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Abstract 

The mechanical response of a low carbon steel under complex strain path changes is 

analyzed here in terms of dislocation storage and annihilation. The mechanical tests 

performed are cyclic shear and tensile loading followed by shear at different angles with 

respect to the tensile axis. The material behavior is captured by a dislocation-based 

hardening model, which is embedded in the Visco-Plastic Self-Consistent (VPSC) 

polycrystal framework taking into account the accumulation and annihilation of 

dislocations, as well as back-stress effects. A new and more sophisticated formulation of 

dislocation reversibility is proposed. The simulated flow stress responses are in good 

agreement with the experimental data. The effects of the dislocation-related mechanisms 

on the hardening response during strain path changes are discussed. 
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Polycrystalline material. 

1 Introduction 

The strain path changes that take place during industrial forming processes of metallic 

systems have been studied by several authors during the last decade [1-7]. Investigations 

show that the strain path change can affect the evolution of dislocation-related 

microstructure and thus leads to evident changes in the yield stress and flow stress 

evolution [7-12]. When the shear on a slip system is reversed, the internal back-stress 

induced during the previous loading usually facilitates the activation of glide on the 

reverse direction, leading to the Bauschinger effect [13-19]. As consequence, the flow 

stress is significantly lower than for the monotonic stress-strain curve during several 

percents of strain after reloading. Moreover, after the strain path is changed, the 

dislocation structure generated during previous loading is gradually dissolved and 

replaced by the structure being created in the new strain path [1]. 

The modeling of the hardening behavior of polycrystals subjected to monotonic strain or 

complex strain path changes has been recently addressed by several authors [7,10,20-24]. 

Among the different models proposed, the continuum approach by Rauch et al. [9], 

called RGVB model from now on, explicitly accounts for the dislocation 

accumulation/annihilation under strain reversal.  

Kitayama et al. reformulated the RGBV model for a crystallographic framework [25]. 

This improved RGBV model tracks the dislocation density evolution on each slip system 

in each grain for two populations, namely, forward and reversible dislocations. During 

monotonic loading the evolution of dislocation density for both populations is described 
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using the Kocks-Mecking approach. If the shear on the slip system is reversed, only the 

reversible dislocations are allowed to glide on the opposite direction and have the 

potential to recombine. A reversibility parameter P  was introduced to measure the 

fraction of reversible dislocations generated as a function of strain. ( )1 P−  measures the 

fraction of non-reversible dislocations. This parameter is assumed to be equal for all slip 

systems in one grain and calculated as a function of accumulated debris density. It is set 

to be 1 at the beginning of deformation and decreases gradually to 0 with increasing 

accumulated strain. This model was embedded in the visco-plastic self-consistent (VPSC) 

framework, which allows the grain orientation and crystallography to be accounted for 

explicitly. The information about strain path changes does not need to be enforced 

empirically but is implicitly built in the model by keeping track of shear reversals in 

each slip system during the simulations. Kitayama et al. [25] applied this model to 

predict the response of a rolled low carbon (LC) steel sheet subjected to uniaxial tension 

followed by simple shear reloading along different directions, and forward-reverse 

simple shear tests. Note that the formulation does not account for the Bauschinger effect 

and that the proposed evolution of the reversibility parameter P  is such that at about 50% 

accumulated strain P  is about 0.5 and at 80% accumulated strain the generation rate of 

reversible dislocations becomes negligible. 

More recently, Wen et al. [26] successfully extended the crystallographic RGBV model 

to HCP materials by including a formulation for the back-stress acting on the slip 

systems, and by accounting for twinning contribution to deformation. The effect of the 

back-stress is introduced as a correction term to the CRSS of each system depending on 
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the density of reversible dislocations stored in such system.  

In the present work, the simulations for tension-shear tests on LC steel done by 

Kitayama et al. [25] are repeated using the new formulation of the Bauschinger effect to 

evaluate the flow stress response during the initial 1-2% strain after reloading. In 

addition, the crystallographic RGBV model is employed for simulating cyclic loading of 

this LC steel up to very large strain amplitudes. A new formulation of the reversibility 

parameter P  is proposed since the previous version reduces P  monotonically with the 

accumulated strain and (incorrectly) predicts increasingly larger hysteresis loops in the 

case of cyclic loading. In the new formulation, the parameter P  is calculated 

individually for each slip system s instead of being equal for all systems in one grain. It 

is also assumed to vary according to the current states of dislocation configurations.  

