are likely very luminous and massive, hence
strongly biased.

Although large-scale clustering is less dependent on the
bias evolution, the recovered φ(z) is significantly more noisy,
mostly due to the angular crosscorrealtion signal being di-
luted by foreground/background galaxies. Furthermore, this
signal is more susceptible to spurious correlations due to
large-scale structure (e.g., chance alignment of structure at
different redshifts). We discuss this issue in appendix A. Be-
cause of this effect, when applying to real data we choose
to measure crosscorrelations over the scales 1.5 to 5 Mpc,
as 1.5 Mpc is the smallest scale we can measure while being
safely above the SDSS fiber collision radius of 62 arcseconds.

When applying the clustering redshifts method to data
in subsequent sections, we use the measured evolution of
ω̄uu(z) in SDSSLGalaxies as an estimate of the bias evolution
of the unknown sample, following equation 3. This correction
is computed in the same magnitude bin and over the same
physical scales as the crosscorrelation is measured. We test
this correction in section 4.1.

3.4 Computing Masses and Luminosities

We seek to bin galaxies in small bins of colour and magni-
tude (i.e. binned in three dimensions by i, r − i and g − r).
This binning is useful because firstly, since galaxy colours are
strongly correlated with redshift, it limits the width of red-
shift distributions for each bin, which will in turn reduce the
importance of the bias evolution correction (Newman 2008;
Ménard et al. 2013). Secondly, since we intend to compute
masses and luminosities, we require both colour and redshift
information, so binning by colour is important.

After recovering the redshift distributions of galaxies in
all these colour bins, for each bin, we know the value of i,
r − i and g − r, along with the number of galaxies at each
redshift. At each redshift, we therefore have a measure of the
rest-frame spectral energy distribution (SED) of galaxies in
this bin. We can compute parameters from this SED (e.g.
mass, luminosity) and allocate these to photometric galaxies
in the correct quantities.

To compute masses and luminosities for our bins of
colour, we choose to use semi-analytic models. After re-
covering redshift distributions of all bins of colour of our
photometric survey, we compute the distribution of mass or
luminosity within the same colour-redshift bin of the SAM,
and apply this probability density function (PDF) to the
real data (i.e. multiply this PDF by the number of galaxies
in the same bin of the real data). After recovering masses
and luminosities at each redshift, for all bins of colour, these
distributions are summed to produce mass and luminosity
functions.

Although SAMs do not predict the correct number den-
sity of galaxies of given colours, for a given set of colours
and redshift, the type of galaxy (i.e. star formation history
(SFH), mass, luminosity) should be representative of those
in the real universe. This method allows us to account for
photometric errors by adding these to our SAM, and to pro-
duce a PDF of mass and luminosity rather than just a best
fit, ensuring that the correct distribution of mass is allocated
in each bin. This technique is, in essence, similar to Pacifici
et al. (2012), where a library of physically motivated SFHs is
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computed from SAMs, and then used to fit individual galaxy
SEDs.

4 TESTING THE METHODS

Before computing real mass and luminosity functions, we
test our method using real and mock data. We create mock
reference samples and photometric surveys as described sec-
tion 2.3. This allows us to select galaxies from our photomet-
ric survey as function of magnitude and colour, and recover
redshift distributions by crosscorrelating with the reference
sample. We can then compare the recovered redshift distri-
butions to the true distribution.

4.1 Clustering Redshifts on Mock Data

In order to test the clustering redshifts method, we bin mock
photometric survey, SDSSLGalaxies by i-band magnitude in
bins of width ∆i = 0.25 between 17 < i < 20 and ∆i = 0.125
between 20 < i < 21 where the large number of galaxies
allows us to bin more finely. Within each of these magnitude
bins, we then bin by r − i, and then by g − r. We choose a
number of bins such that each contains > 100, 000 galaxies, as
we found this to be roughly the minimum number of galaxies
required to recover a noise-free n(z). At fainter magnitudes,
the size of bins is comparable to the photometric error in the
SDSS, so smaller bins would not provide significantly more
information as galaxies are already scattered between bins.
Binning by i, r − i and g − r produces 492 bins.

