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Abstract 15 

Extreme climate events such as severe droughts and floods have become more frequent and 16 

widespread in the 21st Century. Recent studies have revealed the tele-connections between 17 

Madden Julian oscillation (MJO) and extreme precipitation over different regions such as South 18 

America, India and China. This study investigates the influence of MJO on global extreme dry 19 

and wet conditions, and how the strength of the relationship changes across the MJO phases over 20 

the globe. The Evaporative Stress Index (ESI) calculated from global GLEAM 21 

evapotranspiration dataset is used to represent extreme dry and wet conditions. Strong 22 

correlations between MJO and extreme dry and wet conditions are found, particularly over 23 

monsoon regions such as South Asia, South America and East Africa. The underlying 24 

mechanism of the influence of MJO on extreme dry and wet conditions is associated with the 25 

variation of precipitation, air temperature and soil moisture modulated by the MJO. The study 26 

suggests that MJO impacts on extreme dry and wet conditions should be taken into account in 27 

investigation of droughts/floods around the world particularly over monsoon areas.  28 

Keywords: Madden Julian oscillation, GLEAM, evaporative stress index, CCI soil moisture, 29 
GPCP precipitation, ERA-Interim 30 

 31 

 32 

1 Introduction 33 

Climate extremes such as floods and droughts have significant impacts on natural system, 34 

human, society and economy in vulnerable regions (Easterling et al. 2000; Meehl et al. 2000; 35 

Zhang et al. 2019). The Fifth Assessment Report of the Intergovernmental Panel on Climate 36 

Change (IPCC) has indicated that the frequency, intensity, and duration of some climate extreme 37 

events will increase by the end of this century (IPCC 2013). However, there are large 38 
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discrepancies on climate extreme events projections in Coupled Model Intercomparison Project 39 

phase 5 (CMPI5) and the older CMIP3 collections  2013; Sillmann et al. 40 

2013). Therefore, understanding, modeling and predicting climate extremes has been identified 41 

as one of the World Climate Research Programme (WCRP) Grand Challenges (Sillmann et al. 42 

2017). Various processes determine the onset, duration and recovery of climate extremes 43 

particularly floods and droughts at multiple temporal (seasonal, annual, and decadal) and spatial 44 

scales (local, regional, continental) (Dai 2013; Frei et al. 2006; Sun et al. 2016a). 45 

46 

Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the Pacific Decadal 47 

Oscillation (PDO) (Kenyon and Hegerl 2010; Weisheimer et al. 2017; Zhang et al. 2010). In 48 

recent years, the ENSO, NAO, and PDO have been widely studied and identified as the source of 49 

climate predictability for global dry/wet conditions seasonal forecasting (Barlow et al. 2001; 50 

Cayan et al. 1998). The current climate models are also able to simulate the gross characteristics 51 

of these modes of climate variability (Sillmann et al. 2017). However, it is still challenging in 52 

sub-seasonal climate extremes forecasting because of the poor ability of models to simulate 53 

Madden Julian Oscillation (MJO) (Inness and Slingo 2003; Robertson et al. 2018; Waliser et al. 54 

2003). A recent report from Robertson et al. (2018) emphasized the importance of the MJO in 55 

sub-seasonal forecasts over the tropics and remarkable progress of the representation of MJO in 56 

the operational models. However, they also highlighted that the impacts of MJO on weather 57 

through teleconnections are still not well captured by the models, which limits the sub-seasonal 58 

to seasonal predictability of extreme weather and climate.  Therefore, the projections of regional 59 

climate extremes over South Asia, West Asia, Southeast Asia and Australia are highly uncertain 60 

when associated with MJO. 61 
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The MJO is a tropical intra-seasonal oscillation that is characterized by a large scale 62 

convection system propagating from the Indian Ocean to the Pacific Ocean with a speed of 5-10 63 

ms-1 (Madden and Julian 1971; Zhang 2005). Typically, the MJO shows an intraseasonal 64 

variability with time scale of 30-90 days, which is characterized by enhanced convection across 65 

the western Indian Ocean and suppressed convection over the western Pacific Ocean.  It has been 66 

found that the MJO can modify the extratropical circulation by acting as diabatic heating source 67 