2 Crystallographic RGBV model 

The crystallographic RGBV model allows tracking down the dislocation density 

evolution in each slip system inside each grain throughout the plastic deformation 

process. The dislocations accumulated during pre-strain may be annihilated 

progressively during strain path changes. This dislocation evolution model was proposed 

by Kitayama et al. [25] who implemented it in the VPSC polycrystal framework [27,28]. 

The model tracks down the direction of shear in each slip system of each grain and 

identifies shear strain reversals induced by changes of the strain path or by grain 

reorientation associated with large strain plastic deformation.  

The relation between dislocations and the critical resolved shear stress (CRSS) s
d , 

given by a form of the Taylor law extended to describe the latent hardening associated 
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with dislocation-dislocation interactions within various materials as discussed by [29-

36], is used in this work instead of the simpler approach by Kitayama et al. [25] for BCC 

steel:  

' '

0

'

s s s ss s ss s

d

s s

b      


= + +  (1) 

here, s  is the dislocation density on system s, 0
s  the initial CRSS,   the shear 

modulus, sb  the magnitude of the Burgers vector and 'ss  the latent hardening matrix.  

In the model of Kitayama et al., the dislocation density on each slip system is comprised 

of forest and reversible dislocations [25]. The latter can recombine when shear on a slip 

system is reversed, which is in fact a mechanism of dislocation annihilation. Reversible 

dislocations are also responsible for a back-stress contribution s

B  to the CRSS on the 

slip system s, such that:  

s s s

d B  = +   (2) 

as discussed in Section 2.2. In order to introduce the reversible dislocations in the model, 

each slip system s is split into s+  and s− , which correspond to the activation of slip in 

the arbitrarily defined positive and negative direction of the Burgers vector. Note that 

when the system shears in one direction ( (or ) 0sd + −  ), the opposite system is inactive 

( (or ) 0sd − + = ). The dislocation density on system s is decomposed as: 

s s s s
for rev rev   + −= + +  (3) 

where s  denotes the total dislocation density on slip system s, 
s
for  is the forest or 

non-reversible dislocation density, s
rev +  and s

rev −  represent the reversible dislocation 

density on s+  and s− , respectively. The total dislocation density in one grain is given by: 
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( )s s s s

for rev rev

s s

    + −= = + +   (4) 

The crystallographic RGBV model relies on the Kocks-Mecking concept [37] of a 

storage term and a recovery term for the evolution of each component, with the added 

assumption that a fraction sP  of the stored dislocations can be reversed. When the slip 

system contributes ‘positive’ shear ( 0sd +  ; 0sd − = ), the increment of s
for  and s

rev  

are given by: 

( )
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= − − 


= − 


 
= −     

 (5) 

here is a dislocation mean free path defined by: 

1 1

K D


= +


 (6) 

where   is the total dislocation density in one grain given by Eq. (4). K  is the number 

of forest dislocations that a moving segment is able to cross before being immobilized 

by the obstacles and D  is the average grain size. In Eq. (5) dΓ is used in the thermal 

recovery term instead of sd +  because the concurrent slip on any of the slip systems can 

facilitate thermally activated recombination on a particular slip system [9]. In the case of 

monotonic loading, the sum of the first two terms in Eq. (5) over all systems gives the 

classic Kocks-Mecking evolution law for the total dislocation density [25,37]. The 

reversibility fraction 
sP  is a function of accumulated dislocation density and, different 

from Kitayama et al. [25] and Wen et al. [26], it is assumed here to depend on the 

specific activity of each system. In the initial deformation stages all dislocations 

generated are assumed to be reversible ( 1sP = ) and, as dislocations accumulate, the 


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reversibility decreases towards 0sP = . The evolution of the reversibility fraction with 

dislocation density is discussed in Section 2.3. 

The last term in Eq. (5) describes the recombination of reversible dislocations s
rev −  

created on system s during the previous deformation history, in a manner inspired by the 

‘areal glide’ with ‘percolation/debris-accumulation’ model of Kocks [13]. 0
s  is the total 

density in the system when reversal starts. These dislocations follow a different 

evolution law than the ‘forward’ generated dislocations s
rev + : they only annihilate among 

themselves when 0sd +  . This term is meant to capture the fact that a moving 

dislocation tends to leave a certain amount of debris around obstacles (‘hard areas’ in 

[13]). When shear reversal occurs the dislocation will sweep back the same area and 

may fully or partially recombine with the previously generated debris [9]. While the 

parameter m  was equal to 1 in the formulation of Kitayama et al. [25], Wen et al. [26] 

argue that m  should be lower than 1 in order to provide a faster rate of recombination 

for the reversible dislocations during the reversal process ( 0.5m =  in the present work). 

