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Abstract

Traditionally, the models of the unsteady aero-
dynamic loads needed for aircraft flight simula-
tions have been estimated using the aerodynamic
derivatives approach, which, using linear aerody-
namic models, provides the influence of the air-
craft motion rates on the aerodynamic forces and
moments. With increasing aircraft maneuverabil-
ity resulting in nonlinear unsteady flow regimes,
however, the linearity assumption of the conven-
tional aerodynamic derivatives approach makes
the method questionable. Methods with higher
reliability have been show to be achievable by
using knowledge of the aircraft aerodynamic re-
sponse to harmonic excitations. Prompted by the
need of rapidly and accurately estimating such
response, this study demonstrates the applicabil-
ity of the nonlinear frequency–domain Navier–
Stokes Harmonic Balance method for predicting
periodic aircraft flows with low and high levels
of nonlinearity. Using the NASA Common Re-
search Model aircraft case study, it is found that
the Harmonic Balance technology yields esti-
mates of the unsteady forces differing negligibly
from those of the standard time–domain Navier–
Stokes method with a runtime analysis reduced
by at least one order of magnitude over that of
the time–domain approach.

1 Introduction

Aircraft flight simulation plays a key role in civil
and military aviation. Flight simulators cover a
full range of applications. The simulator serves
as a basis of engineering design [1], and is used
for discovering the flight characteristics of a new
aircraft and increasing confidence in predicting
aircraft performance and behavior prior to expen-
sive flight testing. For these reasons, an accu-
rate model of the aerodynamic loads is needed
for aircraft flight simulation. Traditionally, the
aerodynamic loads have been generated using
the aerodynamic derivatives approach introduced
by Bryan [2]. The approach relies on the prin-
ciple of superposition to calculate the aerody-
namic loads for a generic motion of the air-
craft, and assumes that aerodynamic derivatives
are invariant with flight parameters. Due to in-
creased aircraft maneuverability into nonlinear
flow regimes, the aerodynamic derivatives ap-
proach loses its validity. At present, there is
no consensus on what is the best suited aerody-
namic model for rapid aerodynamic predictions
of nonlinear unsteady flows. Reynolds–averaged
Navier–Stokes (RANS) Computational fluid dy-
namics (CFD) can predict nonlinear flow physics
and has been successfully used to provide accu-
rate aerodynamic data to determine aerodynamic
derivatives [3]. However, the runtime of time–
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domain (T D) RANS analyses is high even for
two–dimensional (2D) problems, let apart a com-
plete aircraft. T D RANS simulation of periodic
flows require long runtimes as several oscillation
cycles need to be simulated before achieving the
sought periodic state. By solving the unsteady
equations in the frequency–domain (FD), analy-
sis runtimes can be significantly reduced. A pop-
ular FD method is the harmonic balance (HB)
RANS technology, first introduced for turboma-
chinery blade aeroelasticity [4], and was later
successfully applied to aircraft unsteady aerody-
namics and aeroelasticity [3, 5, 6, 7, 8]. Use of
the HB RANS method for these applications has
been shown to reduce RANS analysis runtimes
by one to two orders of magnitude with respect to
conventional T D RANS analyses. Several other
nonlinear FD NS methods exist and have been
applied in the areas above, as discussed in [9].

In many challenging flow conditions, the HB
method achieves good prediction accuracy while
reducing significantly analysis runtimes over the
T D method. However, the HB method may not
be more convenient than the T D method when
the periodic flow features high levels of stall [10].
Determining the range of operation in which
it is computationally convenient to use the HB
method is a challenging task. In this respect,
this paper aims at investigating the use of the HB
method to predict unsteady flows past the NASA
Common Research Model aircraft [11] for differ-
ent levels od flow nonlinearity. The objectives
of this work are to: a) assess prediction robust-
ness and reliability of the three–dimensional (3D)
HB RANS technology for flight simulation; b)
identify the flow conditions at which linearized
T D or linear FD approaches fail; c) demonstrate
that the HB method enables solving relatively
complex flow problems while retaining a com-
putational advantage; and d) assess the speedup
achieved by the HB solver over its T D counter-
part. To the best of the authors’ knowledge, this
study presents the application of the HB method
on the largest grid reported in the open literature.