(Matthews et al. 2004). It plays an import role in the global weather-climate system and 68 

influences many weather and climate phenomena. Previous studies have found that the MJO has 69 

effects on precipitation (Jones et al. 2004a), surface temperature (Zhou et al. 2016), snow cover 70 

(Li et al. 2016), tropical cyclones (Frank and Roundy 2006), tornadoes (Thompson and Roundy 71 

2013), fire (Reid et al. 2012), soil moisture (Peng et al. 2017a), on 72 

(Pohl and Matthews 2007), Wyrtki jets (Han 2005) and several other weather and climate events 73 

(Zhang 2013). Several studies have found a strong relationship between MJO and extreme 74 

precipitation over specific regions such as South America, India and China (Joseph et al. 2009; 75 

 2017). Although floods are caused by complex interactions 76 

between atmosphere, ocean and land (Seager et al. 2013; Sheffield et al. 2009; Sun et al. 2016a; 77 

Sun et al. 2016c), these studies revealed the impacts of ocean states on the occurrence of extreme 78 

precipitation. In addition, several studies reported the impacts of MJO on droughts in China and 79 

India ( . All these previous studies have 80 

concentrated on the impacts of MJO on either extreme precipitation or droughts over specific 81 

geographic locations. However, the impacts of MJO on droughts and floods at global scale are 82 

rarely explored. As MJO has been considered as a major source of intra-seasonal climate 83 

predictability in many dynamical forecasting systems (Kang and Kim 2010; Liu et al. 2017b; 84 
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Sun et al. 2014; Tan et al. 2017; Waliser et al. 2003) and the planetary scale of MJO, a better 85 

understanding of the influence of MJO on global extreme dry and wet conditions is essential for 86 

improving the forecasting of sub-seasonal extreme precipitation and droughts. With the ability to 87 

accurately identify, model and forecast the MJO, it will provide valuable information for 88 

operational climate risk management.  89 

The aim of the present study is to investigate the spatial distribution of the land extreme 90 

dry and wet conditions and its spatial and temporal variation connected to the MJO phases. To 91 

our knowledge, this study is the first time to provide a global of view of the slow eastward 92 

propagation of the MJO and the occurrence of extreme dry and wet conditions over the globe. 93 

The study is mainly based on satellite products, and uses Evaporative Stress Index (ESI) 94 

(Anderson et al. 2007) to represent global extreme dry and wet conditions. It should also be 95 

noted that the definition of drought is much more complex than flooding. A wide range of 96 

drought indexes has been developed to identify drought over the last decades (Zhang and He 97 

2016; Zhang et al. 2015). The ESI represents the standardized anomaly of the evapotranspiration 98 

(ET) fraction (actual ET/potential ET) and has been widely used for monitoring drought and 99 

wetness conditions (Anderson et al. 2015; Choi et al. 2013; Otkin et al. 2014). The MJO has 100 

been found to have significant influence on precipitation, air temperature and soil moisture 101 

(Zhang 2013), which also to some extent represent the status of dry and wet conditions. Thus, the 102 

statistical relationship between these climate variable and ESI are also quantified during MJO 103 

events to reveal the mechanism of influence of the MJO on global extreme dry and wet 104 

conditions. The following section introduces the details about data and methodology used for the 105 

analysis. Section 3 presents and discusses the results. The conclusions drawn from this study are 106 

summarized in Section 4. 107 
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2 Data and Methodology 108 

2.1 Data 109 

Both reanalysis and satellite datasets are used in this study. These datasets mainly include 110 

Global Precipitation Climatology Project (GPCP) daily precipitation (Huffman et al. 2001), 111 

Global Land Evaporation Amsterdam Model (GLEAM) daily evapotranspiration/potential 112 

evapotranspiration (ET/PET) (Martens et al. 2017; Miralles et al. 2011), European Space 113

(Dorigo et al. 2015b; Liu et al. 114 

2011) as well as wind speed and air temperature from ERA-Interim reanalysis datasets (Dee et 115 

al. 2011). These datasets are briefly introduced below. 116 

GPCP precipitation: the GPCP global precipitation dataset was produced based on rain gauge, 117 

satellite and sounding data with the support of World Climate Research Program (WCRP) and 118 

