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Abstract

We present the D-DEMOS suite of distributed, privacy-preserving, and end-to-end ver-
ifiable e-voting systems; one completely asynchronous and one with minimal timing
assumptions but better performance. Their distributed voting operation is human veri-
fiable; a voter can vote over the web, using an unsafe web client stack, without sacrific-
ing her privacy, and get recorded-as-cast assurance. Additionally, a voter can outsource
election auditing to third parties, still without sacrificing privacy. We provide a model
and security analysis of the systems, implement prototypes of the complete systems,
measure their performance experimentally, demonstrate their ability to handle large-
scale elections, and demonstrate the performance trade-offs between the two versions.

Keywords: E-voting systems, Internet voting, End-to-end verifiability, Distributed
systems, Byzantine Fault tolerance
2018 MSC: 00-01, 99-00

1. Introduction

Internet voting systems (e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) are a powerful tech-
nology to improve the election process and thus provide a fundamental service of e-
Government. They have the potential to enhance the democratic process by reducing
election costs and by increasing voter participation for social groups that face con-
siderable physical barriers and overseas voters. In addition, several internet voting
systems [2, 4, 6, 10] allow voters and auditors to directly verify the integrity of the en-
tire election process, providing end-to-end verifiability. This is a highly desired prop-
erty that has emerged in the last decade, where voters can be assured that no entities,
even the election authorities, have manipulated the election result. Despite their po-
tential, existing internet voting systems suffer from single points of failure, which may
result in the compromise of voter secrecy, service availability, or integrity of the re-
sult [7, 11, 12, 8, 13, 1, 2, 3, 4, 5, 6, 9, 10].

In this paper, we present the design and prototype implementation of the D-DEMOS
suite of distributed, end-to-end verifiable internet voting systems, with no single point
of failure during the election process (that is, besides setup). We set out to overcome
two major limitations in existing internet voting systems. The first, is their depen-
dency on centralized components, which is inherent in non-fault-tolerant systems. The
second is the requirement of distributed voting systems, for the voter to run special
software which processes cryptographic operations on their devices. Overcoming the
latter allows votes to be cast with a greater variety of client devices, such as feature
phones using SMS, or untrusted public web terminals. Our design is inspired by the
novel approach proposed in [10], where the voters are used as a source of random-
ness to challenge the zero-knowledge proof protocols [14]. We use the latter to enable
end-to-end verifiability.

We design a distributed Vote Collection (VC ) subsystem that is able to collect votes
from voters and assure them their vote was recorded as cast, without requiring any
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cryptographic operation from the client device. This allows voters to vote via SMS, a
simple console client over a telnet session, or a public web terminal, while preserving
their privacy. At election end time, VC nodes agree on a single set of votes. We
introduce two versions of D-DEMOS that differ in how they achieve agreement on the
set of cast votes. The D-DEMOS/Async version is completely asynchronous, while
D-DEMOS/IC makes minimal synchrony assumptions but is more efficient than the
alternative. Once agreement has been achieved, VC nodes upload the set of cast votes
to a second distributed component, the Bulletin Board (BB ). This is a replicated service
that publishes its data immediately and makes it available to the public forever. Finally,
our trustees subsystem, comprises a set of persons entrusted with secret keys which can
unlock information stored in the BB . We share these secret keys among the trustees ,
making sure only an honest majority can uncover information from the BB . Trustees
interact with the BB once the votes are uploaded to the latter, to produce and publish
the final election tally.

The resulting voting systems are end-to-end verifiable, by the voters themselves and
third-party auditors, while preserving voter privacy. To delegate auditing, a voter pro-
vides an auditor specific information from her ballot. The auditor, in turn, reads from
the distributed BB and verifies the complete election process, including the correctness
of the election setup by election authorities. Additionally, as the number of auditors
increases, the probability of election fraud going undetected diminishes exponentially.

Finally, we implement prototypes of both D-DEMOS voting system versions. We
measure their performance experimentally, under a variety of election settings, demon-
strating their ability to handle thousands of concurrent connections, and thus manage
large-scale elections. We also compare the two systems and emphasize the trade-offs
between them, regarding security and performance.

To summarize, we make the following contributions:

• We present a suite of state-of-the-art, end-to-end verifiable, distributed voting
systems with no single point of failure besides setup.

• Both systems allow voters to verify their vote was tallied-as-intended without
the assistance of special software or trusted devices, and allow external auditors
to verify the correctness of the election process. Additionally, both systems al-
low voters to delegate auditing to a third party auditor, without sacrificing their
privacy.

• We provide a model and a security analysis of D-DEMOS/IC.

• We implement prototypes of the systems, measure their performance and demon-
strate their ability to handle large-scale elections. Finally, we demonstrate the
performance trade-offs between the two versions of the system.

Note that, a preliminary version of one of our systems was used to conduct exit-polls
at three voting sites for two national-level elections and is being adopted for use by the
largest civil union of workers in Greece, consisting of over a half million members.

The remainder of this paper is organized as follows. Section 2 introduces required
background knowledge we reference throughout the paper, while Section 3 presents re-
lated work. Section 4 gives an overview of the system components, defines the system

3



and threat model, and describes each system component in detail. Section 5.2 goes over
some interesting attack vectors, which help to clarify our design choices. Section 6 de-
scribes our prototype implementations and their evaluation, and Section 7 concludes
the main body of the paper. Finally, Appendix A provides, for the interested reader, the
full proofs of liveness, safety, privacy and end-to-end verifiability of both our systems.

2. Background

In this section we provide basic background knowledge required to comprehend
the system description in the next section. This includes some voting systems termi-
nology, a quick overview of Interactive Consistency, and a series of cryptographic tools
we use to design our systems. These tools include additively homomorphic commit-
ment schemes and zero-knowledge proofs, which are used in the System Description
(Section 4), and are needed to understand the system design. Additionally, we pro-
vide details about collision resistant hash functions, IND-CPA symmetric encryption
schemes, and digital signatures, which we use as building blocks for our security proofs
in Appendix A.

2.1. Voting Systems requirements
An ideal electronic voting system would address a specific list of requirements

(see [15, 16, 17] for an extensive description). Our system addresses the following
requirements:

• End-to-end verifiability: the voters can verify that their votes were counted as
they intended and any party can verify that the election procedure was executed
correctly.

• Privacy: a party that does not monitor voters during the voting phase of the
election, cannot extract information about the voters’ ballots. In addition, a voter
cannot prove how she voted to any party that did not monitor her during the
voting phase of the election1.

• Fault tolerance: the voting system should be resilient to the faulty behavior of
up to a number of components or parts, and be both live and safe.

2.2. Interactive Consistency
Interactive consistency (IC), first introduced and studied by Pease et al. [18], is

the problem in which n nodes, where up to t may be byzantine, each with its own
private value, run an algorithm that allows all non-faulty nodes to infer the values of
each other. In our D-DEMOS/IC system, we use the IC,BC-RBB algorithm from [19],
which achieves IC using a single synchronous round. This algorithm uses two phases to
complete. The synchronous Value Dissemination Phase comes first, aiming to disperse
the values across nodes. Afterwards, an asynchronous Result Consensus Phase starts,
which results in each honest node holding a vector with every honest node’s slot filled
with the corresponding value.

1In [10], this property is referred as receipt-freeness.
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2.3. Cryptographic tools
In this text, we use � as the cryptographic security parameter and we write negl(�)

to denote that a function is negligible in �, i.e., it is asymptotically smaller than the
inverse of any polynomial in �.

2.3.1. Additively homomorphic commitments
To achieve integrity against a malicious election authority, D-DEMOS utilizes lifted

ElGamal [20] over elliptic curves as a non-interactive commitment scheme that achives
the following properties:

1. Perfectly binding: no adversary can open a commitment Com(m) of m to a value
other than m.

2. Hiding: there exists a constant c < 1 s.t. the probability that a commitment
Com(m) to m leaks information about m to an adversary running in O(2�

c

)
steps is no more than negl(�).

3. Additively homomorphic: 8m1,m2, we have that Com(m1)·Com(m2) = Com(m1+
m2) .

2.3.2. Zero-knowledge Proofs
D-DEMOS’s security requires the election authority to show the correctness of the

election setup to the public without compromising privacy. We enable this kind of ver-
ification with the use of zero-knowledge proofs. In a zero-knowledge proof, the prover
is trying to convince the verifier that a statement is true, without revealing any informa-
tion about the statement apart from the fact that it is true [21]. More specifically, we say
an interactive proof system has the honest-verifier zero-knowledge (HVZK) property if
there exists a probabilistic polynomial time simulator S that, for any given challenge,
can output an accepting proof transcript that is distributed indistinguishable to the real
transcript between an honest prover and an honest verifier. Here, we adopt Chaum-
Pedersen zero-knowledge proofs [22], which belong in the special class of ⌃ protocols
(i.e., 3-move public-coin special HVZK proofs), allowing the Election Authority to
show that the content inside each commitment is a valid option encoding.

2.3.3. Collision resistant hash functions
Given the security parameter � 2 N, we say that a hash function h : {0, 1}⇤ 7!

{0, 1}`(�), where `(�) is polynomial in �, is (t, ✏)-collision resistant if for every adver-
sary A running in time at most t, the probability of A finding two distinct preimages
m1 6= m2 such that h(m1) = h(m2) is less than ✏. By the birthday attack, for h
to be (t, ✏)-collision resistant, we necessitate that t2/2`(�) < ✏. In this work, we use
SHA-256 as the instantiation of a (t, t2 · 2�256)-collision resistant hash function.

2.3.4. IND-CPA symmetric encryption schemes
We say that a symmetric encryption scheme SE achieves (t, q, ✏)-indistinguishability

against chosen plaintext attacks (IND-CPA), if for every adversary A that (i) runs
in time at most t, (ii) makes at most q encryption queries that are pairs of messages
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(m0,1,m1,1), . . . , (m0,q,m1,q) and (iii) for every encryption query (m0,i,m1,i), it re-
ceives the encryption of mb,i, where b is the outcome of a coin-flip, it holds that:

AdvIND�CPA
SE (A) :=

��Pr[A outputs 1 | b = 1]� Pr[A outputs 1 | b = 0]
�� < ✏ ,

where by AdvIND�CPA
SE (A) we denote the advantage of A. D-DEMOS applies AES-

128-CBC$ encryption, for which a known upper bound is

AdvIND�CPA
128�AES�CBC$(A)  2 ·AdvPRF

AES�128(B) + q2 · 2�128,

where AdvPRF
AES�128(B) is the advantage of an algorithm B that runs in time at most

t+129 ·q and makes at most q queries to break the pseudorandomness of the AES-128
block cipher. A safe conjecture is that AdvPRF

AES�128(B)  (t + 129 · q + q2) · 2�128,
so in our proofs we assume that AES-128-CBC$ is (t, q, (2t+ 258 · q+ 3q2) · 2�128)-
IND-CPA secure. For further details, we refer the reader to [23, Chapters 3,4 & 5].

2.3.5. Digital Signature Schemes
A digital signature system is said to be secure if it is existentially unforgeable under

a chosen-message attack (EUF-CMA). Roughly speaking, this means that an adver-
sary running in polynomial time and adaptively querying signatures for (polynomially
many) messages has no more than negl(�) probability to forge a valid signature for a
new message. D-DEMOS/Async utilizes the standard RSA signature scheme, which is
EUF-CMA secure under the factoring assumption.

3. Related work

3.1. Voting systems
Several end-to-end verifiable e-voting systems have been introduced, e.g. the kiosk-

based systems [11, 12, 8, 13, 24] and the internet voting systems [2, 4, 6, 9, 10, 25].
In all these works, the Bulletin Board (BB ) is a single point of failure and has to be
trusted.

Dini presents a distributed e-voting system, which however is not end-to-end verifi-
able [26]. In [27], there is a distributed BB implementation, also handling vote collec-
tion, according to the design of the vVote end-to-end verifiable e-voting system [28],
which in turn is an adaptation of the Prêt à Voter e-voting system [11]. In [27], the
proper operation of the BB during ballot casting requires a trusted device for signa-
ture verification. In contrast, our vote collection subsystem is designed so that cor-
rect execution of ballot casting can be “human verifiable”, i.e., by simply checking
the validity of the obtained receipt. Additionally, our vote collection subsystem in
D-DEMOS/Async is fully asynchronous, always deciding with exactly n � f inputs,
while in [27], the system uses a synchronous approach based on the FloodSet algorithm
from [29] to agree on a single version of the state. In this work, we consider secure
ballot distribution as out of scope. However, this problem can be circumvented with
specialized hardware, such as in [9].

DEMOS [10] is an end-to-end verifiable e-voting system, which introduces the
novel idea of extracting the challenge of the zero-knowledge proof protocols from the
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voters’ random choices; we leverage this idea in our system too. However, DEMOS
uses a centralized Election Authority (EA), which maintains all secrets throughout the
entire election procedure, collects votes, produces the result and commits to verifica-
tion data in the BB . Hence, the EA is a single point of failure, and because it knows the
voters’ votes, it is also a critical privacy vulnerability. In this work, we address these
issues by introducing distributed components for vote collection and result tabulation,
and we do not assume any trusted component during election. Additionally, DEMOS
does not provide any recorded-as-cast feedback to the voter, whereas our system in-
cludes such a mechanism.

In [30], which is a preliminary version of this work, we present D-DEMOS/Async
only. In this work, we also present the design of a new system, called D-DEMOS/IC,
its implementation, evaluation and comparison to D-DEMOS/Async. We highlight the
performance gains from the new IC approach, and also demonstrate its limitations.
Thus, we present a suite of voting systems that provides implementers more options
regarding strict safety or higher performance. Additionally, in Section 5.2, we present
potential attacks and the ways our voting systems thwart them, to give the reader the
intuition behind our design choices. As part of this work, we have completed and
written full rigorous security proofs for both systems, which we include in Appendix
A. In the conference version of this paper, we provide only a proof sketch for one
system (D-DEMOS/Async).

3.2. State Machine Replication
Castro et al. [31] introduce a practical Byzantine Fault Tolerant replicated state

machine protocol. In the last several years, a number of protocols for Byzantine
Fault Tolerant state machine replication have been introduced to improve performance
([32, 33]), robustness ([34, 35]), or both ([36, 37]). Our system does not use the state
machine replication approach to handle vote collection, as it would be inevitably more
costly. Each of our vote collection nodes can validate a voter’s requests on its own. In
addition, we are able to process multiple different voters’ requests concurrently, with-
out enforcing the total ordering inherent in replicated state machines. Finally, we do
not wish voters to use special client-side software to access our system.

4. System description

4.1. Problem Definition and Goals
We consider an election with a single question and m options, for n voters, where

voting takes place between a certain begin and end time (the voting hours), and each
voter may select a single option.

Our major goals in designing our voting system are three. 1) It has to be end-to-
end verifiable, so that anyone can verify the complete election process. Additionally,
voters should be able to outsource auditing to third parties, without revealing their
voting choice. 2) It has to be fault-tolerant, so that an attack on system availability and
correctness is hard. 3) Voters should not have to trust the terminals they use to vote, as
such devices may be malicious, while still being assured their vote was recorded.
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4.2. System overview
We employ an election setup component in our system, which we call the Election

Authority (EA ), to alleviate the voter from employing any cryptographic operations.
The EA initializes all other system components, and then gets immediately destroyed
to preserve privacy. The Vote Collection (VC ) subsystem collects the votes from the
voters during election hours, and assures them their vote was recorded-as-cast. Our
Bulletin Board (BB ) subsystem, which is a public repository of all election-related in-
formation, is used to hold all ballots, votes, and the result, either in encrypted or plain
form, allowing any party to read from the BB and verify the complete election pro-
cess. The VC subsystem uploads all votes to the BB at election end time. Finally, our
design includes trustees , who are persons entrusted with managing all actions needed
until result tabulation and publication, including all actions supporting end-to-end ver-
ifiability. Trustees hold the keys to uncover any information hidden in the BB , and
we use threshold cryptography to make sure a malicious minority cannot uncover any
secrets or corrupt the process.