All reported simulations use the new in-house
HB RANS solver COSA [12, 13], featuring
Menter’s shear stress transport (SST) model for

the turbulence closure. The T D and HB RANS
equations and the SST turbulence model are pre-
sented in Section 2, and a brief description of the
numerical method is provided in Section 3. Sec-
tion 4 describes the NASA Common Research
Model test case, various steady and unsteady flow
regimes of which are analyzed in Section 5; the
study summary is provided in Section 6.

2 Governing equations

2.1 Time–domain equations

The 3D compressible Navier–Stokes equations
are a system of conservation laws expressing the
conservation of mass, momentum and energy of a
viscous fluid flow. Averaging these equations on
the turbulence time–scales yields the so–called
RANS equations, which are formally similar to
the NS equations but feature an additional term,
the Reynolds stress tensor accounting in a mean
fashion for the effects of turbulence. Making use
of Boussinesq’s approximation, this tensor is ex-
pressed as the product of an eddy viscosity and
the strain rate tensor based on the mean veloc-
ity field. In the COSA CFD code used in this
study, the former variable is computed with the
two–equation k−ω SST turbulence model. Thus,
turbulent compressible flows are determined by
solving a system of Npde = 7 partial differential
equations (PDEs) and an equation of state linking
fluid density, pressure and internal energy.

The Arbitrary Lagrangian–Eulerian (ALE)
integral form of the system of the time–
dependent RANS and SST equations is written
in a Cartesian coordinate system. Given a con-
trol volume C with boundary S, the ALE integral
form of the system of time–dependent RANS and
SST equations is:

∂

∂t

(∫
C

UdC
)
+

∮
S
(Φc −Φd) ·dS

−
∫

C
SdC = 0

(1)

where U = [ρ ρuT ρE ρk ρω]T is the ar-
ray of conservative variables, the superscript T
denotes the transpose operator, and the symbols
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ρ, u, E, k and ω denote, respectively, density, ab-
solute velocity vector, and total energy, turbulent
kinetic energy and specific dissipation rate of tur-
bulent kinetic energy per unit mass. The total en-
ergy is E = e+(u ·u)/2+ k, where e denotes the
internal energy per unit mass; the perfect gas law
is used to express the static pressure p as a func-
tion of ρ, E, k and the mean flow kinetic energy
per unit mass (u · u)/2. The definitions of the
generalized convective flux vector Φc, the gen-
eralized diffusive flux vector Φd and the source
term S are reported in [14].

2.2 Harmonic balance equations

The derivation of the HB RANS and SST equa-
tions may be found in [4, 9]. For complete-
ness, a qualitative description of the derivation
is provided below. The sought periodic flow
field is written as a truncated Fourier series with
(2NH + 1) spatial position–dependent compo-
nents, where NH indicated the desired number of
harmonics. The harmonic motion is executed at
a fundamental frequency Ω. The Fourier series
approximation of the solution is inserted in the
T D governing equations expressed by Eq. (1).
This operation results in the original system of
Npde time–dependent PDEs becoming a system
of [Npde × (2NH + 1)] time–independent PDEs,
the solution of which yields the (2NH + 1) com-
ponents of the truncated Fourier series. How-
ever, writing the HB RANS and turbulence model
equations in the Fourier space turns out to be
challenging, due to the high level of nonlinearity
of the equations involved; for this reason, Ref. [4]
proposed to re–cast the HB CFD equations in the
time–domain. Indeed, this choice simplifies sub-
stantially the construction of the HB equations
and also the implementation of this technology in
an existing CFD code. Formally, re–casting the
HB equations in the time–domain results in the
HB equations becoming a system of (2NH + 1)
steady flow problems, and the HB solution be-
coming a set of equally spaced flow states or
snapshots of the sought periodic flow. Once de-
termined, the HB solution can be re–cast in the
Fourier space by using a suitably defined Fourier

transformation operator.
Ultimately, one finds that the desired HB

form of the conservation laws to be:

