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ABSTRACT Behavioural phenotyping of drosphila is an important means in biological and medical
research to identify genetic, pathologic or psychologic impact on animal behviour. Automated behavioural
phenotyping from videos has been a desired capability that can waive long-time boring manual work in
behavioral analysis. In this paper, we introduced deep learning into this challenging topic, and proposed a
new 2D+3D hybrid CNN framework for drosphila’s social behavioural phenotyping. In the proposed multi-
task learning framework, action detection and localization of drosphila jointly is carried out with action
classification, and a given video is divided into clips with fixed length. Each clip is fed into the system and
a 2-D CNN is applied to extract features at frame level. Features extracted from adjacent frames are then
connected and fed into a 3-D CNN with a spatial region proposal layer for classification. In such a 2D+3D
hybrid framework, drosophila detection at the frame level enables the action analysis at different durations
instead of a fixed period. We tested our framework with different base layers and classification
architectures and validated the proposed 3D CNN based social behavioral phenotyping framework under
various models, detectors and classifiers.

INDEX TERMS Deep Learning, Convolutional Neural Networks, 3D CNN, Region Proposal, Gene-
Controlled Behavior, Genotyping, Behavioral Phenotyping

I. INTRODUCTION
OCIAL behavior analysis has a significant role in
comprehension of gene expression of laboratory
animals. One of the most common laboratory animals,

Drosophila Melanogaster, also known as fruit flies, can
exhibit a wide range of complex social behaviors though it
has only 105 neurons. It also has a high frequency of social
interaction, which makes it an ideal model for phenotype
analysis.
However, manual phenotype analysis by naked eyes is an

arduous task that requires professional knowledge and great
labor. Meanwhile, the dependence on human perception
sometimes introduces errors and lacks objectivity.
Automated phenotyping [1] using machine learning
techniques is then a sought-after capability to enable the
processing of large amount videos in biologic and medical
research.
Mice and drosophila behavioural phenotyping has been
successfully reported [1-4]. These tracking systems typically

start with feature detection for each object. Those features are
then used for detecting social behaviors with statistical
methods, such as support vector machine (SVM) and hidden
Markov model (HVM). However, such pipelines are not
transferable since they are highly dependent on the tracking
system, which is often designed for a particular task with
specific inputs and outputs.
The behavioral analysis of fruit flies [3-4] is somehow

challenging due to two aspects. First, the legs of a fruit fly
is tiny and hard to track; Second, the activities of fruit flies
are very fast, often happening in several frames. These
critical challenges not only make it hard for naked eyes to
identify actions, but also drive the computer-based analysis
to a new demand of more sophisticated methods.
In recent years, deep learning has achieved state-of-the-art

results in various fields. The success of convolutional neural
network (CNN) based methods for image analysis has paved
the way for human action detection and recognition. As long
as there is enough annotated data, a well-designed deep
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learning architecture can be used for various tasks with
satisfactory results. Inspired by the breakthroughs in the
domain, in this work, we bring deep learning in the pradigm
of drosophila’s behavioural analysis, and propose an end-to-
end deep learning-based method for detecting and localizing
social behaviors of fruit flies.
To the best of our knowledge, we are the first to explore

deep learning methods in social behavior detection of
multiple laboratory animals. There are several differences
between action detection of animals and humans:

1) The duration of an animal behavior, sometimes lasting
for only a few frames, is much shorter than that of
humans, which means more attention should be paid to
short-context;

2) Most videos of laboratory animals are in lower
resolution, thus the feature extraction module should
be carefully designed to avoid frame-wise information
loss;

3) Different behaviors are more easily confused than those
of humans (as shown in Fig1). A bounding box that
has high intersection of union (IoU) with the ground
truth box in object detection or action detection could
be recognized correctly, while in behavior detection
tasks they are more likely to be misclassified. For
example, if only part of the behavior area is contained
in the bounding box, it might be detected as a single
behavior instead of social behavior.

To address the above challenges, in our work, we propose a
new 2D+3D hybird CNN framework for phenotyping.
In our method, we first use a 2D CNN for feature

extraction and then use a 3D CNN for spatiotemporal

information so that we can maintain a balance between
spatial and temporal information. At each frame, the current
frame plus adjacent frames (2k + 1 in total, referred as the
bout length) are fed into base layers for feature extraction.
After that, a Spatiotemporal Region Proposal Network
(SRPN) is used to generate proposal tubes, followed by
convolutional 3D layers and fully-connected layers for action
classification. To boost the training process, we add a
classifier for super-category detection, and the output is fed
back to the action classifier to improve accuracy. For the
marginal frames of a video, we extend the edge frame of the
marginal side to obtain a fixed length of input so that the
detection process can be performed in every frame of the
input video. We train and test our method on the Fly-vs-Fly
dataset [3].
We adopt VGG model and ResNet as base layers. 4

different bout lengths are applied so that the effect of
utilizing spatiotemporal features for frame-wise classification
can be clearly observed. We also tested architectures with
and without the parent category classifier to compare the
impact of the additional classifier.
To our best knowledge, our work is the first one hat

combines 2D and 3D CNN for frame-wise action detection
of laboratory animals. Briefly, the contributions of our work
are:

1) We leveraged deep learning for Drosphila’s
behavioural phenotyping, and proposed a 2D+3D
hybrid framework for frame-wise action detection of
easily-confusing behaviors of laboratory animals. The
features are extracted via 2D CNN while actions are
located and classified by 3D CNN.

