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Abstract
Knowledge of the business relationships between Au-

tonomous Systems (ASes) is essential to understanding the
behavior of the Internet routing system. Despite significant
progress in the development of sophisticated relationship in-
ference algorithms, the resulting datasets are impractical for
many critical real-world applications, cannot offer adequate
predictability in the configuration of routing policies, and
suffer from inference oscillations. To achieve more practi-
cal and stable relationship inferences we first illuminate the
root causes of the contradictions between these shortcomings
and the near-perfect validation results of AS-Rank, the state-
of-the-art relationship inference algorithm. Using a “naive”
inference approach as a benchmark, we find that the avail-
able validation datasets over-represent AS links with easier
inference requirements. We identify which types of links are
harder to infer, and we develop appropriate validation sub-
sets to enable more representative evaluation.

We then develop a probabilistic algorithm, ProbLink, to
overcome the inference barriers for hard links, such as non-
valley-free routing, limited visibility, and non-conventional
peering practices. To this end, we identify key intercon-
nection features that provide stochastically informative and
highly predictive relationship inference signals. Compared
to AS-Rank, our approach reduces the error rate for all links
by 1.6×, and importantly, by up to 6.1× for different types
of hard links. We demonstrate the practical significance of
our improvements by evaluating their impact on three appli-
cations. Compared to the current state-of-the-art, ProbLink
increases the precision and recall of route leak detection by
4.1× and 3.4× respectively, reveals 27% more complex re-
lationships, and increases the precision of predicting the im-
pact of selective advertisements by 34%.

1 Introduction
The Internet, often referred to as a “network of networks”,
is composed of more than 60,000 of Autonomous Systems
(ASes), each independently operated and managed, which
cooperate via the Border Gateway Protocol (BGP) to ex-
change routing information with each other and obtain global
reachability. Inter-AS connectivity involves contractual re-
lationships that determine the economics and various tech-
nical aspects of traffic exchange. For over 15 years, re-
searchers have studied the problem of inferring the differ-
ent types of relationships between ASes from publicly avail-
able BGP routing data. Understanding of these inter-AS rela-
tionships is useful for identifying misconfigurations on BGP

routers, troubleshooting pathological routing behaviors such
as dilated routes or blackholes, predicting how Internet poli-
cies evolve over time, and inferring interdomain congestion,
among several other contexts [28, 26, 9]. However, it has
been found that the available relationship inferences perform
poorly in many critical applications [34, 33, 5, 35, 32, 44].

In this paper, we revisit the AS relationship inference
problem and study why the state-of-the-art inference tech-
niques are not sufficient, despite extensive validation that in-
dicates an error rate of just 1%. In particular, we consider
the sophisticated AS-Rank technique [30] that synthesizes
eleven deterministic heuristics. As a first step in assessing
the performance of this technique, we create a benchmark
comparison in the form of a simple three-step AS relation-
ship inference algorithm, called CoreToLeaf, which utilizes
just the valley-free assumption on paths through a core set
of transit-free ASes. In spite of its simplicity, CoreToLeaf
achieves accuracy that is almost as high as that of AS-Rank.
At the same time, we conduct qualitative evaluations of both
CoreToLeaf an AS-Rank with practical applications — de-
tection of route leaks and the analysis of selective advertise-
ments — which reveal that both algorithms achieve surpris-
ingly poor accuracy for such use cases.

These insights allow us to identify that most of the links
in the validation datasets have associated relationships that
are relatively easy to infer, while it is necessary to achieve
higher accuracy for harder to infer links to enable practical
applications. We construct different subsets of the validation
dataset that contain AS links that are considered hard, and
find that both the CoreToLeaf and AS-Rank techniques have
substantially lower accuracy on these validation subsets, in-
dicating that there are distinct classes of links for which the
current algorithms are not sufficiently accurate.

We next examine some of the challenges in developing a
more accurate AS relationship inference algorithm. We ob-
serve first that the attributes of a link (and that of the paths
that traverse the link) that can be potentially used by an AS
relationship inference algorithm are noisy and only have a
weak correlation with the link’s relationship type. Second, a
large number of links appear in paths that likely violate the
valley-free assumption made by existing algorithms. Third,
existing algorithms are sensitive to the locations of the van-
tage points and the order in which the link relationships are
inferred. An AS relationship inference technique has to ad-
dress the above challenges if it is to achieve higher accuracy
on the various hard link benchmark datasets.

We develop a probabilistic AS relationship inference algo-
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rithm, ProbLink, to address the above issues. In particular,
it provides a framework that allows for easy integration of
many noisy but useful attributes into the relationship infer-
ence algorithm. We identify a set of link attributes that take
into account not only observed paths but also information
gleaned from the fact that certain paths are not observed. It
allows for links to appear in paths that violate the valley-
free property but attributes a lower probability to such oc-
currences. Finally, the algorithm uses an iterative algorithm
that repeatedly infers the link types until they reach a fixed
point in terms of the inferences as well as the underlying
statistical distributions of link attributes. We evaluate this al-
gorithm and show that it achieves significantly lower error
rates when compared to prior techniques such as AS-Rank.
Our work makes the following contributions:

• We design a strikingly simple algorithm, CoreToLeaf,
that uses just the valley-free assumption, yet achieves
inference accuracy comparable to the more complicated
AS-Rank. We use CoreToLeaf to identify five categories
of hard links existing in the Internet and show that the cur-
rent validation datasets are skewed toward easy links.

• Despite the seemingly high accuracy of the AS-Rank al-
gorithm, we show that its accuracy is still insufficient for
several real-world applications.

• We design a robust clique inference mechanism, a key
set of route features and compose these features to de-
vise a probabilistic AS relationship inference algorithm,
ProbLink, which reduces the error rate of AS-Rank over-
all by 1.7×, and achieves 1.8-6.1× better error rate for
various categories of hard links.

• We show that even the small improvement in overall accu-
racy brought by ProbLink has a significant impact when
applied to real-world applications. Compared to the cur-
rent state of the art, ProbLink increases the precision and
recall of route leak detection by 4.1× and 3.4× respec-
tively, reveals 27% more complex relationships, and in-
creases the precision of predicting the impact of selective
advertisements by 34%.

• We will publicly release the code for ProbLink and its
periodically inferred relationships.

2 Background and Related Work
The Border Gateway Protocol (BGP) is the mechanism used
by ASes to exchange reachability information. A BGP AS
path is a sequence of ASes denoting the routing path that the
first AS in the path prefers to reach a destination prefix. The
last AS in the path is referred to as the “origin AS” of the
prefix. Each AS uses a complex decision process to select
the most preferred path toward each destination prefix [7].
A BGP route collector infrastructure is operated by Route-
views [4] and RIPE NCC [3], which consist of routers that
peer with ASes that volunteer to provide their BGP feeds for
research or operational reasons. A route collector is config-

ured to obtain the best paths from ASes it peers with, i.e.,
an AS peering with a route collector exports its best path
towards each destination prefix to the collector. Route col-
lectors typically peer with several ASes, and thus obtain the
best paths from those ASes to each destination prefix.

AS relationships fall into two broad categories: customer-
provider (c2p) and settlement-free peering (p2p). In a c2p re-
lationship, the customer AS pays the provider AS for reach-
ability to the rest of the Internet. In a p2p relationship, two
networks agree to exchange traffic destined to their respec-
tive networks or their customers without an associated fee.
In practice, AS relationships can span the spectrum between
c2p and p2p. Such cases, of hybrid or complex relationships,
can occur when two ASes have different contractual agree-
ments in different geographical regions [20]. Also, sibling
relationships happen between ASes under the same organi-
zation, which can exchange traffic without any cost and rout-
ing restrictions. The customer cone of an AS X is the set of
ASes that X can reach using only p2c links. The size of the
customer cone can be perceived as a metric of the market
power of an AS. A clique of Tier-1 ASes at the top of the
Internet AS hierarchy are “transit-free”, meaning that they
have routes to all the other networks on the Internet through
customer or peering links without the need to pay for transit.