The activation of slip systems on positive and negative directions are equivalent. Thus, 

the expressions for dislocation density evolution when s−  is activated ( 0sd −  , 0sd + = ) 

are: 

( )

0

1

1

s
s s s

for for

m
s

s srev
rev s

s
s s s

rev rev

d
d P f d

b

d d
b

d
d P f d

b


 


 




 

−

+
+ −

−
− −

= − − 


 
= −  

  

= − 


 (7) 

Eqs. (5) and (7) describe the dislocation 'storage' and 'unstorage' processes. For example, 

when the shear is activated on the positive direction ( 0sd +  , 0sd − = ), the forward 



 8 

dislocation density 
s

for  and the reversible dislocation density along the same direction 

( s

rev + ) will be accumulated according to Eq. (5). The density stored during previous 

loading in the opposite direction ( s

rev − ) will be gradually annealed, or remain null 

otherwise. When shear is reversed ( 0sd −  , 0sd + = ), s

rev −  and 
s

for  will start to 

accumulate, and the previously stored s

rev +  will be gradually annealed until its value 

reaches 0 or the shear rate in the system is reversed again. The evolution of the 

dislocation density for all three populations is tracked in this way throughout the entire 

simulation. Note that this model is embedded in the crystallographic VPSC framework 

which is able to deal with the slip directionality at the grain level depending on grain 

orientation, loading conditions, etc. Therefore, the sign of shear rate and the occurrence 

of slip reversal are determined explicitly during the simulations and no external input is 

required to "inform" the model when and in which direction the strain path is changed, 

as was the case in previous works [9,11]. 

2.1 Back-stress effects 

According to Eq. (2), two mechanisms determine the CRSS required to activate a system: 

the first is the evolution of dislocation density via Eq. (1) while the second is associated 

with the back-stress acting on dislocations, an effect not accounted for by Kitayama et al. 

[25]. During the forward loading, a dislocation substructure is generated in the material, 

known to be associated with polarized back-stresses [38,39]. In particular, a 

heterogeneous distribution of dislocations leads to long-range intragranular stresses [39-

41]. Consequently, it is reasonable to associate the residual stresses to the current state of 

the substructure of trapped dislocations. Loosely tangled (pile-up-type) reversible 
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dislocations will induce a large back-stress, and more tangled ones will have their field 

screened and provide a smaller back-stress. Upon strain path change, the trapped 

dislocations are progressively remobilized and recombine. In the process, the dislocation 

density decreases due to recombination and, as a consequence, so does the back-stress. 

The trend is particularly evident when the macroscopic strain is reversed, leading to the 

well-known Bauschinger effect [13].  

Introducing an empirical back-stress term in the effective resolved shear stress has been 

applied in previous works [17,19] to model the Bauschinger effect. Here, rather than 

attempting to evaluate the back-stress, we adopt the alternative empirical approach of 

defining a lower effective CRSS required for activating the opposite shear. When the 

shear on s is reversed, a lower resolved shear is required to reverse the loosely tangled 

dislocations (i.e.: as in the case of a pile-up), which is equivalent to assigning a lower 

threshold stress to dislocation activation. In order to capture the lowering of the back-

stress associated with the progressive recombination of the dislocations upon reversal, 

we relate reversible dislocations with back-stress through an empirical power law, as 

follows: 

if 0

if 0

B

B

q
s

s s s rev
d B s

q
s

s s s rev
d B s

f d

f d


  




  



−
+

+
−

 
 = −  

 

 
 = −  

 

 (8) 

Hence, the effective CRSS for system s is expressed as: 

( )
( )1 if 0

q
s

s s s s s rev
d B d B s

f d


    


− +
+ −

  
= +  = −   

   

 (9) 

By construction, the back-stresses are directly related to the reversible dislocations 
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density. Since according to Eqs. (5) and (7) the reversible dislocations recombine during 

shear reversals on the system, their effect on the effective CRSS decreases gradually and 

the back-stresses eventually vanish. s

Bf  ( 0 1s

Bf  ) in Eq. (8) is the scaling factor that 

weights the coupling between reversible dislocations and back-stresses. The parameter 

q  controls how fast the back-stress effect is nullified. It should be noted that the 

crystallographic RGBV model described above applies to the hardening evolution of slip 

systems. Twinning and its contribution to hardening was incorporated in the RGBV 

model by Wen et al [26] for studying tensile reloads in rolled Mg alloy. 