We then recover the redshift distributions of all bins
of SDSSLGalaxies by crosscorrelating with a reference sam-
ple, BOSSLGalaxies, as described in sections 3.1 and 3.2. We
correct for bias evolution using the computed evolution in
LGalaxies as in section 3.3. Correlation functions errors are
computed using a jacknife method, which in turn is used to
compute errors on the final dN/dz following equations 1 and
3. Figures 3 and 4 show the recovered and true redshift dis-
tributions of a selection of these colour bins, in bright and
faint magnitude bins, respectively.

Figure 3 shows four bins of r − i and g − r covering the
extent of the colour space. It can be seen that the redshift
distribution, φ(z)s, is recovered well for a range of different
values of g − r and r − i. Adding a bias correction does not
significantly affect the recovered distribution, likely because
distributions are narrow, and because the correction, com-
puted in section 3.3, is fairly small at bright magnitudes.
Examining the faintest magnitude bin in figure 4, redshift
distributions are again recovered well for a range of different
values of g − r and r − i, however the bias evolution cor-
rection becomes more important. This effect appears to be
particularly true for wider distributions, where the fraction
of satellites is likely changing between low and high redshift,
and hence boosting the small-scale clustering amplitude.

If using a photometric survey with smaller photomet-
ric error, for example DECaLS or DES, redshift distribu-
tions for a given colour bin would be much narrower since
galaxies will be less scattered between neighboring bins. The
correction therefore becomes less significant, particularly at
faint magnitudes, where SDSS errors are large. Errors are
visibly larger at higher redshift (z > 0.65), where the num-
ber density of objects in the reference sample is low, which

can sometimes cause an error in normalisation. This effect
should average out over many bins, however, and will be
less of a problem when using real data since the true BOSS
sample has a larger area, and there are additional eBOSS
galaxies and quasars above this redshift.

As a further check of our bias correction, we compute
the true median redshift, zmed,true, for all colour bins, along
with the median redshift using clustering redshifts, zmed,cz ,
both with and without a bias correction. We compute the
error in the median redshift, zmed,true − zmed,cz , for all bins,
and present the distribution of errors in figure 5.

Without a bias correction, median redshifts are almost
always slightly below the true value. The bias correction
shifts the median to higher redshifts, although there remains
a similar amount of scatter around the correct value. These
errors in the median redshift are fairly small however, rela-
tive to the size of our redshift bins (∆z = 0.033). The scatter
is partly due to to noise in the recovered redshift distribu-
tion, but also may arise because we compute a bias correc-
tion for an entire magnitude bin, and this approach may not
necessarily describe the bias evolution of all bins of colour
within this.

4.2 Clustering Redshifts on Real Data

Since we will be eventually applying this method to real
SDSS photometry, we show tests of the method on real data.
We use a photometric survey defined from the SDSS, again
cut to 17 < i < 21, described in section 2.2. As in section
4.1, we split the sample into bins of i-band magnitude of
width ∆i = 0.25 between 17 < i < 20 and ∆i = 0.125 be-
tween 20 < i < 21, and then bin by r − i and g − r within
each of these such that each bin contains > 100, 000 galaxies.
We crosscorrelate each of these bins with our reference sam-
ple described in section 2.1, consisting of BOSS and eBOSS
LRGs and quasars, in order to recover redshift distributions.

An example of some recovered distributions is presented
in figure 6. We also, for reference, show the redshift distri-
bution from the GAMA survey (Baldry et al. 2018) in the
same bins of magnitude and colour. GAMA is a spectro-
scopic survey magnitude limited to r < 19.8, targeted over
∼286 deg2 of sky, its primary objective being to study struc-
ture on scales of 1 kpc to 1 Mpc. Below r < 19.8, GAMA is
highly complete (> 95%), although completeness drops for
fainter magnitudes. Therefore, for r . 19.8, GAMA redshift
distributions should be roughly comparable to the SDSS. We
choose an intermediate magnitude bin, 19 < i < 19.25, in or-
der that we have galaxies over a range of redshifts. In order
to lessen the effect of the r-band magnitude cut in GAMA,
we only show the bluest bins such that bins have r . 19.8,
where incompleteness is not significant.

