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‘I see now that the circumstances of one’s birth are irrelevant. It is what you do

with the gift of life that determines who you are.’

Mewtwo - Pokémon: The First Movie

‘I wish there was a way to know you’re in the good old days before you’ve actually

left them’

Andy Bernard - The Office Season 9 Episode 23

‘We feel cold, but we don’t mind it, because we will not come to harm. And if we

wrapped up against the cold, we wouldn’t feel other things, like the bright tingle of the

stars, or the music of the aurora, or best of all the silky feeling of moonlight on our skin.

It’s worth being cold for that.’

Philip Pullman - Northern Lights

‘The Stone Age didn’t end because the world ran out of stones’

Niels Bohr



Abstract

This thesis presents an analysis of Cassini magnetometer data in two different regions of

the Kronian system. An evaluation of aperiodic waves on the equatorial current sheet

is presented; the waves are fitted to a model of a Harris current sheet deformed by a

Gaussian wave pulse. This analysis allows examination of the parameters relating to the

waves, where amplitude of waves is found to increase with radial distance. In addition,

the direction of propagation of the waves is found by resolving the wave numbers in

2-dimensions, where a general outwards propagation is found.

The use of the Harris current sheet also allows the resolution of current sheet

parameters, and it is found that the scale height of the current sheet increases with

radial distance. Additionally, values of the magnetic field in the lobes are found using the

model, which are then used along with the scale heights to estimate the current density

in the azimuthal and radial directions. These values can also be used to calculate, using

the divergence of current, the field aligned currents entering and leaving the ionosphere

where a current entering the ionosphere pre-noon and a current exiting the ionosphere

post-midnight are shown. This current density is then converted to an electron flux in

the upward current region, and could produce an additional 1-11 kR of auroral emission

which is seen in other infrared and ultraviolet data sets.

Additionally, irregular magnetic signatures, such as the aperiodic waves, are found

in the entire system including Titan’s ionosphere. At Titan, a statistical study of the

position of flux ropes finds no spatial dependence other than an increased number of flux

ropes in the sun-lit regions and ram-side regions. A comparison of force-free and non-

force free models is utilised to extract the radii and axial magnetic field of the flux ropes,

and compare the assumptions required for both models. Additionally, deformations to

the models are used to model common asymmetries seen in the magnetometer data and

find that bending a force-free flux rope solves the problem of the direction ambiguity of

using minimum variance analysis and using elliptical cross-sections of flux ropes allows

for a asymmetric flux rope signature.

All together, this thesis explores the varied magnetic phenomena in the Kronian

system and uses them to understand the surrounding environment.
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Chapter 1

Introduction

Saturn is the second largest planet in the solar system and is classed, with Jupiter, as

a gas giant planet due to its thick hydrogen- and helium-rich atmosphere and interior.

Saturn is visible by-eye in the night sky, however was not viewed through a telescope

until Galileo first observed the planet in 1610. The fuzzy shape of the rings through his

telescope led him to believe that Saturn had two large moons, or even arms. Galileo

did however, view the seasons (unknowingly) of Saturn, where 2 years after his first

observations the apparent large moons disappeared and returned again 2 years later.

Almost 50 years later, the Dutch astronomer Christiaan Huygens improved the

optics in telescopes and correctly found that the arms were actually rings, and discov-

ered Saturn’s largest moon, Titan. Soon after, in 1675, the Italian mathematician and

astronomer Giovanni Domenico Cassini discovered the large gap in the rings (the Cassini

division) along with another four of Saturn’s moons. The first orbiting space mission to

Saturn was named for these pioneers.

The Cassini-Huygens mission was the fourth spacecraft to visit Saturn, and the

first to enter orbit around the body. Discussed in more detail later, Cassini entered

orbit in 2004, and after two mission extensions, the mission came to an end in 2017

with a controlled crash into Saturn’s atmosphere. Before Cassini, the planet was visited

by Pioneer 11, along with Voyagers 1 and 2, all of which took unprecedented new data

during flybys. The data of these flybys led to the belief that Saturn was a mid-point

1
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between a rotation dominated magnetosphere, such as that of Jupiter, and the solar

wind driven system of Earth’s magnetosphere (Bagenal, 1992).

Saturn’s largest moon, Titan, is another unique planetary body which is host

to an unexpectedly thick atmosphere (Kuiper, 1944) and is larger than Earth’s Moon

and the planet Mercury. Titan has no measured intrinsic magnetic field, but retains

an ionosphere formed from the ionisation of the thick atmosphere. One of the most

extraordinary features of Titan is the moon’s methane cycle, a methane based cycle

that mimics Earth’s hydrological cycle. Titan’s surface is home to water-ice mountains,

carved with liquid methane rivers, lakes and seas. Titan is tidally locked (like our moon)

to Saturn with an orbital period of 16 days.

In this first chapter, we will explore the fundamental concepts of plasma physics

that are crucial in the understanding of the dynamics and configurations of planetary

magnetospheres. The various controls of the different magnetospheres within the Solar

system will be outlined and the basic physics of magnetodiscs of the giant planets will

be explored with specific emphasis on the Saturnian system and what current literature

informs is the established understanding of this system. Additionally, the current under-

standing of the interaction of Titan, Saturn’s largest moon, with Saturn’s magnetic field

is discussed. We will then conclude with an overview of the contents of this thesis and

their contribution to the overall understanding of the Saturnian and Titanian system.

1.1 Plasma Physics

Plasma is the fourth state of matter, after solid, liquid and gas, which makes up over

99% of visible mass in the universe. Physically, plasma is described as a ionised gas

where an atom or molecule has sufficient energy that its electrons are no longer bound

to the nucleus. When the electrons are no longer bound, the ionised gas is an electri-

cally conducting medium (Crookes, 1879). In the solar system, plasma is found in the

magnetospheres and ionospheres of the planets, in the solar corona, and solar wind.



Chapter 1: Introduction 3

Here on Earth we live our entire lives mainly surrounded by the remaining <1% of

mass. However, plasma and its effects influence our daily lives. From human-made tech-

nology like televisions and fluorescent lights to natural effects such as lightning and the

aurora borealis and australis, plasma surrounds us every day. Kristian Birkeland stated

in 1913 on his theory of a plasma filled universe: ‘It seems to be a natural consequence

of our points of view to assume that the whole of space is filled with electrons and flying

electric ions of all kinds. We have assumed that each stellar system through its evolution

throws off electric corpuscles (early idea of photons or energetic particles) into space. It

is not unreasonable therefore, to think that the greater part of the material masses in the

universe is found not in the solar systems or nebulae, but in ‘empty’ space’ (Birkeland,

1908), describing the first idea that the majority of the universe’s mass is in a plasma

state.

A natural progression in thought, is to infer that due to a large presence of an

electrically conducting medium, a pervasive magnetic field is inherent in the universe.

Although the presence of this ‘galactic magnetic field’ is still debated, the pioneer and

maverick Hannes Alfvén, argued this idea to develop the foundations of magnetohy-

drodynamics (MHD). This concept introduces the constraint of a magnetic field on an

electrically conducting fluid, and will be one of our discussion points in this introduc-

tion. However, it is important to first understand the dynamics of a single particle in a

magnetic field, and the forces acting upon it.

1.1.1 Single Particle Motion

Much of plasma dynamics can be described as the motion of a single particle or collection

of particles. In a uniform magnetic field, Lorentz law:

FFF = q(EEE + VVV ×BBB) (1.1)

states that the electromagnetic force on a test charge is a function of its charge (q),

velocity (VVV = V⊥V⊥V⊥ +
BBBV‖
|BBB| ) and the external electric and magnetic fields (EEE & BBB) and to

a first approximation, a test charge will form a circular motion (when EEE = 0 and BBB is

constant on the time and length scales of the gyration) around the magnetic field with
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a radius of:

rg =
mV⊥
|q|B

, (1.2)

which is called the gyro-radius of the single particle. Here m is mass, and V⊥ is the

velocity perpendicular to the magnetic field. Hence, we find that electrons have a smaller

gyro-radius than ions due to a smaller mass. If velocity parallel, V‖, to the magnetic

field remains constant, the particles follow a helical trajectory (figure 1.1, where the

magnetic field in the diagram also traces the guiding centre of the particle motion). The

frequency at which a particle gyrates around its guiding centre is given by ωg = q|B|
m

(gyro-frequency) which has a gyro-period of Tg =
2πrg
v⊥ . When including a V‖, the particle

has a pitch angle of:

α = arctan

(
V⊥
V‖

)
(1.3)

Particle Trajectory

Figure 1.1: Diagram of a helical particle trajectory along a magnetic field line, mod-
ified from Kivelson and Russell (1995)

As this approach describes a charged particle moving in a circular orbit, it can be

shown that this forms a current loop and hence a magnetic moment

µ = iA, (1.4)

where i is charge per second (current) and can be shown as:

µ =
|q|V⊥
2πrg

πr2
g =
|q|V⊥rg

2
=
|q|V⊥

2

mV⊥
|q|B

=
1
2mV

2
⊥

B
(1.5)
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where the area A is πr2
g and current i is |q|V⊥2πrg

. In the characteristic time scale and length

scale of a system (τ & L) the magnetic moment can be considered invariant, i.e. when

τ > Tg.

We now discuss the motion of a single charged particle in a converging or diverging

magnetic field. If the magnetic moment is constant:

1
2mV

2
⊥

B
=

1
2mV

2sin2(α)

B
= constant (1.6)

We also know that total energy is conserved, hence:

sin2(α)

B
= constant, (1.7)

as B increases or decreases, so must α. Hence in a converging magnetic field, the pitch

angle decreases until sin2(α) = 1 and the particle is moving only perpendicular to the

magnetic field in this instance. The particle then reverses and begins to travel in to

negative direction and α begins to decrease so the particle resumes its helical trajectory.

This particle has been magnetically mirrored. If the magnetic field converges at either

end the particle will bounce from one end to the other if the magnetic field is sufficient

enough to trap the particle.

BmBm

B0

Particle Trajectory

Figure 1.2: Diagram of a particle trajectory which mirrors in a diverging and con-
verging magnetic field, modified from Kivelson and Russell (1995)
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Again, using the invariance of µ it is shown that:

1
2mV

2
⊥0

B0
=

1
2mV

2
⊥m

Bm
, (1.8)

where the subscript 0 denotes the mid-point (in this example) and the subscript m

denotes the point of maximum magnetic field in the plasma, shown in figure 1.2.

Using the conservation of energy we can show that the maximum field required for

a particle to mirror is:

Bm =
B0

sin2(α0)
, (1.9)

where α0 is the pitch angle at the mid-plane. And sin2(α0min) = B0
Bm

where Bm
B0

is the

mirror ratio Rm. Hence, particles with a small pitch angle can pass through the magnetic

mirror and are lost. Particles with these small pitch angles come from the loss cone area

of velocity space. This leads to an anisotropic distribution of velocities. This process

is highly important in planetary magnetospheres, where a converging magnetic field is

found as the dipole field reaches higher latitudes and particles can become trapped and

bounce from one hemisphere to the other.

We now consider an inhomogeneous magnetic field where the gradient in magnetic

field strength is perpendicular to the direction of the magnetic field. As the particle

gyrates into a region of higher magnetic field strength, its gyro-radius decreases, then as

it continues moving into a region of lower field strength the radius increases again. This

is illustrated in figure 1.4b.

The particle’s perpendicular velocity can be described by:

VVV ∇BBB =
1

2
mV 2
⊥
BBB ×∇BBB
qB3

(1.10)

The particle drifts perpendicular to the magnetic field direction and the gradient of mag-

netic field strength. As the direction of gyro-motion, or the guiding centre, is controlled

by the sign of the charge, this process causes the electrons and ions to move differentially

(charge separation) and forms a current (shown in figure 1.3b). This process is important

in Earth’s magnetosphere and contributes to the ring current and is commonly called

the grad-B drift. This ring current is at Earth is not sufficient to stretch the magnetic
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⊙Magnetic field out of page

Electrons Ions

Homogeneous B
V∥ = 0

∇B Drift

⊙
⊙
⊙

E x B Drift

⊙

a)

b)

c)
Vt=0 = 0

Vt=0 ≠ 0

`Curvature’ Drift

⊙

Fd)

Figure 1.3: Diagram of an electron (red) and ion (green) trajectory in a) a homogenous
magnetic field, b) a magnetic field with a perpendicular gradient, c) an additional
electric field and d) an additional force (in this case curvature drift is due to apparent

centrifugal forces.

field to form a magnetodisc, however a stronger current in this area could form a sheet

of current and stretch the dipole like field outwards - which is what is found at the giant

planets. Although, there may not be a magnetodisc at Earth, there is a tail plasma sheet

with a distended field described in section 1.2.2.

However, if the Lorentz law is applied to a curved magnetic field with no electric

field (like a dipole or giant planet magnetodisc) the apparent force is a centrifugal force,

there is a charge dependence and a current is induced (fig 1.4d). The so-called curvature
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drift is given by:

VVV CF =
FFF ×BBB
qB2

=
mV 2
‖

qB2

RRRCF ×BBB
R2
CF

, (1.11)

where RRRCF is the radius of curvature of the magnetic field. The current produced

superposes with the grad-BBB-drift-induced current to contribute to the ring current.

Addition of an electric field perpendicular to the magnetic field will also cause a

drift of particles, however this drift does not cause differential motion of charges and as

such does not generate a current; this is called EEE ×BBB drift and is described by equation

1.12. A perpendicular electric field moves the test particle perpendicular to the magnetic

field, as the particle accelerates, it experiences an increasing Lorentz force perpendicular

to EEE and BBB. Eventually this force causes the particle to move opposite to the qEEE force

from the electric field and is now decelerated by the electric field. Hence, the particle

effectively bounces, or moves in a cycloid trajectory, along perpendicular to both EEE and

BBB due to the Lorentz law (shown in figure 1.3c).

VVV EEE×BBB =
EEE ×BBB
B2

(1.12)

We have described one of three theoretical frameworks describing the motion of

plasma and magnetic field, single particle motion. However, in some scenarios single

particle motion is not appropriate, for example, simulating a large number of particles

in small time steps for a large system will not be possible with current computing power.

However, the second theoretical framework we will discuss was developed to solve this

problem, and that is kinetic theory.

Kinetic theory is a progression of the single particle motion in that a collection

of particles is now described by a velocity distribution f(rrr,VVV , t), where rrr is position,

and VVV is velocity in three dimensions and t is time. The dynamics of the distribution

are controlled by kinetic equations or Vlasov equations which are equations of charge,

current density in single particle distribution functions, and Maxwell’s equations (where

Ampére’s Law includes the displacement current, equation 1.13).

∇×BBB = µ0

(
JJJ + ε0

∂EEE

∂t

)
(1.13)
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In these equations each particle species can be represented as any function, however, a

Boltzmann energy distribution, corresponding to thermal equilibrium, is commonly used.

We can find the number of particles in the distribution by integrating over velocity space:

n =

∫ ∞
−∞

f(rrr,VVV , t)dVVV (1.14)

Further integrals can be used to find the particle flux, momentum flux and energy flux

density of the plasma. To even further simplify this theory, one may track the pro-

gression of these moments in time and space, leading to a fluid description of plasma:

magnetohydrodynamics, the third framework for describing particle motion in plasmas.

1.1.2 Magnetohydrodynamics and Maxwell’s Equations

MHD, as it states, is the understanding of the dynamics and properties of an electrically

conducting fluid in the presence of electric and magnetic fields, along with the forces

they exert on the fluid. Essentially, it is the mathematical and physical framework of

the behaviour of plasma when described as a fluid, and the behaviour of plasma is an

essential concept in this thesis. As MHD is based on a series of assumptions there

are some constraints on when MHD is applicable and a kinetic approach may be a more

physically-accurate way to model the behaviour of some regions in a magnetosphere (e.g.

Titan’s interaction where gyro-radius is greater than Titan radius). The constraints are:

• Ion and electron gyro-period are larger than the characteristic time scale of the

system (τ)

• Ion and electron gyro-radius are smaller than the characteristic length scale of the

system (L)

In addition, we also assume plasma to be quasi-neutral within the characteristic

time and length scales, so that ne (number of electrons) ∼ ni (number of ions). We will

discuss the following parameters of a plasma, ρm mass density, ρC charge density, BBB

magnetic field, EEE electric field, uuu velocity, P pressure, jjj current density, γ specific heat
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ratio, V specific volume and t time. To begin, fluids in general can be described by the

conservation of mass, momentum and the adiabatic process equation:

∂ρm
∂t

+∇ · (ρmuuu) = 0 Conservation of Mass Law

(1.15a)

ρm

[
∂uuu

∂t
+ (uuu · ∇)uuu

]
= −ρm∇Φ−∇ ·PPP +∇ · TTT Conservation of Momentum

(1.15b)

PV γ = constant Adiabatic Process Equation

(1.15c)

The stress tensor TTT incorporates other forces in a system, and in the case of MHD this

includes a magnetic field for which we need Maxwell’s equations:

∇×BBB = µ0jjj Ampère’s Law for MHD (1.16a)

∇×EEE = −∂B
BB

∂t
Faraday’s Law (1.16b)

∇ ·BBB = 0 Gauss’ Law for Magnetism (1.16c)

∇ ·EEE =
ρC
ε0

Gauss’ Law (1.16d)

ε0 and µ0 are the permittivity and permeability of free space.

The continuity equation (1.15a) expresses the conservation of mass, where the rate

of change of mass inside a volume is equal to the mass flowing in/out of the volume. The

conservation of momentum equation (equation 1.15b) states the various forces acting on

the plasma, i.e. gravity (via a scalar potential Φ), pressure tensor PPP and stress tensor TTT

which includes stresses due to the magnetic field and current density of a system (jjj×BBB).

Ampère’s law describes the idea that for any line current a perpendicular magnetic

field is set up. The version presented above is a version of Ampère’s law within the MHD

limit (equation 1.16a) where the displacement current in equation 1.13 is neglected due

to the low-frequency assumption (ω << ωp, where ωp is the plasma frequency and

is given by
√

ne2

mε ). Faraday’s law (equation 1.16b) states that a changing magnetic

field with time gives rise to an induced current which is due to a force (voltage) in a
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circuit system. Conversely, a magnetic field that changes in time can be generated by

an electric field which is changing in space, this law is the foundation of transformers,

electric motors and generators which are at the basis of modern technology. Gauss’ law

for magnetism (equation 1.16c) states that the magnetic field is divergence-less, or for

any closed surface, the amount of magnetic flux entering is exactly equal to the flux

leaving. Gauss’s electric field law (equation 1.16d) states that the net flux of electric

field through a surface is proportional to the electric charge enclosed by said surface.

Gauss’s law is also commonly replaced by the plasma approximation, which states that

ni >> ne due to the aforementioned low frequency assumption.

The conservation of momentum equation (1.15b) shown above is for an individual

species, however within a plasma one has both electrons and ions. By adding both

species a relationship between electric field and current density can be derived called

Ohm’s law :

jjj = σ(EEE + uuu×BBB), (1.17)

where σ is the conductivity of a medium. Ohm’s law is particularly instructive, as

when in a collisionless plasma σ → ∞ and EEE = −uuu × BBB. Substituted into Faraday’s

law (equation 1.3b) this concept represents the frozen-in flux theorem discussed in the

following section.

1.1.2.1 Frozen-in Flux Approximation

A fundamental concept in space and planetary physics is the frozen-in flux approximation

or Alfvén’s theorem. Alfvén stated that ‘In view of the infinite conductivity, every motion

(perpendicular to the field) of the liquid in relation to the lines of force is forbidden

because it would give infinite eddy currents. Thus the matter of the liquid is “fastened”

to the lines of force’ (Alfvén, 1942) meaning that the plasma and magnetic field will

move together.
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S

S’

C

C’ 

dl

B

Figure 1.4: Diagram of a cylinder threaded by magnetic flux, showing the set-up for
deriving frozen-in flux approximation.

To show this mathematically, we embark on a thought experiment: we know,

through Gauss’ law, that magnetic flux must be conserved,

∫ ∫
BBB.dsss = 0, (1.18)

We then consider a surface S bounded by curve C, move with velocity uuu along a length

dlll to become surface S′ bounded by curve C ′. Flux entering the surface S must either

exit at surface S′ or via the side of the presumed cylinder (shown in figure 1.4). Hence,

Gauss’ law becomes:

−
∫
S
BBB(t+ ∆t).nnndS +

∫
S′
BBB(t+ ∆t).nnndS′ +

∮
BBB(t+ ∆t).dlll × uuu∆t = 0, (1.19)

where the first term is flux threading the bottom of the cylinder, the second term is flux

threading the top of the cylinder and the third term is flux threading through the walls



Chapter 1: Introduction 13

of the cylinder. nnn is the normal to the surface. Hence we find:

∫
BBB(t+ ∆t).nnndS′ =

∫
BBB(t+ ∆t).nnndS −

∮
C′
BBB(t+ ∆t).dlll × uuu∆t = 0 (1.20)

We now consider the change of flux in the cylinder over time which can be represented

as:
dφ

dt
= lim

∆t→0

φC′(t+ ∆t)− φC(t)

∆t
(1.21)

We substitute in φ =
∫
BBB.dSSS:

dφ

dt
=

∫
BBB(t+ ∆t).nnndS′ +

∫
BBB(t).nnndS

∆t
(1.22)

Substituting equation 1.20 into 1.22 returns:

dφ

dt
=

∫
(BBB(t+ ∆t)−BBB(t)).nnndS

∆t
−
∮
C′
BBB(t+ ∆t).dlll × uuu (1.23)

=

∫
dBBB

dt
.nnndS −

∮
C′

(uuu×BBB).dlll (1.24)

as BBB.(dlll×uuu) = dlll(uuu×BBB) and using Stokes’ theorem we can convert the second term to

a surface integral to combine into one integral:

dφ

dt
=

∫ [
dBBB

dt
−∇× (uuu×BBB)

]
nnn.dS (1.25)

Hence, if dBBBdt = ∇×(uuu×BBB) then dφ
dt = 0. This equation states that the magnetic field and

the plasma must move together - hence the magnetic field is ‘frozen-in’ to the plasma.

To generalise this equation to form the induction equation we must substitute Ohm’s

law into Ampere’s law:

∇×BBB = µ0jjj = µ0σ(EEE − uuu×BBB), (1.26)

take a cross product of both sides, rearrange to make the time differential the subject

and simplify to return:
∂BBB

∂t
= ∇× (uuu×BBB) +

1

µ0σ
∇2BBB, (1.27)
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where the first term on the right hand side is the advective term or frozen-in term

which controls how the plasma and field are frozen together, and the second term is the

diffusive term, which describes how much the plasma diffuses through the magnetic field.

In the frozen in approximation the second term is considered negligible. The ratio of the

two terms is called the magnetic Reynolds number which can determine if the frozen-in

approximation is correct and MHD is appropriate. A large Reynolds number confirms

the frozen-in approximation, but a Reynolds number of less than one shows that the

plasma can diffuse from the magnetic field.

For a collisionless plasma in space with a magnetic Reynolds number of > 1,

such as the magnetospheric plasma at Earth (discussed further in a following section),

the frozen-in flux theorem is held. However, in some areas of the magnetosphere, a

phenomenon called magnetic reconnection occurs where the field lines effectively break

and reconnect with oppositely directed field lines, in which plasma which is frozen-in

to one field line, becomes frozen-in to another. As such, the criteria for the frozen-in

theorem and MHD must be invalid.

This process occurs in areas of plasma and field regime changes (i.e. current sheets)

where the scale length becomes small and a local breakdown of MHD occurs. These areas

are commonly called x-type neutral lines where the two field regimes are pushed together

with a plasma velocity inflow (Ui), which is converted to a plasma outflow (Uo) along

Figure 1.5: Illustration of a reconnection site with Sweet-Parker geometry from Kivel-
son and Russell (1995). Ui denotes the inflow velocity, Uo is the outflow velocity, Bi is
the inflow magnetic field, Bo is the outflow magnetic field, E is the electric field and L

is the length scale of the diffusion region which is shaded.
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the boundary via a diffusion region at the centre with a magnetic Reynolds number is

less than 1. The magnetic field also reduces to zero at the centre. This is illustrated in

figure 1.5, which shows the Sweet-Parker reconnection geometry (Parker, 1957) which is

one of several theoretical geometries.

1.1.2.2 Ideal MHD

In an infinitely conducting fluid (perfect electric conductor), where the magnetic Reynolds

number is infinite and viscosity is ignored, ideal magnetohydrodynamics can be assumed.

This is where equations 1.15 and 1.16 are reduced to:

∇×BBB = µ0jjj (1.28a)

∂ρ

∂t
+∇ · (ρVVV ) = 0 (1.28b)

ρ

[
∂VVV

∂t
+ (VVV · ∇)VVV

]
= −∇ ·PPP + jjj ×BBB (1.28c)

∂BBB

∂t
−∇× (VVV ×BBB) = 0 (1.28d)

Pressure here is evaluated as a tensor, however it is also common to approximate pressure

as isotropic and as such may be represented as ∇P . We can evaluate the force density

jjj ×BBB by substituting Ampere’s law to get:

jjj ×BBB =
1

µ0
(∇×BBB)×BBB =

1

µ0
(BBB · ∇)BBB − 1

µ0
(BBB ·BBB)∇BBB =

1

µ0
(BBB · ∇)BBB −∇ B2

2µ0
(1.29)

The first term on the right side is the magnetic tension term - or the force that acts to

straighten curved magnetic field lines. The second term is the magnetic pressure term.

The total pressure of a system is an addition of the plasma pressure and the magnetic

pressure. The ratio of the two pressures is called plasma beta, β = p
B2/2µ0

. This factor

shows if the plasma pressure or magnetic field controls the dynamics of the system.
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1.1.2.3 Force-Free or Force-Balanced Systems

When describing magnetohydrostatic equilibrium in plasma, we are describing that the

JJJ×BBB force density is either balanced with the pressure gradients (balanced), or equal to

zero (free) from the conservation of momentum equation (equation 1.30b): JJJ×BBB = ∇P .

Force-free solutions of JJJ×BBB = 0 include magnetic field-aligned current density, or a zero

value for current density.

1.2 Magnetospheres of the Solar System

A magnetosphere is a volume around a body in which all plasma is controlled by the

magnetic field of that body. A magnetosphere can be considered intrinsic, where the

planet or moon itself is producing a magnetic field such as at Mercury, Earth, Jupiter,

Ganymede, Saturn, Uranus, and Neptune. Here, the magnetic field of the planet forms an

obstacle to the incoming solar wind. A magnetosphere may be considered induced where

the draping effect on the incoming magnetic field of the Sun or parent planet induces

a magnetic field at the body. This happens at Venus and Titan, where the ionosphere

is the obstacle to the incoming magnetic field, and other unmagnetised moons where

conducting layers in the interior are the obstacle. In this section we consider the former

and discuss the specifics of the Sun, Earth and Jupiter systems. A following section

outlines the Saturnian system, and the induced magnetosphere of Titan is discussed

further in section 1.4.

Bodies with intrinsic magnetic fields generally have all the basic components de-

scribed below. If the magnetosphere is placed in a super-sonic plasma flow a bow shock

will form where the plasma is shocked to a sub-sonic speed before encountering the body.

The bow shock is aptly named as a comparison to the surface water shock at the head

of a ship’s bow. All planets in the solar system, regardless of intrinsic or induced mag-

netic fields, form a bow shock upstream when the incoming solar wind is super-sonic

(discussed further in the next section).



Chapter 1: Introduction 17

The next boundary is the magnetopause, which is the boundary between the

plasma controlled by the body of interest and the external controller. The position

of the magnetopause can be highly variable owing to its dependence on the balance of

dynamic pressure of the outside medium, the magnetic pressure of the planetary body

and magnetospheric current systems (Russell, 2007). The incoming plasma is sub-sonic

and so the magnetopause is the current-layer which acts to divert the incoming plasma

around the body. One current system is named the Chapman-Ferraro current and it

confines the internal magnetic field and plasma (Chapman and Ferraro, 1929) by use

of the Lorentz force. A particle from the solar wind that encounters a magnetic field

(at a boundary like the magnetopause) will sense a uuu×BBB force and will partially gyrate

before exiting the boundary. The different gyration directions of electrons and ions cause

a charge separation where electrons are deflected in the opposite direction to ions. Be-

tween the bow shock and magnetopause lies a turbulent layer named the magnetosheath,

this volume is occupied by shocked plasma and magnetic field that is now sub-sonic but

of external origin to the planetary body.

Inside the magnetopause is the magnetosphere, where all plasma is controlled by

the planetary body of interest. The magnetospheres of the solar system vary widely

and we will discuss the main attributes and characteristics of the Sun’s, Earth’s and

Jupiter’s magnetospheres to give a background for the main topic of this thesis: Saturn’s

magnetosphere.

1.2.1 The Sun and Solar Wind

The solar wind is a stream of electrically charged particles that originate from the Sun’s

upper atmosphere (corona). The solar wind is highly variable temporally, and spatially

is often observed to be faster over the poles of the Sun than at the equator (McComas

et al., 2003).

The Sun’s magnetic field carves out a bubble in the interstellar medium where

all plasma and magnetic field is dominated by the Sun, hence it has its own mag-

netosphere named the heliosphere. Similar to the planetary magnetospheres it has a

heliopause, which is analogous to the magnetopauses of the planets, and heliosheath
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(magnetosheath). Thus the Sun’s magnetic field can be described as a very large mag-

netosphere.

Frozen-in to the solar wind is the interplanetary magnetic field (IMF) which is the

internal field of the Sun, formed by a dynamo action in the Sun’s interior convective

zone, that is dragged outwards by particles ejected from the Sun (Parker, 1970). The

Sun also rotates with a differential rate of 24.5 days at the equator and up to 38 days

near the poles (Snodgrass and Ulrich, 1990). This rotation with the addition of outward

flows of particles wraps the magnetic field into a spiral shape. This field system is named

the Parker spiral (Parker, 1958). The flapping nature of the heliospheric current sheet is

attributed to differences in the angle of the magnetic dipole axis and the Sun’s rotational

axis (Owens and Forsyth, 2013) and produces a flapping of the heliospheric current sheet,

formed at the point where the field reverses direction about the magnetic equator.

Figure 1.6: Diagram of the Sun’s Parker spiral current sheet, modified from Dryer
(1998) where the Sun is found at the centre.

The solar cycle is an ∼11 year cycle where solar activity increases to a maximum

(solar maximum) and decreases to a minimum (solar minimum). This cycle describes

magnetic activity such as sun spots and flares on the Sun’s surface (photosphere), and

hence the amount of electromagnetic radiation and particles ejected. The solar cycle can

be easily tracked by the number of sunspots that appear in the photosphere and by the

electromagnetic radiation that arrives at Earth due to the increased activity on the solar

surface (i.e. flares, coronal mass ejections) during solar maximum. This also means that

magnetospheric processes at Earth are also affected by the solar cycle due to the strong
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solar wind control of Earth’s magnetosphere. It has been shown that auroral activity

increases during solar maximum and a correlation between low activity and reduced

global surface temperatures has been presented (e.g. Lassen and Friis-Christensen, 1995;

Rind et al., 2008).

The main focus of this thesis is the magnetosphere of Saturn, however as the

magnetospheres of the solar system are, to some degree, affected by the the solar wind

an interplanetary magnetic field (IMF) it is important to understand the nature of

the solar wind at Saturn’s distant orbit. The solar wind exhibits periodic compression

regions (regions of denser and higher magnetic field strength) due to rotating features

on the surface, where the magnetic field can reach ∼0.5 - 2.0 nT at 10 AU. In a region

of rarefaction it is commonly ∼0.1 nT.(Jackman et al., 2004). Additionally, there are

transients and disordered periods where a periodic compression/rarefaction pattern is

not apparent (e.g Moldwin et al., 2000). The Parker spiral angle (the angle between the

tangential and radial velocities of the solar wind) increases from ∼ 45◦ at Earth to ∼ 90◦

at Saturn, along with the steepening of shocks present in the solar wind between 1-10

AU.

1.2.2 Earth

The field produced by the Earth’s magnetic field is similar to that of a bar magnet,

where the south pole of the magnet lies around 11◦ from the northern geographic pole

and the north pole of the magnet lies near the southern geographic pole at the time of

writing. In reality, however, Earth’s magnetosphere does not resemble a perfect sphere.

There are a number of external and internal processes that act to deform and warp the

magnetosphere. The main process is the aforementioned solar wind, which acts to squash

the front of the Earth’s magnetic field and elongate and stretch the night side which is

named the magnetotail. Figure 1.7 shows these regions.

Circulation of magnetic flux at Earth is dominated by the Dungey cycle (Dungey,

1961, 1963)]. The Dungey cycle describes the convection of plasma and magnetic flux

over the polar cap driven by magnetic reconnection on the dayside and nightside of

Earth. Figure 1.8 shows that when the interplanetary magnetic field (IMF) is oriented
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Figure 1.7: Diagram of Earth’s magnetosphere. Image credit: ESA/C. T. Russell

opposite to Earth’s magnetic field, we have the conditions for reconnection at site 1

in the diagram. These newly reconnected field lines contract due to tension and the

solar wind ends are dragged backwards (2 and 3) to form the tail lobes, which then sink

into the tail where once again the fields are opposing and conditions for reconnection

occur (4). Magnetic field and plasma is then ejected from the tail via a plasmoid (5),

and the magnetic field lines that are still connected to Earth snap back into a dipolar

arrangement (6). Magnetic flux then travels around the sides of Earth, to begin the

process again. This process occurs on the time scale of a few hours (Cowley, 1982).

