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Abstract 

  Composite structures have been widely used in wind turbine equipment for their high stiffness 

to mass ratio and high strength. A major concern in the use of composite materials is their 

susceptibility to various micro damage, such as fiber breakage and matrix crack, which will lead 

to macroscopic structural fracture. In this paper, a multi-scale modeling strategy is proposed to 

investigate failure mechanisms and damage evolution of composite blades with initial defects 

from microscopic damage (including fiber fractures and matrix cracks) to macroscopic fracture. 

At the microscopic scale, an isoparametric micromechanical model is developed to calculate 

microscopic stresses and simulate microscopic damage. At the laminar scale, the classic laminate 

theory is employed to evaluate the laminate stiffness. At the structural scale, a reverse modeling 

technology is proposed to accurately acquire structural dimensions of a wind turbine blade, and a 

macroscopic 3D model is implemented into ANSYS/LS-DYNA software. By comparing with the 

experimental data, it is demonstrated that the proposed multi-scale method is suitable to predict 

mechanical properties of complex composite structures effectively. 

Keywords: Multiscale model, Wind turbine blade, Composites, Damage evolution, FBG 

sensors. 

1. Introduction 

As one of the most abundant renewable and green resources, wind energy is increasingly 

playing an important role in reducing CO2 emission for environmental protection and has viable 

commercial values [1-3]. It has been one of the most important new energies due to its availability 

and accessibility. To maximize the energy that can be harvested from wind, an efficient and safe 

design of a wind turbine, including its strength and damage tolerance, is essential. Complex 

dynamic loads may lead to a catastrophic failure of wind turbine blades [4-5]. According to the 

data from Caithness windfarm information forum [6], blade failure is the most common accident 

of wind turbines, estimated at around 3800 incidents per annum. Therefore, it is crucial for 

researchers to have a better understanding of the failure mechanisms, which will improve the 

safety and reliability of wind turbines. 

Wind turbine blades, which are normally manufactured by continuous glass fiber-reinforced 

resin matrix composites, accounts for nearly one-fifth of the cost of a wind turbine. Experimental 

[7-8] and theoretical methods [9-10] have been used to investigate the mechanical features and 

damage mechanisms of composite blades. However, for a heterogeneous material, it is difficult to 

reveal the intrinsic relations between its macroscopic and microscopic characteristics, such as 

fiber arrangements and fiber shape [11-14], by experimental methods. As a result, more and more 

researchers are using numerical methods to study their mechanical properties and optimally design 
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composite wind turbine blades. Haselbach et al. [15] studied ultimate failure of a 34m long blade. 

The numerical method the authors used shows good reliability and the obtained results agree well 

with with the experimental results. Wu et al. [16] developed a GUI interface by using ANSYS to 

construct a composites blade for stress analysis. The blade skin was designed using the maximum 

principal stress failure criterion. Rafiee et al. [17] built a 3D finite element model and constructed 

an iterative fluid-structure interaction approach for investigating aeroelastic behavior of a 

full-scale composite wind turbine blade. It was concluded that general finite element models for 

studying composite wind turbine blades were not computationally efficient as a large number of 

finite elements had to be used. To improve the efficiency, Shah and Tarfaoui [18] proposed a 

sub-modeling technique to reduce a large finite element model to a more manageable size. 

Additionally, failure modes of composites (fiber fracture, matrix crack, etc) are much more 

complex in comparison with those of homogeneous materials. These failure modes may occur 

concurrently and at different scales, thereby requiring an integrated multiscale view of the damage 

evolution starting from initiation, propagation and final structural failure. However, it is difficult 

for the traditional finite element method to capture all the above events.  

