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Abstract—By blending the concepts of non-orthogonal multiple
access (NOMA) and orthogonal frequency division multiplexing
(OFDM), in this paper a novel hybrid scheme is conceived for
supporting diverse services in future wireless systems. Moti-
vating to maximize energy efficiency (EE), the joint resource
management of user clustering (UC) and power allocation is
investigated for the downlink hybrid NOMA systems. Under
two different power consumption cases, the optimal resource
allocation (Opt-RA) algorithm is developed with the help of
converting the original mixed integer non-linear programming
(MINLP) problem to the tractable decoupled problems. For
practical implementation, the heuristic resource allocation (Heur-
RA) algorithm is also proposed, in which including a low-
complexity UC algorithm based on the candidate search-and-
allocation approach. Our simulation results show that, both the
Opt-RA and Heur-RA algorithms achieve significantly higher EE
performance than other existing algorithms. Further, the results
also prove that, the hybrid NOMA conceived is able to exploit
the advantages of NOMA scheme, and is superior to conventional
orthogonal multiple access (OMA) in terms of EE, as well as
achieving higher flexibility for system configuration than NOMA.

I. INTRODUCTION

Current 4G system is reaching maturity, and will be evolved
to 5G system with very limited amount of new spectrum that
can be exploited. However, by the time 5G comes to fruition,
the key challenges lie on the explosive growth for the number
of devices and huge increment of data volume, which boosts
the utilization of NOMA technique for exploiting the valuable
spectrum more efficiently [1].

A. Related Works

NOMA technique allows multiple users to share time and
spectrum resources in the same spatial layer via power-domain
multiplexing in contrast to conventional orthogonal multiple
access (OMA) techniques including time-division multiple
access (TDMA), frequency-division multiple access (FDMA)
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[2]. The efficient resource allocation (RA) approaches are orig-
inally investigated for optimizing the OMA systems [3]–[5],
and they will will provide a new degree of freedom for NOMA
systems. The studies for RA in NOMA systems have drawn
a lot research attentions on the improvement of spectrum
efficiency (SE) or sum rate [6]–[12]. In [8], the low-complexity
polynomial algorithm has been proposed to approximately
solve the non-convex power allocation problem. While, the
authors in [8] have studied the decoupled problem of the
user clustering and power allocation in the NOMA systems,
where the proposed UC is based on exhaustive search approach
with very high complexity required. Recently, motivating to
maximizing sum rate, Liang et al [9] have proposed one-to-one
matching based user pairing and investigated power allocation
problem in the cognitive radio NOMA systems. Further, [10]
has proposed a novel subchannel allocation approach for
the downlink NOMA systems by leveraging many-to-many
matching theory. More recently, research efforts have been
devoted to resource management in various NOMA systems,
for example, the authors in [12] have developed a joint power
allocation and subcarrier partitioning scheme for a low density
spreading (LDS) multiple access systems, i.e. a code-domain
NOMA system.

Energy consumption is becoming a major social and eco-
nomical issue for future wireless communications especially
with explosive data traffic. Hence, it is important to address
energy efficiency (EE) when designing NOMA systems. In
[4], energy efficiency of the single-carrier FDMA system was
studied, where the energy efficiency is quantified in terms of
the energy consumption gain and the energy reduction gain
[13]. Nevertheless, limited research efforts, such as [14]–[17],
have been devoted to the study of energy efficient RA in
NOMA systems. Fang et al have investigated energy efficient
RA in [15] for the downlink NOMA systems, where, however,
the proposed gradient based binary search power allocation
algorithm requires relatively high complexity. Furthermore, in
[16], it has proposed the novel power allocation algorithms
which are EE-optimal and SE-optimal respectively. Recent
studies have applied NOMA to future machine-to-machine
communications in [18] and to millimeter wave (mmWave)
networks in [18]. Interestingly, the authors of [14] have
investigated the application of NOMA technique in mmWave
networks by jointly studying the beamforming, user schedul-
ing, and power allocation.

Future 5G communications will demand diverse service
types, and need to support massive connectivity of users and/or
devices, as well as meeting the requirements for low latency,
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low-cost devices. Whereas, neither conventional orthogonal
multiple access (OMA) nor NOMA is fully perfect for ac-
commodating various services, which thereby stimulates the
study of hybrid NOMA technique. Particularly, in 5G systems,
a hybrid NOMA technique can utilize available spectrum
to perform the mixture of NOMA and OFDM schemes, in
which the NOMA-SC can accommodate the UEs for mas-
sive machine type communications (mMTC) service while
the OFDM-SC can support the UEs for enhanced mobile
broadband (eMBB) service. However, the main challenges for
applying hybrid NOMA lie in resource management, such
that: 1) how to efficiently coordinate various radio frequency
resource, energy resource, and spatial resource, etc.; 2) how
to effectively mitigate the potential interference among intra-
SC links as well as that among inter-SC links; 3) how to find
the best trade-off between obtaining optimal key performance
indicators (KPIs) and minimizing implementation complexity.
So far, current studies on hybrid NOMA systems are very
limited, and hardly address the resource management issues.
Such that, a hybrid NOMA system, by blending the concepts
of NOMA and TDMA, was first proposed in [19]. The study of
[19] focused on performance analysis only, which showed that
the hybrid NOMA can achieve a better fairness performance
than NOMA. The authors of [20] commenced the first work
about RA in hybrid NOMA systems, where a coalition based
user grouping algorithm was developed. Furthermore, in [21],
the hybrid NOMA scheme of a combination between NOMA
and OFDM has been proposed and claimed to be applicable
to 5G communications. Nevertheless, the very limited current
studies on RA in hybrid NOMA, such as [20], [21], only
focused on channel allocation, while aiming to maximize the
sum rate.

B. Motivations and Contributions
Compared to traditional NOMA or OMA technique, hybrid

NOMA exploits a range of advantages, including supporting
diverse services, being more spectrum efficient than OMA, less
susceptible to interference than NOMA, as well as requiring
less successive interference cancellation (SIC) complexity than
NOMA. To the best of our knowledge, very limited studies are
devoted to resource allocation in hybrid NOMA systems, es-
pecially the investigation of EE motivated resource allocation
in hybrid NOMA systems. Against this background, in this
paper, we focus on efficiently managing spectrum and power
resources in the downlink hybrid NOMA systems. For clarify,
the contributions of this paper are summarized as follows.
• By blending the concepts of NOMA and OFDM, we

conceive a novel hybrid NOMA scheme, which can
exploit the advantages of both NOMA and OFDM tech-
niques. To jointly consider user clustering (UC) and
power allocation in the hybrid systems, we formulate
and analyze the optimization problem, which is a mixed
integer non-linear programming (MINLP) problem. For
addressing practical issues, two power consumption cases
are studied: 1) Limited power consumption (LPC), which
adjusts the total transmit power adaptively; 2) Full power
consumption (FPC), which uses the fixed total transmit
power available.

• The optimal RA algorithm, referred to as Opt-RA, is
proposed to find the optimal UC and power allocation
solutions, by means of converting the original MINLP
problem to the equivalent decoupled problems which are
tractable. In particular, given a UC result, the optimal
power allocation solutions can be found for both the
LPC and FPC cases, by iteratively solving the equiva-
lent concave problems which are derived with the help
of novel transformations and approximations, such as
Charnes-Cooper transformation, and first-order Taylor
series approximation, etc. The proposed power allocation
algorithms are of low complexity, and are proved to
converge within very few iterations.

• Inspired by the analysis of the Opt-RA, we propose
a low-complexity RA algorithm, namely heuristic RA
(Heur-RA), for the hybrid NOMA systems. To avoid
the exhaustive search based UC in the Opt-RA, the
Heur-RA proposes a novel UC algorithm, that assigns
users to subcarriers (SCs) based on the candidate search-
and-allocation approach for minimize the implementation
complexity. Further, the complexity analysis is carried out
for the proposed algorithms including Opt-RA and Heur-
RA as well as the other widely-used RA algorithms. The
results show that our Heur-RA algorithm requires very
low complexity and, hence can be seen as a promising
option for practical implementation.