2.1 AS Relationship Inference Techniques

Beginning with the seminal work by Gao [16], most algo-
rithms for AS relationship inference are based on the as-
sumption that valid BGP paths are valley-free, i.e., a path
consists of zero or more c2p links, followed by zero or one
peering link, followed by zero or more p2c links. This as-
sumption intends to capture the economic incentives that, at
least partially, drives traffic exchange between ASes . An
AS advertising routes learned from a peer or provider to an-
other peer or provider would be offering “free transit” which
would be against its financial interests.

Another assumption made by Gao and other subsequent
researchers [42, 10, 11, 47] is that the providers usually have
a higher node degree (i.e., the number of ASes to which an
AS node directly connects to) than customers, while peers
usually have similar degrees. node degree is the number of
neighbors an AS directly connects to, irrespective of whether
the neighbors are providers, peers, or customers to the AS; It
has been exhibited that node degree is significantly biased
by the topology incompleteness problem, namely the fact
that the available topological data reveal only a subset of the
complete Internet topology due to their limitation to observe
a large fraction of peer-to-peer AS links [46].

The state-of-the-art AS relationship inference technique,
called the “AS-Rank” algorithm [30], made three generally
accepted assumptions: 1) there is a clique of large transit
providers at the top of the hierarchy, 2) most customers pur-
chase transit in order to be globally reachable, and 3) there
are no cycles of p2c links. The AS-Rank algorithm takes 11
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intricate steps to label each link as customer-provider (ab-
breviated as c2p or p2c depending on the directionality of
the relationship) or peer-to-peer (p2p). The complete steps
of the AS-Rank algorithm is available in Appendix A.

It is worth observing a few properties of the AS-Rank al-
gorithm. First, it uses the valley-free assumption and the
transit degree attribute as the primary pieces of information
in determining the labels. The transit degree, expresses the
number of ASes that appear on either side of an AS in ad-
jacent links in BGP paths, and it does not count neighbors
for which the given AS does not transit traffic. Transit con-
nectivity is easily observable by Route Collectors (with the
exception of backup or partial-transit links) [22], therefore it
provides a better metric to describe an AS’s prominence than
node degree. Second, the algorithm visits ASes and links in
a specific order, uses the transit degree information in certain
cases (step 5) and not in others (step 7), and does not have
a mechanism for resolving conflicting information in cases
where the valley-free property is violated.

3 Input Datasets
3.1 BGP Paths

We collect BGP paths from RouteViews [4] and RIPE
RIS [3]. In September 2018, both projects operate 22 col-
lectors, which in total connect with more than 1,000 vantage
points (VP) worldwide. Each RouteViews and RIPE RIS
collector dumps a snapshot of their Adj-RIB-out tables ev-
ery 2 hours and every 8 hours respectively. For the purpose
of evaluating the various algorithms over longitudinal data
(as discussed in §4 and §7), we consider snapshots of BGP
paths on the first day of April, August, and December (i.e.,
every four months) since 2006.

After collecting BGP paths, we parse them to remove du-
plicated ASes which result from BGP path prepending. We
also filter out paths with AS loops, i.e., when an ASN ap-
pears more than once and is separated by at least one differ-
ent ASN. We also sanitize the BGP paths by removing paths
containing reserved ASes [39]. Loops and reserved ASes
showing up in a path are artifacts of route poisoning [6, 27].

3.2 Sibling Relationships

We use CAIDA’s AS-to-organization mapping dataset [8],
which is derived from WHOIS data, to identify sibling links.
This dataset provides quarterly information starting from
2009. We infer links between ASes that are operated by the
same organization as sibling relationships.

3.3 IXP List

ASes often establish p2p relationships over shared switching
fabric provided by IXPs. To facilitate dense peering con-
nectivity, IXPs provide BGP Route Servers over which ASes
establish many-to-many (multilateral) interconnections. To
enable layer-3 connectivity Route Servers typically have
their own ASN, but according to best practices it should be

Date # links # links Percentage
(MM/DD/YYYY) in validation set in total

04/01/2012 7,833 117,872 6.6%
04/01/2013 11,644 133,459 8.7%
04/01/2014 44,875 159,678 28.1%
04/01/2015 47,036 176,791 26.6%
04/01/2016 52,931 204,309 25.9%
04/01/2017 56,326 213,441 26.4%

Table 1: Size of the validation dataset vs. all links observed
from all VPs.

filtered-out from the AS path since the Route Server does
not participate in routing decision process [25]. However,
for debugging reasons some IXP members append the Route
Server ASN in the BGP path. We sanitize BGP paths to re-
move Route Server ASNs since essentially the peering links
are between the IXP members, and not between the IXP and
ASes. To collect a list of AS Numbers (ASNs) used by IXP
Route Servers, we query PeeringDB [2] for networks of type
“Route Server” and we extract the ASN. We augment this list
using the Euro-IX IXP Service Matrix [1] to extract the Peer-
ing LAN ASN and Route Server ASN for each IXP. There
are 172 IXP ASes in this list on 12/01/2017.

3.4 Validation Dataset

AS operators frequently encode the relationship type with
their neighbors directly in their prefix advertisements using
BGP Communities, an optional transitive BGP attribute used
to attach metadata on BGP paths. While the use of Commu-
nities is not standardized, many ASes publicly document the
meaning of their BGP communities on websites and in IRR
databases, enabling us to assemble a dictionary of BGP com-
munities that denote relationship type. We used a dictionary
of 1286 community values from 224 different ASes to con-
struct a set of relationships from BGP data starting quarterly
from April 2006 to April 2017. Similarly to [30], we treat
this dataset as “best-effort” validation to evaluate existing in-
ference techniques and our proposed approaches.

Table 1 shows the size of this validation dataset over the
past 6 years. The coverage of our validation dataset increases
from 6.6% to over 26% of the observed links between 2014
– 2016, due to the increasing popularity of BGP Commu-
nities and the deployment of additional VPs that allow more
communities to propagate to BGP collectors. We believe this
high coverage of our validation dataset is sufficient to evalu-
ate different AS relationship inference techniques. As prior
work has pointed out, links involving Tier-1 ASes and VP
ASes are over-represented because public data on BGP com-
munities mostly comes from large ASes [30], while com-
munities from non-VP ASes may be stripped out during the
propagation of BGP routes. However, unlike prior work, we
take these biases into consideration during our evaluation.

4 Establishing a Benchmark for Hard Links
As explained in the previous section, the evaluation dataset is
extensive but biased toward specific types of links. It is im-
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portant to understand if the links over-represented in the val-
idation dataset are easier to infer correctly, compared to the
under-represented links, which may skew the overall eval-
uation results. To this end we develop CoreToLeaf, a very
simple algorithm that allows us to understand which links are
easy to infer. CoreToLeaf uses only the valley-free assump-
tion and the list of Tier-1 ASes to infer relationships. We
show that the inference accuracy of this algorithm is almost
as high as that of the more sophisticated AS-Rank algorithm
elaborated in §2.1, while the accuracy of both algorithms suf-
fer for certain categories of links. Our findings reveal that
indeed certain types of under-represented links in the evalu-
ation dataset are harder to infer, possibly inflating the overall
accuracy of past work. We address this issue by constructing
distinct validation sub-datasets as benchmarks for hard links.