GEWEX activities (Huffman et al. 2001). The GPCP provides globally complete precipitation 119 

dataset at  daily time scale from October 1996 to present. The dataset has 120 

been widely validated and applied in various studies (e.g., Hu et al. 2007; Sylla et al. 2013; 121 

Trenberth et al. 2018). 122 

GLEAM evapotranspiration: the GLEAM aims to estimate evapotranspiration from satellite 123 

observations (Martens et al. 2017; Miralles et al. 2011). The actual evapotranspiration 124 

(Priestley and Taylor 1972) potential 125 

evapotranspiration equation constrained by a multiplicative stress factor. GLEAM provides both 126 

actual evapotranspiration and potential evapotran127 

spatial resolution from 1980 to 2017. The GLEAM evapotranspiration datasets have been widely 128 

validated against global FLUXNET measurements and applied for many hydro-meteorological 129 

applications such as global land wetting and drying trend analysis, regional climate response to 130 
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, and 131 

drought monitoring (Forzieri et al. 2017; Greve et al. 2014; Lian et al. 2018; Martens et al. 2017; 132 

Miralles et al. 2014; Richard et al. 2018; Vicente-Serrano et al. 2018). 133 

ESA CCI soil moisture: the CCI soil moisture product was generated by fusion of existing active 134 

and passive satellite-based soil moisture datasets within the framework of the ESA Climate 135 

Change Initiative (Liu et al. 2011). It provides global soil moisture estimate at daily time scale 136 

and at 137 

2012, there are a wide range of validation and applications been conducted at either regional 138 

scale or global scale (e.g., Dorigo et al. 2015a; Miralles et al. 2014; Peng and Loew 2017; Peng 139 

et al. 2017d; Peng et al. 2016). Particularly, it has been applied widely for drought monitoring 140 

and assessment (Liu et al. 2017a; Nicolai-Shaw et al. 2017; Yuan et al. 2015). 141 

ERA-Interim reanalysis wind speed and air temperature: the ERA-Interim is a global 142 

atmospheric reanalysis product that is generated with ECMWF 4-dimensional variational 143 

analysis (4D-Var) data assimilation system. The ERA-Interim covers the period from 1979 to 144 

present and provides 6- -Interim datasets 145 

such as wind speed, air temperature and soil moisture have been widely evaluated and applied in 146 

various studies (e.g., Betts et al. 2009; Peng et al. 2015; Szczypta et al. 2011).  147 

The GPCP precipitation and ERA-Interim wind speed were applied to calculate the real-time 148 

multivariate MJO (RMM) as described below. The GLEAM ET/PET were used to calculate 149 

evaporative stress index for representing dry/wet conditions. The ESA CCI soil moisture and 150 

ERA-151 

effects on extreme dry and wet conditions. To make all these datasets consistent, all of them 152 
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 using bilinear interpolation method and to daily time 153 

scale for a 17-year period (January 1997 to December 2013). 154 

2.2 MJO index and composite analysis 155 

The MJO is normally identified and tracked with an MJO index. One of the commonly 156 

used MJO indices is the real-time multivariate MJO (RMM) index (Wheeler and Hendon 2004), 157 

which is constructed based on  empirical orthogonal functions (EOF) analysis of combined fields 158 

of outgoing long-wave radiation (OLR) or precipitation and 850-hPa and 200-hPa zonal wind 159 

anomalies (Crueger et al. 2013; Waliser et al. 2009). The first two normalized principal 160 

components are usually referred as RMM1 and RMM2, which are in quadrature and represent a 161 

propagating mode. The MJO eight phase life cycle is then defined depending on the sign and 162 

amplitude of RMM1 and RMM2. The MJO event is identified when the RMM index amplitude 163 

is larger than 1: 164 

  (1) 

The MJO events are then separated into eight phases, corresponding to the location and strength 165 

of the MJO convection from the Indian to the Central Pacific oceans (Wheeler and Hendon 166 

2004). In this study, the GPCP precipitation and ERA-Interim zonal winds at 850-hPa and 200-167 

hPa were used to calculate RMM index and identify MJO events. In addition, the MJO has 168 

strong seasonal variability with a primary convective signal appearing in the Northern 169 

Hemisphere during boreal summer, and a convection anomaly centered in the Southern 170 

