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Abstract

Key to ensuring a successful tourism sector is timely policy making and detailed plan-
ning. National policy formulation and strategic planning requires long-term forecasts
at an aggregate level, while regional operational decisions require short-term forecasts,
relevant to local tourism operators. For aligned decisions at all levels, supporting fore-
casts must be ‘coherent’, that is they should add up appropriately, across relevant
demarcations (e.g., geographical divisions or market segments) and also across time.
We propose an approach for generating coherent forecasts across both cross-sections
and planning horizons for Australia. This results in significant improvements in fore-
cast accuracy with substantial decision making benefits. Coherent forecasts help break
intra- and inter-organisational information and planning silos, in a data driven fashion,
blending information from different sources.

Keywords: Cross-sectional aggregation, temporal aggregation, forecast combinations,
spatial correlations

1. Introduction and background

The tourism sector is of vital importance to Australia.1 In 2016-2017 tourism con-

tributed $55.3 billion to Australia’s economy, accounting for 3.2% of Australian GDP.

It is the sixth largest sector in Australia directly employing 598,200 persons, accounting

for 4.9% of the national workforce. Domestic tourism contributed an estimated $38.6

billion or approximately 70% of total tourism. Moreover, domestic consumers dispersed

outside capital cities, much more than international arrivals, visiting regional Australia

for 63% of their trips. This is extremely positive for the support and economic develop-

ment of smaller regional areas, among them Indigenous communities in remote areas,
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an integral part of Australian society (see Mahadevan, 2018; Abascal et al., 2016, and

references therein for studies related to Australian indigenous tourism).

Sustaining a healthy, diverse and dynamic tourism sector that can meet demand is

a very costly exercise. For example, in 2016-2017 there were 204 projects in the tourism

investment pipeline for Australia, valued at $37.8 billion across the whole country. Such

investment decisions to be successful require the support of accurate, detailed but also

coherent forecasts. Forecasts are coherent when the predicted values at the disaggre-

gate and aggregate scales are equal when brought to the same level. For example,

monthly predictions sum up to annual ones and similarly regional predictions are add

up to country level ones. This is an important qualifier for forecasts, so as to support

aligned decision making across different planning units and horizons. Otherwise, dif-

ferent decision making units plan on different views of the future. In this paper we

generate forecasts for Australian domestic tourism that are coherent across multiple

geographical divisions, but are also coherent across time, i.e., the planning horizon.

As is the case with many tourism sectors worldwide, Australian tourist flows can be

disaggregated geographically. A collection of time series adhering to such aggregation

constraints, is referred to as a ‘hierarchical time series’ (Chapter 10 of Hyndman and

Athanasopoulos, 2018, provides a detailed introduction to forecasting such structures).

For the case of Australian domestic tourism this is a naturally formed geographical

hierarchy. The most aggregate level of the hierarchy, referred to as level 0, comprises

the total aggregate flows at the national level for Australia. Level 1, comprises flows

disaggregated by the 7 states and territories, which are further disaggregated at level 2

into 27 zones and at level 3 into 76 regions. In total, the Australian tourism hierarchy,

based on the geographical divisions, is constituted by 111 series that record tourism

flows. These are summarised in Table 1. Table A.4 in the Appendix shows full details

of the Australian tourism geographical divisions.

Table 1: Number of time series per level of hierarchy.

Hierarchy Number of series

Level 0 (top-level) 1
Level 1 7
Level 2 27
Level 3 (bottom-level) 76

Total 111

With such a structure each time series represents a different geographical compo-
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Figure 1: Total domestic visitor nights in millions for selected geographical divisions of Australia. See
Table A.4 for further details.

nent of the tourism sector and hence they naturally vary in nature, both in terms of

scale, but also time series features. This is demonstrated in Figure 1. The top-left

panel shows total visitor nights, the proxy used in this paper for tourism flows, at the

aggregate national level. The first prominent feature of this aggregate series is the

strong seasonal component, with visitor nights spiking every January as this includes

the summer vacations in Australia. There is also a notable upward trend, starting from

2010 until the end of the sample. As we move down the hierarchy, these features become

less prominent. Although they may still exist, they are more challenging to identify and

model, as the signal to noise ratio of the series decreases. Therefore, some of the series

at Levels 2 and 3, illustrated at the bottom panels, show a lot more random variation

and less pronounced features compared to the levels above.

Generating accurate forecasts for each component of such hierarchy is key to suc-

cessful planning at all levels. Given that the data adheres to aggregation constraints,

i.e., the data by nature is coherent, it is necessary that forecasts also adhere to these.

Traditionally, in order to achieve coherent forecasts, such structures were forecasted
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by first selecting a specific level of aggregation, generating forecasts at that level and

then either: aggregating these up using a ‘bottom-up’ approach; disaggregating these

down using a ‘top-down’ approach; or using a combination of these and implementing a

‘middle-out’ approach. Athanasopoulos et al. (2009) provide a detailed discussion and

critical evaluation of the traditional approaches and their first implementation for fore-

casting tourism data. A later example of the traditional approach applied to tourism

data is by Wan et al. (2013), who analyse aggregate versus disaggregate forecasts for in-

ternational arrivals into Hong Kong. They consider alternative bottom-up approaches,

arguing that these take advantage of the heterogeneity across the disaggregate series,

and show that the traditional bottom-up approach is more accurate compared to di-

rectly forecasting at the aggregate level. A significant drawback of the traditional

approaches is that they use limited information from the data, as only one level of the

hierarchy is modelled and forecasted, ignoring valuable information from all other lev-

els. The deeper the hierarchy, i.e., the more levels of aggregation, the more information

is ignored. This also increases the model selection risk, where the modeller relies on a

single model for all forecasts, which may be misspecified and inaccurate (Kourentzes

et al., 2018). Finally, they also ignore any correlations across the series.

To overcome the limitations of the traditional approaches for forecasting hierarchical

times series the concept of forecast reconciliation has been developed over a sequence of

papers (see among them Wickramasuriya et al., 2018; Hyndman et al., 2011; Athana-

sopoulos et al., 2009). The idea of forecast reconciliation works in the following way.

First, a set of forecasts is generated independently for each time series in the structure.

These forecasts are referred to as ‘base’. Subsequently, base forecasts are reconciled so

that they become coherent, while also accounting for any correlations across the series.