• Comprehensive performance analysis is carried out for
the proposed Opt-RA and Heur-RA algorithms in the
context of the hybrid NOMA systems. It is shown that,
the proposed Heur-RA algorithm achieves significantly
higher EE performance than the other existing algorithms,
and its performance is close to that obtained by the Opt-
RA under certain scenarios. In addition, our simulation
results also show that, the hybrid NOMA conceived is
able to exploit the advantages of NOMA scheme, and
is superior to conventional OMA in terms of EE, and
achieves higher flexibility for system configuration than
NOMA. Therefore, the hybrid NOMA associated with the
proposed RA schemes may constitute a promising can-
didate that facilitates practical implementation in future
communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Motivated to boost the diverse use cases in future wire-
less communications, such as 5G scenarios, we conceive the
downlink hybrid NOMA system, which can be depicted by
Fig. 1. As the example shown in the figure, different number
of users can be accommodated on different SCs with the aid
of the hybrid NOMA technique. In the system conceived, let
us assume M orthogonal SCs, denoted by M = {1, . . . ,M},
are employed to serve K users, denoted by K = {1, . . . ,K},
which are grouped into LLL = [L1, . . . , LM ] clusters supported
by the hybrid NOMA scheme combining the concepts of both
the NOMA and OFDM schemes. Specifically, Lm, m ∈ M,
is the number of users which can be accommodated on SC m,
and SC m is referred to as a NOMA-SC if Lm > 1, while
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Fig. 1. System Model for a downlink hybrid NOMA, where the example
has LLL = [3, 1, 2, 3].

it belongs to a OFDM-SC if Lm = 1. Let us define, Mn =
{m | m ∈ M, Lm > 1} and Mo = {m | m ∈ M, Lm = 1}
contain the indexes of the NOMA-SCs and OFDM-SCs and,
hence, we have M =Mn ∪Mo. The BS is assumed to have
full knowledge of channel state information (CSI), and carries
out UC to assign each SC different number of users according
to the setup LLL. To avoid considering various trivial cases, in
this paper we study the most challenging case for UC, which
assumes that each user has to be assigned to only one SC,
and assumes K =

∑M
m=1 Lm. To characterize diverse service

requirements in future wireless networks, we assume that the
power constraints for each SC can be different, which can be
expressed by {Pm,∀m ∈M}.

On the basis of NOMA principles, the BS transmits infor-
mation to the users superposed on a NOMA-SC via power
domain division. At the receiver sides, the users decode its
message and eliminate the multi-user interference with the
aid of successive interference cancellation (SIC). Specifically,
each user on a NOMA-SC first decodes the users on the same
SC with poorer channel conditions, and removes their mes-
sages one by one. Further, the messages from the users having
higher channel conditions are treated as noise. By contrast,
each user on OFDM-SCs is free of multi-user interference.
Furthermore, let us assume that the decoding order of the SIC
at a receiver does not change as long as each user’s minimum
SINR requirement (i.e. minimum decoding threshold) is met,
which is a commonly-used assumption in the existing works
such as [7], [16], [22]. The signal-to-interference-plus-noise
rate (SINR) of a user in the hybrid NOMA system can be
expressed by

γkn,mn
=

pkn,mn
|hkn,mn

|2

|hkn,mn |2
∑
j∈Amn,[kn]

pj,mn
+ σ2

,

γko,mo
=
pko,mo

|hko,mo
|2

σ2
(1)

where kn ∈ Amn , mn ∈ Mn and ko ∈ Amo , mo ∈ Mo.
Assume that, Amn

and Amo
contain the indexes of the users

assigned to NOMA-SC mn and OFDM-SC mo. Note that,
Amn,[kn] = {∪j | |hj,mn

| > |hkn,mn
|, kn, j ∈ Amn

} is the
set of indexes for the users imposing interference on user kn.
In (1), hkn,mn and hko,mo are the channel gains following
Rayleigh fading, pkn,mn

and pko,mo
are the transmit power

for user kn and user ko. Further, σ2 = 1/γs is the variance of

additive Gaussian noise, and γs is the average transmit signal-
to-noise rate (SNR).

B. Problem Formulation

In this paper, we consider the resource allocation, including
UC and power allocation, in the downlink hybrid NOMA
systems. In contrast to the existing studies, our resource
allocation aims to maximize the EE of the system, and the
optimization problem is given by

(P0) : {S∗,P∗} = arg max
S,P
{ηEE}

subject to: (5)− (8), (10) (or (11))

where ηEE is the EE of the system, and is given by

ηEE =

∑
k∈K

∑
mn∈Mn

Rk,mn +
∑
k∈K

∑
mo∈Mo

Rk,mo∑
k∈K

∑
m∈M pk,m + Pc

.

(2)

The rates Rkn,mn
and Rko,mo

are

Rk,mn
= log2

(
1 +

sk,mnpk,mn |hk,mn |2

Ik,mn
+ σ2

)
, (3)

Rk,mo
= log2

(
1 +

sk,mo
pk,mo

|hk,mo
|2

σ2

)
(4)

where

Ik,mn
=

∑
mn∈Mn

∑
j∈K,|hj,mn |>|hk,mn |

sk,mn
sj,mn

pj,mn
|hk,mn

|2.

The constraints for the optimization problem are expressed as

sk,m = {0, 1}, ∀k ∈ K, ∀m ∈M, (5)∑
k∈K

sk,m = Lm, ∀m ∈M, (6)∑
m∈M

sk,m = 1, ∀k ∈ K, (7)∑
m∈M

sk,mpk,m ≥ P̃mink , ∀k ∈ K, (8)∑
k∈K

sk,mpk,m ≤ P̂maxm , ∀m ∈M. (9)

Above, sk,m is the UC indicator, sk,m = 1 if SC m is allocated
to user k, otherwise sk,m = 0. Define that, the UC and power
allocation variables are contained in the sets of S and P . In
(6), each OFDM-SC is constrained to accommodate one user
only, i.e. Lm = 1, while each NOMA-SC can be assigned to
more than one user, i.e. Lm > 1.

In Problem (P0), pk,m is the transmit power allocated to user
k on SC m. Note that, (8) constrains the minimum transmit
power for each user, which actually guarantees the minimum
QoS requirement for the user. Further, (9) addresses fairness
among SCs, preventing assigning too much transmit power to
certain SCs, such as OFDM-SCs. In this paper, we conceive
two cases for the total power consuming, which include all
the possible scenarios, so that the EE performance of our
hybrid NOMA system can be analyzed comprehensively. In
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TABLE I
DEFINITIONS OF KEY NOTATIONS & ABBREVIATIONS.

Notation Definition Abbreviation Definition
K No. of Users SC Subcarrier
K Set of User Indexes UC User Clustering
LLL No. of Users on SCs LPC Limited Power Consumption
M No. of SCs FPC Full Power Consumption
M Set of SC Indexes EE Energy Efficiency
S Set of UC variables SE Spectrum Efficiency
P Set of Power Allocation Variables Opt-RA Optimal Resource Allocation
Am Set of Users Assigned to SC m Heur-RA Heuristic Resource Allocation

the first case, namely limited power consumption (LPC), the
total power available is upper bounded by∑

k∈K

∑
m∈M

sk,mpk,m ≤ P. (10)

The similar assumptions can be found in the existing works
of [7], [23]. The LPC case is considered for evaluating
the performance of green communication motivated hybrid
NOMA systems, in which case, the total transmit power is
not always fully used and is optimized according to varying
communication environment. By contrast, under the second
case, namely full power consumption (FPC), the total power
available are fully used, given by∑

k∈K

∑
m∈M

sk,mpk,m = P. (11)

The LPC case is also a widely used assumption for EE
maximization, such as [8], [16]. The motivation for studying
the FPC case is to evaluate the EE performance of the hybrid
NOMA systems in the extreme scenario of transmitting signals
with all the transmit power available at all times, which
thereby plays as a benchmark for the LPC case. Furthermore,
by considering the FPC case, our EE maximization becomes
equivalent to maximizing the spectrum efficiency (SE) of the
system, since the denominator of the objective function in
Problem (P0) is a fixed value. For practical implementation,
we have the assumption that P ≤

∑
m∈M P̂maxm .

III. OPTIMAL RESOURCE ALLOCATION ALGORITHMS

In this section, we analyze the general theory of our resource
allocation. Then, we propose the optimal resource allocation
algorithms for both the LPC and FPC cases.