2.2 The reversibility parameter 

The formulation described above relies on a ‘reversibility parameter’ 
sP , which 

characterizes the fraction of dislocations generated in system s that are reversible. Such 

fraction should, in general, decrease with monotonic deformation, as the dislocation 

densities and so the density of obstacles increase. The evolution of the reversibility 

fraction is empirically described by the sigmoidal function: 

max min infl

max min infl

( ) 0.5 0.5tanh 3
s

s s D
P D

  

  

   + −
= −     −    

 (10) 

where sD  is a measure of the dislocation density representing an obstacle to 

dislocation reversal on system s. The characteristic densities max  and min  can be 

regarded as material properties which determine the value of sD  for which the 

parameter 
sP  goes from one to zero, respectively, and max min

infl
2

 


+
=  is the inflexion 

point of the sigmoidal. In the formulation of Kitayama et al. [25], the ‘obstacle measure’ 

parameter (here called sD ) was assumed to increase monotonically with strain, and to 
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be the same for every system in each grain, although different from grain to grain. The 

large strain cycling of LC steel studied here suggested a revision of its definition by 

assuming that sD  is different for each individual system and that it can decrease if the 

obstacles to dislocation glide on system s decrease. As a consequence, it differs from the 

measure proposed in Kitayama et al. [25] and Wen et al. [26] while being equally 

successful at reproducing the results reported by the latter authors. This new measure of 

obstacle evolves incrementally with deformation and depends on the deformation history 

as:  

0

s sD D


=   (11a) 

where 

'

'

(1 )s s s s s'

s

D - n .n =     (11b) 

The evolution of obstacles acting on system s depends on the system activity through 

s  and its coupling with existing dislocations through 's . The strength of dislocation 

junctions exhibits a complex dependence on their relative orientations and the 

crystallography [29,32,33,42-45]. In the present model, we propose a simple form of 

coupling which is meant to favor reversibility of coplanar dislocations without getting 

into the details of dislocation junctions. The coupling between s  and s  is modulated by 

the angle between the glide planes via the factor 
' '(1 ) 1 cos( )s s s s- n n n n = − . Such 

factor is zero if the systems are coplanar, equal to one if the glide planes intersect at 90°, 

and intermediate otherwise. This solution is simple enough and similar in structure to 

that used in [25,26]. This new formulation was implemented into the VPSC code and its 
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performance is analyzed in the following sections.  

2.3 Brief description of the VPSC model 

The VPSC (visco-plastic self-consistent) model is described in detail by Lebensohn et al. 

[27] and Wang et al. [46]. For the purpose of this work it suffices to state that the VPSC 

framework is used as a platform for calculating the interaction between the effective 

medium (representing the polycrystal) and an ellipsoidal inclusion (representing the 

grain) hardening according to the constitutive law discussed above. In this work the 

aggregate is represented by a 1000 crystal orientations with weights chosen to reproduce 

the initial texture. When a loading path (strain history) for the polycrystal is simulated, 

VPSC predicts the macroscopic stress-strain response, the slip activity and dislocation 

evolution in each grain, and crystal reorientation (texture evolution). The plastic strain 

rate in each grain occurs via the combined contribution of the shear rates of all slip and 

twinning systems. The latter are related to the stress in the grain through the constitutive 

law: 

0

:
  



 
= =  

 
 

n
s g

g s s s kl kl
ij ij ij s

s s

m
m m  (12) 

where ( )
1

2

s s s s s

ij i j j im n b n b= +  is the symmetric Schmid tensor associated with slip system 

s; sn and sb are the normal and burgers vector of the system; s  is the CRSS which is 

determined by the RGBV model (Eq. 9); 
g

ij  and 
g

kl  are the deviatoric strain-rate and 

stress of the grain; 0  is a normalization rate and n  the rate-sensitivity exponent. 

3 Results and discussion 
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The simulations are performed within the RGVB-VPSC framework described in the 

previous section. Notice that the visco-plastic modeling framework does not include 

elasticity, and so is not able to capture the initial elastic effects associated with loading. 