Our system starts with the EA generating initialization data for every component
of our system. The EA encodes each election option, and commits to it using a com-
mitment scheme, as described below. It encodes the i-th option as ~ei, a unit vector
where the i-th element is 1 and the remaining elements are 0. The commitment of an
option encoding is a vector of (lifted) ElGamal ciphertexts [38] over elliptic curve, that
element-wise encrypts a unit vector. Note that this commitment scheme is also addi-
tively homomorphic, i.e., the commitment of ea + eb can be computed by component-
wise multiplying the corresponding commitments of ea and eb. The EA then creates a
votecode and a receipt for each option. Subsequently, the EA prepares one ballot for
each voter, with two functionally equivalent parts. Each part contains a list of options,
along with their corresponding vote codes and receipts. We consider ballot distribution
to be outside the scope of this paper, but we do assume ballots, after being produced by
the EA , are distributed in a secure manner to each voter; thus only each voter knows
the vote codes listed in her ballot. We make sure vote codes are not stored in clear form
anywhere besides the voter’s ballot. We depict this interaction in Figure 1.

Our VC subsystem collects the votes from the voters during election hours, by
accepting up to one vote code from each voter (see Figure 2). The EA initializes each
VC node with the vote codes and the receipts of the voters’ ballots. However, it hides
the vote codes, using a simple commitment scheme based on symmetric encryption of
the plaintext along with a random salt value. This way, each VC node can verify if
a vote code is indeed part of a specific ballot, but cannot recover any vote code until
the voter actually chooses to disclose it. Additionally, we secret-share each receipt
across all VC nodes using an (N � f,N)-VSS (verifiable secret-sharing) scheme with
trusted dealer [39], making sure that a receipt can be recovered and posted back to the
voter only when a strong majority of VC nodes participates successfully in our voting
protocol.

The voter selects one part of her ballot at random, and posts her selected vote code
to one of the VC nodes. When she receives a receipt, she compares it with the one
on her ballot corresponding to the selected vote code. If it matches, she is assured her
vote was correctly recorded and will be included in the election tally. The other part of
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D-DEMOS components interaction during initialization phase

Election
Authority

Voter

Vote Collection
Subsystem

Bulletin Board
Subsystem

Trustee

Ballot

VC Initialization Data

BB Initialization Data

Trustee Initialization Data

EA gets destroyed

Figure 1: High-level diagram of component interactions during system initialization. Each subsystem is a
distributed system of its own, but is depicted as a unified entity in this diagram for brevity.

D-DEMOS components interaction during voting

Voter

Vote Collector
Node 1

Vote Collector
Node 2

Vote Collector
Node 3

Vote Collector
Node 4

Election hours begin

Cast vote

Voting protocol messages

Receipt

Election hours end

Figure 2: High-level diagram of component interactions during the voting phase. Message exchanges be-
tween VC nodes are simplified for this diagram. In this diagram, there are 4 VC nodes, tolerating up to 1
fault.
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D-DEMOS components interaction during Vote Set Consensus

Vote
Collector
Node 1

Vote
Collector
Node 2

Vote
Collector
Node 3

Vote
Collector
Node 4

Bulletin
Board
Node 1

Bulletin
Board
Node 2

Bulletin
Board
Node 3

Election hours end

Vote Set
Consensus
Protocol

Vote Set
Consensus
Protocol

Vote Set
Consensus
Protocol

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Vote Set Upload
(multicast)

Figure 3: High-level diagram of component interactions during the vote set consensus phase. 4 VC nodes
and 3 BB nodes are shown, where each subsystem tolerates 1 fault. “VSC” stands for “Vote Set Consensus”.
After agreeing on a single Vote Set S, each VC node uploads S to every BB node. Messages are simplified
for this diagram.

her ballot, the one not used for voting, will be used for auditing purposes. This design
is essential for verifiability, in the sense that the EA cannot predict which part a voter
may use, and the unused part will betray a malicious EA with 1

2 probability per audited
ballot.

Our second distributed subsystem is the BB , which is a replicated service of iso-
lated nodes. Each BB node is initialized from the EA with vote codes and associated
option encodings in committed form (again, for vote code secrecy), and each BB node
provides public access to its stored information. At election end time, VC nodes run
our Vote Set Consensus protocol, which guarantees all VC nodes agree on a single
set of voted vote codes. After agreement, each VC node uploads this set to every BB
node, which in turn publishes this set once it receives the same copy from enough VC
nodes (see Figure 3).

Our third distributed subsystem is a set of trustees , who are persons entrusted with
managing all actions needed after vote collection, until result tabulation and publica-
tion; this includes all actions supporting end-to-end verifiability. Secrets that may un-
cover information in the BB are shared across trustees , making sure malicious trustees
under a certain threshold cannot uncover and disclose sensitive information. We use
Pedersen’s Verifiable linear Secret Sharing (VSS) [40] to split the election data among
the trustees . In a (k, n)-VSS, at least k shares are required to reconstruct the original
data, and any collection of less than k shares leaks no information about the original
data. Moreover, Pedersen’s VSS is additively homomorphic, i.e., one can compute the
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D-DEMOS components interaction towards result publication

Trustee

Bulletin Board
Subsystem

Voter

Vote Set Consensus nished

Dowload Vote Set related data

Local calculation

Upload (partial or nal) result

Obtain result

Figure 4: High-level diagram of trustee interactions with the BB , towards result tabulation and publication.
Trustees are more than one, and interact with the BB in any order. The BB is a distributed system of its own,
but is depicted as a unified entity in this diagram for brevity.

share of a + b by adding the share of a and the share of b respectively. This approach
allows trustees to perform homomorphic “addition” on the option-encodings of cast
vote codes, and contribute back a share of the opening of the homomorphic “total”.
Once enough trustees upload their shares of the “total”, the election tally is uncovered
and published at each BB node (see Figure 4).

By the design of the VC, BB and trustee subsystems, and given that all fault toler-
ance thresholds are met, our system adheres to the following contract with the voters:
Any honest voter who receives a valid receipt from a VC node, is assured her vote will
be published on the BB, and thus it will be included in the election tally.

To ensure voter privacy, the system cannot reveal the content inside an option en-
coding commitment at any point. However, a malicious EA might put an arbitrary
value (say 9000 votes for option 1) inside such a commitment, causing an incorrect
tally result. To prevent this, we utilize the Chaum-Pedersen zero-knowledge proof [22],
allowing the EA to show that the content inside each commitment is a valid option en-
coding, without revealing its actual content. Namely, the prover uses Sigma OR proof
to show that each ElGamal ciphertext encrypts either 0 or 1, and the sum of all ele-
ments in a vector is 1. Our zero knowledge proof is organized as follows. First, the
EA posts the initial part of the proofs on the BB . Second, during the election, each
voter’s A/B part choice is viewed as a source of randomness, 0/1, and all the voters’
choices are collected and used as the challenge of our zero knowledge proof. Finally,
the trustees will jointly produce the final part of the proofs and post it on the BB be-
fore the opening of the tally. Hence, everyone can verify those proofs on the BB . We
omit the zero-knowledge proof components in this paper and refer the interested reader
to [22] for details.

Our design allows any voter to read information from the BB , combine it with her
private ballot, and verify her ballot was included in the tally. Additionally, any third-
party auditor can read the BB and verify the complete election process (see Figure 5).
As the number of auditors increases, the probability of election fraud going undetected
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D-DEMOS components interaction for auditing

Voter Auditor

Bulletin Board
Subsystem

Audit-related data

Read election transcript

Verify complete
election process

Figure 5: High-level diagram of the system auditing. Voters send Auditors audit-related data that does not
violate the voter’s privacy. Auditors in turn read from the BB and verify the complete election process. The
BB is a distributed system of its own, but is depicted as a unified entity in this diagram for brevity.

diminishes exponentially. For example, even if only 10 people audit, with each one
having 1

2 probability of detecting ballot fraud, the probability of ballot fraud going
undetected is only 1

2

10
= 0.00097. Thus, even if the EA is malicious and, e.g., tries

to point all vote codes to a specific option, this faulty setup will be detected because of
the end-to-end verifiability of the complete system.

In this paper, we present two different versions of our voting system, with differ-
ent performance and security trade-offs. In the first version, called D-DEMOS/IC,
Vote Set Consensus is realized by an algorithm achieving Interactive Consistency,
and thus requiring synchronization. The second version, D-DEMOS/Async, uses an
asynchronous binary consensus algorithm for Vote Set Consensus, and thus is com-
pletely asynchronous. The performance trade-offs between the two are analyzed in
Section 6.2.

4.3. System and Threat Model
We assume a fully connected network, where each node can reach any other node

with which it needs to communicate. The network can drop, delay, duplicate, or de-
liver messages out of order. However, we assume messages are eventually delivered,
provided the sender keeps retransmitting them. For all nodes, we make no assumptions
regarding processor speeds.

We assume the EA sets up the election and is destroyed upon completion of the
setup, as it does not directly interact with the remaining components of the system,
thus reducing the attack surface of the privacy of the voting system as a whole. We also
assume initialization data for every system component is relayed to it via untappable
channels. We assume the adversary does not have the computational power to violate
the security of any underlying cryptographic primitives. We place no bound on the
number of faulty nodes the adversary can coordinate, as long as the number of mali-
cious nodes of each subsystem is below its corresponding fault threshold. Let Nv , Nb,

12



and Nt be the number of VC nodes, BB nodes, and trustees respectively. The voters
are denoted by V`, ` = 1, . . . , n.

For both versions of our system, we assume the clocks of VC nodes are synchro-
nized with real world time; this is needed to prohibit voters from casting votes outside
election hours. For the safety of D-DEMOS/Async version, we make no further timing
assumptions. To ensure liveness, we assume the adversary cannot delay communica-
tion between honest nodes above a certain threshold.

For the D-DEMOS/IC version, we use the IC,BC-RBB algorithm achieving Interac-
tive Consistency (IC) from [19], which requires a single synchronization point after the
beginning of the algorithm. To accommodate this, we use the election-end time as the
starting point of IC, and additionally assume the adversary cannot cause clock drifts
between VC nodes also for safety, besides liveness. This is because lost messages in
the first round of IC,BC-RBB are considered failures of the sending node.

Formally, we assume there exists a global clock variable Clock 2 N, and that
every VC node, BB node and voter X is equipped with an internal clock variable
Clock[X] 2 N. We define the following two events on the clocks:

(i). The event Init(X) : Clock[X] Clock, that initializes a node X by synchroniz-
ing its internal clock with the global clock.

(ii). The event Inc(i) : i  i + 1, that causes some clock i to advance by one time
unit.

The adversarial setting for A upon D-DEMOS is defined in Figure 6.

The adversarial setting.

(1) The EA initializes every VC node, BB node, trustee of the D-DEMOS system by run-
ning Init(·) in all clocks for synchronization. Then, EA prepares the voters’ ballots and
all the VC nodes’, BB nodes’, and trustees’ initialization data. Finally, it forwards the
ballots for ballot distribution to the voters V`, ` = 1, . . . , n.

(2) A corrupts a fixed subset of VC nodes, a fixed subset of BB nodes, and a fixed subset
of trustees. In addition, it defines a fixed subset of corrupt voters Vcorr.

(3) When an honest node X wants to transmit a message M to an honest node Y , then it
just sends (X,M, Y ) to A.

(4) A may invoke the events Inc(Clock) or Inc(Clock[X]), for any node X . Moreover, A
may write on the incoming network tape of any honest component node of D-DEMOS.

(5) For every voter V`:

(a) If V` 2 Vcorr, then A fully controls V`.

(b) If V` /2 Vcorr, then A may initialize V` by running Init(V`) only once. If this
happens, then the only control of A over V` is Inc(Clock[V`]) invocations. Upon
initialization, V` engages in the voting protocol.

Figure 6: The adversarial setting for the adversary A acting upon the distributed bulletin board system.

The description in Figure 6 poses no restrictions on the control the adversary has
over all internal clocks, or the number of nodes that it may corrupt (arbitrary denial
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of service attacks or full corruption of D-DEMOS nodes are possible). Therefore, it
is necessary to strengthen the model so that we can perform a meaningful security
analysis and prove the properties (liveness, safety, end-to-end verifiability, and voter
privacy) that D-DEMOS achieves. Namely, we require the following:

A. FAULT TOLERANCE. We consider arbitrary (Byzantine) failures, because we ex-
pect our system to be deployed across separate administrative domains. For each
of the subsystems, we have the following fault tolerance thresholds:

• The number of faulty VC nodes, fv , is strictly less than 1/3 of Nv , i.e., for
fixed fv:

Nv � 3fv + 1.

• The number of faulty BB nodes, fb, is strictly less than 1/2 of Nb , i.e., for
fixed fb:

Nb � 2fb + 1.

• For the trustees’ subsystem, we apply ht out-of Nt threshold secret sharing,
where ht is the number of honest trustees, thus we tolerate ft = Nt � ht

malicious trustees.

B. BOUNDED SYNCHRONIZATION LOSS. For the liveness of D-DEMOS (both ver-
sions), all system participants are aware of a value Tend such that for each node X ,
if Clock[X] � Tend, then X considers that the election has ended. In addition, the
safety of D-DEMOS/IC version, assumes two timing points, a starting point (that
we set as Tend) and a barrier, denoted by Tbarrier, that determine the beginning of
the Value Dissemination phase and the transition to the Result Consensus phase of
the underlying Interactive Consistency protocol (see Section 2.2), respectively.

For the above reasons, we bound the drift on the nodes’ internal clocks, assuming
an upper bound � of the drift of all honest nodes’ internal clocks with respect
to the global clock. Formally, we have that A may invoke the events Inc(Clock) or
Inc(Clock[X]) for every node X , under the restriction that |Clock[X]�Clock|  �,
where | · | denotes the absolute value.

C. BOUNDED COMMUNICATION DELAY. For the liveness of D-DEMOS (both ver-
sions) and the safety of D-DEMOS/IC, we need to ensure eventual message de-
livery in bounded time. Therefore, we assume that there exists an upper bound �
on the time that A can delay the delivery of the messages between honest nodes.
Formally, when the honest node X sends (X,M, Y ) to A, if the value of the global
clock is T , then A must write M on the incoming network tape of Y by the time
that Clock = T + �. We note that � should be a reasonably small value for liveness,
while for safety of D-DEMOS/IC it suffices to be dominated by the predetermined
timeouts of the VC nodes.

For clarity, we recap the aforementioned requirements in Fig. 7.
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Requirement D-DEMOS/IC D-DEMOS/Async
Liveness Safety Liveness Safety

Fault tolerance of the
VC subsystem X X X X

Fault tolerance of the
BB subsystem X X

Fault tolerance of the
trustees’ subsystem X X

Bounded
synchronization loss X X X

Bounded
communication

delay
X X X

Figure 7: Requirements for the liveness and safety of D-DEMOS/IC and D-DEMOS/Async.

4.4. Election Authority
EA produces the initialization data for each election entity in the setup phase. To

enhance the system robustness, we let the EA generate all the public/private key pairs
for all the system components (except voters) without relying on external PKI support.
We use zero knowledge proofs to ensure the correctness of all the initialization data
produced by the EA .

4.4.1. Voter Ballots
The EA generates one ballot ballot` for each voter `, and assigns a unique 64-bit

serial-no` to it. As shown below, each ballot consists of two parts: Part A and Part B.
Each part contains a list of m hvote-code, option, receipti tuples, one tuple for each
election option. The EA generates the vote-code as a 128-bit random number, unique
within the ballot, and the receipt as 64-bit random number.

serial-no`
Part A

vote-code`,1 option`,1 receipt`,1

. . . . . . . . .
vote-code`,m option`,m receipt`,m

Part B
vote-code`,1 option`,1 receipt`,1

. . . . . . . . .
vote-code`,m option`,m receipt`,m

4.4.2. BB initialization data
The initialization data for all BB nodes is identical, and each BB node publishes

its initialization data immediately. The BB ’s data is used to show the correspondence
between the vote codes and their associated cryptographic payload. This payload com-
prises the committed option encodings, and their respective zero knowledge proofs of
valid encoding (first move of the prover), as described in section 4.2. However, the vote

15



codes must be kept secret during the election, to prevent the adversary from “steal-
ing” the voters’ ballots and using the stolen vote codes to vote. To achieve this, the
EA first randomly picks a 128-bit key, msk, and encrypts each vote-code using AES-
128-CBC with random initialization vector (AES-128-CBC$) encryption, denoted as
[vote-code]msk. Each BB node is given Hmsk  SHA256(msk, saltmsk) and saltmsk,
where saltmsk is a fresh 64-bit random salt. Hence, each BB node can be assured the
key it reconstructs from VC key-shares (see below) is indeed the key that was used to
encrypt these vote-codes.