Earth’s tail is a dynamic region of the magnetosphere, where as we described

previously, reconnection can occur between the two lobes, as well as plasmoid formation

and release, and dipolarisation of the magnetic field. Figure 1.7 shows a region named

the plasma sheet, this region is home to a current which is set up due to the opposing

magnetic field within each lobe. The position and movement of the current sheet at

Earth is controlled by a number of external and internal drivers. We know that the

magnetosphere is affected largely by the IMF and the average position of the plasma

sheet is controlled by the incoming solar wind flow angle and changes in the components
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Figure 1.8: Diagram of the Dungey cycle at Earth, [Seki et al. (2015), (courtesy of
Steve Milan). The solid black lines are magnetic field lines, the dotted lines show the
direction of velocity of the field lines and circled dots show the electric field. Processes

numbered are described in the text.]

of IMF will cause a twisting of the neutral sheet (e.g. Tsyganenko and Fairfield, 2004).

The plasma sheet will always reside between the two magnetotail lobes and these flap

in the IMF like a flag flaps in the wind. Larger twisting and waving of the plasma sheet

can be caused by orientation and direction changes of the IMF (e.g. Case et al., 2018).

Small scale waves and disturbances are also reported (e.g. Sergeev et al., 2004).

1.2.3 Jupiter

Jupiter’s magnetosphere is the largest object within the solar system, and has vast dif-

ferences to the magnetosphere of Earth. Jupiter’s magnetosphere is 10 times larger than

Earth’s in terms of field strength and is nearly 100 times larger (Brice and Ioannidis,

1970) in volume. Jupiter’s magnetosphere is rotationally driven, this means that as

Jupiter rotates every 9 hours and 55 minutes, part of the magnetosphere is also at-

tempting to rotate with the planet. Additionally, Jupiter’s volcanic moon Io acts to load

∼1000’s kg s−1 of plasma into the magnetosphere (Brown, 1994). This process com-

bined with a short rotation period means that Jupiter’s magnetosphere is stretched at

the equator by the centrifugal force into a large washer-shaped disk (Piddington, 1969;

Smith et al., 1974) (Figure 1.9).
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Mass loading of the magnetosphere, due to the large amount of internal plasma

sources, acts to set up a current system in the magnetosphere that attempts to ‘speed’

the plasma up to co-rotation. The continuous addition of mass means the field becomes

swept backwards so that it may transmit stress from the ionosphere to the newly created

plasma, and as such a current is pulled from the ionosphere along the field lines to the

point at which the magnetic field is starting to sub-corotate. The current then moves

radially outwards along the current sheet, acting to enforce corotation of the plasma and

magnetic field, and is theorised to return along the magnetic field to a higher latitude

in the ionosphere, which is then closed through the conducting ionosphere (e.g. Hill,

1979; Southwood and Kivelson, 2001; Cowley and Bunce, 2001; Khurana et al., 2004,

and references therein).

Jupiter’s equatorial current sheet is present in all local time areas of Jupiter’s mag-

netic field, as it exists between the two oppositely directed lobes of the magnetosphere.

As Jupiter’s magnetic dipole is offset by 10◦ from the rotational axis, this means the

Figure 1.9: Diagram of Jupiter’s magnetosphere from the side, Image credit: Max
Plank Inst.
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Figure 1.10: Diagram of the Vasyliunas cycle at Jupiter looking down on the equato-
rial plane from above (left) and from the side (right) (Vasyliunas, 1983)

current sheet moves above and below the rotational equator every 9.9 hours in a flapping

motion [e.g Smith et al. (1974)]. Additionally, smaller scale movements of the current

sheet have been seen in magnetometer data by Russell et al. (1999) as the current sheet

was moving over the Galileo space craft.

Circulation of plasma and flux in Jupiter’s magnetosphere is controlled by a process

named the Vasyliunas cycle (Vasyliunas, 1983). Figure 1.10 describes this cycle where

plasma is attempting to rotate with the planetary rotation period, is funnelled around

the dayside of the magnetosphere and stretches the magnetic field by the frozen-in effect

into a washer shaped disc (1). As the plasma travels around, the washer shape breaks

down due to reconnection at the x-line and plasmoid formation at the o-line (denoted

by a line of ’x’ and ’o’ on the left plot). Finally at (4) we see a release of the plasmoid

down the tail with plasma being lost. The remaining plasma is funnelled back around

the dayside by the magnetic field to begin the process again. In addition to this ideal

theoretical cycle, Kivelson and Southwood (2005) show the importance of instabilities on

the reconnection and plasma flow in the tail region of the magnetosphere. A streaming

outflow of plasma resulting from an extreme instability is expected between (1) and (2)

in figure 1.10, which then causes disconnection of plasmoids and depletion of plasma on
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the closed field lines as the cycle moves around to (3). The reconnected flux tubes then

slowly flow sunward in the dawn flank.

1.3 The Saturnian System

1.3.1 Overview of Saturn’s Magnetosphere

The magnetosphere of Saturn was first detected in-situ in 1979 during the first fly-by

of Saturn by the Pioneer 11 spacecraft and is the second largest in our solar system,

after Jupiter. Saturn’s magnetosphere is, for the most part, rotationally driven like

Jupiter’s (Southwood and Kivelson, 2001). Saturn rotates roughly once per 10.7 hours

and internal plasma sources, such as Enceladus and the other satellites, the rings and

the planet itself (e.g. Jurac et al., 2002; Tokar et al., 2005; Pontius and Hill, 2006; Felici

et al., 2016) operate to stretch the field radially to produce the magnetodisc.

The main internal source, Enceladus at 4 RS , ejects up to 1000 kg of water vapour

per second into the magnetosphere (e.g. Jurac et al., 2002; Ingersoll and Ewald, 2011;

Fleshman et al., 2010a,b, 2013), some of which, up to 100 kgs−1 (Jurac et al., 2002),

is then ionised and picked up by the magnetic field to corotate with the planet. The

magnetodisc forms from the point where centrifugal stresses, caused by the mass loading

of these internally sourced plasmas, balance gravitational force and magnetic tension

(Arridge et al., 2007). This occurs at ∼ 15 RS and continues to the magnetopause

causing the field to become increasingly azimuthal (e.g. Went et al., 2011a).

Field structure in the azimuthal direction is additionally affected by the rotation of

Saturn and solar wind conditions. In the distant magnetosphere, the magnetic field lines

are swept-back due to subcorotation of plasma causing an increasingly azimuthal field

with radial distance. Swept-forward field is also shown on the dusk-side magnetosphere

where confinement by the solar wind causes the plasma to be pushed forward into the

corotation direction (e.g. Delamere et al., 2015). The dynamic pressure of the solar wind

also affects the azimuthal field structure in the day-side region. High dynamic pressure



Chapter 1: Introduction 25

causes the dayside magnetosphere to compress, which is then closer to the corotation

breakdown region which leads to a increasingly corotating dayside plasma with fewer

swept-back and swept-forward field lines on the dawn and dusk flanks respectively due

to the effects of the Chapman-Ferraro currents. The noon-sector may also experience

super-corotating plasma, and hence swept-forward fields, during times of transient solar

wind compressions along with the disappearance of the current sheet during times of

high solar wind pressure (Southwood and Kivelson, 2001; Kivelson et al., 2002; Hanlon

et al., 2004; Arridge et al., 2008a; Davies et al., 2017).

Inside of ∼ 6 RS the internal field of Saturn is dominant and yields a dipole-

like field (Connerney et al., 1981; Bunce et al., 2007; Kellett et al., 2009). Saturn’s

internal field is aligned to within 0.01◦ of the rotational spin axis (Dougherty et al.,

2018), and the magnetic north pole is the Kronographic north pole, opposite to Earth’s

configuration (Russell and Dougherty, 2010). Saturn’s magnetic field has quadropole and

higher components, however they are much weaker than the dipole and do not affect the

analysis presented further in this thesis. The magnetic field is slightly shifted towards

the north pole by 2808.5 ± 12 km (Dougherty et al., 2018).

Saturn’s magnetic field is also compressed on the day-side by the solar wind and

extended to form a magnetotail, similar to Earth’s, on the night-side. The position of

the magnetopause has been shown to have a bimodal distribution with peaks at 16 and

27 RS with an average of 22 RS (Slavin et al., 1985; Arridge et al., 2006; Achilleos et al.,

2008; Pilkington et al., 2015b) at the sub-solar point, where in the time frame of study,

the bimodal distribution was not related to the solar wind dynamic pressure, and as

such must be a consequence of internal processes. Additionally, the magnetopause was

shown to extend further on the dusk flank than the dawn flank as well as exhibit polar

flattening (Pilkington et al., 2015b). Further to this the bow shock is situated at an

average distance of 28 RS (Went et al., 2011b).

We have previously discussed the Dungey and Vasyliunas cycles, the circulation

patterns in Earth’s and Jupiter’s magnetospheres. Saturn is often thought of as a mid-

point between both Earth and Jupiter, and as such a combination of both processes occur

in the magnetosphere. Badman and Cowley (2007) theoretically suggest in the outer
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Figure 1.11: Diagram of the circulation pattern in Saturn’s magnetosphere (left) and
how that maps to the ionosphere (right) from Gombosi et al. (2009) modified from
Cowley et al. (2004). Left shows the system from above Saturn from a distance, and
right shows the same system mapped into the northern ionosphere of Saturn. Red lines
shows a Vasyliunas-type circulation, blue shows a Dungey-type circulation and green
shows the magnetopause. Solid lines are plasma streamlines, dashed lines are boundary

streamlines.

magnetosphere both circulation patterns are important under compressed solar wind

conditions. This can be shown where a region dominated by the Vasyliunas cycle (inner

magnetosphere) will have heavier ions associated with the internal sources, whereas the

area dominated by the Dungey cycle will have lighter, hotter externally sourced ions.

Figure 1.11 shows three regions of plasma circulation. As described the Vasyliunas

cycle (red) is dominant in the inner corotating magnetosphere, and the Dungey cycle oc-

curs generally under northward IMF (i.e. opposite sense to Earth), so that reconnection

at the magnetopause can occur and flux is opened to the solar wind. This occurs only in

the outer magnetosphere as the open flux is convected with the solar wind, however the

ionospheric end of the flux tubes are being convected anti-sunward in a single circular

convection pattern. A Dungey style x-line is then formed in the nightside (blue dotted)

where the open field lines are closed via reconnection and flux is returned via the dawn

magnetosphere.

In addition to the plasma circulation pattern described above, Saturn and Jupiter

also show evidence of the importance of solar wind-magnetosphere coupling via inter-

mittent small-scale reconnection and viscous interactions (e.g. McComas and Bagenal,
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2007; Delamere and Bagenal, 2010; Delamere et al., 2015) such as Kelvin-Helmholtz in-

stabilities (Desroche et al., 2013; Masters, 2018). Delamere and Bagenal (2013) suggest

that the magnetotail structure is significantly affected by the viscous interactions at both

Jupiter and Saturn.

1.3.2 Saturn’s Magnetodisc and Current Sheet

A planetary magnetodisc is formed when the centrifugal force acting on the plasma

sourced from Enceladus (at Saturn) is balanced with the gravitational force of the planet

and the tension force of magnetic field. Hence, if the tension force cannot sustain a

dipole-like arrangement, then the field stretches into a magnetodisc. This arrangement

of magnetic field and centrifugal force confines the plasma at the equator to form the

magnetodisc current sheet. As centrifugal potential scales with radius, a more stretched

field line will find that the particles are more closely confined to the equator than on a

more dipolar field line if they had the same kinetic energy and as more mass is added to

the current sheet the magnetic field will become increasingly stretched.

The dayside magnetosphere at Saturn has been found to be quasi-dipolar like

Earth, and early observations by Voyager and Pioneer concluded that a magnetodisc

was not present (Smith et al., 1980; Connerney et al., 1983). However, after the arrival

of Cassini, Arridge et al. (2007, 2008a) show that a magnetodisc, similar to Jupiter’s,

was present in the dusk flank and dayside of Saturn’s magnetosphere and that the day-

side magnetodisc is suppressed at times of high solar wind dynamic pressure when the

magnetopause was inside of 23 RS , which was the case during the Voyager and Pioneer

flybys.

Figure 1.12 shows the distinctive bowl shape of the current sheet. Arridge et al.

(2008b) showed that during the first part of Cassini’s mission at Saturn, the current

sheet was displaced northward from the rotational equator, where the current sheet and

magnetodisc become parallel with the solar wind flow only in the outer magnetosphere.

This displacement was shown to be a seasonal effect where, after solstice in 2009, the

current sheet was displaced to the south of the rotational equator. The bowl shape

is a feature of the middle and outer magnetosphere, where the hinging distance is the
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Figure 1.12: Figure showing a graphic of the bowl shape of Saturn’s equatorial current
sheet. a) shows a slice through the Sun-Saturn meridian and b) shows the system from

above in 3 dimensions Arridge et al. (2008b).

characteristic distance over which the current sheet deviates away from the rotational

equator. Arridge et al. (2008b) estimated this to be 15-30 RS . Thus, if an observer

were to be stationary in Saturn’s magnetosphere for a Saturnian year, the observer

would detect one full period of the bowl-shape wave in the magnetic field measurements.

Seasonal differences are also present in the current sheet thickness. Sergis et al. (2011)

shows that the thickness of the current sheet is highly variable between seasons (and even

between Cassini revolutions (see also Kellett et al., 2009)) and exhibits a north-south

asymmetry in the plasma sheet thickness.

Other periodicities in the current sheet are present, such as the near rotation rate

flapping at around 10.7 hours which causes the current sheet to move up and down

from a central position (Arridge et al., 2011; Provan et al., 2012). The flapping motion

is thought to originate from two rotating magnetic perturbations in each hemisphere

(e.g. Andrews et al., 2010; Southwood and Cowley, 2014). The periodicities in Saturn’s

magnetosphere are also though to act to thicken and thin the current sheet at a beat

period as the two rotational perturbations do not have the same period (Thomsen et al.,

2017). Also present are non-flapping and non-bowl dynamics which were explored by

Arridge et al. (2007) as a tool to measure the stress balance in the magnetodisc, however,

a statistical study of this pervasive phenomena (analogous to the small-scale movements

presented in Russell et al. (1999)) and its sources has not been attempted.
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Current density has been mapped by Sergis et al. (2017) from 5 - 16 RS using

stress balance in the magnetosphere showing that the thermal pressure outside of 12 RS

is dominated by the hot plasma pressure (hot ions) with some local time differences. The

azimuthal current density calculated from this study was shown to be enhanced from

post-noon to midnight compared to the post-midnight to noon sector inside of 13 RS .

Outside the azimuthal current is found to be strongest in the night and dawn sectors

with a peak of 100 - 115 pA/m2. In this same radial range, Kellett et al. (2011) showed

that the strongest currents were found in the dusk-midnight sector with an increase in

the morning sector at the radial extent of the study. The authors also show a temporal

variability of a factor of 2-3 with increasing variability with radial distance. The current

density between 2005 and 2006 was found to be ∼ 90 pA/m2 at 9 RS which reduced to

∼ 20 pA/m2 at 20 RS . Carbary et al. (2012) showed, through the use of pertubation

magnetic fields, a peak of current density at 10 RS of ∼ 75 pA/m2. The authors study

the radial distances between 3 and 20 RS and calculate a total ring current in this area of

9.3 ± 1.0 MA. Current density in Saturn’s magnetosphere has yet to be mapped outside

of ∼ 20 RS in all local times for the magnetodisc, along with the vertical structure of

current density in the middle and outer magnetosphere.

1.4 Titan

Titan orbits Saturn at a mean distance of 1,221,850 km (∼20 RS). The moon is in a

synchronous rotation with Saturn and so rotates at the same rate as it orbits, which

is 15.94 Earth days. Titan is generally found within Saturn’s magnetosphere, however

when Titan is near the sub-solar point of Saturn’s magnetosphere, the moon can be found

in Saturn’s magnetosheath or solar wind during a compression of Saturn’s magnetic field

caused by a higher solar wind dynamic pressure (figure 1.13b). During the Cassini

mission, over 120 flybys of Titan were executed, they are named T(number or letter

corresponding to the flyby), e.g. TA is the first flyby, however after the release of Huygens

the nomenclature turns to a numbered system - T3 is the first flyby after Huygens was

released upon flyby TC.
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Titan’s interaction with Saturn’s magnetosphere when the moon is inside the mag-

netopause is varied and unique in many ways. Firstly the corotation of Saturn’s mag-

netosphere means that the ram side (hemisphere facing incoming corotating plasma)

of Titan is generally found on the anti-orbital facing hemisphere, however, due to the

orbital motion of Titan, this is also different to the hemisphere of the moon that is lit by

the Sun. The overlap between the ram and sunlit hemispheres changes as Titan orbits

Saturn. This makes Titan’s ionosphere and atmosphere, and their interaction with the

incident plasma a unique environment to study.

Titan is the only moon in the solar system known to harbour a dense atmosphere

that includes cloud, haze layers and precipitation. The atmosphere of Titan is comprised

of a similar layer system found in Earth’s own atmosphere. The main constituent of

Titan’s atmosphere is molecular nitrogen (N2), followed by methane (CH4) and hydrogen

(e.g. Coustenis et al., 1989; Coustenis and Bézard, 1995; Cravens et al., 2006). Molecular

nitrogen is also the major constituent of Earth’s atmosphere. However, as Titan is over

10 times further from the Sun than Earth the average temperature at the surface is ∼ 90

K compared to a value of ∼ 270 K at Earth (Mitchell and Lora, 2016). Additionally, due

to the higher density of Titan’s atmosphere and the lower gravity, Titan’s atmosphere

Figure 1.13: Figure showing Titan’s orbit (white dotted), Saturn’s bow shock (grey
solid) and magnetopause (white solid) with Saturn and it’s rings at the centre for a)
nominal solar wind pressure and b) high solar wind pressure where Titan is in the

magnetosheath. (Bertucci et al., 2008)
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Figure 1.14: Figure 2 from Edberg et al. (2010) showing observed altitude profiles
of (a) the electron density, (b) the electron temperature, (c) the thermal pressure, (d)
the magnetic pressure and (e) thermal plus magnetic pressure. Black solid lines show
median values. The black dashed line in e) shows the approximate magnetospheric ram
pressure and the green dotted line shows the average peak pressure when only including

ram side data. An altitude of 1000 km is ∼ 0.4 RT

extends far further (exo-base found up to 1600 km (Cui et al., 2008)) in altitude than

Earth’s.

Titan’s ionosphere (conducting layer of Titan’s atmosphere) is found within the

thermosphere, at between 1000-2000 km altitude. The height of the maximum electron

and ion production peak is found using a one-dimensional photochemical model at around

1100 km at zenith angles of around 60◦, and at 1195 km at zenith angles of around 90◦

(Keller et al., 1992). Edberg et al. (2010) shows in figure 1.14 a statistical study of

all ionospheric properties during Titan flybys up to publication in 2010. A median

maximum electron production is found at between 0.4 and 0.6 RT , which is 1030-1545

km. Figure 1.14(b) also shows an increase in electron temperature with altitude up to 1

RT where temperature levels out to a value of 0.5 eV.

Sources of this ionisation peak are found using models such as Keller et al. (1992)

and Ip (1990). Keller et al. (1992) showed that photoionisation is the main source on

the dayside, however magnetospheric electron precipitation is also a significant producer

in both the day and night sides. Both models predict that HCNH+ is the main ion at

the peak density as both N+
2 and CH+

4 react to give HCNH+. However, reexamination

by Fox and Yelle (1997) showed that HCNH+ is not the main ion at the density peak,

but hydrocarbon chains with 3 or more carbon atoms (CxH
+
y ) are the main constituent
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above 1000 km. Further examination by Keller et al. (1998) shows that HCNH+ is the

main ion below 1200 km but agrees that the peak density is made primarily from CxH
+
y

ions. Minor production methods in Titan’s ionosphere also include cosmic rays at low

altitudes (Capone et al., 1976), and proton and ion precipitation (Cravens et al., 2008).

During the Cassini era, it was now possible to have a larger data set of plasma

data in Titan’s ionosphere. Cravens et al. (2006) showed that HCNH+ and C2H
+
6 are

the major ions in the ionosphere, and Ågren et al. (2007, 2009) also show from data

that magnetospheric impact ionisation is a significant production method, but solar

EUV is the main production method for the dayside ionosphere. However, Cui et al.

(2010) also shows that the nightside ionosphere may be populated by transport from

the dayside. If impact ionisation from magnetospheric electrons is a major contributor

to the ionosphere, the question that needs to be addressed is: how are the electrons in

Saturn’s magnetosphere reaching Titan’s ionosphere? Gan et al. (1992) suggested that

electrons could reach the ionosphere by travelling along draped magnetic field lines from

the far wake region.

Altitude variations such as those discussed previously in smaller chain hydrocar-

bons and nitrogen ions are also present in heavier ions such as longer chain hydrocar-

bon ions. These long chain hydrocarbons formed from photon and electron impacts of

methane and molecular nitrogen increases with altitude as the probability of the photons

and electrons reaching lower in the atmosphere is reduced due to the opacity of the haze

layers and clouds and increasing density (Sittler et al., 2009).

1.4.1 Titan’s Magnetospheric Interaction

As previously mentioned, Titan’s orbit (at 20 RS) can be co-located with the magne-

topause sub-solar position under high solar wind dynamic pressure, meaning that Titan

is sometimes found in the magnetosheath or solar wind. This variable environment leads

to the changing draped field around Titan (figure 1.15). Titan itself lacks an intrinsic

magnetic field and as such it is the interaction of Titan’s induced magnetic field that

will be discussed. The induced magnetic field is controlled entirely by the surrounding

magnetic field. Simon et al. (2010, 2013) classified all of Cassini’s flybys of Titan from



Chapter 1: Introduction 33

TA to T85 with regards to their environment, specifically the ambient field outside of the

interaction region, the state of the induced magnetosphere (how far it has deviated from

a steady-state draping picture) and which part of the induced magnetosphere Cassini

sampled, the following paragraphs discuss these various environments.

Titan has been observed once in the solar wind (Bertucci et al., 2015), where a

well-defined bow shock and an induced magnetosphere of IMF origin field were identified.

Subsequently, Feyerabend et al. (2016) applied a hybrid simulation code which repro-

duces the features seen in the magnetometer data well and shows that the interaction

is due to a steady-state interaction of Titan with the solar wind. Additionally, Omidi

et al. (2017) showed that when Titan exits the bow shock of Saturn, this results in a

deformed bow shock around both obstacles, shown in figure 1.16.

Titan has been observed in the magnetosheath of Saturn on a handful of occasions.

This interaction was again modelled by the hybrid simulation code by Simon et al.

(2009), where the authors show that the code can accurately model the abrupt change

in environment and a sharp increase in density in the ionosphere during flyby T32. The

abrupt changes in the environment give rise to another phenomenon found at Titan -

fossil fields. Fossil fields are remnants of a previous magnetic environment which has been

frozen-into the ionosphere of Titan and carried through another magnetic environment

Figure 1.15: Figure from Dougherty et al. (2006) showing the draping of magnetic
field lines in the vicinity of a conducting obstacle. Left shows the (X,Z) plane in TIIS
co-ordinates at Titan where the plasma flow is along X. Right shows he (Y,Z) plane.
The plasma is slowed down by the obstacle, and the field is draped around. Dash lines

denote field lines that are moving through the conducting material.
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Figure 1.16: Figure from Omidi et al. (2017) which shows the single deformed bow
shock in the simulation as Titan exits Saturn’s magnetosphere.

to then be detected by Cassini at a later time. Bertucci et al. (2008) first noted this

magnetic memory of Titan, and that reconnection could be the cause of the removal

of fossil fields inside the induced magnetosphere. Feyerabend et al. (2016) shows in

simulation that a bundle of differently oriented IMF is captured in Titan’s ionosphere

and remains there after the solar wind IMF rotates.

However, Titan mainly resides inside Saturn’s magnetosphere though this does not

mean Titan is in a static system either. As described in section 1.3, Saturn’s magne-

tosphere is home to a current sheet and lobe structure which are both dynamic envi-

ronments. Titan resides in the equatorial region, however we discussed earlier how the

current sheet is pushed into a bowl shape, and as such will cause Titan to be mainly in

the southern lobe of Saturn’s magnetic field before equinox in 2009 and in the northern

lobe post-equinox. The current sheet also flaps with a near planetary rotation rate which

will then flap over Titan creating a highly dynamic interaction.

1.5 Flux Ropes

Flux ropes are ubiquitous throughout the solar system; they consist of bundles of mag-

netic field lines, where the field strength is strongest at the centre where the field is
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Figure 1.17: Figure from Wei et al. (2010) showing interior structure of a flux rope,
modified from Russell and Elphic (1979).

aligned with the axis of the flux rope. As we move away from the centre of the rope the

field becomes more helical or azimuthal around the axis of the rope. This design can be

seen in figure 1.16, where each layer is cut away and the helical structure can be seen

becoming more azimuthal with distance from the flux rope centre. They are common in

the Sun’s photosphere and corona, and can be attributed to active regions and the release

of coronal mass ejections and other explosive solar activity. Additionally, large scale flux

ropes are found in the solar wind, named ‘magnetic clouds’ where these magnetic clouds

can interact with each planet’s induced or intrinsic magnetosphere. (see Ishibashi and

Marubashi, 2004; Romashets and Vandas, 2005; Vandas et al., 2005; Paissan et al., 2005)

Flux ropes are also found in planetary ionospheres such as those at Venus (Russell

and Elphic, 1979; Elphic et al., 1980), Mars (Vignes et al., 2004; Briggs et al., 2011) and

Titan, as well as on the magnetopauses of planets with intrinsic magnetic fields such as

Saturn (e.g. Russell and Elphic, 1978; Jasinski et al., 2016). Mercury’s magnetotail is

also host to flux rope ‘showers’ which are a large number of flux ropes that were seen to

pass the Messenger spacecraft very quickly and in quick succession, due to the intense

and active interaction with the solar wind at such a small distance from the Sun (e.g.

Slavin et al., 2009, 2010, 2012; DiBraccio et al., 2015). As flux ropes are found in most

plasma environments in the solar system, they are certainly an important feature of the

interaction between different plasma environments, different magnetic environments and

even interactions with neutral particles, for example, in atmospheres and exospheres.

A number of different mechanisms have been postulated to describe the formation

of flux ropes. At Mercury, a strong dependence on flux rope formation and IMF reversals
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is found, leading to the understanding that flux ropes in the dayside magnetosphere of

Mercury are formed through reconnection and then move quickly down tail (e.g. Kidder

et al., 2008; Slavin et al., 2009; Leyser et al., 2017). Reconnection is thought to be a

possible formation mechanism at Mars also, where the crustal magnetic fields reconnect

with the IMF to form flux ropes anchored to the surface fields Beharrell and Wild (2012).

However, flux ropes at Mars were also found to be oriented perpendicular to the IMF

(Briggs et al., 2011), which is opposed to the findings of random orientation found by

Vignes et al. (2004). Additionally, (Briggs et al., 2011) find that there is very little

correlation with the crustal fields and flux rope occurrence and occur more frequently

when the solar wind has low dynamic pressure.

Other examples of flux ropes are found in the Venus ionosphere, where their for-

mation is thought to be from processes originating from the planet, rather than the solar

wind (e.g. Elphic et al., 1980) such as thermal plasma variations, atmospheric waves

or velocity shears (Elphic et al., 1981; Luhmann and Elphic, 1985; Luhmann, 1990).

Another proposed formation mechanism is discussed in Wei et al. (2010), where the

flux ropes are formed at the ionopause and sink into the ionosphere, this also explains

the helicity separation, where right-handed flux ropes are found on the dusk flank and

left-handed ropes on the dawn flank (if Venus’ rotation was not retrograde).

Flux ropes at Titan were first discussed by Wei et al. (2010), where two unusually-

large spikes in magnetic field magnitude were found in Cassini magnetometer data. These

spikes were found to adequately fit the force-free assumptions and so are considered flux

ropes. Additionally, Wei et al. (2011) shows a highly unusual very strong magnetic field

spike during the T42 flyby of Titan where the field strength exceeds all known values

seen at Titan before. As yet, no statistical study of the flyby data for flux ropes has

been attempted.

1.6 Content of This Thesis

In this chapter, a brief overview of the basic plasma concepts and how they help us

to understand the different planetary magnetospheres in the solar system is presented.
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We have specifically discussed the Saturnian system, with emphasis on the equatorial

current sheet. Additionally, we discussed the interaction and environment of Titan in

Saturn’s magnetic field, and presented a short review of literature on flux ropes in Titan’s

ionosphere.

This thesis attempts to answer a number of open questions in the Saturn-Titan

system, such as:

• What are the non-flapping and non-bowl related movements of the current sheet

examined by Arridge et al. (2007)?

• Map the current density in the equatorial region of Saturn in the outer regions and

determine the vertical structure of the current density of the current sheet - is the

Harris current sheet model a fair assumption at Saturn?

• Does the magnetic environment at Titan hinder or encourage flux rope production

and are the flux ropes accurately modelled by force-free assumptions?

There are however numerous open questions regarding the Saturn-Titan interaction and

Saturn current sheet dynamics that are yet to be fully explored.

This thesis uses data from the Cassini magnetometer (presented in chapter 2) to

form a statistical study of aperiodic waves on Saturn’s equatorial current sheet (chapter

3) where both wave parameters and current sheet parameters are resolved by fitting a

deformed current sheet model to magnetometer data. This is expanded in chapter 4

where the current sheet parameters are used to determine the current density in the

current sheet. In addition, the vertical structure of current density during the aperiodic

waves are also probed.

Chapter 5 shows a statistical study of flux ropes in the ionosphere of Titan. The

location on Titan and the location of Titan in Saturn’s magnetosphere is examined with

emphasis on the different types of magnetic environment. In addition, the flux rope

magnetometer signatures are fitted to various models of flux ropes and the models are

then evaluated for a physical interpretation.



Chapter 2

Instrumentation & Methodologies

2.1 Instrumentation

2.1.1 The Cassini Spacecraft

Cassini launched from Cape Canaveral on 15th October 1997 and, after a number of

flybys past Venus, Earth and Jupiter, finally arrived at Saturn and began orbiting on

1st July 2004. Even before orbit insertion, Cassini had tracked storms in the planet’s

atmosphere and discovered two new moons. The first image of Saturn from Cassini was

taken on 21st October 2002 where Cassini was still over 280 million kilometers (∼2 AU)

away (Fig. 2.1). Cassini’s initial mission was scheduled to end in 2008, but the mission

received two extensions until the spacecraft’s Grand Finale in 2017. This consisted of

20 ring grazing orbits, a final flyby of Titan and a plunge into the atmosphere of Saturn

during which the spacecraft disintegrated. The 13 year long mission includes data from

just after winter solstice in the northern hemisphere to equinox in August 2009, and ends

on 15th September 2017, just after northern summer solstice. This large temporal range

allows for seasonal changes to be tracked along with the diurnal differences and the 11

year solar cycle.

Unlike Galileo at Jupiter, Cassini was not restricted to the equatorial region (how-

ever that is the main focus of this thesis) and utilised a number of gravitational assists

38
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Figure 2.1: Cassini’s first image of Saturn with Titan in the top left, Image credit:
NASA/JPL/SSI

from Saturn’s moons to reduce fuel consumption and allow Cassini to explore the higher

latitudes. Figures 2.2 & 2.3 show the whole 13 years of Cassini orbits (called revs) split

by colour into the three mission stages, Prime, Equinox and Solstice in green, orange

and purple respectively. In this thesis, quasi-equatorial orbits are utilised, all of which

occur between 2005 and 2012 and so data from all three mission stages is used.

The apoapsis of the equatorial revolutions (revs) of Cassini precessed in local time

around Saturn during the mission. The dawn equatorial magnetosphere was sampled

early in the mission, then, in 2006 Cassini sampled the equatorial magnetotail. Into

2007-2009 the inclination of Cassini’s orbits increased to sample the higher latitudes

with apokrone in the pre-midnight area. Cassini’s apoapsis precessed around to the

evening and noon equatorial region between 2010 and 2012. The higher latitudes were

once again sampled from 2012 onwards until the final ring-grazing orbits of 2017 where

Cassini ends its journey in the atmosphere of Saturn.

Figure 2.4 is a diagram of the Cassini spacecraft and its payload. The payload



Chapter 2: Instrumentation & Methodologies 40

Figure 2.2: Diagram of all Cassini orbits seen from above. Green orbits are the Prime
Mission (2004-2008), orange orbits are the Equinox Mission (2008-2010), purple orbits
are the Solstice Mission (2010-2017). Image credit: NASA/Jet Propulsion Laboratory-

Caltech-Erick Sturm.