2) A new measurement is proposed to test the validity of
bounding tube to reduce the probability of
misclassifying.

3) Based on the proposed tube, a computational effective
pooling layer that pools tubes with different sizes into a
tube with a fixed size for further feature fusion as well
as detection.

4) A super category classifier is proposed to boost the
training process. An overall mAP of 63.7% is achieved.

In the following sections, section II summarizes related work,
section III presents the proposed methodology, section IV
gives the experimental validation and section V concludes
the whole work.

II.  RELATED WORK

A. STATISTICAL METHODS FOR ACTION DETECTION
Common approaches for animal social behavior analysis use
frame-by-frame classification based on features extracted by
computer vision methods. Once features are extracted,
statistical learning methods are often used for detecting
actions. Kabra et al. [4] developed an intuitive interactive
system, Janelia Automatic Animal Behavior Annotator, to
annotate laboratory animals like mice, fruit flies and larvae.
Dankert et al. [1] computed 25 features, such as location of

(a) (b) (c)

(d) (e) (f)

FIGURE 1: Examples of fly behaviors. (a) Normal flies
without social behavior. (b) Hold behavior between
flies. (c) Tussle behavior between flies. (d) Wing threat
behavior of a fly. (e) Confusable tussle behavior
(against hold) (f) Confusable tussle behavior (against
wing threat.)
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body, orientation of flies, along with nearest neighbor
comparison for drosophila action detection. Eyjolfsdottir et al
[3] introduced a fly-vs-fly dataset as well as a fruit fly
tracking system which can extract vital features for action
detection. They compared sliding window SVM against
structured output SVM detectors and found that the former
method outperformed their counterparts. Jhuang et al [5]
presented an automated behavioral phenotyping system and
used a SVMHMM [6] for detecting action of single housed
mice. Xavier [2] introduced a dataset (CRIM13) containing
social behavior between mice as well as a tracking system for
his dataset. They use boosting and auto-context on sliding
windows for action detection on their dataset.
In recent years, statistical learning methods are also

applied to human activity recognition [7]. Yamato et al.
adopt Hidden Markov Models for human action
representation [8]. Hoai [9] proposed multi-class SVM
method for video segmentation and action recognition in
video. Shi [10] presents a discriminative semi-Markov model
are used for segmenting human actions.

B. OBJECT DETECTION
Neural networks with deep structures, which are known as
deep models, have a long history and were popular in 1980s
and 1990s [11]. However, due to the limitation of datasets
and computational power, they fell out of fashion in the
2000s. Recent years, with the emergence of large annotated
datasets, such ILSVR [10], PASCAL VOC [12] and the
development of high-performance computing techniques
such as GPUs and processor clusters, deep models have
proven to be effective in many proposed models, such as
VGG16 [13], ResNet [14], etc.
For large scale image object detection task, Girshick et al

[15] introduced R-CNN, an inspiring two-stage architecture
by combining a proposal detector and region-wise classifier.
SPP- Net [16] and Fast R-CNN [17] are then introduced with
the idea of region-wise feature extraction which significantly
speeds up the overall detector. Girshick et al. [18] proposed a
Regional Proposal Network, which is almost cost free by
sharing convolutional features with the detection network, for
object bounds prediction. A multistage detector Cascade R-
CNN [19] is then proposed which improves the accuracy of
detection by setting increasing IoU thresholds for a sequence
of detectors.
One stage object detection, as an alternative architecture, is

also popular due to its computational efficiency. YOLO [20]
is implemented with an efficient backbone network and
enables real time object detection. SSD [21] uses multiple
feature maps at multiple resolution to cover objects with
different scales and detects objects in a similar way to RPN
[17]. The downside of faster one-stage detectors is that their
accuracies are below most two-stage architectures. However,
RetinaNet [22] achieved better results than most two-stage
object detectors by addressing foreground- background
imbalance in dense object detection.

