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ABSTRACT
In the last few years, organizations and business professionals have realized the value of data analytics in
supporting decision-making. Where several activities are performed on on-line data by different stakehold-
ers, such as cleansing, aggregation, analysis and visualization, cloud-based data analytics has become a
favored choice for business professionals due to the elasticity, availability, scalability, and pay-as-you-go
features offered by cloud computing. However, large amounts of data stored on the cloud are very sensitive
(e.g., innovation, financial, legal, customers’ data), and so data privacy remains one of the top concerns for
many reasons; mainly those relating to legal or competition issues. In this paper, we review the security and
cryptographic mechanisms which aim to make data analytics secure in a cloud environment, and discuss
current research challenges.

INDEX TERMS Cloud computing , Data analytics, Data privacy, Query processing.

I. INTRODUCTION
With cloud-based technologies and services flourishing,
many organizations have started adopting hybrid Information
System (IS) solutions, particularly the multi-hybrid cloud
deployment model, where IS services are outsourced and
shared with several cloud service providers and integrated
with the organization’s on-premises systems. Cloud comput-
ing appeals to businesses and organizations because of the
wide variety of benefits it offers. The pay-per-use model of
cloud computing is very attractive, especially for small and
medium enterprises, because it reduces start-up costs [101].
Some cloud outsourcing models go as far as outsourcing a
complete business process to a third party Cloud Service
Provider (CSP), and they share part of their IS assets through
the cloud system [4].

The growth of cloud-based services has made data ana-
lytics a feasible reality for organizations [101]. One closely
related outsourcing model that has recently emerged is data
analytics outsourcing [5], where organizations offer a value-
added third party agent access to their heterogeneous, large
datasets stored on the cloud in order to perform some analyt-
ical tasks and deliver insight to the organization [92]. Data
analytics helps businesses and organizations analyze data to
gain a fuller understanding of the situation confronting them

and make better decisions [7]. Data analytics outsourcing
services, or Data Analytics-as-a-Service (DAaaS), entails
storing sensitive data on a remote CSP’s infrastructure, and
querying and retrieving data on demand [8]. Data Analytics-
as-a-Service is a customizable analytical platform which
uses the software-as-a-service (SaaS) cloud-based service
delivery model. Different customizable data analytics tools
are typically used by companies which are collaborating in
an integrated value chain. The companies use DAaaS with
the intention of integrating cross-organizational business
processes to maximize data-driven value and enable rapid
innovation.

The security solutions and challenges we discuss in this
paper relate to securing data which is stored on a CSP’s
infrastructure and is subject to limited access by multiple
organizations. These organizations are collaborating with
each other, and data analytics is crucial for them collectively.

Although cloud data outsourcing provides many benefits,
it also raises security and privacy concerns. Ensuring data
privacy is not a trivial matter, because data owners lose
control of their data in cloud environments. Threats to privacy
come from both outside and inside, so data privacy must
be guaranteed not only against external adversaries breaking
into the system, but also malicious insiders and so-called

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

honest but curious CSPs [9].

A straightforward solution to the problem of data privacy
is to encrypt sensitive data locally in a trusted environment
before sending it to a CSP. Encryption protects sensitive data
even if the server is compromised. However, encrypting data
incurs additional storage costs, and query processing over
encrypted data is both non-trivial and costly in terms of
computing power in the cloud, and thus money. Moreover, in
addition to overheads, the levels of security and functionality
are other issues which must be addressed properly. Typically,
existing solutions from the literature [10], [11], [12], [13]
cannot provide a seamless and complete solution which guar-
antees secure cloud data analytics, because they fail to deal
adequately with at least one of these issues [14]. Searchable
Encryption (SE) allows keyword searches over encrypted
documents [93], [94]. However, SE schemes involve a trade-
off between security and efficiency.

A common limitation of SE schemes is their prohibitive
computational cost. In the context of cloud outsourcing,
access control can be achieved by using attribute-based en-
cryption (ABE), which enables the decryption of data when
a user has certain attributes which satisfy the access structure
[95]. However, the main disadvantages of ABE schemes are
deficiency and functionality issues. Consequently, choosing
an efficient cryptographic scheme with adequate levels of se-
curity and functionality for computing analytical queries over
encrypted data, which would thus be an effective solution for
secure cloud-based data analytics, is still a challenge.

In this paper, we give a comprehensive overview of secure
cloud-based data analytics which provides an easy entry
point for researchers with no cryptographic background. We
introduce a general architecture and system model which will
accommodate a wide range of uses of cloud data analytics.
This architecture incorporates a specific adversary and se-
curity model, and we provide an overview of cryptographic
tools for ensuring data privacy with an emphasis on function-
ality and efficiency in terms of overheads. We then present
and compare practical secure solutions from the literature and
identify various security and efficiency issues. A comparative
analysis of security, overhead and functionality issues is
presented at the end of the article in order to provide a
series of guidelines and insights to assist in designing and
developing secured cloud-based data analytics with a level of
functionality and efficiency which meets user requirements.
The rest of the paper is organized as follows: we present
our reference system architecture, adversary and security
model for cloud data analytics in Section II. We classify the
various cryptographic schemes which can be implemented
in the reference system for preserving privacy in Section
n III. We then review, discuss and compare practical solutions
in Section IV, while limitations and unresolved issues are
discussed in Section V. Finally, conclusions are drawn in
Section VI.

II. ASSUMPTIONS AND REFERENCE MODEL
In this section, we introduce the main actors and their
activities in relation to data analytics in the cloud. Then,
we describe the ways in which the security of cloud-based
data analytics can be compromised. Since we review crypto-
graphic approaches for preserving privacy, we define a stan-
dard security model to specify the level of security guarantees
desired in cloud-based data analytics. Taking an adversary
and security model as our basis, we elaborate the system
goals which must be achieved in the cloud context

A. ACTORS AND ACTIVITIES IN CLOUD DATA
ANALYTICS
A cloud-based data analytics system allows a server to store
and query encrypted data on behalf of a user without gaining
information about the underlying data.

Figure 1 depicts the basic system model and architecture
of cloud-based data analytics, which consists of three main
entities: the Data Owner, the Cloud Service Provider and
Authorized Users.
The Data Owner (DO) is an entity which has a large amount
of data to be outsourced in the cloud, and can be an individual
user, or a large, small or medium business or enterprise.
The Cloud Service Provider (CSP) provides data storage
services and computational resources.
Authorized Users (AU): the DO allows the authorized users,
which could be other enterprises or individual users, to use
the outsourced data. AU can query encrypted data and re-
trieve encrypted results and decrypt them to get correspond-
ing plaintext.

In a secure cloud-based architecture, a trusted component
(TC) must execute confidential tasks such as key manage-
ment functions, query rewriting and post-processing, and
decryption. The DO and the AU are assumed the TC in some
settings (TC-DO and TC-AU in Figure 1). In this setting, the
TC must be installed and maintained on each AU and DO
separately. To avoid installing the TC in several machines, the
TC is set between the client (i.e., the DO or the AU) and the
CSP [12], which is called the proxy server (TC-PS in Figure
1). In this setting, the proxy server intercepts client/server
communications and performs data/query encryption and
decryption on behalf of the user. The proxy server maintains
some metadata and the private keys for data encryption and
query transformation. Finally, tamper-proof hardware can be
embedded at the CSP (TC-TPH in Figure 1), which performs
encryption/decryption and query rewriting [15]. The AU also
needs to perform a few security tasks like query rewriting and
decryption. Typically, the interactions in this architecture are
as follows:
1) The DO outsources data to a CSP (or multiple CSPs [16],
[17], which are non-colluding with each other or with other
external adversaries) in encrypted form while still maintain-
ing the capability to query the data efficiently.
2) An AU encrypts a query and sends the encrypted query to
the CSP.
3) The CSP executes the query over encrypted data and
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FIGURE 1. System architecture for securing cloud-based data analytics

returns encrypted results to the AU.
4) Finally, the AU decrypts the results.
All interactions between the DO/AU and the CSP can be
executed through the proxy server, TC-PS, when the TC-PS
is the TC.