Figure 2.3: Diagram of all Cassini orbits seen from the side. Image credit: NASA/Jet
Propulsion Laboratory-Caltech -Erick Sturm. Same colour scheme as figure 2.2 applies.

is separated into three categories: optical remote sensing; fields, particles and waves;

and microwave remote sensing. The first included imaging science (Imaging Science

Subsystem), and spectrometers in infrared (Visible and Infrared Mapping Spectrometer,

Composite InfraRed Spectrometer), ultraviolet (UltraViolet Imaging Spectrograph)

which detailed the Saturn system in the electromagnetic spectrum. The second, and
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most utilised in this thesis, studied the plasma, dust and magnetic fields in the sys-

tem. It contains the plasma spectrometer (CAssini Plasma Spectrometer), cosmic dust

analyser (CDA), ion and neutral mass spectrometer (INMS), magnetometer (MAG),

magnetospheric imaging instrument (MIMI), and the wave science instrument (Radio

and Plasma Wave Science). The final category uses radio waves to probe moons and

rings and contains the radar and radio science subsystem (RSS).

Additionally, Cassini also ferried a probe to Titan - the Huygens probe. The Huy-

gens probe was released during an early flyby of Titan and landed on 14th January 2005

and returned, among much data, a photograph of the surface of the furthest planetary

body ever to be landed on.

With regards to the magnetosphere, Cassini had a number of initial science objec-

tives (summarised from Russell, 2013) that the mission hoped to achieve, these included

but are not limited to:

1. Determining, through neutral and plasma monitoring in the magnetosphere, the

global configuration and dynamics of the plasma population - including study of

the ring current, neutral clouds and radiation belts.

2. Studying sources of plasmas.

3. Determining if Saturn, like Earth, experiences substorm magnetic activity.

4. Understanding how the moons interact with the magnetosphere.

5. Understanding how this magnetospheric interaction alters the moons’ atmospheres

and surfaces including absorption of energetic ions and electrons.

6. Describing the interaction of the rings, specifically the possibility of a plasma sink.

7. Describing the coupling of the magnetosphere and ionosphere through study of the

aurora and remote sensing.

This thesis focusses on points 1, 4 and 5 using the magnetometer data, however the

majority of points come into play and are linked when describing the system as a whole.
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Figure 2.4: Diagram of Cassini’s payload, Image credit: NASA/JPL

2.1.2 Magnetometer

Cassini’s magnetometer initially began as a dual-technique magnetometer with a vector

helium magnetometer and a fluxgate magnetometer, placed at different distances along

the magnetometer boom. This dual system would allow for inter-sensor calibration,

be able to characterise the space-craft’s own magnetic field, and improve reliability.

However, the vector helium magnetometer failed early in the mission so the focus here

will be on the fluxgate magnetometer and its workings.

Fluxgate magnetometers were originally invented to detect submerged submarines

prior to World War Two [Aschenbrenner and Goubau (1936), Geyger (1964) & Primdahl

(1979)], and is so named in that the sensor itself ‘gates’ the magnetic flux. This style

of magnetometer is commonly used in space-based magnetometry as it is a low-power,

reliable and is operable in a large temperature range as well as radiation environments
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(Acuna, 2002). Specifically useful for giant planet magnetospheres, fluxgate magnetome-

ters can operate over a very large dynamic range of magnetic field and as such have been

used for the Voyager and Pioneer missions along with a number of Earth-based space-

craft to describe Earth’s magnetosphere [e.g. Acuna and Ness (1973), Behannon et al.

(1977), Kivelson et al. (1992), & Balogh et al. (1997)].

The flux-gate magnetometer on Cassini was situated in the middle of the 11 meter

boom shown in figure 2.4. The magnetometer itself is three single-axis ring core fluxgate

sensors arranged orthogonally to characterise the three-dimensional field. Each ring core

is made of a highly permeable material and around each ring core are wound two coils.

The first is a drive coil which generates a magnetic field that saturates the core. This

magnetic field is modulated by a square wave to saturate the ring core, then the polarity

changes and the drive coil saturates the core in the opposite direction, this happens at

15 kHz.

The second coil is a sensor coil that senses changes in the symmetry of the satura-

tion of the ring core as an increased/decreased voltage. An asymmetry in the saturation

will be proportional to the ambient magnetic field that is parallel to the core. Hence hav-

ing three orthogonal set-ups, a three-dimensional magnetic field can be resolved [Acuna

(2002) & Dougherty et al. (2004)]. Figure 2.5 shows the flux gate magnetometer (white)

with it’s cover (silver) taken off and corresponding electronics board.

The initial science objectives of Cassini’s magnetometer (Dougherty et al., 2004)

were to study:

1. The internal magnetic field of Saturn.

2. Saturn’s magnetosphere in three-dimensions.

3. Titan’s magnetic state and environment.

4. Ring and dust interactions.

5. Icy satellite interactions.

6. Structure and dynamics of the magnetotail.
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Figure 2.5: Photograph of Cassini’s magnetometer, (Dougherty et al., 2004)

In this thesis we address points 2,3 and 6.

2.2 Methodologies

A number of methods are utilised in more than one chapter and hence will be described in

general terms below. Specific uses and modifications are described within each chapter.

2.2.1 General Deformation Method for Magnetic Fields

This section follows the method laid out in Tsyganenko (1998), hereby referred to as

TSY98, and is based on Euler potentials and was initially used to model Earth’s dipole

tilt (Stern, 1987). Outlined in this section is a general method of deformation for any

orthogonal coordinate system, which will be applied in chapters 3 & 5.
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The general method of deforming a magnetic field model is based on the idea

that the magnetic field B(f, g, h) is represented by two Euler potentials, α and β. The

coordinates f, g and h are coordinates in an orthogonal system; ef , eg and eh are the

unit vectors and Sf , Sg, and Sh are the scale factors for the chosen coordinate system.

This method of deforming a magnetic field is preferably used as the Euler potentials

required for the transformation do not need to be known, and the field found after the

deformation remains divergence free.

B(f, g, h) = 5α(f, g, h)×5β(f, g, h) (2.1)

The gradient of the two Euler potentials can be expressed as follows:

5 α =
1
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∂α

∂f
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1
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The undistorted field components are then given by:
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A new coordinate system is defined where the original coordinates described above are

deformed and replaced with the coordinates (i, j, k) where it is known that each co-

ordinate is a function of the old coordinates. The new deformed magnetic field reads

as:

B′(f, g, h) = 5α(i, j, k)×5β(i, j, k) (2.7)

To find the components of magnetic field in the original coordinate system (f, g, h), the

partial derivatives in equations 2.4 - 2.6 can be expanded with the new coordinates using
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the differential chain rule. For example, the first partial differential reads:
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Written in matrix form for simplicity, the expansions from the partial derivatives can be

condensed into:

B′ = T̂B∗, (2.9)

where the asterisk denotes the undeformed magnetic field evaluated in the deformed

coordinate system. B′ is the desired magnetic field in the new coordinate system. The

elements of T̂ read as follows:
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where the asterisk denotes that the scale factor is found in the deformed coordinate

system (i, j, k).



Chapter 2: Instrumentation & Methodologies 47

2.2.2 Minimum Variance Analysis

In minimum variance analysis (MVA), the normal of a boundary layer can be found from

the direction in which the magnetic field varies the least. This method was first employed

by Sonnerup and Cahill (1967) to find the normal to a current sheet layer using a single

spacecraft. When calculating the minimum variance direction, the intermediate and

maximum variance direction are also calculated as eigenvectors x3x3x3, x2x2x2 and x1x1x1 respectively.

This method assumes that the orientation of the boundary layer does not change during

the encounter.

Minimum variance analysis in this section is used on the magnetic field measure-

ments during an encounter with the current sheet. This means many magnetic field

vectors measured can be used in the analysis. To find the minimum or maximum vari-

ance direction, the magnetic variance matrix must be constructed.

MB
µν = 〈BµBν〉 − 〈Bµ〉〈Bν〉, (2.19)

where µ and ν are the coordinate components (i.e. X,Y and Z in Cartesian). The eigen-

vectors for each of the variance directions, x1x1x1, x2x2x2 and x3x3x3, corresponding to the maxi-

mum, intermediate and minimum variance directions respectively are found by solving

Mx = λxxx. The matrix is symmetric so the eigenvalues are real numbers, λ1, λ2 and

λ3. These values represent the variance in the field in the corresponding vector direction

and can be used to determine the validity of the analysis.

For example, the three eigenvalues and eigenvectors form an ellipsoid in variance

space, shown in figure 2.6a. When this ellipsoid is ‘sausage’ shaped, this can mean that

two eigenvalues ( λ2 and λ3) are much smaller than the maximum direction λ1, and

as such the minimum direction cannot be determined. This means λ1 � λ2 ≈ λ3 and

so the maximum variance direction is well defined, but the intermediate and minimum

directions are not (figure 2.6b). Other cases include: when λ1 ≈ λ2 ≈ λ3 meaning that

none of the variance directions are well defined, the ellipsoid is a sphere and the variance

matrix is degenerate (figure 2.6c); where λ1 ≈ λ2 � λ3 , this shows that the minimum
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variance direction is well defined but the maximum and intermediate are not, this is a

pancake shape (figure 2.6d).

Uncertainties in the minimum variance analysis are estimated by the process of

bootstrapping. Bootstrapping with MVA is a method where a large number or samples

are taken from the original magnetic field data at random with replacement. Each of

these samples is then run through the MVA function, and this gives a distribution of

the directions of the different variances. The statistics of this distribution can describe

the uncertainties expected for MVA. Commonly, the standard deviation is used as an

estimate for the uncertainty of using this method.

2.2.3 Least Squares Fitting Methods

References to a least squares fitting procedure in this thesis refer to the mathematical

procedure of fitting a model curve/line to a set of data by reducing the sum of the

squares of the offsets of the data to the model curve. In non-linear models, such as those

described further in following chapters, this process is extended to solving a number of

unknown parameters n with a known function f(x) and a set of equations which number

n + 1. A non-linear function is defined as a model that is nonlinear in the coefficients

(or a combination of linear and nonlinear). As a nonlinear fitting requires more than a

simple matrix solution, like a linear fit does, an iterative fitting procedure with initial

estimates is required to solve the fitting.

There are a number of optimised iterative algorithms for this process, all based

from the original Newton algorithm which is a method of finding the roots or minimum

of a function that is twice differentiable. The Gauss-Newton algorithm is an advance on

this to minimise the sum of squares. The Gauss-Newton algorithm uses the assumption

that the function is locally a quadratic equation and finds the χ2 minimum. Another

method, the gradient-descent method, calculates the steepest descent in the function to

determine the best fit (Seber and Wild, 2003).

In this thesis, the Levenberg-Marquardt algorithm is used as it is a combination

of the previous two and is considered the most robust, effective and efficient algorithm
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Figure 2.6: Figure showing the different set up for variance ellipsoids. a) a typical
variance ellipsoid, b) a ’sausage’ ellipsoid, c) a spherical ellipsoid and d) a ’pancake’

ellipsoid. Modified from Sonnerup and Scheible (1998).

for nonlinear fitting in that it uses each previous method dependent on how close to the

optimal value of parameters the algorithm is [Seber and Wild (2003), Levenberg (1944),

Marquardt (1963), Press et al. (1989)]. Uncertainties of the optimal parameters using

the Levenberg-Marquardt algorithm are determined by using the Jacobian matrix cal-

culated in the fitting process, where the roots of the diagonal elements are the estimated

uncertainties of the corresponding parameters. Alternatively, bootstrapping can be used

to confirm or independently calculate the uncertainties as the Jacobian matrix gives only

estimated uncertainty values [Press et al. (1989), Ridler and Salter (2002)].
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The Jacobian matrix is calculated during the fitting procedure, and is formed of

first order partial derivatives of the function with the updated parameters and hence gives

the best linear approximation of the function near a point. In other words, the Jacobian

describes the gradient of a function in multiple variable space, as this is calculated at

each step of the fitting process it describes the local environment of the function.

Ultimately, this process returns the optimised parameters of the fit which are

then used to gain further understanding of the science behind the data fitted (Kaplan,

1952). Non-linear least squares fitting can have a number of local minima which the

fitting algorithms will converge to, depending on the initial estimates, therefore the best

available estimates must be used to equip the algorithm with the best start. This is

not always possible, however, a coarse view of the parameter space can be explored by

selecting various initial parameters to make certain the global minimum of χ2 is reached.

Additionally, one can view the χ2 parameter space by plotting the value of χ2 for a range

of values for two parameters (see figure 3.9 for example) which can also help determine

if the global minimum is where the algorithm settles.

2.2.4 Bayesian Inference

The basis for Bayesian statistics is Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (2.20)

where P (A|B) is a conditional probability of the likelihood of event A occurring given

event B, as such P (B|A) is the conditional probability of the likelihood of B occurring

given A. P (A) and P (B) are the individual probabilities of observing events A or B

independently. P (A) is considered the prior probability, so what is already known

about A. P (B|A) is considered the likelihood function, which is the the probability given

the observed data. P (A|B) is therefore the posterior probability which is the unknown

probability that is desired. P (B) is a marginal likelihood which is the same value for any

event and as such is considered a constant for the purposes of this thesis (Lee, 2012).
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A simplified example of this is as follows, I want to know whether I should ride my

bike into work today to write there, or write my thesis from home. This action is entirely

dependent on the weather, event B is that it rains. The Met office gives me a likelihood

of 80% that it will be dry for the day, so my P (dry|correct) (probability that it is dry

given the Met office is right) is 0.8. Hence, event A is the Met office being right about

the rain. However, I live in Lancaster in the North-West of England and I know that

the weather here is temperamental, especially going into storm season. I know the Met

office is right only 60% of the time due to the changing winds. So my prior P (correct)

probability is 0.6. As both are already normalised there is no need to determine P (dry).

So, the posterior probability P (correct|dry) (the Met office is right and it stays dry), is

0.8× 0.6 which is 0.48, only 48% chance it will be dry. This means that it is 52% likely

to rain, and that’s enough to convince me to stay home and write today.

Using Bayesian inference as a fitting technique uses the same logic, but instead

of events there are probability density functions for each fitted parameter. A posterior

distribution is a superposition of a prior distribution and the distribution formed from

a likelihood function. The prior distributions are set up with known factors, and can

be any function but commonly are normal, uniform or bimodal distributions. A set

number of samples are taken from the prior distributions and put into the model that

is attempting to be fitted to the data. Each of these samples is then compared to the

data to give a fit indication parameter, such as χ2 or mean squared error (MSE). The

likelihood function then works to reduce the fit parameter to give only the best fits, in

this case the likelihood selects only the samples from the distribution that fall below an

acceptable fit level, i.e. χ2 < 5. The parameters corresponding to the samples that give

an acceptable level of fit are combined to give a posterior distribution (Box and Tiao,

2011).

Each posterior distribution corresponds to a parameter that was fitted. Ideally a

normal-like posterior distribution is found and the peak of this distribution is equivalent

to a best fit value for that parameter. Uncertainties can be estimated using a credible

interval, which is where, for example, 30% - 60% of the data resides inside the credible

interval, equivalent to standard deviation of a normal distribution and the value needed

inside the credible interval is dependent on the user (Martz, 2014).
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Bayesian inference is a powerful tool in fitting procedures as it allows a much

deeper analysis of the posterior distribution and what it means for the data than a least

squares fitting. However, this comes at a price of computational time and complexity and

as such a mixture of the two fitting procedures are used in this thesis where appropriate.

It is noted that the selection of prior distributions is similar to the selection of initial

parameters used in least squares fitting, but the distributions used as priors in the

Bayesian method are much more effective for locating local minima and will find all

minima not just ‘the nearest one’ and as such gives much improved representations of

the parameter space.



Chapter 3

Aperiodic Waves on Saturn’s

Current Sheet

3.1 Introduction

There are a number of dynamic processes that can cause Saturn’s equatorial current

sheet to be displaced from the rotational equator. The seasonal bowl shape (Arridge

et al., 2008b) causes the sheet to flap with a period of 29.46 years into a upwards bowl

shape during southern summer and a downwards bowl shape in northern summer due to

the dynamic pressure of the solar wind. Additionally, the current sheet also flaps with

a shorter ∼10.7 hour period due to planetary period oscillations (PPO) which cause the

sheet to move up and down during one period [e.g. Arridge et al. (2011) & Provan et al.

(2012)]. This effect also causes a thickening and thinning effect due to the independent

PPO systems of the northern and southern hemispheres (Thomsen et al., 2017).

In addition to these periodic displacements, and the focus for this chapter, solitary

waves of aperiodic nature are also observed. An aperiodic wave is defined as a single

transverse waveform, where the motion of the wave is at right-angles to the propagation

direction, upon the equatorial current sheet of Saturn that causes the current sheet to

move up or down away from its original position as the wave travels along it. The waves

are detected by their distinctive characteristics in Cassini MAG data. Aperiodic waves

53
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have a smaller duration than the global flapping waves (1-30 minutes), they do not

repeat and show a magnetic field deflection of over 1 nT. Each event is found inside of

the magnetopause position, which is determined by examination of magnetic field data.

To detect these waves, they must have sufficient amplitude to move the current sheet to

Cassini. This means Cassini travels through the current sheet twice during each event,

hence these waves were originally coined current sheet encounters (Arridge et al., 2007).

First detected at Saturn by Smith et al. (1980) using Pioneer 11 magnetometer

data, these waves are also found in Earths magnetotail [e.g., Sergeev et al. (2004)] and

on Jupiter’s magnetodisc [e.g., Russell et al. (1999)]. Cassini’s varied spatial coverage

and orbital trajectory give a unique opportunity for statistically studying these aperiodic

waves in detail. Arridge et al. (2007) originally use these transient features to explore

the stress balance in the magnetodisc of Saturn, but the origins and properties of the

events remained unknown.

In the magnetodisc configuration, Saturn’s magnetic field is stretched radially lead-

ing to the major contribution of the magnetic field being in the radial direction, hence

the magnetic field components at Saturn are presented in KRTP coordinates, discussed

fully in section A.1. Saturn’s magnetospheric configuration was explored in chapter 1

where the swept back and swept forward regime is described.

Small-amplitude fluctuations and periodicities such as ion cyclotron waves (Leisner

et al., 2006), mirror mode waves (Russell et al., 2006) and ultra-low frequency waves are

also found at Saturn (Kleindienst et al., 2009) and in Jupiter’s magnetosphere (Khurana

and Kivelson, 1989b). Field aligned resonances are discussed by Mitchell et al. (2016),

Palmaerts et al. (2016) & Yates et al. (2016) where quasi-periodic waves connect auroral

observations with particle and magnetic field data. These waves have periodicities of

around an hour and appear in magnetometer data with similar signatures to aperiodic

waves, however this study solely focuses on singular and non-repeating waves.

Additionally, some aperiodic waves may also be included within the studies of

von Papen et al. (2014) & von Papen and Saur (2016), where all fluctuations of the

magnetic field are studied. The authors measure fluctuations within 10 minutes bins

in Saturn’s inner and middle magnetosphere, where the spatial range overlaps with the



Chapter 3: Aperiodic Waves 55

-2

0

2

B
r [

n
T

]

-2

0

2

B
[n

T
]

-2

0

2

B
 [

n
T

]

0

1

2

3

|B
| 
[n

T
]

-50

0

50

S
w

e
e
p
b
a
c
k
 

A
n
g
le

 [
°
]

07:22 07:23 07:24 07:25 07:26 07:27 07:28 07:29 07:30 07:31 07:32 07:33

Time [mm:ss]

-50

0

50

S
tr

e
tc

h
 

A
n
g
le

 [
°
]

-2 0 2

B
r
 [nT]

-3

-2

-1

0

1

2

3

B
 [

n
T

]

-2 0 2

B
r
 [nT]

-3

-2

-1

0

1

2

3

B
 [

n
T

]

2009-11-24

Figure 3.1: Figure showing an example of 1 Hz magnetometer data during the passage
of an aperiodic wave when Cassini was at 18 SLT and 28 RS . KRTP components are

shown with the total magnetic field, the sweepback angle (tan−1
(
Bφ
Br

)
), stretch angle

(tan−1
(
Br
Bθ

)
) as well as two hodograms showing the common relationships between the

components.

spatial range of this study, it is possible that these studies includes the aperiodic waves

in their analysis.

With this in consideration, traversing the current sheet during the passage of an

aperiodic wave means leaving one lobe regime and entering the other. An example of

an aperiodic wave is shown in figure 3.1, Cassini is initially located in the southern lobe

of Saturn at 28 RS and 18 SLT, where the magnetic field of Saturn is pointing radially

towards the planet. A negative Br component and a positive Bφ due to the swept back

feature of magnetic field is shown, this feature was described previously in section 1.

The magnitude then drops as Br and Bφ decrease towards zero as Cassini reaches the

current sheet’s centre.
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Cassini then continues on to the northern lobe where the opposite regime oc-

curs, the magnitude increases as Br becomes positive and Bφ now becomes negative.

Throughout the entire encounter, Bφ varies in anti-phase with Br this relationship can

be seen in the hodogram of Br and Bφ where a quasi-linear relationship between the two

components is seen.

Additionally, the sweepback and stretch angles are included in the bottom two

plots, sweepback angle is calculated using tan−1
(
Bφ
Br

)
and shows the direction and mag-

nitude of how swept forward or swept backwards the field is. In the example, the sweep-

back angle is negative, showing a swept backwards arrangements. The stretch angle is

given by tan−1
(
Br
Bθ

)
and describes how stretched the magnetic field is along the radial

direction, if the stretch angle is near zero, this means the field has a mainly dipolar

appearance, whereas if, like in the example, the stretch angle is large in magnitude, the

field is stretched out into the ‘washer’ shape.

3.2 Distribution of Aperiodic Waves

During Cassini’s tour, equatorial orbits where Cassini is less than 10 RS from the ro-

tational equator are used to show the distribution of aperiodic waves, these revolutions

are shown in figure 3.2 and span the years 2005-2012. The figure shows that all local

times are sampled. The position of all aperiodic waves found are shown in figure 3.3.

Dwell time of Cassini is calculated for each hour of SLT and each 1 RS . Figures

3.4 & 3.5 show the distribution of current sheet encounters in SLT and RS normalised

to the dwell time of Cassini in each bin. The histograms show that the majority of

encounters occur from 15RS to 50RS with a peak at 20RS , near the orbit of Titan.

Very few encounters occur below 15RS , this is due to the magnetic field of Saturn being

more dipolar, so a clear current sheet may not form. The distribution of current

sheet encounters in SLT seems to be fairly even. The SLT bin of 5-6 SLT appears to

have a large number of encounters, these encounters all occur within 5 Rs of Titan’s

orbit. The large number of encounters from 1-2SLT are due to a sampling inconsistency

in one orbit of the tail, where one leg of the orbit occurs entirely within one SLT bin.
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Figure 3.2: Trajectories of Cassini’s equatorial revolutions around Saturn between
2005-2012, coloured by time spent in each bin, of size 1 RS by 1 RS , in seconds,
projected onto the X-Y KSM plane. Overlaid are the orbits of Rhea (9 RS) and Titan
(20 RS) along with a range of magnetopause positions calculated from Arridge et al.

(2006) which reflect a dynamic pressure range of 0.0012-0.0300 nPa.

Some sampling biases still persist after normalisation, but meaningful conclusions on the

spatial distributions of current sheet encounters are still possible. It is also important to

recognise that this analysis occurred over many years of Cassini orbits and so temporal

as well as spatial differences are visible.

The bowl shaped current sheet (Arridge et al., 2008b), also acts to move the current

sheet away from the equator, and so if Cassini is at the equator, but the planet is tilted

as in Northern summer the current sheet can be pushed down by a distance of a few

Saturn radii, meaning that even though Cassini’s orbit was near-equatorial, there may

not be any encounters of the current sheet as it was located too far away.
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Figure 3.3: Number of events found in each 1RS by 1RS sized bin projected onto
the X-Y KSM plane. Grey are areas visited by Cassini that had no aperiodic wave
signatures. Overlaid are the orbits of Rhea (9 RS) and Titan (20 RS) along with a
range of magnetopause positions calculated from Arridge et al. (2006) which reflect a

dynamic pressure range of 0.0012-0.0300 nPa.

3.3 Modelling the Current Sheet

3.3.1 Harris Current Sheet

To model the magnetic field of a thin current sheet, a Harris current sheet model is

utilised in the radial component to model the different magnetic field regimes above and

below the current sheet (Harris, 1962). In the azimuthal direction, the swept backwards

field can also be modelled using a Harris current sheet, however to model the direction

of the swept field lines a positive hyperbolic tangent can be used for the swept forward

fields and a negative one for the swept backwards fields where the sign is included within
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Figure 3.4: Radial distribution of current sheet encounters normalised to the number
of seconds spent in each 1 RS bin by Cassini.

the By0 constant. To complete a three dimensional model of the local magnetic field at

the current sheet, the third dimension, ẑzz, is modelled at a constant value. As this is a

local model, a Cartesian co-ordinate system relative to the directions of the cylindrical

system is used in the Harris current sheet model. x̂xx is in the radial direction, ŷyy is in the
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Figure 3.5: Local time at Saturn distribution of current sheet encounters normalised
by the number of seconds spent in each 1 SLT bin by Cassini.
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azimuthal direction locally and ẑzz remains unchanged from the cylindrical coordinate.

Bx = Bx0 tanh

(
z − z0

Hx

)
, (3.1)

By = By0 tanh

(
z − z0

Hy

)
, (3.2)

Bz = Bz0, (3.3)

where Bx0 and By0 are magnetic field values within the lobes away from the current

sheet. This value is what the magnetic field component will asymptotically approach as

z increases away from the current sheet. Bz0 is the value that Bz is assumed to have

throughout the current sheet and local area and is close to or at zero value. z0 is the

distance from z = 0 that the current sheet has moved due to other processes such as the

near planetary period oscillating of the current sheet, viewed as a ∼10.7 hour wave in

the magnetometer data. Another phenomena leading to the current sheet being away

from z = 0 is the bowl-shaped current sheet (Arridge et al., 2008b) that causes the

whole sheet to be situated above the equator in northern winter and below in northern

summer. Scale heights of the magnetic field in x̂xx and ŷyy are also included in the Harris

current sheet model as Hx and Hy. These values control how quickly the hyperbolic

tangent function approaches the saturation (lobe) values.

3.3.2 Deforming Harris Current Sheet with a Gaussian

The general deformation method is laid out in chapter 2, here a specific deformation

is described. The undeformed magnetic field that is in the original coordinate system

is the Harris current sheet model laid out in section 3.3.1. The following method is a

specific implementation of the general deformation method of TSY98 using a Gaussian

wave pulse to deform a Harris current sheet using Cartesian coordinates (x, y, z). The

geometry of the current sheet will be deformed by the equation for a Gaussian wave

pulse:

z = Ae−(k·rk·rk·r+k·uk·uk·ut−ωt−Φ0)2 , (3.4)
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where A is the amplitude, kkk is the wave vector, ω is the angular frequency and Φ0 is the

phase of the wave. Also included is a doppler shift using k · uk · uk · ut.

Firstly, the deformed coordinate system needed must be found for the gaussian

pulse used. A normal vector, X-vector and Y-vector (normal to the current sheet, new

x-direction and new y-direction in old coordinates respectively) are needed to find the

deformed coordinate system. The normal vector is calculated by the differentials of

equation 3.4.

nx =
∂z

∂x
= −2kxγAe

−(k·rk·rk·r+k·uk·uk·ut−ωt−Φ0)2 (3.5)

ny =
∂z

∂y
= −2kyγAe

−(k·rk·rk·r+k·uk·uk·ut−ωt−Φ0)2 (3.6)

nz = −1 (3.7)

Where,

γ = k · rk · rk · r + k · uk · uk · ut− ωt− Φ0 (3.8)

The Y-vector (Y) is given by the cross product of the normal and the undeformed y-axis,

and the X-vector (X) is given by the cross product of the Y-vector and the normal vector.

The normal vector is equivalent to the ‘Z-vector’ in this system and is used to calculate

the new z*-direction. From this, the new coordinate system and positions can be found.

x∗ = xXx + yXy + (z + z0)Xz (3.9)

y∗ = xYx + yYy + (z + z0)Yz (3.10)

z∗ = xnx + yny + (z + z0)nz (3.11)

These new positions are then used to find the new magnetic field values using the Harris

current sheet model in both x̂xx and ŷyy as outlined in section 3.3.1.

Bx = Bx0 tanh

(
− z∗

Hx

)′
(3.12)
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By = By0 tanh

(
− z∗

Hy

)′
(3.13)

Bz = B′z0 (3.14)

where Hx and Hy are the scale heights of the magnetic field as you approach and recede

from the current sheet. Finally, TSY98 is used to deform the magnetic field using

equation 2.9 where T is given by the following equations:

Txx =

(
∂y∗

∂y

∂z∗

∂z
− ∂y∗

∂z

∂z∗

∂y

)
(3.15)

Txy =

(
∂x∗

∂z

∂z∗

∂y
− ∂x∗

∂y

∂z∗

∂z

)
(3.16)

Txz =

(
∂x∗

∂y

∂y∗

∂z
− ∂x∗

∂z

∂y∗

∂y

)
(3.17)

Tyx =

(
∂y∗

∂z

∂z∗

∂x
− ∂y∗

∂x

∂z∗

∂z

)
(3.18)

Tyy =

(
∂x∗

∂x

∂z∗

∂z
− ∂x∗

∂z

∂z∗

∂x

)
(3.19)

Tyz =

(
∂x∗

∂z

∂y∗

∂x
− ∂x∗

∂x

∂y∗

∂z

)
(3.20)

Tzx =

(
∂y∗

∂x

∂z∗

∂y
− ∂y∗

∂y

∂z∗

∂x

)
(3.21)

Tzy =

(
∂x∗

∂y

∂z∗

∂x
− ∂x∗

∂x

∂z∗

∂y

)
(3.22)

Tzz =

(
∂x∗

∂x

∂y∗

∂y
− ∂x∗

∂y

∂y∗

∂x

)
(3.23)

And so, to get the final deformed magnetic field components the matrix T̂ is multiplied

with the magnetic field components found in equations 3.12 - 3.14 to get:

B′x = TxxBx + TxyBy + TxzBz (3.24)

B′y = TyxBx + TyyBy + TyzBz (3.25)
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B′z = TzxBx + TzyBy + TzzBz (3.26)

3.4 Fitting Model to Magnetometer Data

To find a suitable fitting of all encounters in the Cassini magnetometer data of 1 second

resolution, within the time period 2005-2012, an iterative method of finding the wave

values is used. All variables within the method are fitted using a Levenberg-Marquardt

non-linear least squares fitting algorithm. The variables that are fitted are as follows:

scale heights Hx and Hy; wave vectors kx and ky; angular frequency ω; phase Φ0; lobe

magnetic field values Bx0, By0 and Bz0; the amplitude of the wave A; and the z-axis

offset z0.

Initially, a ’first guess’ array of the variables is entered into the iterative fitting

function that consists of likely values. The first fitting keeps half the variables (Bx0,

By0,Bz0,A,z0) constant and allows for a fitting of the other six variables. A second fitting

is used where the fitted values of the first fitting are kept constant and the variables kept

constant in the first fitting are now available to be fitted. This method is then repeated

with the new fitted values as the constants for the first fitting until the mean squared

error of the fitting is less than 0.1 nT 2. This arbitrary number is used as preliminary

tests showed that anything below this MSE is sufficiently fitted and anything above is

either not fitted, or fitted to non-physical values. A common example of a non-physical

value is a fitted value of more than 100 RS for a scale height.

The separation of the variables into two fittings allows for certain variables that are

coupled to be determined separately. An example of this is that a fitting of a CSE may

give a very large scale height far away from the current sheet centre, whereas the same

or a similar fitting could give a more reasonable smaller scale height, i.e. scale height

and z0 are coupled in the argument of tanh. Additionally, to reduce bias in the fitting,

the whole process is run with opposing signs for values that physically allow positive

and negative values to occur. For example, this process is run for wave numbers (kx, ky)

with differing sign combinations. The fitting with the lowest MSE value is taken as the

most accurate fit for each current sheet encounter.
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Figure 3.6: Figure showing 1 Hz magnetometer data of a passage of an aperiodic
wave fitted with the local model. KRTP components are shown with the total magnetic
field as well as three hodograms showing the relationships between the components.
Residuals from the data and model for each component are shown directly below the
component plot. This example takes place on 10th September 2011, at 28.7 RS and

16.7 SLT

Table 3.1: Table of wave variables corresponding to figure 3.6

Variable Value Variable Value

Bx0 3.53 ± 0.60nT kx 0.06 ± 0.10× 10−3 R−1
S

By0 2.03 ± 0.11nT ky 0.02 ± 0.10× 10−4 R−1
S

Bz0 2.10 ± 0.005 nT Φ0 −5.83 ± 0.17 Rad

Hx 2.48 ± 0.27 Rs A 3.77 ± 0.04Rs

Hy 1.15 ± 0.12Rs ω 0.01 ± 0.3× 10−4s−1

z0 3.79 ± 0.22Rs MSE 0.12 nT 2
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As the fitting is done in Cartesian coordinates, it is important to remember to

convert from and to spherical when plotting. An example of a fitting is shown in figure

3.6 where the variables of the fit with given errors can be found in table 3.1. This

example shows a swept forward field in Br and Bφ along with the subtle changes in Bθ

described by the following section.

