
Title: A Risk of Bias instrument for Non-randomized Studies of Exposures: a users’ guide to its 

application in the context of GRADE

Abstract

The objective of this paper is to explain how to apply, interpret, and present the results of a new 

instrument to assess the risk of bias (RoB) in non-randomized studies (NRS) dealing with effects 

of environmental exposures on health outcomes. This instrument is modelled on the Risk Of Bias 

In Non-randomised Studies of Interventions (ROBINS-I) instrument. The RoB instrument for 

NRS of exposures assesses RoB along a standardized comparison to a randomized target 

experiment, instead of the study-design directed RoB approach. We provide specific guidance 

for the integral steps of developing a research question and target experiment, distinguishing 

issues of indirectness from RoB, making individual-study judgments, and performing and 

interpreting sensitivity analyses for RoB judgments across a body of evidence. Also, we present 

an approach for integrating the RoB assessments within the Grading of Recommendations 

Assessment, Development, and Evaluation (GRADE) framework to assess the certainty of the 

evidence in the systematic review. Finally, we guide the reader through an overall assessment to 

support the rating of all domains that determine the certainty of a body of evidence using the 

GRADE approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/196588261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Title: A Risk of Bias instrument for Non-randomized Studies of Exposures: a users’ guide to its 

application in the context of GRADE

Author list

Rebecca L. Morgan a; Kristina A. Thayer b; Nancy Santesso a; Alison C. Holloway c; Robyn Blain d; 

Sorina E. Eftim d; Alexandra E. Goldstone d; Pam Ross d; Mohammed Ansari e; Elie Akl a, f; Tommaso 

Filippini g; Anna Hansell h, i, j; Joerg J. Meerpohl k; Reem A. Mustafa a, l; Jos Verbeek m; Marco Vinceti g, 

n; Paul Whaley o; Holger J. Schünemann a, p, GRADE Working Group

a Department of Health Research Methods, Evidence, and Impact, McMaster University, Health 

Sciences Centre, Room 2C14, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada 

morganrl@mcmaster.ca, santesna@mcmaster.ca, ramustafa@gmail.com, schuneh@mcmaster.ca  

b Integrated Risk Information System (IRIS) Division, National Center for Environmental Assessment 

(NCEA), Office of Research and Development, US Environmental Protection Agency, Building B 

(Room 211i), Research Triangle Park, NC USA 27711. thayer.kris@epa.gov

c Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, Room 

3N52A, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada. hollow@mcmaster.ca 

d ICF International Inc., 9300 Lee Highway, Fairfax, VA, USA. Robyn.Blain@icfi.com, 

Pam.Ross@icfi.com, Ali.Goldstone@icfi.com, Sorina.Eftim@icfi.com 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

mailto:morganrl@mcmaster.ca
mailto:santesna@mcmaster.ca
mailto:holger.schunemann@mcmaster.ca
mailto:thayer@niehs.nih.gov
mailto:hollow@mcmaster.ca
mailto:Robyn.Blain@icfi.com
mailto:Pam.Ross@icfi.com
mailto:Ali.Goldstone@icfi.com
mailto:Sorina.Eftim@icfi.com


2

e School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, ON K1H 8M5 

Canada. tosansari@gmail.com   

f Department of Internal Medicine, Faculty of Health Sciences, American University of Beirut, P.O. 

Box: 11-0236, Riad-El-Solh Beirut 1107 2020 Lebanon. ea32@aub.edu.lb

g Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 

Italy. tommaso.filippini@unimore.it, mvinceti@bu.edu

h MRC-PHE Centre for Environment and Health, Imperial College London, St Mary’s Campus, Praed 

St, Paddington London W2 1PG, UK. a.hansell@imperial.ac.uk

i Public Health Directorate, Imperial College Healthcare NHS Trust, St Mary’s Hospital, Paddington, 

London W2 1PG, UK. a.hansell@imperial.ac.uk

j Centre for Environmental Health and Sustainability, University of Leicester, George Davies Building, 

University Road, Leicester, LE1 7RH, UK. a.hansell@imperial.ac.uk

k Institute for Evidence in Medicine (for Cochrane Germany Foundation), Medical Center - University of 

Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany. meerpohl@cochrane.de

l Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical 

Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA. ramustafa@gmail.com

m Finnish Institute of Occupational Health, Cochrane Work, Neulaniementie 4, 70701 Kuopio, Finland. 