The aforementioned papers show ample empirical evidence that forecast reconciliation

does not only guarantee coherent forecasts, but also that it improves forecast accuracy.

The flexibility of the approach is one of its main features. Generating base forecasts for

each series means that different models can be used for different parts of the hierarchy,

depending on the information set available. For example, for strategic decisions at the

national or state levels, causal models may be most suitable (Sagaert et al., 2018). At

these levels leading indicators, such as variables capturing economic conditions, future

advertising expenditure, etc., are available to policy makers. Exploring future scenar-

ios and the trickle down effect of these throughout the tourism sector is of interest.

For the levels below, with either limited information, or when capturing the effects of

explanatory variables becomes very difficult, due to the low signal-to-noise ratio, pure

times series approaches may be the preferable, if not the only, choice.
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Forecast reconciliation, as implemented by the papers above, will generate coher-

ent forecasts across a hierarchy spanning the cross-sectional dimension. For the case

of Australian tourism these forecasts will assist in aligning policy decisions across the

geographical divisions. In the temporal dimension, forecasts supporting decisions for

different planning horizons may also be generated using approaches that utilise dif-

ferent information sets. For example, long-term annual forecasts supporting strategic

decisions typically involve high level unstructured information from multiple sources

and judgement (Ord et al., 2017), in this context from tourism experts. An exam-

ple is the Tourism Forecasting Reference Panel comprising experts from industry and

government, that was established by Tourism Research Australia. On the other hand,

short-term monthly forecasts, supporting operational decisions, may be generated by

only considering past tourism flows.

Andrawis et al. (2011) find that combining forecasts from deseasonalised monthly

and annual series is beneficial for forecasting international tourist arrivals to Egypt.

Kourentzes et al. (2014) proposed using multiple temporal aggregation levels, instead

of a single one, as is the conventional time series approach. They introduce the Multi-

ple Aggregation Prediction Algorithm (MAPA) that uses multiple temporal aggregation

with univariate exponential smoothing forecasts and find that this approach generates

considerable forecast gains, particularly for long-term forecasts (further evidence by

Kourentzes and Petropoulos, 2016), while mitigating the model selection uncertainty

(Kourentzes et al., 2017). Athanasopoulos et al. (2017) extend this concept by intro-

ducing the notion of temporal hierarchies and forecast reconciliation in the temporal

dimension. Similarly to cross-sectional forecast reconciliation, base forecasts are first

generated independently for all temporal aggregation levels. Only levels that do not

introduce non-integer seasonality are retained. For example, using monthly data, fore-

casts are generated at the monthly, bi-monthly, quarterly, four-monthly, semi-annual

and annual frequencies. The processes that generate these forecasts capture different

features of the times series as these are strengthened or attenuated across the different

temporal aggregation levels. Figure 2 plots the annual view of the series in Figure 1 and

demonstrates that the trending behaviour of the series becomes even more apparent, as

any seasonality is filtered out and some of the noise is smoothed by the non-overlapping

temporal aggregation.

The base forecasts are then reconciled, resulting to coherent forecasts across all fore-

cast horizons and all temporal aggregation levels. Coherent forecasts across all horizons

will lead to aligned decisions at different planning horizons. For example, the short-run

seasonal variation which guides staffing for seasonal planning will be aligned with the
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Figure 2: Annual total domestic visitor nights in millions for selected geographical divisions of Aus-
tralia. See Table A.4 for further details.

longer-term trends which guide staff training. A considerable difference between MAPA

and forecasting using temporal hierarchies is that the latter is independent of forecasting

methodology and can incorporate statistical forecasts, generated using various methods

and information sources, as well as expert judgement.

Both cross-sectional and temporal forecast reconciliation approaches have shown

substantial forecast improvements empirically. A critical but intuitive reason for this im-

provement is that forecast reconciliation methods are forecast combination approaches

dealing with parameter estimation errors and model misspecification. Forecast combi-

nations have been regarded to be beneficial, as they reduce error variance (see for exam-

ple Kourentzes et al., 2018; Barrow and Kourentzes, 2016; Elliott and Timmermann,

2013; Winkler and Clemen, 1992; Bates and Granger, 1969). Forecast combinations

have also been shown to be successful within the tourism literature (see for example

Wan and Song, 2018; Shen et al., 2011; Coshall and Charlesworth, 2011).

Although the appeal of cross-sectionally or temporally coherent forecasts, for deci-

sion making and improving forecast accuracy is evident, these approaches have so far
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only been used disjointedly. This introduces a key limitation. For example, considering

forecasting tourism flows, there is limited use for high-frequency forecasts at a very

aggregate geographical level. That could be weekly forecasts at the national level for

Australia, if the cross-sectional reconciliation was done on weekly sampled series. On

the other hand, one of the outcomes of the application of temporal forecast reconcili-

ation could be very long-term forecasts at a very disaggregate level. Again, these are

potentially of limited use to the decision makers of that level. Therefore, although

using either cross-sectionally or temporally coherent forecasts offer benefits to decision

making, not all outputs from these are directly useful. One would have to post-process

forecasts further, for example by combining together multiple long-term disaggregate

regional of temporally reconciled forecasts to produce long-term total tourism demand

forecasts, which would then break the desired coherence across all levels and time pe-

riods.

In this paper we address this problem and propose a framework to generate cross-

temporally coherent forecasts, supporting all levels of the hierarchy with short- to long-

term forecasts. The outcome is a ‘single number’ forecast, where all decisions makers

have a common view of the future, with apparent benefits for aligning decisions. Fur-

thermore, we demonstrate empirically that cross-temporal reconciliation offers further

accuracy gains to either cross-sectional or temporal reconciliation, as the forecasts are

exposed to the complete information available to the problem domain.

The rest of the paper is structured as follows. Section 2 presents key concepts and

insights of cross-sectional and temporal forecast reconciliation followed by our proposed

approach for achieving cross-temporal forecast reconciliation. Section 3 presents the

empirical application results based on Australian tourism flows and Section 4 discusses

the managerial implications of the cross-temporally coherent forecasts and concludes.

2. Methodology: cross-temporal forecast reconciliation

As discussed in the introduction, forecast reconciliation so far has been applied

to either the cross-sectional or temporal dimension. In this section we extend these

approaches in order to achieve reconciliation in both dimensions. We start by presenting

the general framework of reconciliation avoiding reference to cross-sectional or time

indices where possible. We then discuss specific issues and solutions for each of these

dimensions and present a process achieving reconciliation across both dimension. We

refer to this as cross-temporal reconciliation.

