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Abstract—Low-latency communication is crucial to sat-
isfy the strict requirements on latency and reliability in
5G communications. In this paper, we firstly consider a
contract-based vehicular fog computing resource allocation
framework to minimize the intolerable delay caused by the
numerous tasks on the base station during peak time. In the
vehicular fog computing framework, the users tend to select
nearby vehicles to process their heavy tasks to minimize
delay, which relies on the participation of vehicles. Thus,
it is critical to design an effective incentive mechanism
to encourage vehicles to participate in resource allocation.
Next, the simulation results demonstrate that the contract-
based resource allocation can achieve better performance.

I. INTRODUCTION

Low-latency communication is crucial for diverse

emerging 5G applications such as self driving, collision

warning, and environment monitoring [1], [2]. The huge

amount of data traffic caused by these applications poses

a great challenge on the base station (BS) during peak

time, which cannot guarantee the stringent quality of

service (QoS) on low-latency and quality of experience

(QoE) requirements due to the long distance between

user equipments (UEs) and remote data centers.

An alternative choice is to exploit the under-utilized

resources of nearby vehicles to alleviate the pressure on

the BS and reduce delay. Particularly, future vehicles are

more likely to be equipped with powerful onboard com-

puters and large-capacity data storage units for the sake

of improving driving safety, convenience, and satisfac-

tion [3]. Hence, the tremendous computation resources

provided by vehicles can be utilized to alleviate network

congestion during the peak time. Moreover, compared

to the BS, vehicles which are more close to pedestrial

UEs can provide line-of-sight links to further reduce the

transmission delay. This novel idea is known as vehicular

fog computing (VFC), which is able to provide more

computing resources and less processing delay.

However, despite the above-mentioned advantages,

the wide area deployment of VFC still confronts the

problem of lack of an effective incentive mechanism

for vehicles to share their resources. Most of previous

studies assume that vehicles will follow the resource

allocation decision and act as fog nodes unconditionally

[4]–[7]. This assumption is too optimistic in practical

implementation. Due to the cost incurred by resource

sharing, self-interested vehicles are reluctant to serve as

fog nodes unless they are well compensated.

In [8], Luong et al. proposed a comprehensive liter-

ature survey of pricing-based incentive mechanisms for

resource allocation in cloud-enabled wireless networks.

Liu et al. provided a Stakckelberg game-based pricing

scheme to stimulate edge server owners to participate in

computation offloading [9]. As we can observe, most

of current works have assumed that the information

of the potential fog nodes is perfectly known by the

BS. However, the preference of each vehicle towards

the total amount of available resources belongs to the

vehicle’s private information, i.e., the information is

only known by the vehicle itself, which is a typical

paradigm of information asymmetry [10]. Therefore, it is

necessary to design an incentive mechanism, which can

improve the utilization of resources and reduce delay

under information asymmetry.

In this paper, the BS designs a contract to motivate

vehicles to share their resources, which specifies the rela-

tionship between the performance and the reward. In the

contract, each distinct performance-reward association

is defined as a contract item, and a contract generally

contains a great variety of contract items. Then, the BS

broadcasts the contract, and each vehicle chooses its

desired contract item to maximize its payoff.

The remaining chapters of this paper are summarized

as follows. The system model is described in section

II. Section III introduces the incentive mechanism in

VFC and section IV shows the simulation results. The

conclusion is given in section V.

II. SYSTEM MODEL

The VFC resource allocation framework is shown in

Fig. 1. In each cell, there exists a BS, which takes charge

of intra-cell resources coordination, and numerous UEs,

which emerge a great number of tasks. During the peak

time, the BS can employ a group of vehicles to act as

fog nodes and UEs can reduce delay via computation
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Fig. 1. The VFC resource allocation framework.

demand offloading. With a proper incentive mechanism

designed by the BS, each vehicle can actively adjust the

amount of sharing resources according to the reward in

order to maximize its individual payoff.