4.1 The CoreToLeaf Algorithm

CoreToLeaf starts by inferring a clique of Tier-1 ASes using
the same inference method as AS-Rank, which is available
in Appendix B. For each path that traverses a Tier-1, we skip
the first link after the Tier-1 and label all succeeding links as
p2c. For example, if AS2 is a clique member in a BGP path
“AS1, AS2, AS3, AS4, AS5, AS6”, we infer links <AS4 - AS5>
and <AS5 - AS6> as p2c. We skip inferring the relationship
for <AS2 - AS3> because it could either be a p2c or a p2p,
but all subsequent links need to be p2c assuming that the path
is valley-free. (Note that if AS1 is a clique member, we would
have labeled <AS2 - AS3> as a p2c link.) Finally, we label
all remaining unclassified links as p2p.

In the second step of labeling p2c links, a link could be
labeled more than once if it shows up in multiple paths. In
some cases, a link could be labeled as a p2c in some path and
as a c2p when traversing a different path. We label this link
as a “conflict” link when we encounter such an inconsistency.

Note that CoreToLeaf does not take into account degree
or transit degree information nor does it use paths that do
not go through Tier-1s. The rationale behind CoreToLeaf is
simply that there is greater certainty that it is customer routes
that are being transitively exposed to Tier-1s and that there
is less likelihood of paths being exported to Tier-1s due to
complex peering mechanisms.

4.2 Evaluation

We evaluate this extremely simple algorithm against our val-
idation dataset on 04/01/2017, which contains 23,528 p2p
links and 32,798 p2c links (26.4% of the visible topology).
Table 2 compares the precision (true positives / (true posi-
tives + false positives)) and recall (true positives / (true pos-
itives + false negatives)) of CoreToLeaf and AS-Rank. Sur-
prisingly, CoreToLeaf achieves high precision and recall
for both p2c and p2p links (comparable to AS-Rank), with
higher precision on p2c relationships (98.9% compared to
97.8%), and a small fraction of links labeled as ‘conflict’.

The 1.1% mistakenly inferred p2c links and the links

p2c p2p Conflict
Algorithm Precision Recall Precision Recall

(%) (%) (%) (%) (%)
CoreToLeaf 98.9 95.8 95.0 98.8 0.12
AS-Rank 97.8 97.5 98.8 98.9 0

Table 2: Precision and recall of CoreToLeaf and AS-Rank.

which CoreToLeaf labels as ‘conflict’ by are due to valley-
free violation, which we quantify later in §5.2. Since the sec-
ond step of labeling p2c links uses just paths through Tier-1s,
it fails to capture 4.2% (95.8% recall) of the actual p2c links.
Consequently, these links are inferred as p2p in the third step
and result in a 5.0% error rate for links labeled as p2p.

The accuracy of CoreToLeaf and AS-Rank seem quite
high, but they perform poorly when applied to real-world ap-
plications. Route leaks constitute a type of prevalent routing
incident which can cause significant disruptions to Internet
routing [41, 21]. In §8, we describe how we can use inferred
relationships to detect route leaks and evaluate the effective-
ness of AS-Rank inferences. Only 19% of the route leaks de-
tected using AS-Rank were real route leaks, and almost 80%
of the real leaks were missed. We observe relatively poor
performance for two more applications we tested, discussed
in detail in §8, which illustrates that a better AS relationship
algorithm is needed for real-world applications.

4.3 Identifying Hard Links

The surprisingly high accuracy obtained by CoreToLeaf has
many implications. First, it indicates that simple techniques
might suffice for inferring the types of many of the links in
the validation dataset. Second, it underscores the need for
more comprehensive validation datasets, that would repre-
sent better AS links beyond those associated with Tier-1 and
VP ASes. Third, in the absence of more comprehensive vali-
dation datasets, one way to make progress on improving and
evaluating AS relationship inference algorithms is to identify
specific types of links for which the current algorithms do not
work well. We therefore now attempt to extract collections
of hard links from the overall validation dataset based on the
inference performance of CoreToLeaf and AS-Rank.

We feed a large set of features of every link in the val-
idation dataset along with each link labeled as “inferred
correctly” and “inferred incorrectly” by CoreToLeaf and
AS-Rank into the gradient boost decision tree [15] , and cal-
culate the feature importance. Supporting feature importance
calculation and results are in Appendix C. We extract five
categories of “hard” links suggested by the feature impor-
tance analysis and the CoreToLeaf algorithm.
1) Links with max node degrees smaller than 100. The
feature importance analysis shows that links whose endpoint
ASes both have small node degrees are hard to be inferred
correctly by CoreToLeaf and AS-Rank.
2) Links observed by more than 50 but less than 100 VPs.
Driven by the feature importance results, links observed by
the range of 50 to 100 VPs are hard to infer correctly. The
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Category CoreToLeaf AS-Rank Fraction Fraction
(%) (%) all links validation

Max node degree <100 13.7 8.6 16.1% 1.7%
Observed by 50-100 VPs 4.7 9.3 9.9% 8.1%

Non-VP & Non-Tier1 5.3 9.0 24.2% 11.6%
Unlabeled Stub-clique 95.5 33.4 0.3% 0.1%

Conflict 100.0 8.1 0.24% 0.16%

Table 3: Error rates of CoreToLeaf and AS-Rank on hard links
on 04/01/2016. The fraction of each category of hard links that
is in overall links vs. in the validation dataset shows that hard
links are underrepresented in the validation dataset.

reason is that p2p links are often observed by few VPs, and
transit links are often observe by many VPs, so the range in
the middle is hard to distinguish these link types.
3) Non-VP and non-Tier1 links. In general, a link that is
directly connected to a VP or a Tier-1 is likely to appear in
many BGP paths, and the AS inference algorithm is likely to
have access to more information regarding the link. More-
over, most of our validation dataset are links that are con-
nected to a VP or Tier-1 AS, so we want to specifically ana-
lyze the performance of inference algorithms on the “under-
represented” links in our validation dataset.
4) Unlabeled stub-clique links in CoreToLeaf. A stub AS
connects with only one other AS, through which it gains ac-
cess to the entire Internet. A stub-clique link is a link whose
one endpoint is a stub AS and the other endpoint is in the
Tier-1 clique. In other words, the clique member is the only
AS to which the stub AS connects. These links typically
have very high transit degree difference, which is an impor-
tant feature as shown by the feature importance analysis.

In CoreToLeaf, a stub-clique link <X, Y> (where X is a
stub AS, and Y is a clique AS) is inferred as a c2p iff there
is a path containing an AS triplet “Z, Y, X” where Z is also a
clique AS. We call the set of stub-clique links which are not
inferred as c2p in the second step of CoreToLeaf (thus they
are then inferred as p2p) “unlabeled stub-clique links”.

In step 9 of AS-Rank, stub-clique links are classified as
c2p by default based on the assumption that stub networks
are extremely unlikely to meet the peering requirements of
clique members. We believe this is an unjustified assumption
and with the trend of “Internet flattening”, peering relation-
ships between high-tier ASes and low-tier ASes are becom-
ing more prevalent [17].

5) Conflicts in CoreToLeaf. Recall that CoreToLeaf la-
bels some links as “conflicts”. These links appear to behave
as p2c on some paths and c2p on others, and the main rea-
son for this is violation of valley-free routing. We believe
that this set of links is difficult to analyze because the two
endpoints are likely to have unconventional routing policies.

Table 3 shows the error rates of inferences made by
CoreToLeaf and AS-Rank on each category of hard links
on 04/01/2016. We observe both algorithms yield more er-
rors than their inferences on normal links, especially on un-
labeled stub-clique links. Furthermore, the fraction of every
category of the hard links in the validation dataset is less than

that in the overall links, especially for the “Max node degree
< 100” category. This indicates that the validation dataset
is skewed to easy links. In addition to the entire validation
dataset, we will use these more specific datasets for evaluat-
ing the AS inference algorithms in the subsequent sections.

5 Challenges With AS Relationship Inference
In this section, we identify three main challenges with AS re-
lationship inference, and describe how they hamper existing
inference techniques. This analysis helps inform the design
of a probabilistic algorithm for AS relationship inference.

