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Abstract 25 

 26 

Spatiotemporal trends in pro-inflammatory (interleukin (IL)-6 and IL-8) release after exposure to the 27 

water-soluble fractions (WSFs) of PM2.5 sampled in 10 large Chinese cities over 1 year were investigated. 28 

Chemical components (water-soluble ions, metal(loid) elements, water-soluble organic carbon (WSOC), 29 

humic-like substances (HULIS), and endotoxins) in PM2.5 samples were measured, and the molecular 30 

structure of WSOC was also analyzed by nuclear magnetic resonance. Changes in DNA methylation and 31 

gene expression of candidate genes were also evaluated to explore the potential mechanisms. PM2.5 from 32 

southern cities induced lower pro-inflammatory responses than those from northern cities. Seasonal 33 

differences in toxicity were noted among the cities. IL-6 was significantly correlated with HULIS (as the 34 

main fraction of WSOC with oxygenated carbohydrate structures characteristic), Pb and endotoxin. 35 

Furthermore, DNA methylation and gene expression changes in RASSF2, and CYP1B1 were related to 36 

pro-inflammatory secretion. Certain components of PM2.5, rather than PM2.5 mass itself, determine the 37 

pro-inflammatory release. In particular, HULIS, which originated from primary biomass burning and 38 

residual coal combustion, and secondary organic aerosols, appear to be the key component in PM2.5 to 39 

induce human health risk.  40 

41 
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 43 

1. Introduction 44 

Fine particulate matter (PM2.5) causes respiratory and cardiovascular disease1. Inflammatory activity 45 

is considered to be the first biological reaction to PM2.5 exposure, which could induce these diseases2. As 46 

such, in vitro human cell culture models have been used widely to evaluate the ability of PM2.5 to trigger 47 

pro-inflammatory activity3. It has been reported that the water-soluble fraction (WSF) which accounts for 48 

the major proportion of PM2.5
4, induces more abnormal biological outcomes than water-insoluble PM2.5 49 

components5,6.  50 

Identifying the potential fractions and components of PM2.5 with the ability to induce 51 

pro-inflammatory activity change is critical in atmospheric research, and several studies have assessed the 52 

relationships between chemicals in PM and toxicity in vitro. For example, metal (loid) s (e.g., Cr, Al, Si, Ti, 53 

Fe, and Cu), ions (K+ and NH4
+), and polycyclic aromatic hydrocarbons (PAHs) showed significant 54 

relationships with toxicological outcomes in studies done in Finland7, Mexico3, and Italy8. However, the 55 

WSF of PM2.5, aside from water-soluble ions and metal (loid)s which can be measured individually, 56 

contains numerous organic compounds (which are not easy to be fully identified in the WSF), which 57 

probably make a significant contribution to pro-inflammatory activity9. For instance, humic-like 58 

substances (HULIS), consisting of high-molecular-weight organic compounds and represent the main 59 

fraction of water-soluble organic carbon (WSOC) in PM2.5, can induce reactive oxygen species (ROS), as 60 

shown by the dithiothreitol (DTT) assay9,10. Therefore, identification of the major types of organic matter 61 

and the molecular groups therein, represents an alternative approach to comprehensively determine 62 

pro-inflammatory organic components. Nuclear magnetic resonance (NMR) spectroscopy is considered as 63 
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a method to explore the molecular structural characteristics of organic components within a matrix11. 64 

In China, about 83% of people are currently living in the areas with PM2.5 concentrations exceeding 65 

the Chinese Ambient Air Quality Standard (35 μg/m3), and 1.37 million premature adult mortalities in 66 

2013 may be attributable to air pollution12. However, there are limited data on the relationship between 67 

PM2.5 components and pro-inflammatory activity in China13.  68 

The mechanisms linking PM2.5 exposure to pro-inflammatory release have been not fully understood14. 69 

DNA methylation could be altered by environmental factors and can median this impact on a phenotype 70 

and disease15. Indeed, DNA methylation is thought to be related to air pollution toxicity due to the 71 

significant relationships between the changes in DNA methylation of several genes with PM exposure in 72 

several epidemiological studies14,16. Moreover, the modifiable characteristics of DNA methylation most 73 

likely render protective measures, and could be applicable for new drug development17. 74 

In this study, PM2.5 samples from 10 large cities in China were collected during 1 year (2013–2014) 75 

and the WSFs of pooled PM2.5 samples were used to evaluate their ability to induce pro-inflammatory 76 

activity in the human cell models. In addition, we characterized the inorganic and organic components of 77 

the WSF of PM2.5. Organic components (i.e., WSOC and HULIS) were quantified and the structural 78 

characteristics of WSOC were qualified using NMR. Furthermore, the relationships between the 79 

components of PM2.5 and their molecular structural characteristics were evaluated, and the DNA 80 

methylation mechanism were also explored, since this may help identify novel therapeutic targets against 81 

PM2.5 exposure. 82 

 83 

 84 

2. Methods 85 
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2.1 PM2.5 sampling, organic fraction extraction, and WSF extraction 86 

 PM2.5 samples were collected from 10 urban cities in China (Beijing (BJ), Shanghai (SH), 87 

Guangzhou (GZ), Nanjing (NJ), Wuhan (WH), Taiyuan (TY), Chengdu (CD), Lanzhou (LZ), Guiyang 88 

(GY), and Xinxiang (XX)) during spring (SP), summer (S), autumn (A), and winter (W). Detailed 89 

descriptions of the sampling sites, sampling methods, and protocols are given in our previous paper18.  90 

Densely inhabited districts in the cities were selected for sampling. And sampling sites were set up on 91 

rooftops approximately 15−20 m above ground level. PM2.5 were collected using 20.3 × 25.4 cm prebaked 92 

(5 h at 450 °C) Whatman quartz microfiber filters (QFFs). Samples were collected during October 22 2013 93 

to November 13 2013 for autumn (total 22 samples), December 30 2013 to January 20 2014 for winter 94 

(total 20 samples), March 30 2014 to April 20 2014 for spring (total 22 samples), and June 26 2014 to 95 

August 24 2014 for summer (total 28 samples), respectively. Each piece of filter was recorded the 96 

sampling time and rate, which was used to calculate the volume of sampling air. During each season, 24-h 97 

integrated PM2.5 samples were collected. And a circle with 2.75 cm radius was cut from each piece of 98 

filters and then was pooled into a single sample for each season. Thus, 38 samples were used in the 99 

subsequent experiments (except GY, where only SP and S samples were collected).  100 

Two PM2.5 samples from Guangzhou City in the winter of 2013 was collected using a PM2.5 sampler.  101 

Combustion of corn stalks was collected through a sampling system19. Coal combustion was done with a 102 

high-efficiency stove with a PM2.5 dilution sampling system19.  103 

The WSF fraction was extracted from PM2.5 samples by sonication using deionized water. The extract 104 

was filtered through a 0.22 μm filter, freeze dried, and dissolved in deionized water. More details are 105 

presented in S1-1.  106 

The dichloromethane (DCM) fraction was extracted from PM2.5 samples collected in GZ in 2013 (GZ 107 
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W1 and GZ W2). PM2.5 samples were collected from the combustion products of corn stalks, coal, and 108 

vehicle exhaust. The filters were then extracted with DCM using pressurized liquid extraction (ASE300; 109 

