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Abstract

Hyperspectral images (HSIs) are often corrupted by noise during the acquisition pro-

cess, thus degrading the HSI’s discriminative capability significantly. Therefore, HSI

denoising becomes an essential preprocess step before application. This paper propos-

es a new HSI denoising approach connecting Partial Sum of Singular Values (PSSV)

and superpixel segmentation named as SS-PSSV, which can remove the noise effec-

tively. Based on the fact that there is a correlation between different bands of the same

signal, it is easy to know the property of low rank. To this end, PSSV is utilized, and

in order to better tap the low-rank attribute of samples, we introduce the superpixel

segmentation method, which allows samples of the same type to be grouped in the

same sub-block as much as possible. Extensive experiments display that the proposed

algorithm outperforms the state-of-the-art.

Keywords: PSSV, superpixel segmentation, hyperspectral images,

denoising

1. Introduction

In the recent years, hyperspectral images (HSIs) become more and more popu-

lar, which are being used in a wide range of fields, such as agriculture [1], terrain

classification [2], geological analysis [3], and military surveillance [4, 5]. However,

hyperspectral images often suffer from noises in the process of data acquisition, due to5

the effects of photon, the sensor, and calibration error. Therefore, HSI denoising is an
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important processing setup and significantly affects on the performance of subsequent

applications.

Recently, many HSIs’ denoising approaches have been proposed such as [6, 7, 8, 9].

As known, low-rank approximation as a powerful method is becoming more and more10

popular in image analysis field, computer vision and web search [10, 11], or in the

denoising problem of exploring and searching low-dimensional structure from high-

dimensional data in the past years. The aim of low-rank matrix approximation-based

image recovery method is to remove the sparse noise due to the prior knowledge that

some components from the clean image are regarded as low-rank. With aid of the15

difference between signal and noise, noise can be removed efficiently in the wavelet

domain. And meanwhile, low-rank matrix approximation methods, such as Principal

Component Analysis (PCA) [12] and matrix factorization [13, 14] are widely used to

find the best approximation of an underlying low-rank structure of data.

In the conventional PCA [12], the goodness-of-fit of data is evaluated by L2-norm,20

which is very sensitive to outliers. To address this problem and to recover the low-

rank matrix while rejecting outliers, Robust PCA [11] improves PCA by not using L2-

norm, so a rank minimization has been proposed and gained much interests in computer

vision [15, 16, 17]. Early works in RPCA tried to reduce the effects of outliers by

random sampling [18] or robust M-estimator [19, 20] to identify outliers or penalize25

data with large errors. However, these methods share some limitations: either they are

sensitive to the choice of parameters, or they are not scalable enough in running time.

To further improve the above algorithms, PSSV [11] incorporated a prior information

about the target rank, which minimizes the partial sum of singular values to encourage

the target rank constraint. In view of its great advance, PSSV [11] is also exploited for30

hyperspectral image denoising in this paper.

Motivated by the fact that PSSV [11] is successful in dynamic object, we want to

test whether it is suitable for hyperspectral images. Therefore, PSSV [11] is introduced

into our model, and we notice a fact that there is a high correlation between different

modalities from the same signal although the small difference exists, thus implying a35

low rank property should be an appropriate prior knowledge. In order to make further

use of low-rank attributes, we decided to adopt superpixels to segment the image, which
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help group the same type of samples into the same sub-block as much as possible.

This paper is organized as follows: Section 2 overviews the related work and Sec-

tion 3 presents the process of hyperspectral denoising, followed by the experiments in40

Section 4. In addition, Section 5 concludes this paper and discusses future work.

2. Related Works

In the past years, many methods have been adopted to reduce noise in HSI band

by band or pixel or pixel [21]. However, these denoising results are not satisfactory,

because the relationship between the spatial and spectral bands is not premeditated45

simultaneously, that is to say, only the noise in spatial or spectral region is removed.

Low rank representation (LRR) has been used in HSI analysis [22]. Lu et al [23]

introduced LRR to remove stripe noise in HSI based on correlation among differ-

ent bands, and a graph regularization is considered for the local geometrical struc-

ture. Zhang [24] proposed a HSI denoising method based on low rank matrix recov-

ery(LRMR), i.e.

min
A,E

∥A∥∗ + λ∥E∥1 s.t. ∥O−A−E∥F ≤ δ (1)

where O is the input, and aim of the model is to recover clean matrix A from O.