B. ADVERSARY MODEL

An adversary model specifies an adversary’s ability to
threaten security. In cloud outsourcing scenarios, the adver-
sary can be either honest but curious (passive), or malicious
(active). Honest but curious is a widely-used adversary model
for cloud outsourcing scenarios [18], [19], [20], [10], [11],
[21]. An honest but curious CSP or insider faithfully com-
plies with any service-level agreement (SLA) and stores data,
runs computations and queries, and provides results without
alteration. However, such CSP may access data and gain
information by inferring from queries and results.

A malicious adversary can manipulate data and query
results, and even delete stored data, which compromises
integrity and availability. Since current known CSPs are well-
established companies such as Google or Amazon, it is hard
to see the possibility of them behaving maliciously, as this
would damage their reputation and have a negative impact on
their revenues [22]. Nevertheless, the malicious adversary is
taken into consideration in some settings [13], [23]. In this
paper, we consider the honest but curious adversary model,
i.e., the CSP or insider.

C. REFERENCE SECURITY MODEL
Security model is used to define the security guarantees of
an encryption scheme. Basically, an encryption scheme is
characterized by Π=(M, C,K, Enc,Dec), where M is all
possible plaintexts, C is a set of all possible ciphertexts, and
K a set of all possible keys belonging to a key space. Enc is
a randomized algorithm where Enc : K ×M −→ C and
Dec is a deterministic algorithm Dec : K × C −→ M.
For all possible plaintexts, the following property should be
satisfied [24].

∀m ∈M, ∀k ∈ K : Dec(k,Enc(k,m)) = m.

There are two fundamental types of encryption schemes:
symmetric-key and public-key encryption. In symmetric-key
encryption, the encryption and decryption keys are identical
while in public-key encryption there is a key for encryption
and another key for decryption. In public-key schemes, the
encryption key is publicly available for encryption, but only
the authorized users who have access to the decryption key
can decrypt ciphertexts. We use PPT to denote the class of
algorithms that are in probabilistic polynomial time.

To define the security model of an encryption scheme,
the first step is defining a security goal. Then, it must be
examined whether this goal can be achieved by an adversary.
To this end, an experiment is defined between the adversary
and a challenger and the probability that the adversary wins
the experiment is studied. This experiment is called security
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model. An adversary’s advantage is a measure of how much
more successful it is at winning the experiment compared to
the random guess.

For an encryption scheme Π , the following game is de-
fined between an adversary A, which tends to break the
system and a challenger, C, who receives as input variable
b where b ∈ {0, 1}. First, the adversary chooses two equal-
length plaintexts m0 , m1 ∈ M. The challenger picks one
of two plaintexts, encrypts it and sends the result to the
adversary. Then, the adversary should not be able to guess
which plaintext is encrypted by the challenger. This model
is known as IND-CPA (Indistinguishability under chosen-
plaintext attack), which is formalized in the following defi-
nition.

An encryption scheme, Π , is IND-CPA if for any PPT
adversary A, the probability that A "wins" the following
game is negligible.

1) Challenger C takes a random key k
2) Adversary A chooses m0, m1 ∈ M such that |m0| =
|m1| and sends them to C

3) Challenger C chooses b ∈ {0, 1} uniformly at random
and sends cb = Enc(k,mb) to A

4) A outputs b′ ∈ {0, 1}, and is said to win if b′ = b

In other words, if we define the advantage of the adversary
A as follows.

AdvcpaA,Π = Pr[b′ = b]− 1/2

then, the encryption scheme Π is IND-CPA secure if
AdvcpaA,Π is negligible, i.e., A cannot guess b except with
probability close to 1/2.
Note that in the above game, the adversary can issue several
queries adaptively one after the other in order to simulate the
ability of distinguishing multiple ciphertexts encrypted under
the same key.

IND-CPA implies that the knowledge of ciphertexts pro-
vides no information about the underlying plaintexts for an
adversary, i.e., ciphertexts leak no information about the
plaintexts.

D. OBJECTIVES OF CLOUD-BASED DATA ANALYTICS
Secure cloud-based data analytics must target the following
goals.
• Privacy: Data privacy must be preserved in cloud-

based data analytics. Encryption is a promising solution
because the adversary and the CSP can access only
encrypted data, but ciphertexts may leak some informa-
tion and compromise data privacy. Hence, IND-CPA is
desired to achieve this in cloud-based data analytics.

• Functionality: Proposed solutions should efficiently
support different kinds of analytical workload, i.e., exact
match queries (equality checking, GROUP BY,JOIN,
DISTINCT), range queries (inequality checking,
SORT, ORDER BY), and aggregation queries (SUM,
AVG, MIN, and MAX) should be supported efficiently

and effectively [17]. Moreover, computations over mul-
tiple columns in a table in a database must be handled.
For instance, multiplication of two columns, C = A ×
B.

• Efficiency: A secure cloud-based solution should be ef-
ficient in terms of computational, storage, and commu-
nication overhead. Computational and storage overhead
should be minimized for both the user and the CSP.
Basically, in data outsourcing scenarios, it is considered
that the user has limited storage and computational
resources, thus, that overhead must be diminished as far
as possible. At the CSP, the pay-per-use model of cloud
computing is a good reason to minimize the total over-
head of the system. Communication overhead implies
the number of intermediate results that is transferred to
the user for query post-processing.

III. CRYPTOGRAPHIC METHODS
There are two main cryptographic approaches that enable
processing over encrypted data without decryption. We de-
scribe these cryptographic schemes, which can be imple-
mented in practical systems for preserving data privacy in
this section.

A. HOMOMORPHIC ENCRYPTION
Homomorphic Encryption (HE) allows performing arbitrary
arithmetic operations over encrypted data without decryp-
tion [25]. HE provides IND-CPA security. Typically, an HE
scheme is a scheme with an additional evaluation algorithm,
Eval, to process over encrypted data [26]. The evaluation al-
gorithm takes a public key, Pk, a function, f , two ciphertexts,
c1 and c2 as inputs and outputs ciphertext c∗ where c∗ =
Eval(pk, f, c1, c2). In other words, Eval manipulates the
encryption of two plaintexts m1 and m2, c1 = Enc(pk,m1)
and c2 = Enc(pk,m2), and outputs Enc(pk, f(m1,m2))
(Figure 2).

If an HE scheme allows performing arbitrary computation,
then the scheme is called Fully Homomorphic Encryption
(FHE) [25]. FHE allows performing arithmetic operations
(+,−,×,÷) over encrypted data without decryption. FHE
is a powerful scheme and offers the highest level of security
and certainly has a role to play in privacy preserving query
processing [27]. FHE scheme is first introduced in [25],
followed by other researches to improve the performance of
the original scheme [28], [29], [30], [31], [32], [13], [33],
[34], [35]. Even though many improvements e.g., reducing
encryption key size or eliminating some complicated phases,
FHE is prohibitively slow and requires so much computing
power that it cannot be used in practice. As a result, building
an efficient and usable FHE is still a great challenge.