Multi-scale methods can be used to capture fine defects and internal cracks in a material and 

reveal damage evolutions from microscopic damage to macroscopic fracture. Different 

microstructures and damage modes can be effectively simulated by employing different theories 

and methods due to the flexibility of multi-scale modeling framework [19-20]. In order to have a 

better understanding of composite failures, multi-scale methods were proposed to investigate 

micro/macro-mechanical responses, viscoelastic deformation, failure analysis of composite 

materials [21-23]. Li and Cui [24] presented a multi-scale analysis method for calculating Yong’s 

modules and Poisson’s ratios of composites with random short fiber distributions. Cai and Sun [25] 

investigated viscoelastic deformations of 3D composites. The results from the multi-scale method 

agreed well with the experimental results. Moreover, the influence of microscopic structural 

parameters on viscoelastic properties was studied in details. Calneryte and Barauskas [26] 

proposed a hierarchical multi-scale approach for studying large displacement, material 

non-linearity and failure of composites. Zhou et al. [27] proposed a stochastic homogenization 

method, which coupled with multi-scale homogenization and stochastic finite element methods, to 

predict effective elastic properties of textile composites. The results showed that the method was 

sufficiently accurate to acquire elastic properties of the composites. Greco et al. [28] proposed a 

two-scale finite element continuum approach that was used to compute macroscopic load 

deflection relationship and predict microscopic local failures. Muliana [29] presented a 

computational multi-scale model for investigating thermo-viscoelastic responses of spherical 

particle reinforced polymer matrix composites. Both mechanical and thermal properties of the 

reinforced particles and polymer matrix were allowed to change with temperature and stress fields. 

Han et al. [30] employed a hierarchical multi-scale simulation to study thermal residual stresses at 

microscopic scale and its influences on the strength of composites at macroscopic scale. It 

revealed that failure modes with and without thermal residual stresses were distinctively different. 

In regard to applications in turbine blade design, a comprehensive review on damage evolution of 

wind turbine blades was conducted by Montesano et al. [31], who developed a multi-scale 

progressive damage model for evaluating sub-critical damage evolution and stiffness degradation 

of blade structures. The ability of the model to predict the damage was demonstrated by the 

quasi-static and fatigue simulation results. However, the analyses mentioned above are limited to 
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investigate progressive damages at structural level. For composites, due to their multiphase 

structures, it is critical for researchers to reveal multiscale failures of individual constituent 

materials. 

Macroscopic fractures of composite structures are results of microscopic damages. In order to 

reveal failure mechanisms of composite blades from microscopic damages to macroscopic 

fractures, a three-scale numerical model is proposed in this study. To verify the proposed method, 

strain test results acquired by Fiber Bragg Grating (FBG) sensors, which are mounted in the 

spanwise direction of the composite blades, are employed. Moreover, damage evolutions of 

reinforced fibers and matrix materials are also investigated. The detailed procedures of the 

multi-scale modeling, experimental tests and prediction of damage evolutions are explained in the 

following sections. 

2. The multiscale modeling framework  

In general, composite blades are composed of thermosetting resin and glass fibers, which are 

manufactured by manual fiber placement and resin injection technology. The section profile of a 

composite blade can be considered as a series of laminas with 0  fiber reinforcement [20, 32]. A 

three-scale method, where macroscopic and microscopic models are coupled first to take 

advantage of their efficiency and accuracy, respectively, is proposed to investigate the failure 

mechanisms and damage evolutions of composite blades, as illustrated in Fig. 1. At the 

microscopic scale, the finite-volume direct averaging micromechanics (FVDAM) theory is used to 

evaluate the relations between the microscopic structural parameters and the stress-strain 

properties of the composites. At the laminar scale, the laminate theory is employed to evaluate the 

stiffness of laminate. A full scale 3D wind turbine blade is stimulated then at the structural scale 

by ANSYS/LS-DYNA. In order to validate the proposed multi-scale method, the stress-strain 

curves of a wind turbine blade in the spanwise direction are compared with those from 

experiments acquired by FBG sensors. The proposed modeling framework is further developed to 

investigate damage evolutions of the turbine blades by incorporating microscopic damage 

mechanics, by which the user-defined subroutine of ANSYS/LS-DYNA is utilized to acquire the 

microscopic stress field. Thus, the damage evolution and constituent failure of wind turbine blades 

can be further studied. Detailed discussions on damage modeling and failure analysis are finally 

presented. 