Jos.Verbeek@ttl.fi

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

mailto:tosansari@gmail.com
mailto:ea32@aub.edu.lb
mailto:tommaso.filippini@unimore.it
mailto:meerpohl@cochrane.de


3

n Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, 

USA. mvinceti@bu.edu

o Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. 

p.whaley@lancaster.ac.uk

p Department of Medicine, McMaster University, Health Sciences Centre, Room 2C14, 1280 Main 

Street West, Hamilton, ON L8S 4K1 Canada; schuneh@mcmaster.ca

Corresponding author: Holger J. Schünemann. Department of Health Research Methods, Evidence 

and Impact, Health Sciences Centre, Room 2C14, 1280 Main Street West, Hamilton, ON L8S 4K1 

Canada; schuneh@mcmaster.ca 

Conflict of interest

The authors declare they have no competing financial interests with respect to this manuscript, or its 

content, or subject matter.

The views expressed are those of the authors and do not necessarily represent the views or policies of 

the U.S. Environmental Protection Agency.

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

mailto:p.whaley@lancaster.ac.uk


4

Abstract

The objective of this paper is to explain how to apply, interpret, and present the results of a new 

instrument to assess the risk of bias (RoB) in non-randomized studies (NRS) dealing with effects of 

environmental exposures on health outcomes. This instrument is modelled on the Risk Of Bias In Non-

randomised Studies of Interventions (ROBINS-I) instrument. The RoB instrument for NRS of exposures 

assesses RoB along a standardized comparison to a randomized target experiment, instead of the study-

design directed RoB approach. We provide specific guidance for the integral steps of developing a 

research question and target experiment, distinguishing issues of indirectness from RoB, making 

individual-study judgments, and performing and interpreting sensitivity analyses for RoB judgments 

across a body of evidence. Also, we present an approach for integrating the RoB assessments within the 

Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework to 

assess the certainty of the evidence in the systematic review. Finally, we guide the reader through an 

overall assessment to support the rating of all domains that determine the certainty of a body of evidence 

using the GRADE approach.

Keywords (6): Risk of bias; environmental health; GRADE; non-randomized studies; study limitations; 
ROBINS
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1. Introduction

The evidence on the impact of environmental or occupational exposures on human health outcomes 

typically comes from non-randomized studies (NRS). Objective and transparent evaluation of evidence 

of exposures requires the use of systematic reviews [1]. A highly credible systematic review should 

include a standardized, rigorous, and transparent assessment of the risk of bias (RoB) in each included 

study and across the body of evidence [2, 3]. This is applicable when referring to studies evaluating the 

impact of an environmental, occupational or other type of exposure. 

A recent study evaluated five RoB methods used in environmental health hazard assessments [4]. While 

all five methods considered similar issues (or domains) in RoB assessment, their relative emphasis on 

these issues varied. The study suggested a need for the harmonization and improvement of these 

methods. We developed the RoB instrument for NRS of exposures based on the feedback from 

developers of existing instruments and methods to address limitations such as outlining the ideal study, 

labelling of study designs, and the use of signaling questions [4, 5]. The objective of this paper is to 

explain how to apply, interpret, and present the results of a new instrument to assess the RoB in NRS 

dealing with effects of environmental exposures on health outcomes.

2. Overview of the instrument

The RoB instrument for NRS of exposures is modeled after the Risk Of Bias In Non-randomised Studies 

of interventions (ROBINS-I) instrument [6]. In 1965, Cochran proposed evaluating NRS using the 

criteria for RCTs [7]. Hernan et al. recently suggested that causal inference from NRS represents an 

attempt to emulate the ideal randomized trial (the target trial) that would answer the question of interest 

[8]. In fact, ROBINS-I uses a hypothetical ideal target trial that would be free of bias as a reference 
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point. By using the target trial as the reference point, ROBINS-I moves away from a study-design 

directed approach. That is, the specific design of the NRS, e.g. a case-control design, does not a priori 

determine absence or presence of RoB [9]. RoB instrument for NRS of exposures emulates these 

features of ROBINS-I. 