The rest of the BB initialization data is as follows: for each serial-no`, and for each
ballot part, there is a shuffled list of

D
[vote-code`,⇡X

` (j)]msk, payload`,⇡X
` (j)

E
tuples,

where ⇡X
` 2 Sm is a random permutation (X is A or B).

(Hmsk, saltmsk)

serial-no`
Part A

[vote-code`,⇡A
` (1)]msk payload`,⇡A

` (1)

...
...

[vote-code`,⇡A
` (m)]msk payload`,⇡A

` (m)

Part B
[vote-code`,⇡B

` (1)]msk payload`,⇡B
` (1)

...
...

[vote-code`,⇡B
` (m)]msk payload`,⇡B

` (m)

We shuffle the list of tuples of each part to ensure voter’s privacy. This way, nobody
can guess the voter’s choice from the position of the cast vote-code in this list.

4.4.3. VC initialization data
The EA uses an (Nv�fv, Nv)-VSS (Verifiable Secret-Sharing) scheme to split msk

and every receipt`,j into Nv shares, denoted as (kmskk1, . . . , kmskkNv ) and (kreceipt`,jk1, . . . ,
kreceipt`,jkNv ) respectively. For each vote-code`,j in each ballot, the EA also com-
putes H`,j  SHA256(vote-code`,j , salt`,j), where salt`,j is a 64-bit random num-
ber. H`,j allows each VC node to validate a vote-code`,j individually (without network
communication), while still keeping the vote-code`,j secret. To preserve voter privacy,
these tuples are also shuffled using ⇡X

` . The initialization data for V Ci is structured as
below:
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kmskki
serial-no`

Part A
(H`,⇡A

` (1), salt`,⇡A
` (1)) kreceipt`,⇡A

` (1)ki
. . . . . .

(H`,⇡A
` (m), salt`,⇡A

` (m)) kreceipt`,⇡A
` (m)ki

Part B
(H`,⇡B

` (1), salt`,⇡B
` (1)) kreceipt`,⇡B

` (1)ki
. . . . . .

(H`,⇡B
` (m), salt`,⇡B

` (m)) kreceipt`,⇡B
` (m)ki

4.4.4. Trustee initialization data
The EA uses (ht, Nt)-VSS to split the opening of encoded option commitments

Com(~ei) into Nt shares, denoted as (k~eik1, . . . , k~eikNt). The initialization data for
Trusteei is structured as below:

serial-no`
Part A

Com(~e⇡A
` (i)) k~e⇡A

` (i)k`
· · · · · ·

Part B
Com(~e⇡B

` (i)) k~e⇡B
` (i)k`

· · · · · ·

Similarly, the state of zero knowledge proofs for ballot correctness is shared among
the trustees using (ht, Nt)-VSS. For further details, we refer the interested reader
to [22].

4.5. Vote Collectors
The Vote Collection subsystem comprises Nv nodes that collect the votes from the

voters and, at election end time, agree on a single set of cast vote codes and upload it
to the Bulletin Board. In the following subsections, we present two different versions
of the VC subsystem, one with a timing assumption (D-DEMOS/IC) and one fully
asynchronous (D-DEMOS/Async).

4.5.1. Vote Collectors for D-DEMOS/IC
VC is a distributed system of Nv nodes, running our voting and vote-set consensus

protocols. VC nodes have private and authenticated channels to each other, and a
public (unsecured) channel for voters. The algorithms implementing our D-DEMOS/IC
voting protocol are presented in Algorithm 1. For simplicity, we present our algorithms
operating for a single election.

The voting protocol starts when a voter submits a VOTEhserial-no, vote-codeimes-
sage to a VC node. We call this node the responder, as it is responsible for delivering
the receipt to the voter. The VC node confirms the current system time is within the
defined election hours, and locates the ballot with the specified serial-no. It verifies
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this ballot has not been used for this election, either with the same or a different vote
code. Then, it compares the vote-code against every hashed vote code in each bal-
lot line, until it locates the correct entry and obtains the corresponding receipt-share.
Next, it marks the ballot as pending for the specific vote-code. Finally, it multicasts
a VOTE Phserial-no, vote-code, receipt-sharei message to all VC nodes, disclosing its
share of the receipt. If the located ballot is marked as voted for the specific vote-code,
the VC node sends the stored receipt to the voter without any further interaction with
other VC nodes.

Each VC node that receives a VOTE Pmessage, first validates the received receipt-share
according to the verifiable secret sharing scheme used. Then, it performs the same vali-
dations as the responder, and multicasts another VOTE P message (only once), disclos-
ing its share of the receipt. When a node collects hv = Nv�fv valid shares, it uses the
verifiable secret sharing reconstruction algorithm to reconstruct the receipt (the secret)
and marks the ballot as voted for the specific vote-code. Additionally, the responder
node sends this receipt back to the voter. A message flow diagram of our voting proto-
col is depicted in Figure 8. As is evident from the diagram, the time from the multicast
of the first VOTE P message until collecting all receipt shares, is only slightly longer
than a single round-trip between two VC nodes.

Figure 8: Diagram of message exchanges for a single vote during the D-DEMOS/IC vote collection phase.

At election end time, each VC node stops processing VOTE and VOTE Pmessages,
and initiates the vote-set consensus protocol. It creates a set V Si of hserial-no, vote-codei
tuples, including all voted and pending ballots. Then, it participates in the Interactive
Consistency (IC) protocol of [19], with this set. At the end of IC, each node contains
a vector hV S1, . . . , V Sni with the Vote Set of each node, and follows the algorithm of
Figure 9. Step 1 makes sure any ballot with multiple submitted vote codes is discarded.
Since vote codes are private, and cannot be guessed by malicious vote collectors, the
only way for multiple vote codes to appear is if malicious voters are involved, against
whom our system is not obliged to respect our contract.
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Cross-tabulate hV S1, . . . , V Sni per ballot, creating a list of vote codes for each ballot.
Perform the following actions for each ballot:

1) If the list contains two or more distinct vote codes, mark the ballot as NotVoted and
exit.

2) If a vote code vca appears at least Nv�2fv times, mark the ballot as Voted for vca and
exit.

3) Otherwise, mark the ballot as NotVoted and exit.

Figure 9: High level description of algorithm after IC.

With a single vote code remaining, step 2 considers the threshold above which to
consider a ballot as voted for a specific vote code. We select the Nv � 2fv threshold
for which we are certain that even the following extreme scenario is handled. If the
responder is malicious, submits a receipt to an honest voter, but denies it during vote-
set consensus, the remaining Nv � 2fv honest VC nodes that revealed their receipt
shares for the generation of the receipt, are enough for the system to accept the vote
code (receipt generation requires Nv � fv nodes, of which fv may be malicious, thus
Nv � 2fv are necessarily honest).

Finally, step 3 makes sure vote codes that occur less than Nv � 2fv times are
discarded. Under this threshold, there is no way a receipt was ever generated.

At the end of this algorithm, each node submits the resulting set of voted hserial-no, vote-codei
tuples to each BB node, which concludes its operation for the specific election.

4.5.2. Vote Collectors for D-DEMOS/Async
We make the following enhancements to the Vote Collection subsystem, to achieve

the completely asynchronous version D-DEMOS/Async. During voting we introduce
another step, which guarantees only a single vote code can be accepted (towards pro-
ducing a receipt) for a given ballot, using a uniqueness certificate (see below). We also
employ an asynchronous binary consensus primitive to achieve Vote Set Consensus.

More specifically, during voting, the responder VC node validates the submitted
vote code, but before disclosing its receipt share, it multicasts an ENDORSEhserial-no, vote-codei
message to all VC nodes. Each VC node, after making sure it has not endorsed another
vote code for this ballot, responds with an ENDORSEMENThserial-no, vote-code, sigVCii
message, where sigVCi is a digital signature of the specific serial-no and vote-code, with
V Ci’s private key. The responder collects Nv � fv valid signatures, and places them
in a uniqueness certificate UCERT for this ballot. It then discloses its receipt share via
the VOTE P message, but also attaches the formed UCERT in the message.

Each VC node that receives a VOTE P message, first verifies the validity of UCERT
and discards the message on error. On success, it proceeds as per the D-DEMOS/IC
protocol (validating the receipt share it receives and then disclosing its own receipt
share).

The algorithms implementing our D-DEMOS/Async voting protocol are presented
in Algorithm 2.

The voting process is outlined in the diagram of Figure 10, where we now see two
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Algorithm 1 Vote Collector algorithms for D-DEMOS/IC
1: procedure ON VOTE(serial-no, vote-code) from source:
2: if SysT ime() between start and end
3: b :=locateBallot(serial-no)
4: if b.status == NotVoted
5: l := ballot.VerifyVoteCode(vote-code)
6: if l 6= null
7: b.status := Pending
8: b.used-vc := vote-code
9: b.lrs := {} . list of receipt shares

10: sendAll(VOTE Phserial-no, vote-code, l.sharei)
11: wait for (Nv � fv) VOTE P messages, fill b.lrs
12: b.receipt := Rec(b.lrs)
13: b.status := Voted
14: send(source, b.receipt)

15: else if b.status == Voted AND b.used-vc == vote-code
16: send (source, ballot.receipt)

17: procedure ON VOTE P(serial-no, vote-code, share) from source:
18: if SysT ime() between start and end
19: b :=locateBallot(serial-no)
20: if b.status == NotVoted
21: l := ballot.VerifyVoteCode(vote-code)
22: if l 6= null
23: b.status := Pending
24: b.used-vc := vote-code
25: b.lrs.Append(share)
26: sendAll(VOTE P(serial-no, vote-code, l.share) )
27: else if b.status == Voted AND b.used-vc == vote-code
28: b.lrs.Append(share)
29: if size(b.lrs) >= Nv � fv
30: b.receipt := Rec(b.lrs)
31: b.status := Voted

32: function BALLOT::VERIFYVOTECODE(vote-code)
33: for l = 1 to ballot lines do
34: if lines[l].hash == h(vote-code||lines[l].salt) return l

return null

20



round-trips are needed before the receipt is reconstructed and posted to the voter. The

Figure 10: Diagram of message exchanges for a single vote during the D-DEMOS/Async vote collection
phase.

formation of a valid UCERT gives our algorithms the following guarantees:

a) No matter how many responders and vote codes are active at the same time for the
same ballot, if a UCERT is formed for vote code vca, no other uniqueness certificate
for any vote code different than vca can be formed.

b) By verifying the UCERT before disclosing a VC node’s receipt share, we guarantee
the voter’s receipt cannot be reconstructed unless a valid UCERT is present.

At election end time, each VC node stops processing ENDORSE, ENDORSEMENT,
VOTE and VOTE P messages, and follows the vote-set consensus algorithm in Fig-
ure 11, for each registered ballot.

Steps 1-2 ensure used vote codes are dispersed across nodes. Recall our receipt
generation requires Nv � fv shares to be revealed by distinct VC nodes, of which at
least Nv � 2fv are honest. Note that any two Nv � fv subsets of Nv have at least one
honest node in common. Because of this, if a receipt was generated, at least one honest
node’s ANNOUNCE will be processed by every honest node, and all honest VC nodes
will obtain the corresponding vote code in these two steps. Consequently, all honest
nodes enter step 3 with an opinion of 1 and binary consensus is guaranteed to deliver
1 as the resulting value, thus safeguarding our contract against the voters. In any case,
step 3 guarantees all VC nodes arrive at the same conclusion, on whether this ballot is
voted or not.

In the algorithm outlined above, the result from binary consensus is translated from
0/1 to a status of “not-voted” or a unique valid vote code, in steps 4-5. The 5b case
of this translation, in particular, requires additional explanation. Assume, for example,
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1) Send ANNOUNCEhserial-no, vote-code,UCERTi to all nodes. The vote-code will be
null if the node knows of no vote code for this ballot.

2) Wait for Nv � fv such messages. If any such message contains a valid vote code vca,
accompanied by a valid UCERT, change the local state immediately, by setting vca as
the vote code used for this ballot.

3) Participate in a Binary Consensus protocol, with the subject “Is there a valid vote code
for this ballot?”. Enter with an opinion of 1, if a valid vote code is locally known, or a 0
otherwise.

4) If the result of Binary Consensus is 0, consider the ballot not voted.

5) Else, if the result of Binary Consensus is 1, consider the ballot voted. There are two
sub-cases here:

a) If vote code vca, accompanied by a valid UCERT is locally known, mark the ballot
voted for vca.

b) If, however, vca is not known, send a RECOVER-REQUESThserial-noimessage to all
VC nodes, wait for the first valid RECOVER-RESPONSEhserial-no, vca,UCERTi
response, and update the local state accordingly.

Figure 11: High level description of algorithm for asynchronous vote set consensus.

that a voter submitted a valid vote code vca, but a receipt was not generated before
election end time. In this case, an honest vote collector node V Ci may not be aware
of vca at step 3, as steps 1-2 do not make any guarantees in this case. Thus, V Ci may
rightfully enter consensus with a value of 0. However, when honest nodes’ opinions
are mixed, the consensus algorithm may produce any result. In case the result is 1,
V Ci will not possess the correct vote code vca, and thus will not be able to properly
translate the result. This is what our recovery sub-protocol is designed for. V Ci will
issue a RECOVER-REQUEST multicast, and we claim that another honest node, V Ch

exists that possesses vca and replies with it. The reason for the existence of an honest
V Ch is straightforward and stems from the properties of the binary consensus problem
definition. If all honest nodes enter binary consensus with the same opinion a, the
result of any consensus algorithm is guaranteed to be a. Since we have an honest node
V Ci, that entered consensus with a value of 0, but a result of 1 was produced, there has
to exist another honest node V Ch that entered consensus with an opinion of 1. Since
V Ch is honest, it must possess vca, along with the corresponding UCERT (as no other
vote code vcb can be active at the same time for this ballot). Again, because V Ch is
honest, it will follow the protocol and reply with a well formed RECOVER-REPLY.
Additionally, the existence of UCERT guarantees that any malicious replies can be
safely identified and discarded.

As per D-DEMOS/IC, at the end of this algorithm, each node submits the result-
ing set of voted hserial-no, vote-codei tuples to each BB node, which concludes its
operation for the specific election.
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Algorithm 2 Vote Collector algorithms for D-DEMOS/Async
1: procedure ON VOTE(serial-no, vote-code) from source:
2: if SysT ime() between start and end
3: b :=locateBallot(serial-no)
4: if b.status == NotVoted
5: l := ballot.VerifyVoteCode(vote-code)
6: if l 6= null
7: b.UCERT := {} . Uniqueness certificate
8: sendAll(ENDORSEhserial-no, vote-codei)
9: wait for (Nv � fv) valid replies, fill b.UCERT

10: b.status := Pending
11: b.used-vc := vote-code
12: b.lrs := {} . list of receipt shares
13: sendAll(VOTE Phserial-no, vote-code, l.sharei)
14: wait for (Nv � fv) VOTE P messages, fill b.lrs
15: b.receipt := Rec(b.lrs)
16: b.status := Voted
17: send(source, b.receipt)

18: else if b.status == Voted AND b.used-vc == vote-code
19: send (source, ballot.receipt)

20: procedure ON VOTE P(serial-no, vote-code, share,UCERT) from source:
21: if UCERT is not valid
22: return
23: if SysT ime() between start and end
24: b :=locateBallot(serial-no)
25: if b.status == NotVoted
26: l := ballot.VerifyVoteCode(vote-code)
27: if l 6= null
28: b.status := Pending
29: b.used-vc := vote-code
30: b.lrs.Append(share)
31: sendAll(VOTE P(serial-no, vote-code, l.share) )
32: else if b.status == Voted AND b.used-vc == vote-code
33: b.lrs.Append(share)
34: if size(b.lrs) >= Nv � fv
35: b.receipt := Rec(b.lrs)
36: b.status := Voted

37: function BALLOT::VERIFYVOTECODE(vote-code)
38: for l = 1 to ballot lines do
39: if lines[l].hash == h(vote-code||lines[l].salt) return l

return null
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4.6. Voter
We expect the voter, who has received a ballot from EA , to know the URLs of at

least fv + 1 VC nodes. To vote, she picks one part of the ballot at random, selects the
vote code representing her chosen option, and loops, selecting a VC node at random
and posting the vote code, until she receives a valid receipt. After the election, the voter
can verify two things from the updated BB . First, she can verify her cast vote code is
included in the tally set. Second, she can verify that the unused part of her ballot, as
“opened” at the BB , matches the copy she received before the election started. This
step verifies that the vote codes are associated with the expected options as printed in
the ballot. Finally, the voter can delegate both of these checks to an auditor, without
sacrificing her privacy. This is because the cast vote code does not reveal her choice,
and because the unused part of the ballot is completely unrelated to the used one.

