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Abstract

In this investigation, a novel algorithm is developed in a neural network for the

modeling of complex processes. It presents a fuzzy transition between the recursive

least square and extended Kalman �lter algorithms with the objective to obtain a

bounded gain such that a satisfactory modeling could be maintained. The suggested

algorithm has the advantage compared with the mentioned methods that it avoids the
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excessive increasing or decreasing of its gain. The gain of the proposed algorithm is

uniformly stable and its convergence is found. The introduced algorithm is utilized for

the modeling of two synthetic examples.

Keywords: Recursive least square, Kalman �lter, modeling, complex processes.

1 Introduction

In recent years, the recursive least square and extended Kalman �lter algorithms have been

highly utilized in the modeling issue. The recursive least square technique is an adaptive �lter

which recursively �nds coe¢ cients that minimize a weighted cost function relating to input

signals, and it shows extremely fast convergence [4], [17]. The Kalman �lter strategy is an

algorithm that uses a series of measurements observed over time, containing statistical noise

and other inaccuracies, and it estimates unknown variables. In the estimation theory, the

extended Kalman �lter is the nonlinear version of the Kalman �lter which is the linearization

about an estimate of the current mean and covariance [5], [15].

There is some research about recursive least square algorithms. In [21], the least square

and backpropagation are combined. The least square method is addressed in [8]. In [16],

fuzzy least squares are suggested. The recursive fuzzily weighted least square is used for

updating consequent parameters in evolving fuzzy systems [18] and [27], which is extended

to a generalized form in [23]. The characteristic of this algorithm is that its gain could

converge through the time to a small value. The problem is that the gain could be too small;

therefore, the quality of the modeling could become low.

There is some research about extended Kalman �lter algorithms. In [1], [2], [3], and [28],

several Kalman �lter algorithms of neural networks are designed. An extended Kalman �lter

of a wavelet neural network is utilized in [12]. In [7] and [30], the programming with Kalman

�lters is described. An observer-type of Kalman �ltering algorithm is discussed in [11]. In

[10], the Kalman �lter of nonlinear processes is designed. Single-pass active modeling �lters

are employed in [19], which is used in [20] for the purpose of semi-supervised drift detection.

The characteristic of this algorithm is that its gain could grow through the time to a big

value. The problem is that the gain could be too big; therefore, the quality of the modeling

could become low.

In this research, a novel algorithm is employed for the updating of a neural network.

Compared with the mentioned methods, the suggested algorithm is a combination between

the recursive least square and extended Kalman �lter such as it presents a fuzzy transi-

tion between both algorithms with the objective to obtain a bounded gain, maintaining a

2



satisfactory modeling.

Furthermore, the Lyapunov technique is employed to guarantee the uniform stability and

convergence of the gain in the proposed algorithm. Stability is a method to analyze whether

the inputs, outputs, and parameters remain bounded through the time [6], [9], [24], [29], [31].

The uniform stability is stronger than the common stability because the �rst is satis�ed for

any initial time, while the second is satis�ed only for a zero initial time.

Finally, the proposed algorithm is compared with the recursive least square and extended

Kalman �lter for the modeling of two complex processes. The complex adaptive processes

issue has been considered as a well established research area [13], [14], [22].

The paper is organized as follows. The neural network, recursive least square, extended

Kalman �lter, and proposed algorithms are detailed in Section 2. The proposed technique is

summarized in Section 3. The suggested method is applied for the modeling of two synthetic

examples in Section 4. Conclusions and future research are detailed in Section 5.

2 Updating algorithms of a neural network

In this part of the article: 1) the neural network will be explained, 2) the recursive least

square, extended Kalman �lter, and proposed algorithms will be detailed for the updating of

a neural network, and 3) the stability and convergence of the gain in the proposed algorithm

will be analyzed.