In brief, the application of the RoB instrument for NRS of exposures consists of three steps: 

1. Step I: presents the review question, potential confounders, co-interventions, and exposure and 

outcome measurement accuracy information; 

2. Step II: describes each eligible study as a hypothetical target experiment, including specific 

confounders and co-interventions from that study that will require consideration; and 

3. Step III: assesses RoB across seven items about the strengths and limitations of studies of 

environmental exposure. 

The seven RoB items are: 1) Bias due to confounding, 2) Bias in selection of participants into the study, 

3) Bias in classification of exposures, 4) Bias due to departures from intended exposures, 5) Bias due to 

missing data, 6) Bias in measurement of outcomes, and 7) Bias in selection of reported results. 

Judgments for each RoB item can be: ‘Low RoB’, ‘Moderate RoB’, ‘Serious RoB’, or ‘Critical RoB’. 

Similarly, an overall judgment about the bias at the study level is either ‘Low RoB’, ‘Moderate RoB’, 

‘Serious RoB’, or ‘Critical RoB’. In order to reach a judgment for each RoB item, the rater first answers 

one or more signalling questions with ‘Yes’, ‘Probably yes’, ‘Probably no’, ‘or No’. The answer should 

be based on the information available in the publications/reports of the individual study and be justified 

in an accompanying free-text field.

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336



7

Previously published guidance for the ROBINS-I instrument proposes that the study-level RoB should 

be the most concerning level among the RoB items for that study, unless raters determine the study-level 

RoB to be more severe because of compounded risks of more than one individual RoB item [6]. 

Identifying RoB per item and across items per study allows systematic-review authors to explore the 

possible influence of studies at less compared to more severe RoB on the pooled estimates of effect [10]. 

As in the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach 

for the body of evidence, risk of bias is assessed by outcome in a study and study RoB could vary by 

outcome (e.g. subjective outcomes may have different levels of bias than objective outcomes) or group 

of outcomes, if pragmatic rationale supports the grouping of outcomes.

Systematic-review authors can then use the RoB instrument as part of the assessment of the certainty of 

the body of evidence using the GRADE framework. Within the GRADE framework, RoB is one domain 

for assessing the certainty of evidence (CoE), the others being inconsistency, indirectness, imprecision, 

publication bias, magnitude of effect, dose-response gradient, and plausible opposing residual 

confounding [2]. As per the current GRADE guidance, evidence from NRS, appraised using existing 

design-specific RoB instruments, starts with a default initial certainty of “Low” due to concerns of 

confounding and selection bias when randomization is lacking. Raters then downgrade or upgrade the 

body of evidence according to specific GRADE domain assessments, including a more detailed 

evaluation for RoB other than confounding. However, since the RoB instrument for NRS of exposures 

takes into account lack of randomization, evidence will not be automatically rated down because 

judgments of risk of bias would have been made with reference to a hypothetical target experiment 

(ideal target trial). Bodies of evidence of any study design will undergo the same RoB evaluation 

without specific reference to the study design. In the context of using ROBINS-like instruments, all 
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studies within the bodies of evidence will start at the same ‘High’ initial certainty within GRADE 

regardless of study design. However, in general, NRS, due to potential for confounding and selection 

bias when compared with RCTs will receive a rating of low or very low depending on the degree of 

RoB. Raters must justify not rating down only in the presence of specific study design and execution or 

result features [9]. 

When conducting a systematic review, results from the study-level RoB instrument for NRS of health 

effects of exposures inform judgments about overall RoB for the body of evidence across studies. So far, 

no guidance on the use of the RoB instrument for NRS of effects of exposures for this purpose exists. 

This article provides guidance for the application of the RoB instrument for NRS of exposures at the 

study level and as part of a RoB judgment within the GRADE framework to determine the certainty 

across a body of evidence [5]. Although the RoB instrument for NRS of exposures is still being refined 

in consultation with a diverse group of subject matter experts, we highlight a number of important 

procedural questions. Thus, describing our experience in implementing the RoB instrument for NRS of 

effects of exposures will facilitate future testing and clarification of the use of the instrument by 

systematic review authors and guideline developers. 