In [24], LRMR achieves perfect performance while the uncorrupted HSIs comply with

the low rank assumption. However, LRMR only considers that the rank is low, but does

not limit the extent of the low rank.50

PSSV [25] extends the extent of the low rank, and the rank is accurate to a specific

number. As in [25], PSSV is proven to be effective in dynamic object. In this paper,

we will introduce PSSV into hyperspectral field, and latter experiment results show

its effectiveness. Furthermore, we also introduce the superpixel segmentation into our

model, which further improves the denoising effect.55

3. Hyperspectral Image Denoising

3.1. superpixel segmentation

A superpixel is actually a cluster of pixels having the same type, so it can transform

a pixel-level map into a district-level map.
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Figure 1: super pixel segmentation process.

In this paper, superpixel segmentation based on entropy rate is utilized and the60

objective function is,

max −
∑
i

ui

∑
j

pi,j(A)log(pi,j(A)) + λ(−
∑
i

pzA(i)log(pzA(i))−NA) (2)

where λ is to balance the weight between the two terms, NA is the number of connected

components and u(u1, u2, ...ui, ...) satisfys a smooth distribution and where pzA(i) =

|Si|
|V | , i = 1, 2, ..., NA. Here, Si is the i-th super pixel block, V represents a collection

of all pixels, and || indicates the number of pixels in the image block. Besides, in which

pi,j(A) =


ωi,j

ωi
if i ̸= j, and ei,j ∈ A

0 if i ̸= j, and ei,j /∈ A

1−
∑

j:ei,j∈Aωi,j

ωi
if i = j

(3)

where ei,j is an edge that connects the i-th and j-th pixels, and A is the set of edges.

Here, ωi,j = exp(−d(v1,v2)
2

2σ2 ), and where v1, v2 are adjacent i-th pixel and j-th pixel,

d(v1, v2) dispalys the distance between adjacent i-th pixel and j-th pixel, σ is a param-

eter set by person and ωi,j is the similarity between i-th pixel and j-th pixel.65

In this objective function, the first item ensures pixels with high similarity are

grouped into the same superpixel and the second item favors clusters with same size.

Therefore, this objective function can ensure to get both compact, homogeneous, and

balanced clusters. And the rough process is shown in Figure 1.

3.2. PSSV model70

For each divided sub-block, it mainly contains the same type of samples, and there

is a high correlation between different bands in the same signal. So we consider to
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adopt the PSSV [25] model to explore low rank attribute in this paper and it is the

updated version of RPCA [10]. As we know, the RPCA model was first proposed by

Ma et al. [10] and the objective is to recover clean matrix A. The formulation of this

model is the following:

min
A,E

rank(A) + λ∥E∥0 s.t. O = A+E (4)

where λ is the regularization parameter. As can be seen, it is a nonconvex optimization

problem, and there is no effective solution. Generally, the problem is usually converted

into a tractable optimation problem by substituting the l0-norm for the l1-norm and the

rank for the nuclear norm, so the following optimization problem is acquired:

min
A,E

∥A∥∗ + λ∥E∥1 s.t. O = A+E (5)

where ∥•∥∗ is the nuclear norm(i.e., the sum of the singular values). Regarding the

solution for Eq. (5), various algorithms have been proposed, where Alternating Direc-

tion Method of Multiplier (ADMM) has shown to be quite effective. Apart from the

standard nuclear norm relaxation, there also exist some works that study variants of

nuclear norm to improve the performance of rank minimization. Among them, instead75

of minimizing nuclear norm, PSSV [25] considers to minimize partial sum of singular

values. And it can be proven effective in dynamic object, but it is rarely used in the

field of hyperspectral, therefore, we decide to adopt it on hyperspectral images. And

the latter part of experiments also confirms its hyperspectral validity, in the following,

and PSSV will be introduced briefly.80

At first, the idea of PSSV [25] is as:

arg min
A,E

|rank (A)−N|+ λ∥E∥0 s.t. O = A+E (6)

The aim of PSSV [25] is to recover a low-rank matrix A with closing to the rank N

and a sparse matrix E. Unfortunately, the Eq. (6) is a NP-hard problem, so in order to

deal with the case, the idea of [10] is utilized to relax it with an alternative tractable rep-

resentation. And meanwhile, rank(A)−N is also relaxed with a projection operator.
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As a result, the first term of Eq. (6) is replaced with ∥A∥p=N i.e.

|rank(A)−N| ≈ |∥A∥∗ − ∥PN (A)∥∗|

=

∣∣∣∣∣min(n,m)∑
i=1

σi (A)−
N∑
i=1

σi (A)

∣∣∣∣∣
=

min(n,m)∑
i=N+1

σi (A) = ∥A∥p=N

(7)

As mentioned above, the objective function of PSSV is gained in the following:

argmin
A,E

∥A∥P=N + λ∥E∥1 s.t. O = A+E (8)

In addition, the solution to this problem will be discussed in the following.