Recoveries of SDSS redshift distributions generally
match the corresponding GAMA colour bin well. Some small
differences are visible; however, this was also true for the
simulated data in figure 4, for which the mass function is re-
covered well. If we take only bins below i < 19.25, we can use
GAMA to compute the error in the median redshift of each
colour bin, zmed,GAMA−zmed,cz , as in section 4.1. After com-
puting this for all bins, the average error is δzmed = −0.01,
indicating no significant offset in the bias evolution.
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4.3 Mass & Luminosity Functions of Mock Data

We now test our method of computing masses and luminosi-
ties, described in section 3.4, on mock data. As in section
4.1, we bin our mock photometric survey, SDSSLGalaxies, in
to bins of colour and magnitude, recovering redshift distri-
bution in each. We then take each of these bins at a given
redshift and allocate masses and luminosities by looking in
both LGalaxies (the same model, but with different photo-
metric noise applied), and smaller lightcones from SAGE (a
different model, also with photometric noise applied). This
approach tests how much the choice of model affects the es-
timated stellar masses and luminosities. After summing the
mass and luminosity distributions for all bins of colour and
redshift, we produce mass and luminosity functions between
17 < i < 21. Errors are computed using the error in φ(z)
from the clustering redshifts method. The recovered lumi-
nosity and mass function are shown in figures 7 and 8.

Figure 7 displays the recovery of luminosity functions
of our SDSSLGalaxies survey, in different redshift bins. Since
the luminosities allocated to our galaxies are in the rest-
frame, the recovered luminosity functions are by definition
k-corrected. We use both LGalaxies and SAGE to compute
Luminosities. The true luminosity function is recovered well
at all redshifts, independent of whether LGalaxies or SAGE
is used to compute an absolute magnitude. This resultmakes
sense, since an absolute magnitude depends only on the red-
shift, cosmological model, and galaxy SED. Since we have
accurate recovered redshifts and i, r − i and g − r, we have
effectively a rest frame SED, so the computed magnitude
from this should not be particularly dependent on the SAM
chosen.

Figure 8 shows mass functions, again recovered at differ-
ent redshifts for the two different models. Using LGalaxies
to recover masses works very well (i.e., the same model to
convert colours and redshifts to masses), with the recovered
mass functions almost exactly matching the true values at
all redshifts and masses. Examining the SAGE results, at
M? < 1011.25M�, mass functions are recovered well; how-

ever, above these masses, the number of high mass galaxies
is under-predicted.

In order to understand this difference, we compare the
distribution of colours in both models as a function of mass
in figure 9. In the two lowest mass bins (M? = 109.25M�
and 1010.25M�), both SAGE and LGalaxies cover roughly
the same colour space at both redshifts (z = 0.25 and
0.5). This result implies that colours of low mass galax-
ies (M? . 1011M�) are fairly independent of the semi-
analytic model chosen, and explains why the mass func-
tion is recovered well at lower masses. In the high mass bin
(M? = 1011.25M�), colours are visibly different in the two
models. This behavior implies that high mass galaxies likely
have different formation processes in the two models, and
explains why mass functions are not recovered as well.

Since we do not know exactly which model best de-
scribes the real universe at high masses, we investigate how
well both can reproduce the BOSS survey (containing large
numbers of massive galaxies). We apply the colour cuts of
BOSS to both samples as described in section 2.3, and com-
pare the redshift distributions of these samples and the real
BOSS survey in figure 10. It can be seen that LGalaxies re-
produces both samples within the BOSS survey: the LOWZ
sample at 0 < z < 0.4, and CMASS sample at 0.4 < z < 0.8.
These are recovered with broadly the same number den-
sity, and although there is a slight offset in the peak of the
sample, the overall shape of both samples is recovered well.
SAGE manages to select some galaxies with a distribution
similar to CMASS; however, at low redshift most galaxies
are missing, and the overall shape is significantly different.