3. Approach when conducting systematic reviews for studies of exposure

We previously described the development of the RoB instrument for NRS of exposures [5]. In addition 

to this effort, we have solicited broader input on this instrument at workshops held at GRADE Working 

Group meetings in March 2015, October 2015, and April 2016; during a meeting to develop ROBINS of 

Exposures (ROBINS-E; an instrument based on the RoB instrument for NRS of exposures and 

ROBINS-I) in January 2017; and at the Global Evidence Summit in September 2017. Findings from 
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these workshops, through this iterative process, have led to further refinement and pilot-testing of the 

RoB instrument for NRS of exposures.  

Figure 1 presents a schematic of how the RoB instrument for NRS of exposures fits into the systematic 

review process. It illustrates steps for evaluating the RoB of individual studies in a systematic review 

and integrating the results across a body of evidence into the GRADE evidence-assessment framework. 

For each outcome in the review, authors of systematic reviews would go through Steps II and III, and 

GRADE.

3.1. Complete Step I of the RoB instrument for NRS of exposures

3.1.1. Define the research question

This process begins with the definition of the research question. For questions about exposures (i.e. 

unintentional interventions), namely the environmental and occupational type, the research question is 

formatted as a PECO (population, exposure, comparator(s), and outcomes) question [5, 11]. For 

example, we may ask the following research question “In production workers exposed to steady state 

noise for ten years (population), what is the effect of exposure to a noise level of 80 dB(A) measured as 

LAeq,8h or greater (exposure) compared to less than 80 dB(A) also measured as LAeq,8h (comparison) 

in the same population on hearing level?” To understand the relation between noise and hearing loss, we 

may also ask the following PECO: “In production workers exposed to steady state noise louder than 80 

dB(A) during ten years measured as L Aeq,8h, what is the effect of  an increase of 5 dB(A) on hearing 

level compared to the level from where the increase started, over the whole range of exposure, assuming 

an exponential relationship between exposure and hearing level?”
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Since the RoB instrument for NRS of exposures is set up as a comparison between groups that can be 

exposed or not, or exposed to different levels, it is necessary to clearly identify what is the exposure 

level of interest and what is the comparison. In some situations, little or nothing may be known about the 

relationship between an exposure and outcome to inform the PECO. There are at least five approaches to 

facilitate formulating and defining the levels of exposure within the PECO (Table 1) [12]. Researchers 

should be transparent about which of these approaches they are using for definition of their PECO and 

ensure that the exposure and comparator(s) are explicitly defined.

3.1.2. Identify confounders, co-interventions, and measures of exposures and 
outcomes

In Step I, systematic-review authors list confounders and co-interventions that are associated with both 

the exposure and outcome. In addition, review authors assess the accuracy of the exposure and outcome 

measurements. These sections must be populated by knowledgeable members of the review team. While 

working through these sections, raters respond to signaling questions in the confounding, participant 

selection, and exposure measurement RoB items. Consideration of these issues may lead to the 

identification of different sources of indirectness [5]. For example, the review team may identify obesity 

as one of their important outcomes; however, studies may measure waist circumference (and measure it 

accurately within the study) to inform the outcome of obesity. The review team may label waist 

circumference as an indirect measure of obesity.

We present the text used in the review-level protocol for an example on bisphenol A (BPA), comparing 

the highest exposure stratum and lowest exposure stratum of BPA in each eligible study (Appendix A). 

The PECO being: “What is the effect of highest levels compared with lowest levels of BPA exposure on 

body weight?” We reviewed published literature, as well as consulted with topic-specific experts, to 
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determine the final set of responses to the Step I fields. For some exposures, a public database of 

confounders for measures of environmental exposures and health outcomes (i.e., PhenX Toolkit; 

https://www.phenxtoolkit.org/) may provide additional information.