Compared with standard nuclear norm, the advantage of PSSV is that it does not

minimize the variance distribution of data with the help of target rank.

3.3. Optimization

For Eq. (8), it can be solved by ADMM proposed by Lin et al. [26]. With the help

of this method, the objective function can be evolved into the following form:

Lu (A,E,Z) = ∥A∥p=N + λ∥E∥1 + ⟨Z,O−A−E⟩+ µ
2 ∥O−A−E∥2F (9)

where Z ∈ Rm×n is the Lagrange multiplier, and µ is a positive scalar. According85

to [26], Eq. (9) can be optimized by updating variable in turn while fixing the other

variables invariant, so the problem above can be divided into two subproblems.

3.3.1. Solving A∗

From the Eq. (9), we can obtain that

A∗ = argmin
A

Lµk (A,Ek,Zk)

= argmin
A

µk
−1∥A∥p=N + 1

2

∥∥A−
(
O−Ek + µk

−1Zk

)∥∥2
F

(10)

For Eq. (10), the Partial Singular Value Thresholding (PSVT) operator [25] PN,τ [•]

can solve the problem. As in [25], we can obtain:

Ak+1 = PN,µ−1
k
(O−Ek + µ−1

k Zk) (11)
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where

PN,τ [Y] = UY (DY1 + Sτ [DY2])V
T
Y = Y1 +UY2Sτ [DY2]V

T
Y2, (12)

and where DY1 = diag (σ1, . . . , σN , 0 . . . 0) ,DY2 = diag (0, . . . , 0, σN+1, . . . , σl) ,

Sτ [x] = sign(x)max(|x| − τ, 0) is the soft-thresholding operator [27, 28]. In addi-90

tion, PSVT [29] enforces the target rank constraint through projection and it implicitly

encourages the resulting matrix to meet the target rank.

3.3.2. Solving E∗

From the Eq. (9), we can obtain that

E∗ = argmin
E

Lµk(Ak+1,E,Zk)

= argmin
E

λµ−1
k ∥E∥1 +

1
2

∥∥E− (O−Ak+1 + µ−1
k Zk)

∥∥2
F

(13)

As in [28], Eq. (13) can be solved as:

Ek+1 = Sλµ−1
k
(O−Ak+1 + µ−1

k Zk) (14)

where Sτ [x] = sign(x)max(|x| − τ, 0) is the soft-thresholding operator [27, 28].

Finally, the whole solution process is summarized in the following:95

Algorithm 1 Optimization
Input: O ∈ Rm×n, λ > 0, the constraint rank N .

Initialize A0 = E0 = 0, Z as suggested in [26], µ0 > 0, ρ > 1 and k = 0.

while do

while do

1. Ak+1 = PN,µ−1
k
(O−Ek + µ−1

k Zk).

2. Ek+1 = Sλµ−1
k
(O−Ak+1 + µ−1

k Zk).

end while

1. Zk+1 = Zk + µk(O−Ak+1 −Ek+1).

2. µk+1 = ρµk.

3. k = k + 1.

end while

Output: (Ak,Ek).
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4. Experiments

To verify the effectiveness of our method, we carry out experiments on three hy-

perspectral data sets and make a comparison among the proposed algorithm with four

algorithms including LRMR [24], robust Principal Component Analysis [10], robust

Principal Component Analysis on Graphs [30], SS-LRR [31] and PSSV [25].100

Among these contrast methods, LRMR [24] mainly adopts the low rank matrix

recovery model and regards clean samples as low-rank, robust Principal Component

Analysis [10] is an improvement for the PCA, and it adopts a rank minimization in-

stead of L2-norm, robust Principal Component Analysis on Graphs [30] incorporates

spectral graph regularization into the Robust PCA framework, SS-LRR [31] combines105

superpixel segmentation and low-rank representation to denoise hyperspectral image

and PSSV [25] is the update version of RPCA, minimizing partial sum of singular

values, and it is firstly used in dynamic images, rarely in hyperspectral images. As

we know, the several methods are state-of-the-art algorithms, so in order to verify the

effectiveness of proposed method, we try to compare the proposed method with them.110

In this paper, peak signal-to-noise ratio (PSNR) and structure similarity (SSIM)

indices are used to give a quantitative assessment of the denoised results. For an HSI,

we compute the value of two indices for images on different bands, and the mean

value of these bands are calculated and denoted as Mean PSNR or Mean SSIM .