5.1 Degree Inversion

An AS inference algorithm can use any observed attribute
associated with a link, its two endpoint ASes, AS links, and
end-to-end paths that traverse the link in order to determine
the link type. However, most attributes have stochastic infor-
mation value, as we will illustrate below for AS degree.

Many existing techniques for inferring AS relationships
make three assumptions: highest-degree ASes sit on the top
of the routing hierarchy; peering ASes have similar degrees;
and providers have larger degree than customers [16, 30, 12].

Over the past four years, the top two nodes with the largest
transit and node degrees (as observed through BGP feeds
from available VPs) have consistently been AS6939 (Hurri-
cane Electric) and AS174 (Cogent Communications). How-
ever, both of these ASes are not Tier-1 ASes [45], so the
assumption that the ASes with the highest degrees sit on top
of the routing hierarchy is not universally valid. This fact in-
fluences the accuracy of some inference approaches since a
key step in these approaches is identifying a clique of Tier-1
ASes at the top of the hierarchy [16, 30].

Figure 1a plots a CDF of the absolute transit degree dif-
ferences of different link types. Transit degrees of ASes are
computed from BGP paths observed on 04/01/2017, and link
types are derived from the validation dataset on 04/01/2017
as described in §3.4. The validation dataset includes 55,016
links, 30,859 of which are p2c links and 24,157 are p2p links.
We see that even though p2c links usually have larger degree
differences than p2p links, over 14% of the p2p links have
absolute transit degree differences larger than 1000, making
many p2p links indistinguishable from p2c links in terms of
transit/node degree difference.

According to this observation, the existence of substan-
tial differences in node/transit degrees between peering ASes
is common. This phenomenon is explained in part by the
fact that, during recent years, large content providers such as
Google, Akamai, and Microsoft, which usually have high
degrees, are more willing to peer with large numbers of
lower tier ASes to get free and more efficient traffic ex-
change [43, 23]. This trend is referred to as the “flattening”
of the Internet [17], and it significantly influences the AS re-
lationship inference techniques that differentiate peers from
providers or customers based on transit/node degree differ-
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(c) CDF of AS-Rank’s error rates on 30 con-
secutive 1-day BGP snapshots from April 1,
2016 to April 30, 2016.

Figure 1: Analysis of transit degree difference, valley-free violations, and error rates of AS-Rank.

ences, or rank ASes in decreasing order by degrees and label
links based on the order in which ASes are considered (as is
the case with AS-Rank).

5.2 Violation of Valley-Free Property

Next, we study the prevalence of valley-free violations,
which is the culprit behind mistakenly inferred p2c links and
‘conflict’ links in CoreToLeaf.

3% of the BGP paths violate valley-freeness in the
AS-Rank inference on 04/01/2012. This snapshot is inciden-
tally one where the AS-Rank algorithm achieves the highest
inference accuracy. We also find this level of valley-free vi-
olations is persistent over the various snapshots in our study.

Figure 1b shows a CDF of the number of paths that vio-
late the valley-free property for the links in BGP paths on
04/01/2012. 47% of the links in the AS topology are tra-
versed by paths that violate the valley-free property. This
statistic is consistent with prior work that analyzes the preva-
lence of valley-free violations in Internet routing and charac-
terize it is a result of the deliberate BGP policies of ASes that
use unconventional economic models [19].

The existence of these violations has certain implications
for AS relationship inference. First, a robust inference al-
gorithm has to take into account the structure of all paths
traversing a given link. Second, it might have to update the
inference made for a given link after inferring the types of
neighboring links. It is worth noting that the AS-Rank algo-
rithm does not conform to the above guidelines and is there-
fore prone to erroneous inferences for links with paths that
violate the valley-free property.

5.3 Current Techniques are Sensitive to VP and Snap-
shot Selection

We observe high variation in accuracy when applying
the AS-Rank algorithm to consecutive snapshots of BGP
paths. Figure 1c plots a CDF of AS-Rank’s error rates(1−
accuracy) on 30 consecutive 1-day BGP snapshots in April,
2016. As shown in Appendix D.1, AS-Ranks accuracy is
also quite sensitive to the VP selections.

The reason for the AS-Rank algorithm’s sensitivity to
snapshot and VP selections lies in the first step of its infer-

ence algorithm that identifies the Tier-1 clique and the subse-
quent steps that labels links in a particular order starting with
the Tier-1 ASes. AS-Rank first finds the maximum clique
from the AS-links involving the largest ten ASes by transit
degree, then visits the rest of the ASes top-to-bottom, and
adds an AS to the clique if it connects with all the members
in the current clique. It then labels p2c links using path seg-
ments that radiate from the Tier-1 clique. Errors that creep
into the clique determination step have a significant impact
on the order in which AS links are analyzed and labeled. See
Appendix D.2 for detailed discussions.

6 Probabilistic AS Relationship Inference
In this section, we present a new AS relationship inference
algorithm, ProbLink, that is designed to address the chal-
lenges discussed above. First, ProbLink is a probabilistic
algorithm that enables the use of link attributes with stochas-
tic information value. Second, in determining a link’s type,
ProbLink simultaneously takes into account all informa-
tion regarding the links and the paths that traverse it, and
provides a framework for integrating conflicting informa-
tion (e.g., paths that violate the valley-free property). Third,
ProbLink does not prescribe a specific order in which ASes
and links are considered, but rather continually updates the
link type inferences and iterates till it reaches a fixed point in
terms of the underlying stochastic distributions.

Crucially, our algorithm provides a framework for inte-
grating various link attributes that might help infer a link’s
type. We therefore first design a set of link features or at-
tributes that provide noisy but still informative signals re-
garding the AS relationships. In particular, we design fea-
tures that capture routing behavior in terms of both observed
and unobserved routes as well as integrate information re-
garding a link’s endpoints. We then describe how we use
these features to build a probabilistic inference model.

6.1 Overview

Our algorithm starts with an initial classification of links
based on the inference result of CoreToLeaf, so at the be-
ginning, each link has deterministic relationship probabili-
ties. More concretely, if CoreToLeaf labels L as a p2p link,
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we will convert it to P(L= p2p) = 1.0, P(L= p2c) = 0.0,
P(L= c2p) = 0.0 and provide that as the input to our algo-
rithm. Note that ProbLink is essentially a meta-inference
algorithm that can be bootstrapped by outcomes of any algo-
rithm. Its performance is independent on the bootstrapping
algorithm we choose, which we evaluate later in §7.1.

For each feature, ProbLink computes the conditional
probability distribution based on observed data and the initial
set of relationship types attributed to links. In each iteration,
we update the probabilities of each link’s types (P(L= p2p),
P(L= p2c), P(L= c2p)) by running our probabilistic algo-
rithm described in §6.4, and recompute the distributions of
features using the updated probability values of each link.
We repeat this process until convergence, i.e., the percent-
age of links that change labels between each iteration drops
below a small threshold.

6.2 Clique Inference

We attempt to infer the ASes that are at the top of the hi-
erarchy, namely Tier-1 ASes, because it is used in a feature
by ProbLink. Tier-1 ASes should have the largest customer
cones [30], so estimating the customer cones is the core of
doing clique detection.

First, we find top N ASes in terms of transit degree, de-
noted as D.1 These ASes are either Tier-1 or Tier-2 ASes
because of the large amount of neighbours they provide tran-
sit with. Then we estimate the customer cone size of each
AS in the graph by determining the average number of desti-
nation ASes (last hops) for which an element of D uses this
AS as part of a route. This is an effective way of estimat-
ing the customer cone size because irrespective of whether a
node d in D is a Tier-1 or a Tier-2 AS, it will transit through
Tier-1 ASes to reach their customer cones.