2.1 The neural network

Take in account the following unknown complex process:

y(k) = f [x(k)] (1)

with
x(k) = [x1(k); : : : ; xi(k); : : : ; xN(k)]

T

= [y(k � 1); : : : ; y(k � n); u(k); : : : ; u(k �m)]T 2 <N�1

N = n+m is the process input, y(k) = � 2 < is the process output, and f is the unknown
behavior of the complex process, f 2 C1.
In this study, a special neural network is utilized which only has one hidden layer. It

could be extended to a general multilayer neural network; however, this research is focused

in a compact neural network.
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Figure 1: The neural network structure

The structure of the neural network with one hidden layer of this study is shown in Figure

1.

The neural network with the input, hidden, and output layers is written as follows:

by(k) = bv(k)�(k) = MX
j=1

bvj(k)�j(k)
�(k) = [�1(k); : : : ; �j(k); : : : ; �M(k)]

T

�j(k) = tanh( bwj(k) NX
i=1

xi(k))

�j(k) = bvj(k)sech2( bwj(k) NX
i=1

xi(k))
NX
i=1

xi(k)

(2)

with i = 1; : : : ; N , j = 1; : : : ;M , x(k) 2 <N�1 is the neural network input described in (1),
xi(k) 2 <, by(k) 2 < is the neural network output, bw(k) 2 <1�M and bv(k) 2 <1�M are the

hidden layer and output weights, bwj(k) 2 <, bvj(k) 2 <, �j(k) 2 <, �(k) 2 <M�1.

The modeling error e(k) 2 < is described as follows:

e(k) = by(k)� y(k) (3)

with y(k) and by(k) being described in (1) and (2).
In the next three subsections, three alternative strategies for the updating of the neural

network will be detailed: the recursive least square, extended Kalman �lter, and a new

algorithm.
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2.2 The recursive least square algorithm

The recursive least square algorithm is described in this subsection for the updating of a

neural network. The characteristic of this algorithm is that its gain Gk could converge

through the time to a small value. The problem is that the gain could be too small; conse-

quently, the quality of the modeling could become low.

The recursive least square algorithm utilized as the adapting law of the neural network

(2) for the modeling of the complex process (1) is represented as follows [25]:

b (k + 1) = b (k)� 1
q(k)

Gk+1a(k)e(k)

Gk+1 = Gk � 1
r(k)

Gka(k)a
T (k)Gk

(4)

with
aT (k) = [�1(k); : : : ; �M(k); �1(k); : : : ; �M(k)] 2 <1�2Mb (k) = [ bw1(k); : : : ; bwM(k); bv1(k); : : : ; bvM(k)]T 2 <2M�1

r(k) = q(k) + aT (k)Gka(k)

q(k) = r2 + aT (k)Gka(k) 2 <

0 < r2 2 < is a forgetting factor, e(k) is the modeling error of (3), �j(k) and �j(k) are

described in (2). Gk+1 2 <2M�2M is the algorithm gain which is a positive de�nite covariance

matrix, G1 = g1I is the initial algorithm gain, and g1 > 0 is a scalar constant usually big

enough to assure an acceptable convergence, and I 2 <2M�2M is the identity matrix.

2.3 The extended Kalman �lter algorithm

The extended Kalman �lter algorithm is described in this subsection for the updating of a

neural network. The characteristic of this algorithm is that its gain Gk could grow through

the time to a big value. The problem is that the gain could be too big; consequently, the

quality of the modeling could become low.

The extended Kalman �lter algorithm utilized as the adapting law of the neural network

(2) for the modeling of the complex process (1) is represented as follows [26]:

b (k + 1) = b (k)� 1
q(k)

Gk+1a(k)e(k)

Gk+1 = Gk � 1
r(k)

Gka(k)a
T (k)Gk +R1

(5)

with
aT (k) = [�1(k); : : : ; �M(k); �1(k); : : : ; �M(k)] 2 <1�2Mb (k) = [ bw1(k); : : : ; bwM(k); bv1(k); : : : ; bvM(k)]T 2 <2M�1
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r(k) = q(k) + aT (k)Gka(k)

q(k) = r2 + aT (k)Gka(k) 2 <

0 < r2 2 < is a forgetting factor, e(k) is the modeling error of (3), �j(k) and �j(k) are

described in (2). Gk+1 2 <2M�2M is the algorithm gain which is a positive de�nite covariance

matrix, G1 = g1I is the initial algorithm gain, and g1 > 0 is a scalar constant usually

big enough to assure an acceptable convergence, and I 2 <2M�2M is the identity matrix.