ΩD
(∫

CH

UH dCH

)
+∮

SH

(ΦcH −ΦdH) ·dSH −
∫

CH

SHdCH = 0
(2)

The unknown array UH consists of (2NH +1) pe-
riodic flow snapshots at (2NH +1) equally spaced
times tn:

tn =
n

(2NH +1)
2π

Ω
, n = 0,1, . . . ,2NH (3)

The structure of the array UH is thus: UH =
[Ũ(t0)T Ũ(t1)T . . . Ũ(tNH )

T ]T , and is the same of
that of all other variables with a subscript H ap-
pearing in Eq. (2). The spectral operator D is a
[(2NH + 1)× (2NH + 1)] antisymmetric matrix,
defined in [9], which couples all (2NH + 1) flow
snapshots. It can be shown that the entry (m,n)
of D is:

Dmn =
2

2NH +1

NH

∑
k=1

k sin
(

2πk(n−m)

2NH +1

)
,

m,n = 0,2NH

(4)

Moving from the conventional T D to the HB
formulation of the governing equations, one has
to solve [Npde × (2NH +1)] time–independent or
steady PDEs rather than Npde time–dependent
PDEs. The solution of each steady PDE requires
substantially less computational work than that
of a time–dependent PDE. This cost reduction
outweighs the burden of solving more PDEs in
the HB case and thus the overall computational
cost of solving the HB equations turns out to
be smaller than that required for solving the T D
equations. Therefore, turbulent periodic flows
can be computed significantly faster using the HB
rather than the T D approach in many engineering
applications. This is because of the avoidance
of the physical transient leading to the periodic
state.
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3 Numerical solution

The finite volume cell–centered parallel RANS
CFD COSA code solves both the T D RANS
and SST equations [12, 14] and their HB coun-
terparts [10] using structured multi–block grids.
The discretization of the convective fluxes of both
RANS and SST PDEs uses Van Leer’s MUSCL
extrapolations and Roe’s flux–difference splitting
with Van Albada’s flux limiter. The discretization
of the diffusive fluxes and the turbulent source
terms uses central finite–differencing [14].

The integration of the steady and HB RANS
and SST equations is performed in a fully–
coupled fashion using explicit Runge–Kutta
time–marching, with local time–stepping, im-
plicit residual smoothing and multigrid for con-
vergence acceleration. T D problems are solved
using Jameson’s second–order dual–time step-
ping.

Harten’s entropy correction [15] is used to as-
sure physically relevant solutions, when there is
a presence of expansion shocks and contact dis-
continuities in the solutions.

Boundary conditons used in this study are as
follows. At viscous wall boundaries, i.e. wing
and fuselage, the no–slip condition is applied. In
order to halve the computational cost, the sym-
metry boundary condition is used at the sym-
metry plane. On the far–field, the freestream
boundary condition based on one–dimensional
Riemann invariants was used.

4 Test case

The test case is for the transonic NASA Common
Research Model (CRM) [11]. This test case was
primarily developed for the purpose of CFD val-
idation studies, therefore, it will first serve as a
validation test case for COSA CFD code. Fur-
thermore, it will be used to predict dynamic loads
of periodic flows using the T D and HB RANS
equations.

4.1 Common Research Model

NASA CRM consists of a contemporary tran-
sonic supercritical wing design, and was de-

veloped with well behaved aerodynamic char-
acteristics. The fuselage is representative of a
wide/body commercial transport aircraft and in-
cludes a wing–body fairing, as well as a scrub-
bing seal for the horizontal tail. In this study, only
the body–wing configuration was used. The com-
putational grids were adopted from the 5th AIAA
CFD Drag Prediction Workshop [16]. A multi-
block, O–O grid topology was provided for the
wing–body configuration. Six grid levels were
provided, however, to keep the computational
cost within the size of the available resources,
only four grid levels were used in this study: tiny
(638,976 cells), coarse (2,156,544 cells), medium
(5,111,808 cells) and fine (17,252,352 cells). A
view of the surface mesh of the tiny grid is de-
picted in Fig. 1.