C. ACTION DETECTION AND CLASSIFICATION
Academic research in action recognition has made great
progress in recent years [23]. Karpathy et al. [24] studied the
performance of CNN and found that a CNN architecture is
capable of action recognition in large scale video. Ng et al.
[25] adopt a CNN for feature extraction, followed by a
LSTM for action classification. Simonyan et al.[26] proposed
a two stream ConvNet, consisting of separate networks for
frame and optical flow, that incorporates spatial and temporal
networks. Ji et al. [27] proposed CNN based human detector
and head tracker. Tian et al. [30] proposed a simple but
effective 3D CNN architecture for video classification.
Action detection is a more challenging problem than

action recognition [28]. Before the deep learning era, most
proposed methods were top-down based approaches. Ke et al.
[29] match event models to over-segmented spatiotemporal
volumes for event detection in crowded videos. Tian et al.
[30] generalize deformable part models from 2D images to
3D spatiotemporal volumes to study their effectiveness for
action detection. Oneata et al. [31] and Desai et al. [32]
proposed sliding window-based approaches.
The success of CNN based methods for image

classification paved the way for their use for action detection
in videos. Gkioxari et al. [33] used CNN for feature
extraction in candidate regions and used SVM to detect when
and where an action is performed. Weinzaepfel et al. [34]
and Peng et al. [35] proposed methods that first detect action
proposals and associate actions across frames to determine
true action. Saha et al. [36] adopt SSD to perform online
spatiotemporal action localization in real-time. Jin et al. [37]
present a sub-action descriptor for detailed action detection
with multi CNN. However, those methods treat spatial and
temporal features of a video separately; thus, the temporal
consistency in video is not well explored in the network. Hou
et al proposed T-CNN [38] and ST-CNN [39], which exploit
3D CNN for video action detection in an end-to-end model.
In their work, they generalized R-CNN from 2D to 3D by
using a Tube-of-Interest pooling layer. The proposals are
then linked into larger tubes for action detection.

TABLE 1: Notations

Symbol Description
L Length of input video clip. (Fig2)
W Width of input video clip. (Fig )
H
L − 2k
k
n
K = 2k + 1
Ncls
Nbatch
C,
GTi,k
Anchorj
ANKi,j,k
AAi,j

Hight of input video clip. (Fig )
Number of predictions made for frames per batch.
Length of expansion per side.
Number of bounding boxes per anchor.
Bout Length.
proposed anchors per bout.
proposed anchors per batch.
Number of channels in feature map.
Ground truth box of object i in frame k.
jth proposed anchor box in a bout.
......rate of anchor box j, Ground truth box i in frame
......average of ANK measure in all frames, used for
anchors.
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Even though our task is different from previous, since our
prediction is made at frame level while most action detection
models are used for recognizing actions in a longer video,
those tasks are still inspiring.

III. METHODOLOGY
In this section, we introduce the structure and details of our
model for action detection and location. Since most social
behaviors of fruit flies may only last for a few frames,
common approaches for action detection, which make pre-
diction based on a fixed length video clip, are not suitable for
our task. Instead, our system makes predictions for each
frame using the information in adjacent frames. The entire
system consists of two parts: base layers and classification
layers. Base layers are responsible for feature extraction in
each frame. The classification layers concatenate features in
different frames, adopting a spatiotemporal region proposal
network (SRPN) to locate and classify objects in the current
frame.

A. BASE LAYERS
For the feature extraction task, both 2D-CNN and 3D-CNN
have been proven to display good performance. Although 3D
CNN architecture has better performance in spatiotemporal
feature learning [6] it will also result in confusion of
information between time and space dimensions. It is not
problematic in human action detection task. However,
compared with humans, fruit flies are smaller and have faster
movement and higher action similarity, which means without
a carefully designed feature extraction process, the classifier
can easily confuse behaviors of fruit flies. Thus, we use 2D
CNN for feature extraction at the frame level.
As mentioned above, the classification task is performed

for each frame and the classifier input is the features of the

current and adjacent frames, which means features of a single
frame may be used for K = (2k + 1) times, where K is the
bout length and k is the number of adjacent frames of current
frame picked for classification. To reduce the computational
cost of training, we feed a clip of N frames into the base
layers for feature extraction each time and then apply a
sliding window for training the classifier. Once the feature
map of the input clip is extracted, the sliding windows pick
features of K frames centered on the current frame and make
predictions.
How to deal with marginal frames is always an issue for

most action detection tasks. In our work, we extend k frames
of the previous batch to the beginning of the current clip and
k frames of the following clip to the endpoint of the current
clip to keep continuity. If the input clip is the first or last clip
of a video, we extend the edge frame to maintain a fixed
length of input. This process occurs during the data pre-
processing stage; thus, it does not affect the structure of our
model.

FIGURE 2: Illustration of sliding window. The blue tube at the top is an original video. Video is cut into clips with fixed
length (for the first and last clip, the edge frame is extended to maintain a fixed length). A video clip is then fed into base
layers for feature extraction. Notice that since the base layers are time distributed, the length of its input and output are the
same but with different width and height. The feature maps are then fed into SRPN and behavior detector for
classification.