R1 = r1I, 0 < r1 2 <.

2.4 The proposed algorithm

The proposed algorithm is described in this subsection for the updating of a neural network.

It presents a fuzzy transition between the recursive least square and extended Kalman �l-

ter algorithms with the objective to obtain a bounded gain Gk, maintaining a satisfactory

modeling. Figure 2 shows the proposed algorithm.

Figure 2: The proposed algorithm

The proposed algorithm utilized as the adapting law of the neural network (2) for the

modeling of the complex process (1) is represented as follows:

b (k + 1) = b (k)� 1
q(k)

Gk+1a(k)e(k)

Gk+1 = Gk � 1
r(k)

Gka(k)a
T (k)Gk +R1

(6)

with
aT (k) = [�1(k); : : : ; �M(k); �1(k); : : : ; �M(k)] 2 <1�2Mb (k) = [ bw1(k); : : : ; bwM(k); bv1(k); : : : ; bvM(k)]T 2 <2M�1
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r(k) = q(k) + aT (k)Gka(k)

q(k) = r2 + aT (k)Gka(k) 2 <
0 < r2 2 < is a forgetting factor, e(k) is the modeling error of (3), �j(k) and �j(k) are

described in (2). Gk+1 2 <2M�2M is the algorithm gain which is a positive de�nite covariance

matrix, G1 = g1I is the initial algorithm gain, and g1 > 0 is a scalar constant usually big

enough to assure an acceptable convergence, and I 2 <2M�2M is the identity matrix. 5 rules

are used to obtain R1 as a fuzzy transition between the recursive least square R1 = 0I and

the extended Kalman �lter R1 = r1I as follows:

If 0 � kGkk � 1
4
g1, then R1 = r1I

If 1
4
g1 < kGkk � 1

2
g1, then R1 = 3

4
r1I

If 1
2
g1 < kGkk � 3

4
g1, then R1 = 1

2
r1I

If 3
4
g1 < kGkk � g1, then R1 = 1

4
r1I

If g1 < kGkk , then R1 = 0I

(7)

with 0 < r1 2 <.
The stability and convergence of the gain in the introduced algorithm are analyzed by

the following Theorem.

Theorem 1 The gain of the proposed algorithm (6) (7) for the updating of the neural net-

work (2) (3) is uniformly stable and the following convergence is satis�ed:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = r1 (8)

with b = [1; 1 : : : ; 1]T , Gk is the gain of the proposed algorithm described in (6), a(k) and

r(k) are described in (6), and r1 is described in (7).

Proof. Select the following Lyapunov function:

Lk = bTGkb (9)

obtaining �Lk as follows:

�Lk = Lk+1 � Lk = bTGk+1b� bTGkb (10)

�ve cases are presented. a) when 0 � kGkk � 1
4
g1, considering (6) and that bT b = 1 gives:

�Lk = bTGk+1b� bTGkb

= bT
h
Gk � 1

r(k)
Gka(k)a

T (k)Gk + r1

i
b� bTGkb

= bTGkb� bT 1
r(k)

Gka(k)a
T (k)Gkb+ bT r1b� bTGkb

�Lk = �bT 1
r(k)

Gka(k)a
T (k)Gkb+ r1

(11)
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The following result is obtained:

�Lk = �bT
1

r(k)
Gka(k)a

T (k)Gkb+ r1 (12)

since bT 1
r(k)

Gka(k)a
T (k)Gkb � 0 and r1 is small and positive, the gain of the proposed

algorithm is uniformly stable. b) when 1
4
g1 < kGkk � 1

2
g1, considering (6) and that bT b = 1

gives:
�Lk = bTGk+1b� bTGkb

= bT
h
Gk � 1

r(k)
Gka(k)a

T (k)Gk +
3
4
r1

i
b� bTGkb

= bTGkb� bT 1
r(k)