Dionex Corp., Sunnyvale, CA, USA) for 2 days. Finally, the extracts were gently evaporated and dried 110 

under nitrogen gas and reconstituted with dimethyl sulfoxide to various concentrations. 111 

2.2 Inorganic chemical analyses  112 

Ion chromatograph (883 Basic IC Plus; Metrohm, Herisau, Switzerland) was used to analyze Six 113 

cations (Li+, Na+, NH4
+, K+, Mg2+, and Ca2+) and seven anions (F-, Cl-, Br-, NO2

-, PO4
-, NO3

-, and SO4
2-), 114 

and ICP-AES (VISTA-MPX; Varian, Palo Alto, CA, USA)6 was used to measure the 13 metal (loid) 115 

elements. Details are shown in the SI. The result of each chemical are expressed as µg/m3, and the blank 116 

filter was used as the blank, whose chemicals concentrations were subtracted. 117 

2.3 Organic fraction measurement 118 

The WSOC was measured with a total organic carbon (TOC) Analyzer (Sievers M9; GE, Milwaukee, 119 

WI, USA). All samples were measured in triplicate and the average of the three values was used. HULIS 120 

fractions were separated from 38 WSF samples using 6 mL Oasis HLB column (Waters, Milford, MA, 121 

USA), and details were presented in the SI. Endotoxins were analyzed using kinetic chromogenic Limulus 122 

amebocyte lysate assay3 (Genscript. USA). Results of WSOC and HULIS were expressed as µg/m3, and 123 

endotoxins was expressed as EU/ml, and the blank filter was used as the blank, whose chemicals 124 

concentrations were subtracted. 125 

 126 

2.4 NMR analysis 127 

The proton NMR (1H NMR) spectra were recorded on an AVANCE III 400 spectrometer (Bruker, 128 

Billerica, MA, USA) with an operating frequency of 400.13 MHz. Spectra acquisition was performed with 129 
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a contact time of 2.27 s and the zg30 pulse program. The recycle delay was 2 s and the proton 90° pulse 130 

length was 8.87 μs. About 200 scans per spectrum were collected. A 1.0 Hz line broadening weighting 131 

function and baseline correction were applied. For the NMR analysis, the solid extracts of the samples 132 

were dissolved in D2O. Functional groups in the NMR spectra were identified based on the chemical shift 133 

(δ H) relative to that of the water (4.7 ppm). Each spectrum was then manually phase- and 134 

baseline-corrected with the chemical shift for the 38 water-soluble samples. The spectral regions of δ 135 

0.7–1.9 ppm for aliphatic compounds, δ 1.9–3.2 ppm for unsaturated compounds, δ 3.3–4.5 ppm for 136 

carbohydrate compounds, and δ 6.7–8.3 ppm for aromatic hydrogens were based on a previous PM2.5 137 

study11. The area of the blank sample was subtracted from each sample, and the NMR value of each 138 

functional group was expressed as the proportion of each functional region area to the total area of the four 139 

function groups.  140 

2.5 Cell treatment, inflammatory activity analysis, DNA methylation and gene expression analysis 141 

The treatment of A549 and Beas-2B cells were shown in the SI. For comparing the ability of 142 

pro-inflammatory release of different PM2.5 samples, cells were exposed to the 16.8–90.9 μg/cm2 of PM2.5 143 

all collected from 10 m3 of air for 3 days. Cells were harvested after the exposure, and the genomic DNA 144 

of the cells was extracted for the DNA methylation test. RNA was also extracted for the gene expression 145 

assay21, and the cell supernatant was used for interleukin (IL)-6 and IL-8 assays using human IL-6/IL-8 146 

Quantikine ELISA kits (R&D Systems, Minneapolis, MN, USA). A blank filter with same area as the 147 

sample filter from 10 m3 air was used as the control.  148 

DNA methylation PCR array: The Xinxiang spring (XXSP) sample, which induced the third highest 149 

IL-6 response among the samples, was selected for the PCR array (Lung Cancer DNA Methylation PCR 150 

Array; Qiagen, German) for screening candidate genes. 151 
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DNA methylation: RASSF2 and CYP1B1 gene methylation was performed using Sequenom 152 

MassARRAY method, and LINE-1 and iNOS gene methylation were analyzed using the pyrosequencing 153 

method 21. Details were shown in the SI. 154 

The gene expression assay was performed as described in our previous work21. And primers are 155 

showed in Table S1.  156 

2.6 Statistical analysis  157 

We used the Kruskal–Wallis test to analyze for differences in water-soluble ion/element, WSOC, 158 

NMR, HULIS, PM2.5, IL-6, IL-8, DNA methylation, and gene expression levels among the samples from 159 

all four seasons and 10 cities. Principal component analysis (PCA) was performed on the PM components. 160 

The associations between each chemical (or contributions) and cytokine production were evaluated using 161 

Pearson correlation analysis for normally distributed data and Spearman correlation analysis for 162 

non-normally distributed data. Relationships were considered to be significant when p < 0.05. The data 163 

were analyzed with SPSS software (ver. 20.0; IBM Corp, Armonk, NY, USA) (provided by the Chinese 164 

Center for Disease Control and Prevention). All biology experiments were carried out four times and three 165 

time in chemicals experiments, and the average and median data was used.  166 

 167 

3. Results and Discussion 168 

3.1 Characteristics of PM2.5 samples 169 

PM2.5 characteristics: PM2.5 concentrations were higher in W and SP than in S and A, but the 170 

difference was not significant (p = 0.184). Significant differences in PM2.5 concentrations were observed 171 

among the cities (p = 0.003, Table S2). Coastal cities had the lowest concentrations, which may results 172 

from more rainwater in coastal cities leading to more atmospheric sedimentation, and also more air flow to 173 
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the sea comparing to insider cities may also contribute to this result. 174 

Characteristics of inorganic compounds: Br-, PO4
3-, and NO2

- were found in very low concentrations 175 

and were subsequently disregarded. Northern cities had higher water-soluble ion contents than southern 176 

cities (p = 0.016) and the average concentration followed the order: NJ > TY > XX > LZ > BJ > SH > 177 

GZ > WH > CD > GY. Similarly, water-soluble metal (loid) elements, which accounted for about 0.75 ± 178 

0.67% of PM2.5, showed significant differences among the cities (p = 0.004).  179 

Most ions/elements showed higher concentrations in W and A and lower concentrations in SP and S (p 180 

< 0.05), except for Pb, which had higher concentrations in SP and S than A and W. A similar trend in Pb 181 

was reported in Mexico City3. Based on the current use of electric vehicles, more Pb may leak from Pb 182 

batteries in China under higher temperatures in SP and S, which might have contributed to the higher Pb 183 

ion concentrations in these seasons. However, more data were needed to explore if battery was the main 184 

reason, and other factors might be also contributed to this trend since the concentration of Pb was higher in 185 

