
A Framework for SLO-driven Cloud
Specification and Brokerage

Abdessalam Elhabbash, Yehia Elkhatib, Gordon S Blair
MetaLab, SCC, Lancaster University, UK

{i.lastname}@lancaster.ac.uk

Yuhui Lin, Adam Barker
School of Computer Science, University of St Andrews, UK

{yl205,adam.barker}@st-andrews.ac.uk

Abstract—The diversity of cloud offerings motivated the propo-
sition of cloud modelling languages (CMLs) to abstract complexi-
ties related to selection of cloud services. However, current CMLs
lack the support for modelling service level objectives (SLOs) that
are required for the customer applications. Consequently, we pro-
pose an application- and provider-independent SLO modelling
language (SLO-ML) to enable customers to specify the required
SLOs. We also sketch the architecture to realise SLO-ML.

Index Terms—Cloud Computing, Cloud Modelling Languages,
Service Level Agreements, Service Level Objectives.

I. INTRODUCTION

The growing expansion of the cloud market poses a chal-
lenge to its customers who are already overwhelmed with a
wide choice of cloud service [1]. The scale as well as diversity
of the range of offerings, and their real time performance
variation are adding more challenges to the selection deci-
sion [2], [3]. One approach to facilitate such decision is to
base the selection on provider guarantees regarding service
performance that is defined as a set of service level objectives
(SLOs) that are part of the service level agreements (SLAs).

In order to make it easier for customers to select services
and deploy applications, cloud modelling languages (CMLs)
were proposed (e.g., [4]). They provide means for high level
description of a cloud application’s topology, then automate
their deployment. With respect to SLO modelling, a few of the
proposed CMLs support such modelling through standards that
are designed primarily for providers to specify their services
levels (e.g., WS-Policy). In other words, they lack support for
customer-oriented SLOs modelling.

As a result, we propose a design of a new language for SLO
modelling, SLO-ML, that provides a comprehensive syntax
for capturing service level requirements, supporting all SLOs
currently used by IaaS providers and those specified in indus-
try standards. SLO-ML provides customers with a high level
of abstraction, whereby they can specify SLOs for required
cloud services regardless of the low level details of those
services. More importantly, SLO-ML supports applications in
both single- and multi-cloud environments. In addition, we
present the architecture of cloud brokerage system that realises
the SLO-ML based selection of services.

II. SLO MODELLING LANGUAGE

The key aim of SLO-ML is to provide a comprehensive
syntax to capture all possible SLOs that customers may require

to specify service levels of their applications, taking into
account the requirement for multi-cloud deployment. For this
purpose, SLO-ML enables customers to specify SLOs for each
application component. Therefore, SLO-ML supports SLO
specification in both single- and multi-cloud applications.

A. Design principles

The design of SLO-ML is based on the following principles:
1) Customer-oriented. SLO-ML is designed to enable cus-

tomers to specify their high-level operational requirements
in a simple declarative syntax.

2) Independence. To avoid vendor lock-in, SLO specification
should be independent of cloud service specification. Fur-
thermore, it needs to be independent of cloud application
development technology and implementation details.

3) Abstraction. Customers should be able to specify SLOs
regardless of the required type of cloud service, such as
SaaS, PaaS, FaaS, etc.

4) Separation of concerns. It should be possible to maintain
and adapt isolated SLO specification at an application com-
ponent level. For example, a load-balancing component’s
SLOs should be separate from those of a data storage
element.

5) Mapping SLOs A high-level SLOs which specified by
users should be broken down to low-level ones, and then
further mapped to the application component level. For
example, the response time of a three-tier application
consists of processing time for each layers.

B. Key elements of SLO-ML

We adopt JSON syntax for representing SLOs. The elements
of the current syntax are: Names, Value types, Units, and
Operators. An illustrative exmaple is given in Listing 1.

A unique keyword name is used to refer to each SLO. The
keywords are self-explanatory, making it simple for developers
to understand. For example, the keyword Response Time is
used to refer to the response time SLO.