Gka(k)a
T (k)Gkb� bTGkb+

3
4
r1b

T b

= �bT 1
r(k)

Gka(k)a
T (k)Gkb+

3
4
r1

(13)

The following result is obtained:

�Lk = �bT
1

r(k)
Gka(k)a

T (k)Gkb+
3

4
r1 (14)

since bT 1
r(k)

Gka(k)a
T (k)Gkb � 0 and 3

4
r1 is small and positive, the gain of the proposed

algorithm is uniformly stable. c) when 1
2
g1 < kGkk � 3

4
g1, considering (6) and that bT b = 1

gives:
�Lk = bTGk+1b� bTGkb

= bT
h
Gk � 1

r(k)
Gka(k)a

T (k)Gk +
1
2
r1

i
b� bTGkb

= bTGkb� bT 1
r(k)

Gka(k)a
T (k)Gkb� bTGkb+

1
2
r1b

T b

= �bT 1
r(k)

Gka(k)a
T (k)Gkb+

1
2
r1

(15)

The following result is obtained:

�Lk = �bT
1

r(k)
Gka(k)a

T (k)Gkb+
1

2
r1 (16)

since bT 1
r(k)

Gka(k)a
T (k)Gkb � 0 and 1

2
r1 is small and positive, the gain of the proposed

algorithm is uniformly stable. d) when 3
4
g1 < kGkk � g1, considering (6) and that bT b = 1

gives:
�Lk = bTGk+1b� bTGkb

= bT
h
Gk � 1

r(k)
Gka(k)a

T (k)Gk +
1
4
r1

i
b� bTGkb

= bTGkb� bT 1
r(k)

Gka(k)a
T (k)Gkb� bTGkb+

1
4
r1b

T b

= �bT 1
r(k)

Gka(k)a
T (k)Gkb+

1
4
r1

(17)

The following result is obtained:

�Lk = �bT
1

r(k)
Gka(k)a

T (k)Gkb+
1

4
r1 (18)
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since bT 1
r(k)

Gka(k)a
T (k)Gkb � 0 and 1

4
r1 is small and positive, the gain of the proposed

algorithm is uniformly stable. e) when g1 < kGkk, considering (6) and that bT b = 1 gives:

�Lk = bTGk+1b� bTGkb

= bT
h
Gk � 1

r(k)
Gka(k)a

T (k)Gk

i
b� bTGkb

= bTGkb� bT 1
r(k)

Gka(k)a
T (k)Gkb� bTGkb

= �bT 1
r(k)

Gka(k)a
T (k)Gkb

(19)

The following result is obtained:

�Lk = �bT
1

r(k)
Gka(k)a

T (k)Gkb (20)

since bT 1
r(k)

Gka(k)a
T (k)Gkb � 0, the gain of the proposed algorithm is asymptotically stable.

Since the uniform stability is weaker than the asymptotic stability [6], [9], [24], [29], [31],

considering all cases, the gain of the proposed algorithm is uniformly stable. Now considering

all cases. a) when 0 � kGkk � 1
4
g1, summarize (12) from 1 to T :

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = L1 � LT + Tr1 (21)

multiplying by 1
T
and obtaining the limit gives:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = r1 (22)

b) when 1
4
g1 < kGkk � 1

2
g1, summarize (14) from 1 to T :

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = L1 � LT + T
3

4
r1 (23)

multiplying by 1
T
and obtaining the limit gives:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb =
3

4
r1 (24)

c) when 1
2
g1 < kGkk � 3

4
g1, summarize (14) from 1 to T :

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = L1 � LT + T
1

2
r1 (25)
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multiplying by 1
T
and obtaining the limit gives:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb =
1

2
r1 (26)

d) when 3
4
g1 < kGkk � g1, summarize (14) from 1 to T :

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = L1 � LT + T
1

4
r1 (27)

multiplying by 1
T
and obtaining the limit gives:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb =
1

4
r1 (28)

e) when g1 < kGkk, summarize (14) from 1 to T :

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = L1 � LT (29)

multiplying by 1
T
and obtaining the limit gives:

lim sup
T!1

1

T

TX
k=1

bT
1

r(k)
Gka(k)a

T (k)Gkb = 0 (30)

Since the limit (22) is the weakest of all, considering all cases, the gain of the convergence

(22) is (8), it establishes the result.