For the sake of simplicity, we adopt a time-slot

model [11]. The set of vehicles and the set of UEs

within the coverage of the BS remain fixed within

each slot, and vary across different slots. During slot

t, we assume that there exist M vehicles and N
UEs. The set of vehicles and the set of UEs are de-

noted as VM = {V1, · · · , Vm, · · · , VM} and UN =
{U1, · · · , Um, · · · , UM}, respectively. Denote a triplet

{Dn, Cn, τn} as the attributes of each UE, where Dn

represents the task data size, Cn is the required compu-

tation resource for processing the task, and τn represents

the delay constraint.

III. A CONTRACT-BASED INCENTIVE MECHANISM

FOR RESOURCE SHARING

In this section, we propose a contract-based resource

allocation strategy for UEs to employ the shared re-

sources to offload their tasks.

A. Vehicle Type Modeling

The preference of a vehicle towards resource sharing

is quantified as its vehicle type. Due to the different

configuration of each vehicle, the type of vehicles are

generally different. A vehicle with a higher type is more

willing to share its resources and serve as a fog node

compared to a vehicle with a lower type. Thus, it is

intuitive for the BS to employ higher-type vehicles. Since

the number of vehicles in a cell is usually limited, the

set of vehicle types is assumed as a discrete and finite

space. Vehicle type is defined as

Definition 1: (Vehicle Type): Considering the set of

vehicles VM , these M vehicles can be sorted in an

ascending order based on their preferences and classi-

fied into M types. Denote the set of vehicle types as

Θ = {θ1, · · · , θm, · · · , θM}, which is given by

θ1 < · · · < θm < · · · < θM ,m = 1, · · · ,M. (1)

Definition 1 is also applicable when there are multiple

vehicles belong to the same type. The computational

complexity decreases with the vehicle types, but at the

expense of the effectiveness of resource allocation.

In the scenario of information asymmetry, we assume

that the BS only knows that there are a total of M types

of vehicles and each vehicle Vm ∈ VM belongs to type

θm with a probability λm, i.e.,
∑M

m=1 λm = 1.

B. Contract Formulation

In this paper, the BS can design up to M con-

tract items for vehicles with M types. The contract

items describe the employment relationships between

the employer, i.e., the BS, who designs a series of

incentive contract items, and the employees, i.e., the

vehicles, who receive rewards by providing idle re-

sources. For instance, the contract item dedicated for

type θm vehicle is denoted as (δm, πm), where δm
denotes the required computation resources, and πm

is the corresponding reward. The whole contract is

denoted as C = {(δm, πm), ∀m ∈ M}, where M =
{1, · · · ,m, · · · ,M}.

Assuming the total amount of computation tasks that

can be processed by the BS during a time interval T
is CBS , we have CBS = δBST . Here, δBS is the

unit computation capability of the BS per second. With

the assistance from vehicles, the computation capability

of the BS can be enlarged and the corresponding task

processing delay can be reduced. We model the benefit

of the BS as a linear function of the reduced delay. By

signing the contract item (δm, πm) with type θm vehicle,

the benefit of the BS is given by

RBS(δm) = rBS(
CBS

δBS
− CBS

δm + δBS
)

= rBST
δm

δBS + δm
.

(2)

where rBS is the unit benefit brought by the reduced

delay.

With the M types of vehicles, the expected utility of

the BS is calculated as

UBS({δm}, {πm}) =
M∑

m=1

λm(RBS(δm)− πm). (3)

The utility function of type θm vehicle which accepts

the contract item (δm, πm) is given by

UV
m(δm, πm) = θmπm − δm. (4)

The objective of the BS is to optimize its utility

under the scenario of asymmetric information via the



adjustment of each contract item. The corresponding

optimization problem is formulated as

P1 : max
({δm},{πm})

UBS({δm}, {πm})
s.t. C1 : θmπm − δm ≥ 0, ∀m ∈ M,

C2 : θmπm − δm ≥ θmπm′ − δm′ , ∀m,m′ ∈ M,

C3 : 0 ≤ δ1 < · · · < δm < · · · < δM , ∀m ∈ M,

C4 : δm ≤ θm, ∀m ∈ M. (5)

where C1, C2, and C3 represent the IR, IC, and mono-

tonicity constraints, respectively. C4 represents the upper

bound of δm.
Definition 2: The IR, IC, and monotonicity constraints

are defined as follows:

• Individual rationality (IR) constraint: Type θm
vehicle, ∀m ∈ M, will get a nonnegative payoff if

it selects the contract item (δm, πm).
• Incentive compatibility (IC) constraint: The IC

constraint ensures that type θm vehicle, ∀m ∈ M,

will get the maximum payoff if and only if it selects

the contract item (δm, πm) designed for its own

type.