Generally speaking, higher PSNR and higher SSIM values lead to a better denoised115

result. The definitions of two indices are as follows:

PSNRi = 10 ∗ log10
MN

M∑
x=1

N∑
y=1

[ûi(x, y)− ui(x, y)]
2 (15)

Mean PSNR =
1

B

B∑
i=1

PSNRi (16)

SSIMi =
(2uuiuûi + C1)(2σuiuûi + C2)

(uui
2 + uûi

2 + C1)(σui
2 + σûi

2 + C2)
(17)

Mean SSIM =
1

B

B∑
i=1

SSIMi (18)
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where ui and ûi represent the ith band of the reference image and restored image,

respectively. uui and uûi are the average values of image ui and ûi, while σui and σûi

are variances. And M and N are the height and width in the spatial region, respectively.

Moreover, B is the number of bands in spectrum region.120

4.1. Experiment results on AVIRIS Indian Pines

In this section, the AVIRIS Indian Pines [32] are used in our experiment. The hyper-

spectral image was collected by the AVIRIS sensor over the Indian Pines region, North-

west Indiana, USA, in 1992. The scene was acquired over a mixed agricultural/forest

area, with a size of 145× 145× 224. The bands in the wavelength range from 0.2 to125

2.5um, nominal spectral resolution of 10nm. Furthermore, this image has a spatial res-

olution of 20m per pixel and 16-bit radiometric resolution. It includes 16 ground-truth

classes, most of which are different types of crops (e.g., corns, soybeans, and so on).

For the preconditioning of the data, the gray values of each band of the HSI are normal-

ized between [0, 1]. In the experiment, we randomly adds 10%, 20%, 30%, 40%, 45%130

salt and pepper noise to all bands. At first, in order to find the best rank, we measure

the relationship between the average peak signal-to-noise ratio and the target rank, dis-

played in Figure 2. From the figure, we can easily obtain that N=2 is the best target

rank in this data set. Similarly, we do the same operation on the ROSIS Pavia Univer-

sity Scene and Botswanna data set and besides, we obtain N=3 is the best target rank135

in the two scenes, respectively.

1 1.5 2 2.5 3 3.5 4 4.5 5
N

54

55

56

57

58

59

60

61

62

63

64

M
e
a
n
 P

S
N

R

Figure 2: The relationship between Mean PSNR and the target rank N on Indian Pines
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In order to see an intuitive superpixel concept, we show the segmentation results

on Indian Pines, shown in Figure 3. From this figure, it is not hard to see that the same

type of sample is assigned to the same sub-block and samples around the border can be

effectively separated. In this way, this will help us to get a better denoising result, and140

latter experiments also verify this view.

Figure 3: superpixel boundary map on Indian Pines.

Table 1 displays the results of mean PSNR with different methods under differ-

ent ratio of noise. It can be seen clearly that, the mean PSNR of SS-PSSV is higher

than others under 10%, 20%, 40%, 45% noise and PSSV achieves the best result un-

der 30% noise, which indicates that PSSV and SS-PSSV outperform the other meth-145

ods and are more effective in the respect of the denoising. Meanwhile, in Table 2,

the results of mean SSIM of different methods with different ratio of noise are dis-

played. From this table, we can see that SS-PSSV can obtain better performance under

20%, 30%, 40%, 45% noise and PSSV achieves the best result under 10% noise, which

suggests that SS-PSSV and PSSV are perfect and more effective in denoising. In ad-150

dition, from Table 2, we easily get the conclusion that SS-PSSV has a more obvious

advantage over others when noise ratio is bigger, that is to say, with the increase of

noise, SS-PSSV’s denoising effect is more obvious. Under 10% noise, PSSV obtains

the best performance, which indicates PSSV model is very effective in hyperspectral

field, and when superpixel is added into PSSV, SS-PSSV can get a bigger improvement,155

with increasing noise. So superpixel segmentation is very necessary for image process-

10



ing. As we know, LRMR, RPCA, RPCAG and SS-LRR consider the clean sample as

a low rank ingredient, and adopt the nuclear function to portray it. Notice that nuclear

function minimizes the rank, but it does not fully utilize a prior target rank information

about samples.160

Table 1: Mean PSNR values of the restoration results with different restoration methods on Indian Pines