For this reason we trust that the colours of galaxies are
significantly closer to those of the real universe in LGalaxies.
We therefore opt to use LGalaxies when computing masses
of real data in section 5.

5 MASS AND LUMINOSITY FUNCTIONS OF
SDSS DATA

We now apply the technique to real SDSS data to produce
mass and luminosity functions. As described in section 4.2,
we recover redshift distributions for many bins of colour
of SDSS galaxies between 17 < i < 21. We compute mass
and luminosity distributions for each bin using the colour-
mass/luminosity relations of LGalaxies following section 4.3.
Since our reference sample was originally removed from the
SDSS sample, we compute masses and luminosities for these
galaxies in the same way (i.e. for a given colour-redshift bin
of our reference sample, we compute the mass distribution
within the same bin of LGalaxies, and apply these masses).
Note that we use spectroscopic redshift distributions instead
of clustering redshifts for our reference sample. After adding
these distributions together, we produce global mass and lu-
minosity functions, shown in figures 11 and 12.

5.1 SDSS Mass Functions

The computed mass functions are presented in figure 11.
The 95% completeness limits are shown in blue, computed
as regions where LGalaxies becomes less than 95% complete
due to the magnitude cuts. The bright magnitude cut (i >
17) is significant in the two lowest redshift bins; however, the
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Figure 6. The recovered redshift distributions of different bins of colour of real data both with (black points), and without (cyan points)
a correction. The spectroscopic redshift distribution of GAMA galaxies is indicated in the same colour bin (green line). We choose the

magnitude bin (19 < i < 19.25), and only show bins with small values of r − i in order to avoid the r < 19.8 magnitude cut in GAMA.

impact of this becomes less significant at higher redshifts.
The faint magnitude cut becomes more significant at higher
redshifts; however, we are still mostly complete at the very
high mass end (& 1011) across the range (0.4 < z < 0.8).
Tabulated versions of these mass functions are presented in
appendix C.

Mass functions for the lowest redshift bins match closely
with GAMA mass functions (z < 0.06) over the complete
regions, indicating no significant offsets between our masses
and GAMA. At the high mass end (M? > 1011M�), little
evolution is evident over the redshift range (0.4 < z < 0.8),
and the mass function is broadly consistent with GAMA
(z < 0.06), implying there is no significant enhancement of
the high mass end of the mass function after z = 0.8.

5.2 Constructing a Luminosity Function

Our computed luminosity functions are shown in figure 12.
Magnitudes shown are absolute, dust-corrected magnitudes.
Incompleteness is again visible for bright galaxies at low
redshifts (due to the i > 17 cut); however, beyond redshift

0.4 we are complete for Mi . −23.5, allowing us to compare
the evolution of the brightest galaxies across multiple bins.

There appears to be a significant amount of evolution
over the range (0.3 < z < 0.8), with significantly more lu-
minous galaxies present at higher redshifts. If these lumi-
nous galaxies are evolving passively, with little ongoing star
formation, we would expect their stellar populations to de-
crease in brightness as young stars die out. Analysis of these
luminosity functions to test for passive evolution may be
investigated in a future paper.

6 COMPLETENESS

Since we have mass functions out to z = 0.8, we can measure
the stellar mass completeness of BOSS. We first take both
the SDSS and BOSS masses computed in section 5.1. The
completeness at a particular redshift is therefore just the
mass function of BOSS at that redshift divided by the SDSS
mass function. The resulting completeness is displayed in
figure 13 for 6 bins of redshift between 0.2 < z < 0.8.
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Figure 9. The r − i and g − r colours of galaxies in LGalaxies (red) and SAGE (blue). This distribution is shown for two different
redshifts, 0.25 and 0.5, and for three bins of mass centered around 9.25, 10.25 and 11.25 log(M�).
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Figure 10. The redshift distribution (number of galaxies deg−2

z−1) for the BOSS survey (black dotted line) compared with red-
shift distributions of LGalaxies (red) and SAGE (blue) with the
BOSS colour cuts.