4.7. Bulletin Board
A BB node functions as a public repository of election-specific information. It can

be read via a public and anonymous channel, while writes happen over an authenticated
channel, implemented with PKI originating from the voting system. BB nodes are
independent from each other, as a BB node never directly contacts another BB node.
Readers are expected to issue a read request to all BB nodes, and trust the reply that
comes from the majority. Writers are also expected to write to all BB nodes; their
submissions are always verified, and explained in more detail below.

After the setup phase, each BB node publishes its initialization data. During elec-
tion hours, BB nodes remain inert. After the voting phase, each BB node receives from
each VC node, the final vote-code set and the shares of msk. Once it receives fv + 1
identical final vote code sets, it accepts and publishes the final vote code set. Once it
receives Nv � fv valid key shares (again from VC nodes), it reconstructs msk, and
decrypts and publishes all the encrypted vote codes in its initialization data.

At this point, the cryptographic payloads corresponding to the cast vote codes are
made available to the trustees . Trustees , in turn, read from the BB subsystem, perform
their individual calculations and then write to the BB nodes; these writes are verified
by the trustees’ keys, generated by the EA . Once enough trustees have posted valid
data, the BB node combines them and publishes the final election result.

We intentionally designed our BB nodes to be as simple as possible for the reader,
refraining from using a Replicated State Machine, which would require readers to run
algorithm-specific software. The robustness of BB nodes comes from controlling all
write accesses to them. Writes from VC nodes are verified against their honest majority
threshold. Further writes are allowed only from trustees , verified by their keys.

Finally, a reader of our BB nodes should post her read request to all nodes, and
accept what the majority responds with (fb + 1 is enough). We acknowledge there
might be temporary state divergence (among BB nodes), from the time a writer updates
the first BB node, until the same writer updates the last BB node. However, given our
thresholds, this should be only momentary, alleviated with simple retries. Thus, if there
is no reply backed by a clear majority, the reader should retry until there is one.
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4.8. Trustees
After the end of election hours, each trustee fetches all the election data from the

BB subsystem and verifies its validity. For each ballot, there are two possible valid
outcomes: i) one of the A/B parts are voted, ii) none of the A/B parts are voted. If
both A/B parts of a ballot are marked as voted, then the ballot is considered as invalid
and is discarded. Similarly, trustees also discard those ballots where more than one
commitments in an A/B part are marked as voted.

In case (i), for each encoded option commitment in the unused part, Trustee` sub-
mits its corresponding share of the opening of the commitment to the BB . For each
encoded option commitment in the voted part, Trustee` computes and posts the share
of the final message of the corresponding zero knowledge proof, showing the validity
of those commitments. Meanwhile, those commitments marked as voted are collected
to a tally set Etally. In case (ii), for each encoded option commitment in both parts,
Trustee` submits its corresponding share of the opening of the commitment to the
BB . Finally, denote D(`)

tally as Trustee`’s set of shares of option encoding commitment
openings, corresponding to the commitments in Etally. Trustee` computes the opening
share for Esum as T` =

P
D2D(`)

tally
and then submits T` to each BB node.

4.9. Auditors
Auditors are participants of our system who can verify the election process. The

role of the auditor can be assumed by voters or any other party. After election end time,
auditors read information from the BB and verify the correct execution of the election,
by verifying the following:

1. within each opened ballot, no two vote codes are the same;

2. there are no two submitted vote codes associated with any single ballot part;

3. within each ballot, no more than one part has been used;

4. all the openings of the commitments are valid;

5. all the zero-knowledge proofs associated with the used ballot parts are completed
and valid.

In case they received audit information (an unused ballot part and a cast vote code)
from voters who wish to delegate verification, they can also verify:

6. the submitted vote codes are consistent with the ones received from the voters;

7. the openings of the unused ballot parts are consistent with the ones received from
the voters.
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5. Discussion

5.1. Potential attacks
In this section, we outline some of the possible attacks against the D-DEMOS sys-

tems, and the way our systems thwart them. This is a high level discussion, aiming to
help the reader understand why our systems work reliably. In Appendix A, we provide
the formal proofs of correctness and privacy, which are the foundation of this discus-
sion.

In this high-level description, we intentionally do not focus on Denial-of-Service
attacks, as these kind of attacks attempt to stop the system from producing a result, or
stop voters from casting their votes. Although these attacks are important ([41]), they
cannot be hidden, as voters will notice immediately the system not responding (either
because of our receipt mechanism and our liveness property, or because of lack of in-
formation in the BB ). Instead, we focus on attacks on the correctness of the election
result, as these have consequences typical voters cannot identify easily. In this discus-
sion, we assume the fault thresholds of section 4.3 are not violated, and the attacker
cannot violate the security of the underlying cryptographic primitives.

Additionally, D-DEMOS is immune to phishing attacks ([42, 43]), as the voter
does not disclose credentials that can be used to vote any option, but a vote code that
corresponds to a specific option.

In this section, we focus on correctness, noting that our systems’ privacy is achieved
by the security of our cryptographic schemes (see Sections 2.3 and Appendix A.4 for
details), and the partial initialization data that each node of the distributed subsystems
receives at the setup phase.

5.1.1. Malicious Election Authority Component
At a high level, the EA produces vote codes and corresponding receipts. Vote codes

are pointers to the associated cryptographic payload, which includes option encodings.
Options encodings are used to produce the tally using homomorphic addition. If the EA
miss-encodes any option, it will be identified by the Zero-Knowledge proof validation
performed by the Auditors.

The EA may instead try to “point” a vote code to a valid but different option en-
coding (than the one described in the voter’s ballot), in an attempt to manipulate the
result. In this case, the EA cannot predict which one of the two parts the voter will use.
Recall that the unused part of the ballot will be opened in the BB by the trustees , and
thus the voters can read and verify the correctness of their unused ballot parts.

As explained in detail in Appendix A.3, if none of the above attacks take place,
there is perfect consistency between each voter’s ballot and its corresponding infor-
mation on the BB . Because of this, as well as the correctness and the perfect hiding
property of our commitment scheme, the homomorphic tally will be opened to the
actual election result.

5.1.2. Malicious Voter
A malicious voter can try to submit multiple vote codes to the VC subsystem,

attempting to cause disagreement between its nodes. In this case, a receipt may be
generated, depending on the order of delivery of network messages. Note that, our
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safety contract allows our system to either accept only one vote code for this ballot,
or discard the ballot altogether, as the voter is malicious and our contract holds only
against honest voters.

In the D-DEMOS/IC case, this is resolved at the Vote Set Consensus phase. During
the voting phase, each VC node accepts only the first vote code it receives (via either a
VOTE or a VOTE P message), and attempts to follow our voting protocol. This results
in the generation of at most one receipt, for one of the posted vote codes. However,
during Vote Set Consensus, honest VC nodes will typically identify the multiple posted
vote codes and discard the ballot altogether, even if a receipt was indeed generated. If
the ballot is not discarded (e.g., because malicious vote collector nodes hid the extra
vote codes and honest nodes knew only of one), our Nv � 2fv threshold guarantees
that no vote codes with generated receipts are discarded.

In the D-DEMOS/Async case, this is resolved completely at the voting phase. Each
VC node still accepts only the first vote code it receives, but additionally attempts to
build a UCERT for it. As the generation of a UCERT is guaranteed to be successful
only for a single vote code, the outcome of the voting protocol will be either no UCERT

being built, resulting in considering the ballot as not-voted, or a single UCERT gener-
ated.

Thus, the two systems behave differently in the case of multiple posted vote codes,
as D-DEMOS/IC typically discards such ballots, while D-DEMOS/Async may process
some of them, when a UCERT is successfully built.

5.1.3. Malicious Vote Collector
A malicious VC node cannot easily guess the vote codes in the voters’ ballots,

as they are randomly generated. Additionally, because vote codes are encrypted in
the local state of each VC node, the latter cannot decode and use them. Note that, a
vote code in a voter’s ballot is considered private until the voter decides to use it and
transmits it over the network. From this point on, the vote code can be intercepted by
the attacker, as the only power it gives him is to cast it.

A malicious VC node can obtain vote codes from colluding malicious voters. In
this case, the only possible attack on correctness is exactly the same as if it originated
from the malicious voter herself, and we already described our counter-measures in
Section 5.1.2.

A malicious VC node may become a responder. In this case, this VC node may
selectively transmit the cast vote code to a subset of the remaining VC nodes, poten-
tially including all the other malicious and colluding nodes, and deliver the receipt to an
honest voter. Consequently, the attacker controlling the malicious entities, may try to
“confuse” the honest VC nodes and have them disagree on whether the ballot is voted
or not, by having all malicious VC nodes lie at vote set consensus time, reporting the
ballot as not voted.

Recall that, for the receipt to be generated, Nv�fv VC nodes need to cooperate, of
which up to fv may be malicious. This leaves Nv � 2fv honest nodes always present.

In the case of D-DEMOS/IC, these Nv � 2fv honest nodes will show up in the per
ballot cross-tabulation, and will drive the decision to mark the ballot as voted (note that,
in the algorithm of Figure 9, Nv � 2fv is the lower threshold for a ballot to be marked
as voted). In the case of D-DEMOS/Async, we include the ANNOUNCE-exchanging
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phase before the consensus algorithm, to guarantee at least one of the Nv � 2fv honest
nodes’ ANNOUNCE message will be processed by every honest node. In this case, all
honest nodes will agree on entering consensus that the ballot is voted, which guarantees
the outcome of consensus to be in accordance.

5.1.4. Malicious BB nodes and trustees
Malicious entities between both the BB nodes and the trustees cannot influence the

security of both systems. The reason is, a node of each of these two subsystems does
not communicate with the remaining nodes of the same subsystem, and thus cannot
influence either the correctness, or progress of the system as a whole.

5.2. System limitations
We believe the D-DEMOS suite of e-voting systems are an important step towards

achieving robust e-voting systems. Still, they have a few limitations which we list in
this section.

First, we chose not to address secure ballot distribution in this work. The EA ,
which is common to both versions of the D-DEMOS suite, outputs the ballots and we
assume they are distributed out-of-band, in a privacy-preserving manner to all voters.
This issue can be circumvented with specialized hardware, such as in [9], or by simply
printing the ballots and having the voters pick them at random. In any case, we leave
this issue as future work.

Second, in this work, we target 1-out-of-m elections, in which voters can choose
only one out of m options from their ballots. Our system could be extended to support a
k-out-of-m type of voting scheme, where voters can select more than one option, each
equally weighted during tallying. The homomorphic tally we employ, has the advan-
tages of lightweight computation and communication complexity, but cannot support
more complex voting schemes such as STV. To support more complex voting schemes,
we could construct a mix-net based variant of our system. However, this is out of scope
of this paper and we leave it as future work.

Additionally, we use 128-bit sized vote-codes, which would produce human read-
able codes of 22 characters given Base64 encoding. This is obviously a sizable charac-
ter string for humans to input and verify. However, the 128-bit size we chose is simply
a security parameter, as it affects the ability of the attacker to guess vote codes (see
Appendix A.2). Thus, smaller, or even larger sized vote-codes can be used depending
on the security requirements of the specific application. For details on the trade-off
between vote-code size and security, we refer the interested reader to section Appendix
A.2.3.

Finally, our systems share the same administration burdens as all fault-tolerant sys-
tems. Deployment requires carefully select the correct number of nodes for each sub-
system, ahead of time. This decision affects robustness, performance, and ease of
administration.
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6. Implementation and evaluation

6.1. Implementation
Voting system: We implement the Election Authority component of our system as a
standalone C++ application, and all other components in Java. Whenever we store
data structures on disk, or transmit them over the network, we use Google Protocol
Buffers [44] to encode and decode them efficiently. We use the MIRACL library [45]
for elliptic-curve cryptographic operations. In all applications requiring a database, we
use the PostgreSQL relational database system [46].

We build an asynchronous communications stack (ACS) on top of Java, using
Netty [47] and the asynchronous PostgreSQL driver from [48], using TLS based au-
thenticated channels for inter-node communication, and a public HTTP channel for
public access. This infrastructure uses connection-oriented sockets, but allows the ap-
plications running on the upper layers to operate in a message-oriented fashion. We use
this infrastructure to implement VC and BB nodes. We implement “verifiable secret
sharing with honest dealer”, by utilizing Shamir’s Secret Share library implementa-
tion [49], and having the EA sign each share.

For D-DEMOS/IC, we use the implementation of IC,BC-RBB (Interactive Consis-
tency algorithm, using asynchronous binary consensus and reliable broadcast without
signatures) from [19]. We use the election end time as a synchronization point to
start the algorithm, and configure the timeout of the first phase of the algorithm ac-
cording to the number of VC nodes and the number of ballots in the election. For
D-DEMOS/Async, we implement Bracha’s Binary Consensus directly on top of the
ACS, and we use that to implement our Vote Set Consensus algorithm (depicted in
Figure 11). We introduce a version of Binary Consensus that operates in batches of
arbitrary size; this way, we achieve greater network efficiency.

Additionally, we batch most of the asynchronous vote set consensus “announce”
phase’s messages. If this phase was implemented without optimization, it would result
in a message complexity of n ⇤ Nv (individual ANNOUNCE messages), imposing a
significant network load. This is because each node has to multicast an ANNOUNCE

message for each ballot, and wait for n(Nv � fv) replies to progress. To optimize it,
we have each node consult its local database and diagnose cases where another node
already knows the correct vote code and UCERT for a specific ballot. This is feasi-
ble because when a node V Cb discloses its share using the VOTE P message, it also
includes the UCERT, and this fact is recorded in the recipient’s node (V Ca) database
along with the sender node’s share. For these cases, we produce ANNOUNCE RANGE

messages addressed to individual nodes, having the source node V Ca announce a range
of ballot serial numbers as voted, a fact that is already known to the recipient node
V Cb (because V Ca located recorded VOTE P messages from V Cb). We use the same
mechanism to announce ranges of not-voted ballots.

Trustee Android application: In addition to the web interface for trustees , we also
implement a specialized Trustee Android application. We re-use the MIRACL library
on Android and provide a simple user interface for trustees , where they use a single
button press to perform each of their required tasks: download their initialization data
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from the EA , download election data from the BB , calculate their cryptographic con-
tribution to the result opening, and finally upload their share of the opening to the BB .

Web browser replicated service reader: Our choice to model the Bulletin Board
as a replicated service of non-cooperating nodes puts the burden of response verifica-
tion on the reader of the service; a human reader is expected to manually issue a read
request to all nodes, then compare the responses and pick the one posted by the major-
ity of nodes. To alleviate this burden, we implement a web browser extension which
automates this task, as an extension for Mozilla Firefox. The user sets up the list of
URLs for the replicated service. The add-on 1) intercepts any HTTP request towards
any of these URLs, 2) issues the same request to the rest of the nodes, and 3) captures
the responses, compares them in binary form, and routes the response coming from the
majority, as a response to the original request posted by the user. Majority is defined by
the number of defined URL prefixes; for 3 such URLs, the first 2 equal replies suffice.