3.2. Complete Step II of the RoB instrument for NRS of exposures for eligible studies

3.2.1. Construct the target experiment

At this point, the studies that meet the eligibility criteria of the review should have been identified. The 

reviewers should complete separate forms for each relevant outcome (group) within each study. At the 

start of Step II, reviewers construct a study-specific target experiment informed by the PECO question, 

the exposure and comparator exposure thresholds, outcome specific confounders, and health outcome 

measurements. As explained in previous GRADE guidance for the use of ROBINS-I, the target 

experiment provides a structured comparison with a reference experiment that is considered to be at low 

RoB [9]. The target experiment need not be realistic, as it should reflect a study design that reduces 

known and unknown imbalance in prognostic factors and confounding [5]. It then allows RoB 

assessment of individual studies and across studies at a later stage against the lowest possible bias that 

research could yield for the question at hand. Also, in Step II, the reviewer records how the individual 

studies measured the exposure and health outcome. The information recorded in Step II informs the RoB 

judgments made in Step III.

For example, let’s consider our review on BPA and weight. The PECO of the review is comparing the 

highest to the lowest level of BPA exposure. In Step II, we determine the target experiment for the 

included study (Appendix B). Based on the quantities identified in the study by Carwile & Michels [13], 

the target hypothetical experiment would be framed as an experiment in which the general adult 

population is randomly allocated to a high level of BPA exposure ( ≥ 4.7 ng/mL) or a low level of BPA 
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exposure (≤ 1.1 ng/mL) and body weight measured. In this situation, we compared two exposure cut-

offs to determine the effect on obesity. 

Confounders must be explored in each eligible study, as studies and outcomes may be affected by 

different confounders. For example, the review question may be about the general population, but the 

study includes only industrial workers, which may introduce additional confounders, such as exposure to 

other chemicals. Note that it may have impact on judging indirectness or selection bias, too. Also, in 

Step II, the reviewer makes a judgment of the potential magnitude and direction of the impact of the 

confounding factor on the effect estimate. For example, when examining the effect of BPA on body 

weight, consumption of processed foods is considered a confounder as it both increases the participants’ 

exposure to BPA through food packaging and increases overall caloric intake [14]. We present the 

completed Step II sections for two studies from our BPA and obesity example: Carwile & Michels, 2011 

and Harley et al., 2013 (Appendices B & C) [13, 15].

3.2.2. Identifying sources of indirectness to integrate within GRADE and their 
relation to risk of bias

While establishing the target experiment in Step II, individuals may identify studies that present 

evidence different from the PECO question (i.e., a restricted version of any concept such as only part of 

the population of interest or a section of the range of interest for high exposure) [16]. For example, 

consider again the review of hearing loss due to noise exposure. Studies with only shift workers may be 

considered indirect evidence for effects in the general population. Studies reporting on waist 

circumference may be considered indirect evidence for the measure of the outcome of obesity. Sources 

of indirectness may also come from studies that do not have a direct comparison (and therefore results 

would be compared to results from an external control or comparator group) or when using surrogate 
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measures. While the review team may decide to include this study in the review, when evaluating the 

evidence within GRADE, differentiation between the domain of risk of bias and indirectness may be 

rather nuanced. Consider the following: the target experiment serves as the anchor point. If the study at 

hand tries to emulate the exposure specified in the target experiment but does not achieve what it sets 

out to do, it is subject to bias. If it acknowledges difficulty in mimicking and defines a proxy 

experiment, which the study appropriately implements, then it could be considered indirectness in 

relation to the question of interest.

Subsequent considerations for RoB when using indirect evidence in a review require critical evaluation 

to identify potential for misclassification of the exposure. While it is important to recognize the potential 

for more serious bias in classification of exposures when using an indirect comparison, there are 

situations in which they may present less risk because of clearly delineated exposure and comparison 

groups (e.g. there is little to no concern that the exposure groups are overlapping).. 

Similarly, studies identified for the review may use exposure measures that are indirect to those 

identified in the PECO, i.e., proxy or intermediate markers of measures. Within the BPA example, , the 

measurement of exposure level based on a participant’s job title (e.g. cashier) would be indirect [17]. 

Extrapolating BPA exposure levels based on a participant’s job title may also introduce a risk to bias 

based on specific prognostic factors or the ability to differentiate between the levels of exposure.