A second example, shown in figure 3.7 shows a more generic example of an aperiodic

wave where a swept backward field in Br and Bφ and very little variation in Bθ is shown.

This method of fitting a local current sheet model that is deformed by a Gaussian wave

pulse, allows for the resolution of variables associated with the current sheet and magnetic
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Figure 3.7: Figure showing magnetometer data of a passage of an aperiodic wave fitted
with the local model. KRTP components are shown with the total magnetic field as
well as three hodograms showing the relationships between the components. Residuals
from the data and model for each component are shown directly below the component

plot. This example takes place on 18th February 2005, at 18.7 RS and 5.3 SLT
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field during the passage of an aperiodic wave, and parameters relating to the wave itself.

Each fitted parameter has an associated uncertainty explored in section 3.4.2.

3.4.1 Radial and Azimuthal Propagation

Resolution of accurate wave numbers are key to deciphering the propagation direction

of the wave that encounters Cassini. It is possible to fit these parameters to the magne-

tometer data as the propagation direction affects the Bθ component. Figure 3.8 shows

that as a radial wave passes the θ component dips slightly just before the passage through

the current sheet and just after the second passage through the current sheet. However,

a purely azimuthal wave dips during the first passage through the current sheet and

increases during the second passage through the current sheet and hence the magnetic

signatures can determine the propagation direction of the wave.
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a)	Radially	propagating	wave

b)	Azimuthally	propagating	wave

Path	of	Cassini

Figure 3.8: Figure shows two extreme examples of the traversal of Cassini through a
purely radial wave (a) and a purely azimuthal wave (b). The magnetic field signature
created from the passing of either wave is show to the right where the difference is seen

in the θ component in blue. From Martin and Arridge (2017).
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3.4.2 Uncertainty Calculation

Figure 3.9: Figure shows a restricted χ2 space for wave numbers given for an example
fitting, the red circle is the values given by the fitting algorithm. This is a representation
of a 2D slice through a multi-dimensional (11-D) χ2 parameter space. Modified from

Martin and Arridge (2017).

Each parameter has an associated uncertainty related to the fitting. This uncertainty is

calculated from the square root of the diagonals of the Jacobian (estimated covariance)

matrix, constructed using finite differences during the fitting algorithm. Uncertainties

of a successful fit lie at around 1-5% for current sheet parameters and 1-10% for wave

parameters. Example uncertainties can be found with parameter values in table 3.1.

These uncertainties are related to the position of the fitted value and the χ2 space

minimum that it falls in. If the minimum (black area) is wide and shallow, this will

increase the uncertainty of the parameter, and if the minimum of χ2 is sharp and steep

the uncertainty will be small. As the wave numbers form a large part of the discussion

section, the example in figure 3.9 shows the χ2 space for values of kx and ky, it can be
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concluded that the uncertainty in ky will be much larger than the uncertainty in kx. The

lower values of χ2 show a better fit, and the red circle is the fitted values of kx and ky.

These values are also affected by the 9 other parameters that are fitted so an ideal fit

for the wave numbers may not be an ideal fit for another parameter.

3.5 Results

This section is split into two with current sheet variables being explored first from the use

of a Harris current sheet, and secondly, parameters from the travelling aperiodic waves

are explored. All results are displayed as an overall picture of the magnetosphere where

each coloured square represents the weighted average of that parameter found inside the

bin of size 1RS . The weighting used is the inverse of the mean squared error for the

original fitting of the model to the magnetometer data. Shown on each figure are the

orbits of Titan (20RS) and Rhea (9RS), as well as a range of magnetopause positions

calculated from Arridge et al. (2006). Below the overall view, the parameters are shown

with radial distance in different SLT sectors, ’Morning’ is defined as 0300 − 0900 SLT,

’Noon’ as 0900−1500 SLT, ’Evening’ as 1500−2100 SLT and ’Night’ as 2100−0300SLT.

The sector plots are coloured with the revolution number, that is the number as-

sociated with each orbit that Cassini makes around Saturn. This allows for temporal

differences to be easily identifiable. Clearly shown are that the ’Noon’ and ’Evening’ sec-

tors are made up from a number of revolutions with large temporal differences, whereas

’Morning’ and ’Night’ are both similar times and revolution numbers, and so there are

clearer relationships within these sectors. Where a variable has a statistically significant

trend in a local time sector a line will be fitted with dotted confidence intervals using the

uncertainty of the fitting parameters of the linear function with weighting on each event

of 1/MSE of the original fitting to magnetometer data. A statistically significant trend

means that the correlation between the variable and radial distance is above a correlation

coefficient absolute value of 0.25 (absolute values of 0.20-0.30 are generally considered

a weak but positively identified correlation) and has a probability of accepting a null

hypothesis, H0, is ≤ 5%.
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3.5.1 Current Sheet Variables

3.5.1.1 Magnetic Field

Due to the nature of the hyperbolic tangent function in the modified Harris current sheet

equations (3.1, 3.2 &, 3.3), Bx0 will always be positive as Bx will always go from negative

below to positive above the current sheet centre. The same is true for By0 however, the

direction of the change of magnetic field depends on the swept-backwards or forwards

nature of the field. Therefore, By0 can be either positive and negative.

Figure 3.10 shows how the radial component of lobe magnetic field changes spa-

tially. It is observed that with radial distance Bx0 decreases. The local time differences

in Bx0, again being careful in considering temporal changes that are most apparent in

the noon and evening sectors, show that the morning and night sectors have on av-

erage larger values of Bx0. However, the ’noon’ sector shows that blue events (early

revolutions) have, on average, a larger value than the yellow events (later revolutions).

Figure 3.11 shows the spatial distribution of the By0 variable. A general decrease

in By0 is shown with radial distance associated with a decrease in the field magnitude as

a whole. The ’evening’ and ’Noon’ sectors both show some positive values of By0, which

is where one would expect more swept forward fields, which is described by a positive

hyperbolic tangent relationship with z.

The final magnetic field component, Bz0, is shown in figure 3.12 where again a

general decrease in magnitude with increasing radial distance is shown. A better fitting

may be found for the decrease in field using a polynomial fit, however the large spread

of data in the sectors fits similarly well to a line and a polynomial fit is described in the

analysis in the following chapter.

3.5.1.2 Scale Height

Magnetic scale height is found using the Harris current sheet where scale height regulates

how quickly the magnetic field approaches zero at the centre of the current sheet. This

value describes the scale height of the magnetic field and is not directly associated
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Figure 3.10: Figure showing spacial distribution of lobe radial magnetic field compo-
nent during the passing of an aperiodic wave. Layout is described at the beginning of

section 3.5.
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Figure 3.11: Figure showing spatial distribution of lobe azimuthal magnetic field
component during the passing of an aperiodic wave. Layout is described at the beginning

of section 3.5.
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Figure 3.12: Figure showing spatial distribution of Bz component during the passing
of an aperiodic wave. Layout is described at the beginning of section 3.5.
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with the scale height of the plasma density of the current sheet, but is expected to be

correlated with the plasma scale height. Using Harris in two magnetic field components

means that a scale height for both radial magnetic field and azimuthal magnetic field

can be retrieved. Both of the scale heights are calculated using distance along the z-axis,

and so a geometric mean of the values is used to estimate the overall scale height of

the magnetic field as the geometric mean is less sensitive to large outliers and is a more

effective averaging method for variables with a large range.

Figure 3.13 shows an increase in scale height with radial distance in general, with

statistically significant increases in the ’noon’, ’morning’ and ’night’ sectors.

HMF =
√
HrHφ (3.27)

3.5.1.3 Z-axis offset and Hinging Distance

The final current sheet parameter originating from the use of the Harris current sheet

is the z-axis offset. This offset includes all processes that will cause the centre of the

current sheet to be displaced from the z = 0 plane except the aperiodic waves. As this

includes the seasonal bowl shape, temporal changes will be apparent in the overall data

set as the span 2005-2012 spans equinox. Therefore, the value of the z-axis offset will

first be displayed, along with the z-axis offset with the expected bowl shape removed.

Figure 3.14 shows the value of the distance of the centre of the current sheet from

z = 0. The figure shows an increase of z0 with radial distance, as expected with a bowl

shaped current sheet. It is expected that larger offsets will be found in 2005 and 2012,

as the equinox of Saturn was in 2009, a much smaller offset would be expected during

this time.

When the expected bowl shape is removed, the remaining z0 should reflect only

processes that displace the current sheet at a large frequency (flapping at planetary

period) or aperiodic wave, that are already being modelled. In theory, after the bowl

displacement is removed from values and assuming that the flapping has symmetrical
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Figure 3.13: Figure showing spatial distribution of geometric scale height using Hx

and Hy. Layout is described at the beginning of section 3.5.
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Figure 3.14: Figure showing spatial distribution of distance of current sheet from
z = 0. Layout is described at the beginning of section 3.5.
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movement, there should be an equal number of positive and negative values of Bz0 as

this displacement is caused by a periodic wave, this relies on an estimate of the hinging

distance that is global and constant, this is however not true and the hinging distance

of the sheet changes with mass of the plasma sheet and solar wind dynamic pressure.

The hinging distance comes from the equation from Arridge et al. (2008b) where the

displacement of the current sheet due to the bowl shape is as follows, where r is radial

distance, RH is hinging distance and θSUN is the latitude of the Sun from the rotational

equator.:

z =

[
r −RH tanh

(
r

RH

)]
tan(θSUN ) (3.28)

Figure 3.15 shows the z-axis offset assuming a 50.0 RS hinging distance. A value of

averaged hinging distance for the entire data set can be estimated by removing the bowl

shape from z0 and then testing for which distance of hinging causes the resultant Bz0

values to be closest to zero using a MSE from the zero-line. The average hinging distance

is found to be 52±30 RS . This large uncertainty stems from the large time scale of the

data set where the hinging distance will change considerably between 2005 and 2012.
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Figure 3.15: Figure showing spatial distribution of distance of current sheet from
z = 0 with z-axis offset due to bowl shape removed with a hinging distance of 50 RS .

Layout is described at the beginning of section 3.5.
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3.5.2 Wave Parameters

Wave parameters in this section are all resultant from the use of a Gaussian wave pulse to

model a travelling aperiodic wave upon the current sheet. Equation 3.4 gives the function

for an aperiodic wave with a Gaussian profile, and from this a number of wave parameters

are available for analysis. Phase is included in the equation, however it corresponds to

the position of the wave in the time period and has no physical interpretation other than

to aid fitting, therefore it is not presented here as a wave parameter.

3.5.2.1 Amplitude

Figure 3.16 shows the spatial distribution of the amplitude of aperiodic waves. The

amplitude is seen to increase with radial distance, with a statistically significant increase

in the ’morning’ and ’night’ sectors.

Additionally, it is observed that the majority of aperiodic waves have a negative

amplitude, which in the method of fitting the waves means that the Gaussian pulse moves

the current sheet in the negative ẑ-direction. Apparent when taking the temporal changes

into consideration is that, the yellow/orange values that occur in the later revolutions

have a mixture of positive and negative amplitudes and the earlier revolutions have

mainly negative amplitudes. This is also an indicator of whether Cassini was above or

below the average position of the current sheet, Cassini cannot detect positive amplitude

waves if it is situated beneath the current sheet. A statistical increase is seen only in

the ’morning’, ’night’ and ’evening’ sectors.
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Figure 3.16: Figure showing spatial distribution of amplitude of aperiodic waves. Lay-
out is described at the beginning of section 3.5. a) shows the magnitude of amplitude,

whereas b-e) show the sign of the amplitude.
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3.5.2.2 Wave Number and Propagation Direction

Wave numbers kx and ky are found using the Gaussian wave pulse. As the wave is

assumed to be travelling on a 2-D plane, these wave numbers are used to form the wave

vector kkk, and the direction that the wave is travelling can be found. To find the trend

in propagation direction, the components are converted to kxKSM and kyKSM in the

KSM co-ordinate system and plotted on polar axes to display the direction. Figure 3.17

shows these directions for each local time sector, used previously, but with additional

binning in radial distance. Each plot is constructed using an angle between kxKSM and

kyKSM , and the uncertainty in the angle for each event. This means that each event

forms a Gaussian profile with the centre on the angle as the mean of the Gaussian

distribution, and a standard deviation of the uncertainty in the angle. Each Gaussian

profile is superposed on top of each other in each bin to form a probability distribution

of the propagation direction of the wave. In figure 3.17, positive xKSM -axis is directed

to the right of the figure and represents the direction of the Sun with Saturn at the

origin, and positive yKSM -axis is directed to the top of the figure which represents the

dusk-ward direction.

We see that the main propagation direction is radially outwards with a small

positive azimuthal component in all sectors apart from ‘noon’.

3.5.2.3 Angular Frequency and Phase Velocity

The final parameter directly inferred from the wave pulse is the angular frequency of

the wave. The angular frequency ranges from 0.0005− 0.0750 s−1 with a large majority

occurring at 0.01 s−1. These values correspond to time periods of a few minutes to half

an hour, which is notably the criteria for detecting an aperiodic wave. There appears to

be no SLT or radial distance preference for particular angular frequencies.
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Figure 3.17: Figure showing the direction of propagation of waves as a probability
distribution (red) in each local time and radial sector of Saturn’s magnetosphere.
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Phase velocity can be calculated from the angular frequency and the wave number

mentioned earlier.

Vph =
ω

|k|
(3.29)

As angular frequency has no SLT or radial dependence, the profile of phase velocity

follows that of the inverse of the magnitude of k. The median phase velocity is found to

be 0.21 RSs
−1 (∼10000 kms−1) with little variation in SLT and radial distance which is

an order of magnitude comparison to the Alfvèn velocity in the middle magnetosphere.

3.6 Discussion

This method of fitting a model current sheet deformed by a Gaussian wave pulse allows

for the extraction of variables associated with the current sheet, such as scale height, lobe

magnetic field and distance of the current sheet centre from the equator. Additionally,

when deforming the current sheet, the use of a Gaussian pulse wave allows the resolution

of wave variables, such as amplitude, frequency and wave vector.

Through the extraction of these variables, various other quantities can be derived

from them, for example, direction of propagation can be found when considering the

wave numbers in x̂ and ŷ. This section will begin with a discussion of the temporally

broad local time sectors, the current sheet parameters, then the wave parameters. The

section will end with a short discussion on the use of the Gaussian and possible sources

of the aperiodic waves.

3.6.1 Noon and Evening Sectors

Evident in all figures of parameters separated by local time sectors is the fact that the

evening and noon sectors rarely allow for a correlation with the parameter and radial

distance. Whilst there may not be any correlation in the underlying data, the analysis

method may introduce systematic errors that mask any real correlations. Firstly, it is

important to view the differences in the current sheet between the morning/night area

and the evening/noon sectors. It is known that the current sheet at Jupiter is seen to be
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thicker on the dusk sector than on the dawn sector (Krupp et al., 1999; Arridge et al.,

2015) and the same may be true for Saturn. As the model relies on a thin current sheet

approximation, the thicker current sheet will cause larger uncertainties in the parameters

fitted in the evening or noon sectors.

Additionally, events in the noon sector are widely separated in time, where only

the first few revolutions and final few revolutions of the survey are found in this sector.

Changes of the seasons on Saturn can be seen in the data in this sector and this may

account for that fact that in most parameters there is little or no correlation with radial

distance, it is also evident in some parameters that the blue coloured data points (early

2005) show a different relationship with radial distance than the yellow coloured data

points(late 2012).

3.6.2 Current Sheet Properties

3.6.2.1 Magnetic Field Components

Firstly, larger values of the radial magnetic field (figure 3.10) component (Bx0) are found

closest to the planet. A dipolar planetary magnetic field is expected to reduce in strength

with distance as r−3 and as such each component is expected to decrease in magnitude

with distance, but as Saturn is not strictly a dipolar field, a decrease is expected but

not with an exact r−3 relationship. It is observed that the inner morning sector has the

highest radial magnetic field, however this may also be a temporal change as the ’noon’

sector has two time periods (shown as yellow and blue) where blue is on average larger

than yellow, and as the ’morning’ sector is primarily blue this may be the case.

The second magnetic field component By0 (figure 3.11) shows a similar relation to

Bx0 where the largest absolute values are found closer to the planet. However, By0 can

have positive and negative values relating to the direction of sweepback of the magnetic

field. The ’morning’, ’night’ and parts of the ’noon’ and ’evening’ sectors show mainly

negative By0 where this corresponds to a swept backwards field, described by By being

positive below the current sheet and negative above.
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The third and final magnetic field component Bz0 (figure 3.12) displays a similar

relation with distance as the radial component. Saturn’s magnetic field dipole has its

magnetic north pole at the planets Kronographic North pole, with no external forces

acting to change this, the magnetic field at the equator would be directed Southward,

or negative in ẑ in the model’s Cartesian coordinates, or positive θ̂ in KRTP.

3.6.2.2 Scale Height

Figure 3.13 shows the distribution of scale height derived from the geometric mean of

the magnetic scale height in the radial and azimuthal field components using a Harris

equation to model the current sheet. An increase is observed in morning and night

sectors of the scale height radially from 2 RS to 6 RS in the morning sector and from 2

RS to 5 RS in the night sector.

Previous studies [e.g. Khurana and Kivelson (1989a); Giampieri and Dougherty

(2004); Kellett et al. (2009); Kidder et al. (2009)] using plasma data, models and mag-

netic field data show that an increase in scale height is expected with distance. The

magnetopause currents encourage the magnetic field to become more dipolar and hence

the current sheet will be less confined at the equator as the particles can more easily

travel up the magnetic field lines. This means that the magnetic scale height will also

increase.

It is important to note that this is the scale height of the magnetic field in the ẑ̂ẑz

direction, and no plasma data had been included in the analysis. This means that the

scale height described here is not directly related to the thickness of the current sheet

determined by calculating the current density or inferred from stress balance, however

further discussion on this topic can be found in Sergis et al. (2009) & Sergis et al. (2011),

showing that the two may be correlated and show similar trends.

3.6.2.3 Z-axis offset and Hinging Distance

To account for processes that cause the current sheet to be displaced from the rota-

tional equator, a z-axis offset is used within the Harris equation. This offset includes
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displacement from the seasonal bowl shape and flapping of the current sheet at near

the rotational rate of the planet. Additionally, due to the seasonal nature of the bowl

shaped current sheet, the bowl is expected to be above the equator for events occur-

ring in 2005-2009 and below the equator for events that occur in late 2009-2012 (Arridge

et al., 2008b). Figure 3.14 shows the distribution of this z-axis offset around Saturn. The

morning and night sectors show an increase in absolute z-axis offset, where an increase

is expected as the morning sector was explored in 2005-2006 which is before equinox and

so the bowl shape is expected to push the current sheet above the z=0 axis.

3.6.3 Wave Properties

3.6.3.1 Wave Number, Propagation Direction and Wavelength

The azimuthal and radial wave numbers ky and kx determined by the model fitting can

be used to determine the direction that the wave is propagating. Figure 3.17 shows the

probability distribution built from 1-D kernel smoothing of the angle of propagation from

the Sun-Saturn line and its uncertainty. An overwhelming majority of sectors display a

positive radial skew with a small additional positive azimuthal component. This means

that the majority of the waves in the bin are travelling radially away from the planet.

This probability distribution is tested against an isotropic distribution equal to the

mean of each bin as null hypothesis. All sectors, except the noon sector, give a probability

of less than 5% that the null hypothesis is correct. An additional check used is that the

χ2 value of the isotropic distribution compared with the probability distribution is much

greater than the mean of the distribution plus two standard deviations, this process is

a standard check for the reliability and evaluation of a χ2 value. Below, table 3.2 shows

these values to show that all sectors except noon reject the null hypothesis of isotropic

propagation.

Waves in the noon sector are propagating in all directions, however the other sec-

tors are all skewed towards a particular direction, that direction being radially outwards

from Saturn. All radial bins of the evening sector give a peak of the distribution at
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around 10◦ - 130◦ showing a radially outwards propagations direction, with a small ad-

dition in the azimuthal direction with corotation. This is also true for the night sector

where the global maximum of the distribution occurs at 210◦ (travelling down tail away

from Saturn).

The morning sector has only one large global maximum in each radial bin, and

outwards of 20 RS that direction is again radially outwards with an addition in the

azimuthal direction. However, inwards of 20 RS the probability distribution peaks at

340◦, which is again in the direction of corotation.

The final sector, noon, shows lower event numbers coupled with multiple possible

wave sources. Hence, this sector shows a much larger spread in the probability dis-

tribution. Important to consider in this sector is that the magnetopause is generally

seen between 21 and 26RS (Pilkington et al., 2015a) thus the majority of events in the

> 20RS bin are assumed to occur when the magnetopause is in an extremely expanded

phase. This bin shows a large spread mainly across the 210−0◦ area. This bin is formed

from events on the dusk side of the noon magnetosphere and hence this may show these

events propagating perpendicular to the magnetopause. A small number of events are

situated close to the morning sector, and these account for the two thinner peaks at 60◦

and 30◦ which also show propagation perpendicular to the magnetopause.

Table 3.2: Table of χ2 values, probability of null hypothesis being correct and whether
or not the null hypothesis was rejected for each section

Sector Radial Distance [RS ] χ2 µ+ 2σ Probability Reject

Morning R ≤ 20 409 13 < 1% Yes

- 20 < R ≤ 40 113 46 < 1% Yes

- R > 40 549 10 < 1% Yes

Noon R ≤ 20 472 12 39% No

- 20 < R ≤ 40 347 14 9% No

Evening R ≤ 20 329 11 < 1% Yes

- 20 < R ≤ 40 440 96 < 1% Yes

- R > 40 195 25 < 1% Yes

Night R ≤ 20 144 31 < 1% Yes

- 20 < R ≤ 40 147 32 < 1% Yes

- R > 40 160 29 < 1% Yes



Chapter 3: Aperiodic Waves 87

Inwards of 20RS a primarily bimodal distribution of inwards and outwards radially

travelling waves is observed, however this bin is not statistically significantly different to

an isotropic propagation distribution. These signatures suggest a possible magnetopause

source for a percentage the waves found. However, the majority of all waves are prop-

agating radially, concluding that a source of waves is found in the inner magnetosphere

and propagate outwards, further discussed in section 3.6.5.

3.6.3.2 Amplitude

Figure 3.16 shows a radial dependence on the amplitude of waves in the morning and

night sectors. The largest negative values of amplitude are found at large radial distances

in the morning and night sectors, and the largest positive amplitudes are found in the

evening sector. Initially, this may be due to the large scale bowl shape of the current sheet

at the times the events are found. In the morning sector, the bowl is above the equator

and so only negative values of amplitude may be seen, and conversely, the evening sector

events are seen during 2010-2012 where the bowl is expected to be below the equator

and hence a mixture of positive and negative amplitudes are seen as Cassini has a varied

trajectory in ẑ.

This leads to the discussion of amplitude having a radial dependence due to the

bowl shape, meaning that as the bowl shape causes the current sheet to become further

from the equator, only increasingly larger amplitudes may be seen as the current sheet

will need to be deformed more to be able to be seen at the equator, i.e. an observer bias

is present. This seems likely due to the positive and negative dependence on the bowl

position. However, during this time, Cassini is not constrained to the equator, but travels

between +10RS and −10RS therefore smaller waves should still be sampled at larger

radial distances. The only change will be that the bowl is more likely to be above or

below Cassini, thus seeing more positive amplitudes in the evening sector (post-equinox,

northern summer, downwards bowl), and more negative amplitudes in the morning and

night sectors (pre-equinox, southern summer, upwards bowl). The conclusions here being

that the radial dependence of the amplitude of the waves is not affected by the bowl

shape, however the sign of the amplitude seen is. Additionally, this could mean that
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almost double the number of waves seen could actually have been propagating at the

time as only one sign of amplitude can be viewed at a specific time.

Additionally, now having ruled out the observer bias of an increasing amplitude,

a physical interpretation is examined. To understand conceptually why the amplitude

is increasing with radial distance, the physical analogy of a wave on a string or a wave

upon water is used. A comparison is drawn from the physics of water shoaling, where

in a dispersive medium the energy of a wave must remain constant. This energy is

related to the linear mass density, amplitude and frequency of the aperiodic wave. As

the amplitude is increasing, then the linear mass density or the frequency must decrease.

Frequency has been shown to have no radial distribution in this study, and Arridge et al.

(2011) shows a decrease in linear mass density with radial distance, hence it is suggested

that amplitude increase is due to a medium that is decreasing in density.

3.6.4 Gaussian Differential Testing

As discussed in the previous section, Cassini may have a sampling bias of sign of ampli-

tude due to position with respect to the current sheet. A Gaussian derivative will be used

to deform the current sheet model and fitted to the magnetometer data of the events

to compare and contrast the fittings and physical properties. A Gaussian differential is

chosen as it shows both positive and negative displacements in one pulse. The Gaussian

differential (differential of equation 3.4) is as follows:

z = −2(k · rk · rk · r − ωt)Ae−(k·rk·rk·r−ωt−Φ0)2 (3.30)

This equation was fitted to magnetometer data, noted is the removal of the Doppler

shift signature, this was a simplification that improved the number of events that were

able to be fitted. Overall, fewer events allowed fitting of a Gaussian differential profile.

This included almost no events from the evening and noon sectors, with a total of 462

events being fitted compared to 742 events fitted using the Gaussian profile. Additionally,

large uncertainties are common in the fitting process of the derivative, with the average

uncertainty for some parameters, such as scale height and amplitude, reaching 40-50%.
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However, events that managed to be adequately fitted with both methods show similar

parameter values for both fitting methods there are just far fewer events fitted with the

Gaussian derivative.

This concludes that the Gaussian profile was a suitable candidate for the shape of

the current sheet deformation, and that it is preferable over the Gaussian derivative due

to lower uncertainties and a larger number of fitted events. The fact that both Gaussian

and derivative give similar values for parameters when both are well fitted shows that

either is a suitable physical model for the shape of the waves. Also taken into account

is the reduced computational time needed to fit the Gaussian, and hence more complex

wave pulses are not explored.

3.6.5 Aperiodic Wave Sources

Aperiodic waves can originate from a number of processes, many of which can act to-

gether or occur simultaneously. The main mechanisms will be discussed and evaluated

for likelihood in this section. The dayside magnetopause is subject to changing solar

wind conditions that buffet the magnetosphere causing compressions and expansions of

the magnetopause position. The current sheet extends all the way to the magnetopause

on the dayside (Krupp et al., 2005) and hence any sudden changes in magnetopause posi-

tion due to solar wind condition changes will be transmitted to the current sheet. Small

scale changes in the magnetopause position could perturb the current sheet to form an

inward travelling aperiodic wave. The propagation directions discussed in section 3.6.3.1

show that the dayside magnetosphere appears to show a bi-directional propagation where

inward travelling waves are possibly caused by changes in magnetopause position.

Additionally, the magnetopause on the dayside is subject to reconnection in primed

solar wind conditions (McAndrews et al., 2008). This reconnection can introduce per-

turbations in the magnetic field (Snekvik et al., 2017) and hence these perturbations can

be transmitted to deform the current sheet. This mechanism could be the cause of the

larger number of inward travelling waves in the dayside magnetosphere. Furthermore,

the dayside magnetosphere is home to an, on average, thicker current sheet due to a

more dipolar field arrangement, this however can still produce reconnection within the
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current sheet [e.g Guo et al. (2018) & Delamere et al. (2015)] which could also act to

produce aperiodic waves on the current sheet in all local time sectors. However, as the

x-line in the tail region of Saturn is expected to be inside the range of radial distances for

this study [e.g. Vogt et al. (2010)], it is expected that more inward travelling waves are

found closer to the planet and more outward travelling waves further in the magnetotail.

This is in contrast to the number of events observed propagating in either direction and

so the mechanism of reconnection may only be a minor source of aperiodic waves.

A small scale version of the centrifugal interchange instability [e.g. Gold (1959)

& Burch et al. (2005)] may also be a method of producing aperiodic waves, where hot,

rarefied plasma from the outer magnetosphere interchanges with cold, dense plasma of

the inner magnetosphere. This localised change in plasma conditions may cause a local

change in the position of the current sheet, the current sheet position is expected to

hinge (Arridge et al., 2008b) due to changes in mass of the current sheet and solar wind

conditions. If a local change in density arrives at Cassini it may appear as a sudden

change in position of the current sheet. This may then propagate outwards from the

inner magnetosphere where interchange is expected, thus appearing as outward travelling

aperiodic waves.

Finally, planetary period oscillations (PPO) are known to effect the position and

thickness of the current sheet [Arridge et al. (2011); Thomsen et al. (2017); Cowley et al.

(2017)], however, detections of aperiodic waves are dependent on how close Cassini is to

the current sheet, and this position is dependent on PPO. When this observation bias

is removed from the data, no dependence on PPO within uncertainties is found for the

occurrence of aperiodic waves. The observation bias is tested using synthetic data sets

with dependence and with no dependence for the trajectories of Cassini, this is then

compared to the measured dependence. An overview of this test can be seen in figure

3.18 where the null hypothesis is accepted for the measured occurrence (southern phase

only displayed) (Arridge, C.S., private communication). The measured dependence on

PPO values resembles the ’no dependence’ plot in figure 3.18.

The majority of sources explored could possibly source the aperiodic waves, how-

ever it is most likely that the large distribution of wave parameters point to a combination
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of all the above mechanisms as sources.

B) Measured occurrence

Figure 3.18: Figure shows a test for dependency of aperiodic waves on PPO. A)
shows the null hypothesis of no PPO dependency, B) shows the measured distribution
for southern phase. C) - F) show the distribution with dependencies on different phase
angles and what one would expect if a dependency was shown (Arridge, C.S., private

communication).

3.7 Conclusion

Saturn’s current sheet has shown to be a dynamic and changing environment. Along

with periodic waves such as the rotation rate flapping and the seasonal bowl shaped

movement of the current sheet, frequent aperiodic waves also travel along the sheet.

These waves last from 1 to 30 minutes, show a deflection of more than 1nT in the
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magnetic field magnitude and have a uniform occurrence where the current sheet exists

in the magnetosphere.

A model of the passage of these waves is constructed by using a modified Harris

current sheet model for the radial and azimuthal magnetic field components, and a

constant value for the meridional component. This model of the localised current sheet

is then deformed to the shape of a Gaussian wave function moving along the current

sheet to simulate the passage of a wave using the general deformation method laid out

in TSY98. The use of the Harris and Gaussian equations means that eleven variable

parameters can be fitted to the magnetometer data including scale height and other

current sheet properties, and amplitude along with other wave parameters.

After each event is fitted to the model, the statistical view of the current sheet

and its properties in Saturn’s magnetosphere is displayed and discussed. It is observed

that the scale height increases with radial distance from 2RS to around 5RS with the

morning sector increasing to a maximum of 6RS at 40RS which is in line with previous

studies on the plasma scale height. It is also shown that the distance of the bowl shaped

current sheet from the equator is as expected with the seasons, and the average hinging

distance is found to be 52± 30 RS over the whole data set.

The two wave numbers are used to find the direction of propagation of the waves

in two dimensions. The distribution shows that the majority of waves are travelling in

the positive radial direction, away from the planet. However, there is a second faction of

waves that appear to be travelling inwards, specifically in the noon and evening sectors

which is possibly attributed to the movement of the magnetopause causing the waves as

the magnetosphere expands and contracts. A definitive source of the waves is still an

unknown, however the source on the outward travelling waves must be located in the

inner magnetosphere and a number of possibilities were explored and evaluated.

Additionally, the amplitude of the waves increases with radial distance.The orbit of

Cassini would allow detection of small amplitude waves at large distance. Their absence

when they could be present in the data, leads to the conclusion that amplitude grows

with distance. This increase in amplitude can then be attributed to a decreasing density,
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if all parameters remain constant as a wave travels than if it is travelling in a decreasing

density medium the amplitude will increase proportionally.

In conclusion, fitting magnetometer data with a model is an effective technique

to extract wave and current sheet parameters from magnetometer data as an aperiodic

wave travels past Cassini. The waves are travelling outwards from the planet radially

with increasing amplitude, along a thickening current sheet. The model described also

has further possible use at other planets with single spacecraft data.



Chapter 4

Current Density Structure of

Saturn’s Equatorial Current Sheet

4.1 Introduction

The previous chapter outlines the use of aperiodic waves, fitted with a model, to find

properties of the current sheet and of the waves themselves. In addition, we use the

magnetic field components and current sheet parameters from the fitting to estimate

the height integrated current density flowing in Saturn’s current sheet in the radial and

azimuthal directions. As the model, defined in section 3.3, is fitted in a local Cartesian

system, which at the equator is very similar to a cylindrical system, we assume that Bx0

is equivalent to the radial magnetic field in the lobes, By0 is equivalent to the azimuthal

magnetic field in the lobes and Bz0 is the magnetic field perpendicular to both and

northwards. For ease of understanding, this chapter will use the cylindrical coordinate

system unit directions where for each event, r̂̂r̂r is equivalent to the radial direction, and φ̂̂φ̂φ

is equivalent to the azimuthal direction, however the analysis itself is done in a Cartesian

sense. Height integrated current density will be referred to by the acronym ’HICD’.