Fig. 1 Multi-block (tiny) grid of the NASA CRM.

Experimental measurements for the NASA
CRM supercritical model, obtained from [17],
were conducted at Mach number M∞ = 0.85,
freestream temperature T∞ = 311 K, and
Reynolds number Re = 5.0 million (based on
reference chord Cre f = 275.80 in) for various
angles of attack. Experiments were conducted
both at the National Transonic Facility and the
NASA Ames 11 Foot Wind Tunnel. In this study,
only the data from National Transonic Facility
are used. Reference [18] reported that the initial
comparisons between CFD and experimental
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results from both wind tunnels were disappoint-
ing. This happened due to the effects of the
swept–strut mounting system and the geometry
of the wing used in the computational analysis.
The problem was that the CRM wing geometry
used for the Fifth Drag Prediction Workshops
was defined prior to the building and testing of
the CRM wind tunnel model, therefore, during
the wind tunnel tests, the model deformed under
the loading. In order to provide a measure for
comparison, a correction to the experimental data
from National Transonic Facility was proposed
in [18].

5 Results

5.1 Validation

Polars were computed for the CRM wing–body
configuration. Figure 2 shows the predicted lift
coefficient Cl , the drag coefficient Cd and the
pitching moment coefficient Cm for various val-
ues of angle of attack, at four different grid levels.
There are significant differences among the four
grid levels for all forces and moment coefficients,
however, the computed lift curve of fine grid level
is in excellent agreement with the corrected ex-
perimental data set. All forces and moment co-
efficients are well within the uncertainty bands
of reported CFD results at the 5th AIAA CFD
Drag Prediction Workshop [18]. Therefore, we
are confident of the validity of our CFD solver.

5.2 Forced sinusoidal motion–case A

Case A is an unsteady flow problem executed be-
low the first break point in the lift coefficient,
which is found to occur at about 3 deg.

5.2.1 Numerical set–up

The forced sinusoidal motion is defined by
α∞(t) = α0 +αA sin(2kτ). For Case A, the re-
duced frequency is k =

ωcre f
2U∞

= 0.08, where ω

represent the oscillation frequency, cre f is the ref-
erence chord, and U∞ is the freestream velocity.
The mean angle of attack is α0 = 0 deg and the
amplitude is αA = 3 deg. The symbol τ = tU∞

cre f

Fig. 2 Forces and moment coefficients of the
NASA CRM (M∞ = 0.85, T∞ = 311 K, Re = 5.0
million).

is the non–dimensional time, where t represents
the physical time. The flow field is character-
ized by the formation of a strong and highly dy-
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namic shock wave. The motivation for such high
reduced frequency comes from the experimental
cases of forced motion, traditionally used to ex-
tract aerodynamic derivatives [3].

Fig. 3 Spatial grid refinement study of the NASA
CRM Case A, using 64 time–intervals per period
(M∞ = 0.85, T∞ = 311 K, Re = 5.0 million, k =
0.08, α0 = 0 deg, αA = 3 deg).

To simulate the sinusoidal motion, the grids
undergo a rigid–body motion without deforma-
tion. In order to assess the sensitivity of the T D
solutions on the level of spatial refinement, Case
A was simulated using the four grid levels. In
order to assess the sensitivity of the turbulent so-
lutions on the level of temporal refinement, Case
A was simulated with the tiny grid using 32, 64
and 128 time–intervals per period. All four T D
simulations were run until the maximum values
of Cl , Cd and Cm over two consecutive oscilla-
tion cycles was less than 0.1%. The number of
oscillatory cycles needed to reach this threshold
varied between five and seven depending on the
spatial and temporal refinements.