• Monotonicity constraint: The reward of type θm
vehicle, ∀m ∈ M, should be higher than that of

type θm−1 vehicle, and lower than that of type

θm+1 vehicle.

Based on the IR, IC, and monotonicity constraints, we

conclude that for any m,m′ ∈ M, if θm > θm′ , then

δm > δm′ and πm > πm′ . πm = πm′ and δm = δm′ if

and only if θm = θm′ .

C. Optimal Contract Design under Information Asym-
metry

The corresponding optimization problem P1 involves

M IR constraints and M(M − 1) IC constraints. To

provide a tractable solution, the following procedures are

carried out to simplify the problem.
Step 1: IR Constraints Elimination
For type θm vehicle, m ∈ M,m �= 1, we can derive

UV
m ≥ UV

m−1 ≥ UV
1 ≥ 0. (6)

The IR constraints of θm vehicle holds automatically as

long as the IR constraint of type θ1 vehicle is guaranteed.
Step 2: IC Constraints Elimination
We define the IC constraints between type θm and

type θm′ , m′ ∈ {1, · · · ,m− 1}, as downward incentive

constraints (DICs). Similarly, the IC constraints between

type θm and type θm′′ , m′′ ∈ {m+ 1, · · · ,M}, are

defined as upward incentive constraints (UICs). In the

following, we show that both the DICs and UICs can be

reduced.
We consider three adjacent vehicle types, i.e., θm−1 <

θm < θm+1, which satisfy

θm+1πm+1 − δm+1 ≥ θm+1πm − δm, (7)

θmπm − δm ≥ θmπm−1 − δm−1. (8)

where (7) denotes the DIC between type θm+1 and type

θm, and (8) denotes the DIC between type θm and θm−1.

By combining πm+1 ≥ πm ≥ πm−1, we have

θm+1πm+1 − δm+1 ≥ θm+1πm−1 − δm−1. (9)

Therefore, if the DIC between type θm+1 and θm holds,

then the DIC between θm+1 and θm−1 also holds. The

DIC constraints can be extended downward from type

θm−1 to type θ1, which are given by

θm+1πm+1 − δm+1 ≥ θm+1πm−1 − δm−1,
≥ · · ·
≥ θm+1π1 − δ1.

(10)

Thus, we demonstrate that if the DICs between ad-

jacent types hold, then all the DICs hold automatically.

Similarly, we can demonstrate that if the UICs between

adjacent types hold, then all the UICs hold automatically.

Based on the above analysis, the M IR constraints

and M(M − 1) IC constraints can be reduced to 1 and

M − 1, respectively. Furthermore, in order to maximize

the utility of the base station, the optimal contract item

for type θ1 vehicle, i.e., (δ∗1 , π
∗
1), must enforce

UV
1 (δ∗1 , π

∗
1) = θ1π

∗
1 − δ∗1 = 0. (11)

The optimal contract item for any type θm vehicle

(δ∗m, π∗
m), m = 2, · · · ,M , satisfies the following equal-

ity condition:

δ∗m = δ∗m−1 + θm(π∗
m − π∗

m−1),m = 2, · · · ,M. (12)

Based on the above description, P1 is rewritten as

P2 : max
({δm},{πm})

UBS({δm}, {πm})
s.t. C1 : θ1π1 − δ1 = 0,

C2 : δm = δm−1 + θm(πm − πm−1), 2 ≤ m ≤ M,

C3, C4, ∀m ∈ M. (13)

We can easily prove that P2 is a convex program-

ming problem by checking the Hessian matrix, which

can be solved by applying Karush-Kuhn-Tucker (KKT)

conditions. The Lagrangian associated with P2 is given

by

L({δm}, {πm}, {μm}, {ρm}, {βm})
= UBS({δm}, {πm}) + μ1(θ1π1 − δ1)

+
M∑

m=2

μm

(
θm(πm − πm−1) + δm−1 − δm

)

+ ρ1δ1 +

M∑
m=2

ρm(δm − δm−1) +

M∑
m=1

βm(δm − θm).