Khurana (2001) previously showed that the HICD in Jupiter’s magnetosphere is

asymmetric with local time. With a comparison to Earth and despite the radically

different magnetospheric plasma flow drivers in each system, the authors argued for a

94
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solar wind influence on Jupiter’s equatorial current sheet. Sergis et al. (2017) describe

the current density in Saturn’s ring current between 5 and 15 RS using particle and

magnetic field measurements from Cassini. The authors show that, between 12 RS and

the outer limit of the study, the particle pressure is dominated by hot plasma with

some local time effects and additionally, the authors describe the local time and radial

dependencies on the azimuthal current density. The azimuthal current density is shown

to be asymmetric with an enhancement in the post-noon to midnight area around 10

RS . The total current in Saturn’s ring current has been calculated by Carbary et al.

(2012) to be 9.2 ± 1.0 MA between ∼ 3 − 20 RS , with a peak strength of ∼ 75 pA/m2

at around 10 RS , however Sergis et al. (2017) calculate a maximum current density of

100− 115 pA/m2 between 7− 13 RS .

In this chapter we discuss the current density of Saturn’s equatorial current sheet

from 10 - 50 RS to extend the current knowledge of the current density which has

been explored up to ∼ 20 RS by previous authors. The current density is calculated

using Ampére’s law and uses the method laid out by Khurana (2001) previously used at

Jupiter for HICD. These calculations use the measured and fitted magnetic field from

the previous chapter.

Additionally, this chapter explores the vertical structure of the current sheet during

aperiodic wave traversals. Previous current sheet studies assume the smooth function of

current density at the centre of the current sheet and that the magnetic field surrounding

the current sheet behaves as a Harris current sheet. These assumptions are necessary for

the analysis techniques presented by the authors, and so this section of the chapter will

present the test of whether this assumption is restrictive or not in the Saturn system.

This chapter also investigates bifurcation of the current sheet, which describes the

splitting of the current density into two maxima around the centre where a minimum

occurs. Bifurcation is common in the Earth’s current sheet: 25% of all current sheets

sampled (Asano et al., 2005; Thompson et al., 2006). Bifurcation in Earth’s cross-tail

current sheet has been shown to be a precursor or a result of magnetic reconnection

events [e.g Nakamura et al. (2002), Thompson et al. (2006) & Birn and Hesse (2014)]

and more recently, a link to substorm onset and current density increases has been shown
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(Saito, 2015). Perturbations in a model dipole field have also shown a bifurcated current

sheet at Earth (Sitnov and Merkin, 2016). Current sheets that exhibit bifurcation in

models have also been found to be stable against a number of instabilities [Ricci et al.

(2004), Camporeale and Lapenta (2005), Génot et al. (2005), Matsui and Daughton

(2008)]. At Earth these instabilities can also be associated with a flapping motion of the

current sheet, which is also shown to be related to bifurcation [Sergeev et al. (2003a),

Sitnov et al. (2004)] and also reconnection [Runov et al. (2003), Mok et al. (2006)].

Cluster mission observations of plasma and magnetic field at Earth and models

of bifurcated current sheets have also been used to show that anisotropies in the ion

temperature and pressure can form a bifurcated current sheet [Sitnov et al. (2003),

Sitnov et al. (2004), Israelevich and Ershkovich (2008)]. Motion of particles around the

centre of the current sheet have also been explored by Zelenyi et al. (2002), Zelenyi et al.

(2003) & Delcourt et al. (2006), showing that a current maximum is found away from the

magnetic null point, especially when considering the role of oxygen ions (Dalena et al.,

2010; Greco et al., 2007).

4.2 Methodology

4.2.1 Height Integrated Current Density Calculations

Azimuthal current density in the local cartesian system is given by equation 4.1 where

Br and Bφ are the radial and azimuthal magnetic field components. This equation is

the azimuthal component of Ampére’s law.

Jφ =
1

µ0

(
∂Br
∂z
− ∂Bz

∂r

)
(4.1)

We must consider the ‘differenced’ magnetic field lobe values, where the value of the

dipolar magnetic field of Saturn is already removed from the values calculated by the

model in the previous chapter (section 3.3). Assuming a thin current sheet we can assume

that the differenced radial magnetic field is a function of only z, and the north-south
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magnetic field is only a function of r. Therefore we may rewrite equation 4.1 as:

Jφ =
1

µ0

(
∂∆Br
∂z

− ∂∆Bz
∂r

)
, (4.2)

where ∆ denotes a ’differenced’ field. We then integrate over the height of the current

sheet - or the scale height, H, that we calculate in the previous chapter, to retrieve an

estimate of the height integrated current density of the current sheet.

J ′φ =

∫
Jφ dz =

1

µ0

(
2Br0 − 2H

∂Bz0
∂r

)
(4.3)

We can obtain all of the values above from the model used in the previous chapter,

apart from the differential in the second term on the right hand side of equation 4.3.

This is found by fitting a polynomial of order three to the differenced magnetic field

(where ∆Bz = Bz0) value shown in equations 4.4 and 4.5.

Bz0 =
a

r
+

b

r2
+

c

r3
(4.4)

∂Bz0
∂r

=
a

r2
+

2b

r3
+

3c

r4
(4.5)

Figure 4.1 shows the example of Bz0 values (blue) from the study in the previous

chapter as a function of radial distance. Values of Bz0 are outputs of the model which

is already a ‘differenced’ field component. A best-fit polynomial of the form given by

equation 4.4 is shown with a solid red line. The values of a, b and c are then used in

equation 4.5 to calculate the differential at each radial distance to be used within the

analysis. In this example, a = 216.0 ± 38 nT RS , b = 6364 ± 498 nT R2
S and c = 56410

± 2911 nT R3
S .

The radial height integrated current density is derived from the radial component

of Ampére’s law 4.6 using the differenced magnetic field values.

Jr =
1

µ0

(
∂∆Bz
∂φ

−
∂∆Bφ
∂z

)
(4.6)
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Figure 4.1: Figure showing measured values of Bz0 against radial distance (blue dots)
fitted with a polynomial (red line)

Bz is shown to be unvarying in local time, and so the first term is assumed to be 0.

We then integrate over the scale height of the current sheet to get the radial height

integrated current density.

J ′r =

∫
Jr dz = −

2Bφ0

µ0
(4.7)

4.3 Results

4.3.1 Local Time Structure of Height Integrated Current Density

Azimuthal HICD (J ′φ) is shown in figure 4.2 on a logarithmic scale of Am−1. The top

panel shows all events projected onto the X-Y KSM plane, where each bin is 1x1 RS

in size and values for each event are averaged inside each bin. All of the figures also

show the orbits of Rhea (8 RS) and Titan (20 RS) along with a minimum and maximum

magnetopause position using the Arridge et al. (2006) magnetopause model. Below the

overview are four radial profiles, one for each specified local time sector. The radial

profiles are colour-coded according to Cassini Rev and year.
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Figure 4.2: Azimuthal HICD in Saturn’s magnetosphere. All plots are shown on a log
scale. a) shows the overall view where each coloured box gives the average azimuthal
HICD in the bin. The orbits of Titan and Rhea along with a minimum and maximum

magnetopause position are shown. b-e) show local time and seasonal changes.
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Figure 4.3: Radial HICD in Saturn’s magnetosphere. All plots are shown on a log
scale. a) shows the overall view where each coloured box gives the average radial
HICD in the bin. The orbits of Titan and Rhea along with a minimum and maximum

magnetopause position are shown. b-e) show local time and seasonal changes.
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Figure 4.4: Radial HICD in Saturn’s magnetosphere. Each coloured square represents
the average value of radial height integrated current density, where the emphasis is given
to positive (red) or negative (blue) values. The orbits of Titan and Rhea along with a

minimum and maximum magnetopause position are shown.

The azimuthal HICD decreased with radial distance in both the morning and night

sectors (figure 4.3). There are large temporal difference in the noon and evening sectors

with little correlation with radial distance seen within them. We can however see a small

decrease in the yellow (late 2011 and 2012) events in the noon sector with radial distance

and hence an overall decrease is seen in the noon sector. The median value of azimuthal

height integrated current density in the current sheet is ∼ 0.5 MA/RS .

Radial height integrated current density (J ′r) is shown in figure 4.3; this plot has

the same layout as figure 4.2. We see a decrease with radial distance in the morning

and night sectors, and large temporal differences in the noon and evening sectors are

seen. The majority of negative values of radial HICD are found in the evening/late noon

sector. This can be seen in figure 4.4 where the values are presented on a linear scale

with red as positive values of radial HICD, and blue as negative values. The median

value of radial height integrated current density is ∼ 0.3 MA/RS .
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Figure 4.5: Radial HICD vs. local time at different radial distances. The mean of
each 3hr local time bin is shown by the coloured lines.
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Figure 4.6: Azimuthal HICD vs. local time at different radial distances. The mean
of each 3hr local time bin is shown by the coloured lines.
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Figures 4.5 and 4.6 show local time structure of the HICD at different ranges

in radial distances. Each plot shows the HICD in Am−1 vs. Saturn local time. The

mean of 3hr local time bins is shown as a coloured marker with error bars relating to

the standard deviation of values within each bin and the number of points in each bin

(i.e. standard error). A trend line is shown between the mean values of each bin to

better identify the local time structure. The bottom plot shows the comparison of the

trend lines for each radial distance. Radial HICD (figure 4.5) shows a small local time

change with larger positive values found in the post-midnight sector at smaller radial

distances. All negative values are found between 12 and 21 SLT (evening sector) where

swept forward fields are expected. At larger radial distances, the current density is

constant across SLT. Azimuthal HICD (figure 4.6) again shows a similar SLT structure

to the radial HICD in that a peak is seen post-midnight, however no negative values are

found in azimuthal HICD as the field of Saturn is directed southward and will always

cause a positive azimuthal current at the equator, if no larger perturbations affect the

magnetosphere. A decrease in HICD is also seen with radial distance at all SLT.

Local Time Radial Current [MA] Azimuthal Current [MA]

All SLT 15.4± 4.4 32.8± 5.5

Morning 3 ≤ SLT < 9 23.3± 3.2 34.0± 4.8

Noon 9 ≤ SLT < 15 4.7± 1.5 13.7± 2.1

Evening 15 ≤ SLT < 21 7.7± 2.8 20.1± 2.7

Night 21 ≤ SLT < 3 20.3± 1.7 35.8± 2.7

Table 4.1: Mean total current for all local time sectors and total current for each
individual 6 hour local time sector.

By integrating the HICD radial and azimuthal values radially, one can find the

total current flowing in each local time sector and in the entire system. Uneven numbers

of data points in each radial bin of 1 RS width is solved by stratifying the data i.e.

20 events are sampled in each bin with replacement so that an event may be sampled

multiple times, or not at all, in one bin. These 20 events are then averaged to give a

value for that radial bin. This is repeated for radial distances of 10-61 RS which are

then summed to give a total current value. A mean and standard deviation are then

found for each local time bin of 6-hours width by repeating this process 1000 times. The

means and standard deviations are presented in table 4.1.
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4.3.2 ∇ · J ′J ′J ′: Divergence of Height Integrated Current Density

The divergence of the HICD in the radial and azimuthal direction can be used to infer

the divergence of the perpendicular HICD, which in turn can be used to estimate the

field-aligned currents using the continuity of currents equation (shown in full in appendix

A.4):

∇ · J⊥J⊥J⊥ = −B ∂

∂s

(
J‖

B

)
, (4.8)

where s is a length along the field which is positive towards North and J‖ is the magnitude

of field-aligned current. If equation 4.8 is integrated over the current sheet thickness, we

find:

∇ · (J ′rJ
′
rJ
′
r + J ′φJ

′
φJ
′
φ) = ∇ · J ′rJ

′
rJ
′
r +∇ · J ′φJ

′
φJ
′
φ = −2J‖

Bz
Blobe

, (4.9)

where Bz
Blobe

is the ratio of the perpendicular field in the current sheet and the field

strength in the lobe just outside of the current sheet with the assumption that Bz is

invariant over the current sheet thickness.

The divergence in each of the plots is calculated by finding the gradient in radius

(for the radial HICD) and in azimuth (for the azimuthal HICD). This is done by finding

the central differences, ∇ · J ′r ∼ Ji+1
r −Ji−1

r
2∆r . Perpendicular divergence is found by adding

the divergence of the radial HICD to the divergence of the azimuthal HICD, as described

in equation 4.9.

Khurana (2001) states that the individual divergence of the azimuthal and radial

HICD’s show the region 2 like field-aligned currents and the plasma acceleration field-

aligned currents respectively. Figure 4.7 a, c and e show the radial, azimuthal and

perpendicular HICD in Saturn’s magnetosphere, respectively. Uncertainty plots can be

found in figures 4.7 b, d and f. For reference, the number of events in each bin can be

found in figure 4.7 g. A positive value of ∇ · J⊥J⊥J⊥ requires field-aligned currents to flow

into the equatorial current sheet from the lobes.
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Figure 4.7: Divergence of the HICD. Coloured blocks show the average value of the
divergence of the HICD projected onto the X-Y KSM plane. An approximate minimum
and maximum magnetopause position calculated from Arridge et al. (2006) along with

the orbits of Titan and Rhea at 20 RS and 9 RS are indicated by the grey lines.
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4.4 Vertical Structure of the Current Sheet

Israelevich and Ershkovich (2006) developed a method of detecting bifurcated current

sheets at Jupiter based on the method laid out by Hoshino et al. (1996) used for detecting

bifurcated sheets at Earth. The updated method uses the full time derivative of the

magnetic field that is perpendicular to the flow direction of the current. The component

normal to the current sheet is used as a proxy for the distance from the current sheet

’centre’. The authors examine one bifurcated event, which is then expanded upon by

several other examples in Israelevich et al. (2007) where an ion pressure anisotropy is

described as the cause of the bifurcated sheets.

Bifurcated sheets make up a very small percentage of current sheets that were

examined by these studies. Hence the authors conclude that the phenomenon is very

rare at Jupiter and that the difference in bifurcated vs. Harris-like current sheet at Earth

and Jupiter may be due to a difference in ion distribution functions, originating from the

different transport processes of plasma in the magnetospheres that create the current

sheets.

Investigating the vertical structure of Saturn’s current sheet requires data that

shows frequent encounters with the current sheet. Due to the offset of the magnetic

axis and the rotational axis in Jupiter’s magnetosphere, an equatorial orbiter (such

as Galileo) would observe a regular flapping motion of the current sheet, frequently

described as a ‘square wave’ in magnetometer data. This flapping at Jupiter allows for

predictable and periodic sampling of the current sheet. However, this process (to the

degree seen at Jupiter) is not present at Saturn due to a < 1◦ offset of the magnetic

and rotational axes and, as such, a periodic sampling of the sheet is not possible. Also

noted is that planetary period oscillations (PPO) do allow for a quasi-flapping process

to occur [Arridge et al. (2011), Provan et al. (2012)]. However, this mainly acts to move

the current sheet towards and away from Cassini which does not periodically sample

both lobes. Therefore, the aperiodic wave structures outlined in chapter 3 and featured

in Martin and Arridge (2017) are ideal candidates to investigate the vertical structure.
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Figure 4.8: Figure showing the relation between the current sheet coordinate system
(ABC) and the KRTP (Kronian, Radial, Theta, Phi) coordinates with respect to the

current sheet and Saturn.

Firstly, the magnetic field must be rotated into a coordinate system relative to the

current sheet (A, B, C), where ĉ is normal to the current sheet, b̂ is in the direction of the

flow of current and â completes the right handed system and is positive roughly in the

outward radial direction. Figure 4.8 describes the two coordinate systems (A, B, C) and

KRTP with respect to Saturn and the current sheet. To rotate into the current sheet

coordinate system, a normal to the current sheet must be found which is then used to

calculate the angles needed to rotate the original system by. Two methods are utilised

to estimate the normal direction, MVA (described in chapter 2), where the minimum

variance direction is equivalent to the normal of the current sheet, and coplanarity, which

are both discussed in the following sections.

In certain cases, MVA produces directions which are degenerate, when this occurs

the uncertainty on the direction of the current sheet normal is large and, in most cases,

unusable. Hence, a second method of determining the current sheet normal is used to

calculate and check the direction of the normal. This method is named coplanarity,

as the vectors to be discussed are coplanar. The difference between the northern lobe

magnetic field and the southern lobe magnetic field (∆BBB) and the cross product of those

values (BNBNBN ×BSBSBS) are both in the plane of the current sheet and hence the cross product

of these two vectors ∆BBB × (BNBNBN ×BSBSBS) will be in the normal direction as shown in figure

4.9.

MVA is initially used to determine the normal direction as uncertainties obtained
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Figure 4.9: Figure showing the vectors involved with calculating the normal to the
current sheet using coplanarity with respect to the current sheet and Saturn.

from a bootstrapping method are generally smaller than those found during coplanarity.

However, this is under the assumption that the minimum and intermediate directions

are not degenerate (i.e figure 2.6 b or c). When these directions are degenerate or

uncertainties are large, the second method, coplanarity, is used. An additional aspect of

the two methods is that the direction of maximum variance, which is usually well defined

and not degenerate, is equivalent to the ∆BBB direction in coplanarity. This can be used

as a check for both methods, and when both methods are utilised give the same values

within uncertainties.

Once a normal direction is established, the angles (α, β, γ) needed to rotate KRTP

into ABC are defined from the three planes of the normal from the radial direction for

α and β, and from the φ-direction for γ which follow the method of Euler angles for

rotating a coordinate system.

Now the magnetic field is presented in a current sheet coordinate system, the

focus now rests on the magnetic field in the direction of a (Ba). Ba is dependent on time

and also the position of the current sheet relative to Cassini, and hence is expressed as

Ba(t) ≈ Ba(c(t)) where c is the position of the current sheet in ĉ. An expression for the

full derivative reads:
dBa
dt

=
∂Ba
∂c

dc

dt
(4.10)

Over the course of one aperiodic wave, it is evident that
〈
dc
dt

〉
will equal zero,

and hence
〈
dBa
dt

〉
≈ 0. ∂Ba

∂c is proportional to the current density in the current sheet,
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through Ampére’s law, and by plotting
〈
|dBadt |

〉
versus Ba the current density profile

of the sheet that Cassini measures is displayed. A Harris-like current sheet produces

a peak at Ba = 0 in
〈
|dBadt |

〉
with a gradual decrease with increasing Ba (e.g. figure

4.10). A bifurcated sheet will show two off centre maxima and a minimum at Ba = 0

(e.g. figure 4.11). Additionally, anything outside of these specified profiles is classed

as ‘striated’. It is noted that a shift of a maximum or minimum from Ba = 0 can be

caused by global motion of the current sheet during the time period of an aperiodic

wave, such as flapping motions, so it is not uncommon to find a shift of the profile to

slightly off Ba = 0. However, the binning of data, described later, is in larger bins than

any expected offset and so removes such an effect.

Estimating the current density profile at Jupiter, Israelevich and Ershkovich (2006)

calculate the differential value using larger windows of time over the ‘square-wave’ flap-

ping motion of the current sheet to achieve
〈
dc
dt

〉
= 0. This flapping motion is regular and

predictable at Jupiter using Galileo data as Galileo is a strictly equatorial orbiter and

the dipole offset of Jupiter allows a planetary period wave. However, at Saturn, Cassini

has a much more varied orbit in the z-direction, covering a large range of latitudes and so

it cannot be assumed that the flapping caused by PPO will achieve
〈
dc
dt

〉
= 0. Using the

aperiodic waves that sample both lobes equally this can be met on smaller time scales

at Saturn.

To calculate dBa
dt , the numerical differential is taken, [Ba(t+∆t)−Ba(t−∆t)]/2∆t,

where ∆t is 1 second. The values of the differential are then binned into bins of size

0.1-0.25 nT depending on the total number of data points for each event. This allows for

a reasonable number of data points in each bin throughout the event. Hence, a plot of〈
|dBadt |

〉
versus Ba can be constructed showing a proxy for distance from the current sheet

versus a proxy for the current density allowing a description of the vertical structure of

the current density in the sheet.

Now, a test to determine if a bifurcated, Harris-like or striated profile of current

density must be determined. For this task a model of three Gaussians is used. The first

Gaussian, or central Gaussian, is positioned at a centre value of close to or at Ba = 0

called ‘C’. The second and third Gaussians, or peripheral Gaussians, are centred on
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a value offset (Ω) from the centre value (C- Ω and C + Ω). Each Gaussian has the

same spread (standard deviation, σ). The central Gaussian has an amplitude (AHarris)

independent of the peripheral Gaussians (ABifurcated). If a Harris current sheet is present

the first amplitude will be considerably higher than the second, and vice versa for a

bifurcated current sheet.

Bayesian regression analysis (described in full general terms in chapter 2) is used

to fit the model to the
〈
|dBadt |

〉
versus Ba binned plots, where prior knowledge of the

system is used to give a probability distribution of the most likely final result and its un-

certainty. The unknown values C, Ω, σ, ABifurcated and AHarris are given limiting ‘prior’

distributions. C is modelled as a normal distribution around Ba = 0, the remaining are

given positive only normal distributions with decreasing probability of larger results.

Both amplitude prior distributions are centred around the average value of
〈
|dBadt |

〉
. The

likelihood function is determined by finding the samples that give the lowest χ2 values,

the total number of samples from the prior distributions is 100,000 which are randomly

taken from each prior distribution. The posterior is then used to estimate the ‘best fit’

parameters with uncertainties. The best fit parameters are then used to algorithmically

determine the profile of the current density. A number of criteria must be considered for

either classification. A sheet is considered Harris if:

• AHarris > 1.5ABifurcated

• σ < 2Ω

• C < Ω

A bifurcated sheet meets the following criteria:

• ABifurcated > 1.5AHarris

• Ω > 2σ

• C < Ω
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Striated current sheets are those that fit into neither category, these events are visually

inspected along with any borderline classified events as a secondary check. Examples of

a striated current sheet are found in appendix A.5.

4.4.1 Results

From a total of 1461 aperiodic events, 1018 events have a non-degenerate and singly

valued normal direction. Of these, 807 events sample both lobes adequately enough to

give a representation of the structure of current density. In total, 79 bifurcated signatures

are identified, along with 632 Harris-like/single-peaked signatures. 96 events are striated

or ambiguous profiles. Hence, 10% of the current sheets with adequate sampling have

bifurcated current sheet signatures, 78% show a Harris-like profile and 12% are striated.

Figures 4.10 and 4.11 display respectively, a Harris-like example and a bifurcated

example of a current sheet at Saturn. Grey error bars represent the standard deviation

of
〈
|dBadt |

〉
for each Ba bin, the means of each bin are connected by a dotted grey line.

The model best fit is represented by a solid orange line.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

2011-11-26   19:20:00

Figure 4.10: A current sheet with a Harris-like current density profile. The solid black
lines show the spread in each Ba bin where the means of each bin are connected by the
black dotted line. The solid orange line is the fitted model of three Gaussians, where
the central Gaussian is dominant and hence this example is a Harris-like current sheet.
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Figure 4.11: A current sheet with a bifurcated current density profile. The solid black
lines show the spread in each Ba bin where the means of each bin are connected by the
black dotted line. The solid orange line is the fitted model of three Gaussians, where
the peripheral Gaussians are dominant and hence this example is a bifurcated current

sheet.

Figure 4.12 shows spatially the distribution of Harris-like (a), bifurcated (b) and

striated (c) along with diagnostic tools: the ratio of bifurcated to Harris sheets (d), num-

ber of aperiodic waves in each bin (e) and number of NED (not enough data) events (f).

Each plot show the orbits of Rhea (8 RS) and Titan (20 RS) along with a minimum and

maximum magnetopause position using the Arridge et al. (2006) magnetopause model.

Spatially, there is no statistically significant overall correlation with radial distance, how-

ever an increase in bifurcated signatures is seen at dusk and inside of Titan’s orbit in

the morning sector. The remaining areas average at the mean value of occurence - 10%.

The distributions in a, b and c are normalised by the number of aperiodic waves in each

bin and converted to a percentage of total events. This is also a proxy for time spent

in each bin as the number of aperiodic waves is correlated with the time spent in each

spatial bin.

On average, around 50% of sheets are Harris-like sheets (a), which is expected

due to around half of all events not having enough data (see 4.12 f). To compare the

number of Harris-like sheet and bifurcated sheets, a normalised number of Harris-like

to bifurcated signatures is shown, where 1 represents Harris dominated regions, and -1

represents bifurcated dominated regions. This is shown in (4.12 d) where as expected the
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Figure 4.12: The position and number of Harris-like (a), bifurcated (b) striated (c)
and NaN and NED (f) current sheets normalised by the total number of aperiodic wave
events (e). d) shows the ratio of bifurcated to Harris-like current sheets. The figure
also shows nominal magnetopause positions to guide the eye in black, Titan’s orbit at

20 RS and Rhea’s orbit at 9 RS .
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majority shows Harris dominated (red) however the asymmetry in dawn-dusk occurence

shown in bifurcated occurence is also present, i.e., where almost no bifurcation is seen

outside of Titan’s orbit in the morning sector. This lack of bifurcated signatures could

be the result of a more stable and on average thinner current sheet in this area [e.g.

Kellett et al. (2009), Kidder et al. (2009) & Giampieri and Dougherty (2004)].

4.5 Discussion

4.5.1 Height integrated current density

A general decrease in HICD is found in Saturn’s magnetosphere with radial distance.

Additionally, a peak in the post-midnight sector at smaller radial distances is seen in

both components when. Negative and positive values of radial HICD are found in the

late-noon and evening sectors where we sometimes expect swept forward field lines. A

comparison is drawn with Khurana (2001) where the same study was applied to Jupiter’s

magnetosphere, in which traversals of the equatorial current sheet were used to measure

the magnetic field as a function of distance from the centre of the current sheet in the

z-direction to estimate the HICD using the same method outlined in section 4.2.

In figure 4.13 a comparison of radial and azimuthal HICD at Saturn with plots

modified from Khurana (2001) at Jupiter using a similarly coloured colour bar are shown.

We can see that at Jupiter the azimuthal HICD is stronger in the centre of the plots

(noting that the azimuthal HICD is plotted as a log scale) near Jupiter than the radial

HICD. This study on Saturn has a limiting factor in coverage compared to the study

at Jupiter as it does not cover areas as close to Saturn because current sheet traversals

due to aperiodic waves are only seen in magnetometer data outside of 10 RS . However,

we can see that on average at Saturn the azimuthal component of HICD is stronger in

magnitude than the radial component.

Jupiter’s radial HICD shows a large local time asymmetry in the morning and

evening where the post-midnight - morning sector is enhanced compared to the night
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sector (figure 4.13 top right). A larger coverage of the post-noon sector of Saturn’s mag-

netosphere allows the resolution of a similar pattern where we see the larger values of

radial HICD in the morning sector and the lowest values in the post-noon to evening

sector. Additionally, negative values in both studies are found in the post noon sec-

tor, relating the the occasional occurrence of field lines that are swept forwards into

corotation.

To explore this local time asymmetry, plots of HICD with SLT for a number of

radial distance bins are presented in figures 4.5 & 4.6. In this section, a comparison

is drawn once again with the Khurana (2001) study at Jupiter and the Iijima et al.

(1990) study at Earth. Figures 4.14 to 4.19 show the comparison of HICD of local

time asymmetries at Earth (left), Jupiter (right) and Saturn’s (middle) magnetospheres.

Plots of Jupiter’s local time differences are modified from Khurana (2001) and plots of

Earth’s local time differences are modified from Iijima et al. (1990). Figure 4.16 shows

an asymmetry in Jupiter’s HICD in the post mid-night section at all radial distances

from 35 RJ outwards, as seen on the overall magnetosphere plots presented previously.

However, at Saturn (figure 4.15) we see the largest absolute asymmetry at inwards of

20 RS , with smaller asymmetries where the post-midnight sector is slightly enhanced

out to 40 RS . At Earth (figure 4.14) a highly sinusoidal relationship with a similar

magnitude is seen for all L-shell distances due to the strong solar wind control over

the magnetosphere. Unlike Jupiter’s signature, the radial HICD at Saturn also shows a

quasi-sinusoidal signature, similar to Earth, but shifted so it peaks at post-midnight.

The majority of negative radial HICD in the outer radial distances at Jupiter are

in the evening and post-noon sector, whereas at Saturn, the mean of the bins does not

drop below zero, but a large number of negative values can be seen in the data (grey

crosses) at all radial distances for the evening and post-noon sectors. Therefore, Saturn’s

magnetosphere is similar to Jupiter’s in regards to radial HICD, but has some similarities

to Earth’s HICD.

It is also important to note that in relation to the top two panels of figure 4.13 ,

the measurements of HICD in the far dusk sector are taken from the Ulysses spacecraft

on its flyby of Jupiter. The spacecraft entered the system near noon at the equator but



Chapter 4: Current Density 117

-50

-40

-30

-20

-10

0

10

20

30

40

50

Y KS
M

 [R
S

]

-50 -40 -30 -20 -10 0 10 20 30
XKSM  [RS]

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

J'
y [A

 . 
m

-1
]

(lo
g 

sc
al

e)

 a) 

-50

-40

-30

-20

-10

0

10

20

30

40

50
Y KS

M
 [R

S
]

-50 -40 -30 -20 -10 0 10 20 30
XKSM  [RS]

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

J'
x [A

 . 
m

-1
]

(lo
g 

sc
al

e)

 a) 

J’ɸ (A/RS) Log scale J’r (A/RS) Log scale

-50

-40

-30

-20

-10

0

10

20

30

40

50
Y KS

M
 [R

S
]

-50 -40 -30 -20 -10 0 10 20 30
XKSM  [RS]

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

J'
x [A

 . 
m

-1
]

(lo
g 

sc
al

e)

 a) 

Figure 4.13: Figure showing the comparison of HICD in Jupiter and Saturn’s magne-
tospheres. The top two panels are plots of azimuthal and radial HICD with Jupiter at
the centre and a range of magnetopause positions from Khurana (2001). The bottom
two panels are plots of azimuthal and radial HICD with Saturn at the centre, orbits of

Rhea and Titan and a range of magnetopause positions.

on the outbound trajectory, Ulysses was pushed to a polar orbit around the Sun, this

outbound pass constitutes some of the data in the dusk sector, which is where Ulysses

was found at higher latitudes. Kivelson et al. (2002) showed that swept forward field is

more likely in the higher latitudes of the magnetosphere due to magnetopause currents,

but not as likely at the equator and so this is an important feature to bear this in mind

when looking at different spacecraft as the data may be atypical. Cassini’s trajectory is

much more varied in latitude than Galileo at Jupiter, however due to the nature of the

measurements (only using traversals of the current sheet in the form of aperiodic waves)

we can assume that Cassini at the time of each event is inside, or very close to, the
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current sheet and so did not venture into the high latitude regions where swept forward

fields may be more likely to occur.

The solar wind may affect the direction of the magnetic field in the post-noon

sector making it sweep forward into the corotation direction, the radial HICD will be

reversed compared to the majority of the magnetosphere that exhibits a swept backwards

configuration due to the frozen-in effect and an attempt to accelerate mass up to the

corotation rate of Saturn. Hence negative values of radial HICD in the post-noon sector

are produced. Additionally, the increase of radial HICD magnitude in the post-midnight

sector is interpreted as the swept backwards field of Saturn due to corotation being

enhanced by the Chapman-Ferrero magnetopause currents, showing a strong coupling

between HICD in Saturn and Jupiter’s magnetic field and the solar wind. A decrease in

the magnitude of the magnetic field with radial distance is interpreted as the reason for

the decrease in HICD overall with radial distance.

Figures 4.17, 4.18 and 4.19 compare the azimuthal HICD results from Khurana

(2001) at Jupiter, azimuthal current at Earth (Iijima et al., 1990), and azimuthal HICD

results from this study. In the inner magnetosphere, the azimuthal currents are much

larger than in the outer magnetosphere of Jupiter, where again a subtle asymmetry with

an enhanced azimuthal HICD is seen in the post-midnight sector, where the absolute

asymmetry is reduced with radial distance. A similar relationship occurs in Saturn’s

current sheet where an enhancement is seen in the post-midnight sector for the inner

radial distances. The enhancement is then reduced as Cassini samples the magnetic field

further out in the magnetosphere. The decrease of azimuthal HICD with radial distance

is attributed to the decrease in magnetic field magnitude with radial distance.

A local time asymmetry in azimuthal HICD, where an enhancement is seen around

the post-midnight sector of Saturn’s magnetosphere, has a number of interpretations.

A similar enhancement is seen in Jupiter’s magnetosphere (Khurana, 2001) which is

interpreted as a consequence of a field-aligned current system comparable to Earth’s

Region 2 current system which closes Earth’s partial ring current (which can also be

seen in figure 4.17) (Iijima et al., 1990). At Jupiter this azimuthal enhancement is

described as a partial ring current closing in a similar manner (see figure 4.20), and this
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can be applied to observations of this small enhancement at Saturn that decays with

radial distance similarly to Jupiter. However, a decay in magnitude of the peak not seen

at Earth with radial distance (figure 4.17).