TABLE 2: Base Layer Structure

block size VGG16 ResNet
input 288

Conv1 288 [3 × 3, 64] ×2
max pooling

[7 × 7, 64], stride2

Conv2 144 [3 × 3, 128] ×2 3×3max pool, stride 2
max pooling [3 × 3, 64] ×4

Conv3 72 [3 × 3, 256] ×3 [3 × 3, 128] ×4
max pooling

Conv4 36 [3 × 3, 512] ×3 [3 × 3, 256] ×4
max pooling

Conv5 18 [3 × 3, 512] ×3 [3 × 3, 256] ×4
remove max pooling

Conv6 18 None [3 × 3, 256] ×4
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Denote the size of a batch of input frames by L × H × W ×
C, where L is the number of frames in a clip; H, L, C are
height, width and number of channels respectively. The first
and last k frames of a clip are used for feature extraction.
Thus, the classification of behaviors only is performed on the
middle L − 2k frames. H and L depend on the structure of
base layers.
In our work, we apply modified VGG, ResNet as base

layers. For the VGG model, we remove the last max-pooling
layer and the last block; for the ResNet, we adopt an 18 layer
architecture and remove the last block, as well as the max-
pooling layer at block 4 and then retain convolutional layers
in block 4. Fully connected layers of both models are
removed.
Since the architecture of base layers is changed, we re-

train the different layers. Thus, the down sampling scale of
base layers in our system is fixed to 8. The size of the feature
map is L × H/8 × W/8 × Ct, where Ct is the number of
channels of the feature map and depends on the base layers.
Details of the base layers are listed in Table 2.

B. CLASSIFICATION LAYERS
The classification layers comprise three modules. All the
modules share the 3D convolutional layers which are used to
extract spatiotemporal information. The first module is a 3D
convolutional network that proposes spatiotemporal regions,
the latter two modules are two classifiers, which share
several convolutional and fully connected layers that use the
features extracted by the first module. They output parent
category, a specific category of a 3D spatiotemporal region
proposal, respectively. In our system, the parent category
classifier is used for boosting the training process and
improving the accuracy of the action detector. The structure
will be discussed below.

1) Spatiotemporal Region Proposal Network
Inspired by R-CNN, we proposed a spatiotemporal region
proposal network, which is also an anchor-based method.
The difference is that we generalized R-CNN from 2D to 3D
and the proposals are proposed for both spatial and temporal
dimension. The SRPN takes the feature map as input, and
outputs a set of video tube proposals, each with an
"actionness" score. Three 3D convolutional layers with same
padding are first applied to model the spatiotemporal
information of the input video clip, followed by two parallel
convolutional layer with valid padding. The two parallel
layers are a spatiotemporal box-regression layer and a
spatiotemporal box-classification layer, respectively.
In Faster R-CNN, a bounding box is centered at the sliding

window, with different scales and aspect ratios. We directly
adopt the settings for our bounding box at the spatial
dimension. For the temporal dimension, we set a fixed bout
length, as mentioned above, 2k +1. Thus, each bounding box
can select a spatiotemporal region for detection. Notice that,
unlike the image, which can be cropped and reshaped

without loss of key information, cropping the video clip may
lose temporal information if we apply max-pooling at its
temporal dimension. It may result in a reduction of accuracy
in our task, since different behaviors have high similarity in
our task. To avoid the problem, we set a fixed bout length
and train the classifier for different bout lengths separately.
The spatiotemporal box classification layer(cls) has a

kernel size (2k + 1, 1, 1) and n channels. For each bout of
length (2k + 1), the output size from the convolutional layer
is 1 × H/4 × W/4 × n. Here, n denotes the number of pre-set
anchors. Thus, the output of SRPN is (L − 2k) × H/4 × W/4 ×
n. Each output point of SRPN is an "actionness" score, which
measures the probability that the bounding box corresponds
to a valid action. Similarly, the spatiotemporal box regression
layer (reg) has an output of (L − 2k) × H/4 × W/4 × 4n. That
is, at each point of the feature map, there are 4n outputs
encoding the coordinates for n boxes.
Most proposed method for object detection set anchor

labels according to IoU overlap with ground box. However,
since our method is designed for confusing behaviors
detection, anchors with low IoU overlap may result in a
decrease of accuracy of our model. Key information may lost
if only part of ground truth box is in a proposed anchor,
which may led to a confusion between behaviors (Fig). To
solve the problem, define a different measure of ground truth
box in a bout of frames:

where GTi,k stands for the ground truth region of object i in
jth frame of the bout, Anchorj denote for the region of jth
proposed anchor box.