With the above approach, the user never sees a wrong reply, as it is filtered out by
the extension. Also note this process will be repeated for all dependencies of the initial
web page (images, scripts, CSS), as long at they come from the same source (with the
same URL prefix), verifying the complete user visual experience in the browser.

Note that, this mechanism is required only when reading data from the Bulletin
Board, such as the election result, or audit information. This mechanism is neither
needed nor used during voting, where the voter interacts with the Vote Collection sub-
system using our voting protocol.

6.2. Evaluation
We experimentally evaluate the performance of our voting system, focusing mostly

on our vote collection algorithm, which is the most performance critical part. We
conduct our experiments using a cluster of 12 machines, connected over a Gigabit Eth-
ernet switch. The first 4 are equipped with Hexa-core Intel Xeon E5-2420 @ 1.90GHz,
16GB RAM, and one 1TB SATA disk, running CentOS 7 Linux, and we use them
to run our VC nodes. The remaining 8 comprise dual Intel(R) Xeon(TM) CPUs @
2.80GHz, with 4GB of main memory, and two 50GB disks, running CentOS 6 Linux,
and we use them as clients.

We implement a multi-threaded voting client to simulate concurrency. This client
starts the requested number of threads, each of which loads its corresponding ballots
from disk and waits for a signal to start. From then on, the thread enters a loop where it
picks one VC node and vote code at random, requests the voting page from the selected
VC (HTTP GET), submits its vote (HTTP POST), and waits for the reply (receipt).
This simulates multiple concurrent voters casting their votes in parallel, and gives an
understanding of the behavior of the system under the corresponding load. We employ
the PostgreSQL RDBMS [46] to store all VC initialization data from the EA .

We start off by demonstrating our system’s capability of handling large-scale elec-
tions. To this end, we generate election data for referendums, i.e., m = 2, and vary the
total number of ballots n from 50 million to 250 million. This causes the database size
to increase accordingly and impact queries. We fix the number of concurrent clients
to 400 and cast a total of 200,000 ballots, which are enough for our system to reach
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Figure 12: Vote collection throughput graphs for D-DEMOS/IC (12a) and D-DEMOS/Async(12b), versus
the number of total election ballots n.
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Figure 13: Vote collection throughput graphs for D-DEMOS/IC (13a) and D-DEMOS/Async(13b), versus
the number of election options m.

its steady-state operation (larger experiments result in the same throughput). Figure 12
shows the throughput of both D-DEMOS/IC and D-DEMOS/Async declines slowly,
even with a five-fold increase in the number of eligible voters. The cause of the decline
is the increase of the database size. Note that, an “operation” in this experiment is the
casting of a vote to a VC -node, including obtaining the generated receipt. This holds
for all subsequent experiments where we report throughput in operations per second.

In our second experiment, we explore the effect of m, i.e., the number of election
options, on system performance. We vary the number of options from m = 2 to
m = 10. Each election has a total of n = 200, 000 ballots which we spread evenly
across 400 concurrent clients. As illustrated in Figure 13, our vote collection protocol
manages to deliver approximately the same throughput regardless of the value of m,
for both D-DEMOS/IC and D-DEMOS/Async. Notice that the major extra overhead
m induces during vote collection, is the increase in the number of hash verifications
during vote code validation, as there are more vote codes per ballot. The increase in
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Figure 14: Vote Collection response time of D-DEMOS/IC (14a) and D-DEMOS/Async (14b), versus the
number of VC nodes, under a LAN setting. Election parameters are n = 200,000 and m = 4.

number of options has a minor impact on the database size as well (as each ballot has
2m options).

Next, we evaluate the scalability of our vote collection protocol by varying the num-
ber of vote collectors and concurrent clients. We eliminate the database, by caching the
election data in memory and servicing voters from the cache, to measure the net com-
munication and processing costs of our voting protocol. We vary the number of VC
nodes from 4 to 16, and distribute them across the 4 physical machines. Note that,
co-located nodes are unable to produce vote receipts via local messages only, since
the Nv � fv threshold cannot be satisfied, i.e., cross-machine communication is still
the dominant factor in receipt generation. For election data, we use the dataset with
n = 200, 000 ballots and m = 4 options, which is enough for our system to reach its
steady state.

In Figure 14, we plot the average response time of both our vote collection proto-
cols, versus the number of vote collectors, under different concurrency levels, ranging
from 500 to 2000 concurrent clients. Results for both systems illustrate an almost lin-
ear increase in the client-perceived latency, for all concurrency scenarios, up to 13 VC
nodes. From this point on, when four logical VC nodes are placed on a single physical
machine, we notice a non-linear increase in latency. We attribute this to the overload-
ing of the memory bus, a resource shared among all processors of the system, which
services all (in-memory) database operations. D-DEMOS/IC has a smaller response
time with its single round intra-VC node communication, while D-DEMOS/Async is
slightly slower due to the extra Uniqueness Certificate producing round.

Figure 15 shows the throughput of both our vote collection protocols, versus the
number of vote collectors, under different concurrency levels. We observe that, in
terms of overall system throughput, the penalty of tolerating extra failures (increasing
the number of vote collectors) manifests early on. We notice an almost 50% decline
in system throughput from 4 to 7 VC nodes for D-DEMOS/IC, and a bigger one for
D-DEMOS/Async. However, further increases in the number of vote collectors lead
to a much smoother, linear decrease. Overall, D-DEMOS/IC achieves better through-
put than D-DEMOS/Async, due to exchanging fewer messages and lacking signature
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Figure 15: Vote Collection throughput of D-DEMOS/IC (15a) and D-DEMOS/Async (15b), versus the num-
ber of VC nodes, under a LAN setting. Election parameters are n = 200,000 and m = 4.
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Figure 16: Vote Collection throughput of D-DEMOS/IC (16a) and D-DEMOS/Async (16b), versus the num-
ber of concurrent clients, under a LAN setting. Plots illustrate performance for different cardinalities of VC
nodes, thus different fault tolerance settings. Election parameters are n = 200,000 and m = 4.

operations.
In Figure 16, we plot a different view of both our systems’ throughput, this time

versus the concurrency level (ranging from 100 to 2000). Plots represent number of
VC node settings (4 to 16), thus different fault tolerance levels. Results show both our
systems have the nice property of delivering nearly constant throughput, regardless of
the incoming request load, for a given number of VC nodes.

We repeat the same experiment by emulating a WAN environment using netem [50],
a network emulator for Linux. We inject a uniform latency of 25ms (typical for US
coast-to-coast communication [51]) for each network packet exchanged between vote
collector nodes, and present our results in Figures 17, 18, and 19. A simple compari-
son between LAN and WAN plots illustrates our system manages to deliver the same
level of throughput and average response time, regardless of the increased intra-VC
communication latency.
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Figure 17: Vote Collection response time of D-DEMOS/IC (17a) and D-DEMOS/Async (17b), versus the
number of VC nodes, under a WAN setting. Election parameters are n = 200,000 and m = 4.
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Figure 18: Vote Collection throughput of D-DEMOS/IC (18a) and D-DEMOS/Async (18b), versus the num-
ber of VC nodes, under a WAN setting. Election parameters are n = 200,000 and m = 4.
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Figure 19: Vote Collection throughput of D-DEMOS/IC (19a) and D-DEMOS/Async (19b), versus the num-
ber of concurrent clients, under a WAN setting. Plots illustrate performance for different cardinalities of VC
nodes, thus different fault tolerance settings. Election parameters are n = 200,000 and m = 4.
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Figure 20: This figure illustrates the duration of all system phases. Results depicted are for 4 VCs, n =
200,000 and m = 4. All phases are disk based.

The benefits of the in memory approach, expressed both in terms of sub-second
client (voter) response time and increased system throughput, make it an attractive al-
ternative to the more standard database setup. For instance, in cases where high-end
server machines are available, it would be possible to service mid to large scale elec-
tions completely from memory. We estimate the size of the in-memory representation
of a n = 200K ballot election, with m = 4 options, at approximately 322MB (see [52]
for derivation details). In this size, we include 64-bit Java pointers overhead, as we
are using simple hash-maps of plain Java classes. This size can be decreased consider-
ably in a more elaborate implementation, where data is serialized by Google Protocol
Buffers, for example.

Finally, in Figure 20, we illustrate a breakdown of the duration of each phase of
the complete voting system (D-DEMOS/IC and D-DEMOS/Async), versus the total
number of ballots cast. We assume immediate phase succession, i.e., the vote collection
phase ends when all votes have been cast, at which point the vote set consensus phase
starts, and so on. The “Push to BB and encrypted tally” phase is the time it takes for
the vote collectors to push the final vote code set to the BB nodes, including all actions
necessary by the BB to calculate and publish the encrypted result. The “Publish result”
phase is the time it takes for trustees to calculate and push their share of the opening
of the final tally to the BB, and for the BB to publish the final tally. Note that, in most
voting procedures, the vote collection phase would in reality last several hours and even
days as stipulated by national law (see Estonia voting system). Thus, looking only at
the post-election phases of the system, we see that the time it takes to publish the final
tally on the BB is quite fast. Comparing the two versions of D-DEMOS, we observe D-
DEMOS/IC is faster during both Vote Collection and Vote Set Consensus phases. This
is expected, because of the extra communication round of D-DEMOS/Async during
voting, as well as the more complex consensus-per-ballot approach to achieving Vote
Set Consensus. However, D-DEMOS/Async is more robust than D-DEMOS/IC, as it
does not require any kind of synchronization between nodes.

Overall, although we introduced Byzantine Fault Tolerance across all phases of a
voting system (besides setup), we demonstrate it achieves high performance, enough
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to run real-life elections of large electorate bodies.

7. Conclusion and future work

We have presented a suite of state-of-the-art, end-to-end verifiable, distributed in-
ternet voting systems with no single point of failure besides setup. Both systems allow
voters to verify their vote was tallied-as-intended without the assistance of special soft-
ware or trusted devices, and external auditors to verify the correctness of the election
process. Additionally, the systems allows voters to delegate auditing to a third party au-
ditor, without sacrificing their privacy. We have provided a model and security analysis
of both voting systems. Finally, we have implemented prototypes of the integrated sys-
tems, measured their performance, and demonstrated their ability to handle large-scale
elections.

We have used our system to conduct exit polls at three large voting sites for two
national-level elections. We look forward to gaining more experience and feedback
about our systems by exploring their use in election and decision-making procedures
at all levels throughout the Greek university system, and studying their adoption for
use by the General Confederation of Greek Workers, the largest civil union of workers
in Greece. Finally, our systems currently support only 1-out-of-m elections, in which
voters choose one out of m options from their ballots. As future work, we will expand
our systems to support k-out-of-m elections.

We hope our work contributes towards improving the election process, while also
reducing the cost of performing elections in modern democracies,.
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[53] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and sim-
plified design of witness hiding protocols, in: CRYPTO ’94, Springer Berlin
Heidelberg, 1994, pp. 174–187.

[54] J.-M. Bohli, A. Pashalidis, Relations among privacy notions, ACM Transactions
on Information and System Security (TISSEC) 14 (2011) 4:1–4:24.

Appendix A. Security of D-Demos

In this section, we present at length the security properties that D-DEMOS achieves.
Specifically, we show that D-DEMOS/IC and D-DEMOS/Async achieve liveness and
safety, according to which every voter that submits her vote prior to a well-defined time
threshold, will obtain a valid receipt (liveness) and her vote will be included in the elec-
tion tally and published in the BB (safety contract). In addition, both versions achieve
end-to-end verifiability and voter privacy at the same level as [10]2, thus allowing a
top-tier integrity guarantee without compromising secrecy.

We use m, n to denote the number of options and voters respectively. We denote by
� the cryptographic security parameter and we write negl(�) to denote that a function
is negligible in �, i.e., it is asymptotically smaller than the inverse of any polynomial
in �.

The remaining sections reference heavily the Cryptographic Tools section (2.3),
which includes the notions and claims about the security of the cryptographic tools we
use in the two versions of D-DEMOS.

2In [10], the authors use the term voter privacy/receipt-freeness, but they actually refer to the same
property.
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Appendix A.1. Liveness
To prove the liveness that D-DEMOS guarantees, we assume (i) an upper bound

� on the delay of the delivery of messages and (ii) an upper bound � on the drift of
all clocks (see Assumptions B and C in Section 4.3). Furthermore, to express liveness
rigorously, we formalize the behavior of honest voters regarding maximum waiting
before vote resubmission as follows:

Definition 1 ([d]-PATIENCE). Let V be an honest voter that submits her vote at some
VC node when Clock[V ] = T . We say that V is [d]-patient, when the following condi-
tion holds: If V does not obtain a valid receipt by the time that Clock[V ] = T +d, then
she will blacklist this VC node and submit the same vote to another randomly selected
VC node.

Appendix A.1.1. Liveness of D-DEMOS/IC
Using Definition 1, we prove the liveness of D-DEMOS/IC in the following theorem.
A crucial step in the proof, is to compute an upper bound on the time required for an
honest responder V C node to issue a receipt to V . This bound will be derived by the
upper time bounds that correspond to each step of the voting protocol, as described in
Sections 4.5.1 and 4.6, taking also into account the � and � upper bounds.In Fig. A.21,
we provide upper bounds on the advance of the global clock and the internal clocks of
V and the VC nodes, so that we illustrate the description of the computation described
below.

Theorem 1 (Liveness of D-Demos/IC). Consider a D-DEMOS/IC run with n voters,
m options and Nv VC nodes. Let A be an adversary against D-DEMOS/IC under the
model described in Section 4.3 that corrupts up to fv < Nv/3 VC nodes. Assume there
is an upper bound � on clock synchronization loss and an upper bound � on the delay
of message delivery among honest VC nodes. Let Tcomp be the worst-case running
time of any procedure run by the VC nodes and the voters described in Sections 4.5.1
and 4.6 respectively, during the voting protocol.

Let Tend denote the election end time. Define

Twait := (Nv + 4)Tcomp + 8�+ 4� .

Then, the following conditions hold:

1. Every [Twait]-patient voter V that is engaged in the voting protocol by the time
that Clock[V ] = Tend � (fv + 1) · Twait, will obtain a valid receipt.

2. Every [Twait]-patient voter V that is engaged in the voting protocol by the time
that Clock[V ] = Tend � y · Twait, where y 2 [fv], will obtain a valid receipt with
more than 1� 3�y probability.