Mean PSNR 10% 20% 30% 40% 45%

LRMR 41.1566 37.2959 34.6609 32.3473 31.2417
RPCA 42.4305 37.4339 31.5867 26.5500 24.4990

RPCAG 54.6674 47.7350 41.2280 34.5390 31.0893
SS-LRR 45.5827 42.2679 38.1975 36.1948 34.0037
PSSV 47.0909 45.1279 44.1626 41.2269 37.4463

SS-PSSV 55.5324 50.3469 43.2180 41.3611 37.9947

Table 2: Mean SSIM values of the restoration results with different restoration methods on Indian Pines

Mean SSIM 10% 20% 30% 40% 45%

LRMR 0.9770 0.9498 0.9172 0.8766 0.8494
RPCA 0.9946 0.9849 0.9362 0.8223 0.7537

RPCAG 0.9955 0.9934 0.9918 0.9719 0.9479
SS-LRR 0.9949 0.9933 0.9885 0.9727 0.9359
PSSV 0.9964 0.9935 0.9919 0.9834 0.9601

SS-PSSV 0.9955 0.9937 0.9952 0.9898 0.9815
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Figure 4: Restoration results using different methods on Indian Pines: (a) Original band 1, (b) noisy band

with ratio of 40% salt and pepper noise, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h)

SS-PSSV.

Figure 5: A partial enlargement of the red box in Figure 4 with (e) RPCAG, (f) SS-LRR, (g) PSSV, (h)

SS-PSSV.
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Figure 6: Difference between the noise-free spectrum and the restoration results of pixel (60,75) with ratio

of 40% salt and pepper noise on Indian Pines: (a) noisy, (b) LRMR, (c) RPCA, (d) RPCAG, (e) SS-LRR, (f)

PSSV, (g) SS-PSSV.

In the following, we will show some denoised images, and Figure 4 displays the

restoration performance under 40% salt and pepper noise for first band. The picture (a)

is clean image, and picture (b) is with 40% salt and pepper noise. The pictures (c) to

(h) exhibit the restoration results with different methods, respectively. From the Figure

4, we can find LRMR, RPCA do not remove the noise wholly, and although RPCAG165

remove the most noise, there is a picture overlapping problem as you see while the

restoration from SS-LRR have a fact of information loss, which can be observed easily

especially in red rectangle box. But with PSSV and SS-PSSV, the noise is basically

removed effectively while retaining most of the picture information at the same time.

In order to be able to see a clearer denoising effect, we make a partial enlargement170

of the denoised image in Figure 5 with methods including RPCAG, SS-LRR, PSSV,

SS-PSSV. From this figure, we see clearly that (e) and (f) still exist much noise. And

although compared with the previous two images, (g) removes most of the noise, there
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is part of the residual. From (h), we can easily get that SS-PSSV achieves the best

denoising performance, which shows that the combination of superpixel segmentation175

and PSSV makes sense.

Furthermore, the difference between the noise-free spectrum and the restoration

results in the spectral signatures at (60,75) under 40% salt and pepper noise are shown

in Figure 6. From the Figure 6, we can easily see the difference is bigger in all bands

from (b),(c),(d),(e), while SS-PSSV is consistent with the original information, which180

suggests that SS-PSSV has an advantage over others. Because SS-PSSV first adopt the

superpixel segmentation to make the same class pixel into an superpixel, and so it can

be handled as a whole.

Furthermore, in order to avoid accidental effects, we exhibit the horizonal and ver-

tical profiles of band 50 at pixel (20,30), respectively, where horizonal profiles is a185

vector on band 50 with the second coordinate being 30 in spatial domain, and vertical

profiles is also a vector on band 50 with the first coordinate being 20 in spatial domain.

In (c) and (d) of Figure 7, we easily see that LRMR and RPCA perform poorly. And

although compared with the two model, performances of RPCAG and SS-LRR are bet-

ter, and still we can see there exist thrill in column numbers from 30 to 140 especially190

in (f), and this phenomenon can also be found in Figure 8. In Figure 8, performances of