FIGURE 3: Illustration of how AA measure used for
proposal selecting. (a) and (b) are both a bout with length
of 5. (a) The ground truth boxes in frame 2 to 4 is not fully
contained in blue bounding boxes. Thus, the ANKi,j,2,
ANKi,j,3 and ANKi,j,4 are set to be 0. Since the AA
measurement is the mean of all five ANK in the bout, the
blue bounding box may have a AA less than 0.7, thus, it is
set to be negative. (b) Ground truth regions all frames are
subset of the red bounding box, thus, ANKi,j,k are calculated
according to Eq.(1). If the red bounding box has a AA
higher than 0.7, it will be set to positive.
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(2)

We assign a binary class label to each anchor at each frame-
centered bout. For each ground truth box, two kinds of
anchors are assigned to be positive, (i) the anchor with
highest AA overlap, or (ii) an anchor that has an ANK
overlap higher that 0.7 with any ground truth box. Notice
that higher restrictions can result in a reduction in the
number of positive anchors, but such setting can improve
the accuracy of action detector, which will be discussed in
the next section. Then we assign a negative label to an
anchor if its ANK overlap is lower than 0.3 for all ground
truth box.

2) Spatial Pooling Layer
With settings listed above, we can then define the loss
function of the SRPN. The loss function of a batch of
frames is defined as:

where m is the index of a bout, Nb = L − 2k is number of
bouts in a batch. pmi , pmi ∗ denotes for the predicted
probability of spatiotemporal anchor i of bout j contains an

behavior and the ground truth label of the anchor,
respectively. Similarly, tmi and tmi ∗ are predicted coordinates
and ground truth box of anchor i of bout j. The term pmi ∗Lreg
means the regression loss is activated only for positive
anchors. Due to the restrictive conditions of setting an
anchor to be positive, there are only a fewer positive
anchors in a Bout (approximately 12 to 20 per Bout with
default setting of our implementation). To avoid sample
bias, we set the mini-batch size to be Ncls to be 32.
Since the prediction of localization is frame-wise, we

adopt the settings for bounding box regression as FRCNN:

tx= (x − xa)/wa, ty= (y − ya)/ha,

(4)
tw= log(w/wa), th= log(h/ha),
t∗x= (x∗−
xa)/wa,

t∗y= (y∗−
ya)/ha,

t∗w=log(w∗/wa), t∗h= log(h∗/ha),

where x,y,w and h are for the box’s upper left corner
coordinates and its width and height. Variables t, ta and t∗
stands for the predicted box, anchor box and ground truth
box respectively. Notice that the prediction of our bounding
box regression layer and bounding box classification layers
are for single frame but it takes features of serval frames
into consideration.
We train our SPRN end-to-end by back propagation and

FIGURE 4: Procedure of classification. (1) Feature map of a batch, having a size of L × H/8 × W/8 × C. (2) Bout features for
classifying behaviors in frame k + 1, containing features of frame 1 to 2k + 1. Likewise, the last bout in the batch is used for
classifying behaviors in frame L−k, containing features frame L−2k to frame L. Thus, there are L−2k bouts in a batch of
input. (3) Output of SRPN consist of a "score map" and a "coordinates map", stands for the probability of "behaviorness
score" and adjusted bounding boxes coordinates of the corresponding anchor box. (4) Proposed bounding boxes are then
sorted according to their "behaviorness score", Ncls bounding boxes with highest score are selected and then fed into
classifier. (5) The classifier starts with spatiotemporal pooling layer to pool features in bounding boxes into a fixed size,
followed by 3D convolutional layers and full-connected layers. The system first output a predicted parent category and then
the use the output as well as output of full-connected layers for behavior classification.
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stochastic gradient descent (SGD)[29]. Since the input of our
system is a video clip with fixed length of images, each mini-
batch contains Nbatch= (L − 2k) × Ncls anchors, where L − 2k is
the number of bouts in a batch and Ncls is the number of
proposed anchors in a bout. Ncls is set to be 32 to avoid
sample bias as mentioned above, and k is set to be 8 to
maintain a mini-batch number of 256 since it does not affect
our results but only the computation cost.
The detection layers utilize the output of SRPN to locate

features that may contains a behavior. At each bout, anchors
boxes are sorted according to their probability of containing a
behavior. Spatiotemporal features extracted by base layers
are then selected by anchor boxes with highest probability of
containing a behavior and fed into spatial region of interest
layer and pooled into a fixed-size feature map for
classification.
Denote the size of a proposed bounding box as L×W×H,

the output size of SRoI pooling layer is L×W0 ×L0. Where
output of full-connected layers for behavior classification.W,
W0 stands for the input width and output width of Spatial RoI
pooling layer(likewise for L, L0and H, H0).
To avoid information loss, we first train models with fixed

temporal length so that only the spatial size of feature map is
changed in the SRoI pooling layer. The SRoI pooling layer
works like RoI pooling layer at frame level. It dividing theW
× L features at each frame into an W0 × L0 grids, each grid
then has an approximate size ofW/W0× L/L0, and then max-
pooling the values in each sub-window into the
corresponding grid cell. SRoI then concatenate features at
each frame and channel, so that the temporal information are
kept unchanged. In our experiments, we train models with
different temporal length and compared their speed and
accuracy. Notice that our system applied classification at
frame-level, the temporal features are only used for obtain a
continuousness of an action to improve the accuracy of
classification. Models with different temporal length are used
to compare the effect of temporal information instead of
locating action at temporal dimension.