For simplicity we demonstrate the methodology using the small hierarchy of Figure
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3. We label as yTot the observation at the most aggregate (Total) level; and as yj the

observation corresponding to node j below the total. Aggregation constraints dictate

that:

yTot = yX + yY , (1)

= yXX + yXY + yY X + yY Y , (2)

yX = yXX + yXY , (3)

yY = yY X + yY Y . (4)

There are two important dimensions in a hierarchical setting. We denote as m the

number of nodes in the bottom of the hierarchical tree, referred to as the bottom-level

of the hierarchy; and as n the total number of nodes on the tree. In this simple example

n = 7 and m = 4.

Total

X

XX XY

Y

YX YY

Figure 3: A two-level hierarchical tree diagram.

Stacking all the observations of the hierarchy in a n-dimensional vector

y = (yTot, yX , yY , yXX , yXY , yY X , yY Y )′, and similarly the bottom-level observations in

an m-dimensional vector b = (yXX , yXY , yY X , yY Y )′ we can write

y = Sb,

where

S =


1 1 1 1

1 1 0 0

0 0 1 1

Im

 (5)

has dimension n×m and is referred to as the ‘summing’ matrix. Im is a m-dimensional

identity matrix. S maps the hierarchical structure, where from the bottom level b

we can construct the complete hierarchy y. Observe that S captures the aggregation
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constraints within the hierarchy, reflected in the linear summations of the bottom-level

observations.

The concept of forecast reconciliation starts by first generating an initial set of

forecasts independently for each node in the hierarchy, referred to as ‘base’ forecasts.

We denote these as ŷh, a set of h-step ahead forecasts stacked in the same order as the

data y. In general base forecasts will not be coherent. For example, the base forecasts

generated for each series for the simple hierarchy of Figure 3 will in general not adhere

to the aggregation constraints of equations (1)-(4).

Forecast reconciliation of the base forecasts is achieved by

ỹh = SGŷh, (6)

where G maps the base forecasts into the reconciled bottom-level ones and S sums

these up to a set of coherent forecasts ỹh. SG can be thought of as a reconciliation

matrix, it takes the incoherent base forecasts, of all levels, and reconciles them. It is

apparent that G linearly combines all ŷh to the reconciled bottom level forecasts, hence

these blend information from all levels. A major drawback of traditional approaches

is that the G used only considers information from a single level. There is now ample

empirical evidence showing that using the full information set has substantial benefit

in forecast accuracy (see for example Athanasopoulos et al., 2017; Wickramasuriya

et al., 2018, and references therein). Gamakumara et al. (2018) also present theoretical

justifications. More importantly any decisions based on the reconciled forecasts have

the ability to use all information available at different parts of the hierarchy. For

example, as argued before, the top and the most disaggregate levels of the hierarchy

have different information available, with the later being very close to the customer,

and the former having a bird’s-eye view. Therefore, the identification of G is critical

for the success of hierarchical forecasting.

Wickramasuriya et al. (2018) show that

G = (S′W−1
h S)−1S′W−1

h (7)

minimises the tr[SGWhG
′S′] subject to SGS = S, where SGWhG

′S′ = Var(y − ỹh),

the variance covariance matrix of the h-step ahead coherent forecast errors and

Wh = E(êhêh)′ is a positive definite covariance matrix of the base forecast errors

êh = y − ŷh. The method is referred to as MinT as it minimises the trace of the covari-

ance of the h-step ahead coherent forecast errors. The significance of the SGS = S
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constraint is that the resulting coherent forecasts are unbiased, as long as the base

forecasts that were used are unbiased.

A challenge with the G matrix of the MinT approach specified in (7) is that it

requires an estimate of Wh, which is of dimension n×n and hence this can be potentially

very large. A simplifying assumption imposed by Hyndman et al. (2011), and also

implemented by Athanasopoulos et al. (2009), was to set Wh = khIn for all h, and

kh > 0 is a proportionality constant. This simplifying assumption has been shown to

work well in practice (as shown in the aforementioned references) and also makes the

approach trivial to use, as no further estimation of a covariance matrix is required and G

depends only on S that is always known. However, it does ignore valuable information

about the scale differences (captured by the variances) and the interrelations (captured

by the covariances) of the observations within the hierarchical structure.

In this paper we consider three alternative estimators. The first two are diagonal

covariance estimators accommodating for the scale differences across the hierarchical

levels. The third one is a shrinkage estimator accommodating for both. Note in the

estimators that follow kh is a proportionality constant and does not need to be esti-

mated.

Variance scaling

Set Wh = khdiag(Ŵ1) for all h where kh > 0 and

Ŵ1 =
1

T

T∑
t=1

ete
′
t,

where et are in-sample residuals of the base forecasts stacked the same way as the

data. This specification scales the base forecasts using the variance of the residuals.

For example, the resulting estimator for the simple hierarchy of Figure 3 is provided in

Figure 4a, where σ̂2
j are the estimated variances of the in-sample residuals corresponding

to each time series. We refer to this as Var in the results that follow.

Structural scaling

Set Wh = khΛ for all h, where kh > 0, Λ = diag(S1), and 1 is a unit vector of

dimension n. This specification assumes that each of the bottom-level base forecasts

has errors with equal variance kh and these are uncorrelated between nodes. Therefore,

higher level error variances are the sum of the error variances of the lower level series

that belong to that part of the hierarchy. Hence, each element of the diagonal matrix

contains the number of forecast error variances contributing to each node. Figure 4b
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provides the resulting matrix for the simple hierarchical structure of Figure 3, where,

for instance, the 4 at the top level signifies that four bottom level series are used to

construct it. This estimator only depends on the structure of the aggregations, and not

on the actual data. It is therefore referred to as structural scaling and we denote this

as Struc in the results that follow.

Applying structural scaling is particularly useful in cases where residuals are not

available, and so the variance scaling cannot be applied; for example, in cases where

the base forecasts are generated by judgemental forecasting.