In order to compare measured and predicted stress-strain response, the elastic part of the 

experimental data is excluded. The initial texture represented with 1000 grains is used as 

input to the VPSC model as in Kitayama et al. [25]. The intermediate grain-medium 

interaction 10effn =  is chosen and the inverse strain-rate sensitivity n  is taken as 20. 

The plastic deformation is assumed to be accommodated by  110 111  and  112 111

slip. The simulations are performed sequentially throughout the entire deformation 

process. The calculated deformation state at the end of one process is considered as the 

initial state of the following stage. The macroscopic boundary conditions for the uniaxial 

tension and simple shear tests are the same as in Kitayama et al. [25]. All the simple-

shear tests are simulated by fully imposing the macroscopic velocity gradient 

=  ij i jL U X . For the uniaxial tension tests the velocity gradient component 11L  is 

enforced, together with the stress-free condition along axial directions 2 and 3 

( 22 33 0 =  = ). In this section, the experimental results of tension-shear and cyclic shear 

tests are used to evaluate the model. These two sets of experiments were performed on 

different grades of LC steels. The hardening parameters for both tests, which are listed 

in Table 1, are obtained by backfitting the experimental mechanical behavior. 

3.1 Tension preload followed by shear 

Fig. 1 presents the experimental [47] and predicted stress-strain response for tensile 

preloads of 
11 =5%, 10% and 20% along the RD, each followed by shear reload at 45o, 

http://www.sciencedirect.com/science/article/pii/S0749641912001349#f0025
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90o and 135o with respect to the RD. The previous simulations of Kitayama et al. [25] 

were repeated here using the new formulation for the back-stress and reversibility of 

dislocations.  

As reported by Rauch and Schmitt [47], the mechanical response depends strongly on 

the angle between the tensile and the shear directions. Uniaxial tension pre-strain 

produces the maximum resolved shear stress at about 45o from the longitudinal axis. 

When reloading in simple shear at 45o from the uniaxial axis, a large amount of 

dislocations continue gliding along the previous system and the occurrence of shear 

reversal is rare. For reloading at 90o, the highest flow stress response occurs: in this case, 

the slip systems activated during pre-loading (in tension) become latent and can act as 

obstacles for slip on the newly activated slip systems, resulting in an increase of the 

yield stress after the strain path change. For shear reloading at 135o from the RD, the slip 

on many dislocation systems is reversed shear, resulting in a softening and Bauschinger 

effect. 

Fig. 1 indicates that the mechanical responses in this set of experiments are captured by 

the RGBV-VPSC framework. The Bauschinger effect is achieved after shear reloading 

along 135o. The activation of the back-stress affects the relative activities for both 

families of slip systems as well. As shown in Fig. 2, the relative activities for simple 

shear reloading at 135o deviate from those of the other reloading modes, an effect which 

was not captured in the previous work [25]. The pole figures for 10% tension pre-strain 

followed by 90o shear reloading are presented in Fig. 3. These pole figures are similar to 

those in Kitayama et al. [25], indicating that texture evolution is rather insensitive to the 
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new formulation of the reversibility parameter sP  and the new back-stress law. Notice 

that the corresponding pole figure axes for the tension-shear and shear-shear tests in Figs 

3 and 9 of Kitayama et al. [25] are mislabeled. 

3.2 Cyclic shear loading 

Cyclic forward-reverse simple shear tests have been carried out on the rolled LC steel 

with strain amplitudes: ±10%, ±20%, ±30% and ±40% shear strain (
12 2 = ) along the 

RD [48]. The measured flow stress responses, presented in Fig. 4, show that the 

mechanical response after one or two cycles reaches a saturation stage until failure 

occurs. As shown in Fig. 5, the predicted strain-stress responses are in good agreement 

with experimental observations: both hardening and saturation stages associated with 

cyclic tests are well captured by the crystallographic RGBV model. The strong 

Bauschinger effect after each shear reversal follows from the back-stress law (Eq. 8), but 

does not change the dislocation density in any meaningful way. The work-hardening 

stagnation, on the other hand, is a direct consequence of reversible dislocation 

annihilation. Fig. 6 presents the predicted flow stress behavior after 5 cycles for the 

strain amplitude of ±20%. It shows that the cyclic behavior is well described even for a 

large cumulated strain. The predicted pole figures for cyclic loading with ±30% strain 

amplitude are presented in Fig. 7, and show that the texture also exhibits a cyclic 

behavior, remaining essentially the same at the end of each amplitude cycle. Notice that 

the texture evolution depends on the shear activity of the slip systems, which is mainly 

determined by the strain mode imposed. Some of these strain comes from the shear 

reversal mechanisms in the RGBV model. The latter affects the flow stress but has little 
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effect on the predicted textures. 