3) Social behavior detection
Since proposals with different spatial size are pooled into
fixed-size by SRoI pooling layers, we can adopt 3D CNN
layers and 3D max-pooling for capturing temporal features
and full-connected layers for classification.
Unlike most object detection and action detection tasks,

different categories of behavior have high similarities in our
tasks. However, there are still significant difference between
social behavior and individual behavior. Thus, we adopt a
two-step classification. On the first step, the classifier is
trained for detecting individual/social behavior and the
second-step classifier is in charge of detecting the specific
category of behaviors. The output of super-category classifier
feed back to the second classifier to reduce the confusion rate
of behaviors and individual behaviors. In our experiments,
we compare model with and without super-category classier.

As shown in Fig 4, both classifiers sharing the same fully
connected layers. A model with super-category classifier first
output a prediction of whether the proposal containing a
individual or social behavior, and feed the prediction back
into the classifier. The loss function of behavior detector is
defined as:

where Ldet is the loss of detector; Nb, is the number of
predicted frames; Npro is number of proposals that fed into a
detector per frame. Lbeh is the loss function of behavior
detector, which is a categorical cross entropy loss function,
promi is the prediction of ith proposal in frame m and promi ∗
is the ground true label of ith proposal in frame m.

IV. EXPERIMENTS
A. BASE LAYERS
We train and test our models on of fly-vs-fly dataset [7]. The
fly-vs-fly dataset contains a total of 22 hours of 47 pairs of
fruit flies interacting. The dataset contains three subsets: Boy
meets boy is designed for study the sequence of actions
between two male flies; Aggression is used to quantify the
effect of genetic manipulation on their behavior; Courtship
contains a female and a male and was used to study how
genetic manipulation affects male courtship behavior.
We use three behaviors, namely: wing threat, hold, tussle,

in Aggression dataset for training and detecting since
behaviors in Aggression dataset are in a wider range and
each class takes up approximately equal frames.
For training and testing, we extract labelled bout as video

clip. To improve the effect of our detector, we also extend
random frames at each side of the bout so that each video clip
may contain normal behaviors before and after labelled
actions. We also randomly pick 150 video clips in which
none of listed behaviors are included to maintain a sample
balance between normal action and labelled social behavior.
Thus, there are 150, 132, 205, 146 videos, with length in
range of 32 to 128 frames, for normal, containing wing threat,
hold and tussle behaviors. The training, validation, and
testing are 70%, 20% and 10% of the video clips that are
randomly chosen from the whole dataset. Notice that since
our system use a video clip as an input but outputs
predictions at frame level, the exact steps of training,
validation, testing steps are not fairly 7:2:1, but some
proportion close to that.

B. TRAINING
We train models with different base layers (Table 2) and
different detectors (Table 3). All models are trained on a
Nvidia GTX 1060 6GB GPU. Joint training is not available
for such a complex network due to the constraints of memory;
thus, we adopt alternating training algorithm.
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At the very beginning of training, a SRPN with base layers
is initialized with pre-trained model. Since we adopt
modified pre-trained models, there are some layers in base
layers different from that of the original model. Those layers,
as well as the SRPN, are initialized by drawing weights from
a zero-mean Gaussian distribution with standard deviation of
0.01. For each input video clip with length of L, the model is
fine-tuned end-to-end. Weights and proposals with high
"action scores" generated by SRPN are saved for detector
training. Then a detector with base layers are then initialized
by the saved weights. Unique layers in the detectors are
initialized by drawing weights like that of SPRN. The input
frames and the proposals generated in SPRN are fed into the
detector for training. For the following batches, the training is
processed in a similar way, but layers are initialized from the
saved weights instead of pre-trained model. Thus, the SRPN
and detector are sharing the same base layers.
We set the length of input(L) to be 10 + 2k to keep a fixed

training batch size. To avoid over-fitting, video clips of
different behaviors are fed into the system alternatively. Each

TABLE 5: Experimental results of different models
Models mAP Fly Hold Tussle Wing

Ours with VGG5 63.7 75.2 46.0 65.5 67.9
Ours with ResNet 62.1 75.0 44.9 68.3 70.2
Faster RCNN [18] 29.9 26.4 30.2 47.7 16.8