SP than S. The higher rainfall and temperature in SP and S may have lowered the Cl-, NO3
 -, Na+, K+, Ca2+, 186 

and Mg2+ concentrations in PM2.5. 187 

Organic compound characteristics: WSOC accounted for 2.93 ± 2.83% of PM2.5 (m/m), and the 188 

concentration of blank filter was 0.0102 μg/m3. The molecular structural characteristics of WSOC were 189 

studied using NMR. Based on the recommended method, δ1H 0.7–1.9 ppm (NMR1; H-C, representing 190 

compounds including protons from methyl, methylene, and methyne groups), δ1H 1.9–3.2 ppm (NMR2; 191 

H-C-C=, including protons bound to the carbon in the α-position adjacent to a double-bond in allylic, 192 

carbonyl, or imino (H-Cα-C=O or H-Cα-C=N) groups and protons in secondary and tertiary amines), δ1H 193 

3.3–4.5 ppm (NMR3; H-C-O, compounds with protons bound to oxygenated saturated aliphatic carbon 194 

atoms in alcohols, polyols, esters, and organic nitrate), and δ1H 6.7–8.3 ppm (NMR4; Ar-H, including 195 
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protons bound to aromatic carbon) were taken to represent different types of non-exchangeable organic 196 

hydrogens when analyzed with liquid particulate matter samples11. All groups showed significant 197 

differences between the cities and seasons (Kruskal–Wallis test; Table S3), except NMR4 among the cities.  198 

The HULIS fractions had high aliphatic (NMR1) and carbohydrate (NMR3) structural characteristics 199 

11. HULIS components were therefore further extracted from the WSFs of PM2.5 samples and quantified. 200 

The average HULIS concentration was 1.54 ± 1.64 μg/m3, and concentration of blank filter is 0.0191μg/m3. 201 

Moreover, the proportion of HULIS to WSOC was between 80 ± 1.66%, suggesting HULIS as the main 202 

component of WSOC. 203 

3.2 Response of IL-6 and IL-8 to the WSF of PM2.5 204 

First, we compared the ability to induce IL-6 release in A549 cells between the WSF and 205 

dichloromethane (DCM)-soluble fraction of five PM2.5 samples, and the results indicated that cells exposed 206 

to the WSF released more IL-6 than those exposed to the DCM-soluble fraction (Figure S1). During Figure 207 

S1, three different PM2.5 samples represented three typical sources of pollution: biomass (corn stalk), 208 

residential coal combustion (coal), and vehicle exhaust particles (vehicle). PM2.5 normally had the highest 209 

concentrations in winter, so these five samples were chosen to explore the ability of pro-inflammatory 210 

release of WSF fraction in PM2.5 than that of DCM fraction. The results may possibly be because the WSF 211 

constituted more than 39% of the PM2.5 mass. Specifically, the water-soluble inorganic ions, WSOC, and 212 

water-soluble metal (loid) elements accounted for about 35%, 3%, and 1% of the PM2.5 mass, respectively, 213 

while the DCM-soluble fraction accounted for only about 0.1% of the PM2.5 mass4. Similarly, the WSF 214 

were also more likely to induce DNA damage or cytotoxicity than organic compounds in PM2.5 and PM10 215 

from Mexico City5 and Iran6. Therefore, we assessed the pro-inflammatory activity of the WSF of PM2.5 216 

from 10 large cities in China. The average response was 191.39 ± 70.13% and 112.70 ± 19.31% for IL-6 217 
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and IL-8 compared to the control samples, respectively, and the concentrations of blank filter were 218 

43.26±0.56 pg/ml of A549 cells, and 3.67 ±0.89 ng/ml for Beas-2B cells. Using the XXSP sample, we 219 

observed a dose-dependent relationship in both A549 cells (Figure S2) and Beas-2B cells (Figure S2), 220 

which confirmed that the increase in IL-6 levels in human lung cells was caused by exposure to the WSF 221 

of PM2.5. Interestingly, the samples from different cities showed similar trends in terms of their ability to 222 

induce IL-6 and IL-8 with a greater response for IL-6 than IL-8 under the same exposure time (p = 0.045 223 

for IL-6, p = 0.049 for IL-8, Table 1, Figure 1). This followed the order GY > XX > CD > BJ > TY > LZ > 224 

NJ > GZ > WH > SH for IL-6. The GY, XX and CD samples elicited the greatest response, whereas the GZ, 225 

WH, and SH samples exploited the lowest responses (Table 1). Generally, the WSF of PM2.5 in northern 226 

cities in China induced more IL-6 than that in southern cities, neglecting the GY city due to missing spring 227 

and summer samples (Figure 1). This could be because southern China has higher temperature and more 228 

rainwater than northern China, leading to less biomass burning for heating, more gas usage for cooking 229 

and less incomplete combustion, which can all result in more secondary organic aerosol22. In addition, 230 

more rainwater results in more atmospheric washout, which with more air flow to the sea, attribute to 231 

better air quality in southern China.  232 

Significant variations among the seasons were observed for the IL-6 response, but not the IL-8 233 

response (p = 0.03 for IL-6, p = 0.57 for IL-8, Table 1). In addition, different locations showed different 234 

trend for the IL-6 response. For instance, colder seasons samples in BJ, SH, GZ, LZ, and CD were more 235 

potent in inducing IL-6 than those from warmer seasons, while in four cities, TY, XX, NJ and WH, SP and 236 

S samples were more potent in inducing IL-6 than samples from A and W (p<0.05, Figure 1). These 237 

differences in toxicity among cities can be used for better understanding the overall state of PM2.5 pollution 238 

in China. 239 
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3.3 Components of PM2.5 associated with pro-inflammatory cytokine release 240 

IL-6 and PCA: No significant correlation was found between mass of PM2.5 and IL-6 or IL-8. PCA of 241 

water-soluble inorganic ions, and metal (loid) elements, HULIS, non-HULIS, endotoxin, and NMR1-4 242 

were performed; 5 factors accounting for 76% of the total variance, were identified (Table S4).  243 

PCA1 mainly included Na+, Cl-, NMR1, NMR2, K+, NMR3, Zn, NO3
-, NH4

+, Mg2+, Mn, NMR4, 244 

SO4
2-, Endotoxin, Co, TI, Cu, Cr, Ca, and As ions; it explained 43% of the total variance, which may be 245 

from secondary inorganic aerosol and sea salt. PCA2 mainly included Al, Cr, Fe, Co (negative), Cu, and Pb; 246 

it accounted for 12% of the total variance, which may be from industrial sources. PCA3 included NH4
+ 247 

(negative), Ca2+, Mg2+, and Pb; it represented 9% of the total variance, which may be from road dust 248 

sources and formation of NH4
+ may be from NOx catalytic unit of motor vehicle. PCA4 included V 249 

(negative), Ni (negative), As, and Cd; it accounted for 8% of the total variance, which may represent ship 250 

emissions. PCA5 included HULIS (negative) and non-HULIS; it explained 5% and may represent primary 251 

biomass burning, residual coal combustion and secondary organic aerosols. 252 

A correlation analysis between pro-inflammatory and the PCA factors showed that there is only a 253 

significant correlation between PCA3 (included NH4
+, Pb, Ca2+, and Mg2+) and IL-6 (r = 0.370, p = 0.022, 254 