Proof. Let V be a [Twait]-patient voter initialized by the adversary A when Clock =
Clock[V ] = T . Upon initialization, V ’s internal clock is synchronized with the global
clock at time Clock = Clock[V ] = T . After at most Tcomp steps, V submits her vote
(serial-no, vote-code) at internal clock time: Clock[V ] = T + Tcomp, hence at global
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Step Time upper bounds at each clock
Clock Clock[V ] Clock[V C]

honest VC
nodes’ clocks

V is initialized T T T +� T +�
V submits her

vote to V C
T + Tcomp +� T + Tcomp T + Tcomp +2� T + Tcomp +2�

V C receives V ’s
ballot

T + Tcomp +
�+ �

T + Tcomp +
2�+ �

T + Tcomp +
2�+ �

T + Tcomp +
2�+ �

V C verifies the
validity of V ’s

ballot and
broadcasts its

share

T + 2Tcomp +
3�+ �

T + 2Tcomp +
4�+ �

T + 2Tcomp +
2�+ �

T + 2Tcomp +
4�+ �

All the other
honest VC nodes

receive V C’s
share

T + 2Tcomp +
3�+ 2�

T + 2Tcomp +
4�+ 2�

T + 2Tcomp +
4�+ 2�

T + 2Tcomp +
4�+ 2�

All the other
honest VC nodes
verify the validity
of V ’s share and
broadcast their

shares

T + 3Tcomp +
5�+ 2�

T + 3Tcomp +
6�+ 2�

T + 3Tcomp +
6�+ 2�

T + 3Tcomp +
4�+ 2�

V C receives all
the Nv � 1 other

honest VC
nodes’ shares

T + 3Tcomp +
5�+ 3�

T + 3Tcomp +
6�+ 3�

T + 3Tcomp +
6�+ 3�

T + 3Tcomp +
6�+ 3�

V C verifies the
validity of all the
Nv � 1 other

honest VC
nodes’ shares

T + (Nv +
2)Tcomp + 7�+

3�

T + (Nv +
2)Tcomp + 8�+

3�

T + (Nv +
2)Tcomp + 6�+

3�

T + (Nv +
2)Tcomp + 8�+

3�

V C reconstructs
and sends V ’s

receipt

T + (Nv +
3)Tcomp + 7�+

3�

T + (Nv +
3)Tcomp + 8�+

3�

T + (Nv +
3)Tcomp + 6�+

3�

T + (Nv +
3)Tcomp + 8�+

3�

V obtains her
receipt

T + (Nv +
3)Tcomp + 7�+

4�

T + (Nv +
3)Tcomp + 8�+

4�

T + (Nv +
3)Tcomp + 8�+

4�

T + (Nv +
3)Tcomp + 8�+

4�
V verifies the
validity of her

receipt

T + (Nv +
4)Tcomp + 7�+

4�

T + (Nv +
4)Tcomp + 8�+

4�

T + (Nv +
4)Tcomp + 8�+

4�

T + (Nv +
4)Tcomp + 8�+

4�

Figure A.21: Time upper bounds at Clock,Clock[V ], Clock[V C] and other honest VC nodes’ clocks at
each step of the interaction of the voter V with responder V C during D-DEMOS/IC voting phase. The
grayed cells indicate the reference point of the clock drifts at each step.
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clock time: Clock  T + Tcomp + �. At that time, the internal clock of V C will
be at most T + Tcomp + 2�. Thus, V C will receive the vote of V at internal time
Clock[V C]  T + Tcomp + 2�+ �. Then, V C performs at most Tcomp steps to verify
the validity of the vote before it broadcasts its receipt share.

All the other honest VC nodes will receive V C’s receipt share by global clock time:

Clock  (T + Tcomp + 2�+ �) + (Tcomp +�+ �) = T + 2Tcomp + 3�+ 2�,

which implies that the time at their internal clocks is at most T + 2Tcomp + 4� + 2�.
Then, they will verify V C’s share and broadcast their shares for V ’s vote after at most
Tcomp steps. The global clock at that point is no more than

Clock  (T + 2Tcomp + 4�+ 2�) + Tcomp +� = T + 3Tcomp + 5�+ 2�.

Therefore, V C will obtain the other honest VC nodes’ shares at most when

Clock[V C]  (T + 3Tcomp + 5�+ 2�) +�+ � = T + 3Tcomp + 6�+ 3�

and will process them in order to reconstruct the receipt for V . In order to collect
Nv � fv � 1 receipt shares that are sufficient for reconstruction, V C may have to
perform up to Nv � 1 receipt-share verifications, as the fv malicious VC nodes may
also send invalid messages. This verification requires at most (Nv � 1) · Tcomp steps.
Taking into account the Tcomp steps for the reconstruction process, we conclude that
V C will finish computation by global time

= (T + 3Tcomp + 6�+ 3�) + (Nv � 1)Tcomp + Tcomp +�

= T + (Nv + 3)Tcomp + 7�+ 3�.

Finally, V will obtain the receipt after at most � delay from the moment that V C
finishes computation, and she needs Tcomp steps to verify the validity of this receipt.
Taking into consideration the drift on V ’s internal clock, we have that if V is honest
and has not yet obtained a receipt by the time that

Clock[V ] =
�
T + (Nv + 3)Tcomp + 7�+ 3�

�
+ Tcomp +�+ � = T + Twait,

then, being [Twait]-patient, she can blacklist V C and resubmit her vote to another VC
node. We will show that the latter fact implies conditions (1) and (2) in the statement
of the theorem:

Condition (1): since there are at most fv malicious VC nodes, V will certainly
run into an honest VC node at her (fv + 1)-th attempt (if reached). Therefore, if V is
engaged in the voting protocol by the time that Clock[V ] = Tend� (fv+1) ·Twait, then
she will obtain a receipt.

Condition (2): if V has waited for more than y ·Twait time and has not yet received
a receipt, then it has run at least y failed attempts in a row. At the j-th attempt, V

has
fv � (j � 1)

Nv � (j � 1)
probability to randomly select one of the remaining fv � (j � 1)
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malicious VC nodes out of the Nv � (j � 1) non-blacklisted VC nodes. Thus, the
probability that V runs at least y failed attempts in a row is

yY

j=1

fv � (j � 1)

Nv � (j � 1)
=

yY

j=1

fv � (j � 1)

3fv + 1� (j � 1)
< 3�y.

Therefore, if V is engaged in the voting protocol by the time that Clock[V ] = Tend �
y · Twait, then the probability that she will obtain a receipt is more than 1� 3�y .

Appendix A.1.2. Liveness of D-DEMOS/Async
The proof of liveness in the asynchronous version of D-DEMOS differs from the

one of D-DEMOS/IC in the computation of the Twait upper bound, which now depends
on the steps of the VC nodes presented in Section 4.5.2. The upper bounds on the
advance of the the global clock and the internal clocks of V and the VC nodes is
analogously differentiated, as depicted in Fig. A.22.

Theorem 2 (Liveness of D-Demos/Async). Consider a D-DEMOS/Async run with n
voters, m options and Nv VC nodes. Let A be an adversary against D-DEMOS/Async
with m options and n voters under the model described in Section 4.3 that corrupts up
to fv < Nv/3 VC nodes. Assume there is an upper bound � on clock synchronization
loss and an upper bound � on the delay of message delivery among honest VC nodes.
Let Tcomp be the worst-case running time of any procedure run by the VC nodes and
the voters described in Sections 4.5.2 and 4.6 respectively, during the voting protocol.

Let Tend denote the election end time. Define

Twait := (2Nv + 5)Tcomp + 12�+ 6� .

Then, the following conditions hold:

1. Every [Twait]-patient voter that is engaged in the voting protocol by the time that
Clock[V ] = Tend � (fv + 1) · Twait, will obtain a valid receipt.

2. Every [Twait]-patient voter that is engaged in the voting protocol by the time that
Clock[V ] = Tend�y ·Twait, where y 2 [fv], will obtain a valid receipt with more
than 1� 3�y probability.

Proof. The Twait upper bound is computed according to the diagram in Figure 10.
Following the reasoning in the proof of Theorem 1, we get that

Twait := (2Nv + 5)Tcomp + 12�+ 6� .

Subsequently, we show that conditions (1) and (2) hold for any [Twait]-patient voter,
exactly as in the proof of Theorem 1.
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Step
Time upper bounds at each clock

Clock Clock[V ] Clock[V C]
honest VC

nodes’ clocks
V is initialized T T T +� T +�

V submits her vote to V C T + Tcomp +� T + Tcomp T + Tcomp + 2� T + Tcomp + 2�
V C receives V ’s ballot T +Tcomp+�+� T+Tcomp+2�+� T+Tcomp+2�+� T+Tcomp+2�+�

V C verifies the validity of V ’s
ballot and broadcasts an

ENDORSE message

T + 2Tcomp +
3�+ �

T + 2Tcomp +
4�+ �

T + 2Tcomp +
2�+ �

T + 2Tcomp +
4�+ �

All the other honest VC nodes
receive V C’s ENDORSE

message

T + 2Tcomp +
3�+ 2�

T + 2Tcomp +
4�+ 2�

T + 2Tcomp +
4�+ 2�

T + 2Tcomp +
4�+ 2�

All the other honest VC nodes
verify the validity of the
ENDORSE message and

respond with an
ENDORSEMENT message

T + 3Tcomp +
5�+ 2�

T + 3Tcomp +
6�+ 2�

T + 3Tcomp +
6�+ 2�

T + 3Tcomp +
4�+ �

V C receives the
ENDORSEMENT messages of
all the other honest VC nodes

T + 3Tcomp +
5�+ 3�

T + 3Tcomp +
6�+ 3�

T + 3Tcomp +
6�+ 3�

T + 3Tcomp +
6�+ 3�

V C verifies the validity of all
the Nv � 1 received messages
until it obtains Nv � fv valid
ENDORSEMENT messages

T + (Nv +
2)Tcomp+7�+3�

T + (Nv +
2)Tcomp+8�+3�

T + (Nv +
2)Tcomp+6�+3�

T + (Nv +
2)Tcomp+8�+3�

V C forms UCERT certificate
and broadcsts its share and

UCERT

T + (Nv +
3)Tcomp+7�+3�

T + (Nv +
3)Tcomp+8�+3�

T + (Nv +
3)Tcomp+6�+3�
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Figure A.22: Time upper bounds at Clock,Clock[V ], Clock[V C] and other honest VC nodes’ clocks at
each step of the interaction of the voter V with responder V C during D-DEMOS/Async voting phase. The
grayed cells indicate the reference point of the clock drifts at each step.
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Appendix A.2. Safety
D-DEMOS’s safety guarantee is expressed as a contract adhered by the VC sub-

system, stated in Section 4.2. This contract is fulfilled by both D-DEMOS versions,
though D-DEMOS/IC requires some additional assumptions to hold, as compared with
D-DEMOS/Async that assumes only fault tolerance of the underlying subsystems (see
Section 4.3). Moreover, the proofs of safety of the two versions diverge. Specifically,
the safety of D-DEMOS/IC relies on the security of the fixed SHA-256 hash function
and the AES-128-CBC$ symmetric encryption scheme. Therefore, the safety state-
ment is with respect to specific security parameters. On the contrary, the safety of
D-DEMOS/Async depends on the RSA signature scheme, therefore our analysis fol-
lows an asymptotic approach.

Appendix A.2.1. Safety of D-DEMOS/IC
As in liveness, we assume the upper bounds �,� on the delay of message delivery

and the drifts of all nodes’ clocks to implement Tend and Tbarrier as the starting point
and the barrier of the IC protocol. We consider 128-bit security of the commitment
scheme assuming that every adversary running in less than 264 steps has no more than
2�128 probability of obtaining any information about a single committed value (i.e.,
we set c = 6/7, where c is mentioned in Section 2.3.1).

Theorem 3 (Safety of D-Demos/IC). Consider a D-DEMOS/IC run with n voters, m
options, vote-codes of bit-length , Nv VC nodes, Nb BB nodes and Nt trustees, under
the restrictions that (i) m ·n  241 and (ii)  � 105. Let A be an adversary against D-
DEMOS under the model described in Section 4.3 that corrupts up to fv < Nv/3 VC
nodes, up to fb < Nb/2 BB nodes and up to Nt � ht out-of Nt trustees. Assume there
is an upper bound � on clock synchronization loss and an upper bound � on the delay
of message delivery. Let Tend be the end of the voting phase and Tbarrier be the end of
the value dissemination phase of the interactive consistency protocol, as described in
Section 4.3. Then, all honest voters who received a valid receipt from a VC node, are
assured that their vote will be published on the honest BB nodes and included in the
election tally, with probability at least

1� nfv
264 � fv

�
�
3(mn)3 + 225(mn)2 + 264mn

�
· 2�125 .

Proof. A crucial step for proving the safety of D-DEMOS/IC is to ensure it is hard for
the adversary to compute non-submitted valid vote codes from the ballots of honest
voters. This is done in the following claim.

CLAIM 3.1: The probability that A outputs a vote code from the ballot of some honest
voter V which was not cast by V is less than

�
3(mn)3+225(mn)2+264mn

�
·2�125 .

Proof of Claim 3.1: Let C be the set of all vote codes generated by the EA. An arbitrary
execution of A determines the following subsets of C: (i) the set of vote codes C1 that
all honest voters submitted at the election phase , (ii) the set of the vote codes C2

located in unused ballots of honest voters that did not engage in the voting protocol
and (iii) the set of vote codes C3 in the ballots of corrupted voters.
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Since every vote code is a random -bit string, the event that A guesses some of
the 2mn vote codes can happen with no more than 2mn(2�) = 2�(�1)mn prob-
ability. Furthermore, A is restricted by the fault tolerance thresholds of the VC, BB
and trustees subsystems. Hence, by (i) the random vote code generation, (ii) the fault
tolerance thresholds, (iii) the hiding property of the commitment scheme and (iv) the
perfect simulatability of the zero-knowledge proofs, we assume that except for some
probability bounded by 2�(�1)mn + 0 + 2�(�1)mn + 0 = 2�(�2)mn, the infor-
mation associated with the vote codes that A obtains is,

(i). The VC initialization data (for every VC node that A corrupts).

(ii). All the BB initialization data. The part of these data that is associated with the
vote codes is the list of all AES-128-CBC$ vote code encryptions under msk.

(iii). The set C1 [C2 [C3.

Reduction to IND-CPA security of AES-128-CBC$. Given the code of A, we construct
an algorithm B against the (t, q, (2t+258 · q+3q2) · 2�128)-IND-CPA security of the
underlying AES-128-CBC$ (see Section 2.3.4). Namely, B invokes A and attempts to
simulate a setup and run of D-DEMOS/IC as follows:

1. B chooses a random triple (j⇤, `⇤, X⇤) 2 [m]⇥ [n]⇥ {A,B}.

2. For every (j, `, X) 2 [m]⇥ [n]⇥{A,B}\{(j⇤, `⇤, X⇤)}, B executes the following
steps:

(a) B chooses a random 64-bit vote-codeX`,j and associates it with option
X
`,j .

(b) B makes an encryption query
�
mX

0,`,j ,m
X
1,`,j

�
=

�
vote-codeX`,j , vote-code`,j

�X

and receives an AES-128-CBC$ encryption of vote-codeX`,j .

(c) B chooses a random salt
X
`,j and computes HX

`,j  SHA256(vote-codeX`,j , salt
X
`,j).

(d) B generates the cryptographic payload payload`,⇡X
` (j) associated with option

X
`,j .

3. B chooses random values vote-code⇤0, vote-code⇤1 2 {0, 1}64, salt⇤ 2 {0, 1}64.

4. B makes the encryption query challenge vote-code⇤0, vote-code⇤1 and receives the
AES-128-CBC$ encryption y⇤ of vote-code⇤b , where b is the outcome of a coin-flip.

5. B tabulates BB initialization data as EA does, by using vote-code⇤0 as the vote code
associated with option`⇤,j⇤ , the hash SHA256(vote-code⇤0, salt

⇤) as HX⇤

`⇤,j⇤ and y⇤

as the AES-128-CBC$ ciphertext that corresponds to vote-code⇤0 .

6. B interacts with A according to the model described in Section 4.3.

7. If A outputs vote-code⇤0, then B outputs 0. Otherwise, B outputs 1.

Let G be the event that A outputs some vote-code 2 C \ (C1 [ C2 [ C3). By
the construction of B, if the IND-CPA challenge bit b is 0, then B simulates a D-
DEMOS/IC election perfectly. Furthermore, if b = 0 and vote-code corresponds to
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the randomly chosen position (j⇤, `⇤, X⇤) 2 [m] ⇥ [n] ⇥ {A,B}, then it outputs 0
(vote-code = vote-code⇤0). Since B randomly guesses the triple (`⇤, j⇤, X⇤), we have
that

Pr[B outputs 1 | b = 0] = 1� Pr[B outputs 0 | b = 0] = 1� Pr[G | b = 0]

2mn
.

(A.1)

On the other hand, if b = 1, then vote-code⇤0 is the preimage of SHA256(vote-code⇤0, salt
⇤),

while y⇤ is the encryption of an independently generated vote code. Based on this ob-
servation, we construct an algorithm C that acts as an attacker against the (t, t2 ·2�256)-
collision resistance of SHA-256 (see Section 2.3.3). Namely, on input some hash value
H , C executes the following steps:

1. C chooses a random triple (j⇤, `⇤, X⇤) 2 [m]⇥ [n]⇥ {A,B}.

2. For every (j, `, X) 2 [m]⇥ [n]⇥ {A,B}, C chooses random values vote-codeX`,j 2
{0, 1}160, saltX`,j 2 {0, 1}64.

3. C tabulates all election information normally except that for (`⇤, j⇤, X⇤) it provides
H instead of the hash value SHA256(vote-codeX

⇤

`,j , salt
X⇤

`,j ).