A shrinkage covariance estimator for MinT

Set Wh = khŴ
∗
1,D for all h, where kh > 0 and Ŵ ∗

1,D = λŴ1,D + (1 − λ)Ŵ1 is

a shrinkage estimator with diagonal target Ŵ1,D, a diagonal matrix comprising the

diagonal entries of Ŵ1, and λ the shrinkage intensity parameter. Schäfer and Strimmer

(2005) proposed to set the shrinkage intensity parameter to

λ̂ =

∑
i 6=j Var(r̂ij)∑

i 6=j r̂
2
ij

,

where r̂ij is the ijth element of R̂1, the 1-step-ahead in-sample correlation matrix. As the

resulting shrinkage estimator is parametrised in terms of variances and correlations it is

a scale and location invariant shrinkage estimator. The effect is to shrink off-diagonal

elements of Ŵ1 towards zero, while diagonal elements (variances) remain unchanged.

Therefore, in contrast to the previous variance and structural scaling estimators, this

allows for strong interrelations between time series in the hierarchy to be captured,

while the shrinkage alleviates the complexity of the estimation due to the size of Wh.

Figure 4c exemplifies this for the hierarchy of Figure 3. The diagonal elements are

the same as for the variance scaling case (Figure 4a), while the off-diagonal elements,

ρ̂ij, are the resulting empirical covariances as shrunk towards zero, according to the

prescribed shrinkage intensity parameter λ̂. We denote the results associated with this

estimator as MinT.

2.1. Cross-sectional forecast reconciliation

In the cross-sectional setting the nodes of a hierarchical tree, such as the simple tree

in Figure 3, represent observations at time t of a collection of time series connected by

the aggregation constraints. The base forecasts ŷh are h-step ahead forecasts for each

time series, which in this context may represent different geographical regions, market

segments, etc.
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(a) Variance scaling
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(b) Structural scaling
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
(c) Shrinkage MinT

Figure 4: Examples of the three alternative estimators for Wh for the hierarchy in Figure 3.

In this setting, there are two main challenges: (i) the size of the cross-sectional

dimension of the hierarchy; and (ii) the heterogeneity of the series across, but also

within levels. The size relates directly with estimation of Wh, and therefore very large

hierarchies, potentially with limited history, introduce potential estimation and compu-

tational cost challenges. Given that the time series across each level can represent very

different entities, the expectation is that there will be substantial heterogeneity between

them. Assuming a common variance across all bottom-level series is not suitable and

therefore we choose to not apply structural scaling. Hence, in the cross-sectional setting

we only apply variance scaling and the shrinkage MinT estimator for reconciling the

base forecasts.

2.2. Temporal forecast reconciliation

Athanasopoulos et al. (2017) proposed that in analogy to cross-sectional hierarchies,

one can specify hierarchies that span the time dimension and are therefore referred to

as ‘temporal hierarchies’. The bottom-level of a temporal hierarchy comprises a time

series observed at its highest frequency. Aggregation levels above are generated by non-

overlapping temporal aggregation for all frequencies that do not introduce non-integer

seasonality. For example, the hierarchical tree of Figure 3 can be seen to represent

a temporal hierarchy constructed for a quarterly series as shown in Figure 5. The

bottom-level comprises of the four quarterly observations (Qj, with j = 1, . . . , 4), the
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middle level of two semi-annual observations (SAj, with j = 1, . . . , 2) and the top level

a single annual observation (A).

A

SA1

Q1 Q2

SA2

Q3 Q4

Figure 5: A temporal hierarchy for quarterly data. Qj with j = 1, . . . , 4, denote quarters, SAj with
j = 1, 2, semi-annual observations, and A the annual observation.

Base forecasts for temporal hierarchies are generated for each time series across the

temporal aggregation levels, for forecast horizon h. Let h∗ = dh/M1e be the horizon

at the most aggregate (annual) level, where M1 is the number of observations within

a year at the data sampling frequency and dxe is the ceiling function that returns the

least integer greater than or equal to x. Then, h∗M` steps ahead forecasts are generated

for each temporal aggregation level, where M` depicts the number of observations per

year for aggregation level `. Using as an example the temporal hierarchy in Figure 5

and assuming that the target forecast horizon is h = 6 quarters, then M1 = 4 (4

quarters in a year), h∗ = d6/4e = 2 (forecast two complete years) and for the quarterly,

semi-annual and annual levels h∗M1 = 2·4 = 8, h∗M2 = 2·2 = 4, h∗M3 = 2·1 = 2 steps-

ahead forecasts are generated respectively. Therefore, when forecasting with temporal

hierarchies we need to produce forecasts for complete hierarchical trees and then use as

many as needed for the forecasting problem at hand.

In contrast to the cross-sectional case, since the forecasts for each level are for the

same series, assuming homogeneous forecast errors within each level is reasonable. On

the other hand, following the arguments by Athanasopoulos et al. (2017), since the

covariances in Wh would be between series of different sampling frequencies due to the

temporal aggregation, we do not implement the MinT shrinkage estimator. We refer

to forecasts generated using temporal reconciliation as THieFs (Temporal Hierarchy

Forecasts).

2.3. Cross-temporal forecast reconciliation

Intuitively, one could apply temporal and cross-sectional forecast reconciliation se-

quentially, aiming to achieve cross-temporally coherent forecasts. However, this does
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not guarantee the desired outcome. Suppose that for each node of a cross-sectional

hierarchy, we consider a temporal hierarchy and generate THieFs for each node as base

forecasts. We illustrate this cross-temporal combination in Figure 6 by combining the

trees of Figures 3 and 5. Using reconciliation matrix SG, where G is specified as in

(7), we can apply cross-sectional reconciliation for each node across the temporal hier-

archies. However, although the summing matrix S will be common across each node,

Wh will not, as the in-sample residuals differ across these. Hence, although we will

achieve cross-sectional reconciliation, we will no longer have temporally coherent fore-

casts within each cross-sectional node. In the literature there have been some attempts

to apply cross-sectional and temporal hierarchical forecasting sequentially (for example,

see Spiliotis et al., 2018), which due to the sequential nature do not ensure coherence

across all dimensions.

In principle it is possible to design a summing matrix S that would simultaneously

consider both dimensions of reconciliation. However, its size will become prohibitively

large very quickly. Each element in the cross-sectional summing matrix will need to be

replaced by the complete temporal summing matrix. Furthermore, the estimation of the

cross-temporal Wh will not be trivial. First its size will be equally large. Furthermore,

as we argue above, the shrinkage MinT estimator is not suitable for the temporal

dimension, and the structural scaling estimator is not suitable for the cross-sectional

dimension. Hence designing an estimator to fully capture scaling issues and cross-

sectional interdependencies is not straight forward. Instead, we propose an alternative

approach to achieve cross-temporally coherent forecasts.