3. Multi-scale modeling procedure  

3.1. Microscopic modeling of the RVE 

In order to analyze microscopic failures of composites, it is important to choose an effective 

micromechanical method. By employing continuity conditions of sub-cell displacements and 

stresses, the Generalized Method of Cells (GMC) was proposed by Aboudi [33-34]. The method 

has been widely used in calculating stiffness matrix, mechanical behavior, as well as microscopic 

stress fields of composites.  

To predict mechanical behaviors of composites accurately, it is critical to define a proper 

representative volume element (RVE). Compared with overall dimension of a composite structure, 

the size of the RVE must be sufficiently small. Moreover, the RVE must contain enough 

information and volume to represent the essence of the microscopic structure. It should be noted 

that in reality fibers are always randomly distributed in matrix materials [22]. However, in order to 

javascript:;
javascript:;
javascript:void(0);


 

4 
 

simplify the microscopic model, fibers are considered to be periodically distributed in the matrix 

materials, and a real composite structure is composed of many of the RVEs. In the procedure of 

microscopic modeling, a RVE is further divided into sub-cells as shown in Fig. 1(a), where   and 

 indicate the serial number of each sub-cell. The dimensions of the RVE in the
2y  and 

3y  

directions are expressed, respectively, as: 

1

N

H h



 

  
1

N

L l



 

                (1) 

where H  and L  are dimensions of the RVE as shown in Fig. 1(a). h  and l  are sub-cell 

dimensions in the 
2y  and 

3y  directions, respectively. 

To improve computational efficiency and accuracy, the GMC was further developed by other 

researchers [35-36]. By employing the sub-cell stresses as unknown variables, Pindera and 

Bednarcyk [37] improved calculation efficiency of the microscopic method. In order to further 

improve the calculation accuracy and solve the sub-cell stress concentrations between inclusions 

and matrix, an isoparametric element approach was proposed [9, 38]. The relation between the 

mapping sub-cells in coordinate system    and the sub-cells in coordinate system 
2y -

3y  is 

given as follows [13]: 

       1, 2, 3, 4,( )

1 2 3 4( , ) ( , ) ( , ) ( , )   ( 2,3)
k k k kk

i i i i iy N y N y N y N y i                (2)
 

where 1

1
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1
( , ) (1 )(1 )

4
N        

4

1
( , ) (1 )(1 )

4
N       . The superscript, k , denotes serial number of each sub-cell.  

Superscripts 1-4 are surface numbers of each isoparametric element. 

  Here, the surface-averaged displacements 'ˆ
iu  and the surface-average tractions 

î ij jt n  for 

the thk  sub-cell are proposed in the FVDAM theory to substitute the sub-cell displacements in 

the GMC. 
ij  and 

jn  are stress components and unit normal vectors, respectively.  The 

relationship between the two co-ordinate systems is  
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where 
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J  is the Jacobi matrix. For the thk  sub-cell, displacement functions ( )

i

ku  

can be written in the reference coordinate system  ,  as, 
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where ( )

(00)

k

iW  and ( )

( ) 0, 0k

i mnW m n （ ） are the surface-averaged partial derivatives of the thk  

sub-cell displacements.  

The relationship between the surface-averaged tractions and the surface-averaged displacements 

can be expressed as follows: 
1 pl plˆ ˆ '    t NC AΒu ANΦ Z Nσ                (5) 

where (1) (2) (3) (4)ˆ ˆ ˆ ˆ ˆ    
T

   t t t t t , (1) (2) (3) (4)    
T

   N n n n n , (1) (2) (3) (4)ˆ ˆ ˆ ˆ ˆ      u u u u u . Detailed 

expressions of A  and Β  can be found in Khatam [38]. The parameter, pl
σ , which is 

determined by matrix plastic deformations, is related to material plastic stress. 
 