Time refinement analysis showed that the
computed solution is fairly independent of the
number of intervals per period provided that at
least 64 time–intervals per period are used. Based

on this observation, 64 time–intervals per pe-
riod were used for the spatial refinement analysis.
Figure 3 depicts periodic profiles of Cl , Cd and
Cm with the tiny, coarse, medium and fine grids.
It is seen that differences exist among all four
solutions, indicating that the solution computed
with the medium grid is not grid–independent,
the same may hold for the solution computed
with the fine grid. Due to this fact, and to keep
computational cost of the time–dependent anal-
yses within the size of the available resources,
medium grid has been used for all further T D and
HB analyses.

5.2.2 Aerodynamic analysis

To demonstrate the solution accuracy of the HB
method, the unsteady solution cases were run
using up to four complex harmonics. Figure 4
shows the hysteresis loops of the integrated loads
against the instantaneous angle–of–attack. The
time evolution of Cl was observed to be nearly
linear and harmonic with the forced variation
in the motion variable, thus, even one complex
harmonic is sufficient to correctly predict the Cl
behavior. Since the Cd is quadratic to Cl , at
least two harmonics are required to reproduce the
shape of Cd , and three harmonics perfectly repro-
duce the T D simulation result. The same holds
for Cm, where three harmonics are sufficient to
overlap the T D results.

5.2.3 Dynamic derivatives

This section reports the dynamic derivatives of
the NASA CRM case A. The formulation of dy-
namic derivatives is defined in [3].

Table 1 summarizes the dynamic derivatives,
in-phase component of the lift force coefficient
Clα , the lift force damping coefficient Clq , in-
phase component of the drag force coefficient
Cdα

, the drag force damping coefficient Cdq , in-
phase component of the pitching moment coef-
ficient Cmα

, the pitching moment damping co-
efficient Cmq . Frequency-domain results are in
good agreement with the respective time-domain
results. The table suggests that for the Clα and
Clq , even one harmonic predicts well the dynamic
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Fig. 4 Lift coefficient dependence on forced
sinusoidal motion of the NASA CRM Case A
(M∞ = 0.85, T∞ = 311 K, Re = 5.0 million, k =
0.08, α0 = 0 deg, αA = 3 deg).

derivatives, whereas for other derivatives, at least
two harmonics are required.

Table 1 Dynamic derivatives of the NASA CRM
case A.

set-up Clα Clq Cdα
Cdq Cmα

Cmq

HB-1 7.04 -17.00 0.16 -1.27 -0.94 -1.72
HB-2 6.78 -17.01 0.00 -1.75 -0.80 -0.73
HB-3 6.78 -17.30 0.15 0.15 -0.80 -1.00
HB-4 6.81 -17.16 0.15 0.16 -0.81 -0.93
TD-64 6.80 -17.36 0.15 0.16 -0.80 -0.92

5.2.4 Computational performance of the HB
solver

Table 2 HB speed–up for the NASA CRM case A.

HB 1 HB 2 HB 3 HB 4 TD-64
speed-up 19.5 11.3 4.1 2.6 1.0

Table 2 reports the HB speed–up parameter,
defined as the ratio of the runtime of the T D−64
simulation and the HB analysis with NH harmon-
ics, and shows that the HB2 simulation, which
successfully predicts all dynamic derivatives, re-
duces the analysis runtime by a factor 11.3.

5.3 Forced sinusoidal motion–case B

Case B was selected to represent a complex, un-
steady flow problem. Harmonic oscillations are
performed at a mean angle of attack above which
the lift coefficient becomes nonlinear. The flow
conditions are ideal to test the robustness of the
HB approach in conjunction with the computa-
tional speedup to provide admissible results for
flight simulation.

5.3.1 Numerical set–up

The reduced frequency is k = 0.08, the mean an-
gle of attack is α0 = 6 deg and the amplitude is
αA = 3 deg.