LRMR, RPCA, SS-LRR are bad in most row number, and compared with the models

mentioned, RPCAG performs better. However, there is a slight jitter in (e) in row num-

bers from 20 to 80. Of course, PSSV also has some glitches while SS-PSSV perform

well in almost all bands.195

Finally, in order to get more perspective and more comprehensive comparison a-

mong several methods, PSNR values with different approaches on each band are dis-

played in Figure 9, which is under 45% salt and pepper noise. From this figure, we can

see that SS-PSSV and PSSV are more high than others in most bands although there is

several rapid decline. Because we firstly adopt the superpixel segmentation, and then200

make full use of target rank to remove noise for each superpixel. Furthermore, SSIM

values on every band are displayed in Figure 10. The larger SSIM value is, the bet-

ter denoising quality is. From the figure, we can easily see that PSSV and SS-PSSV

achieve better outcome.
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Figure 7: Horizontal profiles of band 50 at pixel (20,30) before and after restoration on Indian Pines: (a)

Original, (b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Figure 8: Vertical profiles of band 50 at pixel (20,30) before and after restoration on Indian Pines: (a)

Original, (b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Figure 9: PSNR values of each band of the 45% noise experimental results with the different restoration

methods on Indian Pines
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Figure 10: SSIM values of each band of the 40% noise experimental results with the different restoration

methods on Indian Pines

In summary, AVIRIS Indian Pines contains a variety of crops and the edge between205

crops is a curve, not a regular straight line. So if we utilize conventional rectangular

block, not using superpixel segmentation, we will not be able to deal well with sam-

ples that are around the edge. For example, PSSV segment images with conventional

rectangular block, and from the simulation results, we find that SS-PSSV has a better
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advantage over PSSV in most experimental results. So in this paper, we use superpixel210

segmentation skillfully, in this way, we can make same class of pixels into superpixel

as much as possibly. Finally, we adopt PSSV to every superpixel block which can make

full use of prior knowledge about target rank.

4.2. Experiment results on the ROSIS Pavia University Scene

In this subject, the ROSIS Pavia University scene is adopted to test the performance215

of the proposed method. The data were collected by using the Reflective Optics System

Imaging Spectrometer sensor on the urban area of the University of Pavia, Italy [33].

This image has a size of 610*340 in pixels with a spatial resolution of 1.3m per pixel.

It altogether includes 115 spectral bands ranging from 0.43 to 0.86um in spectrum.

After discarding 12 noisy and water absorption bands, 103 bands are retained in our220

experiment. The ground truth is classified into 9 mutually exclusive classes including

Trees, Metal sheets and so on. For the preconditioning of the data, the gray values of

each band of the HSI is normalized between [0, 1]. In experiments, we randomly adds

10%, 20%, 30%, 40%, 45% salt and pepper noise to all bands.

Figure 11: Restoration results using different methods on Pavia University: (a) Original band 101, (b) noisy

band with ratio of 40% salt and pepper noise, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h)

SS-PSSV.
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Figure 12: A partial enlargement of the red box in Figure 11.

Table 3: mean PSNR values of the restoration results with different restoration methods on Pavia University

mean PSNR 10% 20% 30% 40% 45%

LRMR 36.7825 33.6803 31.3048 29.2001 28.1391
RPCA 38.3142 35.4068 32.3950 28.8795 26.9263

RPCAG 38.4600 37.5966 35.7621 31.0703 27.8292
SS-LRR 36.3178 35.2218 34.0092 32.5643 28.2567
PSSV 41.8244 38.4779 36.4456 33.7284 30.6439

SS-PSSV 42.1357 40.1481 38.1606 37.2157 34.3388

To measure the performance, mean PSNR and mean SSIM among 103 bands are225

calculated. So Table 3 and Table 4 display the results of mean PSNR and mean SSIM

in ROSIS Pavia University Scene. From the table, it can be seen clearly that, SS-

PSSV achieves the best performance and PSSV get second best result. So superpixel

segmentation and PSSV undoubtedly open up a new direction for noise removal.
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Table 4: mean SSIM values of the restoration results with different restoration methods on Pavia University

mean SSIM 10% 20% 30% 40% 45%

LRMR 0.9366 0.8875 0.8323 0.7651 0.7239
RPCA 0.9725 0.9533 0.9055 0.8004 0.7183

RPCAG 0.9762 0.9617 0.9527 0.8621 0.8028
SS-LRR 0.9628 0.9537 0.9427 0.9228 0.8213
PSSV 0.9764 0.9617 0.9483 0.9111 0.8361

SS-PSSV 0.9781 0.9738 0.9668 0.9628 0.9502

In order to make a intuitive comparison, we displays restoration image on band 101230

under 40% salt and pepper noise in Figure 11. ROSIS Pavia University Scene contains

tree and so on, so if effective methods are not utilized to segment image, it will be hard

to get a good denoising result. It is obvious that traditional segmentation methods can

not effectively divide the complex image, so in this paper, we decide to adopt superpixel

segmentation, because it can handle border information well. Picture (a) is an original235

image, and (b) shows noisy image with 40% salt and pepper noise. The pictures of

(c) to (h) display restoration results with different models, respectively. From Figure