  To calculate global stiffness matrix globalK  of continuous fiber-reinforced composites, 

continuity conditions of interfacial traction and displacement across adjacent sub-cells, together 

with periodic boundary conditions, are imposed. Thus, the following stiffness equation is obtained. 

The unknown surface-averaged displacements U  is acquired by the global stiffness matrix 

globalK , that is  

 1

global global global

   U K Cε Γ G             (6) 

Where, U is the unknown surface-averaged displacement;  ε  is the strain component. C  

contains the sub-cell local stiffness matrix. 
globalΓ  and 

globalG  are related to temperature 

variations and inelastic properties of the constituent materials. 

3.2 Macro modeling of composite laminates  

Composite laminates are composed of a serial of laminas. The classic laminate theory calculates 

the internal in-plane forces 
1 1 2 2 1 2

    
T

x x x x x xN N N 
  and the internal moments 

1 1 2 2 1 2
    

T

x x x x x xM M M 
   

by the following equations [39]: 
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where 
1 1 2 2 1 2

    
T

x x x x x x   
   denote strain components in the 

1 2x x  coordinate system, as shown 

in Fig. 1(b). ( )( ) k

ijC and z are the stiffness matrix and thickness coordinate of the thk lamina, 

respectively. 
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The in-plane strain components can be calculated by  

1 1 1 11 1

2 2 2 2 2 2

1 2 1 2 1 2

0 0

0 0

0 02 2 2

x x x xx x

x x x x x x

x x x x x x

k

z k

k
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 

 
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    

     
    

          

                (9) 

where 
1 1 2 2 1 2

0 0 0    2
T

x x x x x x   
  are the mid-surface strains of each lamina. 

1 1 2 2 1 2

0 0 0    2
T

x x x x x xk k k 
   are the 

mid-surface curvature and twist. 

  Substituting Eq. (9) into Eq. (7) and Eq. (8), the equilibrium equation of a composite laminate 

can be expressed in matrix form as, 

1 1

2 2

1 2
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2 2
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










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 
 
 
 
 
 
  
     

               (10) 

where the elements in equation (10) are calculated by: 

1

1

( ) ( )
N

k

ij ij k k

k

A C z z 



   2 2

2 1

1

1
( ) ( )

2

N
k

ij ij k

k

B C z z 



   3 3

2 1

1

1
( ) ( )

3

N
k

ij ij k

k

C C z z 



          (11) 

3.3 Macroscopic modeling of wind turbine blade 

3.3.1 Experimental instrument 

In order to study failure mechanisms and damage evolution of composite structures, a wind 

turbine blade with initial damage is considered, as shown in Fig. 1(c). Due to the complex 

geometric profile, it is difficult to construct a 3D model using CAD. In order to precisely acquire 

actual structure parameters of the wind turbine blade, a nonparametric modeling technology based 

on the reverse engineering is proposed in this study. The experimental equipment includes 3D 

scanner MetraSCAN and Creaform C-Track as shown in Fig. 2. The laser scanner MetraSCAN 

can measure an area of 275 250 mm each time with an error tolerance of 0.03mm, and record 

480000 points per second. The Creaform C-Track system is used to establish a virtual global 

coordinate system. Software, Vxinspect and Geomagic Studio, are used to process the data to 

construct accurate 3D blade models.  

3.3.2. Digital modeling of the wind turbine blade 

Detailed procedures of the digital modeling of wind turbine blade can be divided into four 

steps: 

(1) Presetting of a measurement system. In order to acquire an accurate 3D model, the wind 

turbine blade is firstly placed on a platform. The C-Track system, a trilinear coordinate 

measuring instrument, is fixed to the ground. There must be no obstacle between the 
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camera of the C-Track system and the wind turbine blade. 

(2) Acquisition of point clouds. A virtual global coordinate system created by the C-Track 

system, is employed to track the wind turbine blade, and connect to the scanner, 

MetraSCAN. Due to the limited measuring area of 275 250 mm, multi-view point clouds 

are acquired by the Vxinspect software through moving the MetraSCAN scanner around 

the wind turbine blade, as shown in Fig. 3. 