SLO-ML supports three types of the SLO values: scalar,
interval, and categorical. The scalar type is used to specify
a numerical value (e.g., availability = 0.9999). The interval
type is used to specify an upper- and lower-bound of SLO
value (e.g., response time between 5ms and 10ms). Categorical
types provide a higher level of abstraction for SLO value
specification, allowing customers to specify a category (e.g.,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196590626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Listing 1 SLO-ML file structure example
{ "aws_compute_web": [

{ "name": "response_time",
"unit": "ms",
"value": "5-10",
"operator": "in"

},
{ "name": "availability",
"unit": "",
"value": "0.999",
"operator": ">="

}
],
"aws_db": [
...
]

}

low, medium, high) instead of specific values or a predefined
range, relieving customers from specifying an exact value in
case they are not certain. For example, for memory-intensive
application, a customer can specify the category ‘high’ for the
Memory Size SLO.

SLO-ML uses a set of keywords that specify the units
of measurement of the each SLO. For example, the
Migration Time SLO is specified using the hours unit. In
addition, SLO-ML contains rules for unit-to-unit conversion
between units of the same kind.

SLO-ML defines a set of operators to specify relational
SLO values. This set includes: less than, less than or equal,
greater than, greater than or equal, equal, and in. For in-
stance, in can be used to indicate that response time should
be in the interval [5ms,10ms].

III. BROKER ARCHITECTURE

We provide a preliminary architecture for a cloud broker that
realises cloud deployment based on user-provided SLO-ML
descriptions (Fig. 1). Our approach views the cloud application
as a set of components, each of which requires a set of SLOs
to be specified. The approach builds on existing approaches
of modelling cloud applications such as Terraform HCL 1,
TOSCA 2, etc. We assume that the customer request consists
of two models, namely the SLO model defined using SLO-ML
and the Infrastrucure as Code (IaC) model defined using an ap-
plication description language (e.g., Terraform HCL, TOSCA,
etc.), which is basically the application description model. Our
proposed broker architecture consists of the following main
components:

Parsing and Validation. This component parses both the
SLO model and the IaC model to extract the required SLOs for
each component. The validation intends to evaluate the SLO
specification by checking the correctness of the (i) syntax,
(ii) units, and (iii) consistency of the configuration. Syntax
validation aims at inspecting the syntax for any errors in
using SLO-ML keywords. Unit validation aims to check for
any improper use of units. Consistency validation ensures
that component references in the SLO file correspond to the
application components described in the IaC model.

1https://www.terraform.io/docs/configuration/syntax.html
2https://www.oasis-open.org/committees/tc home.php?wg abbrev=tosca

Fig. 1: Broker architecture to realise SLO-ML based selection

Knowledge base is a repository the stores information of
the cloud instances such as their type, provider, and the service
levels. The knowledge base contains also monitoring data that
represent the real time performance of the cloud services.

Selector selects services that match the required SLOs
for each component of the application. In its simplest im-
plementation, the selection is based on the providers SLAs.
Other implementations include intelligent selection using the
monitoring data.

IaC Code Generator generates the deployment code of
the application based on the selected instances. The generated
code is a tuned version of the IaC model submitted by the user
where the information of the selected services are injected in
the model.

Deployer receives the deployment code and automates the
deployment of the application on the selected cloud instances.

Monitoring monitors the performance of the selected cloud
services in terms low level metrics. The collected data are
stored in the Knowledge base. The metrics are then mapped
to the high level SLOs. If the mapping results in violation of
an SLO, the violation is reported to the selector to re-select
new instances and adapt the application.

IV. FUTURE DIRECTION

Our immediate next step is to address the implementation of
the brokerage system. This includes developing mechanisms
for (i) mapping between cloud service SLAs of different
providers, (ii) monitoring cloud service performance using
low-level metrics, and (iii) mapping low-level metrics to
high-level SLOs required by cloud customers.

REFERENCES

[1] Cloud Standards Coordination (CSC), “CSC Phase 2: Cloud computing
users needs - analysis, conclusions and recommendations from a public
survey,” The European Telecommunications Standards Institute (ETSI),
Special Report 003 381 V2.1.1, Feb 2016.

[2] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, “Daleel: Simplifying
cloud instance selection using machine learning,” in IEEE/IFIP NOMS,
April 2016, pp. 557–563.

[3] C. Kilcioglu, J. M. Rao, A. Kannan, and R. P. McAfee, “Usage patterns
and the economics of the public cloud,” in WWW, Republic and Canton
of Geneva, Switzerland, 2017, pp. 83–91.

[4] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, TOSCA:
Portable Automated Deployment and Management of Cloud Applications.
Springer, 2014, pp. 527–549.

2