Table 2) confirmed by linear regression (B = 0.370, p = 0.022) and multiple linear regression analyses (B = 255 

0.370, p = 0.026; Table 2). These results suggest that Pb, Mg, and Ca2+ were the main components of the 256 

WSF of PM2.5 that induced IL-6 release, whereas NH4
+ may have exerted a negative influence on this 257 

process. A linear regression analysis between IL-6 and each ion/element was performed, in which only Pb 258 

and IL-6 were significantly correlated (B = 0.337, p = 0.039; Table 2). Similarly, the Pb standard induced 259 

IL-6 in a dose-dependent manner (Figure S3) in A549 cells. These results suggest that Pb may be a 260 

non-negligible component of PM2.5 for IL-6 induction.  261 
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In cells exposed to PM2.5 from Mexico City, Ca2+ showed similar correlation with pro-inflammatory 262 

responses with our results3. Moreover, an epidemiological study reported that acute exposure to Pb of 263 

PM2.5 was associated with negative health effects23. To date, several water-soluble ions and metal (loid) 264 

elements from PM2.5 collected in different areas have exhibited a relationship with the pro-inflammatory 265 

response. For example, K+ showed contrasting effects on the inflammatory response to PM2.5 from Milan8 266 

and North Carolina24, while Si and Al in PM2.5 from these two areas exhibited similar effects. In addition, 267 

Fe ions in PM10 collected in Milan26 induced a pro-inflammatory response in cells, while the inverse result 268 

was reported for PM2.5 and PM10 in Mexico City3. Overall, PM from different areas contains similar 269 

components but in different proportions, leading to regional variations in toxicity due to complex reactions 270 

between components. Therefore, understanding the interactions among individual components of PM is 271 

important for identifying the primary toxic components of PM2.5.  272 

IL-6 and endotoxins: As expected, a significant correlation was noticed between IL-6 and endotoxins 273 

(r = 0.363, p = 0.025), and the linear regression relationship confirmed this correlation (B = 1.859, p = 274 

0.025). Our results also confirmed the idea that endotoxins in PM2.5 are important for toxicity3. 275 

IL-6 and organic compounds: We observed a slight but not significant correlation between IL-6 and 276 

WSOC (r = 0.295, p = 0.072, Pearson correlation analysis), and not IL-8 and WSOC (r = 0.030, p = 0.875, 277 

Spearman correlation analysis). IL-6 and HULIS were significantly correlated (r = 0.322, p = 0.049; Table 278 

2), and the linear regression analysis yielded similar results (B = 0.322, p = 0.049; Table 2) in A549 cells. 279 

Moreover, samples with higher proportions of HULIS induced greater IL-6 release in Beas-2B cells 280 

(Figure S4). Finally, the HULIS and non-HULIS fractions were extracted from six PM2.5 water-soluble 281 

samples. Under the same exposure concentrations, the ability of these fractions to induce IL-6 release 282 

followed the order HULIS > WSF > non-HULIS (Figure S4). These results suggest that HULIS might be 283 
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the main fraction in PM2.5 that induced cytokine release. This is the first report of a relationship between 284 

HULIS in PM2.5 and the cytokine response in a human cell line. 285 

HULIS represents a complex class of organic macromolecular compounds, including aromatic and 286 

polyacidic molecules. It is reported that HULIS from atmospheric aerosol samples induced ROS in a 287 

cell-free DTT assay10, which is the only direct evidence of HULIS toxicity against reversible redox sites. 288 

However, it has been proposed that HULIS is associated with inflammatory and fibrotic lung disease based 289 

on the complex host Fe, which initiates inflammation pathways and subsequent fibrosis26. In this study, 290 

using human cell line models, the correlation analysis results indicated that HULIS contributed to 291 

pro-inflammatory release, and the extracted HULIS fraction results (Figure S4) provided direct evidence 292 

confirming this hypothesis. Based on Fourier-transform ion cyclotron resonance mass spectrometry and 293 

dual carbon isotope analysis, we previously revealed that primary emissions (i.e., biomass burning and 294 

residual coal combustion) and secondary organic formation were important sources of HULIS27,28. 295 

Therefore, these two sources should be targeted by air pollution control countermeasures. 296 

Here the relationship between the molecular groups and IL-6, NMR1 and NMR3 were significantly 297 

correlated with IL-6 release (NMR1 and IL-6: r = 0.358, p = 0.028; NMR3 and IL-6: r = 0.333, p = 0.041; 298 

Table 2). This suggested that organic species in PM2.5 with aliphatic (NMR1, δ1H 0.7–1.9 ppm) and 299 

carbohydrate (NMR3, δ1H 3.3–4.5 ppm) structural characteristics might contribute to the IL-6 response. 300 

Meanwhile, compounds with characteristics of NMR2 (δ1H 1.9–3.2 ppm) and NMR4 (δ1H 6.7–8.3 ppm) 301 

might represent nontoxic components11. Figure 2 presents the spectra of the WSFs of NJ and TY from S 302 

and W. IL-6 concentrations were higher in cells exposed to the NJW and TYW samples, and higher NMR1 303 

and NMR3 peaks were observed in these two samples compared with the NJS and TYS samples, 304 

respectively. 305 



15 

 

Shima reported that hydroxyl and carbonyl functional groups in the n-hexane-insoluble fraction of 306 

diesel exhaust particles may have been responsible for the inflammatory response in a rat alveolar 307 

epithelial cell line (SV40T2)29. In our previous paper, we reported that hydroxyl groups had an important 308 

role in the liver tumor-promoting effect of triclosan20. Therefore, hydroxyl functional groups in the WSF of 309 

PM2.5 may have played an important role in IL-6 release in this study. This is the first report of the 310 

structural characteristics of the toxic fractions of the WSF of PM2.5 from 10 large cities in China.  311 

Five cities samples (BJ, SH, GZ, LZ, and CD) elicited higher IL-6 response in colder seasons than 312 

those of warmer seasons. On the other hand, lower IL-6 release in colder seasons was observed in four 313 

cities (TY, XX, WH, and NJ) samples. Generally, in all samples, our data showed that HULIS, Pb, and 314 

endotoxins components may be reasons for the IL-6 release for the significant correlation, and NMR1 and 315 

NMR3 structural groups also play important roles to pro-inflammatory response. For different cities, 316 

different factors may contribute to pro-inflammatory release. For example, for BJ, SH, GZ, and LZ cities, 317 

higher HULIS, PCA3, NMR1, and NMR3 may contribute to higher IL-6 release in colder seasons, and for 318 

CD city, HULIS, PCA3, NMR1 may lead to this trend. For WH, TY, and XX cities, higher IL-6 release 319 

potent in warmer seasons may results from higher NMR3/NMR1 and Pb, however, for NJ city, higher Pb 320 

ions may lead to higher IL-6 release in warmer seasons. Similar results of these two different trends were 321 

reported through epidemiology and in vitro experiments data. For example, PM2.5 from BJ city samples 322 

showed lower inflammatory release in in vivo experimental data30. For the second trend, epidemiology data 323 

reported that PM from warmer season showed stronger association with respiratory mortality in different 324 

parts of the world31, and with daily mortality in Canada32 and U.S.33. In vitro experiments reported that PM 325 

collected during S had a greater ability to induce pro-inflammatory activity than samples collected during 326 