A. Analysis for Optimal Resource Allocation

Owing to the existence of integer variables and non-linearity
of the objective function, Problem (P0) is a mixed integer
nonlinear programming (MINLP) problem, which is NP hard
and extremely difficult to solve. In order to solve the problem
efficiently, we need to decouple the UC and power allocation,
which is similar to the methods in [7]. Hence, Problem (P0)
can be formulated as

(P1) : {S∗,P∗} = arg max
P

{
max
S
{ηEE}

}
(12)

subject to: (5)− (9), and (10) or (11)

where ηEE is defined in (2).

For clarity, Problem (P1) can be further expressed by
Problems (P2) and (P3), which indicate that the UC and the
power allocation are carried out separately. First, for the UC,
the problem is given as

(P2) : {S∗} = arg max
S

{∑
m∈M

∑
k∈KRk,m∑

k∈K pk + Pc

}
(13)

subject to (5)− (7).

Above, Rk,m is given by (3) or (4). The UC is first carried
upon fixing the power allocation, which should be feasible
according to (9) and (10) (or (11)).

Based on the UC results, the power allocation is imple-
mented, and expressed as

(P3) : {P∗} = arg max
P
{η(P) | S∗} , (14)

subject to (20) (or (21)) and

pk,m ≥ P̃mink , ∀k ∈ Am,∀m ∈M, (15)∑
k∈Am

pk,m ≤ P̂maxm , ∀m ∈M, (16)

In Problem (P3), we have

η(P) =

∑
mn∈Mn,kn∈Amn

Rkn,mn +
∑
mo∈Mo,ko∈Amo

Rko,mo∑
m∈M

∑
k∈Am

pk,m + Pc
.

(17)

The rates of Rkn,mn
and Rko,mo

now become

Rkn,mn
= log2(1 + γkn,mn

)

= log2

(
1 +

pkn,mn |hkn,mn |2∑
j∈Amn,[kn]

pj,mn
|hkn,mn

|2 + σ2

)
,

(18)
Rko,mo

= log2(1 + γko,mo
)

= log2

(
1 +

pko,mo
|hko,mo

|2

σ2

)
, (19)

where kn ∈ Amn
, mn ∈ Mn, ko ∈ Amo

, mo ∈ Mo. Note
that in (18), the user, having the highest channel gain on a
NOMA-SC, does not suffer any interference. When the LPC
case is considered, Problem (P3) is further constrained by∑

k∈Am

∑
m∈M

pk,m ≤ P, (20)

By contrast, for the FPC case, Problem (P3) is also constrained
by ∑

k∈Am

∑
m∈M

pk,m = P. (21)
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In comparison to Problem (P0), the decoupled problems
(P2) and (P3) require relatively low complexity to solve,
though they are still non-convex problems. Therefore, we
propose the optimal resource allocation, given by Algorithm 1,
which can find the optimal resource allocation for Problem
(P0). As in [7], solving the original problem (P0) is equivalent
to finding the best one among all possible optimal solutions
for the decoupled problems (P2) and (P3). However, we note
that the decoupled problem (P2) for UC is still an MINLP
problem. Therefore, in Algorithm 1, it first finds all the
possible UC derived by exhaustive search, as shown by line
1 of Algorithm 1, where Nperm is the total number of the
possible UC. Then, in the lines 2-11, based on each clustering
result it derives the optimal power allocation, which follows
Algorithm 2 in Section III-B or Algorithm 3 in Section III-C,
respectively, for the LPC or FPC case. In the end, the optimal
resource allocation can be found by the one achieving the
highest EE value among all possible results.

B. Optimal Power Allocation for Limited Power Consumption
case

Upon deriving the UC result {S∗}, our power allocation
needs to solve Problem (P3) with the constraints of (15), (16),
and (20) for the LPC case. Due to the existence of interference,
we note that the achievable rate of the users on NOMA-
SCs, given by (18), is a quasi-concave function. Hence, in
the objective function of (17), the numerator of the sum
rate becomes a summation of concave functions and quasi-
concave functions. Although the non-negative summation of
concave functions preserves concavity, this property does not
hold for quasi-concave functions, which makes Problem (P3)
non-concave and is very difficult to solve. In order to solve
the non-concave problem of (P3), we resort to an efficient
approximation method to convert the objective function of
(17). Let us first introduce the following theorem.

Theorem 1: For any γ ≥ 0 and γ̃ ≥ 0, the following
inequality holds: log2 (1 + γ) ≥ a log2 γ + b, where a and

b are defined as a =
γ̃

1 + γ̃
, b = log2 (1 + γ̃)− γ̃

1 + γ̃
log2 γ̃,

and the bound is tight for γ = γ̃.
Proof: This can be found in [24].

By using the approximation method in Theorem 1, the lower
bound for the achievable rate of user kn on NOMA-SC mn,
and that of user ko on OFDM-SC mo, are given by

Rkn,mn
≥ R̃kn,mn

= akn,mn
log2

(
pkn,mn |hkn,mn |2∑

j∈Amn,[kn]
pj,mn

|hkn,mn
|2 + σ2

)
+ bkn,mn

, (22)

Rko,mo
≥ R̃ko,mo

= ako,mo
log2

(
pko,mo

|hko,mo
|2

σ2

)
+ bko,mo

.

(23)

In (22) and (23), akn,mn , bkn,mn , ako,mo and bko,mo are
approximation constants for some SNRs/SINRs of the users
to be specified as Theorem 1.

Algorithm 1: Optimal Resource Allocation Algorithm
1: UC searching: With the aid of exhaustive search approach,

find all the possible UC results, which are included in
{S(n), n = 1, . . . , Nperm};

2: for n = 1, . . . , Nperm
3: Solve Problem (P3) based on the UC of S(n);
4: if LPC scenario
5: Run Algorithm 2;
6: else
7: Run Algorithm 3;
8: end
9: Output: the optimal power allocation result P(n);
10: Compute the EE value ηEE(S(n),P(n)) according to (2);
11: end
12: Output: the optimal resource allocation result

{S∗,P∗} = arg maxn=1,...,Nperm

{
ηEE(S(n),P(n))

}
;

Furthermore, to convert Problem (P3) into concave, it also
needs to introduce the new variables:

qkn,mn
= ln pkn,mn

, kn ∈ Amn
,mn ∈Mo, and

qko,mo
= ln pko,mo

, ko ∈ Amo
,mo ∈Mo. (24)

Let us define Qmn
= {qkn,mn

,∀kn ∈ Amn
}, Qmo

=
{qko,mo ,∀ko ∈ Amo}. In that case, the transformed variables
can be collected in the vector Q = {Q1, . . . ,QM}. Upon
substituting the new variables Q, the power allocation problem
is transformed into

(P4) : {Q∗} = arg max
Q
{η̃ | S∗}

subject to: eqk,m ≥ P̃mink , ∀k ∈ Am, ∀m ∈M
(25)∑

k∈Am

eqk,m ≤ P̂maxm , ∀m ∈M, (26)∑
m∈M

∑
k∈Am

eqk,m ≤ P, (27)

In Problem (P4), the objective function can be given by

η̃ =

∑
mn∈Mn

∑
kn∈Amn

R̃kn,mn +
∑
mo∈Mo

∑
ko∈Amo

R̃ko,mo∑
m∈M

∑
k∈K e

qk,m + Pc
(28)

where Rkn,mn
for the user on NOMA-SC and Rko,mo

for
the user on OFDM-SC become

R̃kn,mn
= akn,mn

log2

(
eqkn,mn |hkn,mn

|2∑
j∈Amn,[kn]

eqj,mn |hkn,mn |2 + σ2

)
+ bkn,mn , (29)

R̃ko,mo = ako,mo log2

(
eqko,mo |hko,mo |2

σ2

)
+ bko,mo

. (30)

When analyzing the above problem, we derive the following
important findings in lemma 1.

Lemma 1: Problem (P4) for the LPC case is a concave-
convex fractional problem, and any of its local maximum
is a global maximum and KKT conditions are sufficient to
maximum.

Proof: The proof is given by Appendix A.
Furthermore, we apply the Charnes-Cooper transformation

[25] to Problem (P4), which can be converted to an equivalent
concave program. Let us introduce the following lemma.



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2893304, IEEE
Transactions on Communications

6

Lemma 2: Given a ratio Problem (P′) : min
x∈S

f(x)

g(x)
, where

f is concave and g is convex, f, g : S → R, S ⊆ Rn, it can
be transformed into a concave program

(P′′) : min
y/φ∈S

φf(y/φ), subject to: φg(y/φ) ≤ 1,

by using the Charnes-Cooper transformation y =
1

g(x)
x, φ =

1

g(x)
, where φ > 0.