Given THieFs, which are independently generated for each node of the cross-

sectional hierarchy, we use (7) and generate k cross-sectional reconciliations, setting

Wh = Ŵh,`, for each ` = 1, . . . , k, where k denotes the number of temporal aggregation

levels. This results in a respective reconciliation matrix SG` for each temporal aggre-

gation level. Averaging across these we compose a consensus reconciliation matrix SG,

where G = 1/k
∑k

`=1G`, capturing the reconciliation consensus across all k temporal

aggregation levels.

This fairly simple approach has the benefit of using equal weights to obtain G,

which eliminates any further estimation issues. Furthermore, using fixed weights has

been shown to result in reliable and accurate forecast combinations (Smith and Wallis,

2009). The outcome are cross-temporally reconciled forecasts, which are coherent across

both dimensions, at all scales. In the empirical evaluation that follows we denote as Var-

A and MinT-A the cross-temporally coherent forecasts using respectively variance and

MinT scaling in the cross-sectional dimension. We provide evidence of the magnitude
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of the coherency violation that occurs when G is not used.
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Figure 6: A two-level cross-sectional hierarchy with base THieFs, assuming quarterly data.

3. Empirical Application

3.1. Case study data

We consider ‘visitor nights’, the total number of nights spent by Australians away

from home, as a proxy of domestic tourism flows.2 The total number of time series

considered are 111, and their split in the different levels of the hierarchy is summarised

in Table 1. Total details of the geographical divisions are shown in Table A.4. Figure 1

illustrates example series from different levels of the hierarchy, where it can be observed

that series can exhibit local trend and seasonality. The data are monthly and span the

period January 1998 to December 2017.

We retain the last 72 months (6 years) as a test set, which will be used to assess the

performance of the competing forecasts. We choose a relatively long test set to facilitate

the use of rolling origin evaluation. This allows us to generate a distribution of forecast

errors for each case, so as to increase the confidence in our findings. For each time

2The data come from the National Visitor Survey, managed by Tourism Research Australia, and
are collected throughout the year using computer assisted telephone interviews from nearly 120,000
Australian residents aged 15 years and over.
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series, we consider 12-months ahead forecasts. The rolling origin is implemented in the

following way. For each forecast origin, all models for the base forecasts are re-specified,

i.e. re-selected and re-optimised, and the corresponding forecasts are generated and

reconciled. The training data are expanded by one observation and the process is

repeated for the next forecast origin, until the complete test set is exhausted. Therefore,

for each time series there are q = 61 forecast origins. From each, we generate forecasts

and calculate forecast errors.

3.2. Forecasting models

We consider two alternative forecasting model families for generating the indepen-

dent base forecasts, namely the ExponenTial Smoothing (ETS) and AutoRegressive

Integrated Moving Average (ARIMA) families. Both model families have been shown

to perform well on tourism data (Athanasopoulos et al., 2011).

ETS captures time series as the total of four fundamental time series components:

level, trend, seasonality and the error process. These components can interact in an

additive or multiplicative way, in principle producing up to 30 different models, some

of the most well known ones being the local level (single exponential smoothing), local

trend (Holt’s exponential smoothing) and the trend-seasonal (Holt-Winter’s exponential

smoothing) models. ETS is widely used in research and practice, due to its relatively

good forecast accuracy, simplicity and minimal data requirements (Gardner Jr, 2006).

Hyndman et al. (2002) embedded exponential smoothing in the state space modelling

framework, providing the statistical rationale for automatic parameter specification and

model selection, greatly improving the automation and accuracy of ETS (Hyndman

et al., 2008).

The complete ETS taxonomy includes 30 alternative model specifications that cor-

respond to archetypical time series that cover a very wide range of real time series.

Hyndman et al. (2006) shows that 11 of these specification are unstable, limiting their

usefulness and Hyndman et al. (2018a) further restrict models that have multiplicative

trends, on grounds of weak forecasting performance, leaving the 15 potential models

listed in Table 2. Given the widespread use of ETS, we refer the reader to standard

textbooks for the formulation of the models (Hyndman et al., 2008; Ord et al., 2017;

Hyndman and Athanasopoulos, 2018).

ARIMA model time series as a collection of autoregressive and moving average com-

ponents, where the former regress the forecast target on its past realisations, and the

latter regress the forecast target on past errors, once the time series has been differenced

as needed to become stationary. Intuitively, ARIMA models aim to capture habitual el-
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Table 2: Considered ETS models

Model Component
Specification

1 2 3/4 5/6 7 8 9/10 11/12 13 14/15

Error

Additive
Multiplicative

Trend

None
Additive/Damped

Season

None
Additive
Multiplicative

ements of demand in time series, through the autoregressive components, while smooth-

ing out the inherent noise in the data, through the moving average components. Again,

we refer the reader to standard textbooks (cited above) for the formulation of ARIMA

models. Following the methodology proposed by Hyndman and Khandakar (2008) for

each time series we identify the appropriate ARIMA components. This involves first

selecting the orders of seasonal and non-seasonal integration and then selecting seasonal

and non-seasonal ARMA components based on a model selection criterion.

For each time series, at each forecast origin, the appropriate ETS and ARIMA

models are chosen by minimising the Akaike Information Criterion corrected for small

sample sizes (AICc, Burnham and Anderson, 2003), as implemented in the forecast

package (Hyndman et al., 2018a) for R (R Core Team, 2018). Although ETS and

ARIMA model families have some commonalities, generally these two families perform

differently. First, although additive ETS models are encompassed by ARIMA, its mixed

and multiplicative model forms are not. Second, ARIMA can potentially capture higher

order time series dynamics than ETS. Third, the different model specification strate-

gies can result in substantially different forecasts, even if in principle both families

contain some mathematically equivalent models. Therefore, we use both families to

generate base forecasts so as to investigate how enforcing forecast coherence influences

the outcome.

Although we focus on two univariate families of models, a major advantage of the

reconciliation approaches, is that the model choice or the forecast generating mechanism
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for each series or each level of the hierarchy is completely flexible. For example, it may

be desirable that for aggregate levels such as national or state tourism flows or for the

quarterly frequency for which economic predictors are available, regression type models

incorporating predictors or even multivariate models may be a better choice.