(14)

where μ1 is the Lagrange multiplier corresponding to

constraint C1. {μm,m = 2, · · · ,M}, {ρm}, and {βm}
are the vectors of Lagrange multipliers corresponding to



TABLE I
PARAMETERS.

Parameter Value
Number of vehicles 5− 20
Number of UEs 15− 25
Radius of BS coverage 1000 m
VFC communication radius 200 m
Data size of UE’s task 100− 200 Mb
Computing resources of BS 5 GHz
Transmission power of UEs 30 dBm
Noise power −114 dBm
Bandwidth of UEs 20 MHz
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Fig. 2. The utility of vehicle versus the different type of vehicles.

constraints C2, C3, and C4, respectively. KKT conditions

are summarized as follows:

• Primal constraints: 0 ≤ δ∗1 ; δ∗m−1 ≤ δ∗m, ∀m ∈
M,m �= 1; δ∗1 = θ1π

∗
1 ; δ∗m = δ∗m−1 + θm(π∗

m −
π∗
m−1), ∀m ∈ M,m �= 1; δ∗m ≤ θm, ∀m ∈ M;

• Dual constraints: μ∗
m ≥ 0, ρ∗m ≥ 0 and β∗

m ≥
0, ∀m ∈ M;

• Complementary slackness: ρ∗1δ
∗
1 = 0; ρ∗m(δ∗m −

δ∗m−1) = 0, ∀m ∈ M,m �= 1; β∗
m(δ∗m − θm) =

0, ∀m ∈ M ;

• The first-order conditions of this Lagrangian func-

tion is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂δm

=
∂RBS(δm)

∂δm
− μm + μm+1 + ρm − ρm+1

+ βm = 0, ∀m ∈ M,m �= M,

∂L
∂δM

=
∂RBS(δM )

∂δM
− μM + ρM + βM = 0,

∂L
∂πm

=− λm + μmθm − μm+1θm+1 = 0,

∀m ∈ M,m �= M,

∂L
∂πM

=− λM + μMθM = 0.

(15)
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Fig. 3. The utility of BS versus the number of vehicles.

IV. SIMULATION

In the paper, we have proposed a contract-based

resource allocation strategy in VFC networks for low-

latency. To verify whether the proposed algorithm can

effectively deal with the resources allocation under infor-

mation asymmetric and reduce delay, a series of numer-

ical results are conducted in this section. Assuming that

the possibility of type θm obeys Gaussian distribution,

and the simulation parameters are presented in Table I.

Fig. 2 shows the utilities of type-4, type-9 and type-

14 vehicles when selecting all the types of contract

items provided by the BS, which illustrates that the de-

signed contract is incentive compatible. Each vehicle can

achieve the maximum utility if and only if it selects the

contract specifically designed for its type. Additionally, it

is observed that the vehicles with higher types are able

to obtain higher utilities compared to the lower types,

that is the BS offers rewards to the vehicles according

to their contributions.

Fig. 3 shows the utility of BS versus the vehicle

type. It can be observed that the asymmetric information

actually protects the vehicles from being overexploited

by the base station. With complete information, the base

station is able to design a contract such that its utility is

much larger compared to the utility achieved under the

information asymmetry scenario. The performance gap

increases monotonically with the vehicle type.Therefore,

information asymmetry is actually beneficial to the vehi-

cles because the base station cannot overexploit a vehicle

without knowing the complete information of its type.

V. CONCLUSION

In this paper, the contract-based mechanism is pro-

posed to address the resource allocation problem in

the traditional cellular network. To encourage available

vehicles to participate in resource allocation, the contract

theory is used to determine which vehicles are selected as

infrastructures to provide idle resources and how much



of the payoff on them. The simulation results shows that

the proposed mechanism can greatly facilitate the partici-

pation of vehicles in resource allocation and reduce delay

after offloading tasks to appropriate vehicles. In future

works, we will study how to combine resource allocation

and task assignment in more complicated scenarios.
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