Partially Homomorphic Encryption (PHE) for specific op-
erations is efficient and can be used in practice. PHE allows
either addition or multiplication over encrypted data, but not
both. PHE offers the same security guarantees, IND-CPA,
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𝑚1, 𝑚2

𝑐1 = 𝐸𝑛𝑐(𝑝𝑘,𝑚1)
𝑐2 = 𝐸𝑛𝑐(𝑝𝑘,𝑚2)

𝐸𝑛𝑐(𝑝𝑘, 𝑓(𝑚1, 𝑚2))

𝑓(𝑚1, 𝑚2)

𝑓

𝐸𝑣𝑎𝑙(𝑓)

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡

FIGURE 2. Homomorphic encryption

while being more efficient and closer to practical implemen-
tation. If a PHE scheme allows addition or multiplication,
it is referred to as additive homomorphic and multiplicative
homomorphic, respectively.

Paillier’s scheme [36] is an example of additive homo-
morphic scheme and is currently the most efficient. With
Paillier’s scheme, multiplying the encryption of two values
is equal to the encryption of the sum of the values, i.e.,
Enc(k,m1) × Enc(k,m2) = Enc(k,m1 + m2), where
multiplication is performed modulo some public-key k [12].
Paillier’s scheme is used in practical solutions [21], [12] to
compute SUM and AVG aggregation queries over encrypted
data without decryption.

B. PROPERTY-PRESERVING ENCRYPTION
Property-Preserving Encryption (PPE) preserves certain
properties of plain- texts on the corresponding ciphertexts,
which enables the CSP to compute over encrypted data.
Typically, in PPE ideal security is relaxed to provide more
efficient solutions [37]. Order-preserving encryption (OPE)
and deterministic encryption (DET) are examples of PPE
schemes.

1) Deterministic Encryption
Deterministic (DET) encryption encrypts the same plain-
text into identical ciphertexts, thus the equality property is
preserved. DET allows equality checking by encrypting a
plaintext into the same ciphertexts when using the same key.
Thus:

∀k ∈ K, ∀m1,m2 ∈M, Enc(k,m1) = Enc(k,m2), iff
m1 = m2.

DET allows performing SELECT with equality predicates,
equality JOIN, GROUP BY, COUNT, and DISTINCT
queries [38]. DET is not IND-CPA secure. The following
game shows that a DET encryption scheme, ΠDET , is not
IND-CPA secure.

1) Challenger C chooses b ∈ {0, 1} uniformly at random

2) The adversary A chooses m0,m1 ∈ M so that m0 =
m1 = m∗

3) C sends c∗ = Enc(k,m∗) to A
4) A chooses m′0 = m∗, m′1 6= m∗
5) C sends c = Enc(k,m′b) to A
6) A outputs 0 if c = c∗ and 1 otherwise

Hence, AdvcpaA,Π=1/2, i.e., non-negligible.
As a result, the adversary can learn data duplicates, which
leads to information leakage. In order to define the security
of DET schemes, the IND-CPA security game is replaced by
a new security game, IND-DCPA ( Indistinguishability un-
der Distinct Chosen Plaintext Attacks), where the adversary
is restricted to pick distinct plaintexts [39]. An encryption
scheme, Π , is IND-DCPA if for any PPT adversary A, the
probability that A "wins" in the following game is negligible
[40].

1) Challenger C takes a random key
2) Adversary A chooses m0 and m1 where m0 and m1

are distinct
3) Challenger C chooses b ∈ {0, 1} uniformly at random

and sends cb = Enc(k,mb) to A
4) A outputs b′ ∈ {0, 1} and is said to win if b = b′

In the other word, considering the advantage of the adver-
sary as follows

AdvdcpaA,Π = Pr[b′ = b]− 1/2

the encryption schemeΠ is IND-DCPA secure if AdvdcpaA,Π is
negligible.

IND-DCPA is weaker than IND-CPA, but they are equiv-
alent when the domain of plaintexts contains unique values
[41].

2) Order-Preserving Encryption
Order-Preserving Encryption (OPE) is a deterministic en-
cryption scheme that preserves the order of plaintexts in
ciphertexts [42], i.e., for any key k,
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k ∈ K, ∀m1,m2 ∈M, Enc(k,m1) ≤ Enc(k,m2), iff
m1 ≤ m2.

OPE allows performing range queries when given encrypted
constraints Enc(k, c1) and Enc(k, c2) corresponding to
range [c1, c2]. Aggregation queries MIN, MAX, ORDER
BY, and SORT can also be computed directly over encrypted
data.
Since OPE is deterministic it is not IND-CPA secure. The
security definition of OPE is defined by Boldyreva et al. in
[42] which is called IND-OCPA (Indistinguishability under
Ordered Chosen Plaintext Attacks). An IND-OCPA secure
scheme hides all information about the plaintext values ex-
cept the order, which is a minimum requirement for order-
preserving property. An encryption scheme, Π , is IND-
OCPA if for any PPT adversary A, the probability that A
"wins" in the following game is negligible [42].

1) Challenger C takes a random key
For i = 1, . . . , q

a) Adversary A chooses mi,0 and mi,1 where
|mi,0| = |mi,1|

b) Challenger C chooses b ∈ {0, 1} uniformly at
random and sends cb = Enc(k,mi,b) to A
wherem1,0, . . . ,mq,0 are distinct andm1,1, . . . ,mq,1

are distinct
and m`,0 < mj,0 ↔ m`,1 < mj,1, 1 ≤ `, j ≤
q

c) A outputs b′ ∈ {0, 1} and is said to win if b = b′

In the other word, considering the advantage of the adver-
sary A as follows

AdvocpaA,Π = Pr[b′ = b]− 1/2

the encryption scheme is IND-OCPA secure if AdvocpaA,Π is
negligible. OPE is a weaker encryption scheme than DET
because in addition to leak data duplicates, it reveals the order
of plaintexts.

Different OPE schemes are proposed in both the database
and cryptography community. OPE is introduced in the
database community by Agrawal et al. as a tool to support
efficient range queries over encrypted data [43], which maps
each value of the plaintext domain to one value in the
ciphertext domain. This scheme bears weak privacy pro-
tection because the original data values can statistically be
estimated by an adversary who has access to ciphertexts
[44]. Damiani et al. propose an order-preserving indexing
method, which preserves the order of plaintexts over in-
dexes [45]. A B+tree index is built over plaintexts and is
stored at the CSP in encrypted format. In order to query
processing, the encrypted tree must be travelled by the CSP.
However, the user should perform a sequence of queries to
retrieve nodes, which induces communication overhead. The
proposed scheme provides IND-OCPA security, but incurs
heavy communication and computation overhead. Sobati-M
et al. introduce an order-preserving indexing method, which
destroys the frequency distribution of plaintexts [37]. Whilst

the proposed indexing method provides IND-OCPA security,
it is efficient in terms of communication and computation
overhead. Boldyreva et al. introduce a new OPE with a
random mapping that preserves order [42]. The proposed
scheme cannot provide IND-OCPA because it leaks at least
half of the plaintext bits (i.e., more information than OPE)
[46].

Popa et al. introduce the first practical IND-OCPA scheme
in the cryptography community, mutable order-preserving
encoding (mOPE) [46]. mOPE requires an interactive pro-
tocol for query processing. Additionally, mOPE relies on
user-defined functions (UDFs) for query processing, which
makes it unsuitable for cloud outsourcing. Liu et al. introduce
an OPE scheme that randomly splits the original plaintext
domain into successive intervals with different lengths [44].
Then, an extended ciphertext domain is selected and split
into the same number of intervals. Finally, nonlinear mapping
functions map the original plaintexts into ciphertexts in the
extended domain. The proposed method partially destroys
the distribution of original data and reveals some information
about underlying values, which breaks IND-OCPA security.