To generate cross-temporally coherent forecasts, based on the base ETS and ARIMA

predictions, we expand on the base implementations of cross-sectional and temporal

reconciliations available in the hts (Hyndman et al., 2018b) and thief (Hyndman and

Kourentzes, 2018) packages in R.

3.3. Evaluation setup

To track the forecast accuracy we use the Average Relative Mean Squared Error

(AvgRelMSE). For each time series we calculate

MSEi,t =
1

h

h∑
j=1

(yi,t+j − ŷi,t+j)
2,

RelMSEi,t =
MSEA

i,t

MSEB
i,t

,

where yi,t+j and ŷi,t+j are the observed value and forecast for time series i in time period

t+ j, from forecast origin t and for forecast horizon j = 1, . . . , h. We need to aggregate

the accuracy measurement across multiple time series and therefore it is important to

remove any scale and unit information from MSE. We construct RelMSEi,t as the ratio

of MSEA
i,t of the forecast of interest over a benchmark MSEB

i,t. As a benchmark we use

the incoherent base forecast for each time series, that is the selected ETS (or ARIMA)

forecast for that time series and forecast origin, prior to any hierarchical reconciliation.

We aggregate across all forecast origins using the geometric mean

AvgRelMSEi =

(
q∏

t=1

RelMSEi,t

)1/q

, (8)

where q is the number of forecast origins. The AvgRelMSE has very intuitive inter-

pretation, where if it is smaller than 1, then the evaluated forecast is better than the

benchmark by (1−AvgRelMSE)100%. Furthermore, AvgRelMSE has several attractive

statistical properties, in being calculable in a very wide variety of scenarios and being

symmetric to over and under-forecasting (Davydenko and Fildes, 2013).

To assess whether the reported forecast error differences are significant or not, we

use the non-parametric Friedman and post-hoc Nemenyi tests (Hollander et al., 2013).
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The Friedman test first establishes whether at least one of the forecasts is significantly

different from the rest. If this is the case, we use the Nemenyi test to identify groups of

forecasts for which there is no evidence of statistically significant differences. The advan-

tage of this testing approach is that it does not impose any distributional assumptions

and does not require multiple pairwise testing between forecasts, which would distort

the outcome of the tests.We use the implementation of the tests available in the tsutils

(Kourentzes, 2019) package for R.

3.4. Results

Table 3 presents the summary AvgRelMSE results, over all forecast origins, for both

ETS and ARIMA forecasts. We provide results for the complete hierarchy and the

bottom-level time series separately, where the errors across time series are summarised

using the geometric mean. The results are grouped by reconciliation method. At each

column, the lowest error is highlighted in boldface. Figure 7 illustrates the forecast

errors as different reconciliation methods are used. In both panels (a) and (b), which

present the results for ETS and ARIMA respectively, the proposed cross-temporally

coherent Var-A and MinT-A are highlighted with light grey background.

Table 3: AvgRelMSE for ETS and ARIMA for ‘All’ 116 and only the 76 ‘Bottom’ level series.

Temporal Cross-sectional
ETS ARIMA

All Bottom All Bottom

None

None 1.000 1.000 1.000 1.000
Var 0.992 0.986 0.968 0.962
MinT 0.982 0.976 0.934 0.930

Var-A 0.992 0.986 0.970 0.963
MinT-A 0.986 0.981 0.944 0.938

Var

None 0.982 0.978 0.969 0.971
Var 0.976 0.967 0.944 0.939
MinT 0.969 0.961 0.919 0.916

Var-A 0.976 0.967 0.945 0.939
MinT-A 0.968 0.961 0.921 0.919

Struc

None 0.983 0.979 0.969 0.972
Var 0.977 0.968 0.945 0.939
MinT 0.971 0.962 0.921 0.917

Var-A 0.977 0.968 0.945 0.940
MinT-A 0.970 0.963 0.923 0.920
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First, we focus on the case of no-temporal reconciliation. The case of no reconcil-

iation (None), where forecasts are produced independently and there is no guarantee

of coherence is reported in the first row of Table 3. As this is used to scale the errors,

across all columns its value is equal to 1. This is the worst performing case, demon-

strating that any partial or complete coherence always benefits forecast accuracy. The

next two results refer to the cross-sectionally reconciled forecasts using Var and MinT

scaling, with the later performing best across both ETS and ARIMA forecasts, for both

the bottom-level and the complete hierarchy. This is due to Var ignoring any interrela-

tionships between the cross-sections of the hierarchy. In this case, Var-A and MinT-A

do not achieve cross-temporal coherence, as the forecasts are not temporally coherent.

Due to this, their performance is somewhat inferior to Var and MinT respectively.

Next, we analyse the results when the forecasts are temporally reconciled, using

Var scaling. It is interesting to observe that the temporal coherence, achieved by

temporal reconciliation, decreases forecast errors almost uniformly, irrespective of the

cross-sectional reconciliation used. This is evident in Figure 7. For the temporally

coherent forecasts, when no cross-sectional reconciliation is applied, we observe the

lowest accuracy within the group. The differences between Var and Var-A, and MinT

and MinT-A, are marginal, once the starting point is temporally reconciled forecasts.

Across the board, the MinT variants perform better than the Var variants. The re-

sults are very similar when the temporal reconciliation uses structural scaling, albeit

marginally inferior to the Var results.

Figure 8 helps us visualise the results of the statistical comparisons between the

alternative forecasts. The figure has four panels: (a) and (c) provide the results for

ETS across all levels of the hierarchy and for the bottom-level only; and (b) and (d)

provide the respective results for ARIMA forecasts. On the vertical axis of each panel,

alternative forecasts are sorted according to their mean MSE rank. Hence, the top

row shows the best performing cross-temporal combination. For example panel (c)

shows that, MinT-A-Var, i.e., the combination of Mint-A for cross-sectional and Var

for temporal reconciliation produces the most accurate forecasts. On the horizontal

axis the forecasts are grouped by the temporal reconciliation approach.

The black cell in each row indicates the tested forecast, while any blue cells in

the corresponding row or column indicate forecasts for which there is no evidence of

statistically significant differences, at a 5% level. Hence, any filled cells in the cor-

responding row or column indicate forecasts that can be grouped together as having

similar forecast accuracy in statistical terms. For example, in panel (c) the first row

tests the MinT-A-Var forecasts. These are found to be statistically indifferent to MinT-
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Figure 7: AvgRelMSE results for ETS and ARIMA. Methods are grouped per temporal reconciliation
type. Methods with light greyed background generate cross-temporally coherent forecasts.