Additionally, Sergis et al. (2017) showed an increase in current due to pressure

gradients with radial distance in the morning sector, where hot plasma injections may

occur due to reconnection in the tail region. This increase in plasma pressure and

hot plasma density being funnelled around to the dayside of Saturn could enhance the

azimuthal current in the post-midnight to morning sector.



C
h
a
p
ter

4
:

C
u

rren
t

D
en

sity
120

-10

0

10

L
 =

 4
.0

J'
r
 [A . km

-1
]

-10

0

10

L
 =

 4
.8

-10

0

10

L
 =

 5
.6

-10

0

10

L
 =

 6
.4

-10

0

10

L
 =

 7
.2

-10

0

10

L
 =

 8
.0

-10

0

10

L
 =

 8
.8

12 15 18 21 0 3 6 9 12

Local Time

-10

0

10

A
ll
 L

Figure 4.14: Radial HICD for various
L-shells at Earth. Modified from Iijima

et al. (1990)

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

  
  
  
  
  
  
  
 J

' r [
A

 .
 m

-1
]

0

0.02

0.04

12 15 18 21 0 3 6 9 12

SLT

0

0.02

0.04

R < 20

20  R < 25

25  R < 30

30  R < 40

40  R

All R

Figure 4.15: Radial HICD at Saturn
for a range of radial distances

-0.5

0

0.5

1

R
 =

 1
5

J'
r
 [MA . R

J

-1
]

-0.5

0

0.5

1

R
 =

 2
5

-0.5

0

0.5

1

R
 =

 3
5

-0.5

0

0.5

1

R
 =

 4
5

-0.5

0

0.5

1

R
 =

 5
5

-0.5

0

0.5

1

R
 =

 6
5

-0.5

0

0.5

1

R
 =

 7
5

12 15 18 21 0 3 6 9 12

Local Time

-0.5

0

0.5

1

A
ll
 R

Figure 4.16: Radial HICD at Jupiter
for a range of radial distances. Modi-

fied from Khurana (2001)



C
h
a
p
ter

4
:

C
u

rren
t

D
en

sity
121

0

20

40

60

L
 =

 4
.0

 -
 5

.6

J'  [A . km
-1

]

0

20

40

60

L
 =

 5
.6

 -
 7

.2

 

Local Time

0

20

40

60

L
 =

 7
.2

 -
 8

.8

12 15 18 21 0 3 6 9 12

Local Time

0

20

40

60

A
ll
 L

Figure 4.17: Azimuthal HICD for
various L-shells at Earth. Modified

from Iijima et al. (1990)

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

0

0.02

0.04

  
  
  
  
  
  
  
 J

'
 [
A

 .
 m

-1
]

0

0.02

0.04

12 15 18 21 0 3 6 9 12

SLT

0

0.02

0.04

R < 20

20  R < 25

25  R < 30

30  R < 40

40  R

All R

Figure 4.18: Azimuthal HICD at Sat-
urn for a range of radial distances

2

4

6

R
 =

 1
5

J'  [MA . R
J

-1
]

0

2

4

6

R
 =

 2
5

0

2

4

6

R
 =

 3
5

0

2

4

6

R
 =

 4
5

0

2

4

6

R
 =

 5
5

0

2

4

6

R
 =

 6
5

0

2

4

6

R
 =

 7
5

12 15 18 21 0 3 6 9 12

Local Time

0

2

4

6

A
ll
 R

Figure 4.19: Azimuthal HICD at
Jupiter for a range of radial distances.

Modified from Khurana (2001)



Chapter 4: Current Density 122

Figure 4.20: Diagram showing the different current systems within Jupiter’s magne-
tosphere from Khurana et al. (2004), originally modified from Khurana (2001).

The temporal changes in Saturn’s magnetosphere over the Cassini mission must

be considered when surveying the magnetosphere as a whole. The equatorial Cassini

revolutions used in this study range from 2005 to 2012 where at the beginning Saturn

was experiencing a northern summer, and a declining solar cycle. At the end of this time

period Saturn was tilting towards southern summer and was experiencing increasing solar

activity. All of these changing factors could have an impact on the current density and

HICD in Saturn’s equatorial current sheet.

For example, figure 4.2b) shows the temporal changes in the magnetosphere, where

dark blue events are from early 2005 and yellow events are from 2012. Noticeably, the

yellow events have a larger radial coverage, however, their values of azimuthal HICD are

on average smaller than the early 2005 values (blue). The same is true for figure 4.2e),

where a gradient from yellow (2012) at the bottom to green/blue (2009) at higher values

of HICD, the same is also true of the radial HICD. With this in mind, the ‘bend-back’

and ‘bend-forward’ of the magnetic field can be measured using the quantity
By0
RBx0

, where

R is the radial distance and Bx0 and By0 are the magnetic field components for each

event in the lobe.

A figure containing an overview of this parameter can be found in figure 4.21. The

figure shows the temporal changes in the parameter in parts b) - e) where yellow and
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Figure 4.21: Figure showing the value of
By0
RBx0

throughout the magnetosphere.

orange events (or events that occur post 2011) are on average positive and the earlier

revolutions (blue) are on average negative. Hence, there was a temporal difference in

sweep-back and sweep-forward fields in the noon and evening sectors. The events that

occur on swept forward fields are the events which exhibit a smaller magnitude of HICD

for the current sheet, which could be related to magnetopause currents (Kivelson et al.,
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Figure 4.22: The magnetopause currents that may be the cause of swept-forward field
lines in the dusk sector, reproduced from figure 7 in (Kivelson et al., 2002).

2002) causing a swept-forward field in the dusk sector at high latitudes, see figure 4.22.

It therefore stands to reason, that these values would be smaller as they are the results

of a superposition of two current systems, where the corotation enforcement currents

will always be positive radially and the magnetopause current system will enhance the

Region-1 type current at the higher latitudes in the dusk sector.

As the higher latitude current system is enhanced, the magnetic tension force would

act upon the equatorial field and hence a large current density in the CEC (corotation

enforcement current) would not be necessary, and in some cases is reversed due to super-

corotation. Hence, yellow values of HICD (predominantly found at dusk) will be lower

than blue values (predominantly found at dawn). However, this theory does not rule

out a temporal (either Saturn season or solar wind) dependence of swept-back fields in

Saturn’s dusk magnetosphere, as a temporal dependence of the magnetopause currents

could be occurring also. It is also important to note that to date, neither the region-1

or return CEC currents have been directly sampled by spacecraft, so future work in

modelling these currents will be a useful addition to physics of the high latitude giant

planet magnetospheres. For now, the evidence points to a temporal dependence, but

with no direct evidence for its causation.

Solar activity is at a minimum in 2009 and near maximum in 2012, and this may

help in discovering the temporal changes along with the seasonal changes in Saturn’s

magnetosphere. However, Vogt et al. (2017) find a weak correlation at Jupiter between
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current density and internal (e.g moons) or external (e.g. solar wind) drivers, hence the

cause of current density changes in giant planet magnetospheres is still an open and very

interesting question.

Figure 4.7 shows the divergence of the HICD in the equatorial region of Saturn

along with the uncertainties of each plot and a plot of occurence for each spatial bin. The

divergence of the radial HICD (figure 4.7a) is, in general, below 1 pAm−2 in magnitude

with an average uncertainty (figure 4.7b) of 1 fAm−2. There is very little evidence for

spatial, and hence temporal, changes in the radial HICD. The divergence of the azimuthal

HICD, however, does have some local time differences. Evident in figure 4.7c is an area

of positive divergence pre-midnight in the inner magnetosphere meaning that current is

being added to the current sheet inside 30 RS and between 18 and 21 SLT. A negative

divergence is found inside 30 RS and between 09 and 12 SLT meaning that in this area

current is being taken from the current sheet and supposedly being deposited in the

ionosphere, which may also be driving the addition of current in the pre-midnight sector

with a current system that closes in the ionosphere, like the so-called Region 2 currents

in Earth’s magnetosphere. The remaining areas, in general, have a much lower values

of 2 pAm−2 and an uncertainty of 2 fAm−2 which can be considered the noise floor for

this analysis.

This pattern of addition and subtraction of current in the dawn and dusk sectors

is analogous to a partial ring current found in Earth’s magnetosphere which is driven

by an enhanced particle pressure in the tail fed by continual convection of magnetic flux

into the area. As Saturn is a rotationally driven magnetosphere, this continual addition

of flux may be where the similarity of the two planets ends. However, Sergis et al. (2017)

show a pressure gradient strengthening from around 10 RS in the midnight-dusk sector

which may be a contributing factor to the the source of the region 2-type currents seen

in Saturn’s magnetosphere, shifted by a strongly rotating system. A direct comparison

of Earth and Saturn, however, is not physically meaningful due to the vastly different

magnetospheric drivers.

The divergence of radial and azimuthal HICD can be combined to give an indicator

of the field aligned currents flowing from and into the ionosphere. This is seen in figure
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Figure 4.23: The comparison of divergence of HICD at Saturn and Jupiter (Khurana,
2001).
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4.7e, where due to the small values of the radial divergence, the spatial distribution of

field aligned currents is governed by the azimuthal divergence in the equatorial plane. A

direct comparison may not be achievable with Earth, but a comparison with divergence

of HICD found in Khurana (2001) at Jupiter is valuable.

Figure 4.23 shows a comparison of the divergence of HICD with a similar study at

Jupiter (Khurana, 2001). The largest difference between the two systems is found in the

radial components: at Jupiter there is a divergence into the current sheet (red blocks) in

the inner magnetosphere and a slight negative turn outside around 20 RJ . Some areas

of negative divergence in Saturn’s magnetosphere are seen, but coverage of the inner

magnetosphere is limited and so a conclusion of similarity cannot be reached.

The azimuthal component, however, shows a similar pattern to pre-noon negative

divergence and pre-midnight positive divergence. The main difference is that at Saturn

the negative and positive areas seem to be confined to just one 3-hour local time bin

whereas at Jupiter they appear spread over 3-4 bins; again, this could be due to the

different spatial coverage, or the fact that the current systems are found in slightly

different areas or have temporal differences. The same can be said for the divergence of

the perpendicular HICD.

4.5.2 Auroral Intensity

In terms of auroral intensity, an upward current in the pre-midnight sector should be

associated with downward precipitation of electrons into the ionosphere. Parallel current

density along the field lines connected to Saturn can be estimated using equation 4.9,

where J‖ depends on the divergence of the perpendicular current density and the ratio

between the magnetic field in the lobes and Bz in the current sheet. The divergence of

current density in the pre-midnight sector averages to 0.04 nAm−2, which, using equation

4.9, gives a value of 0.02 nAm−2 for parallel current density near the current sheet in the

magnetosphere (J‖CS). To relate this to the current density in the ionosphere, this value

must be scaled by the mirror ratio in Saturn’s magnetosphere, hence the ionospheric

parallel current density is calculated as 200 nAm−2 for a mirror ratio of 10000.
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Field-aligned acceleration is required if this current is larger than the maximum

current density that can be carried without acceleration by magnetospheric thermal

electrons along the field lines. This is given as (from equation 10 in Cowley et al.

(2004)):

Jth = eN

(
Wth

2πme

) 1
2

, (4.11)

where e is the charge on an electron, Wth is the thermal energy equivalent to kT, N is

the number density and me is the mass of an electron. Values of N =∼ 0.2 cm−3 and a

temperature of ∼ 150 eV are used for the central magnetosphere and N =∼ 0.01 cm−3

and a temperature of ∼ 1 keV for the outer magnetosphere given by Cowley et al. (2004)

are used to find the range of values for Jth of 66 to 8.5 nAm−2. The average parallel

current density (J‖I) across the whole current sheet is ∼ 20 nAm−2 which means that it

is unlikely that this population will result in auroral emission, however the peak values

of ∼ 200 nAm−2 in the pre-midnight area (which is current away from the ionosphere)

and an average in the pre-noon area reaches ∼ 100 nAm−2 (current into the ionosphere).

Ef0 = 2NWth

(
Wth

2πme

) 1
2

(4.12)

Ef =
Ef0

2

[(
J‖I

Jth

)2

+ 1

]
(4.13)

The electron energy flux for thermal electrons is given by equation 4.12 (equation

11 of Cowley et al. (2004)). For the average values given above, the electron energy flux

is found to be between ∼ 0.004 and ∼ 0.02 mWm−2. The enhanced electron energy flux

for precipitating electrons (Knight, 1973; Lundin and Sandahl, 1978) is given by equation

4.13 assuming that the ratio of the energy acquired by the electrons precipitating to their

original energy is less than the mirror ratio between the planet and the acceleration

region. I.e. the acceleration region is far from the planet so that the electron population

in the magnetosphere can be considered an infinite source of particles.

However, evidence for acceleration regions at Jupiter and Saturn that occur at

high magnetic latitudes due to gravitational forces at the ionosphere and centrifugal
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forces in the magnetosphere which confine the plasma population, and as such the full

current-voltage, energy flux- current density relation (Lundin and Sandahl, 1978) must

be considered for these systems (Ray et al., 2009, 2013). However, in the middle magne-

tosphere at Saturn Ray et al. (2013) showed that a linear approximation to the current-

voltage relation is adequate because of the small acceleration potentials relative to the

thermal electron energy and the small ambipolar potentials. Hence, this study outlines

only the Cowley et al. (2004) formulation to give an estimate of auroral intensity in the

ionosphere.

Ef can range from ∼ 0.1 − 1.1 mWm−2 using the above values in the upward

current region pre-midnight. Hence, the auroral intensity can be obtained using the

common relation of source brightness in far ultra-violet emission (FUV) of ∼ 10 kR

to an electron energy flux of 1 mWm−2 where an energy efficiency of ∼ 15% can be

assumed (Waite et al., 1983; Rego et al., 1994; Grodent et al., 2001). The auroral

intensity addition expected from this current system is therefore 1− 11 kR.

In the magnetosphere, the region of positive divergence of the equatorial current

sheet from the equator is seen around 18-21 RS , which can be related to an area in

Saturn’s ionosphere of between 12◦ and 15◦ colatitude in the northern hemisphere using

coefficients from Burton et al. (2010) and the Bunce et al. (2008) magnetic mapping

model using a typical magnetopause position. Lamy et al. (2009); Bader et al. (2018)

show an enhancement of around 2 kR at 18-20 LT in the southern hemisphere which is

also seen in infrared northern data (Badman et al., 2012). The peak, however, is not seen

in ultraviolet northern observations from 2011-2013 (Nichols et al., 2016). The pre-noon

downward current density maps to the region which is typically the brightest (e.g Lamy

et al., 2009; Nichols et al., 2016; Bader et al., 2018). The change in the auroral intensity

of the downward current region could measure 0.1− 1.1 kR, this is very small compared

to the other contributions and hence a trough in the auroral intensity is not expected in

this area.
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4.5.3 Vertical Structure of the Current Sheet

Vertical structure is examined using magnetometer data during the passage of aperiodic

waves that pass fully through the current sheet. This is done by calculating the full

time derivative of the magnetic field in the direction of a in the current sheet coordinate

system. This coordinate system is calculated by determining the normal to the current

sheet using either MVA or coplanarity of vectors which is then used to rotate magnetic

field in KRTP to current sheet coordinates (a,b,c).

On average, ∼ 10% of current sheets examined at Saturn displayed a bifurcated

signature, with around 78% of the total number of suitable events exhibiting a Harris-

like structure and the remaining 12% were striated. At Earth, Thompson et al. (2006)

showed that around 25% of examined current sheet encounters were bifurcated, a much

larger percentage than at Saturn. However, figure 4 in Asano et al. (2005) (figure 4.24)

shows that this percentage of bifurcated sheets is dependent on plasma velocity at Earth:

at higher velocities the number of bifurcated sheets could reach 50% of all sheets but at

smaller velocities the numbers compare to the values given for Saturn in this study at

around 10% for bifurcated sheets and 90% Harris-like.

Figure 4.24: Relative occurence frequency of bifurcated current sheets (solid line)
and Harris-like (centre-peaked) current sheet (dashed line) plotted against |Vx|, the

component of velocity along the Earth-Sun line. Asano et al. (2005)
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Explored earlier (section 4.4) were theories on what causes bifurcation of the tail

current sheet at Earth. A reasonable conclusion from the explored sources is that a per-

turbation or instability of the current sheet is linked to the sheet itself bifurcating, such

as during reconnection [e.g. Hoshino et al. (1996), Nakamura et al. (2002), Thompson

et al. (2006) & Birn and Hesse (2014)], hence there is a link to substorms at Earth (Saito,

2015).

Reconnection at Earth is generally confined to the dayside magnetopause and tail

current sheet, however at Saturn with an equatorial current sheet in all local times,

reconnection in the current sheet could occur at any local time (Guo et al., 2018). As

bifurcated sheets are found in most local time sectors reconnection could be associated

with bifurcation of the current sheet, especially where an increase in bifurcated sheet

numbers in the post-midnight area is in the same region as an expected x-line for the Va-

syliunas cycle. However, the aperiodic waves do not occur at the same time as plasmoids,

travelling compression regions or dipolarisation, so a connection to increased reconnec-

tion would be unlikely. As previously stated, the relation to plasma velocity could also

be a relation to reconnection occurring in the tail.

Additionally, a number of authors show a relation to plasma and wave instabilities

on the tail current sheet. Instabilities are more prevalent on thin current sheets, which at

Earth is where it is soon expected to reconnect [Sanny et al. (1994), Sergeev et al. (1993)],

however at Saturn, we find that on the dawn side where a thinner sheet is expected there

are much fewer bifurcated examples. However as both instabilities and reconnection are

part of the same process of substorms at Earth, it is noted that the sources explored are

all part of the same cycle of plasma transport in Earth’s magnetosphere.

The final possible source of bifurcated current sheets considered here, is pressure

or temperature anisotropy at the current sheet that sets up a ambipolar electric field

and allows ions to be pulled from the centre of the current sheet creating two peaks

of current density. This is a phenomenon known to occur at Saturn and Earth, and

attempting to remove the velocity dependence bias on bifurcation could show that both

Saturn and Earth could have similar rates of bifurcation, and hence a similar source.

At Jupiter, however, Israelevich et al. (2007) explained that the number of bifurcated
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sheets at Jupiter is very small and so we can see that the mechanism for bifurcation is

much less common than at Earth or Saturn.

4.6 Conclusions

A model was developed to fit aperiodic waves on Saturn’s current sheet, using a modified

Harris current sheet to fit lobe values of magnetic field. The HICD in the equatorial

current sheet can be estimated using the method laid out in Khurana (2001) using the

fitted magnetic field values from the Harris current sheet equations and the estimated

dipole field. Results show that Saturn’s radial and azimuthal HICD signatures are similar

to Jupiter in that there is a large local time asymmetry in the radial HICD interpreted

as solar wind interaction causing enhancements and decreases in HICD all in agreement

with asymmetries seen in Khurana (2001) at Jupiter, and Carbary et al. (2012); Sergis

et al. (2017) at Saturn.

Both giant planet magnetospheres exhibit negative values of radial HICD in the

post-noon to evening sector caused by swept forward field lines caused by interaction

with the solar wind. Additionally, an overall decrease in current density is found with

radial distance. The current density at the centre of the current sheet can be estimated

using Ampére’s law and the fitted values of magnetic field and scale height of the current

sheet from the previous chapter. The central current density has a similar relationship

with radial distance as the HICD, and there is also a region of negative radial current

density where swept forwards magnetic field lines are expected in the post-noon sector.

These results can be compared to ring current results from Sergis et al. (2017) where the

values are split into local time sectors. Where both studies overlap, an agreement within

uncertainties of both measurements is found. Overall, in each sector there is a decrease

in total current density as expected with a decrease in magnetic field magnitude with

radial distance.

Additionally, the vertical structure of the current density is also explored by cal-

culating the full time differential of the magnetic field in the a direction (roughly radial)

of a current sheet coordinate system. It is concluded that around 10% of sheets showed
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bifurcation and 78% of sheets were Harris-like, where the remaining 12% were striated.

Spatially we find no statistically significant deviation except in the dawn sector where

outside of Titan’s orbit almost no bifurcated signatures are found. Bifurcation at Earth

is related to reconnection, instabilities and pressure anisotropies and the source for bi-

furcation at Saturn is likely to be similar.



Chapter 5

Study of Flux ropes in Titan’s

ionosphere

5.1 Introduction

Titan has a unique and active environment, from its ever changing surroundings in Sat-

urn’s magnetosphere, to its thick atmosphere and dynamic ionosphere. Titan is the only

moon within the solar system to have a thick atmosphere, composed of mainly nitrogen,

methane and hydrogen with trace amounts of heavier hydrocarbons [e.g. Coustenis et al.

(1989), Coustenis and Bézard (1995) & Cravens et al. (2006)].

In this chapter, the detection of flux ropes is discussed and two models of flux ropes

are fitted to magnetometer data. Through use of force-free and non-force-free models we

can extract parameters related to each flux rope and build a statistical picture of what

flux ropes at Titan look like. We also discuss the location of the flux ropes, and what

deformations to the flux rope can improve the fit of the flux rope models.

134
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5.2 Detection of Flux Ropes

Cassini MAG data is utilised to detect flux ropes. As there are only 126 flybys, and only

around half of these reach a low enough altitude to sample the ionosphere, the sampling

process was not automated. Elphic and Russell (1983a) & Elphic and Russell (1983b)

define a flux rope as a discrete individual ‘excursion’ in the magnetic field, where a peak

in the total magnetic field is seen to be larger than the surrounding, usually with a lower

limit (at Venus this is commonly around 10 nT, but this value is much lower at Titan).

Flux ropes are seen as an unexpected peak in the total magnetic field when plotted

versus altitude. In the example shown in figure 5.1, a flux rope is visible at around 1200

km and the magnetic barrier is seen at around 1500 km (time series data for T30 can be

found in appendix A.6). The magnetic barrier is defined as the barrier where the dynamic
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Figure 5.1: Figure of the inbound pass of Cassini during Titan flyby T30. Visible
is the magnetic barrier at around 1500km in altitude. A large peak in magnetic field

attributed to a flux rope is shown around 1200 km.
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pressure of the solar wind equals the magnetic pressure in an induced magnetosphere.

Minimum variance analysis (section 2.2.2) is then used on this smaller time series of

the three magnetic field components to determine a ‘flux-rope coordinate system’. The

signature of a flux rope in the flux rope coordinate system should then appear similar

to the example in figure 5.2, where the intermediate field direction should appear as a

broad peak (Bz), the maximum field direction should appear similar in shape to a 3rd

order polynomial (Bθ), either positive or negative depending on the handedness of the

flux rope, for examples.

Handedness of the rope corresponds to the direction of the twist of the magnetic

field around the central field. A right-handed rope will twist to the anti-clockwise di-

rection if the central field is perpendicular from the clock face, and a left-handed rope

will twist in the clockwise direction, similar to polarisation of circular or elliptical waves.

The final component, the minimum variance component (Br), should be a near-zero

constant value. In a number of cases, the maximum and intermediate field structures

are switched, this may be a consequence of the flux rope not complying with the physical

conditions that will be discussed in section 5.4.
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Figure 5.2: Figure of an ideal flux rope signature after MVA in cylindrical coordi-
nates. The cylindrical coordinates are found using the Cartesian flux rope coordinate
system, where Bz is the intermediate direction component and Bθ is a summation of

the maximum and minimum directions. Br is a constant zero value.
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An alternative method for finding the axial direction is to explore cylindrical sym-

metry of the flux rope (Li et al., 2016). The method calculates a plane within the flux

rope coordinates using the velocity and the magnetic field vector at closest approach.

The axial direction is confined to this plane, and using the location of the closest ap-

proach projected on to this plane the axial direction can be inferred. However, the

cylindrical symmetry will be questioned in a later section and as such this method is not

utilised.

5.3 Location of Flux Ropes

In total, 85 flux ropes are detected over all Titan flybys of Cassini between 2004 and 2017

with value of magnetic field excursion of over 1 nT in magnitude from the background

field. These flux ropes appear more common in the noon sector of Saturn’s magneto-

sphere, as indicated by the distribution of flux ropes by Saturn local time, normalised to

the number of flybys that reach an altitude of 2400 km shown in figure 5.3. The cut-off

value of 2400 km is determined from an altitude analysis of flux rope occurrence shown

in figure 5.4.

Flux ropes at Venus are generally found on the day side hemisphere of the planet

and may travel around past the terminator on occasion (Luhmann, 1986). However, on
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Figure 5.3: Figure of flux rope occurence for each SLT bin, normalised to the number
of Titan flybys in each bin that reach an altitude of lower than 2400 km. Grey shaded

areas show SLT ranges where Cassini did not sample below 2400 km.
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Figure 5.4: Figure of flux rope occurrence with altitude above Titan’s surface. The
lower limit is limited by the closest approach of Cassini.

Mercury flux ropes are most common travelling down tail in the night side hemisphere

of its magnetosphere. Differences in how they are produced in the ionosphere and mag-

netosphere, as well as the surrounding environment such as the solar wind, give rise to

flux ropes that occur with a range of life spans and locations. The aim of this section

is to decipher where flux ropes are most commonly observed in Titan’s ionosphere and

why they occur there. Titan itself is a unique flux rope environment in that the dayside

ionosphere is not always the hemisphere that is facing the oncoming plasma.

Within Saturn’s magnetosphere, Titan interacts with a number of different mag-

netic field regimes and the plasma flow is roughly in the direction of co-rotation with

Saturn. For simplicity, we state that ‘ram-side’ is in reference to the hemisphere of Ti-

tan that is facing the oncoming corotating plasma, and ‘sunlit-side’ is in reference to the

hemisphere which is illuminated by the Sun.

To determine if there is a bias in flux rope location, in relation to the sun direction

and ram-direction, we first must rotate the observations of flux ropes into a ‘Titan-

Centric Sun facing coordinate system’ (TiCS). Where the x-axis in this system is a

vector from Titan to the Sun. The z-axis is positive northward and the y-axis completes

the right-handed system. This co-ordinate system facilitates analysis of flux ropes with

respect to the sunlit-side of Titan. Figure 5.5 shows the position of flux ropes around

Titan with respect to the Sun position, where the Sun is in the direction of the positive

x-axis on the plots by definition. Additionally the range of corotation plasma direction

is given by the red arrows. All trajectories for flybys that reach an altitude of 2 RT
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Figure 5.5: Figure showing flux ropes around Titan when Titan is in a) the noon sector
(0900 - 1500 SLT), b) the evening sector (1500 - 2100 SLT), c) the night sector (2100 -
0300 SLT), d) the morning sector (0300 - 0900 SLT) of Saturn’s magnetosphere. Red
arrows show the range of direction of corotating plasma in each sector. The trajectories
of all flybys that occur in each SLT area are shown in grey. The flux ropes are also
coloured by altitude of detection in Titan radii. χ2 values represent the agreement with

the null hypothesis of equal detection in each spacial bin.

(determined from figure 5.4) or lower are shown in grey. Each subfigure shows a different

sector of Saturn’s magnetosphere where a) is noon, b) evening, c) night and d) morning.
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SLT Sector Bin Number Bin description Percentage of Flux Ropes

21-03 (Night) 1 Sunlit, anti-ramside 29.1
2 Anti-Sunlit, anti-ramside 24.9
3 Sunlit, ramside 25.1
4 Anti-Sunlit, ramside 20.9

03-09 (Morning) 1 Sunlit, anti-ramside 0.0
2 Anti-sunlit, ramside 0.0
3 Sunlit, anti-ramside 100.0
4 Anti-sunlit,ramside 0.0

09-15 (Noon) 1 Sunlit, ramside 21.3
2 Anti-sunlit, ramside 36.9
3 Sunlit, anti-ramside 34.2
4 Anti-sunlit, anti-ramside 7.6

15-21 (Evening) 1 Sunlit, ramside 90.9
2 Anti-sunlit, anti-ramside 0.0
3 Sunlit, ramside 9.1
4 Anti-sunlit, anti-ramside 0.0

Table 5.1: Table showing the percentage of flux ropes in each bin for each local time
sector. There is also a description of which hemisphere the bin lies in.

5.3.1 Statistical Analysis

To show an asymmetry in detection of flux ropes, we apply a significance test on each SLT

sector plot to show that flux ropes are detected more in certain areas and conditions than

others. We begin by separating flybys into the SLT sectors shown in the previous section.

These sectors are then further split into four bins of sun-lit/dark (positive/negative

XT iCS) and positive/negative YTiCS . The bin limit XT iCS = −0.25 RT is used as

we are statistically testing whether illumination from the Sun or ram pressure from the

corotation direction are correlated to an increased number of flux ropes detected. Hence,

as the flux ropes are occurring above the surface, we know that the ionosphere will still

be illuminated up to 0.5 RT at XT iCS = −1 RT . Hence we use XT iCS = −0.25 RT as a

conservative estimate of ‘sun-lit’ area behind the terminator and this is included in the

’sun-lit’ bins.

Equal number of flux ropes in each bin, normalised to the time Cassini spent within

each bin is expected under a null hypothesis H0. Hence, the null hypothesis is that 25%

of total flux ropes in each sector of Saturn’s magnetosphere will occur in each bin. The

reduced χ2 values for the comparison of the percentage of flux ropes (normalised) to the

null hypothesis is shown in the title of each sector plot. A value of one means that the
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null hypothesis is an excellent hypothesis, and a value of above five is commonly used as

a cut-off for a ‘good’ fit.

The null hypothesis is rejected for the morning and evening sectors, and a bias

towards positive XT iCS areas is present. This probability is calculated from the χ2

probability distribution function. The P-value is tested against a 5% level. The noon

sector has a probability of 2.9%, which is lower than 5% and as such H0 rejected and

a bias is statistically present in this sector. However, the night sector has a probability

of 21.3, hence, the null hypothesis is accepted. This analysis, however, only states that

the distribution of flux ropes is not equal in all areas. Table 5.1 shows the percentage

of flux ropes, normalised by time spend in each bin for each SLT sector along with the

environment of each bin.
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5.3.2 Zenith Angle and Corotation Direction

Figure 5.6: Figure showing the position of flux ropes at Titan with regards to the
zenith angle of the detected fluxrope, and the angle between the corotation direction
and the solar radiation direction. Grey lines are trajectories of Cassini in the parameter
space, white dots are the flux ropes detected, sectors are coloured by number of flux
ropes in each zenith angle, corotation and solar radiation angle sector bin. The angle
between the corotation direction and solar radiation direction can be used as a proxy
for SLT which is also shown along with a diagram of Titan’s illuminated hemisphere

and corotation direction (black arrow) for each main sector.

The position of flux ropes with regards to sun-lit hemisphere and co-rotation direction

can be summarised into figure 5.6, where the zenith angle is measured from the sub-

solar point on Titan (0◦), to the anti-sub-solar point (180◦) which is the side of Titan
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facing away from the Sun. The terminator on Titan is therefore 90◦. Furthermore, the

‘interaction angle’ is defined anti-clockwise as the angle from the direction of incoming

solar radiation to the direction of incoming plasma moving with corotation.

In general, more flux ropes are found in the inner circle of the figure (figure 5.6)

which relates to the hemisphere of Titan that is illuminated by the Sun. Only when coro-

tation direction and Sun-direction are anti-parallel are a statistically significant number

of flux ropes present in the non-illuminated hemisphere. Additionally, also visible in the

diagram is the much larger number of flux ropes within the vicinity of 12 SLT i.e. inter-

action angle of ∼ 270◦. A secondary peak at pre-midnight is also found where the x-line

from Vasyliunas cycle reconnection is expected. The only other positions that flux ropes

are found, are when the current sheet is close to, and passing over Cassini frequently,

i.e. for events found around 18 SLT. Trajectories of Cassini during all encounters below

2000 km above Titan’s surface are also plotted in the parameter space in grey, showing

that every sector of this parameter space is sampled by at least 2 flybys.

5.4 Force-Free Flux Rope Model

To extract variables parameterising each flux rope, a force-free model is initially utilised.

In a force-free model the magnetic pressure force
(
B2

2µ0

)
is balanced with the magnetic

tension force
(

B2

2µ0Rc

)
, where B is the magnetic field magnitude, µ0 is the permeability of

free space and Rc is the radius of curvature of the field. A force-free flux rope is assumed

to be the final configuration of a flux rope as it is considered the lowest energy state

(Osherovich et al., 1993). Wei et al. (2010) discusses that a developing flux rope appears

to not be force-free and the success of a fitting with a force-free model will depend on

the maturity of a flux rope.

Minimum variance analysis is used to orient the magnetic field components into a

‘flux rope coordinate system’ where the intermediate variance direction should appear

as axial field direction and shows a peak at closest approach to the centre of the flux

rope. The two remaining field components, maximum and minimum should combine

to give the tangental field of the flux rope (in a Cartesian system being converted to
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cylindrical) which is at maximum on the edge of the flux rope and at a minimum at the

closest approach of the centre of the flux rope. The last magnetic field component in

the local cylindrical coordinate system is the radial field component which in a force-free

situation is assumed to be constant zero as the field is contained either in the tangental

or axial direction. Figure 5.7 shows an example trajectory of Cassini through a circular

cross-section flux rope, and shows the local cylindrical coordinate system at a specific

point along the trajectory. The equations for the three magnetic field components are

shown in equations 5.1, 5.2 and 5.3,

BAxial = B0J0(αR) + b0, (5.1)

BTangential = HB0J1(αR), (5.2)

BRadial = 0, (5.3)

where B0 is the maximum magnetic field of the flux rope; J0 and J1 are the zeroth and

first order Bessel functions of the first kind; α is a constant of 2.40 (appendix A.2); R is

Axial
Tangential
Radial

Figure 5.7: Figure showing example trajectory of Cassini through a flux rope
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the radial distance from the centre of the flux rope; b0 is an offset in the axial direction

and H is the handedness of the flux rope which takes values of 1 or -1 depending on

which way the rope is twisted.