Hemisphere during boreal winter (Kim et al. 2017; Zhang and Dong 2004; Zhou et al. 2012). 171 

Therefore, the composite analysis in this study was examined based on two seasons: boreal 172 

summer (May-October) and boreal winter (November-April). 173 



Manuscript submitted to Journal of Hydrology 

 9 

2.3 Evaporative stress index and statistical analysis 174 

The Evaporative Stress Index (ESI) (Anderson et al. 2007) was used in this study to 175 

exhibit global dry/wet conditions. The ESI represents the standardized anomaly of the 176 

evapotranspiration (ET) fraction (actual ET/potential ET) (Anderson et al. 2016). It is considered 177 

to be uniquely sensitive to changes in soil moisture and vegetation water content due to the 178 

association of ET with temperature, precipitation, radiation, and wind (Leng et al. 2017; Otkin et 179 

al. 2013). Therefore, the ESI has been widely used for monitoring drought and wetness 180 

conditions (Anderson et al. 2015; Choi et al. 2013; Otkin et al. 2014). The ESI is calculated as 181 

the standardized anomaly of ET fraction (Otkin et al. 2014): 182 

  (2) 

where v refers to ET fraction, v(t,x,y) denotes the ET fraction at day t, n is the number of days, 183 

x,y is grid location, and  is the standard deviation. Negative ESI values show the dry 184 

conditions, indicating vegetation that is stressed because of insufficient soil moisture. The 185 

recently released GLEAM v3.2 global ET and potential ET datasets provides a unique 186 

opportunity to calculate global spatial resolution ESI, which was used in the current study. 187 

The spatial pattern correlation analysis was used to investigate the relation between 188 

dry/wet conditions and precipitation, soil moisture and air temperature. The statistical 189 

significance of the correlation analysis and composite analysis was tested using the Student's t-190 

test with confidence level of 95%. 191 
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3 Results and discussion 192 

3.1 Analysis of global dry/wet conditions over different phases of MJO 193 

The composite analysis of the impacts of MJO on extreme dry and wet conditions was explored 194 

during MJO days. Figure 1 shows the composite maps of the ESI over eight MJO phases for 195 

summer and winter respectively. It should be noted that only areas with P value less than 0.05 196 

are shown, indicating the results are statistically significant at 95% level. In general, the figure 197 

shows that the MJO has impacts on the variation of dry and wet patterns in many parts of the 198 

world particularly over monsoon regions such as South Asia, southern Brazil, North American, 199 

Australia, as well as East Africa. The presence of dry and wet conditions and their variations 200 

across MJO phases over these areas agree well with the variations of monsoon systems (Zhang 201 

2013). For example in boreal summer, the dryness was observed in South Asia in MJO phase 1, 202 

while wetness was shown in MJO phase 2, 3 and 4. From phase 6 to 8, the dryness was observed 203 

again. The intraseasonal variations of dryness and wetness correspond well with the variations of 204 

summer monsoon over India caused by MJO (Joseph et al. 2009; Pai et al. 2011). In addition, the 205 

dryness and wetness of non-monsoon regions such as East Africa is also affected by MJO. The 206 

wetness is shown in phase 3 and 4 while dryness is found in phase 6 and 7 during boreal winter, 207 

which is likely related to the corresponding heavy rain and light rain. What is the mechanism 208 

through which MJO can influence dry and wet conditions? Previous studies have found that the 209 

MJO plays an import role in modulating precipitation (e.g., Jones et al. 2004b), surface air 210 

temperature (e.g., Vecchi and Bond 2004) and soil moisture (e.g., Peng et al. 2017a). The 211 

impacts of MJO on these variables are related to modifying the meridional overturning 212 

circulations (He et al. 2011), and exciting Rossby wave trains caused by heating anomaly (Zheng 213 

et al. 2018), and moisture transport (Jia et al. 2011), and forcing zonally-propagating equatorial 214 
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Rossby and Kelvin waves (Janicot et al. 2009). Through these teleconnections, the MJO 215 

modulate the precipitation, surface air temperature and soil moisture over the globe (Donald et 216 

al. 2006; Matsueda and Takaya 2015; Peng et al. 2017a). For example, the MJO can influence 217 

218 

transporting moisture from the tropical central Pacific to the west coast of the USA (Dettinger 219 