Var and MinT-Struc. Note that the columns shaded in light grey correspond to the

cross-temporally coherent forecasts (Var-A and MinT-A).

First, we explore the results for ETS presented in panels (a) and (c). Across all levels

of the hierarchy MinT-A-Var is performing significantly better than all alternatives.

This is followed by MinT-Var, which is grouped together with MinT-A-Struc. When

we solely consider bottom-level series in panel (c), we observe that MinT-A-Var, MinT-

A-Struc and MinT-Var are grouped together as top performing approaches. On the

other extreme, not implementing any reconciliation is significantly worst than all other

forecasts, across the board. Analysing the results for ARIMA, panels (b) and (d),

we observe that for both the bottom-level series and the complete hierarchy, MinT-A-

Var, MinT-Var, MinT-A-Struc and MinT-Struc belong to the top performing group of
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Figure 8: Nemenyi test results at 5% significance level. Methods are sorted vertically according to
MSE mean rank. Horizontally they are grouped by modelling regime. At each row, the test method
is in black and any methods with no evidence of significant differences are in blue. The light grey
columns refer to cross-temporally consistent methods, Var-A and MinT-A.

forecasts. Similarly to the ETS case, using no reconciliation results in a significantly

worse performance.

Note that for both ETS and ARIMA, the Var and Var-A variants for the cross-

sectional reconciliation are similarly grouped. At this point we can draw some con-

clusions with respect to the performance of the different forecasts. Overall, temporal

reconciliation provides substantial accuracy benefits over forecasts that are not tem-

porally coherent, irrespectively of whether Var or Struc is used. The benefits are not

restricted to accuracy gains, but also to aligned plans across different horizons, as short-

and long-term forecasts are coherent. Cross-sectional reconciliation offers further ad-

vantage, with MinT being more accurate than Var. The cross-temporally coherent

MinT-A forecasts are either best overall, or within the top performing group of fore-

casts, depending on the case. Therefore, the proposed cross-temporal schemes offer

small, yet significant accuracy gains. However, a paramount of cross-temporally coher-
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ent forecasts is that across all levels and scales of decision making, from the operational

micro to strategic macro level, from the short-term to the long-term, from the disaggre-

gate regional to the aggregate country level, all decision makers have a coherent view

of the future and are therefore able to make consistent decisions and implement aligned

policy.

Figure 9 plots the magnitude of the temporal reconciliation errors for ETS forecasts

from a single forecast origin across all time series of the hierarchy, for the various

reconciliation approaches. A temporal reconciliation error is defined and calculated as

the difference between an aggregate forecast at the top (annual) temporal aggregation

level and the sum of the bottom-level (monthly) forecasts. The columns of Figure 9

show the reconciliation errors across each of the 111 series, across the four cross-sectional

hierarchical levels.

In the top panel, no temporal reconciliation is applied and we observe discrepancies

across all series. Note that cross-sectional reconciliation, using either Var or MinT,

somewhat mitigates these differences. When temporal reconciliation is applied, using

either Var or Struc scaling shown by the middle and bottom panels, the reconciliation

errors become much smaller. This is evident by the significant decrease in the scale of

the legend on the right side of the panels.

When no cross-sectional reconciliation is applied, as shown in the first row of the

middle and bottom panels, temporal reconciliation holds. However, when applying

cross-sectional reconciliation using either Var or MinT, the resulting forecasts become

decoherent, with the temporal coherence violated so as to satisfy cross-sectional co-

herence. MinT-A and Var-A, which both offer cross-temporal coherence, avoid this

problem and the reconciliation errors remain zero, for all time series. Figure 9 is illus-

trative of the behaviour of the errors for other forecast origins and for ARIMA.

4. Conclusions

It is worthwhile to reflect on the development of hierarchical forecasting over the

recent years. Athanasopoulos et al. (2009) demonstrated the benefits of hierarchical

approaches for forecasting tourism flows. In that evaluation traditional approaches,

such as bottom-up and top-down, that lacked the theoretical grounding of current ap-

proaches, performed competitively with the then fledgling reconciliation framework used

here, and offered only cross-sectional coherence. With the development of the method-

ology, and specifically with the work by Wickramasuriya et al. (2018) that introduced

MinT and its theoretical grounding, substantial accuracy gains became achievable. In-
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Figure 9: Reconciliation errors after cross-sectional reconciliation, for a single series and forecast
origin, between temporally disaggregate and aggregate views of the data, for the different temporal
reconciliation methods. Time series are ordered in the horizontal axis as in Table A.4.

deed, in our evaluation, MinT provides the best accuracy. This is due to its blending

of information available at different levels of the hierarchical tree and capturing any

interconnections between the time series.

Another substantial innovation came with the idea of temporally reconciling fore-

casts, introduced by Kourentzes et al. (2014) and generalised in the THieF framework

by Athanasopoulos et al. (2017). This added a new dimension of forecast coherence,

aligning different planning levels and forecast horizons. In our empirical results, we

attributed to temporal reconciliation, irrespective of the approach followed, the biggest

gains in accuracy. It should be noted that THieF and MinT share a common mathe-

matical framework, originally introduced by Hyndman et al. (2011) and subsequently

refined towards these two directions: cross-sectional and temporal reconciliation, nowa-

days both routinely offering substantive and consistent forecast improvements. Yet, the
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two approaches had remained so far completely disjointed.

This paper proposes a solution to the ‘decoherence’ between the two reconciliation

approaches, offering cross-temporally reconciled forecasts. We found that this offered

small, yet statistically significant, accuracy gains. This is to be expected, as the tem-

poral and cross-sectional reconciliations had already separately eliminated many of the

incoherences of the forecasts. Nonetheless, as these reconciled forecasts had access

to information only across a single dimension of the hierarchical tree, they could not

achieve the maximum benefits. However, we argue that the accuracy improvements are

in fact secondary to the managerial implications.

Cross-temporal reconciliation offers a single view of the future to all decision mak-

ers, removing any organisational friction from misaligned decisions. More crucially, it

offers a data driven way to break within and between organisations information silos.