4. C interacts with A according to the model described in Section 4.3.

5. C receives the output of A, labeled by z.

6. C searches for a w 2 {0, 1}64 s.t. h(z, w) = H . If C finds such a w, then it outputs
z||w. Otherwise, it aborts.

For simplicity and w.l.o.g., we can assume that for each (j, `, X) 2 [m]⇥ [n]⇥{A,B},
the time complexity for information preparation is on the order of 2563 (cube of the
string length, set to 256 bits). The running time of A is 264. Assuming linear complex-
ity for hashing and checking a random value, the brute force search for the correct w in
step 6. takes 264 · 256 = 272 steps. Therefore, given that mn  241, we conclude the
C runs in steps bounded by 2mn ·2563+264+264 ·256  mn225+264+272 < 273 .

By the (t, t2 ·2�256)-collision resistance of h(·) (see Section 2.3.3), the probability
that C finds a preimage of H is less than 2146 · 2�256 < 2�110. By the construction of
C, if A outputs the vote code that corresponds to position (`⇤, j⇤, X⇤) 2 [n] ⇥ [m] ⇥
{A,B}, then C certainly wins. Therefore, we have that

Pr[B outputs 1 | b = 1] = 1� Pr[B outputs 0 | b = 1] = 1� Pr[G | b = 1]

2mn
� 2�(�2)mn �

� 1� Pr[C returns the preimage of SHA-256] > 1� 2�110 � 2�(�2)mn .
(A.2)

Hence, by Eq. (A.1),(A.2), we conclude that

AdvIND�CPA
128�AES�CBC$(B) >

Pr[G | b = 0]

2mn
� 2�110 � 2�(�2)mn . (A.3)
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Along the lines of the time complexity analysis of C, the time complexity of B is
bounded by 2mn · 2563 + 264 = 225mn+ 264 < 266, where we used that mn  241,
In addition, B makes at most 2 ·m ·n queries. Hence, by the (t, q, (2t+258 · q+3q2) ·
2�128)- IND-CPA security of AES-CBC$ (see Section 2.3.4) and (A.3), we conclude
that for every vote-code length  � 105,

Pr[G | b = 0]

2mn
� 2�110 � 2�(�2)mn < (226mn+ 265 + 516mn+ 12(mn)2) · 2�128 )

)Pr[G | b = 0]� 2�109mn� 2�(�3)(mn)2 <

< (227(mn)2 + 266mn+ 29(mn)2 + 24(mn)3) · 2�128 ,
,Pr[G | b = 0] <

<
�
(266 + 219) ·mn+ (227 + 29 + 2(131�)) · (mn)2 + 24 · (mn)3

�
· 2�128 )

)Pr[G | b = 0] <
�
267mn+ 228(mn)2 + 24(mn)3

�
· 2�128 ,

,Pr[G | b = 0] <
�
3(mn)3 + 225(mn)2 + 264mn

�
· 2�125 ,

(A.4)

which completes the proof of the claim, as the election simulation for b = 0 is perfect.
(End of Claim 3.1) a

Given Claim 3.1, the proof is completed in two stages.

1.Vote set consensus. By the upper bound restriction on all clock drifts, all honest
VC nodes will enter the Value Dissemination phase at Tend and the Result Consensus
phase of the Interactive Consistency protocol at Tbarrier within some distance � from
the global clock. The agreement property of interactive consistency ensures that all
honest VC nodes will contain the same vector hV S1, . . . , V Sni of all nodes’ sets of
voted and pending ballots. Subsequently, all honest VC nodes, execute the same de-
terministic algorithm of Figure 9, and will agree on the same set of votes denoted by
Votes. This will be the set of votes that are marked to be tallied by the honest VC nodes.

2. Protocol contract. Let V` be an honest voter that has obtained a receipt for his
vote hserial-no, vote-codei, but his vote is not included in Votes. By the vote consensus
property proved previously, we have that some honest VC node V C, decided to discard
V`’s vote. According to the algorithm described in Figure 9 that determines Votes, the
latter can happen only because either Case (i): A succeeds in guessing the valid receipt
of V`, or Case (ii): a vote-code-2 different than vote-code appears in the list for the
ballot indexed by serial-no or Case (iii): vote-code appears less than Nv � 2fv times
in the list for the ballot indexed by serial-no. We study all Cases (i),(ii),(iii):

Case (i). If A succeeds in guessing a valid receipt, then it can force the VC subsys-
tem to consider V ’s ballot not voted by not participating in the receipt reconstruction.
By the information theoretic security of the VSS scheme, given that A is restricted by
the fault tolerance thresholds, its guess of the receipt must be at random. Since there
are at most fv malicious VC nodes, the adversary has at most fv attempts to guess the
receipt. Moreover, the receipt is a randomly generated 64-bit string, so after i attempts,
A has to guess among (264 � i) possible choices. Taking a union bound for n voters,
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the probability that A succeeds for any of the obtained receipts is no more than

nX

`=1

✓ fv�1X

i=0

1

264 � i

◆
 nfv

264 � fv
.

Case (ii). V` is honest, hence it has submitted the same vote in every possible
attempt to vote prior to the one she obtained her receipt. Therefore, Case (ii) may
occur only if the adversary A manages to produce vote-code-2 by the vote code related
election information it has access to. Namely, (a) the set of vote codes that all honest
voters submitted at the election phase, (b) the set of the vote codes that were located
in unused ballots and (c) the set of vote codes in the ballots of corrupted voters. By
assumption, vote-code-2 is in neither of these three sets. Hence, by Claim 3.1, the
probability that A computes vote-code-2 is less than

�
3(mn)3+225(mn)2+264mn

�
·

2�125.

Case (iii). In order for V` to obtain a receipt, at least Nv � fv VC nodes must
collaborate by providing their shares. The faulty VC nodes are at most fv , so at least
Nv � 2fv honest VC nodes will include hserial-no, vote-codei in their set of voted and
pending ballots. Thus, Case (iii) cannot occur.

Consequently, all the honest VC nodes will forward the agreed set of votes (hence,
also V`’s vote) to the BB nodes. By the fault tolerance threshold for the BB subsys-
tem, the fb honest BB nodes will publish V`’s vote. Finally, the ht out-of Nt honest
trustees will read V ’s vote from the majority of BB nodes and include it in the election
tally. Therefore, the probability that A achieves in excluding the vote of at least one
honest voter that obtained a valid receipt from the BB or the election tally is less than

nfv
264 � fv

�
�
3(mn)3 + 225(mn)2 + 264mn

�
· 2�125, which completes the proof.

Appendix A.2.2. Safety of D-DEMOS/Async
The safety of D-DEMOS/Async is founded on the certificate generation mechanism

among the VC nodes, which in turn exploits the security of the underlying signature
scheme.

Theorem 4 (Safety of D-Demos/Async). Let A be an adversary against D-DEMOS
under the model described in Section 4.3 that corrupts up to fv < Nv/3 VC nodes,
up to fb < Nb/2 BB nodes and up to Nt � ht out-of Nt trustees. Then, all honest
voters who received a valid receipt from a VC node, are assured that their vote will be
published on the honest BB nodes and included in the election tally, with probability at
least

1� nfv
264 � fv

� negl(�) .

Proof. Let V` be an honest voter. Then, A’s strategy on attacking safety (i.e., provide
a valid receipt to V` but force the VC subsystem to discard V ’s ballot), is captured
by either one of the two following cases: Case (i): A produces the receipt without
being involved in a complete interaction with the VC subsystem (i.e., with at least
fv + 1 honest VC nodes). Case (ii): A provides a properly reconstructed receipt via a
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complete interaction with the VC subsystem (in both cases we assume A controls the
responder VC node).

Let E1 (resp. E2) be the event that Case 1 (resp. Case 2) happens. We study both
cases:

Case (i). In this case, A must produce a receipt that matches V ’s ballot with less
than Nv � fv shares. A may achieve this by either one of the following ways:

1. A attempts to guess the valid receipt; If A succeeds, then it can force the VC sub-
system to consider V ’s ballot not voted as no valid UCERT certificate will be gen-
erated for V ’s ballot (malicious responder does not send an ENDORSE message).
As shown in the proof of Theorem 3, the probability of a successful guess for A is
less than nfv

264�fv
.

2. A attempts to produce fake UCERT certificates by forging digital signatures of other
nodes. By the security of the digital signature scheme, this attack has negl(�) suc-
cess probability.

By the above, we have that Pr[A wins |E1] 
nfv

264 � fv
+ negl(�) .

Case (ii). In this case, by the security arguments stated in Section 4.5 (steps 1- 5),
every honest VC node will include the vote of V` in the set of voted tuples. This is
because a) it locally knows the valid (certified) vote code for V` which is accompa-
nied by UCERT or b) it has obtained the valid vote code via a RECOVER-REQUEST
message. Recall that unless there are fake certificates (which happens with negligible
probability) there can be only one valid vote code for V`.

Consequently, all the honest VC nodes will forward the agreed set of votes (hence,
also V`’s vote) to the BB nodes. By the fault tolerance threshold for the BB subsystem,
the fb honest BB nodes will publish V ’s vote. Finally, the ht out-of Nt honest trustees
will read V`’s vote from the majority of BB nodes and include it in the election tally.
Thus, we have that Pr[A wins |E2] = negl(�) .

Therefore, all the votes of honest voters that obtained a valid receipt, will be pub-
lished on the honest BB nodes and included in the election tally, with probability at
least

1�Pr[A wins ] � 1�Pr[A wins |E1]�Pr[A wins |E2] � 1� nfv
264 � fv

� negl(�) .

Appendix A.2.3. Usability vs security trade-off.
Theorem 3 statement and proof shed light on the limitations of D-DEMOS regard-

ing the usability vs. security trade off. In particular, the specifications of the underlying
cryptographic tools (SHA-256 and AES-CBC$), as formally expressed in Eq. (A.4),
dictate the use of vote-codes with at least 105 bit-length. The latter implies that vot-
ers are provided with vote-codes of 14 characters in alphanumeric form, encoded in
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Base64, a size that lies between the length of a credit card number and a Microsoft
product key. Besides, the restriction that mn  241 is expected to be met in most
election scenarios (e.g., up to 103 options and 109 voters), hence D-DEMOS is fully
scalable from a safety perspective.

In an alternative D-DEMOS specification where ciphers of bigger block length are
applied (e.g. an 192 block-length cipher from the Rijndael family), the right hand of
the inequality in Eq. (A.4) that refers to the symmetric encryption security error be-
comes very small. As a consequence, the term 2�(�3)(mn)2 denoting the probability
the adversary guesses a valid vote-code of length  dominates over the cryptographic
error in the total upper bound of the adversary’s success probability. The parameters
m,n, can be fixed so that 2�(�3)(mn)2 is sufficiently low even for smaller vote-
code lengths, thus increasing D-DEMOS’s usability, especially in mid-scale election
scenarios. Indicatively, if we require that 2�(�3)(mn)2 < 2�10

2mn (thus, by the union
bound, the adversary has less than 0.1% probability to guess even a singe vote-code),
and by fixing mn = 220 (e.g., 10 options and 106 voters), we get that  � 75. In
Base64 encoding, this means that vote-codes of 10 characters are required; note that
many Internet sites recommend password lengths in the 8-12 character range.

Appendix A.3. End-to-end Verifiability
We adopt the end-to-end (E2E) verifiability definition in [10], modified accordingly

to our setting. Namely, we encode the options set {option1, . . . , optionm}, where the
encoding of optioni is an m-bit string which is 1 only in the i-th position. Let F be
the election evaluation function such that F (optioni1 . . . , optionin) is equal to an m-
vector whose i-th location is equal to the number of times optioni was voted. Then,
we use the metric d1 derived by the L1-norm scaled to half, i.e., d1(R,R0) = 1

2 ·Pn
i=1 |Ri � R0

i|, where Ri, R0
i is the i-th coordinate of R,R0 respectively, to measure

the success probability of the adversary with respect to the amount of tally deviation
d and the number of voters that perform audit ✓. In addition, we make use of a vote
extractor algorithm E (not necessarily running in polynomial-time) that extracts the
non-honestly cast votes.

We define E2E verifiability via an attack game between a challenger and an adver-
sary specified in detail in Figure A.23.

Definition 2 (E2E VERIFIABILITY). Let 0 < ✏ < 1 and n,m,Nv, Nb, Nt 2 N
polynomial in the security parameter � with ✓  n. Let ⇧ be an e-voting system with n
voters, Nv VC nodes, Nb BB nodes and Nt trustees. We say that ⇧ achieves end-to-end
verifiability with error ✏, w.r.t. the election function F , a number of ✓ honest successful
voters and tally deviation d if there exists a (not necessarily polynomial-time) vote
extractor E such that for any PPT adversary A it holds that

Pr[GA,E,d,✓
e2e-ver (1�,m, n,Nv, Nb, Nt) = 1]  ✏.

To prove E2E verifiability of D-DEMOS, we need a min-entropy variant of the
Schwartz-Zippel lemma, to check the equality of two univariate polynomials p1, p2,
i.e., test p1(x) � p2(x) = 0 for random x

D Zq , where q is prime. The probability
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E2E Verifiability Game GA,E,d,✓
e2e-ver (1�,m, n,Nv, Nb, Nt)

(i). A on input 1�, n,m,Nv, Nb, Nt, chooses a list of options {option1, . . . , optionm},
a set of voters V = {V1, . . . , Vn}, a set of VC nodes VC = {VC1, . . . ,VCNv}, a set
of BB nodes BB = {BB1, . . . ,BBNb}, and a set of trustees T = {T1, . . . , TNt}. It
provides the challenger Ch with all the above sets. Throughout the game, A controls
the EA, all the VC nodes and all the trustees. In addition, A may corrupt a fixed set
of less than bNb/2c BB nodes, denoted by BBsucc (i.e., the majority of the BB nodes
remain honest). On the other hand, Ch plays the role of all the honest BB nodes.

(ii). A and C engage in an interaction where A schedules the vote casting executions of
all voters. For each voter V`, A can either completely control the voter or allow C to
operate on V`’s behalf, in which case A provides C with an option selection optioni` .
Then, C casts a vote for optioni` , and, provided the voting execution terminates suc-
cessfully, C obtains the audit information audit` on behalf of V`.

(iii). Finally, A posts a version of the election transcript infoj in every honest BB node
BBj /2 BBcorr.

Let Vsucc be the set of honest voters (i.e., those controlled by C) that terminated successfully.
The game returns a bit which is 1 if and only if the following conditions hold true:

(1) 8BBj ,BBj0 /2 BBcorr : infoj = infoj0 := info

(2) |Vsucc| � ✓ (i.e., at least ✓ honest voters terminated).

(3) 8` 2 [n] : if V` 2 Vsucc then V` verifies successfully, when given (info, audit`) as
input.

and either one of the following two conditions:

(4) (a) if ? 6= hoptioni`iV` /2Vsucc  E(info, {audit`}V`2Vsucc) then

d1

�
Result(info), F (optioni1 . . . , optionin)

�
� d .

(b) ?  E(info, {audit`}V`2Vsucc).

Figure A.23: The E2E Verifiability Game between the challenger C and the adversary A using the vote
extractor E.

that the test passes is at most max(d1,d2)
2 if p1 6= p2, where di is the degree of pi for

i 2 {1, 2}. We leverage Lemma 1 from [10].

Lemma 1 (MIN-ENTROPY SCHWARTZ-ZIPPEL [10]). Let q be a prime and p(x)
be a non-zero univariate polynomial of degree d over Zq . Let D be a probability
distribution on Zq such that H1(D) � . The probability of p(x) = 0 for a randomly
chosen x

D Zq is at most d
2 .