2011). The impacts of MJO on dry and wet conditions found in the current study might be 220 

related to the abovementioned teleconnection mechanism. One explanation for dry condition 221 

induced by MJO relates to the deficiency of rainfall. In addition, the air temperature above 222 

normal further increases the soil moisture evaporation. For MJO effects on wet conditions can be 223 

explained by tropical-extratropical teleconnections, through which the MJO influences extreme 224 

rainfall and air temperature and further lead to extreme wet conditions. For example, the ESI 225 

signal shown in Figure 1 is consistent with precipitation patterns found by previous studies 226 

(Donald et al. 2006; Zhang 2013). In particular, the onset of the South Asian monsoon is found 227 

to occur more likely (50%-80%) in MJO phases 2 and 3, which will induce a spike in rainfall 228 

over South Asia during boreal summer (Zhang 2013). Another example is east Africa, where 229 

Pohl and Camberlin (2006) found 72% of extreme rainfall occurs near coastal regions when the 230 

MJO center is over the Indian Ocean (phase 2) during boreal winter. These MJO induced 231 

extreme precipitation events can also been observed in figure 1, where extreme wet conditions 232 

expressed by ESI anomaly occur over South Asia in MJO phase 2 and 3 during boreal summer, 233 

and east Africa in phase 2 during boreal winter. To test the above assumption that the dry and 234 

wet condition is due to the combined impacts of MJO on precipitation, air temperature and soil 235 

moisture, a correlation analysis between dryness/wetness and precipitation, soil moisture and air 236 

temperature is conducted in the next section. 237 
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 238 

(a) 239 

 240 

(b) 241 
Figure 1: Composites of Evaporative Stress Index anomalies over eight MJO phases for boreal summer (a) and 242 
boreal winter (b). The P together with a number represents the MJO phase and the corresponding number of days. It 243 
should be noted that only the areas with statistically significant results (p < 0.05) are shown. The ESI values larger 244 
than 0 refers to wet conditions while the values less than 0 implies dry conditions. 245 
 246 
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3.2 Correlation analysis between dry/wet conditions and rainfall, soil moisture and air 247 

temperature 248 

The correlation coefficient between dry/wet patterns represented by ESI and precipitation, soil 249 

moisture and air temperature over the globe and across MJO phases are shown in Figure 2, 3 and 250 

4, respectively. The grey areas refer to masked areas with p > 0.05. In general, the dryness and 251 

wetness over the globe during MJO events are related to precipitation, soil moisture and air 252 

temperature. The positive correlation is found between dryness/wetness and precipitation, as well 253 

as soil moisture, while air temperature has negative correlation with dry/wet patterns. It is likely 254 

due to that dry conditions favor more solar radiation and less evaporative cooling, which is 255 

consistent with published studies such as (Trenberth and Shea 2005). The relative high 256 

correlation was observed in monsoon areas such as South Asia, Australia, and South America 257 

where MJO has strong effects. In addition, the correlation also varies with seasons and variables. 258 

For example, the high correlation only appears in boreal summer for South Asia, which 259 

corresponds well to the monsoon season in South Asia (Xavier et al. 2014). And significant 260 

correlation with precipitation and soil moisture but not with air temperature was found in 261 

Australia, which suggests that precipitation, soil moisture and air temperature contribute 262 

unequally to the dryness/wetness caused by MJO.  263 

 264 
(a) 265 
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 266 
(b) 267 

 268 
Figure 2: The correlation coefficient (R) between Evaporative Stress Index and GPCP precipitation anomaly 269 
composites across the MJO phases at each grid point: (a) boreal summer and (b) boreal winter. Only areas with 270 
statistically significant results (p < 0.05) are shown. 271 
 272 
 273 
 274 
 275 
 276 

 277 
(a) 278 

 279 
 (b) 280 

 281 
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Figure 3: The correlation coefficient (R) between Evaporative Stress Index and ESA CCI soil moisture anomaly 282 
composites across the MJO phases at each grid point: (a) boreal summer and (b) boreal winter. Only areas with 283 
statistically significant results (p < 0.05) are shown. 284 
 285 
 286 