At low redshift z < 0.4, our SDSS mass functions are
not complete at higher masses due to the bright magnitude
cut (i > 17). This effect is also true for low masses at higher
redshifts due to the faint (i < 21) cut. Completeness in these
regions may not be fully representative and is shown in blue
in figure 13. Between 0.4 < z < 0.8, however, we are not
affected by these cuts over the mass range of BOSS galaxies.

Between 0.2 < z < 0.7, the stellar mass completeness of
BOSS appears similar across all redshifts. Over this redshift
range, above M? ' 1011.4M�, BOSS is roughly 80% com-
plete, with completeness falling to roughly zero at masses

lower than M? ' 1011M�. In the 0.6 < z < 0.7 bin, incom-
pleteness appears at slightly higher masses than in the lower
redshift bins. This decrease in completeness mirrors the de-
crease in number density of the sample shown in figure 1,
which peaks just above z = 0.5 and falls off at higher red-
shifts. Looking in the highest redshift bin, BOSS is around
30% complete, only at the highest masses (M? & 1011.6).

Stellar masses are dependent on the the method used
to obtain them. When mass functions or completeness
measurements are compared between methods, any offsets
should be taken in to account. We investigate the difference
between our method and different BOSS stellar mass esti-
mates in appendix B.

7 DISCUSSION AND CONCLUSIONS

In this study, we have demonstrated that clustering redshift
can be used to successfully recover redshift distributions of
galaxies in small bins of colour and magitude of the SDSS
by crosscorrelating with galaxies in the BOSS and eBOSS
surveys. The importance of the bias correction becomes sig-
nificant for fainter galaxies, where photometric errors are
large, and galaxies are scattered between colour bins.

We have shown that mass and luminosity functions
of mock data can be recovered using these recovered red-
shift distributions by computing masses using simulations
in small bins of colour and redshift. We have also recovered
mass functions of real data, and find little evolution at high
masses between 0.2 < z < 0.8, suggesting that the most mas-
sive galaxies form most of their mass before this time, and
do not evolve significantly in mass afterwards. The lack of
evolution over these redshifts agrees well with other studies,
for example, Pérez-González et al. (2008); Moustakas et al.
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Figure 11. Recovered mass functions for real SDSS data in a number of different redshift bins (red). The green points in the redshift
bin 0.2 < z < 0.3 are the GAMA mass function (z < 0.06) (Baldry et al. 2012). For reference, the mass function computed using our

method in the 0.3 < z < 0.4 bin is shown in all bins as the black dotted line. Regions where our mass functions are more than 95%

incomplete are shown in blue.
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(0.3 < z < 0.4) is shown as the black dotted line in all redshift bins for reference. Regions where our mass functions are more than 95%

incomplete are shown in blue.
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Figure 13. Stellar mass completeness estimates for BOSS between 0.2 < z < 0.8, computed using the SDSS mass functions recovered in
section 5.1. Completeness estimates, along with errors, are shown in red. Regions where the mass functions are more than 95% incomplete

are the blue regions.

(2013); Leauthaud et al. (2016); Guo et al. (2018). Our lumi-
nosity functions show some evolution with redshift, possibly
due to passive evolution; however, this will be investigated
in a future paper.

We also produce targeting completeness measurements
for BOSS using these mass functions, suggesting that over
the redshift range 0.2 < z < 0.7, BOSS is around 80% com-
plete at high masses (M? > 1011.4M�), and falling to al-
most zero below M? < 1011M�. In our highest redshift bin
(0.7 < z < 0.8) BOSS is strongly affected by incomplete-
ness, and is only about 30% complete at the highest masses
M? & 1011.6M�. We also demonstrate that when comparing
mass functions or completeness estimates between methods,
significant offsets can be present, which require correction.