Proof: Consider φf(y/φ) and φg(y/φ) as the perspective
of the functions f , g, the concavity and convexity preserve,
respectively. Therefore, Problem (P′) is a concave problem in
(y, φ).

Upon leveraging the transformation in lemma 2 for Problem
(P4), our optimization problem for power allocation under the
LPC scenario reduces to the following equivalent problem, as

(P5) : {Q̃∗, φ∗} =arg max
Q̃,φ

φ
 ∑
mn∈Mn,kn∈Amn

R̃kn,mn

(
Q̃, φ

)

+
∑

mo∈Mo,kn∈Amo

R̃ko,mo

(
Q̃, φ

) (32)

subject to: φ

( ∑
m∈M

∑
k∈Am

eq̃k,m/φ + Pc

)
≤ 1, (33)

φ
(
P̃mink − eqk,m

)
≤ 0, ∀k ∈ Am, ∀m ∈M, (34)

φ

( ∑
k∈Am

eq̃k,m/φ − P̂maxm

)
≤ 0, ∀m ∈M, (35)

φ

( ∑
m∈M

∑
k∈Am

eq̃k,m/φ − P

)
≤ 0, (36)

where

R̃ko,mo

(
Q̃, φ

)
=ako,mo log2

(
eq̃ko,mo/φ|hko,mo |2

σ2

)
+ bko,mo , (37)

R̃kn,mn

(
Q̃, φ

)
= bkn,mn+

akn,mn log2

 eq̃kn,mn/φ|hkn,mn |2∑
j∈Amn ,|hj,mn |>|hk,mn |

eq̃j,mn/φ|hkn,mn |2 + σ2

 .

(38)

Note that, with the aid of the Charnes-Cooper transfor-
mation, in Problem (P5) we introduce the new variables
Q̃ = {q̃k,m,∀m ∈ M,∀k ∈ Am} and φ, where defining
q̃k,m = qk,mφ. Hence, if the optimal solution q̃ and φ are
found, then Q = Q̃/φ is optimal for Problem (P4).

Based on the above analysis, we are now able to propose
the optimal power allocation algorithm for the LPC scenario,
summarized in Algorithm 2, which finds the optimal solution
to the original problem of (P3) by iteratively solving Problem
(P5). Moreover, referring to Algorithm 2, the conclusions in
Theorem 2 can be derived.

Theorem 2: Algorithm 2 can derive a converged EE result
for the LPC case, and the power allocation solution satisfies
the KKT conditions for Problem (P3) conditioned on (20).

Proof: The proof is given by Appendix B.

Algorithm 2: Optimal Power Allocation Algorithm for LPC
1: Initialization: (1) Set iteration index i = 0, (2) Set

maximum iteration number I(LPC)
max , (3) Set ε > 0,

(4) Initialize power allocation variables P(0);
2: while i <= I

(LPC)
max & η̃(i) − η̃(i−1) > ε

3: Compute γ̃(i)
kn,mn

= γkn,mn(p
(i−1)
kn,mn

), ∀kn,mn;
γ̃

(i)
ko,mo

= γko,mo(p
(i−1)
ko,mo

), ∀ko,mo;
4: Compute the variables {a(i)

kn,mn
, a

(i)
ko,mo

, b
(i)
kn,mn

, b
(i)
ko,mo

,
∀kn,mn, ko,mo};

5: Solve the concave optimization problem (P5);
6: Output: the optimal variables in Q̃(i) = {q̃(i)

kn,mn
q̃

(i)
ko,mo

,

∀kn,mn, ko,mo} and the optimization variable φ(i);
7: Update the optimization variables in

Q(i)(φ(i), Q̃) = {q(i)
kn,mn

, q
(i)
ko,mo

,∀kn,mn, ko,mo};
8: Update the optimization variables in P(i)(q(i));
9: Compute the value of the objective function in (28):

η̃(i)(P(i));
10: end
12: Output: the optimal variables P∗;

C. Optimal Power Allocation for Full Power Consumption
case

Let us now consider the power allocation for FPC case,
described by Problem (P3) constrained by (21), in which the
BS is required to transmit signal with full power. In that case,
the denominator of the objective function in Problem (P3) is
a fixed value and, hence, the EE maximization for FPC is
equivalent to the maximization of sum rate, yielding

(P6) : {P∗} =arg max
P

R∑ =
∑

mn∈Mn,kn∈Amn

Rkn,mn
+

∑
mo∈Mo,ko∈Amo

Rko,mo
| S∗

 , (39)

subject to: (15), (16) and (21).

Above, Rkn,mn , expressed as (18), is a quasi-concave func-
tion, although Rko,mo

, defined in (19), is a concave function.
Hence, the objective function in (39) is non-concave due to the
fact that, a summation of concave functions and quasi-concave
functions is non-concave. Hence, Problem (P6) is still difficult
to solve, and for this kind of problems, the global optimal
solution mainly plays as a theoretical benchmark rather than
a practical solution. Henceforth, we motivate to solve the
problem locally with relatively low complexity.

To obtain a tractable solution, we note that, upon taking the
exponential of the objective function in (39), the problem can
be transformed to

(P7) : {P∗} = arg max
P

 ∏
mn∈Mn

∏
kn∈Amn

(1 + γkn,mn
)×

∏
mo∈Mo

∏
ko∈Amo

(1 + γko,mo)

 (40)

subject to: (15), (16) and (21),

where γkn,mn
, γko,mo

can be found in (18) and (19). Problem



0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2019.2893304, IEEE
Transactions on Communications

7

(P7) can be equivalently cast as

(P8) : {P∗, T ∗} = arg max
P,T

 ∏
mn∈Mn

∏
kn∈Amn

tkn,mn
×

∏
mo∈Mo

∏
ko∈Amo

tko,mo

 (41)

subject to: (15), (16), (21) and (42), (43).

pkn,mn |hkn,mn |2 ≥ (tkn,mn − 1)

 ∑
q∈Amn,[kn]

pq,mn |hkn,mn |2

+σ2
)
, ∀kn ∈ Amn

,∀mn ∈Mn, (42)

pko,mo
|hko,mo

|2 ≥ (tko,mo
− 1)σ2, ∀ko ∈ Amo

,∀mo ∈Mo.
(43)

Let us collect the new variables in set T = Tn ∪ To,
in which Tn = {tkn,mn

,∀kn ∈ Amn
,∀mn ∈ Mn} and

To = {tko,mo ,∀ko ∈ Amo ,∀mo ∈Mo}.
The equivalence of Problem (P8) and Problem (P7) can

be easily recognized by noting the fact that constraint (42) is
active at the optimum. Otherwise, it can obtain a strictly larger
objective by increasing {tkn,mn

, tko,mo
} without violating the

constraint. Further, the objective function in Problem (P8)
can be replaced by its geometric mean, so that it becomes a
concave function. Moreover, it is observed that, constraint (42)
is non-convex, although constraints (15), (16), (21) and (43)
are all convex. For converting (42) to convex, it introduces
the slack variables collected in set Θn = {θkn,mn

,∀kn ∈
Amn ,∀mn ∈ Mn}. Therefore, Problem (P8) can be refor-
mulated as

(P9) : {P∗, T ∗,Θ∗n} = arg max
P,T ,Θn

 ∏
mn∈Mn

∏
kn∈Amn

tkn,mn

∏
mo∈Mo

∏
ko∈Amo

tko,mo

 1
K

(44)

subject to: (15), (16), (21), (43) and

pkn,mn
|hkn,mn

|2 ≥ tkn,mn
θkn,mn

− θkn,mn
,

∀kn ∈ Amn
,∀mn ∈Mn (45)

θkn,mn
≥

∑
q∈Amn,[kn]

pq,mn
|hkn,mn

|2 + σ2,

∀kn ∈ Amn ,∀mn ∈Mn. (46)

In Problem (P9), constraint (46) is convex, while constraint
(45) is not, due to the bilinear product on the right-hand side.
To tackle it, we first use the following transformation

tkn,mn
θkn,mn

=
1

4

[
(tkn,mn

+ θkn,mn
)
2 − (tkn,mn

− θkn,mn
)
2
]