Yolo [20] 22.4 30.1 27.9 42.9 18.3
C3D [24] 56.8 68.7 49.2 56.9 51.5

C3D + LSTM [25] 48.5 55.7 37.9 50.0 -

TABLE 6: Experimental results of ANK vs IoU
Model Measure Overall mAP Fly Hold Tussle Wing

VGG5
ANK
IoU

63.7
62.0

75.2
77.3

46.0
41.4

65.5
59.7

67.9
70.3

Res5
ANK
IoU

62.1
59.7

75.0
71.4

44.9
38.9

68.3
63.3

70.2
67.5

TABLE 3: Experimental results with different base layers
Models Bout Length Overall mAP Fly Hold Tussle Wing Training Time(s/frame) Testing

Time(s/frame)

VGG

1 33.6 28.1 36.7 44.9 14.6 0.29 0.042
3 59.0 74.4 49.7 57.2 55.0 0.55 0.102
5 63.7 75.2 46.0 65.5 67.9 0.86 0.168
7 59.0 52.0 55.8 65.9 52.2 1.16 0.231

ResNet

1 37.1 34.2 40.7 47.1 26.4 0.20 0.037
3 56.3 73.1 37.5 59.4 52.8 0.37 0.082
5 62.1 75.0 44.9 68.3 70.2 0.53 0.121
7 61.7 52.3 59.3 68.1 61.1 0.68 0.147

TABLE 4: Experimental results with different detectors
Models Bout Length Overall mAP Normal Hold Tussle Wing Training Time(s/frame) Testing

Time(s/frame)
VGG + 3C3D 5 63.7 75.2 46.0 65.5 67.9 0.86 0.168
VGG + 6C3D 5 58.4 71.9 49.4 60.3 63.7 0.97 0.182

VGG + 3C3D + S 5 60.3 81.4 50.4 43.2 66.2 1.12 0.172
VGG + 6C3D + S 5 61.4 75.2 52.6 61.5 60.3 1.29 0.195

A. (a) VGG + C3D

B. (b) VGG + C3D + S
FIGURE 5: Confusion matrix of models with and without
super-category classifier.
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model iterates for 25 epoches, each contains 80 batches, that
is 20k frame-wise training in total. Since different behaviors
are confusable, we set a relatively low learning rate for both
SRPN and detector, 10−6, to avoid falling into local minima.

B. EXPERIMENT RESULTS
We train models with 4 different bout length(k) and 2
different 3D CNN architectures (Table 2) to compare the
effects caused by bout length and 3D CNN structures.
In Table 3 reports the results of models with different k. The
implementation details are presented in previous section and
all models are trained and tested using same data
segmentation.
Model Performance. Models with VGG16 base layers

and a bout length of 5 achieves the top result on the dataset
with a mAP of 63.7%. The model with K = 1, is a
degenerated model that similar to an object detection model,
has the lowest overall mAP as well as category mAPs. When
we add spatiotemporal feature into our model, the result is
significantly improved. "Normal" and "Wing threat"
behaviors achieves a mAP of 75.2% and 67.9% in model
with k = 5. However, when the bout length comes to 7, there
is a slight decline in mAP which is caused by the accuracy
decrease of Normal and Wing threat behavior. The result
indicates that longer bout lengths cannot always improve the
result of the detector, since more irrelevant frames are taking
into consideration may result in a confusion. In contrast,
longer bout length can improve the accuracy of hold and
tussle behaviors, which are the most confusing behaviors in
our task. The "Hold" and "Tussle" behaviors achieves its
highest mAP in the model with bout length of 7, which are
55.8% and 65.9%, respectively.
At the same time, the running time of our models also

increases with the increase of bout length since the
computation cost of detector increase, even if we adopt a
sliding window to reduce the cost of base layers. For training,
the model with K = 1 has a lowest running time, which is 2.9s
per batch, which is 0.29s per frame, and the model with k = 7
has a highest running time of 11.6s per batch, which is
0.116s per frame. For predicting, running time of model with
K = 1 and K = 7 are 0.045s per frame and 0.231s per frame.
The ResNet based model, compared to that of VGG model,

shows more stability when the bout length increases. With
the bout length increase, the mAP of different models does
not increase or decrease rapidly like that of VGG. On the
other hand, the overall results are similar with that of VGG.
The model with bout length of 5 has the highest overall mAP
of 62.1%, as well as "Normal", "Tussle" and "Wing threat"
behaviors, which are 75.0%, 68.3% and 70.2% respectively.
Meanwhile, since ResNet has fewer parameters than VGG,
the running time of training and testing is lower than that of
VGG.
The result shows that detecting social behaviors with

spatiotemporal features is effective. However, it is not always

useful since reluctant features might result in confusion for
short duration behaviors.