(3) Data processing of point clouds. Originally scanned point clouds may contain noises or 

redundancies as shown in Figs. 3(c)-(d). In order to overcome these problems, point clouds 

are firstly feed into the processing software, Geomagic Studio, to remove noises. Secondly, 

multi-view point clouds are used to remove redundancies. After the above modifications, a 

clean, nonoverlapping and smooth point cloud model is obtained. 

(4) Surface reconstruction. The processed point cloud model is imported into the Geomagic 

Studio to reconstruct a fine 3D model. Firstly, the point cloud model is wrapped into a grid 

model. Secondly, the grid model is further modified by hole filling and remeshing, etc. 

Finally, on the basis of the mesh model, a smooth surface model is developed by using 

non-uniform rational B-splines (NURBS) surface fitting technique, as shown in Fig. 4. 

  To complete the NURBS surface fitting, the cloud data are further reduced according to 

accuracy requirements. The interpolation function P  of the free-form surface can be written as: 

  
1 1

, ,

1 1

( , ) ( ) ( )
m n

ij i p j q

i j

P u v p N u N v
 

 

                   (12) 

where ijp  donate the control points. , ( )i pN u  and , ( )j qN v  are the base functions along the u  

and v  directions, respectively, as shown in Fig. 3(b). 

  The control points ijp , which are related to weighting factors ijw , can be expressed as [40] 

  

1 1

, ,

1 1

1 1

, ,

1 1

( ) ( )

( , )

( ) ( )

m n

ij ij i p j q

i j

ij m n

ij i p j q

i j

w d N u N v

p u v

w N u N v

 

 

 

 






                        (13) 

  It should be noted that the free-form surface with a higher accuracy will be generated when the 

weighting factors ijw  are introduced in the interpolation function. 

4. Model validation 

4.1. Model errors and mesh convergence 

4.1.1. Error evaluations of the geometry of the composite blade  

  The digital geometric profile of the wind turbine blade developed by the MetraSCAN system is 

shown in Table 1. It can be seen that the measured length and width of the composite blades is 

84.5cm and 16.3cm, respectively. For the composite blades, the 3D scanner MetraSCAN can 

measure an area of 275 250 mm each time with an error tolerance of 0.03mm. It is indicated that 

the error derived from experimental equipment is acceptable. In order to estimate the accuracy of 

CAD model reconstruction, the distances between the NURBS surface and point cloud data from 
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the 3D scanner MetraSCAN are compared by employing the Imageware software as shown in Fig. 

5. The red surface in Fig. 5(a) shows that the distance errors between the point cloud data and the 

NURBS surface can be ignored, and the maximum error, located around the blade tip, is 
52.98 10 mm (as shown in Fig. 5(b)). 

4.1.2. Mesh convergence investigations 

  In this study, 3D FE models with 2212 elements and 65690 elements are used to study mesh 

sensitivities. The distance between the loading location and the blade tip is 40 mm, and the blade 

is clamped at the root. The models are subjected to the displacement loadings. Von Mises stresses 

at four locations, i.e., pt1, pt2, pt3 and pt4, as shown in Fig. 6(a) are compared in Fig. 7. It can be 

seen that the 3D composite blade model with 2212 elements is sufficiently accurate.  

4.2. Comparisons of mechanical properties 

4.2.1. Constituent material parameters 

The wind turbine blade investigated in this paper is manufactured by E-glass/resin composites. 

The E-glass fibers are continuously distributed in the matrix. Based on the microscopic images 

from a transmission electron microscopy test, it is assumed that the fibers are of circular section 

and periodically distributed in the matrix material. The material parameters of the composite are 

presented in Table 2, showing that the fibers are transversely isotropic, and the matrix is isotropic. 