W in Finland7, Mexico City3 and Milan8. It is clear that different sampler sites have different seasonal 327 
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differences in inflammatory, and different components are the main reasons for seasonal difference.  328 

Our data showed that IL-8 production was dispersed compared to IL-6 production with no significant 329 

correlation with PM2.5 constitutes. This difference between IL-6 and IL-8 could be because of complex 330 

interactions between PM2.5 components and modulatory interaction between IL-6 and IL-83. Similar results 331 

showed that IL-8 has no significant changes after exposure to various combinations of immunomodulatory 332 

in monocytes, while significant IL-6 release in this cell was seen33.  333 

A549 cells are a type of lung cancer cells, and Beas-2b cells are normal lung epithelial cells, which 334 

are commonly used as the cell model of lung exposure at present. In this experiment, A549 cells were 335 

mainly used, and Beas-2B cells were used to verify some conclusions, such as verifying the ability of 336 

PM2.5 to induce inflammatory cytokines, HULIS was more easily to induce inflammation comparing the 337 

ability of non-HULIS, and the ability of PM2.5 in northern China induced higher IL-6 than that in southern 338 

China. Two cells showed similar trends, while in addition, it was also found that the PM2.5 induced change 339 

trend was more obvious in A49 cells (Figure S2) than that in Beas-2B cell, which needed further 340 

experiments to confirm. 341 

3.4 Mechanisms of IL-6 induction via exposure to the WSF of PM2.5 342 

The DNA methylation inhibitor 5-aza-2´-deoxycytidine (AZA) heightened the ability of the WSF to 343 

induce IL-6 release (Figure S5, SI). Therefore, DNA methylation may be a pathway by which WSF 344 

exposure upregulated pro-inflammatory cytokines in A549 cells, although the extent of the increase or 345 

decrease of major disease-related genes was unknown. Using lung DNA methylation chip, we found only 346 

methylation of CYP1B1 and RASSF2 differed significantly (p = 0.021 for CYP1B1, and p=0.036 for 347 

RASSF2, ANOVA) from the control (Figure S6). Therefore, we selected CYP1B1 and RASSF2 for further 348 

experiment. 349 
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The MassARRAY assay showed that DNA methylation of CYP1B1 was significantly decreased 350 

compared with blank samples (Table 3) in cells exposed to PM2.5 samples, meanwhile, RASSF2 showed 351 

hypermethylation in the CpG islands in its promoter area (Table 3), and DNA methylation of blank filter 352 

exposed cells was 30.4% and 10.5% for CYP1B1 and RASSF2 genes. Reverse transcription PCR revealed 353 

increased CYP1B1 expression and decreased RASSF2 expression (Table 3). Both CYP1B1 and RASSF2 354 

mRNA expression showed negative correlations with DNA methylation (CYP1B1: r = -0.402, p = 0.014, 355 

Pearson correlation analysis; RASSF2: r = -0.325, p = 0.032, Pearson correlation analysis). In addition, 356 

significant correlations were found between CYP1B1 mRNA and IL-6, respectively (CYP1B1: r = 0.286, p 357 

= 0.049, Pearson correlation analysis), but not RASSF2 and IL-6 (r = -0.305, p = 0.062, Pearson correlation 358 

analysis), or between the DNA methylation levels of either gene and IL-6. Overall, the results suggested 359 

that DNA methylation changes in the promoter areas of the RASSF2 and CYP1B1 genes might have 360 

induced abnormal expression of these two genes, in turn contributing to the increase in IL-6 release in cells 361 

exposed to the WSF of PM2.5. 362 

Hypomethylation of the iNOS gene promoter has been reported to have a significant down-regulating 363 

effect on PM2.5
35. We assessed this relationship in vitro using pyrosequencing to analyze iNOS promoter 364 

gene methylation20. The results showed that iNOS exhibited DNA hypomethylation (80.26 ± 38.08 %; 365 

Table 3) and but no significantly correlated with IL-6 release (r = 0.311, p = 0.057, Pearson correlation 366 

analysis). Also, there was no significant relationship between iNOS mRNA and other chemical components. 367 

We also assessed DNA methylation of LINE-1 to clarify global DNA methylation changes in cells exposed 368 

to the WSF of PM2.5
20, however, no significant difference was observed between WSF samples exposed 369 

cells and the control (100.34 ± 2.63%). 370 

The mechanism of pro-inflammatory cytokine induction are important of PM toxicity, however, there 371 
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are few reports on it. CYP1B1 encodes a cytochrome P450 enzyme that is abundant in airway epithelium, 372 

and an upregulation of gene expression of this gene was reported in both cells and mice exposed to PAHs 373 

and PM36. Meanwhile, RASSF2 is a potential tumor suppressor gene that might promote apoptosis and cell 374 

cycle arrest37, and has shown hypermethylation and downregulated expression in various cancer tissues37. 375 

Thus, further work is needed to clarify the pathway of the pro-inflammatory response involving these two 376 

genes. 377 

 Furthermore, IL-6 had a more significant relationship than gene expression/DNA methylation with 378 

the components of PM2.5. For example, CYP1B1 mRNA levels were not correlated with the PCA factors, 379 

HULIS, or NMR groups, while IL-6 showed a significant correlation with PCA3, HULIS, NMR1, and 380 

NMR3. This might be because gene expression or DNA methylation of CYP1B1, RASSF2, and iNOS may 381 

only partially contribute to pro-inflammatory cytokine release. For example, DNA methylation may 382 

regulate gene expression, thereby mediating pro-inflammatory release after PM2.5 stimulation. 383 

Nevertheless, other factors might be involved in this pathway, and data on pro-inflammatory cytokine 384 

release can be used to evaluate the PM2.5 toxicity, while gene expression and gene modification data can be 385 

advised to elucidate the mechanisms of toxicity in in vitro studies. 386 

Additional studies are needed to further clarify the toxicity of organic-extracted fractions of PM2.5 387 

from different cities and seasons in China, to confirm whether the trends in toxicity are similar to those of 388 

the WSF of PM2.5. Our results showed that organic compounds might contribute more than other 389 

compounds in the WSF of PM2.5 to toxicity. HULIS was confirmed as the major toxic component of 390 

pro-inflammatory cytokine release; however, the individual compounds of HULIS were not evaluated in 391 

terms of their toxicities. Therefore, future work should identify such compounds (e.g., using 392 

high-performance liquid chromatography tandem mass spectrometry or Fourier-transform mass 393 
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spectrometry) to further clarify the chemical characteristics of the NMR3 fractions. Free radicals occur on 394 

the surface and inside of PM2.5, which will seize the free radicals on biomacromolecules, may lead to 395 

inflammation, cell damage and a series of biological toxicity38,39. Further work is needed to explore the 396 

relationship between free radicals and pro-inflammatory release. As another limitation of this study, we 397 

pooled every 30 samples to yield the amount of PM2.5 required for the toxicity experiments, which reduced 398 

the total number of samples. Therefore, future studies should include more samples to perform positive 399 

matrix factor analysis and clarify the relationship between PM2.5 sources and toxicity, which is important 400 

for the development of air pollution control countermeasures. 401 

 402 

Acknowledgments 403 

The study was supported by Guangzhou Science and Technology Program (201707020033), and 404 