11, we can see that in the restorations with LRMR and RPCA, there has still noise

not been removed. Similarly, denoised image of RPCAG also performs poorly and

recovered image is blurred, so edge information is not preserved completely which can240

be observed easily in red rectangle box. Simultaneously, the image of the denoising

with SS-LRR also has the phenomenon that edge information is incomplete. Only in

PSSV and SS-PSSV, the recovered image has ability to preserve edge of image and

effective removal of noise. In order to see more clearly, we have partially enlarged the

images, as shown in Figure 12.245

In order to further explore the characteristics of hyperspectral image, we draw the

difference between the noise-free spectrum and the restoration at (300,120) under 40%

salt and pepper noise. From Figure 13, we can see the difference from SS-PSSV is

smallest.
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Figure 13: Difference between the noise-free spectrum and the restoration results of pixel (300,120) with

ratio of 40% salt and pepper noise on Pavia University: (a) noisy, (b) LRMR, (c) RPCA, (d) RPCAG, (e)

SS-LRR, (f) PSSV, (g) SS-PSSV.

To further test PSSV and SS-PSSV, we calculate horizonal and vertical profiles of250

band 96 at pixel (100,100), respectively. From Figure 14, we easily see that there is a

serious glitch on the curve in contrast models, especially more obvious in pictures (c),

(d) and (e), and this fact suggests noise is not completely removed. However, there is

no such problem in the curve of picture (g) and (h). In addition, the longitudinal curve

in Figure 15 also verifies that our argument is correct. In Figure 15, there is a more255

serious glitch on the curve on contrast approaches and still there is no such problem in

the curve of PSSV and SS-PSSV, that is to say, the results with PSSV and SS-PSSV are

more similar to the original in most bands, which undoubtedly validates the fact that

superpixel segmentation and PSSV provide a new perspective of image processing.

For a more comprehensive result, the PSNR and SSIM values on all bands of260

restoration with different approaches are displayed in Figure 16 and Figure 17, re-

spectively. From Figure 16, we can clearly see that the curve of PSSV or SS-PSSV is
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always above the curves of the other methods in almost all bands and Figure 17 exists

the same solution as Figure 16, which indicates the effectiveness of superpixel segmen-

tation for removing the noise and PSSV is also beneficial to denoise in hyperspectral265

images.
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Figure 14: Horizontal profiles of band 96 at pixel (100,100) before and after restoration on Pavia University:

(a) Original, (b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Figure 15: Vertical profiles of band 96 at pixel (100,100) before and after restoration on Pavia University:

(a) Original, (b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Table 5: mean PSNR values of the restoration results with different restoration methods on Pavia University

mean PSNR 10% 20% 30% 40% 45%

LRMR 36.2991 33.8515 31.9306 30.1682 29.2828
RPCA 37.3870 36.1057 33.7716 30.0776 27.9129

RPCAG 37.9592 37.5454 34.5579 30.9087 28.9145
SS-LRR 36.2243 35.5279 34.7330 33.6713 29.7033
PSSV 38.8750 38.1106 37.0402 34.7442 32.0922

SS-PSSV 38.2876 38.2372 35.7312 34.2281 33.7147

Table 6: mean SSIM values of the restoration results with different restoration methods on Pavia University

mean SSIM 10% 20% 30% 40% 45%

LRMR 0.9465 0.9134 0.8786 0.8357 0.8096
RPCA 0.9677 0.9606 0.9385 0.8739 0.8231

RPCAG 0.9675 0.9638 0.9539 0.9273 0.8937
SS-LRR 0.9606 0.9554 0.9486 0.9347 0.8829
PSSV 0.9676 0.9644 0.9574 0.9348 0.8940

SS-PSSV 0.9681 0.9697 0.9622 0.9434 0.9400
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Figure 16: PSNR values of each band of the 10% noise experimental results with the different restoration

methods on Pavia University

22



Band Number
10 20 30 40 50 60 70 80 90 100

S
S

IM

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SS-PSSV
PSSV
LRMR
RPCA
RPCAG
SS-LRR