4.2.2. Load-strain relation 

  In order to validate the proposed multi-scale model, Fiber Bragg Gratings (FBG) sensors are 

mounted in the spanwise direction of the blade to acquire real-time strains. Locations of the FBG 

sensors are labeled as A1-A4 and B1-B4, as shown in Fig. 6(a). It should be noted that a circular 

hole of 13mm located at middle of the chord line and 175mm away from the blade root, presents 

as an initial defect. To measure stress concentrations, sensors A1 and B1 are located near the 

initial damage. The strain measurement system is composed of a SM130-700 demodulator, FBG 

sensors and PC, as shown in Fig. 8. In the experiment, six different loads (1.8kg, 2.8kg, 3.8kg, 

4.8kg, 5.1kg and 7.1kg) are applied to the blade tip as shown in Fig. 6(a). 

It should be noted that variations of the loadings will lead to strain changes at the measured 

positions. Accordingly, central wavelengths of the FBG sensors will shift. In order to avoid the 

wavelength aliasing, FBG sensors with eight different central wavelengths are employed, as 

shown in Table 3. The relationship between the central wavelengths of the FBG sensors and the 

measured strains can be written as: 

01000 1000BB

e eP P

 



                  (14) 

where 
B  is variation of central wavelength. 

B  and 
0  are current and original wavelength 

of the FBG sensors, respectively. The conversion coefficient 
eP  is taken as 1.2 /pm   in the 

experiment. 

Figs. 9(a)-(b) present the measured strains relative to the spanwise locations. For comparisons, 

strain responses of the blade subjected to the six static loads are considered. It is no doubt that the 

initial damage reduces load carrying capacity of the blade, and stress concentration occurs near the 

damage. From the tested results, it is interesting to notice that the strain increased first and then 

decreased in the spanwise direction. The maximum strains are located at A2 and B2, whose 

locations are 290mm away from the fixed end. This is due to the complex curved surface of the 
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blade aerofoil, as shown in Fig. 6(b).  

In order to further verify the method, comparisons between the numerical results and 

experimental data are shown in Figs. 10(a)-(b). In general, the predicted strain-load curves agree 

well with the experimental data. In addition, it appears that the relations between loads and strains 

are virtually linear, suggesting that plastic deformation of the wind turbine blade is negligible with 

the range of loading. 

5. Damage evolution of the wind turbine blade 

5.1. Damage criterion of the constituent materials  

In order to study the failure mechanisms and damage evolutions of the composite blade, it is 

critical to choose a proper failure criterion. Due to the complexities involved in the failures of 

composites, various criteria have been proposed [41-42]. Tsai-Hill failure criterion, which is 

considered to be an extension of Von-Mises yield criterion, is suitable to investigate failures of 

isotropic and anisotropic materials [43]. With consideration of matrix and fiber failures at 

microscopic scale, the 3D Tsai-Hill criterion is further modified as follows: 

                      
           

2 2 2
2 2

11 22 33 11 22 11 33 22 33

2 2 2
2 ( )

12 13 23 22      ( 0)

t tY Y

T D

        

   

        

   

     

    

      (15) 

where 
 

( , 1,2,3)ij i j


   are the sub-cell average stresses.  
22 0


   implies that the criterion 

applied only when the transversal stresses of sub-cells are tensile. 
tY  and T  are tensile strength 

and shear strength of matrix materials or fibers. ( )D   denotes failure index. 

For compressive transverse stresses, the following failure criterion applies:  

                      
           

2 2 2
2 2

11 22 33 11 22 11 33 22 33

2 2 2
2 ( )

12 13 23 22       ( 0)

c cY Y

T D

        

   

        

   

     

    

    (16) 

where 
cY  is the compressive strength of matrix materials or fibers. Once the damage index ( )D   

is equal to 1, fibers or matrix is considered to be failed. 

5.2.  Multi-scale damage analysis 

  Fig. 11 illustrates the three-scale damage modeling procedure of the wind turbine blade. The 

major steps are summarized as follows: 

(1) Construct the geometry and define the model based on the data from the Geomagic Studio. 

(2) Apply time-dependent loadings and calculate the macroscopic strain components  ij  of 

each element by finite element (FE) model. 