Science and Technology Project of Guangdong Province (2014B030301060). We thank Professor Kevin C. 405 

Jones in Lancaster Environmental Centre of Lancaster University in the UK for his help in the revision of 406 

this manuscript.  407 

 408 

Conflict of interest  409 

The authors declare no conflict of interest. 410 

 411 

Supporting Information 412 

Table S1: The primers used in this study; Table S2, S3: Chemical characteristics of WSFs;  413 

Table S4: PCA results of the water-soluble inorganic ions, water-soluble elements, HULIS, 414 

non-HULIS，endotoxin，and NMR1-4; Figure S1-5: IL-6 response of dichloromethane (DCM) 415 



20 

 

and WSF of PM2.5 samples, different concentration of PM2.5, different HULIS fractions, 416 

different concentrations of Pb, and DNA Methylation inhibitor; Figure S6: Relative DNA 417 

methylation of 22 tumor-related genes in A549 cells exposed to the WSF of PM2.5. 418 

Supporting Methods: WSF extraction, DCM fraction extraction; Inorganic chemical 419 

analyses; HULIS fractions analysis; Cell treatment; DNA methylation and gene expression; 420 

PCA analysis. 421 

422 



21 

 

References 423 

1. Pope, C. A.; Bhatnagar, A.; McCracken, J.; Abplanalp, W.; Conklin, D. J.; O'Tool, T. Exposure to fine 424 

particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 425 

2016, 119 (11), 1204–1214.  426 

2. Guastadisegni, C.; Kelly, F. J.; Cassee, F. R.; Gerlofs-Nijland, M. E.; Janssen, N. A.; Pozzi, R.; 427 

Brunekreef, B.; Sandström, T.; Mudway, I. Determinants of the proinflammatory action of ambient 428 

particulate matter in immortalized murine macrophages. Environ. Health Perspect. 2010, 118 (12), 429 

1728-1734. 430 

3. Manzano-León, N.; Serrano-Lomelin, J.; Sánchez, B.N.; Quintana-Belmares, R.; Vega, E.; 431 

Vázquez-López, I.; Rojas-Bracho, L.; López-Villegas, M. T.; Vadillo-Ortega, F.; De, Vizcaya-Ruiz, A.; 432 

Perez, I. R.; O'Neill, M. S.; Osornio-Vargas, A. R. TNFα and IL-6 responses to particulate matter in 433 

vitro: Variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. 434 

Environ. Health Perspect. 2016, 124 (4), 406-412.  435 

4. Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source 436 

apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601-602, 1743-1752.  437 

5. Gutiérrez-Castillo, M. E.; Roubicek, D. A.; Cebrián-García, M. E.; De, Vizcaya-Ruíz, A.; 438 

Sordo-Cede-o, M.; Ostrosky-Wegman, P. Effect of chemical composition on the induction of DNA 439 

damage by urban airborne particulate matter. Environ. Mol. Mutagen. 2006, 47 (3), 199-211.  440 

6. Naimabadi, A.; Ghadiri, A.; Idani, E.; Babaei, A. A.; Alavi, N.; Shirmardi, M.; Khodadadi, A.; 441 

Marzouni, M. B.; Ankali, K. A.; Rouhizadeh, A.; Goudarzi, G. Chemical composition of PM10 and its 442 

in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, 443 

Iran. Environ. Pollut. 2016, 211, 316-324. 444 

7. Jalava, P. I.; Happo, M. S.; Huttunen, K.; Sillanpää, M.; Hillamo, R.; Salonen, R. O.; Hirvonen, M. R. 445 

Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. 446 

Environ. Toxicol. Pharmacol. 2015, 40 (2), 375-387. 447 

8. Gualtieri, M.; Øvrevik, J.; Holme, J. A.; Perrone, M. G.; Bolzacchini, E.; Schwarze, P. E.; Camatini, 448 

M. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human 449 

epithelial lung cells. Toxicol. In Vitro 2010, 24 (1), 29-39.  450 

9. Verma, V.; Fang, T.; Xu, L.; Peltier, R. E.; Russell, A. G.; Ng, N. L.; Weber, R. J. Organic aerosols 451 



22 

 

associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environ. 452 

Sci. Technol. 2015, 49 (7), 4646-4656.  453 

10. Lin, P.; Yu, J. Z. Generation of reactive oxygen species mediated by humic-like substances in 454 

atmospheric aerosols. Environ. Sci. Technol. 2011, 45 (24), 10362-10368.  455 

11. Chalbot, M. C.; Kavouras, I. G. Nuclear magnetic resonance spectroscopy for determining the 456 

functional content of organic aerosols: a review. Environ. Pollut. 2014, 191, 232-249.  457 

12. Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure 458 

in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total 459 

Environ. 2016, 568, 1253-1262. 460 

13. Chen, R.; Qiao, L.; Li, H.; Zhao, Y.; Zhang, Y.; Xu, W.; Wang, C.; Wang, H.; Zhao, Z.; Xu, X.; Hu, H.; 461 

Kan, H. Fine parculate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric 462 

oxide. Environ. Sci. Technol. 2015, 49 (19), 11859-11865. 463 

14. Tarantini, L., Bonzini, M., Apostoli, P., Pegoraro, V., Bollati, V., Marinelli, B., Cantone, L., Rizzo, G., 464 

Hou, L., Schwartz, J., Bertazzi, P., Baccarell, A. Effects of particulate matter on genomic DNA 465 

methylation content and iNOS promoter methylation. Environ. Health. Perspect. 2009. 117:217-222.  466 

15. Li, J., Zhu, X., Yu, K., Jiang, H., Zhang, Y., Wang, B., Liu, X., Deng, S., Hu, J., Deng, Q., Sun, H., 467 

Guo, H., Zhang, X., Chen, W., Yuan, J., He, M., Bai, Y., Han, X., Liu, B., Liu, C., Guo, Y., Zhang, B., 468 

Zhang, Z., Hu, F., Gao, W., Li, L., Lathrop, M., Laprise, C., Liang, L., Wu, T. Exposure to Polycyclic 469 

Aromatic Hydrocarbons and Accelerated DNA Methylation Aging. Environ. Health. Perspect. 2018, 470 

126(6):067005.  471 

16. Bollati, V., Baccarelli, A. Environmental epigenetics. Heredity 2010, 105:105-112.  472 

17. Zhong, J., Karlsson, O., Wang, G., Li, J., Guo, Y., Lin, X., Zemplenyi, M., Sanchez-Guerra, M., 473 

Trevisi, L., Urch, B., Speck, M., Liang, L., Coull, B., Koutrakis, P., Silverman, F., Gold, D., Wu, T., 474 