As R is an input vector of values for each of these equations, and we do not directly

know R yet because we do not know the position of the centre of the flux rope, we must

use a proxy for the distance to the flux rope centre. The vector u is used as a proxy for

distance to the centre of the flux rope. u ranges from -1 at the start of the traversal to 1

at the end of the traversal. In figure 5.8 we can see that u = Z
Z0

, where Z is the distance

of the spacecraft through the flux rope and Z0 is the distance at which the trajectory of

the spacecraft and the flux rope edge coincide, both measured along the z-axis shown in

figure 5.8.

We can use this vector u as a proxy for αR using the following equation,

αR = 2.40

(√(
Y0

R0

)2

+ u2

(
1−

(
Y0

R0

)2))
, (5.4)

where Y0 is the distance (in km) of closest approach to the centre of the flux rope seen in

S/C

ZFR

YFR

Y0 R0

Z0Z

R

Figure 5.8: Figure showing flux rope geometry - adapted from figure 1 of Lepping
et al. (2017)
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figure 5.8 and R0 is the flux rope radius in the cross-section geometry, Y0
R0

is the impact

factor or closest approach value where 1 is the edge of the flux rope and 0 is directly

through the centre. The actual radius of the flux rope is calculated using geometry and

the known velocity of the spacecraft:

R0 =
0.5V t cos(φ)

sin((CA))
, (5.5)

where φ is the angle between the axis of the flux rope (recovered using MVA) and the

trajectory subtracted from 90◦ (see figure 5.9), V is the speed of the spacecraft, t is the
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Figure 5.9: Figure showing flux rope geometry, equations and parameters for deriving
the radius of the flux rope.
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time taken to traverse the flux rope, CA is the closest approach distance (retrieved from

fitting the force-free model). The geometry of the system with corresponding equations

is shown in figure 5.9.

The maximum magnetic field and the radius are then used, via Faraday’s law, to

estimate the characteristic parameter, flux content of a flux rope, using the following

equation:

Φ =
2π

α
B0R

2
0J1(α) (5.6)

The model described by equations 5.1-5.4 is fitted to magnetometer data using a Levenberg-

Marquardt nonlinear least squared fitting algorithm where χ2 is automatically reduced

in the fitting (further discussed in chapter 2).

5.4.1 Force-Free Model Results

The force-free flux rope model, described in the previous section, fitted 49 out of the 85

detected flux ropes to a satisfactory degree, i.e. the mean squared error (MSE) statistic

  MSE [nT^2]

Figure 5.10: Figure showing the distribution of MSE values for each flux rope fitting.
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was equal to or below 0.5 nT 2 and probability of returning the χ2 value by chance was

5% or less. These conditions were designed so that the fitting procedure would have

room to attempt to fit flux ropes that may not fit completely the assumptions of a force

free flux rope. The MSE of each fit is then related to how well the observed flux rope

fits the force free category, where a lower value of MSE implies a near force-free flux

rope. Figure 5.10 shows the distribution of the MSE values for the 78 flux ropes where

the fitting algorithm converges, regardless of goodness of fit. 7 flux ropes were unable to

be fitted at all (the algorithm does not converge) by the force-free model. Figure 5.11

shows an example of a flux rope fitted with the FF model, where χ2
v is 3.5182 nT.

Figure 5.12 shows the main results of the statistical properties of Titan’s flux ropes.

Panel a) shows a histogram of flux rope radius of the 49 flux ropes that have an adequate

fitting. Each histogram has different bin sizes to best display the data. Each bin size

is chosen so that the uncertainties of each value in the bins are encapsulated within the

bins. The maximum field strength bins are 1 nT wide from 0-10 nT, 2 nT wide from

10-40 nT. Flux rope radius bins are 50 km from 0-500 km, and 100 km from 500 - 1500

km. Finally, the flux content bins are 5 Wb from 0-20 Wb, 20 Wb from 20-200 Wb and

100 Wb bins from 200-400 Wb.

In the maximum field strength distribution (panel a) we find the majority of flux

ropes (90%) have a maximum magnetic field of 1-15 nT, with one much larger value. A

majority of flux ropes with radii of 150−500 km, with six larger flux ropes ranging from

just over 500 km to nearly 1000 km. The final panel (c) shows the distribution of flux

content derived by equation 5.6 which considers the radius and maximum field of each

flux rope. We see a maximum of frequency density for flux content of around 5 Wb with

a long tail up to 400 Wb.
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Figure 5.11: Example of flux rope signature (black) fitted to a force-free flux rope
model detected during T5. The figure shows axial magnetic field, tangential magnetic
field, axial current density, tangential current density and force density where data is in
black and FF model is in blue with a blue shaded area representing the uncertainties in
the model. This example occurred at 5.3 SLT on 16th April 2005 at 19:05 space craft

time during titan flyby T5.
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Figure 5.12: Histogram of a) maximum flux rope magnetic field b) flux rope radius
and c) flux content
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37 flux ropes out of 49 fitted have a right-handed twist around the axial field (anti-

clockwise) and the remaining 12 have a left-handed twist (clockwise). Previous studies

at Venus and Mars have found that the handedness of the flux rope is related to which

hemisphere (e.g. dawn/dusk) that the flux rope is formed on. At Venus it was found

that left-handed flux ropes are typically found on the orbital facing direction and right-

handed ropes on the anti-orbital facing hemisphere (see figure 3d of Wei et al. (2010)).

This helicity bias is formed from the velocity shear at the magnetic barrier where the

flux ropes are thought to be formed (Russell, 1990). It is unclear whether this process is

occurring at Titan as there is no statistical significance detected in the position of right-

or left-handed flux ropes.

5.4.2 Orientation of Flux Ropes

Figure 5.13: Histogram of the occurrence of orientation angles for flux ropes in Ti-
tan’s ionosphere. Where the orientation angle is the angle between the flux rope axis

determined by MVA, and the normal to Titan’s surface.

The orientation of flux ropes in Titan’s ionosphere can also be determined using

MVA. Where the maximum variance direction is assumed to be along the flux rope axis,

as described in the previous section. Figure 5.13 shows the distribution of orientations

of flux ropes. The angle of orientation is described as the angle between the flux rope

axis and the normal to Titan’s surface. The figure shows a broad peak at 90◦, which

is describing that the majority of flux ropes are lying broadly near-parallel to Titan’s

surface.
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5.5 Non-Force-Free Flux Rope Model

The significant number of flux ropes not fitted by the force-free model suggests that its

assumptions are not valid, thus requiring a non-force-free model. Hidalgo et al. (2002)

presented a non-force-free model to understand magnetic clouds in the solar wind, in

which the model also uses the geometry of spacecraft and incoming magnetic clouds so

that it can fit for the angles of rotation of the magnetic cloud, thus not needing to use

MVA i.e. the orientation of the flux rope is a free parameter. Nieves-Chinchilla et al.

(2016) improved further upon this method to return the following model:

BRadial = 0, (5.7)

BAxial(r) = B0
A + µ0

∫ r

0
jT (r)dr, (5.8)

BTangential(r) = −µ0

r

∫ r

0
rjA(r)dr, (5.9)

where r is radius, jT and jA are the tangential and axial current densities and B0
A is

a boundary condition of the flux rope that can be imposed. The current densities are

further modelled as polynomial expansions jjj =
∑∞

m=0 βmr
meeeA −

∑∞
n=1 αnr

neeeT where

αn and βm are the polynomial coefficients. The model now reads:

BRadial = 0 (5.10)

BAxial = B0
A + µ0

∞∑
n=1

αn
1

n+ 1
rn+1 (5.11)

BTangential = −µ0

∞∑
m=0

βm
rm+1

m+ 2
(5.12)

The degree of the polynomial was set at order three for axial field and four

for tangential field after preliminary tests that showed an increased order past three

and four did not improve the fitting substantially. The boundary condition B0
A =

µ0
∑∞

n=1 αn
1

n+1R
n+1 where R is the flux rope radius is used to ensure that the field

is tangential at the edge of the flux rope. This assumption can be relaxed to give an

ambient magnetic field outside of the flux rope, but for simplicity and ease of fitting
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the flux rope radius the assumption is held for this study, the effects of relaxing this

assumption are described in Nieves-Chinchilla et al. (2016). Axial flux content can be

calculated using the following equation:

ΦA = πR2

(
B0
A + 2µ0

∞∑
1

αn
1

(n+ 1)(n+ 3)
Rn+1

)
(5.13)

Maximum field strength is determined by calculating the axial field BA when the

radius r = 0 using fitted values for each flux rope. The order of the polynomial expansion

to the current density and its effects on results are described in the following section. It

is important to note that a large difference between the FF and NFF is that the NFF

model will present a radial force. The handedness of the flux rope is included with the

sign of jA, where a positive value gives a right-handed flux rope and a negative value

gives a left-handed flux rope.
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5.5.1 Non-Force-Free Results

Figure 5.14: An example fit for a flux rope at Titan, the figure shows axial magnetic
field, tangential magnetic field, axial current density, tangential current density and
force density where data is in black and NFF model is in red with a red shaded area

representing the uncertainties in the model.
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Figure 5.15: Histogram of a) maximum magnetic field b) flux rope radius and c) flux
content

The non-force-free (NFF) model fitted 84 out of 85 flux ropes with a probability of

returning the χ2 value by chance was 5% or less, and the statistical results, shown in
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figure 5.15, are comparable to the force-free model. However, there are slight differences

in the radii which are on average larger than for the force-free fits, and have a wider

range to larger sizes (50 - 750 km). The maximum magnetic field is comparable to the

force-free model (1 - 15 nT). However, there is a great improvement in the percentage

of flux ropes that are able to be fitted with the NFF model along with the reduction of

uncertainties through use of the NFF model. Figure 5.14 shows an example of a flux

rope fitted (black) with the NFF model (red) along with the derived current densities

and JJJ ×BBB force density. Model uncertainties are shown as a shaded red area.

Uncertainties in the fit of the model are calculated using the Jacobian matrix that

the non-linear fitting procedure produces. The square roots of the diagonal elements

of the Jacobian matrix correspond to the standard deviation of the corresponding pa-

rameter. In general, these uncertainties are below 10% for successful fits. Figure 5.15

presents the statistical analysis results of the fitted flux ropes discussed above, the bin-

ning described in section 5.4.1 incorporates the uncertainties on each value.

The handedness of flux ropes is controlled by the sign of jA and the NFF and

FF models each find the same handedness in the 61 corresponding flux ropes that both

models fit to. In total, 56 flux ropes are right handed, 28 flux rope are left-handed and

the remaining flux rope does not fit to either the FF or NFF model with a P (χ2) < 0.05.

Again, no significant spatial relationship is resolved in these data.

5.6 Discussion

5.6.1 Flux Rope Location

Titan is a unique environment where the incoming plasma is not always in the same

direction as the solar radiation direction. We see in the cartoons in figure 5.6 that in

the different SLT sectors of Saturn’s magnetosphere that Titan has various different

ram-directions due to Saturn’s corotating plasma population. This figure shows a large

bias towards 12 SLT where the majority of flux ropes are found between 10 and 14 SLT.

Additionally, the position of each flux rope is plotted with zenith angle of Cassini, where
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the inner circle of the plot is sunlit, and the outer circle is in shadow. 56 flux ropes out

of 85 are found in the sunlit hemisphere of Titan, showing that production of flux ropes

is induced primarily in the illuminated hemisphere. However, 29 flux ropes are found

in the shadowed hemisphere of Titan. Taking into consideration the ram direction of

Saturn’s corotating plasma population, the flux ropes are generally only occurring in

SLT sectors where the ram direction is not aligned with the direction of incoming solar

radiation.

Additionally, plots of trajectories and flux ropes in each SLT sector are presented

in figure 5.5 where the position of flux ropes in Titan’s ionosphere can be seen. The

diagrams show that flux ropes are detected on the ram-side and sunlit-side of Titan,

but are not detected on the anti-ram side and night side in the majority of local time

sectors. However, we find that in the night sector (21-03 SLT) it is equally likely to

find flux ropes in any hemisphere of Titan. This sector corresponds to the increased

number of flux ropes seen in the 00 - 04 SLT area in figure 5.6 where we can assume that

another process is causing the formation of flux ropes, or the conditions in the sector

2575 km 1000 km Sun

Sunlit
Titan

Sunlit 
Ionosphere

Shadowed
Ionosphere

Shadowed 
Titan

Figure 5.16: Figure of cartoon showing a non-disturbed ionosphere of Titan with the
Sun to the left. A sunlit area of ionosphere past the terminator on the planet is visible

in higher latitudes.
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allow flux ropes to be preserved for a longer period of time and hence are more likely to

be detected.

Figure 5.5 d) suffers from lack of data, with only one flux rope detected along

seven flybys, however this sector could hold the key to finding which driver influences

the production of flux ropes most strongly as the corotating plasma and solar radiation

directions are anti-parallel. Alternatively, it may be that the flux rope to flyby ratio is

low for another reason in this sector, e.g. that flux ropes are initiated most easily with

a combination of a sunlit ionosphere and dynamic pressure from an incident plasma.

Furthermore, these sectors and spatial bins are statistically tested against a null

hypothesis of equal likeliness of detection of a flux rope in each spatial bin. The spatial

bins are shifted slightly to −0.25 RS in XT iCS as flux ropes are detected in the ionosphere

at above 900 km in altitude where the ionosphere will still be sunlit. −0.25 RS is shown

to be a conservative average of the sunlit extent of the ionosphere at above 900km, shown

in figure 5.16. Results of the statistical testing shows that the null hypothesis is rejected

in all but the night SLT sector with a probability of the null hypothesis being correct

below the 5% level.

5.6.2 Flux Rope Models

5.6.2.1 Force-Free

A force-free flux rope model was implemented to extract radii and the central magnetic

field strength of each flux rope. These two parameters can be used to estimate the flux

content of each flux rope using equation 5.6. In total, 49 flux ropes fit the force-free

model with a MSE of less than 0.5. 5 flux ropes were unable to be fitted, where the

remaining 31 do not fit adequately to the force-free model; this shows that the majority

of flux ropes at Titan do not adhere to the force-free assumptions completely.

To accurately statistically evaluate all flux ropes at Titan, an improved, or different

model must be implemented to allow fitting of all flux ropes in the future. However, a

small statistical study can be made using the 49 fitted flux ropes. We therefore only
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evaluate the force-free flux ropes of Titan. We find a mean flux rope radius of 220± 260

km and a mean central magnetic field of 6 ± 8 nT. The individual flux rope values for

radii and magnetic field, along with equation 5.6, estimate a mean flux content of around

5± 54 Wb. As can be seen via the large standard deviations of the mean values, there

is a large spread of flux rope sizes and content and hence the large uncertainties in these

values represents the large spread of values and not an uncertainty in their sizes.

5.6.2.2 Non-Force-Free

In total 84 out of 85 flux ropes are fitted with a χ2 probability of less than 5% and an

MSE of less than 0.5 (comparable with the restriction on the force-free model). The

algorithm does not converge for one flux rope, this flux rope is also unable to be fitted

with the force-free model, however, this flux rope signature will remain in the total list.

The NFF model gives a mean flux rope radius of 210 ± 310 km, a mean maximum

magnetic field of 3 ± 10 nT and a mean flux content of 5 ± 48 Wb calculated using

equation 5.13 and the individual flux rope parameters. Similar to the force-free results,

the uncertainty value on these mean values does not represent the error in calculation but

the spread of the different flux rope parameters. These values are all within the values

presented by the force-free model on a statistical basis, however singular examples are

not always in accordance, as described in the following section.

5.6.2.3 Comparison of FF and NFF Models

A comparison overview of the spatial distributions, sizes and core field strength from the

two models is given in figure 5.17. When considered statistically, the two models give

results in general agreement with each other (figure 5.18). However, when considered

singularly the models are not longer in agreement. An example of which is shown in

figure 5.19. The following table outlines the individual results of the parameters for both

the FF and NFF model fits to examples in figures 5.19 and 5.20, with corresponding

uncertainties.
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Figure 5.17: Flux rope characteristics from NFF model (left) and the FF model (right)
where each plot shows a different positional perspective. Each flux rope is represented
as a circle with colour representing the central field strength and a size representative

of the radius of the flux rope.
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Figure 5.18: Flux rope characteristics derived from the FF model (blue) and the NFF
model (red). a) maximum magnetic field b) flux rope radius and c) flux content
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Figure 5.19: A fit of the FF model (blue) and the NFF model (red) with correspond-
ing uncertainty bounds (shaded regions in corresponding colours). The figure shows
axial magnetic field, tangential magnetic field, axial current density, tangential current
density and force density where data is in black. The corresponding χ2 values are shown

for each fit. This flux rope is found at 13.6 SLT on T30 at 20:07 on 12/05/2007.
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Figure 5.20: A fit of the FF model (blue) and the NFF model (red) with correspond-
ing uncertainty bounds (shaded regions in corresponding colours). The figure shows
axial magnetic field, tangential magnetic field, axial current density, tangential current
density and force density where data is in black. The corresponding χ2 values are shown

for each fit. This flux rope is found at 5.3 SLT on T5 at 19:01 on 16/04/2005.
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Figure 5.21: Figure showing the increased probability of a disparity between models
and CA value.

The table (5.2) shows the parameters relating to two examples of fitted flux ropes,

where the first has a large closest approach (CA) value (0.7) where CA describes the

distance into the flux rope that the trajectory of Cassini penetrated. This first example

shows a large disparity between the models, whereas example 2 shows a smaller CA and

parameters that are in agreement within uncertainties, shown for all fitted flux ropes in

figure 5.21. The figure shows that a larger closest approach value, i.e. Cassini is further

from flux ropes axis, increases the magnitude of disagreement between the two models,

along with increasing the chance of a disagreement.

Example 1 (figure 5.19) shows the comparison of FF and NFF for a flux rope on
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Example 1: 12/05/2007 Example 2: 16/04/2005
Method Radius [km] Magnetic Field [nT] CA Radius [km] Magnetic Field [nT] CA

FF 53 ± 7 6.6 ± 2.3 0.7 115 ± 11 13.5 ± 2.2 0.3
NFF 132± 11 9.6 ±3.5 0.7 119 ± 11 14.1 ± 3.4 0.3

Table 5.2: Comparison of parameters corresponding to figures 5.19 (example 1) and
5.19 (example 2).

12/05/2017 in the noon sector. The FF model fits to a relatively satisfactory degree,

with a χ2 value of 6.9, however the NFF model fits with a χ2 value of 0.39, which is

lower than one due to the uncertainties on the fitting parameters. This example has

a large CA value and a large disparity between the parameters fitted, however what is

evident is the difference in the current densities (axial and tangential) in the third and

fourth panels which shows large current density values when using the NFF model and

a near zero value for the FF model. This results in a non-zero value for the force density

(bottom panel) using the NFF method which has a symmetrical signature around the

centre of the flux rope for NFF and an expected zero value (within uncertainties) for the

FF model.

The current densities are as expected in a flux rope with a peak of axial current

density near the centre of the flux rope which reduces to near zero at the edges, and

the peak of tangential current density at the edge of the rope. The same can be said

of example 2 (figure 5.20), where the only difference is a constant positive axial current

density across the flux rope radius. Also noted that any break in assumptions during the

traversal of a flux rope could cause a large change in the current density and force density

signatures. For example, if the flux rope was not stationary or was evolving during the

traversal, could cause an asymmetry or unexplained deviation from the model, to be

explored more in section 5.6.4.

5.6.3 Comparison to Other Planetary Flux Ropes

A number of studies (see table 5.3) discuss flux ropes in Venus and Mars’ ionospheres,

we find that at Venus, flux ropes are generally on the order of 10-100 km in radius with

a small flux content of 2-3 Wb. However Zhang et al. (2012) shows giant flux ropes are
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Study Planetary Body Mean Radius [km] Mean Field [nT] Mean Flux Content [Wb]

This study (FF) Titan 220 ± 260 6 ± 8 5 ± 54
This study (NFF) Titan 210 ± 310 3 ± 10 5 ± 48
Wei et al. (2010) Titan 100 10 15
Wei et al. (2011) Titan - >37 -

Hara et al. (2015) Mars 161.7 >50 >200
Hara et al. (2014) Mars 30-670 - -

Eastwood et al. (2012) Mars - 25.4,42.2 -
Beharrell and Wild (2012) Mars 82.6,140,129 - -

Briggs et al. (2011) Mars 80-100 15 14-23
Morgan et al. (2011) Mars 325-350 50-90 800-1700
Brain et al. (2010) Mars 140 200 600
Vignes et al. (2004) Mars 4-38 4-90 <20

Zhang et al. (2012) Venus >100 37-100 >1200
Wei et al. (2010) Venus 20 7 0.4

Ledvina et al. (2002) Venus 10-30 <50 <0.7-7
Kleeorin et al. (1994) Venus 50-100 1-10 0.4-15

Luhmann and Elphic (1985) Venus - <20-100 -
Elphic and Russell (1983b) Venus 6-15 20-80 0.1- 2.7

Elphic et al. (1981) Venus 20-30 100 6.0 - 14.0
Elphic et al. (1980) Venus 15-20 100 3.5 - 6.0

DiBraccio et al. (2015) Mercury 450 40 1250
Slavin et al. (2009) & (2010) Mercury 240 - 1200 - 0.2 x 106

Russell and Walker (1985) Mercury 400 40 1000

Table 5.3: Overview and comparison of flux rope parameters at Venus, Mars and
Titan. Red values are calculated from mean radius and mean magnetic field given in
other studies using the flux content calculation from the force-free method, black values
are stated within the respective studies, and blue values are values from this study with

a standard deviation.

present with radii on the order of 100’s of km and flux content of 1000’s Wb. This shows

that the flux ropes at Titan are comparable is size to the giant flux ropes at Venus than

the smaller more common flux ropes, but with a much smaller magnetic field.

Additionally, at Venus it is thought that flux ropes are formed near a zenith angle

of 0◦ and travel away from their original site, hence more mature flux ropes are found

at the terminator of Venus. More mature flux ropes appear more ‘stable’ and conform

to the force-free flux rope idea, hence we conclude that flux ropes at Titan appear to

be less developed on average than flux ropes at Venus, and are much larger in radii on

average.

Additionally, we see flux ropes in Mars’ ionosphere at around 200-400 km where

at Titan we see flux ropes much higher up at around 800-1000km - a trajectory bias of

limited closest approach of Cassini may be due to this difference along with the extended

nature of Titan’s atmosphere, and hence the ionosphere occurring at higher altitudes.
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Also, there appears to be no altitude difference with field strength as at Venus where

stronger flux ropes are detected lower in the atmosphere.

Table 5.3 gives an overview and comparison of previous flux rope results at numer-

ous planetary bodies. It is noted that the standard deviations presented in this study are

large, however this value represents the large spread of data from individual flux ropes

and is not a representation of the uncertainties on the mean value.

Previous studies of flux ropes at Titan show a large variation in maximum magnetic

field values from Wei et al. (2010) where the authors show a mean maximum magnetic

field of 10 nT, to Wei et al. (2011) who present a flux rope with a lower bound of maximum

magnetic field of 37 nT, which is a value much larger then the ambient magnetic field

environment in Titan’s ionosphere. This study found a similar mean maximum magnetic

field to Wei et al. (2010) of 10±8 nT. However Wei et al. (2010) presented two examples

of flux ropes at Titan where the radii was on the order of 100 km, this study shows an

average radii much larger (220± 260 km), the standard deviation however, includes this

lower value of radii.

5.6.4 Deformations to Force-Free

As discussed earlier, the results of the FF-NFF model comparison show that the NFF

method and assumptions give much lower χ2 values and improved uncertainties over

the FF method and assumptions. However, little physical background can be given to

the assumption of the current density following a polynomial function. With increasing

order of polynomial function of current density, an asymptotic improvement is seen in

the fit of the NFF model to the data up to orders three and four for axial and tangential

components respectively. This fact still does not present physical evidence of why the

current density is modelled as a polynomial function.

It is evident that the FF model is symmetric around the ’peak’ of the axial field

(as expected when using a zeroth order Bessel function, see figures 5.11, 5.19 & 5.20),

yet the magnetometer data itself is not symmetric around this point but often shifted or

pulled to one side or the other forming a steeper decrease in magnetic field on one side
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of the rope than the other. In this section, deformations that can produce asymmetries

in the force-free model are examined and case-studies are chosen to show improved fits

to the force-free model.

5.6.4.1 Modelling a Bent Flux Rope

A bent flux rope is defined in this study as a flux rope which does not appear to have

an axis that is straight, the flux ropes presented have a constant radius and axial field

strength along the flux rope, however an asymmetry is present in the tangential and

axial field strength with radius, a diagrammatic example of this is shown in figure 5.22.

To model a bent flux rope, a force-free flux rope model utilised in the previous section

is used. This model is then deformed using the TSY98 general deformation method

(outlined in section 2.2.1).

The specific deformation used in this precess is as follows: the force-free Bessel

function model is used as an undeformed magnetic field. A parabola is then used as the

basis of the spatial deformation. The z-axis is deformed into the x-direction causing the

axis of the flux rope to take the parabolic shape rather than a straight line.

z = a(x− c)2 (5.14)

The normal to the flux rope axis is then calculated by finding the derivatives of equation

5.14 to give:
dz

dx
= 2a(x− c), (5.15)

dz

dy
= 2a(y − c), (5.16)

where a is the leading co-efficient of the polynomial, describing how much the flux rope

has bent and c is the offset from the y-axis that the centre of the flux rope has moved, in

this analysis c = 0 as this difference can also be modelled by changing the position fo the

simulated fly-through of the flux rope. Now, a unit normal (nx, ny, nz) to the flux rope

centre is found for the fly-though. The Y-vector (Yx, Yy, Yz) is found as the undeformed

y-axis and the X-vector (Xx, Xy, Xz) is found as the cross product of the normal and
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Figure 5.22: A bent flux rope, with simulated fly-through and expected cylindrical
magnetic field components. Layers of the flux rope are cut away to view the inner

structure.

the Y-vector. The new coordinate system is then found as:

x∗ = xXx + yXy + zXz (5.17)

y∗ = xYx + yYy + zYz (5.18)

z∗ = xnx + yny + znz (5.19)
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The new deformed magnetic field in the original undeformed coordinate system then

reads:

B∗z = B0J0(αr∗) + b0, (5.20)

B∗x = −HB0J1(αr∗) sin(φ), (5.21)

B∗y = HB0J1(αr∗) cos(φ), (5.22)

where the model is evaluated in cylindrical coordinates and converted to cartesian for

plotting and simplicity in the following step. φ is calculated as the angle of the simulated

spacecraft from the x-axis for each position. B0 is the axial field, J0 and J1 are the zeroth

and first order Bessel functions. α is the constant 2.40 and r∗ =
√
x∗2 + y∗2 is the radius.

b0 is the magnetic offset and H is the handedness.

The transformation matrix TTT (see section 2.2.1) can then be constructed to find

the magnetic field in the new deformed system: B′B′B′ = TB∗TB∗TB∗. Figure 5.23 shows an

example of a comparison between an undeformed flux rope (grey) and a deformed flux

rope (red) where a clear asymmetry can be seen in the axial (z) component and total

field. The tangential components (x and y) show some asymmetry in the magnitude of

each component before and after closest approach, but both still cross 0 at the ‘centre’

of the flux rope.

The main assumption of previous models is that using MVA (see section 2.2.2)

will give the axial, tangential and radial field components. However, it is noted that at

other planetary bodies (i.e. Mercury - Slavin et al. (2009)) the intermediate variance

direction will give the axial direction and the maximum variance direction is found in the

tangential direction, the opposite to what is found at Titan. If a completely undeformed,

non-interacting, force-free flux rope is modelled the MVA process will find the maximum

variance direction as the tangential direction, the intermediate variance direction as the

axial direction and a zero valued minimum variance radial direction. In data, this is not

the case at Titan.

Flux rope signatures at Titan will give the maximum variance direction as the

axial field, the intermediate variance direction as the tangential field and a small - but

non-zero- minimum variance radial field. It is found that adding a very slight bend will
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Figure 5.23: A comparison of an undeformed flux rope (grey) and a deformed flux
rope (red) where the components are total field (thick solid), axial (dotted), y (dash-dot)

and x (thin solid).

flip the variance directions from the standard seen at Mercury, to what is found in the

data at Titan. However, further bending will increase the degeneracy of the variance

directions and no solution may be found.

Figure 5.24 shows an undeformed and a deformed flux rope with calculated MVA

directions in blue (maximum), yellow (intermediate) and green (minimum) when in the

left-hand figure the flux rope is undeformed and the intermediate variance direction

is along the central axis. In the right-hand figure the flux rope is deformed slightly,

where the maximum variance direction is closest to the axial direction. This shows that

MVA analysis is sensitive to changes in the flux rope which may lead to the method not

correctly identifying variance directions. However, this does show that the flux ropes at

Mercury are well modelled by a non-deformed force-free model.
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Undeformed Flux Rope Deformed Flux Rope

Figure 5.24: A comparison of an undeformed flux rope (left) and a deformed flux rope
(right) where MVA is used on both and give maximum (blue), intermediate (yellow)

and minimum (green) variance directions averaged for the whole fly-through.

5.6.4.2 Modelling an Elliptical Cross Section Flux Rope

Central Line

Trajectory} b }

b

}

c
P

}

r

Figure 5.25: The cross-section of an elliptical flux rope with model parameters labeled.
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Another possible asymmetry of a flux rope is that its cross-section is not a circle, as

most models assume. However, evaluating the Bessel functions in elliptical coordinates

is not straight forward and resembles the form of the Mathieu functions. However, with

some simple geometry a circular flux rope model can be adapted into an elliptical model

without the development of elliptical Bessel functions or the extended use of elliptical

coordinates.

To begin, a ‘central line’ is constructed at the centre of an ellipse with semi-minor

axis of b and a semi-major axis of a(= b + c) where c is the half-length of the ‘central

line’ (see figure 5.25). A simulated fly-through of the flux rope is then made with known

trajectory, where each position P has its own unique value of r (radial distance from the

central line position). However, this radial distance is not just the radial distance from

the nearest point on the central line, but an extrapolation of the normal to the flux rope

surface at the closest surface point to point P which goes through point P to the central

line. This is shown as the thin black like through point P in figure 5.25.

This r is then used as the radial distance to be used in the Bessel function force-free

model to evaluate the flux rope in elliptical co-ordinates. For simplicity, the magnetic

offset b0 is not used in this analysis but if need be can be easily added at a later stage.

Bz = B0J0(αr), (5.23)

Bv = HB0J1(αr), (5.24)

Bu = 0, (5.25)

where the equations resemble the previously used force-free models, but with components

in (u, v, z) which are described in appendix figure A4, where u is equivalent to a radial

direction and v, tangential.

Figure 5.26 shows a fit to the elliptical flux rope model described above. This

example is found on T29 at 21:34 on 26th April 2007 at 13.7 SLT. This model fits to the

magnetometer data with a χ2 value of 3.8, where the force-free model gives χ2 = 6.7 and

non-force-free gives χ2 = 6.5. Along with comparable uncertainties of fit parameters, one

can ascertain that the elliptical force-free model fits to the magnetometer data in this
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Figure 5.26: Figure showing magnetometer data (black) fitted with the elliptical flux
rope model (red) in Cartesian coordinates.

example better than the circular force-free and non-force-free, leading to the hypothesis

that this flux rope may be elliptical in cross-section, bent, or both. Figure 5.27 shows a

diagram of the flux rope and trajectory of Cassini with the model that is fitted in figure

5.26. This example is fitted using the Bayesian inference method described in section

2.2.4 using angles of incidence on the flux rope rather than MVA analysis for all three

methods (circular force-free, elliptical force-free and non-force-free).
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Figure 5.27: Figure showing schematic of set up of trajectory and elliptical flux rope
corresponding to fitted magnetometer data in figure 5.26, where the red dashed line is
the expected trajectory, the blue quiver is the model field direction in the x-y plane.
The grey shaded area is inside the flux rope and the black solid line is the edge of the
flux rope. A dashed grey line shows the central line as described in figure 5.25 with two

grey dots showing the foci of the ellipse.

5.7 Conclusions

In conclusion, a statistical study was undertaken to determine the properties and location

of flux ropes in Titan’s ionosphere. The main findings of the studies outlined in this

chapter are as follows:

• Flux ropes are mainly located in the noon sector of Saturn’s magnetosphere, with

a secondary peak at pre-midnight where the x-line from Vasyliunas cycle recon-

nection is expected. The only other positions that flux ropes are found, are when

the current sheet is close to, and passing over Cassini frequently.