Second, we find the maximal clique C with largest esti-
mated customer cone size sum in D. Then, we test every
other AS in order by estimated customer cone size to add
members to C. An AS is added to C if it has links with every
other AS in C. If there are three consecutive members (X-Y-
Z) in C showing up in paths, disconnect the edge between X
and Z even though X and Z are connected in some paths, be-
cause no AS path should have three consecutive clique ASes.

6.3 Feature Design

An AS link can be characterized by the following three at-
tributes: (A) The structure of paths that use the link; (B) The
structure of paths that do not use the link; (C) Properties of
the ASes on each side of the link. We carefully design six
features that correspond to these three types of attributes.

Triplet feature (Type A). The triplet feature considers
link triplets that appear in paths and attributes probabilistic
values for the relationships of the first and the last links given
the relationship of the middle link. Suppose three consecu-
tive links “L1 - L - L2” show up in a BGP path, where L1, L,

1Any value of N between 10–40 does not affect the final result.

(a) p2p as middle link (b) p2c as middle link

(c) c2p as middle link

Figure 2: Conditional probability distribution for the triplet fea-
ture describing P(previous,next | middle). Probability values in
the ranges of > 0.1, [0.01,0.1], and < 0.01, are categorized as high,
medium, and low respectively in the figure.

L2 are three links (AS pairs). “L1 - L - L2” is called a link
triplet. We break down each BGP path in a snapshot into link
triplets, and, for the first and the last links in each path, we
insert a “ NULL” link in front of and behind it. For example:
a BGP path “8793 6939 1103 198499” is decomposed into
3 link triplets: “NULL - <8793, 6939> - <6939, 1103>”,
“<8793, 6939> - <6939, 1103> - <1103, 198499>”, and
“<6939, 1103> - <1103, 198499> - NULL”. As a conse-
quence, each link in the BGP paths appears as a middle link
in at least one link triplet. We take into account sibling re-
lationships (in §3.2) by skipping sibling links, i.e. treating a
sibling link as a single AS, when constructing triplets.

The goal of the triplet feature is to model valley-freeness
in a probabilistic way. For each middle link type, we com-
pute the probability of the link type of its adjacent previous
link and next link. If we put the link type of the previous
link along the y-axis and the link type of the next link along
the x-axis, we get a matrix view as shown in Figure 2, which
is computed from CoreToLeaf initial labels. Each cube in
the matrix represents a probability that is categorized as high,
medium, and low depending on the it is in the range of > 0.1,
[0.01,0.1], or < 0.01. For example, we can see from Figure
2a that when the middle link is of type p2p, the previous
and next link are most likely to be <NULL, p2c>, <c2p,
NULL> and <c2p, p2c>, but its previous link is very un-
likely to be p2c no matter what its next link’s type is.

Non-path feature (Type B). In addition to observed
routes, unobserved routes also provide some information re-
garding AS relationships. The non-path feature describes
the probability of how many adjacent p2p or p2c links a link
has, but none of them appear as a previous link with this link
on any of the paths. This feature is designed to capture the
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Figure 3: The visibility of each link type derived from
CoreToLeaf inference results on 04/01/2017 BGP paths.

property that a link is unlikely to be a p2c link if it has lots of
adjacent p2p/p2c links and none of them appear as a previous
link on any of the paths containing the link.

Similar to the triplet feature, the non-path feature also
models valley-freeness in a probabilistic way. The non-path
feature is not necessarily applicable to all links. When a link
does follow a p2p or p2c link or if a link does not have any
adjacent p2p or p2c links, the non-path feature does not play
a role in inferring the link’s type.

Distance to clique feature (Type C). The distance to
clique feature captures the fact that high-tier ASes are closer
in distance (AS hops) to clique ASes than low-tier ASes, and
that ASes in the same tier are likely to be peers, while high-
tier ASes tend to be providers of low-tier ASes.

We first create an undirected graph by adding AS links
as edges, and then compute the shortest path from each AS
towards each clique member using Dijkstra’s algorithm. For
each AS, we compute its average distance to each member
in the clique set, round it to a multiple of 0.1, and denote this
value as dist(AS). We represent each link <AS1, AS2> in the
graph by a distance to clique tuple “dist(AS1), dist(AS2)”.

Vantage point feature (Type C). The number of VPs ob-
serving a link also suggests the link type. The vantage point
feature captures the probability of a certain number of VPs
with at least one path traversing a link for each link type.
This feature naturally folds in the following intuition: p2c
links are more likely to be seen by more VPs compared to
p2p and c2p links. This feature considers path directions.
For example, let’s consider a link L (<AS1, AS2>) where
AS1 is the provider of AS2. ProbLink computes probabil-
ities separately for both directions by counting how many
paths traverse L in the direction of <AS1, AS2>, and how
many paths traverse L in the direction of <AS2, AS1>

To evaluate the informational value of this feature, we an-
alyze the number of VPs that observe a given link and cor-
relate that with the link’s type computed by CoreToLeaf.
Figure 3 shows the CDF of the number of VPs that observe
a link for each link type. We observe that 93% of p2p links
and 90% of c2p links are observed by ≤ 10 VPs, while 98%
p2c links are seen by more than 10 VPs.

Co-located IXP and co-located private peering facil-

ity feature (Type C). The co-located IXP and co-located
peering facility facility information is extracted from Peer-
ingDB [2]. These features are based on the intuition that the
more IXPs or facilities two ASes are co-located in, the more
likely they are peering with each other. Based on the vali-
dation data, 90% of transit links do not have any co-located
IXPs or facilities, while more than 70% p2p links have at
least one co-located IXP or facility.

6.4 Inference Algorithm

We begin by reviewing the Naive Bayes classifier. Given
a link type variable C (which can be p2p, p2c, c2p) and a
feature vector f1 through fn, Bayes’ theorem states the fol-
lowing relationship:

P(C | f1, ..., fn) =
P(C, f1, ..., fn)

P( f1, ..., fn)
(1)

By assuming that each feature fi is conditionally indepen-
dent of every other feature:

P( fi |C, f1, ..., fi−1, fi+1, ..., fn) = P( fi |C) (2)

Using the chain rule to rewrite the numerator of Eq. 1:

P(C, f1, ..., fn) = P(C)
n

∏
i=1

P( fi |C) (3)

So,

P(C | f1, ..., fn) =
P(C)∏

n
i=1 P( fi |C)

P( f1, ..., fn)
(4)

Since the denominator P( f1, ..., fn) does not depend on the
class C, the naive bayes classifier assigns a link being a type
Ĉ by the following function:

Ĉ = argmax
C

P(C)
n

∏
i=1

P( fi |C) (5)

The inputs to ProbLink are BGP paths, link triplets ex-
tracted from these BGP paths, and initial relationship labels
for each link as inferred by a bootstrapping algorithm. Algo-
rithm 1 shows the pseudocode of ProbLink.