Fig. 8 shows that the evolution of forward and reversible dislocation densities is also 

periodic upon the attainment of saturation. In the simulation, such a behavior is due to 

the equilibrium between dislocation generation and annihilation. Fig. 9 schematically 

represents the evolution of the forward and reversible dislocation densities on one 

representative slip system during cyclic loading, obtained by imposing shear to a single 

crystal and disabling the update of grain orientation. As described in Section 2, the 

reversible dislocations on s+  and s−  experience the accumulation or annihilation 

processes depending on the sign of s& . Therefore, after each reversal, s
rev +  and s

rev −  

increase and decrease alternatively and achieve an equilibrium status at the saturation 

stage, which leads to the cyclic evolutions of dislocation density and flow stress. Notice 

that in the simulations the actual evolutions of s
rev +  and s

rev −  for each slip system may be 

affected by the update of grain orientation. However, a cyclic behavior in the total 

dislocation density evolution and strain-stress response can still be achieved in the 

aggregate as a whole.  

The new formulation of the dislocation reversibility parameter 
sP  also plays an 

important role in capturing the mechanical behavior under cyclic loading. In the 

formulation of Kitayama et al. [25], this parameter was defined as a function of debris 

density. Since the latter was only allowed to increase monotonically with deformation, 

the sigmoidal functional form of the reversibility parameter (given by Eq. 10) decreased 

monotonically from 1 to 0, irrespective of whether the strain path exhibits reversal or not. 

As a consequence, when the accumulated strain is very large (i.e. cyclic loading test), 
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the fraction of for  generated would increase with respect to the fraction of rev . In 

addition, the latter would vanish gradually due to annihilation. The present formulation, 

on the other hand, allows for increasing or decreasing the reversibility sP  of a system, 

depending on whether the density of obstacles given by Eq. (11) increases or decreases. 

The latter is a loose representation of the current configuration of dislocation 

microstructures formed by dislocation-dislocation reactions. As shown in Fig. 9, the sP  

value in the representative slip system reduces at the beginning of deformation but 

presents a cyclic behavior at the saturation stage around a value not much lower than 

one. 

The relative activity of cyclic shear loading with ±30% of strain amplitude is presented 

in Fig. 10. It can be seen that about 70% of plastic deformation is contributed by 

 110 111  dislocations. Compared to the results of Kitayama et al. [25], the relative 

activities show a rapid transient at reloading due to the activation of the back-stress.  

Following the Bauschinger effect, the work-hardening stagnation observed in the 

experimental results after each shear reversal is well predicted in the simulations. Such a 

behavior has been reported by many earlier works, i.e. [9,16,34,48] and has been linked 

to the annihilation process of the re-mobilized dislocations upon strain reversal [9,34], 

which is included in the present modeling framework. In this work the transient behavior 

is captured well due to the interplay between dislocation accumulation and annihilation 

during reloading. These two processes occur respectively on s

rev +  and s

rev −  at the same 

time but at different rates and strain interval, which is responsible for the low or even 

negative hardening rate in this stage. The parameter m (Eqs. 5 and 7), which controls the 
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annihilation rate, evidently affect the appearance of this behavior. Fig. 11 presents the 

evolution of reversible dislocation densities on a representative slip system of a single 

crystal tested in shear. It schematically shows that the plateau is more pronounced when 

the value of m is reduced.  

4 Conclusions  

In this study, the crystallographic-based hardening model (RGBV model) is improved 

and extended with the intended aim to accurately predict the macroscopic stress-strain 

response for rolled low carbon steel in the context of strain path changes including 

cyclic loading and large plastic strains. The RGBV model, which is embedded in the 

VPSC framework, allows a non-monotonic evolution of the dislocation density during 

complex loadings paths through a suitable description of dislocation-related mechanisms. 

A more sophisticated formulation of the dislocation reversibility parameter sP  is 

proposed in this work. The new model calculates sP  individually for each slip system, 

and allows sP  to increase or decrease (instead of monotonically increase) according to 

the current status of the microstructure during dislocation accumulation and annihilation 

processes.  