Remark 1 Even if the neural network of this research is equal with the neural network of
[25], there are three di¤erences between the proposed research and the investigation of [25]:

1) in the investigation of [25] the least square algorithm is employed as the updating law of

the neural network, while in this research a new algorithm with a fuzzy transition between

the recursive least square and extended Kalman �lter methods is proposed as the updating

law of the neural network; 2) in the investigation of [25] the stability and convergence of the

modeling error is assured, while in this research the stability and convergence of the gain in

the proposed algorithm is assured; and 3) the algorithm of [25] is applied in the modeling

of two crude oil blending processes, while the algorithm of this research is applied in the

modeling of two synthetic examples.
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3 Detailed steps of the proposed algorithm

The steps of the proposed algorithm are detailed as follows:

1) The complex process output y(k) is obtained with equation (1). The complex process

should has the form represented by the equation (1); the element N is chosen in concordance

with this complex process.

2) Consider the elements as follows; chose weights bvj(1) and bwj(1) for (2) as random
numbers between 0 and 1; chose the number of hidden layer neurons M for (2) with an

integer value, chose the initial algorithm gain g1 with a positive value, and elements r1 and

r2 for (6), (7) with positive values.

3) For each iteration k, the neural network output by(k) is obtained with equation (2),
the modeling error e(k) is obtained with equation (3), b (k) is obtained with weights bvj(k)
and bwj(k) utilizing (6), (7), aT (k) is obtained with �j(k) and �j(k) utilizing (2), (6), (7), the
element b (k+1) is updated with equations (6), (7), weights of the neural network bvj(k+1)
and bwj(k + 1) with b (k + 1) are updated utilizing (6), (7).
4) The behavior of the algorithm could be modi�ed by the selection of di¤erent values

in the elements M 2 [N; 5N ], g1 2 [1� 102; 1� 104], r1 2 [5� 10�5; 5� 101], or r2 2
[8� 10�2; 5� 10�1].

4 Examples

In this part of the article, the proposed algorithm is applied for the modeling of two synthetic

examples. In all cases, the proposed algorithm called Proposed will be compared with the

least square algorithm of [25] called Least Square, and with the extended Kalman �lter algo-

rithm of [26] called Kalman Filter. The di¤erences between three algorithms were described

in past sections. The root mean square error denoted as RMSE is employed for comparisons

and is expressed as follows:

RMSE =

 
1

N

NX
k=1

e2(k)

! 1
2

(31)

with e(k) as the modeling error of (3).
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4.1 Example 1

The complex process of the example 1 is detailed as follows [27]:

y(k) =
y(k � 1)y(k � 2) [y(k � 1)� 0:5]

1 + y(k � 1)2 + y(k � 2)2 + u(k � 1) (32)

with

u(k � 1) = sin
�
2�(k � 1)

25

�
The complex process of equations (1), (32) is utilized where inputs are x1(k) = y(k� 1),

x2(k) = y(k�2), x3(k) = u(k�1) and the output is y(k) = y(k). The data of 3000 iterations

is used for the training and the data of the least 200 iterations is used for the testing.

The Least Square of [25] is detailed as (2), (3), (4) with elements N = 3, M = 5,

g1 = 1� 103, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0 and 0:5.

The Kalman Filter [26] is detailed as (2), (3), (5) with elements N = 3, M = 5, g1 =

1 � 103, r1 = 3 � 10�1, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0 and

0:5.