Guo et al. (2018) incorporate an missing fraction (in-
completeness) component into their conditional stellar mass
function model, and analyse the clustering of BOSS galax-
ies to produce completeness estimates for BOSS. They find
that BOSS is around 80% complete above M? & 1011.3M�
between 0.2 < z < 0.6, with completeness falling off signifi-
cantly at higher redshifts. This analysis is in good agreement
with our results, showing very similar evolution with redshift
and mass, although some offsets may be present due to using
different mass estimates. Leauthaud et al. (2016), discussed
in section 1, report similar completeness estimates at most
redshifts and masses, however predict close to 100% com-
pleteness at the highest masses, which is not shown in Guo
et al. (2018) our our estimates.

Ongoing and future large-volume spectroscopic surveys,
for example eBOSS, DESI and EUCLID (Laureijs et al.
2011), will produce large number of spectra out to higher
redshifts. This will firstly allow for better clustering red-
shifts estimates due to having a larger reference sample, but

also produce large spectroscopic galaxy samples, for which
incompleteness must be understood. Combining these data
with ongoing and future photometric surveys, for example,
The Dark Energy Camera Legacy Survey (DECaLS) (Dey
et al. 2018), and The Dark Energy Survey (DES) (DES
Collaboration et al. 2017), will allow for redshift distribu-
tions to be computed out to higher redshifts, and in much
smaller bins of colour, due to these new surveys reaching
much deeper and having much smaller photometric error.

The methods used in this study, and similar techniques,
will therefore be important tools for the next generation of
galaxy surveys in order to utilise these large databases, and
to understand the galaxy populations present.
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APPENDIX A: TESTING THE FITTING SCALE

Here we show how the choice of fitting scale affects the re-
covered φ(z). As in section 4.1, we compute redshift distri-
butions of mock data in small bins of magnitude and colour.
Here we show the recovery of several colour bins within
the faintest magnitude bin, but rather than integrating the
crosscorrelation over small scales, as in figure 4, we integrate

over large scales (15 < rp < 50 Mpc). The results are shown
in figure A1

While redshift distributions are generally recovered suc-
cessfully, there is a significant amount of extra noise when
compared with the small scale recovery (figure 4). We com-
pute the average error in φ(z) (i.e. the error due to errors
in the correlation functions) for both small scales and large
scales. We average this error across all colour bins, and all
redshifts; when recovering redshift distributions over large
scales, the error is on average 2.4x larger. When noise be-
comes large, a significant error in normalisation can appear,
as seen in, for example, the bin of lowest r − i and highest
g − r of figure A1. For this reason, we use only small scale
clustering when applying to real data.

APPENDIX B: COMPARING BOSS MASS
FUNCTIONS

Here we compare, for BOSS galaxies, our mass functions
to mass functions computed using three other methods: 1)
Chen et al. (2012), hereon C12, where galaxy parameters are
modeled based on a library of model spectra for which prin-
cipal components have been identified. 2) Maraston et al.
(2013), hereon M13, where stellar population models are fit
to the observed ugriz magnitudes, as well as the spectro-
scopic redshift of each galaxy. 3) Comparat et al. (2017),
hereon C17, which for a given spectra finds the best-fit com-
bination of single-burst SSPs. All three methods use Maras-
ton & Strömbäck (2011) SSPs and a Kroupa et al. (2001)
IMF. The four mass functions are presented in figure B1.

Although all methods generally agree on the shape of
the mass function, there is a clear offset between methods.
In particular, C12 predicts the highest masses. Both M13
and our method predict broadly the same shape as C12 at
all redshifts, but this is offset towards slightly lower masses.
This result may be related to the fact that in our method
and M13, masses are computed from photometry rather than
spectra. The shape of the C17 mass function appears slightly
different. It predicts a larger number of low mass (M? <

1010M�) galaxies; however, the number of high mass galaxies
is similar to our method. When comparing mass functions or
completeness estimates across methods, this offset between
different methods must be taken in to account.