In comparison with the previous results [25], this version of the RGBV model achieves a 

promising improvement by reproducing the macroscopic hardening transient effects 

(plateau in the flow curve) during strain path changes, the Bauschinger effect (low yield 

stress following reload), strain hardening stagnation and large strain cyclic behavior 

(superimposed successive hysteresis loops). The new formulation of the reversibility 

parameter sP  plays an important role to stabilize the mechanical response at very large 



 19 

cumulated strain.  

Finally, by accounting explicitly for crystallography and the dislocation mechanisms that 

are responsible for hardening and shear accommodation, our model relies on a sound 

physical basis. While the constitutive equations proposed here are mostly empirical, they 

are qualitatively correct as far as the dependence on dislocation mechanisms. Most 

important, they can be improved with results obtained from basic Dislocation Theory 

models and lower scale Dislocation Dynamics simulations. Those are objectives of 

future work.  
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Fig. 1. (a) Predicted stress-strain response of rolled LC steel for tension along the RD; 

(b) Predicted and measured shear stress-shear strain reloads at 45°, 90°, 135° with 

respect to the RD, after 5% tension preload; (c) idem after 10% preload; (d) idem after 

20% preload. 

  



 

Fig. 2. Relative shear activity of  110 111  and  112 111  slip modes during 10% 

tension preload along RD followed by shear at 45o, 90o and 135o. 

  



  

 

initial after 10% RD tension pre-strain  

  

 

after 30% shear reloading at 90o after 60% shear reloading at 90o  

   

Fig. 3. Predicted texture evolution for tension-shear test with 10% tension pre-strain 

followed by simple shear reloading at 90o. SD is shear direction and SPN shear plane 

normal. 

  



 

Fig. 4. Experimental response of LC steel subjected to reversed cyclic loading with 

maximum strain amplitudes of ±10% (10 cycles), ±20% (5 cycles), ±30% (2 cycles) and 

±40% (1 cycle) 

  



 
Fig. 5. Predicted stress-strain response for the cyclic tests of LC steel with different 

maximum strain amplitudes. The accumulated strain is used in the plot to facilitate 

comparison with experimental data 

  



 

Fig. 6. Predicted stress-strain response of LC steel for 5 cycles shear-reverse shear test 

and strain amplitude of ±20%. The accumulated strain is used in the plot to facilitate 

comparison with experimental data.  

  



  

 

  

 

 

Fig. 7. Predicted texture evolution for cyclic shear test with  shear strain 

amplitude after 30% (a), 90% (b), 150% (c) and 210% (d) accumulated shear strain. 

  

30%



 

Fig. 8. Evolution of the total forward and reverse dislocation densities during cyclic 

loading in shear with different amplitudes 

  



 

Fig. 9. Evolution of the forward and reversible dislocation density and sP  value for one 

representative slip system during cyclic loading, obtained from a single crystal test. 

  



 

Fig. 10. Relative shear activities of  110 111  and  112 111  slip modes during 

cyclic shear loading with 30%  shear strain amplitude.  

  



 

Fig. 11. Schematic evolution of s

rev + , s

rev −  and s s

rev rev + −+  on one slip system when the 

shear is reversed 

 



Table 1. Hardening parameters for the LC steels used in this work 

 

Parameters 
Cyclic shear-shear 

 (steel #1) 

Tension-shear 

(steel #2) 

μ (Elastic shear modulus) 85 GPa 85 GPa 

b (Burgers vector) 2.46·10-10 m 2.46·10-10 m 

D (Grain size) 30 μm 30 μm 

τo (Initial CRSS) ({110}<111>) 

τo (Initial CRSS) ({110}<111>) 

55 MPa  

55 MPa  

38 MPa  

40 MPa 

K (Mobile to storage parameter) 650 950 

f (Recovery parameter) 1.3 1.8 

ρmin (Lower reversibility threshold) 1011 m-2 1011 m-2 

ρmax (Upper reversibility threshold ) 1014 m-2 1014 m-2 
s

Bf  (back-stress parameter; Eq 8) 0.5  0.5  

q (back-stress parameter; Eq 8) 5 10 

m (recombination rate parameter; Eq 5) 0.5 0.5 

'ss  (dislocation-dislocation interaction) 
0.25 ( 's s= ) 

0.52 ( 's s ) 

0.25 ( 's s= ) 

0.52 ( 's s ) 
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