Table 1 shows the comparison between existing OPE
schemes. Among all OPE approaches, only Boldyreva’s
scheme is implemented in some practical solutions.

TABLE 1. Comparison of OPE schemes

Scheme Interactive IND-OCPA
Agrawal 8 8
Damiani 4 4

Sobati 8 4
Boldyreva 8 8

Popa 4 4
Liu 8 8

IV. ENCRYPTION-BASED PRACTICAL SOLUTIONS
Building a secure cloud-based analytics system has been
discussed briefly in the literature with limited practical con-
tribution. Some solutions have nonetheless been proposed.
The most important challenge of secure solutions is weak
security guarantees or heavy overhead in the systems we
review in this section, to the best of our knowledge.

For each practical solution, we explain the main idea,
the architecture, how data are organized at the CSP, and
query processing. Then, we analyze the advantages and the
deficiencies of each solution in terms of security and perfor-
mance.

A. BUCKETIZATION
Bucketization is introduced as a privacy-preserving method
in [10], [11] that allows partial execution of a query at
the CSP with the help of indexes 3. Bucketization supports
queries over encrypted data without decryption. Queries are
evaluated in an approximate manner, thus the returned results
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FIGURE 3. (a) An example of a relation R, (b) partition function used for attribute eid, and (c) the encryption relation RS stored at the CSP [10]

may contain some false-positives. The final result is found by
decrypting the data and executing query post-processing at
the users.

Bucketization divides data into buckets and provides ex-
plicit labels for each bucket [47]. The domain of plaintexts is
partitioned into a set of non-overlapping buckets (subsets),
with the same size (or maybe different size). A label is
defined for each bucket and may or may not preserve the
order of values in the original domain. Then, bucket labels are
stored along with encrypted values at the CSP. These labels
allow equality, range (if preserving order) and join queries
at the CSP without decryption. Bucketization-based indexing
usually returns false-positives in the result of a query. Thus,
query post-processing is needed at the users to filter out false-
positives [48].

Any relationR in a database is encrypted in tuple-level and
auxiliary indexes, i.e., buckets’s labels, are used by the CSP
for query processing. Thus, the relation R(A1, A2, ..., An) is
stored at the CSP as: RS(etuple, AS1 , A

S
2 , ..., A

S
n), where the

attribute etuple corresponds to an encrypted tuple, and each
ASi corresponds to the index for the attribute Ai. An example
is shown in Figure 3.

The DO must maintain metadata such as the label of bucket
for transforming queries to the appropriate representation on
the CSP and performing query post-processing.

In Bucketization architecture, queries are transformed by
a query translator and a query executor, which both reside
with the DO. For query processing, the AU poses the query
to the query translator.
Each query is transformed into the server-side and user-side
sub-queries, Qs and Qc, respectively (Figure 4). Qs is exe-
cuted by the CSP over encrypted data using corresponding

indexes (ASi s).
The result of Qs is sent back to the query executer, which

decrypts the result of Qs and executes Qc to filter false-
positives and retrieve the final result (post-processing).

Query execution in bucketization operates as follows.
– Step1.

The AU sends a query Q to the query translator.
The query translator rewrites Q into Qs and Qc. To
this end, the query translator uses some metadata
(e.g.,the buckets boundaries) and replaces the plain-
text values in the query with bucket boundaries.
Then, the query translator sends Qs to the CSP.

– Step2. The CSP executes Qs and returns all en-
crypted records back, whose bucket numbers sat-
isfy the query constrains. The encrypted results are
sent to the query executor.

– Step3. The query executor decrypts the results and
executes Qc to eliminate false-positives and sends
the final results to the AU.

Bucketization provides efficient query processing while
keeping the information disclosure to a minimum. Further-
more, query evaluation is often much simpler than crypto-
graphic schemes [49].
However, there is a trade-off between security and efficiency.
The smaller number of buckets leaks less information and
increases security, but induces more false-positives in query
results and more computational overhead at the AU.

When the labels are order-preserving, IND-CPA security
is not guaranteed. Note that here the encrypted data is in the
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FIGURE 4. Bucketization query workload [10]

form of (ciphertext)||(bucketlabel), e.g., in Figure 3 the ci-
phertexts of attribute eid are in the form of etuple||eidS . Ad-
ditionally, bucketization-based indexing reduces data gran-
ularity. All values in a row are encrypted together, which
means that all encrypted rows must be shipped back to the
AU inducing communication overhead.

B. CRYPTDB
CryptDB is a secure DataBase Management System (DBMS)
developed at MIT [12] with both academic [20], [50], [18],
[21], [51], [52], [53], [54], [55], [56] and industrial [57],
[58], [59], [60], [61] impacts [38], e.g., Google [57] and
SAP [58] produced their own CryptDB-inspired solutions.
CryptDB aims at providing data privacy guarantees in the
face of a compromised server and a honest but curious CSP
by data encryption.CryptDB uses a set of encryption schemes
based on the queries issued by the AU [38] and adopts
different kinds of encryption schemes, i.e., PPE and PHE,
which are dynamically adjusted depending on the queries
[26]. Encryption in CryptDB is like onion layers that store
multiple ciphertexts within each other (Figure 5).

For instance, given two encryption schemes Enc1 and
Enc2, the encryption of a value m is defined as:

c = Enc1(k1, (Enc2(k2,m))).

The outermost onion layers provide the highest level of
security, IND-CPA security, whereas the inner layers, provide

more functionality and less security guarantees, e.g., IND-
DCPA for DET layer.

Each value in a relation is encrypted independently.
Numeric values are maintained in three different onions,
OnionEq, OnionOrd, and OnionAdd, which are used for
equality checking, range queries, and aggregations SUM and
AVG, respectively. In other words, for each value CryptDB
stores three encrypted values at the CSP. At the CSP, query
processing is computed using UDFs.

In CryptDB architecture, a proxy server intercepts com-
munications between the user and the CSP and applies
en/decryption of queries and results (Figure 6).

OPE: order comparison 

FIGURE 5. An example of onion encryption layers in CryptDB [12]

To create an encrypted database from a database, the proxy
server generates a master secret key and uses it to encrypt
each relation in the database [62]. The proxy server stores the
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FIGURE 6. CryptDB architecture [12]

master key and the scheme of the database and uses them for
query rewriting. When a query is issued, the proxy dynami-
cally peels off onion layers down to a layer corresponding to
the given computation. Onion layers are adjusted by sending
the related key and updating the columns. Then, the proxy
server anonymizes each table and column name and encrypts
each constant in the issued query with an encryption scheme
corresponding to the requested operation.

Query execution in CryptDB operates as follows.

– Step1. The AU sends a query Q to the proxy. The
proxy rewrites Q into Qs operating at the CSP.
To this end, the proxy encrypts all constants in Q
adopting the encryption scheme that best suits the
operation to be computed [26].

– Step2. The proxy checks if the CSP should be given
keys to remove some encryption layers. In this case,
the proxy issues an UPDATE query that removes
specific layers of encryption, and then sends Qs to
the CSP.

– Step3. The CSP computes Qs and returns the en-
crypted results to the proxy.

– Step4. The proxy decrypts the encrypted results and
sends the final results to the AU.

For instance, in order to evaluate a range query, each value of
an attribute is encrypted using an OPE scheme (first encryp-
tion layer). Then, the resulting OPE ciphertexts are encrypted
with a randomized encryption (RND) scheme (second en-
cryption layer). A randomized encryption scheme encrypts
the same values into different ciphertexts using the same
key and allows no computation whilst providing the highest
level of security, IND-CPA. When a range query is issued,
the proxy server sends the decryption key for the second
encryption layer to the CSP. The CSP then decrypts the
randomized ciphertexts and gets access to order-preserving
ciphertexts. Hence, the CSP learns the order of values and
evaluates the range query [63] and sends the encrypted values
to the proxy server.