APPENDIX C: TABULATED RESULTS

We present tabulated versions of our stellar mass functions
and i-band luminosity functions in tables C and C2 respec-
tively, and our completeness estimates in table C

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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Figure A1. Same as in figure 4, except the crosscorrelation is integrated over large scales (15 < rp < 50 Mpc), rather than smaller

scales.
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Figure B1. Mass functions of BOSS galaxies using four different methods, shown for six different bins of redshift. Our method described

in section 4.3 is shown in black, along with C12 in red, M13 in blue, and C17 in cyan.

MNRAS 000, 1–14 (2017)



Mass Functions from Clustering Redshifts 17

Table C1. Tabulated stellar mass functions computed as in section 5.1

0.2 < z < 0.3 0.3 < z < 0.4

log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
9.375 8.270 0.143 ... ... ...
9.525 6.849 0.092 ... ... ...

9.675 5.866 0.068 ... ... ...

9.825 5.557 0.067 9.825 4.113 0.048
9.975 5.476 0.062 9.975 3.985 0.048

10.125 5.321 0.099 10.125 3.946 0.055

10.275 5.167 0.108 10.275 4.061 0.068
10.425 5.001 0.081 10.425 4.132 0.051

10.575 4.555 0.074 10.575 3.896 0.074

10.725 3.817 0.053 10.725 3.209 0.080
10.875 2.965 0.045 10.875 2.513 0.039

11.025 1.395 0.030 11.025 1.479 0.030

... ... ... 11.175 0.448 0.011

... ... ... 11.325 0.147 0.004

... ... ... 11.475 0.048 0.001

0.4 < z < 0.5 0.5 < z < 0.6

log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
10.275 2.832 0.079 ... ... ...
10.425 3.391 0.035 ... ... ...

10.575 3.577 0.046 ... ... ...

10.725 3.162 0.056 10.725 2.768 0.045
10.875 2.221 0.046 10.875 2.038 0.038

11.025 1.059 0.021 11.025 0.929 0.018

11.175 0.344 0.011 11.175 0.336 0.011
11.325 0.118 0.004 11.325 0.123 0.006

11.475 0.039 0.002 11.475 0.038 0.001
11.625 0.0092 0.0007 11.625 0.0082 0.0003

11.775 0.0014 0.0001 11.775 0.0018 0.0002

11.925 0.00025 0.00008 11.925 0.00021 0.00005

0.6 < z < 0.7 0.7 < z < 0.8

log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) log(M?) (M�) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
11.025 0.924 0.020 ... ... ...
11.175 0.452 0.009 ... ... ...

11.325 0.184 0.005 11.325 0.178 0.015
11.475 0.048 0.002 11.475 0.073 0.007

11.625 0.0091 0.0004 11.625 0.013 0.002

11.775 0.0018 0.0001 11.775 0.0033 0.0012
11.925 0.00028 0.00005 11.925 0.00018 0.00042
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Table C2. Tabulated i-band luminosity functions computed as in section 5.2

0.2 < z < 0.3 0.3 < z < 0.4

Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
... ... ... -24.375 0.0037 0.0063
... ... ... -24.125 0.015 0.014

... ... ... -23.875 0.053 0.013

... ... ... -23.625 0.131 0.013

... ... ... -23.375 0.296 0.015

-23.125 0.417 0.018 -23.125 0.577 0.018

-22.875 0.789 0.024 -22.875 0.907 0.024
-22.625 1.213 0.025 -22.625 1.276 0.043

-22.375 1.612 0.029 -22.375 1.513 0.043

-22.125 1.972 0.037 -22.125 1.886 0.048
-21.875 2.435 0.046 -21.875 2.302 0.049

-21.625 2.905 0.071 -21.625 2.804 0.049

-21.375 3.221 0.078 -21.375 3.26 0.053
-21.125 3.445 0.073 -21.125 3.417 0.107

-20.875 3.778 0.077 ... ... ...
-20.625 4.216 0.071 ... ... ...