Cross-temporal reconciliation blends information from different sources, levels of the

hierarchy and scales. Base forecasts can be operational, short term, taking into con-

sideration information directly sourced from consumers, or long term strategic ones

for a whole company, sector or country, taking into consideration macro-economic and

soft-information, such as technological innovation, that is infeasible to consider for very

detailed disaggregate forecasts, as well as all in-between information sources. All these

forecasts, conditional on different information, and generated with a variety of statis-

tical and judgemental methods, can be blended together with the proposed approach

to provide a common view of a ‘single-number forecast’. If decisions and plans are

based on this common view of the future, these will be already aligned, even with lim-

ited interaction between different functions of an organisation, or actors in a sector,

here tourism. This is achieved without requiring changing the organisational culture

or the collaboration between different allied actors in a sector, which could be the dif-

ferent tiers of a supply chain, or private and public organisations aiming to offer high

quality service to consumers. Such managerial changes are time consuming and expen-

sive, while the data driven nature of cross-temporal reconciliation makes it possible to

automate and frictionless.

Specifically for tourism flows, the different decisions in managing a hotel, with dif-

ferent scope and planning horizons, can become aligned, but at the same time decisions

can become coherent with different hotels within a hotel chain, with the various sup-

porting tourist attractions and services that benefit from and require the presence of

well functioning hotels, and with the bird’s eye view that a tourism board has at a

regional or country level. The extend of the alignment depends solely on the scope of

the cross-sectional reconciliation. This becomes particularly relevant given the avail-
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ability of multiple traditional and novel data sources that lie beyond the boundaries of

an organisation, such as publicly available macro-economic indicators (Sagaert et al.,

2018, 2017) or online consumer behaviour and social media interactions (Schaer et al.,

2018). We aim to explore the use of such information sources within the cross-temporal

context in future work.

This raises a related question. Can we inform the analysts about how many different

hierarchical levels are enough? From a statistical standpoint, additional information is

beneficial. However this raises a practical consideration of how expensive is the asso-

ciated data gathering and analytics infrastructure. Depending on the decision making

and planning scope, forecasts at different levels need to be coherent and at minimum

data for these levels needs to be collected. Nonetheless, more levels can be beneficial,

as the hierarchical framework can make use of the additional information. Therefore,

the analyst must balance the data gathering associated costs with the cross-temporal

hierarchical forecasting benefits. As the analytics capabilities in organisations increase

and data sources become increasingly interconnected the cost is expected to reduce.

Furthermore, a major advantage of cross-temporal hierarchies is that they are modular

in nature. When an additional layer of information becomes available, it is trivial to

extend the hierarchy. Therefore, the analyst can rely on existing data structures and

expand these as more data becomes available.

Furthermore, the proposed cross-temporal reconciliation revealed some of the limi-

tations of either sides of the reconciliation, in that the generation of a global summing

matrix or the estimation of respective Wh is neither trivial, not feasible by simply ex-

panding the size of current matrices, providing a fertile route of investigation for further

refining the forecast reconciliation theory.
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Appendix A. Australian tourism flow time series

Table A.4 provides a detailed breakdown of the 111 time series used in this study

into different geographical divisions. These report visitor nights and are used as a proxy

for tourism flows.
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Table A.4: Geographical divisions of Australia.

Series Name Label Series Name Label

Total Regions continued

1 Australia Total 55 Gippsland BCB

States 56 Phillip Island BCC

2 NSW A 57 Central Murray BDA

3 VIC B 58 Goulburn BDB

4 QLD C 59 High Country BDC

5 SA D 60 Melbourne East BDD

6 WA E 61 Upper Yarra BDE

7 TAS F 62 Murray East BDF

8 NT G 63 Mallee BEA

Zones 64 Wimmera BEB

9 Metro NSW AA 65 Great Ocean Road BEC

10 Nth Coast NSW AB 66 Bendigo Loddon BED

11 Sth Coast NSW AC 67 Macedon BEE

12 Sth NSW AD 68 Spa Country BEF

13 Nth NSW AE 69 Ballarat BEG

14 ACT AF 70 Central Highlands BEH

15 Metro VIC BA 71 Gold Coast CAA

16 West Coast VIC BB 72 Brisbane CAB

17 East Coast VIC BC 73 Sunshine Coast CAC

18 Nth East VIC BD 74 Central Queensland CBA

19 Nth West VIC BE 75 Bundaberg CBB

20 Metro QLD CA 76 Fraser Coast CBC

21 Central Coast QLD CB 77 Mackay CBD

22 Nth Coast QLD CC 78 Whitsundays CCA

23 Inland QLD CD 79 Northern CCB

24 Metro SA DA 80 Tropical North Queensland CCC

25 Sth Coast SA DB 81 Darling Downs CDA

26 Inland SA DC 82 Outback CDB

27 West Coast SA DD 83 Adelaide DAA

28 West Coast WA EA 84 Barossa DAB

29 Nth WA EB 85 Adelaide Hills DAC

30 Sth WA EC 86 Limestone Coast DBA

31 Sth TAS FA 87 Fleurieu Peninsula DBB

32 Nth East TAS FB 88 Kangaroo Island DBC

33 Nth West TAS FC 89 Murraylands DCA

34 Nth Coast NT GA 90 Riverland DCB

35 Central NT GB 91 Clare Valley DCC

Regions 92 Flinders Range and Outback DCD

36 Sydney AAA 93 Eyre Peninsula DDA

37 Central Coast AAB 94 Yorke Peninsula DDB

38 Hunter ABA 95 Experience Perth EAA

39 North Coast NSW ABB 96 Australia’s Coral Coast EAB

40 South Coast ACA 97 Australia’s South West EAC

41 Snowy Mountains ADA 98 Australia’s North West EBA

42 Capital Country ADB 99 Australia’s Golden Outback ECA

43 The Murray ADC 100 Hobart and the South FAA

44 Riverina ADD 101 East Coast FBA

45 Central NSW AEA 102 Launceston, Tamar and the North FBB

46 New England North West AEB 103 North West FCA

47 Outback NSW AEC 104 Wilderness West FCB

48 Blue Mountains AED 105 Darwin GAA

59 Canberra AFA 106 Kakadu Arnhem GAB

50 Melbourne BAA 107 Katherine Daly GAC

51 Peninsula BAB 108 Barkly GBA

52 Geelong BAC 109 Lasseter GBB

53 Western BBA 110 Alice Springs GBC

54 Lakes BCA 111 MacDonnell GBD
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