CryptDB supports standard SQL queries over encrypted
data and needs no change to existing applications. Basi-

cally applications can transparently run on top of CryptDB.
However, CryptDB is targeted for transactional workloads.
It is not feasible to run analytical workloads over CryptDB
[64]. As a result, CryptDB supports only 2 queries out of 22
queries from the TPC-H benchmark.

Some computations are not supported, for instance, com-
puting both summation and comparison on encrypted values.
Thus, to execute the following query.
Q1 :

SELECT SUM(price) AS total
FROM orders

GROUP BY order_id
HAVING total >100

CryptDB cannot check if total >100 at the CSP, be-
cause total is encrypted with a PHE scheme, i.e., the
Paillier scheme, which does not support order comparison
[21].

Complex queries over multiple columns in a relation, for
instance, the following query
Q2 :

SELECT SUM(t1.B ∗ t2.A) FROM T as t1 WHERE
t1.A=t2.B.

cannot be evaluated because multiplication of two encrypted
values is not supported in CryptDB.

Moreover, onion layers become an overhead as well as
peeling off a layer, especially in the case of big tables.
CryptDB performs almost all queries at the CSP with a
relatively small overhead in terms of query throughput [12].
However, the throughput is worst for queries that use PHE,
such as summations because, in order to compute summa-
tions, CryptDB implements modular multiplications at the
CSP. Improving the performance of aggregations is important
because aggregation is common in data analytics.

Although onions offer multiple levels of security but reveal
different information about the data [22]. It is easy to see
that security decreases over time when the outer layers
are removed. Because adjustable encryption architecture in
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CryptDB is unidirectional, i.e., once a column is decrypted
to a weaker scheme like DET, it never returns to a higher
encryption level [65].

C. MONOMI
MONOMI extends CryptDB’s functionality to support ana-
lytical queries [21]. In contrast to CryptDB that focuses on
transactional workloads, MONOMI mainly targets analytical
workloads [64].
Instead of using the trusted proxy server, MONOMI splits
query processing between the CSP and the user. Using
user/server query splitting, MONOMI executes as much of
the query as is practical over encrypted data at the CSP
and executes remaining computations by the user, which
decrypts data and processes queries further [66]. To this end,
MONOMI introduces an optimized designer and a planner.
The designer chooses an appropriate database design based
on the target workload. Like CryptDB, MONOMI imple-
ments different cryptographic schemes, but unlike CryptDB,
there is no onion of encryption. To choose a set of encryption
schemes, MONOMI uses an optimizing designer similar to
physical designers used by other databases, which takes the
kind of computations that are likely to appear in future
queries, e.g., SUM for attribute Salary (Figure 7). In other
words, the designer can be considered similar to automated
index selection and materialized view selection tools.

MONOMI designer is invoked when a database is loaded
by the DO. The DO must also provide a query workload
Q1, Q2, . . . , Qn to represent the operations that the AU
will perform over data. Given the user’s inputs, MONOMI
designer provides a physical design consisting a set of en-
cryption schemes for each relation. For each query Qi i =
1, . . . , n, the designer determines a set of required encryption
schemes and invokes the planner to determine how to best
executeQi given the encryption schemes. MONOMI planner
determines different plans by determining for each plan what
parts ofQi would be executed by the AU and what parts at the
CSP. Then, a cost model is used by the planner to estimate the
cost of each plan (e.g., execution times). The planner chooses
the fastest plan for Qi and denotes the corresponding subset
of encryption schemes.

Once the best plan is determined for each query, the
designer takes the union of the required encryption schemes
and uses them for physical design. Hence, a plaintext value
is encrypted using different cryptographic schemes. Further,
the planner selects the query execution path for each query
given a particular physical design.

In order to execute queries that cannot be computed at the
CSP alone, MONOMI partitions query execution across the
CSP, which has access only to encrypted data, and the AU,
who has access to the decryption keys.
However, query splitting technique cannot be optimal in
all situations and depends on data. To choose an optimal
splitting, MONOMI models the cost of query execution for
each query plan as the sum of execution time at the CSP,

transfer time, and post-processing time at the AU’s side.
Then, the lowest-cost plan is chosen.

Query execution in MONOMI consists the following steps.

– Step1. The AU sends a query Q to MONOMI
planner. The planner computes different plans
PQ1 , P

Q
2 , . . . , P

Q
` , where PQi i = 1, . . . , ` con-

sists of three sub queries Qsi , Q
e
i , and Qci . The sub-

query Qsi is performed by the CSP over encrypted
data, Qei asks for retrieving some encrypted data
Rei = {e1, e2, . . . , en} from the CSP, and Qci
is performed by the AU over retrieved encrypted
values, Rei , after decryption.
For each plan PQi i = 1, . . . , `, the planner
computes a costCQi = t1+t2+t3 where t1, t2, and
t3 are execution times at the CSP, transferring time,
and post-processing time by the AU, respectively.
Then, a plan with the lowest-cost is selected by the
planner. We show the selected plan as PQselect. The
planner sends Qsselect and Qeselect to the CSP.

– Step2. The CSP computes Qsselect over encrypted
data and returns encrypted results, Rs, to the plan-
ner. The CSP also retrieves encrypted values, Re,
corresponding to Qeselect and sends them to the
planner, too.

– Step3. The planner sends the results Rs and Re to
the AU. The planner also sends Qcselect to the AU.

– Step4. The AU decrypts encrypted values inRe and
executes Qcselect over unencrypted values. The AU
also decrypts Rs to obtain the final results.

Like CryptDB, MONOMI implements PHE [36] for com-
puting aggregation queries SUM and AVG, which is compu-
tationally intensive and induces a large ciphertext size. How-
ever, large ciphertext size imposes storage cost and affects
query processing. Additionally, PHE requires modular multi-
plications, which is computationally expensive. To overcome
these drawbacks, MONOMI introduces some optimization
techniques. To avoid performing separate modular multipli-
cations, MONOMI concatenates several plaintext values into
a single larger plaintext that will be encrypted as a single
value. In this way, MONOMI reduces storage overhead and
simultaneously decreases the number of modular multiplica-
tions.

Query splitting enables executing more queries with op-
timal costs. However, it requires that queries are declared
ahead of time by the user, which is not possible for all
scenarios, especially for ad-hoc analytical workloads. More-
over, it is essential to cut down the bandwidth required to
transfer intermediate results and computation and storage
resources for the AU for query processing [21], because
resources usage at the AU must be minimum for maintaining
the benefits of outsourcing.

Optimization techniques used by MONOMI improve per-
formance, but also induce some limitations. Packing values
into a single value reduces storage overhead and also amor-
tizes computation overhead, but makes impossible partial
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FIGURE 7. MONOMI architecture [21]

operation or partial query processing. For example, when
packing multiple values in a column into a single plaintext,
a query that updates only a part of the column cannot be
executed.

D. SDB
SecureDB (SDB) is a secure query processing system, which
allows a wide range of complex queries to be computed
by the CSP [67]. SDB introduces a new encryption scheme
based on so called secret sharing. In secret sharing, each
plaintext value is split into several shares that are stored at
n users’ [68]. One single user has no means to reconstruct
the secret, but a subset of k ≤ n users can reconstruct the
secret [69].