We now analyse the soundness of the zero knowledge proof for each option encod-
ing commitment. Note that a correct option encoding is an m-vector, where one of
the m elements is 1 and the rest elements are 0 (a.k.a. unit vector). Our zero knowl-
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edge proof utilizes the Chaum-Pedersen DDH-tuple proofs [22] in conjunction with
the Sigma OR-composition technique [53] to show each (lifted) ElGamal ciphertext
encrypts either 0 or 1 and the product of all the m ElGamal ciphertexts encrypts 1. We
adopt the soundness amplification technique from [10]; namely, if the voters’ coins c
are longer than blog qc then we divide it into  blocks, (c1, c2, . . . , c) such that each
block has less than blog qc coins, where q is the order of the underlying group used in
the ElGamal encryption. Given a statement x, for each ci, i 2 [], the prover needs to
produce the zero knowledge transcript (x,�1,i, ci,�2,i) in order. The verifier accepts
the proof if and only if for all i 2 [], Verify(x,�1,i, ci,�2,i) = accept. Hence, we
have the following Lemma 2.

Lemma 2. Denote c = (c1, c2, . . . , c). If H1(c) = ✓, we have for all adversaries A:

"(m,n, ✓,) = Pr

2

664

(x, {�1,i}i2[]) A(1�);
{�2,i}i2[]  A(c1, c2, . . . , c) :
x is not a valid option encoding commitment
^8i 2 [],Verify(x,�1,i, ci,�2,i) = accept

3

775  2�✓ .

Proof. For i 2 , denote H1(ci) = ✓i, and
P

i=1 ✓i = ✓. Chaum-Pedersen DDH-
tuple proof [22] internally constructs and checks a degree-1 polynomial; therefore ac-
cording to Lemma 1, the probability that the adversary A to cheat a single DDH-tuple
zero knowledge proof is at most 2�✓0

, where ✓0 is the min-entropy of the challenge.
Moreover, Sigma OR-composition technique [53] perfectly maintains the soundness,
so the probability that the adversary A to cheat the zero knowledge proofs for each
(lifted) ElGamal ciphertext encrypts 0/1 is at most 2�✓0

. Note that the zero knowledge
proofs of the option encoding commitment is AND-composition of all the elementary
zero knowledge proofs, the probability that x is invalid and Verify(x,�1,i, ci,�2,i) =
accept is at most 2�✓i . Hence, the probability that 8i 2 [], Verify(x,�1,i, ci,�2,i) =
accept is "(m,n, ✓,) =

Q
i=1 2

�✓i = 2�
P

i=1 ✓i = 2�✓.

Applying Lemma 2, we prove that D-DEMOS (both the IC and the Async version)
achieves E2E verifiability according to Definition 2.

Proof. Without loss of generality, we can assume that every party can read consistently
the data published in the majority of the BB nodes, as otherwise the adversary fails to
satisfy condition 1 of the E2E verifiability game.

We first construct a vote extractor E for D-DEMOS as follows:

• E takes input as the election transcript, info and a set of audit information
{audit`}V`2Vsucc

. If info is not meaningful, then E outputs ?.

• Let B  |Ṽ| be the number of different serial numbers that appear in {audit`}V`2Ṽ.
E (arbitrarily) arranges the voters in V` 2 Vsucc and the serial numbers not included
in {audit`}V`2Vsucc

as hV E
` i`2[n�|Vsucc|] and htagE` i`2[n�B] respectively.
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• For every ` 2 [n�|Vsucc|], E extracts optioni` by brute force opening and decrypting
(in superpolynomial time) all the committed and encrypted BB data, or sets optioni`
as the zero vector, in case V`’s vote is not published in the BB.

• If there is an invalid option-commitment (i.e., it is not a commitment to some candi-
date encoding) ,then E outputs ?. Otherwise, it outputs hoptioni`iV` /2Vsucc .

We will prove the E2E verifiability of D-DEMOS based on E. Assume an adversary
A that wins the game GA,E,d,✓

e2e-ver (1�,m, n,Nv, Nb, Nt). Namely, A breaks E2E verifi-
ability by allowing at least ✓ honest successful voters and achieving tally deviation d.

Let Z be the event that A attacks by making at least one of the option-encoding
commitments associated with some cast vote code invalid (i.e., it is in tally set Etally

but it is not a commitment to some candidate encoding). By condition 2, there are
at least ✓ honest and successful voters, hence the min-entropy of the collected voters’
coins is at least ✓. By Lemma 2, the zero-knowledge proofs used in D-DEMOS for
committed ballot correctness in the BB is sound except for some probability error 2�✓.
Since ✓ � 1 and condition 3 holds, there is at least one honest voter that verifies, thus
we have that Pr[GA,E,d,✓

e2e-ver (1�,m, n,Nv, Nb, Nt) = 1 ^ Z]  2�✓ .

Now assume that Z does not occur. In this case, the vote extractor E will output
the intended adversarial votes up to permutation. Thus, the deviation from the intended
result that A achieves, derives only by miscounting the honest votes. This may be
achieved by A in two different possible ways:

• Modification attacks. When committing to the information of some honest
voter’s ballot part A changes the vote code and option correspondence that is
printed in the ballot. This attack will be detected if the voter does choose to
audit with the modified ballot part (it uses the other part to vote). The maximum
deviation achieved by this attack is 1 (the vote will count for another candidate).

• Clash attacks. A provides y honest voters with ballots that have the same
serial number, so that the adversary can inject y � 1 votes of his preference in
the y � 1 “empty” audit locations in the BB. This attack is successful only if all
the y voters verify the same ballot on the BB and hence miss the injected votes
that produce the tally deviation. The maximum deviation achieved by this attack
is y � 1.

We stress that if Z does not occur, then the above two attacks are the only meaningful3
for A to follow. Indeed, if (i) all zero knowledge proofs are valid, (ii) all the honest
voters are pointed to a unique audit BB location indexed by the serial number on their
ballots, and (iii) the information committed in this BB location matches the vote code

3By meaningful we mean that the attack is not trivially detected. For example, the adversary may post
malformed information in the BB nodes but if so, it will certainly fail at verification.
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and option association in the voters’ unused ballot parts, then by the binding property
of the commitments, all the tally computed by the commitments included in Etally will
decrypt to the actual intended result.

Since the honest voters choose the used ballot parts at random, the success prob-
ability of x deviation via the modification attack is (1/2)x. In addition, the success
probability to clash y honest voters is (1/2)y�1 (all y honest voters choose the same
version to vote). As a result, by combinations of modification and clash attacks, A’s
success probability reduces by a factor 1/2 for every unit increase of tally deviation.
Therefore, the upper bound of the success probability of A when Z does not occur is
Pr[GA,E,d,✓

e2e-ver (1�,m, n,Nv, Nb, Nt) = 1 | ¬Z]  2�d .

Hence, we conclude that Pr[GA,E,d,✓
e2e-ver (1�,m, n,Nv, Nb, Nt) = 1]  2�✓ + 2�d .

Applying Lemma 2, the following theorem states that D-DEMOS (both the IC and
the Async version) achieves E2E verifiability according to Definition 2.

Theorem 5 (E2E VERIFIABILITY OF D-DEMOS). Let n,m,Nv, Nb, Nt, ✓, d 2 N
where 1  ✓  n. Then, D-DEMOS run with n voters, m options, Nv VC nodes, Nb

BB nodes and Nt trustees achieves end-to-end with error 2�✓ +2�d, w.r.t. the election
function F , a number of ✓ honest successful voters and tally deviation d.

Proof. (Sketch). Without loss of generality, we can assume that every party can read
consistently the data published in the majority of the BB nodes, as otherwise the adver-
sary fails to satisfy condition 1 of the E2E verifiability game. Via brute force search, the
vote extractor E for D-DEMOS either (i) decrypts the adversarial votes (up to permuta-
tion) if all respective option-encoding commitments are valid, or (ii) aborts otherwise.
We analyze the two cases

(i) If all option-encoding commitments are valid, then the output of E implies that
the tally deviation that the adversary A can achieve may derive only by attacking the
honest voter. Namely, by pointing the honest voter to audit in a BB location where
the audit data is inconsistent with the respective information in at least one part of the
voter’s ballot. As in [10, Theorem 4], we can show that every such single attack has
1/2 success probability (the voter had chosen to vote with the inconsistent ballot part)
and in case of success, adds 1 to the tally deviation. Thus, in this case, the probability
that A causes tally deviation d is no more than 2�d.

(ii) If there is an invalid option-encoding commitment (E aborts), then the min
entropy provided by at least ✓ honest succesful voters is at least ✓. Thus, by Lemma 2,
the Sigma protocol verification will fail except from some soundness error 2�✓.

The proof is completed by taking the union bound on the two cases.

Appendix A.4. Voter Privacy
Our privacy definition extends the one used in [10] (which is referred there as

Voter Privacy/Receipt-Freeness) to the distributed setting of D-DEMOS. Similarly,
voter privacy is defined via a Voter Privacy indistinguishability game as depicted in
Figure A.24. Note that, our system achieves computational weak unlinkability among
the privacy classes modeled by [54].
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Voter Privacy Game GA,S,�
priv (1�, n,m,Nv, Nb, Nt)

(i). A on input 1�, n,m,Nv, Nb, Nt, chooses a list of options P = {P1, . . . , Pm}, a
set of voters V = {V1, . . . , Vn}, a set of trustees T = {T1, . . . , VNt}, a set of VC
nodes {VC1, . . . ,VCNv} a set of BB nodes {BB1, . . . ,BBNb}. It provides Ch with
all the above sets. Throughout the game, A corrupts all the VC nodes a fixed set of
fb < Nb/3 BB nodes and a fixed set of ft < Nt/3 trustees. On the other hand, Ch
plays the role of the EA and all the non-corrupted nodes.

(ii). Ch engages with A in an election preparation interaction following the Election Au-
thority protocol.

(iii). Ch chooses a bit value b 2 {0, 1}.

(iv). The adversary A and the challenger Ch engage in an interaction where A schedules
the voters which may run concurrently. For each voter V` 2 V, the adversary chooses
whether V` is corrupted:

• If V` is corrupted, then Ch provides the credential s` to A, who will play the
role of V` to cast the ballot.

• If V` is not corrupted, then A provides two option selections hoption0` , option1`i
to the challenger Ch which operates on V`’s behalf, voting for option optionb` .
The adversary A is allowed to observe the network trace. After a ballot cast, the
challenger Ch provides to A: (a) the audit information ↵` that V` obtains from
the protocol, and (b) if b = 0, the current view of the internal state of the voter
V`, view`, that the challenger obtains during voting, or if b = 1, a simulated
view of the internal state of V` produced by S(view`).

(v). The adversary A and the challenger Ch produce the election tally, running the Trustee
protocol. A is allowed to observe the network trace of that protocol.

(vi). Finally, A using all information collected above (including the contents of the BB)
outputs a bit b⇤.

Denote the set of corrupted voters as Vcorr and the set of honest voters as Ṽ = V\Vcorr. The
game returns a bit which is 1 if and only if the following hold true:

(1) b = b⇤ (i.e., the adversary guesses b correctly).

(2) |Vcorr|  � (i.e., the number of corrupted voters is bounded by �).

(3) f(hoption0`iV`2Ṽ) = f(hoption1`iV`2Ṽ) (i.e., the election result w.r.t. the set of voters
in Ṽ does not leak b).

Figure A.24: The Voter privacy Game between the adversary A and the challenger Ch using the simuator S.

Definition 3 (VOTER PRIVACY). Let 0 < ✏ < 1 and n,m,Nv, Nb, Nt 2 N. Let
⇧ be an e-voting system with n voters, m options awith n voters, Nv VC nodes, Nb

BB nodes and Nt trustees w.r.t. the election function f . We say that ⇧ achieves voter
privacy with error ✏ for at most � corrupted voters, if there is a PPT voter simulator S
such that for any PPT adversary A:

��Pr[GA,S,�
priv (1�, n,m,Nv, Nb, Nt) = 1]� 1/2

�� = negl(�).
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In the following theorem, we prove that D-DEMOS (both the IC and the Async
version) achieves voter privacy according to Definition 3.

Theorem 6 (VOTER PRIVACY OF D-DEMOS). Assume there is a constant c 2
(0, 1) such that for any 2�

c

-time adversary A, the advantage of breaking the hiding
property of the underlying commitment scheme is Advhide(A) = negl(�). Let c0 < c
be a constant and set � = �c0 . Then, D-DEMOS run with n voters, m options, Nv VC
nodes, Nb BB nodes and Nt trustees achieves voter privacy for at most � corrupted
voters.

Proof. To prove voter privacy, we explicitly construct a simulator S such that we can
convert any adversary A who can win the privacy game GA,S,�

priv (1�, n,m,Nv, Nb, Nt)
with a non-negligible probability into an adversary B who can break the hiding as-
sumption of the underlying commitment scheme within poly(�) · 2�c0

<< 2�
c

time.
Note that the challenger Ch is maintaining a coin b 2 {0, 1} and always uses the

option option
b
` to cast the honest voters’ ballots. When n � � < 2, the simulator

S simply outputs the real voters’ views. When n � � � 2, consider the following
simulator S: At the beginning of the experiment, S flips a coin b0  {0, 1}. Then, for
each honest voter V`, S switches the vote codes for option option

b
` and option

b0

` .
Due to full VC corruption, A learns all the vote codes. However, it does not help the

adversary to distinguish the simulated view from real view as the simulator only per-
mutes vote codes. We now can show that if A can win GA,S,�

priv (1�, n,m,Nv, Nb, Nt),
then we can construct an adversary B that invokes A to win the IND-CPA game of the
underlying ElGamal encryption. In the IND-CPA game, B receives as input a public
key pk and executes the following steps:

1. It submits challenge messages M0 = 0,M1 = 1 and receives challenge ciphertext
C = Encpk(Mb⇤), where b⇤ is the IND-CPA challenge bit for B.

2. It invokes A and simulates GA,S,�
priv (1�, n,m,Nv, Nb, Nt), itself being the chal-

lenger.

3. B flips a coin b 2 {0, 1} and uses the received public key pk as the election com-
mitment key.

4. At the beginning, B generates/guesses all the voters coins, c = (c1, c2, . . . , cn), and
uses the coin c` for all the uncorrupted voter V`; if some corrupted voters’ coins do
not match the guessed ones, start over again. This requires 2� expected attempts to
guess all the coins correctly.

5. B guesses the election tally T = (T1, T2, . . . , Tm), and starts over again if the guess
is incorrect. This requires less than (n+ 1)m expected attempts.

6. B simulates all the zero knowledge proofs using the guessed voters’ coins.

7. B guesses/chooses an uncorrupted voter V`0 ; the option encoding commitment of
V`0 ’s ballot for the i-th option is set as:�
Encpk(T1)·C�T1 , . . . ,Encpk(Ti�1)·C�Ti�1 ,Encpk(Ti) · C�(Ti�1), Encpk(Ti+1)·
C�Ti+1 , . . . ,Encpk(Tm) · C�Tm

�
.
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For the rest of the voters, it commits the i-th option as:�
Encpk(0), . . . , C · Encpk(0), . . . ,Encpk(0)

�
.

8. If V` is corrupted, then B provides the credential s` to A.

9. If V` is not corrupted, then B receives two option selections hoption0` , option1`i from
A. It then casts the vote by submitting the vote code corresponding to option

b
`.

10. B finishes the election according to the protocol and returns b⇤ = 1 if A guesses b
correctly.

Note that if C encrypts 1, the commitments on the BB are the same as the ones in a real
election; whereas, if C encrypts 0, the commitments of all the voters are commitments
of 0’s except one honest voter’s commitment is the tally results. In the latter case, the
adversary A’s winning probability is exactly 1/2. Since the zero knowledge proofs
are perfectly simulatable, it is easy to see that the advantage of B is the same as the
advantage of A. Moreover, the running time of B is poly(�) · (n+ 1)m ·2� = O(2�

c0
)

steps. By exploiting the distinguishing advantage of A, B can break the hiding property
of the option-encoding commitment scheme in O(2�

c0
) = o(2�

c

) steps, thus leading
to contradiction.
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