First, the algorithm calculates probabilities for each fea-
ture, conditional on the link type C (C in {p2p, p2c, c2p}) by
accumulating probability values (line 2-3 in Algorithm 1).
The parameter α is a smoothing parameter, which prevents
a feature with examples in only one class from forcing the
probability estimate to be 0 or 1. In our implementation, we
use Laplace (Add-1) Smoothing [31] which sets the smooth-
ing parameter to 1. The algorithm then assigns probability
that link L is of each type by the prior probability distribu-
tion P(C), which is the proportion of each link type in the
data (line 5-8 in Algorithm 1). Then it goes through each
feature and multiplies the probability that link L is of each
type by the conditional probability of the feature given each
link type (line 9-12). In the end, the final probability of the
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Algorithm 1: ProbLink: probabilistic AS relationship
inference algorithm based on Naive Bayes

Input : 1) BGP paths→ link triplets
2) Initial AS relationships R
3) Feature vector f = [Triplet, Non-path, Distance to

clique, VP, Co-located IXP, Co-located facility]
Output: Inferred probabilities of each link being p2p, p2c,

c2p
/* Loop until convergence */

1 while R − last(R) > ε do
/* Compute conditional distribution of each

feature */

2 foreach feature fi in feature vector f do
3 P( fi |C) =

P( fi,C)
P(C)

=
N( fi,C)+α

N(C)+αd

4 foreach link L do
5 all← N(p2p)+N(p2c)+N(c2p)

6 P(L= p2p)← P(p2p) = N(p2p)
N(all)

7 P(L= p2c)← P(p2c) = N(p2c)
N(all)

8 P(L= c2p)← P(c2p) = N(c2p)
N(all)

9 foreach feature fi in feature vector f do
10 P(L= p2p) ∗= P( fi | p2p)
11 P(L= p2c) ∗= P( fi | p2c)
12 P(L= c2p) ∗= P( fi | c2p)

13 sum = P(L= p2p)+P(L= p2c)+P(L= c2p)
14 P(L= p2p)← P(L= p2p)/sum
15 P(L= p2c)← P(L= p2c)/sum
16 P(L= c2p)← P(L= c2p)/sum

/* Update link’s type */

17 R= argmaxC P(L=C)

link L of being each type is calculated by the fraction of each
type’s probability over the sum of probabilities of all possible
link types (lines 14-16 in Algorithm 1). Then we update L’s
type by picking the link type with the largest probability (line
17). We repeat this process of link type inference and updat-
ing probability distributions of features until convergence,
i.e., the percentage of links that change labels between each
iteration drops below a small threshold.

7 Evaluation

We now evaluate our probabilistic inference algorithm,
ProbLink, from three aspects and show that:

• ProbLink consistently achieves low error rates across
many years, reducing the average error rate of AS-Rank
for all links by 1.7×, and achieving 1.8-6.1× better error
rates for the different categories of hard links.

• ProbLink is not dependent on its bootstrapping algorithm
and stable to the snapshot and VP selection.

• Each feature in our algorithm is meaningful but none of
them by itself is sufficient to make good inferences.

Figure 4: CDF of error rates of ProbLink and AS-Rank on the
snapshots of BGP paths in the past 6 years.
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Figure 5: CDF of error rates of ProbLink and AS-Rank on 30
consecutive 1-day snapshots from April 1, 2016 to April 10, 2016

7.1 Accuracy

To evaluate the accuracy of ProbLink, we assemble daily
snapshots of BGP paths on the first five days of April, Au-
gust, and December (i.e., every four months) over the past
6 years. We apply our algorithm against these snapshots,
and compare it with the AS-Rank algorithm over this time
period. We translate the probability values of link types pro-
duced by our algorithm to one of the three link types that has
the highest probability value among the three possible types.

Figure 4 compares the error rates of inferences made by
ProbLink and those made by AS-Rank. Our probabilis-
tic inference algorithm consistently yields a low error rate
smaller than 2%, reducing the average error rate of AS-Rank
for all links from 2.1% to 1.2%.

Figure 5 shows a comparison between error rates of
ProbLink and AS-Rank on 30 consecutive snapshots of
BGP paths during April 2016. The max and average error
rates across these days for ProbLink are 1.4% and 1.2%,
while the error rate of AS-Rank ranges from 2.6% to 5.6%,
with an average error rate of 3.9%. ProbLink is not sensi-
tive to the specific set of paths used in a snapshot and that
it achieves uniformly low error rates in spite of clique infer-
ence inaccuracies that adversely impact AS-Rank.

Figure 6 plots the CDFs of error rates of inferences made
by ProbLink and AS-Rank on the four categories of hard
links identified in §4.3. Not only does our algorithm yield
much smaller error rates, but also has less variation than
AS-Rank. Table 4 lists the average error rate of our algo-
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(a) Observed by between 50
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(c) Unlabeled stub-clique
links.
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(d) Non-VP and Non-Tier1
links.

Figure 6: CDFs of error rates of ProbLink vs. CoreToLeaf on hard links in a period of 30 days in April 2016.

Category AS-Rank(%) ProbLink(%)
Observed by 50-100 VPs 8.8 1.5

Non-VP & non-Tier1 4.4 1.7
Unlabeled Stub-clique 33.6 5.5

Conflict 6.8 3.8

Table 4: Average error rates on hard links. ProbLink achieves
5.9×, 2.6×, 6.1×, and 1.8× better error rate for the links ob-
served by between 50 and 100 VPs, non-VP & non-Tier1 links,
unlabeled stub-clique, and conflict than AS-Rank respectively.

rithm and AS-Rank for links observed by 50 to 100 VPs,
non-VP and non-Tier1 links, stub-clique links, and conflict
links. Our probabilistic algorithm reduces the error rate on
the four categories by a factor of 5.9, 2.6, 6.1, and 1.8 re-
spectively compared to AS-Rank.
ProbLink is not dependent on the initial labels pro-

vided by the bootstrapping algorithm. Bootstrapping with
CoreToLeaf and AS-Rank only results in 0.15% overall ac-
curacy difference on average.

7.2 Feature Accuracy Breakdown

Eliminating any of the features used by ProbLink results in
lower accuracy (data for this is omitted due to space con-
straints), but we now consider each feature in isolation. In
order to show how effective each feature is, we run a version
of ProbLink using each feature only, and calculate its er-
ror rates on the set of links inferred correctly/incorrectly by
ProbLink with all features turned on against the 04/01/2017
snapshot of BGP paths (see Table 5).

The distance to Tier-1 feature is the most inaccurate fea-
ture, but if it is removed, the accuracy of ProbLink de-
creases. For the links which ProbLink infers incorrectly, all
features have high error rates. This suggests that each feature
adds some value, but none of them is perfect. So combining
more features results in higher inference accuracy.

8 Practical Applications
8.1 Route Leak Detection

Route leaks are a class of common routing incidents which
can cause large Internet service disruptions [41]. They are
caused by violations of the policies among the ASes in-
volved. For instance, on November 5, 2012, a Google peer
Moratel (AS23947) improperly advertised Google routes to
its provider, causing Moratel’s providers to select the leaked

routes as the preferred ones destined to Google. As Moratel
could not handle such large traffic volumes, Google’s ser-
vices went offline in parts of Asia for half an hour [21].

A conventional method for detecting route leaks is through
checking valley-free violations in BGP paths. Mauch built
a routing leak detection system based on this intuition by
searching for valley paths containing three or more major
networks with known relationships [24].

In the same spirit, we build a route leak detection system
by detecting valley-free violations in paths based on the link
relationship inference results of ProbLink. It is worth not-
ing that a large fraction (more than 50%) of the valley-free
violations do not result from route leaks but intended poli-
cies from ASes that are research/educational or IXP ASes
[19]. Such ASes often establish a special type of AS rela-
tionship called indirect peering, where an AS functions as an
intermediate link between two other ASes who wish to peer
but through intermediate ASes in between. So we ignore a
path if it contains research/educational or IXP ASes when
detecting route leaks.

To evaluate the performance of ProbLink and other AS
relationship inference techniques on route leak detection, we
use only those links for which we have validation data in
BGP paths. For example, suppose a path has link relation-
ships “* * p2p * c2p”, where * is unknown in the valida-
tion dataset. Even though a relationship inference algorithm
should have predictions on the unknown links, we just de-
tect route leaks by its predictions on the two known links
in order to compare against the validation dataset. Figure 7
compares the precision and recall of ProbLink, AS-Rank,
and CoreToLeaf, against the real route leaks implied by the
validation dataset across 10 days in April 2016. The aver-
age precision for ProbLink, AS-Rank, and CoreToLeaf is
81.1%, 19.8%, and 8.1% respectively; and the average recall
for ProbLink, AS-Rank, and CoreToLeaf is 76.2%, 22.1%,
and 5.6% respectively.