Each plaintext value, mi, is split into two shares, one
kept at the DO, which is referred as item key, mk, and
another at the CSP, which is regarded as ciphertext, me. In
order to reduce data storage at the DO’s side, item keys is
considered to be the same for all values. In order to encrypt
the plaintext values in an attribute, first a random secret key,
k, is defined. Then, for each row of attribute a random row-
id, ri, is defined, too. Then, the row-ids are encrypted by the
secret key k, mk = Enc(k, ri) and mi is encrypted using
encrypted row-id, mk, which is me = Enc′(mk,m). The
values of row-ids are encrypted and stored along with the
ciphertexts at the CSP (Figure 8).

The proposed scheme simulates FHE, which leads to a

wide range of queries supported by the CSP. The proposed
encryption scheme supports data interoperability , i.e., the
output of an operator is used as the input of another operator.
SDB computes complex analytical queries over multiple
columns in a table using data interoperability. For instance,
computing "A + B > 1000k" is possible in SDB, but
the same computation is not supported by the other secure
systems like CryptDB.

SDB architecture is similar to CryptDB’s in which a proxy
server is set between the DO/AU and the CSP.

Query execution in SDB operates as follows.
– Step1. The AU sends a query,Q, to the proxy server.

The proxy rewritesQ into sub queriesQs operating
at the CSP and Qc which is computed at the proxy
server.

– Step2. The proxy server executes Qc and produces
new secret keys.

– Step3. The proxy server sends the new secret keys
and Qs to the CSP. Note that the new keys gen-
erated by the proxy are needed for computing the
sub-query Qs at the CSP.

– Step4. The CSP computes Qs and returns the en-
crypted results to the proxy.

– Step5. The proxy decrypts the encrypted results and
sends the final results to the AU.

SDB sends an UPDATE query to the CSP for some oper-
ations. For instance, consider two columns A and B, which
are encrypted with two different keys, ak and ab. To compute
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FIGURE 8. Encryption of attribute A in SDB [67]

C = A + B, the proxy server generates a new key ck using
ak and ab and sends ck to the CPS. The CSP executes the
UPDATE query to encrypt A and B with the new key, ck, and
gets new columns A′ and B′, and then adds the encrypted
values of A′ and B′.

SDB requires modular multiplication for decryption,
which induces heavy computational overhead at the proxy
server. Computations at the CSP also consist of modular
exponential, which is expensive and affects query processing.
While the proposed scheme supports a wide range of queries,
there are still some queries that are not supported, e.g.,
keyword search over encrypted strings.

Security guarantees in SDB is the highest, i.e., IND-
CPA security. Yet, IND-CPA reveals no information about
the underlying plaintexts, which makes impossible using
optimization techniques, e.g., B+tree indexing. As a result,
query processing needs scanning the whole database, leading
to poor performance. Like CryptDB and MONOMI, SDB
strongly relies on UDFs at the CSP for query processing,
which makes it unsuitable for cloud-based scenarios because
the DO has no permission to create UDFs, e.g., small enter-
prises deploy their secure web-based system using the rented
database [70].

E. TRUSTEDDB
TrustedDB is an outsourced database prototype that im-
plements tamper-proof trusted hardware for secure query
processing in the cloud [71]. A secure co-processor (SCPU)
such as the IBM 4764/5 [72] is deployed at the CSP’s side
to compute query processing over encrypted data. The SCPU
provides a secure computation environment. However, SC-
PUs are constrained in both computation ability and memory
capacity. Hence, data are classified as being either private
sensitive or insensitive public [73]. The former are encrypted

and operations are performed inside the SCPU, and the latter
are stored unencrypted at the CSP. All sensitive data are
encrypted by the DO before uploading to the CSP. The entire
database is stored outside the SCPU. Data are encrypted
using a symmetric encryption scheme such as AES. Some
randomness are also added to ensure IND-CPA security.
However, such randomized encryption schemes allow no
computation over encrypted data. Sensitive encrypted data
that need to be accessed by the SCPU for query processing
are pulled in by the SCPU.
An issued query is rewritten by the AU into two sub-queries,
which are executed by the CSP and the SCPU [15]. The
SCPU in TrustedDB consists of a Request Handler, a Query
Parser, and a Query Dispatcher to handle query rewriting
(Figure 10).

Query execution in TrustedDB operates as follows.
– Step1. The AU encrypts a query using the public

key used by the SCPU and sends the encrypted
query to the CSP.

– Step2. The CSP forwards the encrypted query to
the SCPU. The Request Handler (RH) receives the
encrypted query.

– Step3. The RH decrypts the query and sends the
unencrypted query to the Query Parser (QP).

– Step4. The QP rewrites the query into three sub-
queries, Qs, Qe, and QTC , and sends them to the
Query Dispatcher (QD).

– Step5. The QD sends Qs and Qe to the CSP.
– Step6. The CSP executes Qe and retrieves re-

quested encrypted data, Re, and sends them to the
QD. The CSP also executes Qs over unencrypted
data and sends the results back again to the QD.

– Step7. The QD decrypts data in Re and sends
decrypted values along with QTC to the DB engine
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FIGURE 9. TrustedDB architecture and query processing workload

residing inside the CSPU. After executingQTC , the
final results are re-encrypted by the QD and sent to
the RH. Finally, the RH sends the encrypted results
to the AU.

Note that the execution of private queries, i.e.,QTC , depends
on the output of public queries, i.e., Qs, and vice-e-versa.

Using the SCPU and a randomized encryption scheme,
TrustedDB simulates FHE, i.e., the security guarantees of
TrustedDB is IND-CPA. However, leaving some data unen-
crypted at the CSP may compromise the privacy of encrypted
sensitive data by linking between them. Moreover, sending
encrypted data to the SCPU incurs communication overhead,
which affects query processing and results in poor perfor-
mance. Sending the final results to the QD, which encrypts
the results imposes computation overhead.

F. CIPHERBASE
CipherBase is another solution based on tamper-proof trusted
hardware to preserve the confidentiality of sensitive data [20].
A FPGA (Field Programmable Gate Array) is set at the CSP
as a trusted component, TC, which computes some computa-
tions over sensitive data on behalf of the CSP. Computations
are decomposed between the trusted TC and the CSP. Like
TrustedDB, the sensitivity of data must be defined by the
DO on the scheme definition. Insensitive public data are
stored unencrypted at the CSP. Highly sensitive data, e.g.,
Patient.ID, are encrypted using a strong encryption scheme,
i.e., an IND-CPA secure scheme. Less sensitive data, e.g.,
Patient.Age are encrypted by a weaker encryption scheme,
e.g., a PPE scheme.

Highly sensitive data are shipped to the TC, which are
decrypted and processed. In fact, CipherBase simulates FHE

by integrating non-homomorphic encryption schemes (e.g.,
AES in CBC mode) with trusted hardwares to compute any
operation.
Query processing in CipherBase consists of several round trip
between the TC and the CSP. A query planner, which resides
at the AU’s, is responsible for query re-writing.

The query planner rewrites an issued query into three
sub-queries. Among them, two sub-queries are executed by
the CSP and the third sub-query is sent to the TC. Query
execution in CipherBase operates as follows.

– Step1. The query planner rewrites an issued query,
Q, into three sub-queries , Qs, Qe, and QTC and
sends them to the CSP.

– Step2. The CSP executes Qe and retrieves en-
crypted tuples, Re, and sends them along with
QTC to the TC. The CSP also computes Qs over
unencrypted data.

– Step3. The TC decrypts all tuples in Re and exe-
cutes QTC over decrypted data.

– Step4. The TC encrypts the results and ships them
back to the CSP.