• With reference to position on Titan, the flux ropes are more common in the sunlit

and ram-side of the moon rather than in shadow and in the tail region. A statistical
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test of position is undertaken and shows a preference statistically for these regions.

Some SLT bias in which hemisphere (sunlit or ram-side) is dominant in flux rope

numbers however this is not statistically testable due to the changing nature of

Titan’s interaction with Saturn’s magnetic field.

• A force-free flux rope model is fitted to magnetometer data and shows that the

assumption of the force-free model give a good first approximation to the flux ropes

at Titan, however the quality of the fits could be greatly improved.

• A non-force-free model is therefore fitted to the data which shows a much improved

quality of fit and an improved number of flux ropes able to be fitted by the new

model. However, the non-force-free model lacks the physical basis of the polynomial

expansion of the current density.

• Hence, deformations to the force-free are explored to improve the fit of the force-

free model. Explored are an elliptical cross-section and a bend in the flux rope.

As both of these deformations introduce a larger number of parameters, singular

flux ropes are explored to show that a small number of flux ropes can be fitted to

a better degree using the elliptical cross section force-free model than the circular

and non-force-free models.

• In comparison with other planetary bodies, Titan’s flux ropes are much larger in

radius, however much reduced in magnetic field strength. This is assumed to be

due to the lower field strength in the surrounding area of Titan compared to the

surroundings of the other planetary bodies.

• Deformations to flux ropes in the Titan system may make them not an applicable

target for use of minimum variance analysis to determine the flux rope coordinate

system needed for the various models.

This chapter has shown that Titan’s ionospheric environment supports the devel-

opment of flux ropes, in that over half of all flybys of Titan show flux rope signatures

with a common occurrence being multiple flux ropes over the trajectory. However, the

unsuccessful attempt to fit all flux rope signatures with a force-free flux rope model

shows that the flux ropes can be considered as immature, or not in equilibrium. This
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conclusion shows that the flux ropes must therefore be initiated consistently in the iono-

spheric interaction with Saturn’s magnetosphere, but not cultivated into mature flux

ropes. Instead, they are disrupted and destroyed by the dynamical interaction with

Saturn’s magnetic field.
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Conclusions

This thesis has presented studies of small-scale magnetic phenomena from two very dif-

ferent but related locations in Saturn’s magnetosphere. First, we explored the aperiodic

waves present on Saturn’s equatorial current sheet, their own controlling parameters and

additionally what they can unveil about the current sheet itself. The aperiodic waves

were used to map the current density of the equatorial current sheet and were also used

as a current sheet crossing to allow for the analysis of the vertical structure.

Second, we diverted attention to Saturn’s largest moon Titan, and the magnetic

structures that reside in the ionosphere. A statistical study of the location and properties

of the flux ropes found during flybys of the moon was presented.

Cassini magnetometer data has been the primary data source for this thesis, which

was fitted to a number of flux rope models and a deformed model of the current sheet.

A more in depth review of science results follows.

6.1 Review

To conclude effectively, we will proceed chapter by chapter.

To begin, a catalogue of the position and time of aperiodic wave events was created

by identifying events in the Cassini magnetometer data that fitted the criteria of a time

178
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period of 1 - 30 minutes, a change in the magnetic field magnitude of over 1 nT and are

not repeating or periodic. In total 1461 aperiodic events were found during Cassini’s

equatorial orbits that occurred between 2005 and 2012. These waves were found in all

local time sectors and appear to be uniformly distributed spatially and temporally in

Saturn’s magnetosphere.

To extract more information on the current sheet and the waves themselves, a

model is developed to fit to the magnetometer data. This model consists of a modified

Harris current sheet that is deformed, using the general deformation method of TSY98,

by a Gaussian wave pulse. Use of the Gaussian wave pulse came about due to its non-

repeating nature and included physically-meaningful wave parameters.

The main science results from chapter 3 are:

• Scale height of the current sheet increases on average with radial distance from

Saturn, an SLT asymmetry is present where the dusk current sheet is thicker than

dawn, consistent with more limited results from previous studies.

• Wave amplitude increases with radial distance from Saturn. An analogy with water

shoaling was used to argue for an increase in the amplitude as a consequence of

the increasing scale height and decreasing mass density of the current sheet.

• Wave propagation in the radial and azimuthal directions were derived from the

wave vectors in the Gaussian wave pulse equation. The dominant propagation

direction is found to be radially outward.

Also explored are the possible sources of the waves, and concluded in this is that the

waves are formed from a number of varying sources such as magnetopause compressions,

dayside and nightside reconnection at the magnetopause, in the tail and on the current

sheet. Additionally, interchange of plasma in the inner magnetosphere could also disturb

the sheet to produce outward travelling waves. However, the main conclusion of this

chapter is that, on average, the aperiodic waves are travelling outwards with increasing

amplitude on a thickening current sheet implying that the source of the waves is in the

inner magnetosphere, where we cannot probe due to a more dipolar field arrangement.
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In chapter 4 we used the current sheet parameters obtained in chapter 3 to study

the spatial variation in radial and azimuthal components. Both radial and azimuthal

components of the current sheet varied with radial distance and had a pronounced local

time asymmetry where current density peaks post-midnight and is at a minimum post-

noon.

The divergence of the current densities in radius and azimuth are calculated and

combined to give the divergence of the perpendicular current. This shows whether

current is flowing from the higher latitudes into or out of the current sheet at the equator.

We find that current is drawn out of the current sheet into the pre-noon sector of the

magnetosphere and into the pre-midnight sector. By current continuity these currents

flow as field-aligned currents into Saturn’s ionosphere. The field-aligned currents in the

pre-midnight sector correspond with downward electron precipitation into the ionosphere

and we estimate an increase of 1-10 kR in auroral intensity in that sector, consistent with

auroral investigations reported in the literature.

Finally, the aperiodic waves were used as a tool to resolve the vertical structure

of the current sheet and examine the validity of the Harris current sheet assumption.

The vertical current density structure is estimated using the value of Ba as a proxy

for the distance to the current sheet centre, where a denotes the direction of largest

change in the magnetic field just outside of the current sheet. The full time derivative〈
|dBadt |

〉
calculated numerically is used as a proxy for the current density in the current

sheet. Hence, if the sheet is Harris-like, a discrete maximum is found at or near Ba = 0.

Alternatively, if the sheet is bifurcated, two maxima are found either side of Ba = 0 and

a local minimum is found at Ba = 0.

The structure of the current sheet is determined by fitting a three Gaussian model

to the data, where if the central Gaussian is dominant then the sheet is Harris, or if the

peripheral Gaussian’s are dominant then the sheet is bifurcated, amongst other criteria.

An striated category is also presented along with data for NaN and NED events. From

the total number of events with enough data, it is found that 10% of events are classed as

bifurcated, 78% are classified as Harris-like and the remaining 12% are striated, showing
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that the majority of current sheets sampled at Saturn are Harris-like, but a non-negligible

number are bifurcated.

Titan’s interaction with Saturn’s magnetic field is a dynamic and unique interac-

tion. Titan moves through the different regimes from current sheet to lobe magnetic

field, from magnetosheath to solar wind, all of which have an effect on the thick iono-

sphere and draped magnetic field. A feature of Titan’s interaction with its environment

is the presence of magnetic flux ropes. Cassini magnetometer data was used to examine

Titan flybys for the presence of flux ropes and a survey was presented in chapter 5. A

total of 85 flux ropes signatures were identified. Flux ropes were found to be located,

on average, in the sunlit hemisphere which is facing the incoming corotational plasma of

Saturn’s magnetosphere.

Removing the trajectory bias of the number of Titan flyby in each SLT sector,

it is found that flux ropes are more common when Titan is in the noon sector of the

magnetosphere. A secondary occurrence peak is found post-midnight. Additionally,

outside of these two areas, flux ropes are only observed during flybys that also show that

Titan is inside or is near the equatorial current sheet. Thus, we may conclude that the

presence of flux ropes is indicative of a highly changeable environment which encourages

flux rope formation.

To extract further information from the flux ropes, force-free and non-force-free

models are fitted to the magnetometer data. To begin, the flux rope magnetic field

signatures must be rotated into a ’flux rope coordinate system’ which is where the axis

of the flux rope is Â, and the other two components are the cylindrical radial R̂ and

tangential T̂ components. This coordinate system is identified using two methods where

MVA is used to establish the tangential and axial field where the maximum variance

direction is the axial direction and the intermediate variance direction is the tangential

direction, the other method being the fitting of angles of trajectory through the flux rope.

The models are then fitted to the data using either a least-squares fitting or Bayesian

inference regression - specified in each case.

The force-free model gives a good ’first approximation’ to fitting the flux ropes; 49

flux ropes from the total 85 fitted the FF model with a χ2 probability of less than 5%,
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whereas the NFF model fitted 84 from 85 flux ropes with a χ2 probability of less than 5%.

Thus showing that the flux ropes are better modelled by a non-force-free approach on

average. Whilst the two models give similar statistical distributions of flux ropes radii,

maximum field strength, and magnetic flux content, the actual values for individual flux

ropes could be very different. We can conclude that the distance that Cassini was from

the centre of the flux rope affected the agreement of the two models, where large CA

values made a large difference between the models more likely.

However, the NFF model is dependent on a polynomial expansion of the current

density in the flux rope. This assumption has no physical basis other than to fit the

signatures. Additionally, both the FF and NFF models are symmetric around the centre

of the flux rope, which is not necessarily true. Hence, deformations of the FF model

were explored to search for asymmetries or bends in the flux rope that could yield better

fits.

Firstly, a bending deformation was applied to the flux ropes, where a straight

flux rope was deformed into a parabolic shape using the TSY98 general deformation

method. The bending of the flux rope introduces an asymmetry in the axial and total

magnetic field along with addition to the radial component from the axial and tangential

components. Additionally, a test of MVA is used on a bent flux rope to examine if MVA

is effective at finding the flux rope coordinate system. It is shown that in a straight

force-free flux rope the maximum variance direction is identified as the tangential field

and the intermediate variance direction is the axial direction - what is found with the

flux ropes at Mercury. However, here at Titan the variance directions are switched. If a

very slight bend is introduced, it is shown that the maximum variance direction is now

the axial field (the same as what is seen in data at Titan) and the intermediate variance

direction is the tangential direction. Showing that a slight bend can introduce the flux

rope system seen at Titan, however, if a large bend is introduced the MVA analysis

becomes degenerate and a coordinate system cannot be found.

Another deformation that was was to generate flux ropes with an elliptical cross-

section. The elliptical FF model is described in section 5.6.4 where effectively the main

change is the determination of the radial distance of Cassini from the centre of the flux
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rope, which in the elliptical sense is now a central line rather than point. The elliptical

FF model is fitted to a select number of flux rope examples due to the number of fitted

parameters in the new model, which is unsuitable for automatic fitting for all flux ropes.

The elliptical FF model allows an asymmetry similar to the bendy model, however the

elliptical model fits for a plateau in the axial direction which is due to the elongated flux

rope centre. One example is presented, however only five flux rope are better fitted to

the elliptical model than the non-force-free, but all flux ropes tested fit better to the

elliptical FF model than the circular FF model.

Thus, the conclusion from this chapter is that the flux ropes sampled by Cassini

are found in areas of changeable magnetic environment, can be considered not mature

or not in equilibrium, which is emphasised by the better fitting of deformed models of

a FF flux rope. Hence, Titan’s environment can be considered an instigator of flux

ropes, but it does not aid in the maturation or prevents maturation of flux ropes. In

comparison with other planetary bodies where flux ropes are present, Titan’s flux ropes

are on average much larger in radius but much smaller in magnetic field magnitude.

This thesis has shown that the examination of the small-scale magnetic phenomena

present in the Saturnian system can be a good indicator and surveyor of the system as a

whole. They can also be indicators of much larger environmental changes and structures

and be an important factor in the local environment, be it Titan’s ionosphere or Saturn’s

equatorial current sheet.

6.2 Further Questions

There are a number of further research and open questions on the topics visited in

this thesis, a fraction of which are outside the scope of the research produced within

the thesis, however the rest are a subject for future further research. Kivelson (2016)

outlined a number of currently unanswered questions on magnetodisc current sheets that

have been touched on in this thesis, however the majority remain unsolved, or at least

unresolved.
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The larger questions in Saturn’s current sheet revolve around finding a source

of PPO related flapping, fully resolving the force balance which originally began the

work presented in chapters 3 and 4 via Arridge et al. (2007). Additionally, the sources

of pressure anisotropies in the current sheet is still an open question which is linked

to the bifurcation process in chapter 4. Also addressed in this thesis are the dawn-

dusk asymmetries in magnetic field and current density of the current sheet, which is

highlighted as a large open question.

With regards to Titan, the main remaining magnetospheric interaction question is

to what extent does Titan affect Saturn’s magnetosphere with regards to a plasma torus

or draped fields, currently it is hypothesised that Titan may influence the substorm-like

behaviour in the night sector of the magnetosphere (Russell et al., 2008).

Produced directly from the work presented in this thesis, the following specific

questions are open for future analysis:

• What are the sources of aperiodic waves, and in what proportions do they produce

waves?

• What other wave forms may be used to effectively model the aperiodic waves, and

how much can the model tell us about PPO flapping and other motions of the

current sheet?

• Is there a solar wind or solar cycle effect on the current density in the current

sheet?

• With highly biased trajectories, are there better methods for separating seasonal,

solar cycle, and solar wind effects on the current sheet?

• What is the definitive source of bifurcations, are they related to velocity of the

plasma in the radial direction?

• What other deformations can be made to a force-free flux rope model to more

effectively model flux ropes in Titan’s ionosphere?
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• Is it possible to develop flux rope models with a more physically-meaningful an-

alytical form for the current density, or an analytical form for the jjj × BBB force

density?

• An overall question on methodology is, can improvements be brought to the Bayesian

inference regression analysis so that it can easily and effectively be used on large

models with a large number of variables?

The Cassini mission has given a limited, but expansive view into the Saturnian system

and specifically the interaction of Titan and the dynamics of the current sheet. This

thesis has presented novel techniques and models and addressed a number of previously

unanswered questions and science objectives regarding the dynamics of the current sheet

and the properties of flux ropes in Titan’s ionosphere, however many areas deserve further

investigation, and as always, more data and more coverage is always desired.
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A.1 Coordinate systems

This thesis presents a number of different coordinate systems, for reference all coordinate

systems used are summarised below with diagrams for reference.

A.1.1 KSM

The KSM coordinate system or Kronocentric Solar Magnetospheric coordinates are a

Cartisian system with Saturn at the origin. x̂̂x̂x is a vector in the Saturn-Sun line, ẑ̂ẑz

northward so that the rotation axis of Saturn is in the x-z plane. ŷ̂ŷy is therefore per-

pendicular to the z-axis, roughly in the anti-orbital direction and completes the right

handed system.

𝒙"

𝒚"

𝒛%

To  Sun

Magnetic  
Axis

Figure A1: Figure depicting the KSM coordinate system
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A.1.2 KRTP

The KRTP coordinate system, or Kronocentric Radial Theta Phi, is a spherical coor-

dinate system centred at Saturn. This system is particularly useful when evaluating

Saturn’s stretched magnetic field. r̂̂r̂r is radially outwards from Saturn, θ̂̂θ̂θ is southward at

the equator. φ̂̂φ̂φ is in the direction of corotation.

!"

!#

$%
Cassini

Figure A2: Figure depicting the KRTP coordinate system

A.1.3 Local Cassini-centric Cartesian

We define a local Cassini-centric Cartesian coordinate system for use in fitting models in

the following chapters. This coordinate system is similar to the spherical KRTP system

defined above, where x̂̂x̂x is along the r̂̂r̂r direction, ŷ̂ŷy is in the azimuthal direction and ẑ̂ẑz is

positive northwards when at the equator.

A.1.4 Elliptical Cylindrical

An elliptical coordinate system is an orthogonal system where the lines of eqi-coordinate

are either ellipses or hyperbolae. The z-axis is equivalent to the cylindrical z-axis which

in figure A4 is out of the page. The u-coordinates increase with distance from the central

focal line and the v-coordinates increase anti-clockwise with angle from the central focal

line.
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Figure A3: Figure depicting the local cartesian coordinate system

Figure A4: Figure depicting a 2-D elliptical cylindrical coordinate system. (Bryan,
2018)

A.1.5 TIIS

TIIS, or Titan ionospheric interaction system is a Titan-centred cartesian coordinate

system where the x-axis points along the corotation direction, the y-axis points towards

Saturn and the z-axis completes the right handed system and is roughly southward.

Depicted in figure A5.
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Figure A5: Figure depicting the Titan ionospheric interaction system

A.1.6 T-DRAP

T-DRAP is the coordinate system of the interaction of Saturn’s magnetic field and

Titan, however this coordinate system is an improvement on TIIS in that it uses the

measured direction of plasma and doesn’t assume corotation direction. X is in the

direction of plasma flow, Y is the direction of magnetic field (roughly towards Saturn)

and Z completes the system and is roughly southward.

A.1.7 TiCS

TiCS is the Titan-centric solar coordinate systems devised for the locational study of

flux ropes. This system is an orthogonal Cartesian system where the x-direction is from

Titan to the Sun, the z-axis is positive northward and y-axis completes the system.

A.1.8 Flux Rope Cylindrical

The flux rope cylindrical coordinate system has A-axis aligned with the axis of the flux

rope (Axial), a R-axis aligned along the radial position of measurement from the centre of

the flux rope (Radial) and a tangential component (T) that competes the right-handed
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Flux Rope

Figure A6: Figure depicting the flux rope cylindrical co-ordinate system.

system (R,T,A) and is tangential to the flux rope edge at the point of measurement,

depicted in figure A6.

A.1.9 Flux Rope Cartesian-Trajectory

Axis Z

X
Y

Flux Rope

Trajectory Projection

Figure A7: Figure depicting the flux rope cylindrical co-ordinate system.

A flux rope cartesian system has a Z-axis aligned with the flux rope axis, a X-axis

aligned with the projection of the space craft trajectory in the plane perpendicular to

the axis and Y-axis that completes the right handed (X,Y,Z) system.
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A.1.10 Other

Other coordinate systems used are depicted in figure 4.8 in section 4.4 which shows

the current sheet coordinate system aligned with the magnetic field and current density

within the current sheet.

A.2 Bessel Function Solution to Force-Free Magnetic Fields

A.2.1 Force-free assumption

The MHD momentum equation neglecting gravity is:

−∇p+ j×B = 0 (1)

With the assumption of a force free field, the gradient of plasma pressure is ignored:

j×B = 0 (2)

This equation physically shows that the current density must be parallel to the

magnetic field or be equal to zero and hence with the known factor of∇·B = 0, Ampere’s

Law and the vector identity ∇ · (∇×B) = 0:

∇×B = j = αB (3)

In a cylindrical coordinate system of a flux rope, the components of the magnetic field

can be displayed as
dBz
dρ

= −αBφ, (4)

1

ρ

d(ρBφ)

dρ
= αBz, (5)

assuming no axial or azimuthal variation. Substituting one into the other and vice

versa one can find that both components form a second order differential equation that



Appendix 193

resemble Bessel’s equation with constant α where νz = 0 and νφ = 1.

ρ2d
2Bz
dρ2

+ ρ
dBz
dρ

+ α2(ρ2 − ν2
z )Bz = 0 (6)

ρ2d
2Bφ
dρ2

+ ρ
dBφ
dρ

+ α2(ρ2 − ν2
φ)Bφ = 0 (7)

These ordinary differential equations can be solved using Bessel functions.

A.2.2 General Solution to Bessel Functions

In general terms Bessel’s equation reads:

x2 d
2y

dx2
+ x

dy

dx
+ α2(x2 − ν2)y = 0, (8)

where α is a constant (equal to 1 in this example), ν is an integer constant relating to

the order of the Bessel function.

Therefore, a solution is expected to take the form y(x) =
∑∞

n=0 anx
(n+r), and

hence the components of the Bessel equation are as follows:

x2y(x) =

∞∑
n=0

anx
(n+r+2) ⇒ y(x) =

∞∑
n=2

an−2x
(n+r) (9)

x
dy(x)

dx
=

∞∑
n=0

(n+ r)anx
(n+r) (10)

x2d
2y(x)

dx2
=

∞∑
n=0

(n+ r)(n+ r − 1)anx
(n+r) (11)

The differential equation then reads:

∞∑
n=0

(n+r)(n+r−1)anx
(n+r)+

∞∑
n=0

(n+r)anx
(n+r)+

∞∑
n=2

an−2x
(n+r)−

∞∑
n=0

ν2anx(n+ r) = 0

(12)

Group terms:

∞∑
n=0

[
(n+ r)(n+ r − 1) + (n+ r)− ν2

]
anx

(n+r) +
∞∑
n=2

an−2x
(n+r) = 0 (13)
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Simplify:
∞∑
n=0

[
(n+ r)2 − ν2

]
anx

(n+r) +
∞∑
n=2

an−2x
(n+r) = 0 (14)

Split first term to allow for simplification of different orders:

(r2 +ν2)a0x
r+
[
(r+1)2−ν2

]
a1x

(r+1) +
∞∑
n=2

[
(n+r)2−ν2

]
anx

(n+r) +
∞∑
n=2

an−2x
(n+r) = 0

(15)

Combine second summation order terms:

(r2 +ν2)a0x
r+
[
(r+1)2−ν2

]
a1x

(r+1) +

∞∑
n=2

{[
(n+r)2−ν2

]
an+a(n−2)

}
x(n+r) = 0 (16)

Each term must equal zero so one finds three recurrence relations:

(r2 + ν2)a0x
r = 0 (17)

[
(r + 1)2 − ν2

]
a1x

(r+1) = 0 (18)

and [
(n+ r)2 − ν2

]
an + a(n−2) = 0 where n ≥ 2 (19)

From equation 17 one can find that r2 + ν2 = 0 and hence r = ±ν. If this is true,

then (r + 1)2 − ν2 6= 0 and so a1 must be equal to 0 and hence the first two recurrence

relations are solved. The only remaining unknown is an for values greater than 2, and

this is needed to solve the third recurrence relation by considering both r = +ν and

r = −ν. If we consider r = +ν we find:

(n2 + 2nν)an + a(n−2) = 0 (20)

n(n+ 2ν)an = −a(n−2) (21)

Since n ≥ 2 and ν ≥ 0, n+ 2ν will never be 0, and so:

an = −
a(n−2)

n(n+ 2ν)
(22)
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Equation 22 and a1 = 0 imply that all odd coefficients are equal to 0, and we are

left with only the even coefficients.

a2k =
(−1)ka0

22k(k!)(1 + ν)(2 + ν)...(k + ν)
where ν ≥ 0 (23)

And hence when a0 = 1, the solution is as follows:

J+
ν (x) = xν

[
1 +

∑
k=1

∞ (−1)k

22k(k!)(1 + ν)(2 + ν)...(k + ν)
where ν ≥ 0 (24)

The same applies for r = −ν:

J−ν (x) = x−ν
[
1 +

∑
k=1

∞ (−1)k

22k(k!)(1− ν)(2− ν)...(k − ν)
where ν ≥ 0 (25)

So for magnetic field components Bz and Bφ, the solutions will be of the form:

Bz = c1J0(αρ), (26)

Bφ = c2J1(αρ), (27)

Where J0 and J1 are the zeroth (ν = 0) and first (ν = 1) order Bessel functions of the

first kind. Now, one must consider the physical implications of what the Bessel functions

are modelling, i.e. form boundary conditions. Figure A8 shows the Bessel functions of

the first kind with zeroth order (blue) and first order (red) with no scaling factors for

positive and negative x.

The Bessel functions themselves are scaled between -1 and 1. One can see that the

peak of the zeroth order function is at 1. If we postulate that this zeroth order function

is describing the radial relationship of magnetic field along the axis of a flux rope, then

the peak of the function will represent the field strength at the centre of the flux rope.

Hence, one must scale the peak to the maximum axial magnetic field (B0).

The first order Bessel function represents the tangential magnetic field of a flux

rope, this too much be scaled to the maximum axial magnetic field (B0), however the
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Figure A8: Figure showing the zeroth (blue) and first (red) order Bessel functions of
the first kind

sign of this component is dependent on the ’handedness’ (H) of the flux rope. This

’handedness’ describes which way around the central field the magnetic field is twisting.

Right handed flux ropes have a handedness value of 1, whereas left handed flux ropes

have a handedness of -1. Figure A8 shows the first order Bessel function in red, with the

negative function in dashed red.

We also must consider the surrounding plasma and magnetic environment that

could have an effect on the magnetic field signatures of the flux rope. As most flux ropes

are embedded in a plasma or magnetic field regime, an ambient background magnetic

field component will be present and must be included, so an additional ’magnetic offset’

is included in the axial component (b0).

The remaining physical factor to include is to scale in the radial direction. The

axial component of the flux rope will always be positive, and so the flux rope extends

only to where the zeroth order function is positive, and hence the radius of the flux rope

will be where the zeroth order function reaches zero. This can be scaled by finding the

roots of the function, and using this value as a constant (α). The first root of the zeroth

order Bessel functions is 2.4048.

The third component of the magnetic field, the radial component, should ideally

equal 0 as the force free assumptions allude to the field either being axial (fully axial
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at the centre) or tangential (fully tangential at the outer edge) and hence one should

not find any magnitude of radial magnetic field in a force free flux rope. And hence we

find that an accurate description of a force free flux rope can be found using the Bessel

equation solutions which results in field components as follows:

BAxial = B0J0(αρ) + b0 (28)

BTangential = B0HJ1(αρ) (29)

BRadial = 0 (30)

A.3 Flux Content Derivation

Φ =

∫
BBB · dS =

∫
BAdS = B0

∫
J0(αr)2πrdr, (31)

Where Φ is flux content, B0 is maximum magnetic field, J0 is the zeroth order

Bessel function from the axial field BA, r is radius and α is 2.40.

Φ =
2πB0

α2

∫
J0(x)xdx, (32)

where x = αR

Completing the integral then gives:

Φ =
2π

α2
B0αR0J1(αR0), (33)

Φ =
2π

α
B0R

2
0J1(α), (34)

A.4 Field-Aligned Currents From Continuity of Currents

Using the continuity of currents and formulation from Vasyliunas (1984):

∇ · J‖J‖J‖ = ∇ · J‖
BBB

B
= ∇ ·

J‖

B
BBB (35)



Appendix 198

As ∇ · bAAA = b∇ ·AAA+AAA · ∇b:

∇ ·
J‖

B
BBB =

J‖

B
∇ ·BBB +BBB · ∇

J‖

B
(36)

The divergence of BBB is zero so:

∇ · J‖J‖J‖ = BBB · ∇
J‖

B
(37)

Divide both sides by B:
∇ · J‖J‖J‖
B

=
BBB

B
· ∇

J‖

B
(38)

We know BBB
B · ∇ = ∂

∂s :
∇ · J‖J‖J‖
B

=
∂

∂s

J‖

B
(39)

∇ · J‖J‖J‖ = B
∂

∂s

J‖

B
(40)

We know ∇ · J‖J‖J‖ = −∇ · J⊥J⊥J⊥, hence:

∇ · J⊥J⊥J⊥ = −B ∂

∂s

J‖

B
(41)

A.5 Striated Current Density Examples

Additional plots to outline the shape of striated current density profiles.
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Figure A9: A current sheet with a ‘striated’ current density profile. The solid black
lines show the spread in each Ba bin where the means of each bin are connected by the

black dotted line. The solid orange line is the fitted model of three Gaussians.
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Figure A10: A current sheet with a ‘striated’ current density profile. The solid black
lines show the spread in each Ba bin where the means of each bin are connected by the

black dotted line. The solid orange line is the fitted model of three Gaussians.

A.6 Time Series for T30

This section outlines the surrounding magnetic field during T30. A flux rope is found

during T30 which is plotted against altitude in figure 5.1. The following figures show a



Appendix 200

time series of the magnetic field during the flyby (figure A11), and the 4 hours before

and after the flyby (figure A12).
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Figure A11: Magnetic field during the T30 flyby. Data is presented in the KRTP
coordinate system.
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Figure A12: Magnetic field from 4 hours before the T30 flyby to 4 hours after. Data
is presented in the KRTP coordinate system.
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Musmann, G., Lühr, H., Buchert, S., Acuna, M. et al. (1997), ‘The cluster magnetic

field investigation’, Space Science Reviews 79(1-2), 65–91.

Behannon, K., Acuna, M., Burlaga, L., Lepping, R., Ness, N. and Neubauer, F. (1977),

‘Magnetic field experiment for voyagers 1 and 2’, Space Science Reviews 21(3), 235–

257.

Beharrell, M. and Wild, J. (2012), ‘Stationary flux ropes at the southern terminator of

mars’, Journal of Geophysical Research: Space Physics 117(A12212).

Bertucci, C., Achilleos, N., Dougherty, M., Modolo, R., Coates, A., Szego, K., Masters,

A., Ma, Y., Neubauer, F., Garnier, P. et al. (2008), ‘The magnetic memory of titan’s

ionized atmosphere’, Science 321(5895), 1475–1478.

Bertucci, C., Hamilton, D., Kurth, W., Hospodarsky, G., Mitchell, D., Sergis, N., Ed-

berg, N. J. and Dougherty, M. (2015), ‘Titan’s interaction with the supersonic solar

wind’, Geophysical Research Letters 42(2), 193–200.

Birkeland, K. (1908), ‘The norwegian aurora polaris expedition 1902-3, part 1’, A, As-

chehoug, Christiania, Norway .

Birn, J. and Hesse, M. (2014), ‘Forced reconnection in the near magnetotail: Onset

and energy conversion in pic and mhd simulations’, Journal of Geophysical Research:

Space Physics 119(1), 290–309.



Bibliography 204

Box, G. E. and Tiao, G. C. (2011), Bayesian inference in statistical analysis, Vol. 40,

John Wiley & Sons.

Brain, D., Baker, A., Briggs, J., Eastwood, J., Halekas, J. and Phan, T.-D. (2010),

‘Episodic detachment of martian crustal magnetic fields leading to bulk atmospheric

plasma escape’, Geophysical Research Letters 37(L14108).

Brice, N. M. and Ioannidis, G. A. (1970), ‘The magnetospheres of jupiter and earth’,

Icarus 13(2), 173–183.

Briggs, J., Brain, D., Cartwright, M., Eastwood, J. and Halekas, J. (2011), ‘A statisti-

cal study of flux ropes in the martian magnetosphere’, Planetary and Space Science

59(13), 1498–1505.

Brown, M. E. (1994), ‘Observation of mass loading in the io plasma torus’, Geophysical

research letters 21(10), 847–850.

Bryan, A. (2018), ‘Free vibration of thin shallow elliptical shells’, Journal of Vibration

and Acoustics 140(1), 011004.

Bunce, E., Arridge, C., Cowley, S. and Dougherty, M. (2008), ‘Magnetic field structure of

saturn’s dayside magnetosphere and its mapping to the ionosphere: Results from ring

current modeling’, Journal of Geophysical Research: Space Physics 113(A2), A02207.

Bunce, E., Cowley, S., Alexeev, I., Arridge, C., Dougherty, M., Nichols, J. and Russell,

C. (2007), ‘Cassini observations of the variation of saturn’s ring current parameters

with system size’, Journal of Geophysical Research: Space Physics 112(A10202).

Burch, J., Goldstein, J., Hill, T., Young, D., Crary, F., Coates, A., Andre, N., Kurth,

W. and Sittler Jr, E. (2005), ‘Properties of local plasma injections in saturn’s magne-

tosphere’, Geophysical Research Letters: Saturn’s Magnetosphere: First Results From

Cassini 32(14), L14SO2.

Burton, M., Dougherty, M. and Russell, C. (2010), ‘Saturn’s internal planetary magnetic

field’, Geophysical Research Letters 37(24).



Bibliography 205

Camporeale, E. and Lapenta, G. (2005), ‘Model of bifurcated current sheets in the

earth’s magnetotail: Equilibrium and stability’, Journal of Geophysical Research:

Space Physics 110(A07206).

Capone, L., Whitten, R., Dubach, J., Prasad, S. and Huntress, W. (1976), ‘The lower

ionosphere of titan’, Icarus 28(3), 367–378.

Carbary, J., Achilleos, N. and Arridge, C. (2012), ‘Statistical ring current of saturn’,

Journal of Geophysical Research: Space Physics 117(A6), A06223.

Case, N., Grocott, A., Haaland, S., Martin, C. and Nagai, T. (2018), ‘Response of earth’s

neutral sheet to reversals in the imf b y component’, Journal of Geophysical Research:

Space Physics 123, 8206–8218.

Chapman, S. and Ferraro, V. (1929), ‘The electrical state of solar streams of corpuscles’,

Monthly Notices of the Royal Astronomical Society 89, 470.

Connerney, J., Acuna, M. and Ness, N. (1981), ‘Saturn’s ring current and inner magne-

tosphere’, Nature 292, 724–726.

Connerney, J., Acuna, M. and Ness, N. (1983), ‘Currents in saturn’s magnetosphere’,

Journal of Geophysical Research: Space Physics 88(A11), 8779–8789.
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