8.2 Inference of Complex Relationships

AS relationships may be more complex than the traditional
p2c/p2p model. Such complex agreements may take the
form of a hybrid relationship with different relationship type
for different Points-of-Presence (PoPs), or a partial-transit
relationship, in which a provider offers transit only toward its
peers and customers, but not its providers, or restricts transit
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Feature Links inferred correctly Links inferred incorrectly All links
# correct # links Error rate # correct # links Error rate Error rate

Triplet 44,853 45,639 1.7% 222 459 51.6% 2.2%
Non-path 21,382 21,383 0.01% 169 242 30.2% 0.3%

Distance to Clique 42,432 45,639 7.0% 270 459 41.2% 7.4%
VP 45,346 45,639 0.6% 108 459 76.5% 1.4%

Table 5: Accuracy of each feature on the links inferred correctly/incorrectly by ProbLink. The Co-located IXP/facility features are omitted
because they are used to distinguish transit and p2p relationships, and attribute equal probabilities to p2c and c2p links.

(a) Precision

(b) Recall

Figure 7: Evaluation of route leak detection across 10 days.

in a specific geographic region [11, 14]. The state-of-the-art
algorithm for inferring complex relationships (CR algorithm)
takes as input a set of conventional relationships and itera-
tively refines them by combining active traceroute measure-
ments with geolocation data to discover the PoP-level prop-
agation patterns of inter-domain paths [18]. Due to the high
measurement cost in terms of traceroute queries required to
infer complex relationships, CR utilizes customer cones to
optimize the allocation of queries to traceroute probes and
maximize the discovery of hybrid relationships within lim-
ited querying budgets used by platforms such as RIPE At-
las [40]. Therefore, the quality of the p2p/p2c relationships
can affect the precision, accuracy and coverage of complex
relationship inference.

To test the performance of ProbLink for complex rela-
tionship inference, we implemented the CR algorithm and ex-
ecuted two 2-day measurement campaigns over the RIPE At-
las platform, on 2018/09/06 and 2018/09/08 using ProbLink
and AS-Rank respectively. For each measurement round
we allocated the maximum permissible number of measure-
ment credits, which resulted in 125,529 traceroute queries
from 7,870 Atlas probes. CR+ProbLink inferred 1,308
hybrid relationships and 3,163 partial transit links, while
CR+AS-Rank inferred 1,029 hybrid relationships and 3,009

partial transit links. We evaluated these inferences against
our validation dataset, which includes 346 hybrid links and
402 partial-transit links. As shown in Fig. 8a, combining
CR with ProbLink not only improves the True Positive Rate
(TPR) of the algorithm both for hybrid and partial transit re-
lationships, but importantly, we significantly expand its cov-
erage (COV) by capturing 91% of the hybrid and 95% of
the partial transit relationships, compared to 76% and 90%
respectively for CR+AS-Rank. Overall, CR+ProbLink dis-
covers 27% more hybrid relationships than CR+AS-Rank.

8.3 Predicting the Impact of Selective Advertisements

The ability to predict the impact of traffic engineering poli-
cies on the active BGP paths can be valuable to network op-
erators, as it would limit the need for trial-and-error exper-
imentation, allow the configuration of more predictable and
stable routing policies, and minimize the risk of propagating
unintended routes [34]. However, past works have shown
that the existing AS relationship datasets have poor predic-
tive capabilities, making them impractical for such purposes.
In this section, we evaluate the impact of ProbLink’s im-
proved relationship inferences in predicting the outcome of
a selective advertisement. Selective advertisement is a pop-
ular traffic engineering technique used by AS operators to
achieve traffic load balancing, by advertising certain routes
only to a subset of their inter-domain neighbors [36].

To predict the impact of selective advertisement “in the
wild”, we first need to explicitly capture the activation and
the scope of such policies. We detect selectively advertised
prefixes by utilizing route redistribution BGP Communities,
which are increasingly utilized to implement selective prefix
advertisement [37, 13]. In particular, many providers define
an array of Community values that can be set by their cus-
tomers, to allow them to control whether the provider should
propagate or not a route to a specific peer or group of peers.
For instance, if AS9002 (RETN) receives a prefix advertise-
ment from a customer annotated with the BGP Community
9002:65535, then RETN will propagate this route only to
its customers, but not its peers or providers [38]. Redistri-
bution Communities can further limit the scope of the prefix
advertisement by determining a location for which the re-
distribution policy will be applied. For instance, when the
Community 286:49 is applied on a prefix, AS286 (KPN)
will not advertise this prefix to its US peers [29]. By parsing
WHOIS records and NOC websites, we compile a dictionary
of Community values that define one of the following types
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(a) Comparison of coverage (COV) and True
Positive Rate (TPR) between ProbLink and
AS-Rank in complex relationship inference.

(b) True positive rate per relationship infer-
ence algorithm for the prediction of the im-
pact of selective advertisement policies.

(c) Disagreements in AS relationships and
ASes in the customer cone of the 200 ASes
with the largest customer cones.

Figure 8: Evaluation of complex relationships inference and the prediction of path changes due to selective prefix advertisements.

of selective route redistribution:

• Do not announce route to neighbors of type R.
• Do not announce route to neighbors of type R at L.
• Announce route only to neighbors of type R.
• Announce route only to neighbors of type R at L.

R indicates relationship type (customer, provider, peer) and
L indicates a city-level or country-level location identifier. In
total, we extracted 644 Community values from 152 ASes.

After compiling our Communities dictionary, we moni-
tor the BGP messages of the corresponding ASes to capture
BGP Updates annotated with one of the redistribution Com-
munities. Lets assume we observe a BGP Update for a desti-
nation prefix d annotated with a BGP Community C, which
instructs ASC to propagate p only to its neighbors of type R.
We calculate which ASes will have to change their paths as
follows: We first parse the BGP paths right before C was
applied on the prefix d, and we collect all the paths PALL
to d that traversed ASC. Then, based on the inferred rela-
tionships, we find the paths PR′ ⊆ PALL in which ASC adver-
tises the route toward d to a neighbor with relationship type
R′ 6= R. Since the Community C allows the prefix announce-
ment only to neighbors with relationship type R, we infer
that the paths PR′ will be withdrawn, and the corresponding
ASes in these paths will choose a different path. When C
also defines a geographic scope for the prefix advertisement
in addition to the relationship type, we use the techniques
described in [18] to map the city-level location of AS in-
terconnections, and calculate the affected paths in a similar
manner. We validate our inferences by observing the with-
drawn paths after C was applied on the path. We consider as
false positive any AS a ∈ PR′ that did not withdraw its path
15 minutes after we observed the BGP Update with C. We do
not consider false negatives, as an AS may change its path to
d for different reasons, and this change may simply coincide
with the application of the Community C on the same prefix.

Figure 8b shows our validation results after executing the
above experiment for the first week of April 2016. Dur-
ing that period we found 480 prefixes tagged with redis-
tribution communities defined by 13 ASes. Overall, 83%

of ProbLink’s predictions were correct, compared to 62%
for AS-Rank and 59% for CoreToLeaf. ProbLink outper-
formed AS-Rank for every AS except AS9002, and in some
cases (e.g. AS1273) the true positive rate was 2x higher com-
pared to the other algorithms. These results are surprising
given that less than 4% of the relationship inferences dif-
fer between ProbLink and AS-Rank. To understand the
significant improvement achieved by ProbLink, we inves-
tigate the impact of the relationship disagreements between
the two algorithms on the customer cones obtained using the
Provider/Peer Observed methodology proposed in [30]. We
focus on the ASes with at least 100 ASes in their downstream
path. For each of these ASes we calculate the fraction of
their relationships and the fraction of their customer cones
that disagree between ProbLink and AS-Rank. As shown in
Figure 8c, while less than 10% of the ASes had more than
20% relationship mismatches, over 60% of the ASes had at
least 20% difference in their customer cones. This finding
highlights the fact that even a few incorrect relationship in-
ferences can lead to significant differences in properties of
the resulting downstream paths and substantial deviations in
the predictive capabilities of ProbLink and AS-Rank.