 287 
(a) 288 

 289 
(b) 290 

 291 
Figure 4: The correlation coefficient (R) between Evaporative Stress Index and ERA Interim air temperature 292 
anomaly composites across the MJO phases at each grid point: (a) boreal summer and (b) boreal winter. Only areas 293 
with statistically significant results (p < 0.05) are shown. 294 
 295 
 296 
 297 
 298 

    Furthermore, the average correlation coefficient values between dry/wet conditions and 299 

precipitation, soil moisture and air temperature over the whole globe and regions with strong 300 

MJO impacts are shown in Table 1. These selected regions are - -301 

- - - -302 

- - entire 303 

globe, the R values are increased over these sub-regions, further indicating that the strong MJO 304 
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impacts on these areas. The R values between dryness/wetness and soil moisture are higher than 305 

0.699 for all these regions and slightly better than that for precipitation and air temperature, 306 

which agrees well with the characteristics of ESI. Overall, the results presented here suggest that 307 

the MJO has impacts on intraseasonal variations of both soil moisture and precipitation. The 308 

variation of soil moisture is partly caused by its relation to precipitation, because the R value 309 

between soil moisture and precipitation was found to vary over MJO phases, and the soil 310 

moisture is also related to other climate variables such as temperature and evaporation. Overall, 311 

the results mentioned above clearly show that the MJO has impacts on the extreme dry and wet 312 

conditions of the globe particularly over areas with strong MJO signals. The variation of this 313 

dryness/wetness across the MJO phases are directly related to precipitation, soil moisture and air 314 

temperature. The results suggest that the MJO impacts should be taken into account in the 315 

investigation of dryness/wetness around the world particularly over monsoon areas. It should 316 

also be noted that there are uncertainties associated with satellite-based products such as GPCP 317 

precipitation, ESA CCI soil moisture and GLEAM ET/PET datasets. For studies that aiming to 318 

quantify the impacts of MJO on dry and wet conditions over regional scale, the uncertainties of 319 

satellite-based products should be taken into account. 320 

 321 
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Table 1. Averaged correlation between dryness/wetness and precipitation, soil moisture, and air 322 
temperature across MJO phases for Globe and selected regions. 323 

  Globe South Asia South America East Africa Australia 

Precipitation 

R (Summer) 0.376 0.733 0.557 0.791 0.608 

R (Winter) 0.279 0.547 0.454 0.776 0.677 

Soil moisture 

R (Summer) 0.473 0.791 0.699 0.788 0.78 

R (Winter) 0.466 0.711 0.725 0.808 0.719 

Air temperature 

R (Summer) -0.415 -0.622 -0.502 -0.61 -0.257 

R (Winter) -0.246 -0.088 -0.508 -0.576 -0.6 

 324 
 325 

4 Conclusions 326 

To the best of our knowledge, this study is the first to reveal the impacts of MJO on the 327 

global extreme dry and wet conditions based on observations. All previous works have focused 328 

on either extreme precipitation or droughts over specific geographic locations. Given the 329 

planetary scale of the MJO, the current study first developed an observational analysis to obtain a 330 

global view of the relation between the MJO and global dryness and wetness that were 331 

represented by ESI drought index.  It is found that MJO has nearly global influences on the 332 

extreme dry and wet conditions particularly over monsoon regions (e.g. South Asia, South 333 

America and East Africa) via the effects of MJO on precipitation, soil moisture and air 334 

temperature, which are induced by modifying the meridional overturning circulations, and 335 

exciting Rossby wave trains caused by heating anomalies, and moisture transport, and forcing 336 

zonally-propagating equatorial Rossby and Kelvin waves. The results suggest that the impacts of 337 

MJO should be accounted for in studies of droughts and floods in areas where MJO has strong 338 
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impacts such as South Asia. In addition, the findings of the present study provide the basis for 339 

drought analysis and MJO-based monitoring and prediction systems, which would support 340 

decision-making in climate sensitive sectors such as drought monitoring and agricultural 341 

management. However, it should be noted that the current study only provides an observational 342 

analysis of the impacts of MJO on global extreme dry and wet conditions. The applied satellite-343 

based products such as GLEAM ET/PET, ESA CCI soil moisture still have uncertainties, which 344 

should be accounted for in future studies to quantify their impacts on related dryness and 345 

wetness. 346 
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