(3) Use the user-defined subroutine of FVDAM in the process of calculations at each 

integration point of the finite elements at the microscopic scale, as shown in Fig. 11(b). The 

sub-cell stress/strain fields are solved next by employing the macroscopic strain at each 
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integral point.  

(4) Apply failure criteria to identify failures of matrix or fibers. Once one of failure criteria in 

Eqs. (15)-(16) is satisfied, the sub-cell stiffness will degenerate to 1% of the original value. 

In addition, the macroscopic stiffness matrices and the stresses of each finite element are 

calculated using the homogenization method. 

(5) Repeat the above calculations for next loading level and identify newly failed elements. 

The multi-scale progressive damage analysis terminates once total failure of the blade 

occurs.  

5.3 Matrix damage evolution in wind turbine blade 

  Fig. 12 shows damage evolution on the upper surface of the blade using the above validated 

multi-scale model. In general, it can be seen that matrix damage appears first at the blade root and 

spreads further in the spanwise direction. With the increase of external loadings, damages are  

found near the hole. In details, when the external load is equal to 11.96kg, a minor matrix damage 

is found at the blade root as shown in Fig. 12(a). It means that the stresses at the blade root are 

greater than those around the hole. When the external loading is increased to 17.14kg as shown in 

Fig. 12(b), a minor matrix damage is found near the hole. When the external load is equal to 

23.12kg as shown in Fig. 12(d), the matrix damage are further extended around the hole and the 

blade root. Furthermore, matrix damage also starts to appear in the leading edge. When the 

external load is 31.05kg (Fig. 12(e)) or 33.7kg (Fig. 12(f)), it can be seen that new matrix damage 

are located at the trailing edge near the initial damage.  

Fig. 13 shows damage evolutions on the lower surface of the blade subjected to compressive 

loadings. When the external load increases to 30.69kg as shown in Fig. 13(a), compressive matrix 

failure occurs at the leading edge of the blade near the root. When the external load is 33.07kg as 

shown in Fig. 13(b), compressive matrix damage is found at the trailing edge and the tip of the 

blade. In addition, it is noticed that compressive damage are further accumulated along the blade 

edge.  

5.4 Fiber damage evolution in the wind turbine blade 

Fig. 14 shows the fiber damage evolution relative to the external loads. Initial fiber damage at 

the blade root is found at a load of 20.39kg, as shown in Fig. 14(a). The fiber failures are due to 

the coupled matrix damages and stress concentrations at the blade root. As the external load 

increases, further fiber damage accumulate in the spanwise direction, as shown in Fig. 14(b). 

However, no evident fiber damage is found near the circular hole. From Fig 12 (c)-(f), it can be 

found that severe matrix damage occurs when the external load is equal to 20.89kg. This severe 

matrix damage is caused by fiber fracture. The failure of the fibers results in stress concentrations 

in the matrix materials around the fractured fibers, which accelerates matrix failures.  

  

6. Conclusions 

In this study, a generalized multi-scale model was developed to investigate damage evolutions 

of a composite blade. The proposed multi-scale model included analyses at microscopic, laminar 

and structural scales. The microscopic model was used to acquire microscopic stress fields of the 

representative volume element. In order to describe microscopic damage, microscopic failure 

criteria were introduced and employed. In addition, a reverse technology was employed to acquire 

actual structure parameters of the wind turbine blade. By comparing with the experimental results, 

it was concluded that the proposed multi-scale method could be used to effectively predict 

javascript:void(0);
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javascript:void(0);
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mechanical properties of complex composite structures.  

The validated model was used then to simulate damage evolution of a wind turbine blade with 

an initial damage. The numerical results revealed that matrix damage appeared first in the blade 

root on the upper surface, and developed further in the spanwise direction. With further increasing 

of the external load, matrix compressive failures were found near the leading edge and the root of 

the blade’s lower surface. In addition, initial fiber damage appeared first near the blade root. The 

fiber damage also developed further in the spanwise direction.  

Future research on failures due to delamination is required.  Studies on the coupling effect of 

microscopic and macroscopic delaminations are also recommended. 
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