(47)

which holds for non-negative {tkn,mn , θkn,mn}. Then, as
introduced by [26], it applies the sequential parametric con-
vex approximation (SPCA) method to (47), so that the left-
hand side of (47) can be replaced by an upper convex

approximation function. In particular, the upper bound of
− (tkn,mn − θkn,mn)

2 can be obtained by the first-order Tay-
lor series around the points

(
t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

)
, due to its

concavity. In other words, we have

tkn,mnθkn,mn ≤
1

4

(
t̃
(i)
kn,mn

+ θ̃kn,mn

)2

− 1

4

[(
t̃
(i)
kn,mn

− θ̃(i)
kn,mn

)2

+ 2
(
t̃
(i)
kn,mn

− θ̃(i)
kn,mn

)
×(

tkn,mn − t̃
(i)
kn,mn

− θkn,mn + θ̃
(i)
kn,mn

)]
. (48)

Let us define f(tkn,mn , θkn,mn) and g(tkn,mn , θkn,mn) as the
left- and right-hand side of the above inequality. Then, the
following results hold

f(t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

) = g(t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

), ∇f(t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

)

= ∇g(t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

), (49)

where ∇f is the gradient of f . Thus, constraint (45) can be
approximated as

pkn,mn |hkn,mn |2 ≥
1

4
(tkn,mn

+ θkn,mn
)
2 − θkn,mn

−

1

4

[(
t̃
(i)
kn,mn

− θ̃(i)
kn,mn

)2

+ 2
(
t̃
(i)
kn,mn

− θ̃(i)
kn,mn

)
×(

tkn,mn − t̃
(i)
kn,mn

− θkn,mn + θ̃
(i)
kn,mn

)]
,

∀k ∈ Amn ,∀mn ∈Mn, (50)

where t̃(i)kn,mn
and θ̃(i)

kn,mn
are constants, and can be given by

the optimum solutions of tkn,mn
and θkn,mn

in (i − 1)th
iteration. Hence, (50) becomes convex in the variables of
interest. Upon leveraging the above approximations, we can
reformulate our power allocation for FPC case as

(P10) : {P∗, T ∗,Θ∗n} = arg max
P,T ,Θn

{
Ψ(T )

}
, (51)

subject to: (15), (16), (21), (43) , (46) and (50).

In Problem (P10), the objective function can be given by

Ψ(T ) =

 ∏
mn∈Mn

∏
kn∈Amn

tkn,mn

∏
mo∈Mo

∏
ko∈Amo

tko,mo

 1
K

.

(52)

Now, the above problem becomes concave, and can be
iteratively solved to find the local optimal solution to Problem
(P3) constrained by (21). Therefore, we propose the power
allocation algorithm for FPC case, summarized in Algorithm
3.

In Algorithm 3, let us denote the objective value derived in
iteration i by Ψ(i)(T (i)), where T (i) is the optimal solution to
Problem (P10) in iteration i. Further, in order to guarantee the
convergence of Problem (P10), the algorithm updates param-
eters t̃(i+1)

kn,mn
, θ̃(i+1)
kn,mn

by the optimal solutions during for each
iteration. Accordingly, we have the following propositions.

Proposition: The proposed power allocation in Algorithm
3 returns a non-decreasing sequence of objective values, i.e.,
Ψ(i+1) ≥ Ψ(i), ∀i, and hence it converges.

Proof: The proof is provided in Appendix C.
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Algorithm 3: Optimal Power Allocation Algorithm for FPC
1: Initialization: (1) Set iteration index i = 0; (2) Set

maximum iteration number I(FPC)
max ; (3) Set ε > 0;

(4) Initialize parameters t̃(0)
kn,mn

, θ̃
(0)
kn,mn

, ∀kn, ∀mn;
(5) Initialize variables {P(0), T (0)

n , T (0)
o ,Θ

(0)
n };

2: while i <= I
(FPC)
max & Ψ(i) −Ψ(i−1) > ε

3: Solve the optimization problem (P10);
4: Output: the solution in sets {P(i), T (i)

n , T (i)
o ,Θ

(i)
n };

5: Compute the objective value Ψ(T (i)) according to (52);
6: Update the parameters for problem (P10):

t̃
(i+1)
kn,mn

← t
(i)
kn,mn

, θ̃
(i+1)
kn,mn

← θ
(i)
kn,mn

, ∀kn ∈ Amn ,
∀mn ∈Mn;

7: Update: i→ i+ 1;
8: end
9: Output: the optimal solutions P∗;

Furthermore, although the above proposition proves that the
proposed algorithm converges to a finite objective value, it is
not possible to prove convergence to a global maximum due to
the non-convex property of the original problem of (P6) (i.e.
Problem (P3) constrained by (21)). However, we can prove
that under some regularity conditions, the accumulation point
of the sequence of solutions satisfies the KKT conditions, as
summarized in the following proposition.

Proposition: As the iteration number i tends to infinity, the
solutions given by Algorithm 3 converges to the KKT points
of the original problem of (P6).

Proof: The proof is provided in Appendix D.

IV. HEURISTIC RESOURCE ALLOCATION

In this section, we will develop a low-complexity heuristic
resource allocation algorithm, namely Heur-RA, which aims
for practical implementation. Then, comprehensive complexity
analysis will be carried out for the proposed algorithm, as well
as for other existing algorithms.

A. Proposed Heur-RA Algorithm

The Opt-RA algorithm in Algorithm I demands very high
complexity, which is mainly caused by using the exhaustive
search approach of UC. Specifically, when supporting a rela-
tive high number of users the system, the implementation of
the optimal algorithm will become very challenging. Hence,
we propose the suboptimal Heur-RA algorithm with low
complexity required. The Heur-RA aims to find promising
suboptimal solutions to Problem (P1) by separately solving the
UC and power allocation problems. In particular, our Heur-RA
algorithm is first to find an efficient approach for UC, based
on which, the optimal power allocation is carried out.

Following the analysis in Section III, our Heur-RA al-
gorithm aims to develop the user allocation that can find
promising suboptimal solutions to the MINLP problem of
(P2). As suggested by [27], solving Problem (P2) can be
approximated by solving the following problem

(P11) : {S∗} = arg max
S

{∑
m∈M sk,m|hk,m|2

2σ2
, ∀k ∈ K

}
(53)

subject to (5)− (7)

Algorithm 4: Heur-RA Algorithm
1: Initialization: Set n = 1; Set Cm = ∅, Ǩm = K, ∀m ∈M;

Set M̌k =M, ∀k ∈ K;
2: while n ≤ Nmax
3: Identify the best candidate from SC’s perspective:

Cm ← Cm ∪ {ǩ} where ǩ = arg maxk∈Ǩm

{
|hm,k|2

}
,

∀m ∈M;
4: Identify the best candidate from user’s perspective:
5: Cm̌ ← Cm̌ ∪ {k} where m̌ = arg maxm∈M̌k

{
|hm,k|2

}
,

∀k ∈ K;
6: if |Cm| ≥ Lm, ∀m ∈M
7: User Allocation: Run Algorithm 5;
8: if
9: Run Algorithm 2;
10: else
11: Run Algorithm 3;
12: end
13: Output: the optimal power allocation result P(n)

14: Compute the EE value ηEE(S(n),P(n)) according
to (2);

15: Update: n← n+ 1;
16: end
17: end
18: Output: the final resource allocation result

{S∗,P∗} = arg maxn=1...Nmax

{
ηEE(S(n),P(n))

}
;

which is though a MINLP problem. Hence, the suboptimal
UC can be designed to maximize the SNR of each user. Our
heuristic resource allocation is now motivated to find solutions
to Problem (P1) by solving the decoupled problems of (P11)
and (P3).

Let us now introduce the Heur-RA algorithm, and the
principles are summarized in Algorithm 4. During each it-
eration, given by lines 3-7 of Algorithm 4, the UC follows the
candidate search-and-allocation approach, which motivates to
maximize the SNR of each user. Then, based on the derived
UC result, the power allocation is implemented according to
Algorithm 2 or 3 (under the LPC or FPC case) for maximizing
the EE of the system, which follows the steps in lines 8-12.
After that, it computes the EE value in the end of each iteration
for UC and power allocation. The algorithm outputs the final
resource allocation that maximizes the EE, which is shown in
line 18. In order to keep the implementation complexity for
searching candidates as low as possible, we can set up the
maximum number of iterations Nmax, according to practical
system requirements.