– Step5. The CSP sends all results consisting en-
crypted and unencrypted results to the AU.

Security guarantees in CipherBase is specified by the
DO. The highest level of security achieves when all data
are highly sensitive. However, security comes at a cost of
poor performance. Specifying some data as less sensitive
and insensitive by the DO degrades security guarantees and
increases performance. In this case, CipherBase provides the
same level of security as CryptDB.
Query processing in CipherBase involves shipping encrypted
data from the CSP to the TC, decrypting, query processing,
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FIGURE 10. CipherBase architecture and query processing workload

and re-encrypting data in TC, and shipping results back to the
CSP. Moving encrypted data between the CSP and the TC
incurs communication overhead. Moreover, decryption and
re-encryption are also costly in terms of computation. Whilst
some optimization techniques are considered to minimize
round trips, but the overhead of decryption/re-encryption is
still a bottleneck.

G. COMPARISON OF EXISTING SOLUTIONS
In this section, we compare the existing solutions presented
in Section IV regarding to overhead, security, trusted com-
ponent, and query support features. Table 2 summarizes the
features of all solutions, which we discuss below.

1) Communication Overhead
Communication overhead is defined as the number of en-
crypted records sent as the result of an issued query. Consider
a query Q, the encrypted results that satisfy the query is
shown as |Q(e)|. Bucketization induces a communication
overhead of |Q(e)| + |Q(f)| where |Q(f)| indicates the
number of false-positives. Since MONOMI planner requests
retrieving some encrypted values, Rs, the communication
overhead of MONOMI is |Q(e)|+ |Q(Rs)|.

Like MONOMI, TrustedDB and CipherBase retrieve some
encrypted values, Rs, and send them to the TC. Hence, the
communication overhead of TrustedDB and CipherBase is

|Q(Rs)|, which is imposed at the CSP’s side when data are
moved to the TC.

2) Computation Overhead

Computation overhead at the user’s side is defined as the time
of decryption, te. Bucketization requires also auxiliary time,
tf , to eliminate false positives after decryption. MONOMI
induces an extra time, td, for decrypting encrypted values in
Rs and also tpost for query processing over decrypted values.
Hence, MONOMI has the largest computation overhead at
the user’s side.

At the CSP, computation overhead consists of the required
time for query processing over encrypted values, tquery.
CryptDB and SDB sends also an UPDATE query, which
induces tquery+tUPDATE computation overhead at the CSP.
MONOMI also requires tretrieve for retrieving encrypted
values. Nevertheless, the computation overhead of MONOMI
is less than CryptDB and SDB because the UPDATE query
consists of the re-encryption of encrypted values and con-
tains expensive modular operations such as modular multi-
plication. Computation overhead for TrustedDB consists of
tp for querying public unencrypted data, tretrieve for re-
trieving encrypted private values, tdec for decrypting private
encrypted data, and tTC for querying data after decryption
inside the SCPU. CipherBase needs also tquery for query-
ing less sensitive data at the CSP. However, comparing to
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TrustedDB, CipherBase incurs less computation overhead
because CipherBase needs less data decryption because some
computations are computed over less sensitive data without
decryption.

3) Security
Security guarantees depend directly on the cryptographic
schemes which are used in a solution. Bucketization uses
PHE, but cannot provide IND-CPA because the bucket’s
labels reveal some information about the encrypted values.
Bucketization introduces a trade-off between security and
efficiency; for example, when the labels are order-preserving,
query processing is more efficient, but at the cost of a lower
level of security. In fact, the security level of order-preserving
labeling is the same as that of PPE [92].

On the other hand, having a small number of buckets
increases security, but triggers more false positives in query
results, leading to poor performance and less efficiency. PHE
is implemented in CryptDB and MONOMI to provide IND-
CPA security; however, security is relaxed to improve the
efficiency of query processing [69]. CryptDB and MONOMI
implement PPE to support more queries, which discloses
IND-CPA security. IND-CPA is guaranteed when no query is
executed and the outermost layer of encryption, randomized
encryption, has been kept. Once the randomized layer is
removed, however, security is degraded to the level of PPE.

The proposed encryption scheme in SDB provides IND-
CPA security. However, IND-CPA is no longer guaranteed
when a query is executed. After an updating query, the values
of a column are transformed in such a way that the query
can be executed by the CSP. For instance, in order to execute
a GROUP BY for a column, after updating, the encryption
values are equal for the same plaintexts, and so equality leaks,
which degrades the level of security to the level of PPE .

Implementing randomized encryption schemes along with
the SCPU in TrustedDB guarantees IND-CPA, so TrustedDB
offers the same level of security as FHE , but greater effi-
ciency. At the same time, leaving less sensitive data unen-
crypted at the CSP raises concerns about linking attacks. In
linking attacks, the attacker tries to find some information
about sensitive data using public unencrypted data, which
may compromise data privacy [91]. More importantly, secu-
rity is guaranteed as long as the SCPU is not in danger [67].
Similarly, the TC in CipherBase simulates FHE by executing
computations inside the TC, and security is guaranteed as
long as the TC is not compromised [102]. Yet the level
of security required depends on the sensitivity of the data,
i.e. highly sensitive data should be encrypted with a strong
encryption scheme so that no information will be revealed.
Even though CipherBase provides a reasonable security level
for highly sensitive data, using PPE schemes for less sensitive
data degrades security guarantees.

The vulnerability of PPE to inference attacks is studied in
[1]. The authors describe an inference attack directly over en-
crypted data. Even if a non-deterministic encryption scheme
is used to encrypt data, such an attack can be executed

successfully. The results convincingly illustrate the trade-offs
between security, performance and functionality for query
processing in a TC.

4) Trusted Component (TC)
The TC is set at the user’s side (the AU and the DO’s side)
in Bucketization and MONOMI. CryptDB and SDB rely
on TC-PS as the TC. Considering the DO and the AU as
a TC eliminates the need of extra components. However,
the TC must be installed and maintained on each AU and
DO separately. Setting a proxy server adds a new point
of attack and induces computational and storage cost, but
eliminates the need of installing the TC for each DO and AU.
The TC is configured at the CSP (TC-TPH in Figure 1) in
TrustedDB and CipherBase. Whilst installing the TC at the
CSP minimizes computational burdens for the AU, it needs
an agreement with the CSP, which is not always feasible.
Moreover, using tamper-proof hardware is still expensive and
it is not affordable for small/medium businesses. More im-
portantly, installing the TC at the CSP protects data privacy
against attackers that compromise the CSP, but not insiders
and the CSP who has access to the TC.

5) Query Support
Equality checking, inequality, and aggregation queries are
supported in all systems. All those queries are executed
on only one column in a table, but SDB handles opera-
tions between separated columns, e.g., addition between two
columns A and B, A+B.

Regarding to standard benchmarks, SDB is the only
system that supports all TPC-H queries. Bucketization,
CryptDB, and MONOMI handle only 2, 4, and 19 out of 22
TPC-H queries, respectively. TrustedDB supports only 4 non-
nested queries from TPC-H because nested queries are not
supported by TrustedDB. CipherBase is designed for OLTP
workloads; hence query processing for TPC-H workloads is
not discussed.