C. (a) VGG + C3D

D. (b) VGG + C3D + S
FIGURE 6: Precision-Recall curve of model with and
without super-category classifier.

FIGURE 7: The blue and orange lines are training loss of
VGG5 and VGG5 + S, respectively.
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Model architectures. In Table 4, we compare the mAP of
models with different detector architectures. Fixing bout
length and base layers of our model, we compare the effect
caused by 3D CNN network and super-category detector.
VGG + 3C3D has the highest Overall mAP of 63.7%. This is
higher than the VGG +6C3D (58.4%) by 5.3%. The result
shows that a deeper structure does not always have better
performance.
Another comparison in Table 4 is between models with

and without super-category classifier. It was a surprise to us
as the model with super-category classifiers does not
outperform the one without. The VGG + 3C3D + S has a
mAP of 60.3%, which is lower than VGG + 3C3D by 3.4%.
Figure 5 shows the confusion matrix of VGG + 3C3D and
VGG + 3C3D + S. The false positive rate of a social
behavior (hold, tussle), to be recognized as single behavior
(fly, wing threat) reduces slightly (i.e. "hold" towards fly is
0.25 in Fig.5-a) and reduced by 0.06 in Fig.5-b)). However, it
is more likely to be recognized as another social behavior (i.e.
hold towards tussle in (a) is 0.21 but increases to 0.28 in (b)).
Fig.6 shows the Precision-Recall curve of VGG + C3D and
VGG + C3D + S. The curve of tussle and hold behaviors in
VGG + C3D are more stable than that of in VGG + C3D + S.
Fig.7 compares the training loss of VGG +3C3D and VGG

+ 3C3D + S. Both losses are composed of cls loss, reg loss of
SRPN and cls loss of classifier. It indicates that the super-
category classifier can boost the training process but also
makes it unstable.
Comparison between models. Table 5 shows the mAP of

SRCNN compared with popular object detection and action
detection modules. Since the detection is performed frame-
wise, we compared the result of our model with object
detection method as well as action detection methods. The
faster RCNN and Yolo are trained and tested with single
frame, while the C3D and C3D + LSTM output a prediction
of current frame using few frames that centered on the
current frame. In the "Wing Threat" dataset, there might be
more than one behavior in a single frame. To avoid confusion,
we remove the dataset when training and testing C3D +
LSTMmodel.
The result shows that our system over-perform both object

detection task since we take temporal features into account.
On the other hand, our model is better than action detection
methods since our feature extraction module is carefully
designed to avoid any spatial feature loss. The highest overall
mAP comes from VGG5 based model of our SRCNN,
followed by a C3D based model with mAP of 61.6%, which
shows that feature extraction with 2D CNN instead of 3D
CNN can slightly increase the performance of our model.

ANK vs IoU. Table 6 compares the performance between
models trained with anchors that are labelled by ANK and
IoU measure. It is intuitive that adopting IoU as the bounding
tube measure might result in a decline in classification ability
of our model since a bounding box might have high IoU with
object even only part of the object is contained in the

bounding box, which might be a problem for confusable
behaviors detection (Fig.1). To address the issue, we
introduced ANK measure for setting labels of anchor tubes.
The mAP of VGG5 + ANK is 1.7% higher than VGG5 + IoU.
For the Res based model, the gap is 2.4%. The result shows
that the ANK measurement we proposed for setting ground
truth box is more effective for confusable behavior detection.

V. CONCLUSIONS AND FUTURE WORK
The purpose of this paper is to develop a deep neural network
system for complex social behavior detection low
resolution videos. The classification is performed frame-wise.
To take temporal information into account, the system starts
with a 2D CNN for feature extraction, followed by 3D
CNN for spatiotemporal feature fusion, spatial region
proposal generation and classification. We adopt a sliding
window at the data pre-processing step and use time
distributed 2D CNN layers to reduce computation cost.
Meanwhile, we modify the architecture of the pre-trained
model to maintain a balance between additional training cost
and spatial information loss. In the classification layers, we
first propose a SPRN (spatiotemporal region proposal
network) to generate feature tube. We also proposed a new
measurement for setting ground truth label of tube proposals
since IoU might be ineffective for confusable behaviors
among laboratory animals. The spatiotemporal pooling layer
pools tube proposals into tubes with fixed length, width
and height. Finally, we introduce a super-category
classifier to boost the training process.
The results of our work show that: 1) The 2D + 3D

architecture has better performance than the 2D object
detection methods as well as action detection methods that
have been designed for human action detection; 2) Deeper
3D CNN architectures cannot always improve the
performance of the model; 3) The ANK measure is more
effective in labelling positive anchors than IoU in our task; 4)
The super-category classifier can boost the training, but it
makes the process unstable. These findings indicate that for
confusable social behavior detection in low resolution video,
the key step is not feature fusion but feature extraction, which
means that the more original information from video is
captured by the system, the better its performance will be.
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