Our UC is motivated to maximize the SINR of the worst
user as well as to maximize the SINR of the best user, which is
equivalent to maximize the SINR of each user. For the UC, the
relating notations in Algorithm 4 are defined as follows. Note
that n is the iteration index for UC. Accordingly, Cm includes
the indexes of the candidate users for SC m. By contrast,
Ǩm is the set of the unselected candidates for SC m, and
M̌k is the set of the unselected candidates for user k. Let us
explain the principles of the UC by focusing on one iteration of
Algorithm 4. The UC first searches candidate searching given
by lines 3-5 of Algorithm 4, which is then followed by the
user allocation process given by Algorithm 5. In particular, the
candidate search is for finding the best potential options for
our UC, as well as for avoiding the unwanted ones, so that the
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Algorithm 5: User Allocation Stage of Heur-RA Algorithm
1: Initialization: Set C(n)

m = Cm,A(n)
m = ∅, ∀m ∈M;

Set M̃ =M, K̃ = K;
2: for k = 1 : K

3: if C(n)
m = ∅,∀m ∈M

4: Φ = M̃;
5: else
6: Find SC/SCs with least number of candidates:

Φ = {m | m = arg mini∈M{|C(n)
i |}};

7: end
8: Search the SC/SCs, in Φ, having minimum number

of users: Φ̃ = {m | m = arg mini∈Φ{Li − |A(n)
i |}};

9: Identify the SC and its best user:
{m∗, k∗} = arg maxm∈Φ̃,k∈V{|hm,k|

2},
where V = C(n)

m if C(n)
m 6= ∅; Otherwise, V = K̃;

10: Allocate user for the identified SC: A(n)
m∗ ← A(n)

m∗ ∪ {k∗};
11: Update: C(n)

m ← C(n)
m − {k∗}, ∀m ∈ M̃; K̃ ← K̃ − {k∗};

M̃ ← M̃ − {m∗};
12: end

allocation process can be completed with minimum number of
iterations. In lines 3 and 4 of Algorithm 4, it searches the best
candidates having the highest channel qualities from both SC’s
and user’s perspectives, which is for the sake of maximizing
selecting diversity. Then, in line 5, it updates the relating sets
M̌k, Ǩm for the unselected candidates. After that, it checks
if the condition of |Cm| ≥ Lm,∀m ∈ M is met. If yes,
meaning that each SC has the number of candidates required
by allocation, it then proceeds to the user allocation process
based on Algorithm 5.

The principles of the proposed user allocation are summa-
rized in Algorithm 5. Based on the candidate identification,
there are K user allocation iterations of each allocating one
candidate or non-candidate user to a SC. To maximize the
SNR of each user, the user allocation stage is to first assign
the candidate users. When candidate allocation is available, by
following line 6 of Algorithm 5, it identifies the SCs having
the least number of candidates unassigned, which are included
in set Φ with the highest allocation priority. This is due to that,
the number of candidate allocations can be maximized. On the
contrary, to maximize the minimum channel qualities assigned,
in line 8 it finds the SCs collected in Φ̃ that can accommodate
the least number of users. Then, shown by lines 9 and 10, the
algorithm allocates the best candidate to the SC in Φ̃, which
aims to maximize the best channel quality of each SC. When
all candidates have been assigned, Algorithm 5 proceeds to
non-candidate allocation if the allocation is not completed.
In this case, the algorithm proceeds to line 4, i.e. Φ = M̃,
containing indexes of the unassigned SCs without candidates
available. Correspondingly, by following lines 8-11, the non-
candidate allocation process can be carried out in a similar
way as that of candidate allocation.

B. Complexity Analysis

In this section, let us analyze the complexity required by the
Heur-RA algorithm, which is compared with those required by
the optimal algorithms and the other existing algorithms. For
clarity, the complexity analyzed in this paper is reflected by
the number of comparisons required by the RA algorithms.

In the context of the Opt-RA algorithm, the UC is based on
exhaustive search approach. Therefore, the total number of all
possible UC is

Nperm =

(
L1

K

) M∏
m=2

(
Lm

K −
∑m
i=1 Li

)
. (54)

For each of the Nperm UC results, the Opt-RA algorithm
needs to operate the power allocation (Algorithm 2 or 3). In
the context of the LPC, shown by Algorithm 2, the optimal
power allocation is obtained by iteratively solving the convex
problem of (P5) the aid of the interior point method, which
requires the complexity of O(r4δ) [28], [29]. Note that, r is
the number of variables and δ is the number of bits for repre-
senting the coefficients in the optimization problem. Similarly,
when considering the FPC scenario, the required complexity
is O(I

(FPC)
max (3K)4δ(FPC)) for obtaining the optimal power

allocation solution. In summary, the complexity of the Opt-
RA algorithm can be given by O(NpermI

(i)
max(K + 1)4δ(i)),

i ∈ {LPC,FPC}. Note that, I(LPC)
max and I

(FPC)
max are re-

spectively the maximum iterations for the power allocation
algorithms.

Let us now analyze the complexity of UC under the Heur-
RA algorithm. The proposed UC in Algorithm 4 needs to
identify candidates from both SC’s and user’s perspectives,
which is equivalent to ordering the K channels of each SC
as well as ordering the M channels of each user. Hence,
the number of comparisons required by candidate searching
is upper bounded by 2KM(lnK + lnM) [30]. Further, the
UC needs to check if each SC has enough candidates before
user allocation, which, at most, requires NmaxM comparisons.
Known from Algorithm 5, it identifies the sets of Φ and Φ̃
during the user allocation, which requires 2K(M − 1) for
each iteration. In total, the number of comparisons required
by the UC of the heuristic algorithm is upper bounded by

Λ(Heur-RA-UC) ≤2KM(lnK + lnM) + 2NmaxK(M − 1)

+NmaxM (55)

which results in a complexity of O(KM lnK). In addition
to UC, the heuristic algorithm operates the power alloca-
tion for each of the Nmax UC results identified. Upon
summing up the above, the Heur-RA requires a complex-
ity of O(max{KM lnK,NmaxI

(i)
max(K + 1)4δ(i)}), i ∈

{LPC,FPC}.
For comparison, we consider two widely-used algorithms:

Greedy-RA and Hungarian-RA algorithms, which employ
the greedy algorithm [31] and Hungarian algorithm [32]
for UC (from both user and SC perspectives), respectively.
Based on the UC, they both use the optimal power allo-
cation of Algorithms 2 or 3. Specifically, the complexity
of Greedy-RA is O(max{K2, NdI

(i)
max(K + 1)4δ(i)}), i ∈

{LPC,FPC}, while the complexity of Hungarian-RA is
O(max{K3, NdI

(i)
max(K+1)4δ(i)}), i ∈ {LPC,FPC}. Note

that, we have Nd = 2, since both them operate the UC form
the user and SC perspectives. Known from the simulation
results in Section V, the maximum number of iterations Nmax
for Heur-RA to operate the UC is very small, and Nmax < 3
for most scenarios. In that case, it implies that, the complexity
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Fig. 2. EE of downlink hybrid NOMA systems employing various RA schemes, when different γs and Pc values are applied.

TABLE II
KEY SIMULATION PARAMETERS.

Parameter Value Parameter Value
K 9 LLL [2 3 1 2 1]
M 5 P 30 dBm
P̃mink 10 dBm P̂maxm 40 dBm
Pc 25 dBm α 0.3

required by the Heur-RA is much lower than that of the Opt-
RA and the Hungarian-RA, and it is similar to that for low-
complexity Greedy-RA algorithm. Hence, we may conclude
that the Heur-RA is a low complexity algorithm, which is a
promising solution for practical implementation.

V. NUMERICAL RESULTS

In this section, we provide a range of simulation results for
demonstrating the achievable EE performance of the down-
link hybrid NOMA systems employing the proposed Opt-
RA, Heur-RA algorithms as well as the other existing RA
schemes. In our simulations, we assume that each user on
a SC experiences independent flat Rayleigh fast fading, and
the noise variance on each user is the same. For comparison,
we consider four existing RA schemes, which employs the
Greedy and Hungarian algorithms for UC. Moreover, fixed
power allocation (FPA) and fractional transmit power allo-
cation (FTPA) are used by the existing RA schemes. In our
simulations, if it is not specified, we have the key simulation
parameters summarized in Table II.