The sensitivity of the T D solutions on the
level of spatial refinement for Case B was investi-
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Fig. 5 Spatial grid refinement study of the NASA
CRM case B (M∞ = 0.85, T∞ = 311 K, Re = 5.0
million, k = 0.08, α0 = 6 deg, αA = 3 deg).

gated with four grid levels. The sensitivity of the
T D solutions on the level of temporal refinement
was simulated with the tiny grid using 32, 64 and
128 time–intervals per period. As for Case A, it
was found that at least 64 time–intervals per pe-
riod are necessary. Figure 5 shows periodic time
histories of Cl , Cd and Cm for the tiny, coarse,
medium and fine grids using 64 time–intervals.

5.3.2 Aerodynamic analysis

Figure 6 shows the hysteresis loops for Case B.
One notes that there is a significant nonlinearity
that distorts the loops. To match the time his-
tory values, one harmonic is insufficient at this
operating regime. One my notice that at least two
harmonics are required to match the T D and HB
loops for Cl and Cd , whereas minimum three har-
monics are required for the Cm.

Figure 7 depicts the surface pressure coeffi-
cient Cp for α(t) = 6 deg, for both the upstroke
and downstroke movements. It can be seen that
the position of the shock is significantly differ-
ent for two positions with the same α(t), which

Fig. 6 Lift coefficient dependence on forced
sinusoidal motion of the NASA CRM Case B
(M∞ = 0.85, T∞ = 311 K, Re = 5.0 million, k =
0.08, α0 = 6 deg, αA = 3 deg).

demonstrates a complexity of this flow problem.
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Fig. 7 Surface pressure coefficient plot of the
NASA CRM Case B computed with TD–64
(M∞ = 0.85, T∞ = 311 K, Re = 5.0 million, k =
0.08, α0 = 6 deg, αA = 3 deg).

5.3.3 Dynamic derivatives

This section reports the dynamic derivatives of
the NASA CRM case B. The formulation of dy-
namic derivatives is defined in [3].

Table 3 Dynamic derivatives of the NASA CRM
case B.

set-up Clα Clq Cdα
Cdq Cmα

Cmq

HB-1 2.35 24.02 1.13 0.82 2.06 -12.11
HB-2 3.04 17.49 1.26 1.05 1.84 -12.41
HB-3 3.11 17.57 1.27 1.05 1.89 -13.17
HB-4 3.11 18.80 1.27 1.13 1.91 -14.86
TD-64 3.25 19.52 1.28 0.99 1.83 -16.22

Table 3 reports the dynamic derivatives for
case B. It can be observed that except for the Cmq ,
only two harmonics are required for predictions
of the dynamic derivatives.

5.3.4 Computational performance of the HB
solver

Table 4 reports the HB speed–up parameter, de-
fined as the ratio of the runtime of the T D− 64

Table 4 HB speed–up for the NASA CRM case B.

HB 1 HB 2 HB 3 HB 4 TD-64
speed-up 19.5 9.5 5.1 3.5 1.0

simulation and the HB analysis with NH harmon-
ics, and shows that the HB2 simulation, which
is already sufficiently accurate for the prediction
of dynamic derivatives, reduces the analysis run-
time by a factor 9.5.

6 Conclusions

A harmonic balance Navier–Stokes approach to
the analysis of the NASA common research
model periodic flows using the shear stress trans-
port turbulence model has been presented, with
particular emphasis on application side, for cal-
culation of dynamic derivatives. The predictive
capabilities of the underlying steady code have
been validated using steady flow regimes of the
NASA common research model experiment. The
computational efficiency of the HB solver has
been assessed by two forced sinusoidal motion
cases of the NASA common research model, and
it has been shown that the HB NS CFD method
can reduce the runtime of periodic flow simula-
tions to predict dynamic derivatives by up to 11.3
times over the standard T D method. This acceler-
ation occurs because HB method does not require
the solution of lengthy transients occurring in T D
simulations before achieving the sought periodic
state. This achievement is believed to bring the
use of NS CFD closer to the calculation of dy-
namic derivatives for aircraft flight simulation.
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