9 Conclusion

We revisit the AS relationship problem and inference tech-
niques. We first develop a simple inference algorithm that
achieves accuracy comparable to that of the state-of-the-art
inference technique, AS-Rank, indicating that the types of
most links in validation datasets are easily inferred. We
then construct different subsets of the validation dataset that
might be considered hard and use these as benchmarks for
evaluating improvements in AS relationship inference. Fur-
ther, we observe that many of the features that can be used by
inference techniques are of a stochastic nature, so we present
a probabilistic AS relationship inference algorithm that pro-
vides a framework for easy integration of many noisy but
useful attributes into the relationship inference algorithm.
We show that this probabilistic algorithm is more accurate
and less sensitive to the locations of vantage points and BGP
paths compared to the state-of-the-art algorithms.
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A AS-Rank Algorithm
The AS-Rank algorithm takes the following 11 steps to infer
the relationship of each link.

1. Discard or sanitize paths with artifacts.
2. Sort ASes in decreasing order of computed transit de-

gree, then node degree.
3. Infer a transit-free clique (i.e., Tier-1) ASes at top of

AS hierarchy and label the links between every pair of
ASes in the clique as p2p links.

4. Discard poisoned paths.
5. Visit ASes in order of the ranking in (2), and label a link

as c2p if its previous link in a BGP path is composed of
two clique members, or if its previous link in a BGP
path is already labeled as c2p.

6. Infer c2p relationships from VPs inferred to be an-
nouncing no provider routes.
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7. Infer c2p relationships for ASes where the customer has
a larger transit degree.

8. Infer customers for ASes with no providers.
9. Infer c2p relationships between stub ASes and clique

ASes.
10. Infer c2p relationships where adjacent links have no re-

lationship inferred.
11. Infer all other links left as p2p.

B AS-Rank Clique Inference
The clique inference algorithm in AS-Rank works as the fol-
lowing:

1. Find the top 10 ASes by transit degree.
2. If there are three consecutive members (X-Y-Z) in the

top 10 ASes showing up in paths, and there are more
than 5 ASes downstream from X Y Z (to make sure that
the paths containing three consecutive members are not
poisoned), disconnect the edge between X and Z even
though X and Z are connected in some paths.

3. Find the largest clique in terms of transit degree sum
among the top 10 ASes, denoted as C.

4. Visit the rest ASes top to down by transit degree, add an
AS Z to C if Z has links with all members in C.

5. Similar to Step 2: If there are three consecutive mem-
bers (X-Y-Z) in C showing up in paths, and there are
more than 5 ASes downstream from X Y Z, disconnect
the edge between X and Z.

6. Find the largest clique in C in terms of transit degree
sum as the final inferred clique.

C Feature Importance Computation
Gradient boosting [15] is a widely used machine learning
technique for solving classification problems. In gradient
boosting, GBDT (Gradient boosting decision trees) produces
a prediction model in the form of an ensemble of multiple
decision trees. It is straightforward to retrieve importance
scores for features when constructing GBDT. An importance
score (F score) describes the number of times a feature is
used to split the data across all trees. The more a feature is
used to make key decisions with decision trees, the higher its
importance score.

To decide what features can distinguish hard links from
easy links in the Internet, we first split the validation dataset
into two halves. The set of links which CoreToLeaf or
AS-Rank infers incorrectly are labeled as “hard”, while those
which are inferred correctly are labeled with “easy”. Then,
we feed the features listed in Table 6 of links along with their
labels into the GBDT and calculate the importance score cor-
responding to each feature.

Figure 9 plots the importance score of each feature divided
by the sum of all features’ scores. We can tell the features
f1, f4, f7, f8, f9 are the most important ones, so we translate
them into the various categories of features to characterize
“hard” links in §4.3.
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Figure 9: Feature importance scores provided by gradient boosting
tree.

Feature label Meaning
f1 Number of VPs which observe a link
f2 Max distance to Tier-1
f3 Min distance to Tier-1
f4 Max node degree
f5 Min node degree
f6 Node degree difference
f7 Max transit degree
f8 Min transit degree
f9 Transit degree difference

Table 6: Features fed into GBDT

D AS-Rank Sensitivity Analysis
D.1 Sensitivity to VP Selection

Each vantage point provides its own view of the Internet AS-
level topology and the flow of traffic from the VP to rest of
the Internet. VPs are located in different places, belong to
different tiers, and they themselves have different import and
export policies.

Even though the number of VPs have been growing over
time, VPs are free to join or leave the set of public collectors,
so the selection of VPs we have access to is arbitrary, biased,
and under flux. A good AS relationship inference algorithm
should not be sensitive to the selection of these VPs.
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Figure 10: CDF of AS-Rank’s error rates on paths seen from 200
different half-VP sets.

We run the AS-Rank algorithm repeatedly, 200 times,
against the 04/01/2017 BGP snapshot. For each of these
200 executions, we choose a random VP subset consisting
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of half of all available VPs (which we denote as V below)
and give as input to the AS-Rank algorithm only the BGP
paths visible to the VPs in that subset. Figure 10 plots
CDFs of AS-Rank’s error rates using paths from these VP
subsets. In the plot, we examine all links in the ground-truth
dataset, links in the ground-truth dataset except links that di-
rectly connect with V (i.e., non-VP links), and the links in
the ground-truth dataset except V’s links as well as Tier-1
links (i.e., non-VP and non-Tier1 links). The inference error
rates on overall links range from 1.2% to 6.9%, and the er-
ror rates on non-VP and non-Tier1 links range from 1.8% to
12.3%. AS-Rank’s accuracy is thus quite sensitive to the VP
selections, especially for links which are relatively difficult
to infer (i.e., not VP or Tier1 links).

D.2 Root Cause Analysis of AS-Rank Sensitivity

To illustrate the issue described in §5.3, let’s consider two VP
sets, V1 and V2, drawn from our 200 executions. AS-Rank’s
inference accuracy from V1 is low, while its inference accu-
racy from V2 is high. The largest ten ASes differ for dif-
ferent sets of VPs because the transit degrees of ASes are
determined by paths observed by the VPs. For example, the
9th largest AS (AS2914) observed by V2 is the 12th largest
AS observed by V1, so AS2914, which is a real Tier-1 AS,
shows up in the clique chosen from the top 10 ASes using
V2’s paths, but it does not show up in the clique chosen us-
ing V1’s paths.

For V1, the AS-Rank algorithm determines the maximum
clique with the largest transit degree (from the top 10 ASes)
to be “AS3356, AS6939, AS8220, AS9002, AS43531”.
AS43531 is not considered for V2 due to a relatively lower
measurement of its transit degree, and it is not a high-
tier AS in reality. This affects the subsequent expan-
sion of the clique, wherein ASes are considered in order
by degree and added to the clique if they have connec-
tions to all members of the clique. So, in V1’s execu-
tion, all added members are required to have a direct link
with AS43531, and AS1764, AS8767, AS12389, AS12552,
AS20485, AS25091, AS33891, AS43531, AS57724 are
therefore all added to the clique, even though they are all
low-tier ASes.

In a nutshell, the clique inference of AS-Rank algorithm
is sensitive to the top 10 largest ASes ranked by transit de-
grees, which are determined by the selection of VPs and the
selection of snapshots. Further, the clique membership de-
termines the order in which links are analyzed by AS-Rank,
impacts the computation of customer cones for each clique
member (i.e., the set of ASes that a clique AS can reach us-
ing p2c links), and impacts the overall accuracy of the algo-
rithm.
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