Baccarelli, A. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human 475 

intervention trial. Proc. Natl. Acad. Sci. USA. 2017, 114:3503-3508.  476 

18. Liu, D.; Lin, T.; Shen, K.; Li, J.; Yu, Z.; Zhang, G. Occurrence and concentrations of halogenated 477 

flame retardants in the atmospheric fine particles in Chinese cities. Environ. Sci. Technol. 2016, 50 478 

(18), 9846-9854.  479 

19. Zhang, X., Li, J., Mo, Y., Shen, C., Ding, P., Wang, N., Zhu, S., Cheng, Z., He, J., Tian, Y., Gao, S., 480 

Zhou, Y., Tian, C., Chen, Y., Zhang, G. Isolation and radiocarbon analysis of elemental carbon in 481 



23 

 

atmospheric aerosols using hydropyrolysis. Atmos. Environ. 2019, 381-386. 482 

20. Zeng, L.; Ma, H.; Pan, S.; You, J.; Zhang, G.; Yu, Z.; Sheng, G.; Fu, J. LINE-1 gene hypomethylation 483 

and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: 484 

The role of hydroxyl group. Toxicol. In Vitro 2016, 34, 35-44.  485 

21. Ma, H.; Zheng, L.; Li, Y.; Pan, S.; Hu, J.; Yu, Z.; Zhang, G.; Sheng, G.; Fu, J. Triclosan reduces the 486 

levels of global DNA methylation in HepG2 cells. Chemosphere 2013, 90 (3), 1023-1029.  487 

22. George, I. J.; Hays, M. D.; Herrington, J. S.; Preston, W.; Snow, R.; Faircloth, J.; George, B. J.; Long, 488 

T.; Baldauf, R. W. Effects of cold temperature and ethanol content on VOC Emissions from light-duty 489 

gasoline vehicles. Environ. Sci. Technol. 2015, 49 (21), 13067-13074.  490 

23. Heo, J.; Schauer, J. J.; Yi, O.; Paek, D.; Kim, H.; Yi, S. M. Fine particle air pollution and mortality: 491 

importance of specific sources and chemical species. Epidemiology 2014, 25 (3), 379-388.  492 

24. Becker, S.; Dailey, L. A.; Soukup, J. M.; Grambow, S. C.; Devlin, R. B.; Huang, Y. C. Seasonal 493 

variations in air pollution particle-induced inflammatory mediator release and oxidative stress. 494 

Environ. Health Perspect. 2005, 113 (8), 1032-1038.  495 

25. Camatini, M.; Corvaja, V.; Pezzolato, E.; Mantecca, P.; Gualtieri, M. PM10-biogenic fraction drives 496 

the seasonal variation of proinflammatory response in A549 cells. Environ. Toxicol. 2012, 27 (2), 497 

63-73. 498 

26. Ghio, A. J.; Madden, M. C. Human lung injury following exposure to humic substances and 499 

humic-like substances. Environ. Geochem. Health 2017, 40 (2), 571-581. 500 

27. Mo, Y.; Li, J.; Jiang, B.; Su, T.; Geng, X.; Liu, J.; Jiang, H.; Shen, C.; Ding, P.; Zhong, G.; Cheng, Z.; 501 

Liao, Y.; Tian, C.; Chen, Y.; Zhang, G. Sources, compositions, and optical properties of humic-like 502 

substances in Beijing during the 2014 APEC summit: Results from dual carbon isotope and 503 

Fourier-transform ion cyclotron resonance mass spectrometry analyses. Environ. Pollut. 2018, 239, 504 

322-331.  505 

28. Song J.; Li M.; Jiang B.; Wei S.; Fan X.; Peng P. Molecular characterization of water-soluble humic 506 

like substances in smoke particles emitted from combustion of biomass materials and coal using 507 

ultrahigh-resolution electrospray ionization fourier transform ion cyclotron resonance mass 508 

spectrometry. Environ. Sci. Technol. 2018, 52(2), 2575-2585. 509 

29. Shima, H.; Koike, E.; Shinohara, R.; Kobayashi, T. Oxidative ability and toxicity of n-hexane 510 

insoluble fraction of diesel exhaust particles. Toxicol. Sci. 2006, 91 (1), 218-226.  511 



24 

 

30. Pardo, M.; Xu, F.; Qiu, X.; Zhu, T.; Rudich, Y. Seasonal variations in fine particle composition from 512 

Beijing prompt oxidative stress response in mouse lung and liver. Sci. Total Environ. 2018, 626, 513 

147-155.  514 

31. Stieb, D. M.; Judek, S.; Burnett, R. T. Meta-analysis of time series studies of air pollution and 515 

mortality: effects of gases and particles and the influence of cause of death, age, and season. J. Air 516 

Waste Manag. Assoc. 2002, 52 (4), 470–484.  517 

32. Goldberg, M. S.; Burnett, R. T.; Valois, M. F.; Flegel, K.; Rd, B. J.; Brook, J.; Vincent, R.; Radon, K. 518 

Associations between ambient air pollution and daily mortality among persons with congestive heart 519 

failure. Environ. Res. 2003, 91 (1), 8-20.  520 

33. Moolgavkar, S. H. Air pollution and daily mortality in two U.S. counties: season-specific analyses and 521 

exposure-response relationships. Inhal. Toxicol. 2003, 15 (9), 877–907.  522 

34. Raspé, C.; Czeslick, E.; Weimann, A.; Schinke, C.; Leimert, A.; Kellner, P.; Simm, A.; Bucher, M.; 523 

Sablotzki, A. Glutamine and alanine-induced differential expression of intracellular IL-6, IL-8, and 524 

TNF-α in LPS-stimulated monocytes in human whole-blood. Cytokine 2013, 62 (1), 52-57.  525 

35. Jiménez-Garza, O.; Guo, L.; Byun, H. M.; Carrieri, M.; Bartolucci, G. B.; Zhong, J.; Baccarelli, A. A. 526 

Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic 527 

metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis. Food Chem. 528 

Toxicol. 2017, 109 (1), 669-676.  529 

36. Farina, F.; Sancini, G.; Mantecca, P.; Gallinotti, D.; Camatini, M.; Palestini, P. The acute toxic effects 530 

of particulate matter in mouse lung are related to size and season of collection. Toxicol. Lett. 2011, 531 

202 (3), 209-217.  532 

37. Kanwal, S.; Jamil, F.; Ali, A.; Sehgal, S. A. Comparative modeling, molecular docking, and revealing 533 

of potential binding pockets of RASSF2; a candidate cancer gene. Interdiscip. Sci. 2017, 9 (2), 534 

214-223.  535 

38. Valavanidis, A., Fiotakis, K., Vlachogianni, T. Airborne particulate matter and human health: 536 

toxicological assessment and importance of size and composition of particles for oxidative damage 537 

and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008 538 

26(4):339-62.  539 



25 

 

39. Dellinger, B., Pryor, W., Cueto, R., Squadrito, G., Hegde, V., Deutsch, W. Role of free radicals in the 540 

toxicity of airborne fine particulate matter. Chem Res Toxicol. 2001 14(10):1371-1377. 541 

542 



26 

 