V. LIMITATIONS AND OPEN ISSUES
A. PRIVACY VS. FUNCTIONALITY
Despite the highest level of security provided by FHE, cur-
rent FHE schemes are inefficient for practical data analytics
due to computation overhead [62]. Contrary, PHE schemes
are more efficient and closer to practical solutions. However,
PHE schemes provide less functionality due to supporting
limited operations only. PPE schemes allow operating over
encrypted data in the same way as they would operate
on plaintext. PPE are crucial for practical secure solutions
because of their functionality. However, such PPE schemes
provide lower security guarantees, e.g., IND-DCPA secu-
rity for DET encryption, leading to the leakage of a non-
trivial amount of information, which makes such schemes
vulnerable to some attacks (e.g., frequency analysis attacks).
Recent works [74], [62], [75], [1], [2] apply and develop
different attacks using the leakage of PPE schemes. For
instance, Naveed et al. demonstrate that a large fraction of
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the records from the DET encrypted columns in a database
can be decrypted when the adversary possesses statistical
information about the plaintexts [62]. Hence, secure systems
such as CryptDB and MONOMI sacrifice data privacy for
enhancing functionality, i.e., there is a trade-off between a
higher level of functionality and less data privacy.

B. PRIVACY VS. EFFICIENCY
Processing over encrypted data is computationally more ex-
pensive than original plaintext [76]. The first reason is data
expansion. For instance, a 32-bit plaintext is expanded to
256 bits of ciphertext using classic AES+CBC (Cipher-Block
Chaining) encryption [18] and 1,024 or more bits long using
PHE. Such enormous data expansion induces both storage
and computation overhead. The second reason is the nature
of operations. In particular, operations at the CSP should
not involve any expensive modular arithmetic operation like
modular multiplication or exponentiation [77]. Whilst FHE
and PHE offer the highest security guarantees, but necessitate
modular operation for query processing. Security guarantees
are relaxed in PPE to provide more efficiency.

Setting a trusted server like a trusted proxy server in
CryptDB induces extra cost, which does not fit cloud data
outsourcing. Moreover, since the trusted server has access to
the encryption keys and plaintext information, it becomes an
appealing target for attackers.

Splitting queries in [10], [21] to be executed partly at the
CSP and partly by the AU incurs computational overhead at
the end user. In data outsourcing the goal is fully outsourcing
computations because the resources for the AU are limited.
Moreover, transferring intermediate results to the user in-
duces communication overhead. Hence, it is essential to cut
down the bandwidth required to transfer intermediate results
to the AU and reduce computational overhead at the AU’s
side.

Tamper-proof hardware used in TrustedDB and Ci-
pherBase is significantly constrained in both computation
ability and memory capacity, hence setting such components
at the CSP faces major efficiency challenges. A trade-off
should be defined between more efficient untrusted main
CPU computation and less efficient trusted computations
inside the tamper-proof component [71]. Moreover, leaving
some data unencrypted at the CSP for the sake of memory
capacity limitation may disclose the privacy of encrypted
sensitive data.

C. ACCESS PATTERN PRIVACY
Data protection methods, discussed before, guarantee the
confidentiality and privacy of the data stored at the CSP.
Another security issue in outsourcing scenarios arises when
querying data whilst preserving the privacy of access pat-
terns. In fact, by observing enough query results the adver-
sary could infer about data and data privacy could be com-
promised by correlating prior information with frequently
queried data [77]. Private access patterns have recently raised
the attention of researchers [48]. New cryptographic schemes

are needed that allow the CSP to send items in response a
query without knowing which item is being sent. Private In-
formation Retrieval (PIR) [78], [79], [80], [81], theoretically
enables accessing data items while preventing the CSP to
learn anything about query access patterns [82]. The most of
current PIR solutions aim at very strong security bounds and
remain unsuitable for practical purposes [83]. Deployment of
existing PIR protocols would have been orders of magnitude
more time consuming than transferring the entire database to
the user [84].

Oblivious RAM (ORAM) [85] provides access pattern
privacy, too [84]. ORAM allows reading and writing to
memory without revealing access pattern to the CSP. ORAM
continuously shuffles and re-encrypts data as they are being
accessed, thereby completely hiding access pattern [86].

While the idea of relying on ORAM and PIR to enable
access pattern privacy is promising, but a key challenge is
the efficiency of such schemes.
Another solution could be sending frequently fake queries
without taking care with the results [87], [88]. The goal is
to mislead the adversary of making valid inference about
correlation between hot frequently queried data and other
data. Submitting such queries requires more investigation on
the way of generating that looks realistic.

D. DATA INTEGRITY
While a passive model is by far the most widely assumed
adversary model in the literature, in some scenarios the active
model should be considered. Thus, there is also the need
to address an active adversary model. In an active model,
the adversary has malicious intension and may change or
modify the data, results of queries or even in some cases
interrupt or cause denial of service. Such threats are aimed
at data integrity and availability. Protecting against such
an adversary needs more effort by the user to ensure the
correctness of data and query results. The results must be
demonstrably authentic to ensure that the data has not been
tampered with (integrity). The proof of completeness must
be carried by the results that allow the user to verify that the
CSP has not omitted any valid tuples that match the queries
predicate [89] (completeness). Such proof assures that the
query is executed with completeness over their entire target
data set [77]. For instance, when executing a JOIN query,
the user should be able to verify that the CSP returned all
matching values.

Authentication and integrity checking along encryption
become important in such scenarios. Typically, signature
or MAC (Message Authentication Code) is used to allow
the user to check the integrity of returned items [90], [23].
However, existing works introduce mechanisms for efficient
integrity and authentication checking only for simple queries
and they are limited to the queries of some specific kind.

E. HIGH DIMENSIONAL DATA
Cloud-based EHRs (Electronic Health Record systems) are
another case of cloud-based data analytics. In EHRs, a pa-
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tient’s sensitive data (e.g. data extracted from disease images)
is stored at the CSP. The patient’s data is always stored in
the form of high-dimensional vectors [97]. The objective of
cloud-based EHRs is to find approximate k Nearest Neigh-
bors (KNN) in a privacy-preserving manner, so approximate
kNN queries are executed over vectors without any leakage
of information about the underlying vectors [96]. Differential
Privacy techniques [99], [100] add a great amount of noise
to query results, leading to low accuracy and making query
results useless. However, encryption cannot be implemented
for EHRs due to the heavy computational overhead for
high-dimensional vectors [98]. Existing solutions focus on
low-dimensional datasets and are unable to handle high-
dimensional data [97].

VI. CONCLUSION
In this paper, we discuss data security issues which emerge
when organizations outsource both data and data analytics to
Cloud Service Providers. We review the security mechanisms
which can be used for the deployment of secure cloud-
based data analytics services. We focus particularly on cryp-
tographic schemes and practical systems which enable the
execution of queries over encrypted data without decryption.
We highlight the benefits and drawbacks of existing solutions
in a cloud computing context and suggest practical solutions.

Building practical secure systems is a challenging task
because there is a trade-off between privacy and functional-
ity/efficiency. Using FHE in practical solutions enables com-
puting arbitrary operations , i.e., combining high functional-
ity with the highest level of security, which is promising for
cloud-based data analytics. However, the level of efficiency
of FHE is still a major problem. PHE schemes on the other
hand are more efficient and therefore closer to being practical
solutions, but they support partial computations only and
cannot provide a completely practical solution with all the
desired functionality. In PPE schemes privacy is relaxed to
provide greater efficiency, and whilst they provide the same
functionality as computing over unencrypted data, their poor
level of security is a great challenge. Implementing tamper-
proof hardware for secure query processing simulates FHE
with greater efficiency, although this is affected by the limited
memory capacity of such trusted hardware.

Cryptography cannot simultaneously provide the highest
levels of security, efficiency and functionality. It is thus es-
sential to specify clearly the objectives of any deployment of
cloud-based data analytics and adopt cryptographic schemes
which are tailored to those objectives. In future work, we
plan to analyze the efficiency of various practical solutions
by carrying out different tests with various datasets.
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