Figure 17: SSIM values of each band of the 10% noise experimental results with the different restoration

methods on Pavia University

4.3. Experiment results on the Botswanna data set

(a) (b) (c) (d)
(f) (h)(g)(e)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 18: Restoration results using different methods on BOT: (a) Original band 100, (b) noisy band with

ratio of 30% salt and pepper noise, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Figure 19: A partial enlargement of the red box in Figure 18.
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Figure 20: Difference between the noise-free spectrum and the restoration results of pixel (60,75) with ratio

of 40% salt and pepper noise on BOT: (a) noisy, (b) LRMR, (c) RPCA, (d) RPCAG, (e) SS-LRR, (f) PSSV,

(g) SS-PSSV.
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Figure 21: Horizontal profiles of band 122 at pixel (100,80) before and after restoration on BOT: (a) Original,

(b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.
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Figure 22: Vertical profiles of band 122 at pixel (100,80)before and after restoration on BOT: (a) Original,

(b) noisy, (c) LRMR, (d) RPCA, (e) RPCAG, (f) SS-LRR, (g) PSSV, (h) SS-PSSV.

In our experiment, the Botswanna data set [34] is adopted, and the hyperspectral

image was acquired across Okavango Delta, Botswana(BOT). The hyperspectral data

includes two major ecosystem components defined by absence or presence of flooding,270

namely: upland and wetland. The data set was collected in 2001 and has a size of

1476*256 with a spatial resolution of 30m in pixels, and there are altogether 1580

labeled data points and includes 242 spectral bands ranging from 357 to 2576nm, with
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a hyperspectral resolution of 10nm. After discarding some noisy and water absorption

bands, 145 bands are retained for our experiment, and the ground truth is classified into275

9 mutually exclusive classes including Water, Primary Floodplain, Riparian and so on.
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Figure 23: PSNR values of each band of the 45% noise experimental results with the different restoration

methods on BOT.
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Figure 24: SSIM values of each band of the 45% noise experimental results with the different restoration

methods on BOT.

We first calculate mean PSNR and mean SSIM, which are displayed on Table 5 and

Table 6 respectively, and two tables show the performance with several methods under

different ratio of noise. From Table 5, we can see that under 20%, 45% noise, SS-

PSSV achieves the best performance, and under 10%, 30%, 40% noise, PSSV achieves280

the best performance. And to give visual comparisons, the recovery images are shown.
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In Figure 18, we display recovery images on band 100 with 30% salt and pepper noise

with different models. The picture (a) displays original image on band 100, and picture

(b) shows noisy graphic with ratio of 30% salt and pepper noise. Pictures (c) to (h)

exhibit the restorations with different methods, respectively. From these comparisons,285

we can see that SS-PSSV can recover a more vivid image, which can be observed easily

in red rectangle box. And an enlarged image of the red box will be shown in Figure 19.

In order to have a deeper and comprehensive understanding on spectral signa-

tures, we observe the difference between the noise-free spectrum and the restoration

at (60,75) under 40% salt and pepper noise. From Figure 20, we can clearly see that290

SS-PSSV has an big advantage over others. In order to have a more in-depth explo-

ration of botswanna data set, we records the horizontal profiles and the vertical profiles

of band 122 at pixel (100,80), and the curves are displayed in Figure 21 and Figure

22, respectively. From Figure 21, we can see that contrast methods do not handle with

noise well at column numbers between 240 and 250, while PSSV and SS-PSSV do it.295

The same situation appear in Figure 22, because LRMR, RPCA, RPCAG, SS-LRR can

not remove noise well around row number 600, while PSSV and SS-PSSV can do.

Finally, in order to make a full understanding on all bands, PSNR and SSIM values

of restorations with different approaches on each band are displayed in Figure 23 and

Figure 24, respectively. It can be clearly seen that PSNR and SSIM values with PSSV300

and SS-PSSV are higher than others in most bands, which indicates the effectiveness

of superpixel segmentation and PSSV for removing noise. In summary, superpixel

segmentation allows the same type of samples are divided into the same sub-block as

possible, then PSSV takes full advantage of the priori knowledge of the target rank.

When we combine the two effectively, one should get better denoising effect in theory.305

5. Conclusions

In this work, we combine superpixel segmentation and PSSV, named as SS-PSSV.

The superpixel segmentation can obtain homogeneous regions, which can make full use

of both hyperspectral and spatial information of HSIs and PSSV makes full use of the

prior knowledge on each homogenous region, which can help remove noise effectively.310
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Experiments on three HSI data sets have been conducted to demonstrate that PSSV and

SS-PSSV outperforms other comparing methods in the field of hyperspectral denoising.
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