The Proposed algorithm is detailed as (2), (3), (6), (7) with elements N = 3, M = 5,

g1 = 1 � 103, r1 = 3 � 10�1, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0

and 0:5.

Figures 3, 4, and 5 show the comparisons for the norm of the gain (kGkk), the training,
and testing of the Least Square, Kalman Filter, and Proposed. The training and testing

RMSE comparisons of (31) are shown in Table 1.

Table 1: Comparisons for the example 1
Strategies Training RMSE Testing RMSE
Least Square 0:0693 0:0153

Kalman Filter 0:0547 0:0367

Proposed 0:0518 0:0153

From the Figure 3, it is observed that all algorithms show bounded norms of gains.

From Figures 4 and 5, it is observed that the Proposed improves both the Least Square and

Kalman Filter because the signal of the �rst follows better the signal of the plant than the

signal of the other. From Table 1, it is observed that the Proposed achieves better accuracy

when compared with both the Least Square and Kalman Filter because the RMSE is smaller

for the �rst. Thus, the Proposed is the best option for the modeling in the example 1.
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Figure 3: Norm of the gain for the example 1

Figure 4: Training for the example 1
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Figure 5: Testing for the example 1

4.2 Example 2

The complex process of the example 2 is detailed as follows [27]:

y(k) = 0:3y(k � 1) + 0:6y(k � 2) + f(u(k � 1)) (33)

with

f(u(k � 1)) = 0:6 sin(�u(k � 1)) + 0:3 sin(3�u(k � 1)) + 0:1 sin(5�u(k � 1))

u(k � 1) = sin
�
2�(k � 1)
200

�
The complex process of equations (1), (33) where inputs are x1(k) = y(k � 1), x2(k) =

y(k�2), x3(k) = u(k�1) and the output is y(k) = y(k). The data of 3000 iterations is used

for the training and the data of the least 200 iterations is used for the testing.

The Least Square of [25] is detailed as (2), (3), (4) with elements N = 3, M = 5,

g1 = 1� 103, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0 and 1.

The Kalman Filter of [26] is detailed as (2), (3), (5) with elements N = 3, M = 5,

g1 = 1 � 103, r1 = 1 � 10�1, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0

and 1.

14



The Proposed algorithm is detailed as (2), (3), (6), (7) with elements N = 3, M = 5,

g1 = 1 � 103, r1 = 1 � 10�1, r2 = 0:2, bvj(1) and bwj(1) employ random numbers between 0

and 1.

Figures 6, 7, and 8 show the comparisons for the norm of the gain (kGkk), the training,
and testing of the Least Square, Kalman Filter, and Proposed. The training and testing

RMSE comparisons of (31) are shown in Table 2.

Figure 6: Norm of the gain for the example 2

Table 2: Comparisons for the example 2
Strategies Training RMSE Testing RMSE
Least Square 0:1892 0:0320

Kalman Filter 0:1125 0:0273

Proposed 0:1087 0:0263

From the Figure 6, it is observed that all algorithms show bounded norms of gains. From

Figures 7 and 8, it is observed that the Proposed algorithm improves both the Least Square

and Kalman Filter because the signal of the �rst follows better the signal of the plant than

the signal of the other. From Table 2, it is observed that the Proposed achieves better

accuracy when compared with both the Least Square and Kalman Filter because the RMSE
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Figure 7: Training for the example 2

Figure 8: Testing for the example 2
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is smaller for the �rst. Thus,the Proposed is the best option for the modeling in the example

2.

5 Conclusion

In this research, a novel algorithm was introduced for the updating of a neural network. The

stability and convergence of the gain in the proposed algorithm were assured by the Lyapunov

technique. From examples, it was seen that the proposed algorithm achieves better accuracy

when compared with both the recursive least square algorithm and extended Kalman �lter

for the modeling of two complex processes. The proposed algorithm could be used to train

a fuzzy system, or it could be used as the updating of an evolving intelligent system. In

the future research, the proposed method will be used for the control, pattern recognition,

prediction, or classi�cation.
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