In Fig. 2, it depicts the average EE versus transmit SNR and
constant power consumption. First of all, our proposed RA
algorithms including Heur-RA and Opti-RA can significantly
outperform the existing RA schemes, and the performance
gain gets larger at low γs and low Pc regions. Second, from
the figure, it shows, for both the LPC and FPC scenarios,
the performance gap between the Heur-RA and the optimal
benchmark (i.e. Opti-RA) is minimized at high γs and high Pc.
Third, we observe that, the LPC scenario always outperforms

the FPC scenario. Further, Fig. 2 (a) shows that the gaps
between LPC and FPC increase when γs increases. This
implies that the system should use less transmit power to
achieve the best EE when channels become more noisy. At last,
seen from Fig. 2 (b), the EE performance achieved by FPC is
significantly outperformed by LPC. This reveals, for achieving
energy efficient systems, it requires to adaptively adjust the
total transmit power P if constant power consumption Pc does
not play a dominating role.

Let us now discuss the EE versus P performance of the
hybrid NOMA systems in Fig. 3. We once again observe
that the proposed RA algorithms can hugely outperform the
existing algorithms regardless of the two scenarios. It should
be note that, the FPC scenario also reflects the throughput
performance of the system and hence, our proposed algorithms
are capable of finding a good EE and throughput trade-off.
In conclusion, observed from both Fig. 2 and Fig. 3, the
Opt-RA provides the benchmark for the EE of the hybrid
NOMA systems, and Heur-RA algorithm with low complexity
required could be one promising solution to the future hybrid
NOMA systems. Let us first discuss the results in Fig. 3 (a).
First, we observe that the proposed algorithms under FPC and
the existing algorithms have bell-shape EE performance. This
implies that increasing the transmit power will not always
resulting an energy efficient system. Second, the EE for LPC
scenario almost coincide with that for FPC if P ≤ 28dBm,
which indicates the hybrid NOMA system of energy efficient
demands full transmit power before reaching the best EE.
Third, it observes that the algorithms under the LPC have the
performance floors as P increases, which accounts for our
hybrid NOMA system could gain the best EE as long as the
total transmit power is greater than the certain values. The
reasons behind can be explained as follows. When the total
transmit power P used exceeds a relatively large value, the
SE (or sum rate) can not be improved due to the fact that
interference signals become the dominant factor of the SINR
of a user. Observed from the optimization problem of (P0),
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Fig. 3. EE of downlink hybrid NOMA systems using various RA schemes, when different total power P are available.

it will stop increasing the use of the total transmit power in
order to obtain the maximum objective EE value, even if more
and more transmit power is available.

In contrast to Fig. 3 (a), Fig. 3 (b) evaluates the EE perfor-
mance of the hybrid NOMA systems, where varying the per-
NOMA-SC power constraint Pmn

and fixing per-OFDM-SC
power constraint Pmo

. In general, seen from Fig. 3 (b), when
each NOMA-SC has more transmit power available, the EE
performance increases regardless of the RA schemes employed
by the systems. Further, as Pmn increases, the performance
improvement for FPC is huge, while a slight improvement
for LPC can only be observed at the optimal P values. This
observation implies, the users on NOMA-SCs require more
power as the total transmit power increases. In this figure, the
EE achieved by the FTPA increases as α becomes smaller.
Hence, the practical hybrid NOMA system needs to find a
good balance between fairness and EE performance. From Fig.
3, we may conclude that, it is crucial to find the best trade-off
between EE and total transmit power when designing practical
hybrid NOMA systems in future. Furthermore, as mentioned
in Section II.B, by considering the FPC case, it can directly
reflect the SE performance of the hybrid NOMA systems.
By comparing the performance of the FPC and LPC cases
in Figs. 2 and 3, we may further conclude that, 1) upon fixing
the total transmit power P , it will have a positive impact on
the EE performance when monotonically improving the SE
performance of the systems; by contrast, 2) the SE and EE
may become two conflicting performance metrics if the total
transmit power P keep increasing after a certain threshold,
which is a vital parameter and should be optimized in practical
hybrid NOMA systems.

Fig. 4 shows the convergence results of the proposed
optimal power allocation algorithms for the LPC and FPC
scenarios. Note that, the results are derived by averaging the
Monte-Carlo simulations with 104 realizations at each itera-
tion. First of all, we observe that, for the specific simulation
cases, our proposed power allocation algorithms are capable
of converging to the optimums within very few number of

iterations, which is smaller than 10. Fig. 4 (a) depicts that,
for LPC, the proposed algorithm requires more iterations to
converge when P increases or Pc decreases. By contrast, Fig.
4 (b) shows that, the algorithm for FPC demands slightly more
iterations only when Pc increases, which is because the full
power is always used.

To demonstrate the advantages of our Heur-UC algorithm,
Fig. 5 compares the EE of the systems employing various UC
algorithms. Without loss of generality, in the figure, we apply
the FPA approach to the systems, where considering three
cases with varying UC requirements of L̃. It is observed from
Fig. fig-EE-UC (a) that our Heur-UC algorithm approaches
the high-complexity Hungarian algorithm and outperforms the
famous greedy algorithm. The performance gap between Heur-
UC and Hungarian decreases, while that between Heur-UC
and greedy becomes larger, when the system supports more
number of users and SCs, i.e. larger size of L̃. Further, the
EE of Heur-UC coincides with that of Hungarian algorithm
when Pmn

reduces to P/3M . This is because, when the
available power on each NOMA-SC becomes smaller, the EE
performance is dominated by the user with the best channel
condition on every SC. Observed from Fig. 5 (b), the EE
achieved by Heur-UC algorithm is approaching that for Hun-
garian algorithm as noise variance becomes smaller. The other
observations are similar to those in Fig. 5 (a). In conclusion,
the above observations imply that the proposed Heur-UC with
low complexity can achieve a promising selecting diversity for
UC in the hybrid NOMA systems.

At last, Fig. 6 compares the EE obtained by the hybrid
NOMA with that for the OMA systems. First, we clearly
observe that the hybrid NOMA is superior to conventional
OMA when the same RA scheme is used. Moreover, by
comparing the three cases of L, we observe that the EE
performance is slightly degraded as a compromise for sup-
porting more number of high-SE users on OFDM-SCs. Once
again, the figure confirms the performance gain achieved by
our Heur-UC over the existing greedy algorithm. From the
above observations, we may conclude that, the hybrid NOMA
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Fig. 4. Convergence of the proposed optimal power allocation algorithms under the LPC and FPC scenarios.
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Fig. 5. EE of downlink hybrid NOMA systems using FPA and various UC, when different P and γs.

is a promising solution to future communications, owing
to the facts including: exploiting the advantages of NOMA
technique, high flexibility for system configuration, as well as
making compromise between massive connectivity and high
throughput services.

VI. CONCLUSION

In this paper, we have investigated EE maximizing mo-
tivated resource allocation, including jointly UC and power
allocation, in the downlink hybrid NOMA systems. The Opt-
RA algorithm has been proposed to find the optimal solu-
tions for both the LPC and FPC scenarios. Further, we have
proposed the Heur-RA algorithm to find suboptimal solutions
with relatively low complexity required. Our simulation results
have shown that, the Heur-RA algorithm achieves significantly
higher EE than other existing algorithms, and its performance
is close to that obtained by the Opt-RA. Moreover, our results
have also implied that, the hybrid NOMA conceived is able to

exploit the advantages of NOMA scheme, and is superior to
conventional OMA, and achieves higher flexibility for system
configuration than NOMA. In conclusion, the hybrid NOMA
associated with the proposed RA schemes may constitute a
promising candidate for future wireless systems.

APPENDIX A: PROOF OF LEMMA 2

After some simplification steps, (29) can be equivalently
transformed to

R̃kn,mn
= akn,mn

1

ln 2
qkn,mn

+ log2 |hkn,mn
|2 − akn,mn

×

log2

 ∑
j∈Amn ,|hj,mn |>|hkn,mn |

eqj,mn |hkn,mn
|2 + 2σ2


+ βkn,mn

, (56)

which can be proved to be concave in q, due to the fact that
the log-sum-exp function is convex. Therefore, the sum rate
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Fig. 6. Comparison of EE of hybrid NOMA systems with that of OMA
systems, when using various transmit SNR values.

of the users on NOMA-SCs, i.e. the first sum term of the
numerator in the objective function (28), is concave in q. We
also note that (30) is actually an affine function in {qko,mo

}.
Hence, the numerator of the objective function (28) is concave
in q. Further, we can easily prove that the denominator of
(28) is convex in q. Let us now define the feasible sets
of the solutions as Ω = {q ∈ RK×1 |

∑
k∈Am

eqk,m ≤
Pm,∀m,

∑
m

∑
k

eqk,m ≤ P,∀m ∈ M, ∀k ∈ K}, which can

be found to be a convex set. Therefore, we conclude that,
the transformed problem P4 is a concave-convex fractional
programming problem, because that, the numerator and de-
nominator of the objective function are concave and convex
respectively, and the feasible set Ω is a convex set. Moreover,
we find that, the objective function in (28) is pseudo-concave,
since its denominator and the numerator are differentiable.
This implies that any local maximum is a global maximum and
that KKT conditions are sufficient to the maximum solution.