3.3. Complete Step III of the RoB instrument for NRS of exposures assessment for eligible studies

Raters evaluate eligible studies and determine RoB by responding to signaling questions for each of the 

seven RoB items listed previously. Appendices D & E present summaries from two studies addressing 

BPA and body weight (as measured by prevalent overweight and prevalent obesity). We present 
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judgments across assessments of the RoB instrument items for NRS of exposures in a RoB matrix for all 

eligible studies in Table 2. 

Due to the lack of randomization and allocation concealment, studies will typically be judged as 

‘Serious’ RoB within the item of bias due to confounding and, also, may be judged as ‘Serious’ due to 

selection of participants. While RoB items 4-to-7 are similar to those used to evaluate RCTs [6, 18], bias 

due to confounding, selection of participants, and classification of the exposure present considerations 

unique to studies of exposures [5]. Below, we highlight some of these nuances and how raters can 

address them in their item- and study-level RoB judgments.

Bias due to Confounding 

Three situations require particular attention when evaluating bias due to confounding for exposures: 1) 

the evaluation of cross-sectional studies; 2) considerations of large effects; and 3) opposing residual 

plausible confounding. 

Cross-sectional studies can impact the judgment on the item-level RoB due to confounding (e.g. time-

varying confounding). This is because we might be unable to evaluate time-varying confounding and it 

makes the measurement of the effect of known confounders more challenging. We present two examples 

from the BPA and body weight review. While Carwile & Michels adjusted for all critical confounders, 

the measurement of exposure and outcome at one time point lowers our certainty that temporal 

confounders (e.g. dietary preference for canned food) are not responsible for any observed long-term 

association (Appendix D) [13]. In this specific study, the data collection point is part of the National 

Health and Nutrition Examination Survey (NHANES), a nationally-representative dataset with years of 

prior data collection, therefore providing supplemental information about the adjustment of confounders. 
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In contrast, within that review, neither Li nor Wang provide that same level of information about the 

data collection, therefore presenting “Critical” bias due to confounding (Table 1) [19, 20].

Studies judged as biased due to confounding with evidence of a large effect or opposing residual 

confounding (i.e. when residual confounders would result in the underestimating of an apparent 

exposure effect) may not require severe RoB item-level judgment [21]. This is due to the magnitude of 

the effect outweighing the size of the bias that might exist in the study or that all plausible biases go in a 

direction that would have reduced the observed effect or increased the observed lack of effect. These 

latter two domains contribute to increasing the CoE in a body of evidence of NRS in GRADE; however, 

within the RoB instrument for NRS of exposures they may also influence the study-level judgments 

[21]. To demonstrate this situation, we present an example on smoking and lung cancer-related mortality 

[22, 23]. A prospective cohort study compared lung cancer-related mortality rates among smokers and 

non-smokers [23]. Although there are some concerns due to residual and unmeasured confounders, such 

as occupational or air pollution exposures, the large magnitude of effect (30 times greater mortality rate 

due to lung cancer among persons smoking 25 or more cigarettes vs. non-smokers) warrants a less 

severe RoB item-level judgment of ‘Low’ or ‘Moderate’, instead of ‘Serious’ for the RoB item of 

confounding [23]. In this example, the large magnitude of effect reduces our concern that bias alone 

creates a spurious effect [24]. 

In addition, exploratory research conducted has suggested there is no relation between the 10 most 

common occupational exposures (i.e., sulfur dioxide, welding fumes, engine emissions, gasoline, 

lubricating oil, solvents, paints/varnishes, adhesives, excavation dust, and wood dust) and smoking 

history [25]. This exploration into the relationship between exposures and the outcome of interest 
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reduces our concern for potential residual plausible confounding due to other occupational or air 

pollution exposures even more.

Bias due to Misclassification of Exposure

In NRS of exposure, there is a particular concern with distinguishing between the exposed and reference 

groups, as measuring exposure is difficult and the reference groups are often assumed to be non-

exposed. Bias relating to exposure assessment is a major source of systematic error in studies of 

environmental exposures [26]. This is dealt with explicitly in a separate paper [27]. It is crucial to 

identify the source and type of exposure misclassification. If non-differential, the exposure 

misclassification will usually bias associations to the null, although the final impact on the observed 

relative risk is also dependent on other factors [28]. 