-20.375 4.968 0.121 ... ... ...

0.4 < z < 0.5 0.5 < z < 0.6

Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
-25.125 0.000 0.007 -25.125 0.000 0.007
-24.875 0.000 0.005 -24.875 0.001 0.002

-24.625 0.002 0.009 -24.625 0.005 0.006

-24.375 0.010 0.009 -24.375 0.015 0.008
-24.125 0.025 0.008 -24.125 0.029 0.008

-23.875 0.064 0.011 -23.875 0.089 0.012

-23.625 0.147 0.014 -23.625 0.254 0.024
-23.375 0.383 0.018 -23.375 0.534 0.029

-23.125 0.735 0.035 -23.125 0.864 0.025

-22.875 1.053 0.040 -22.875 1.174 0.025
-22.625 1.306 0.031 -22.625 1.567 0.022

-22.375 1.677 0.030 -22.375 1.842 0.028

-22.125 2.132 0.029 .. .. ...
-21.875 2.490 0.045 ... ... ...

-21.625 2.437 0.078 ... ... ...

0.6 < z < 0.7 0.7 < z < 0.8

Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3) Mi (mag) Φ (10−3Mpc−3) Φerr (10−3Mpc−3)
-25.125 0.000 0.007 -25.125 0.001 0.014
-24.875 0.001 0.001 -24.875 0.005 0.015

-24.625 0.004 0.013 -24.625 0.018 0.024
-24.375 0.011 0.009 -24.375 0.033 0.018
-24.125 0.044 0.014 -24.125 0.124 0.026
-23.875 0.148 0.014 -23.875 0.229 0.023

-23.625 0.341 0.036 -23.625 0.388 0.036
-23.375 0.579 0.028 ... ... ...

-23.125 0.949 0.025 ... ... ...
-22.875 1.243 0.050 ... ... ...
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Table C3. Tabulated stellar mass completeness for BOSS computed as in section 6

0.2 < z < 0.3 0.3 < z < 0.4

log(M?) (M�) Completeness σcomp log(M?) (M�) Completeness σcomp

10.575 0.0015 0.0001 10.575 0.0009 0.0001

10.725 0.0020 0.0001 10.725 0.0027 0.0001
10.875 0.0178 0.0003 10.875 0.0180 0.0003

11.025 0.1380 0.0028 11.025 0.1104 0.0016

... ... ... 11.175 0.3997 0.0085

... ... ... 11.325 0.6478 0.0158

... ... ... 11.475 0.7198 0.0183

0.4 < z < 0.5 0.5 < z < 0.6

log(M?) (M�) Completeness σcomp log(M?) (M�) Completeness σcomp

10.575 0.0031 0.0001 ... ... ...

10.725 0.0124 0.0002 10.725 0.0190 0.0004
10.875 0.0438 0.0009 10.875 0.0501 0.0010

11.025 0.1473 0.0025 11.025 0.1586 0.0024

11.175 0.3893 0.0095 11.175 0.4146 0.0095
11.325 0.6904 0.0204 11.325 0.7030 0.0162

11.475 0.7469 0.0281 11.475 0.7699 0.0111
11.625 0.8322 0.0637 11.625 0.8172 0.0251

11.775 0.7719 0.0660 11.775 0.7703 0.0484

11.925 0.8036 0.1761 11.925 0.5874 0.1085

0.6 < z < 0.7 0.7 < z < 0.8

log(M?) (M�) Completeness σcomp log(M?) (M�) Completeness σcomp

11.025 0.0357 0.0007 ... ... ...
11.175 0.0909 0.0018 ... ... ...

11.325 0.2318 0.0061 11.325 0.0270 0.0019

11.475 0.4971 0.0137 11.475 0.0576 0.0046
11.625 0.6266 0.0212 11.625 0.1451 0.0177

11.775 0.7042 0.0499 11.775 0.3818 0.0888

11.925 0.6521 0.1070 11.925 0.1583 0.0458
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