APPENDIX B: PROOF OF THEOREM 2
Let us first explain Algorithm 2 can derive a converged EE

value. In iteration i, we find the optimal solutionsQ(i) to Prob-
lem (P4) by solving Problem (P5), thereby deriving the EE
value of η̃(Q(i)) according to (28). As p(i)

k,m = eq
(i)
k,m ,∀k,m,

it finds out the EE value η(P(i)) according to (17). When
applying Theorem 1, we have the following result

η(P(i)) = η̃(Q(i)), i ≤ Imax (57)

which holds for γ(i)
k,m = γ̃

(i)
k,m,∀k,m.

Further, with the aid of interior point method, the global
optimal solution to the concave problem of (P5) can be found.
Therefore, the following result can be derived

η̃(q(i)) ≤ η̃(q(i+1)), i ≤ Imax. (58)

Known from (57) and (57), Algorithm 2 iteratively solves
Problem (P5) and updates the EE values, which can be
improved at each iteration and finally converges.

Since Problem (P5) is concave in (Q, φ), KKT conditions
are sufficient and necessary for the optimal solution. Set ν,

λk,m, where k ∈ K,m ∈M, and µ as the Lagrange multiplier,
which satisfy {ν, µ, λ̂m, λ̃k,m,∀k,m} ∈ R+,R+ ≡ [0,∞], the
Lagrangian function can be expressed as

L = −
∑
k∈Am

∑
m∈M

λ̃k,m
[
φ
(
P̃mink − eqk,m

)]
+

φ

 ∑
mn∈Mn,kn∈Amn

R̃kn,mn

(
Q̃, φ

)
+

∑
mo∈Mo,ko∈Amo

R̃ko,mo

(
Q̃, φ

)
− µ

φ
 ∑
m∈M

∑
k∈Am

e

q̃k,m
φ − P


− ν [φ( ∑

m∈M

∑
k∈Am

exp(
q̃k,m
φ

)

+Pc)− 1]−
∑
m∈M

λ̂m

φ
 ∑
k∈Am

e

q̃k,m
φ − P̂maxm


 . (59)

According to (59), we can derive the KKT conditions
for Problem (P5), which are omitted here due to the lack
of space. As calculated by Algorithm 2, the optimal solu-
tions of {Q̃∗, φ∗} can be obtained when solving Problem
(P5) at convergence, along with which, it finds the multi-
pliers {ν∗, µ∗, λ̂∗m, λ̃∗k,m,∀k,m} . Note that, the results of
{Q̃∗, φ∗, ν∗, µ∗, λ̂∗m, λ̃∗k,m,∀k,m} can satisfy the KKT condi-
tions for Problem (P5). Upon substituting P∗ = exp{Q∗/φ∗},
we can deduce the KKT conditions for Problem (P3). The
approximation in Theorem 1 is exact at convergence, it knows
{Q̃∗, φ∗, ν∗, µ∗, λ̂∗m, λ̃∗k,m,∀k,m} satisfies Slater conditions
for Problem (P3). Known from [33], KKT conditions are the
first-order necessary conditions for any maximum of Problem
(P3) if Slater’s constraint qualification satisfies. Hence, the
proof is completed.

APPENDIX C: PROOF OF PROPOSITION 1

To show the sequence of the objective values is non-
decreasing, it needs to first prove that, the optimal solutions
to Problem (P10) derived in iteration i of Algorithm 3 is a
feasible point of the problem in iteration i+ 1.

Let us assume the optimal solutions to Problem (P10)

are P(i) = {p∗k,m,∀k,m},T (i) = {t∗k,m,∀k,m},Θ
(i)
n =

{θ∗kn,mn
,∀kn,mn} for iteration i. The constraints in (50)

obtained at the optimum point of iteration i is written as

1

4

(
t∗kn,mn

+ θ∗kn,mn

)2 − θ∗kn,mn
− p∗kn,mn

|hkn,mn |2

− 1

4

[(
t
(i)
kn,mn

− θ(i)
kn,mn

)2

+ 2
(
t
(i)
kn,mn

− θ(i)
kn,mn

)
(
t∗kn,mn

− t(i)kn,mn
− θ∗kn,mn

+ θ
(i)
kn,mn

)]
≤ 0,

∀kn ∈ Amn
,∀mn ∈Mn. (60)

Before carrying out iteration i + 1, the parameters are
updated as t̃(i+1)

kn,mn
= t∗kn,mn

, θ̃(i+1)
kn,mn

= θ∗kn,mn
, ∀kn,mn. Let

us now proceed to iteration i+1. When replacing the variables
by the optimal solutions in iteration i, it is straightforward
that the constraints of (15), (16), (21), (43), and (46) can
be satisfied. Further, for constraint (50) in iteration i + 1,
upon substituting the updated parameters {t̃(i+1)

kn,mn
, θ̃

(i+1)
kn,mn

},
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it results in
1

4

(
t∗kn,mn

+ θ∗kn,mn

)2 − θ∗kn,mn
− p∗kn,mn

|hkn,mn
|2

− 1

4

[(
t∗kn,mn

− θ∗kn,mn

)2
+

2
(
t∗kn,mn

− θ∗kn,mn

) (
t∗kn,mn

− t∗kn,mn
− θ∗kn,mn

+ θ∗kn,mn

)]
(61a)

=
1

4

(
t∗kn,mn

+ θ∗kn,mn

)2 − θ∗kn,mn
− p∗kn,mn

|hkn,mn |2

− 1

4

(
t∗kn,mn

− θ∗kn,mn

)2
(61b)

≤ 1

4

(
t∗kn,mn

+ θ∗kn,mn

)2 − θ∗kn,mn
− p∗kn,mn

|hkn,mn
|2

− 1

4

[(
t
(i)
kn,mn

− θ(i)
kn,mn

)2

+ 2
(
t
(i)
kn,mn

− θ(i)
kn,mn

)
×(

t∗kn,mn
− t(i)kn,mn

− θ∗kn,mn
+ θ

(i)
kn,mn

)]
(61c)

≤ 0. (61d)

Above, (61b) is derived by replacing the parameters with the
solutions in iteration i. Then, in (61c), it employs the first-

order Taylor series approximation for
1

4

(
t∗kn,mn

− θ∗kn,mn

)2

near (t̃
(i)
kn,mn

, θ̃
(i)
kn,mn

) which is its upper bound. Finally, (61d)
is obtained by using the result in (60).

Henceforth, we prove that the optimal solutions obtained in
the ith iteration is a feasible point of Problem (P10) in the
(i + 1)st iteration. Thus, since Problem (P10) is a concave
problem, its objective value obtained in the (i+ 1)st iteration
is larger than or equal to the one derived in the ith iteration.
As a result, proposition 1 is proved.

APPENDIX D: PROOF OF PROPOSITION 2

Let V(i) = {P(i), T (i),Θ(i)} be the accumulation point of
the optimal solutions to Problem (P10) derived in iteration
i of Algorithm 3. Indicated by Proposition 1, we have that
V(i) → V∗ as i → ∞. It is noted that the original problem
of (P6) can be equivalently converted to problem (P9). Nev-
ertheless, when converting Problem (P9) to Problem (P10),
it employs the first-order taylor series to transform the non-
convex constraint of (45) to the convex constraint of (50). Note
that, in comparison with the non-convex function in (45), the
introduced convex upper bound in (48) has the same value
and gradient value at the point {V(i)} for any iteration of
Algorithm 3. Clearly, this property still holds as V(i) → V∗.
Henceforth, based on the above property, it can be shown that
this accumulation point V∗ also satisfies the KKT conditions
for Problem (P6).
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