 543 

 544 

 545 

 546 

Figure 1. Relative interleukin (IL)-6 and IL-8 response in A549 cells exposed for 3 days to 547 

the water-soluble fraction (WSF) of fine particulate matter (PM2.5) collected in 10 large cities 548 

in China during all four seasons. The WSFs were derived from the same volume of air (10 m3) 549 

and the concentrations were 0.35–10.32 μg/cm2. Blank samples that underwent the same 550 

sample treatment were used as the control, which was considered as 100%. Pictures were 551 

drawn using ArcGIS 10.2 software, and the base map of China was from 552 

http://www.arcgisonline.cn/arcgis/home/item.html?id=a2071f54e2434e0384b8ffab75a19771. 553 

  554 

555 

http://www.arcgisonline.cn/arcgis/home/item.html?id=a2071f54e2434e0384b8ffab75a19771
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 556 

 557 

Figure 2. The proton nuclear magnetic resonance (1H NMR) spectra of the WSFs of the 558 

Guangzhou summer (GZS), Guangzhou winter (GZW), Taiyuan summer (TYS), and Taiyuan 559 

winter (TYW) PM2.5 samples. The region between δ1H 4.0 and δ1H 5.0 was ignored because 560 

of the residual signal of deuterium protium oxide. The four regions (NMR1–4) considered in 561 

this study, and the identified chemical groups, are shown in the figure. 562 

563 
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Table 1. Cytokine production in response to the WSF of PM2.5 collected from 10 large 564 

cities in China during 1 year, listed in descending order according to the median values. 565 

 566 

 IL-6*  IL-8* 

 Median Mean±SD  Median Mean±SD 

GY 249.0  249.0±2.791 GY 121.3  121.3±0.1356 

XX 247.2  207.7±50.06 XX 121.1  120.1±1.932 

CD 233.7  201.8±35.52 CD 120.5  118.5±3.820 

LZ 233.2  221.6±30.2 TY 120.4  104.3±31.24 

BJ 224.4  195.3±34.56 LZ 118.6  99.40±40.55 

NJ 182.6  158.9±57.06 GZ 118.5  111.3±14.60 

TY 173.3  147.4±54.65 BJ 118.5  118.2±2.621 

GZ 136.4  141.8±70.33 WH 117.0  115.4±6.400 

SH 132.9  132.4±56.49 NJ 114.8  102.9±27.58 

WH 130.5  139.0±66.49 SH 78.87  84.22±28.40 

 IL-6*  IL-8 

 Median Mean±SD  Median Mean±SD 

Spring 235.8  218.7±28.00 Autumn 121.0  119.7±2.620 

Summer 206.3  167.6±57.00 Summer 121.0  119.0±2.310 

Winter 189.0  145.8±63.57 Spring 120.8  119.0±2.870 

Autumn 170.6  174.7±35.30 Winter 111.0  94.34±33.49 

 567 

*p < 0.05, Kruskal–Wallis test. Blank samples were used as the control, which was 568 

considered as 100%. GY, Guiyang; XX, Xinxiang; CD, Chengdu; LZ, Lanzhou; BJ, Beijing; 569 

NJ, Nanjing; TY, Taiyuan; GZ, Guangzhou; SH, Shanghai; WH, Wuhan; IL, interleukin 570 

 571 

572 
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 573 

Table 2.  574 

 575 

IL-6a    

 r p 

PCA3 0.370 0.022 

HULIS 0.322 0.049 

Endoxin 0.363 0.025 

Pb 0.337 0.039 

NMR1 0.358 0.028 

NMR3 0.333 0.041 
blinear analysis B p 

PCA3 0.370 0.022 

HULIS 0.322 0.049 

Endoxin 1.859 0.025 

Pb 0.337 0.039 
cmultiply linear 

analysis B p 

PCA3 0.370 0.026 

 576 

HULIS, humic-like substances; NMR, nuclear magnetic resonance. 577 

Note: a Correlation analysis. b Multiple linear regression model, in which the five principal 578 

components (PCA1, PCA2, PCA3, PCA4, and PCA5) were independent variables.579 
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Table 3: DNA methylation and expression of several genes in A549 cells exposed to the WSF of PM2.5 samples.  580 

City  

RASSF2 DNA 

methylation 

CYP1B1 DNA 

methylation 

iNOS DNA 

methylation 

LINE-1 DNA 

methylation RASSF2 mRNA CYP1B1 mRNA iNOS mRNA  

BJ 126.1±36.86 88.89±22.78 97.56±20.36 99.55±1.680 92.90±34.56 220.4±114.2 124.9±56.32 

SH 106.9±2.201 83.79±24.02 63.34±43.05 100.3±3.282 88.01±12.38 185.2±90.15 162.5±172.8 

GZ 121.2±78.25 96.15±8.780 53.21±35.73 99.77±2.720 96.06±8.930 184.3±96.29 481.2±504.7 

NJ 124.6±43.13 95.16±9.12 96.44±73.58 101.5±3.292 86.47±21.98 271.9±78.54 297.8±216.5 

CD 103.8±38.07 93.12±19.46 81.93±18.48 100.6±1.653 89.08±48.52 227.7±128.3 156.6±65.73 

WH 130.2±30.68 91.49±7.182 71.58±47.69 99.61±2.223 99.79±5.310 239.9±61.30 126.7±31.58 

LZ 131.6±57.45 82.85±26.38 75.69±17.04 101.3±2.070 83.74±35.26 318.3±300.6 162.0±86.58 

GY 142.8±21.53 82.11±7.200 54.11±74.76 97.23±3.710 82.25±22.30 253.4±128.6 156.9±80.92 

TY 158.4±70.42 98.13±7.560 91.00±18.82 103.6±2.300 69.53±22.83 299.8±141.6 115.4±64.02 

XX 107.0±13.41 94.30±12.42 104.6±12.87 98.56±1.441 87.83±28.72 260.4±120.1 155.2±110.1 

Season        

spring 114.2±41.01* 95.33±3.73* 76.39±55.78* 99.84±2.350 87.09±19.67* 250.4±80.80* 186.2±120.7 

summe

r 152.7±43.93* 88.81±8.82* 89.55±11.32* 101.6±1.690 83.93±32.76* 202.9±111.1* 149.9±69.09 

autumn 104.4±26.11* 98.49±8.200* 100.6±19.28* 101.3±1.630 103.1±13.21* 175.3±68.06* 286.1±355.1 

winter 129.6±52.75* 75.30±17.98* 54.98±37.92* 98.76±3.580 88.40±26.00* 350.6±170.9* 155.7±128.1 

average 119.1±46.61* 92.02±16.07* 80.25±38.08* 100.3±2.63 89.76±23.62* 245.7±130.7* 195.9±205.0 

*p < 0.05, ANOVA. BJ, Beijing; SH, Shanghai; GZ, Guangzhou; NJ, Nanjing; CD, Chengdu; WH, Wuhan; LZ, Lanzhou; GY, Guiyang; TY, 581 

Taiyuan; XX, Xinxiang. Cells were exposed in WSF from 10 m3 air. Blank samples that underwent the same sample treatment were used as the 582 

control, which was considered as 100%, and DNA methylation and gene expression of each gene was expressed as relative DNA 583 

methylation/gene expression comparing to control. 584 