Systematic reviewers may be faced with different approaches to exposure assessment. In the example of 

noise exposure, this may be assessed by (in order of most severe to least severe exposure 

misclassification bias) [29]:

 Self-report questionnaire: Do you have to raise your voice to carry out a normal conversation 

with a colleague when approximately two metres apart for at least part of the working day (may 

indicate noise levels >80dB); 

 Modelling: in the occupational setting, a job-exposure matrix would be an example, whereby an 

occupational hygienist classifies likely exposure ranges based on job title; 

 Environmental monitoring: using a noise monitor to measure noise in the workplace 

environment will give a continuous measurement but sensor measurement error likely to be 

optimised for certain exposure ranges; 
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 Personal monitoring: using a personal noise monitor to measure exposure but sensor 

measurement error likely to be optimised for certain exposure ranges; 

 Individual dose: personal monitoring, additionally taking account of use of ear defenders, 

hearing acuity, etc.

In our example of BPA and body weight, the review team and topic-specific experts note the accuracy of 

the measurement of exposure requires multiple measurements (cited here from five-to-13 repeated 

measurements) at different time points, due to the non-persistent nature of BPA in the body [30]. If an 

individual study uses fewer than the recommended number of samples, or since diagnostic accuracy of 

BPA with the collection of between five and 13 samples only yields ≥ 0.80 sensitivity and specificity 

depending on level of exposure (small, moderate, high), there are concerns for non-differential 

misclassification (i.e. random error) potentially conflating participants in the exposure and comparator 

groups, likely leading to little difference in the outcomes (i.e. bias toward the null). When the exposure 

is non-persistent, we have more confidence when studies use multiple timepoints to measure the 

exposure level. The number of collected samples increases our certainty in the correct classification of 

the higher exposed and lower exposed groups. In this situation we may consider the exposure domain 

for Harley to be of less potential risk of bias for misclassification of the exposure. Although repeated 

measures in urine is acceptable, there is still some scientific uncertainty about the most direct measure of 

BPA exposure (i.e. urine vs blood)[31, 32].  In Carwile & Michels, participants provided only one 

sample; therefore we may have critical concerns about bias due to misclassification of the exposure 

(Appendix D) [13]. 
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The single sampling method used in Carwile & Michels decreases our certainty that the higher exposed 

and lower exposed participants can be accurately distinguished. Returning to Figure 1, in their protocol, 

review authors could have specified to exclude such studies a priori or identified this risk of bias item as 

a reason to conduct a sensitivity analysis (see below).

3.4. RoB judgments for an individual study for an outcome

According to ROBINS-I guidance, raters should assign the study-level RoB according to the most 

severe of the RoB item-level judgments unless they determine the study to have more severe RoB based 

on a combination of RoB judgments across items [6]. We demonstrate this in our example of BPA and 

weight in Table 3. This approach relies on individuals critically evaluating the rationale and direction of 

the bias. For example, if more than one RoB item within a study were rated as serious RoB but no RoB 

items were of critical RoB, then the study-level RoB could either be serious or could be critical if the 

consideration of all serious ratings leads to greater concern than would be expressed by a rating of 

serious on the study level. 

3.5. Sensitivity analyses and overall RoB across studies

Sensitivity analyses allow for exploration across a body of evidence to determine whether the pooled 

results are robust with including, versus excluding, studies with certain RoB [33]. The variability in RoB 

judgments across individual studies may inform whether a selection of studies, rather than the whole 

body of evidence, best informs the research question. The approach to conducting sensitivity analyses 

(not to be confused with the sensitivity of a study) should be specified at the protocol step of the 

systematic review; however, may be identified after the preliminary analysis. For example, studies may 

be deemed critical in the domain of bias due to confounding resulting from unadjusted analyses of 
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covariates. If a body of evidence includes studies with adjusted and unadjusted analyses, a sensitivity 

analysis could compare the estimates of effect for the adjusted (removing those studies not adjusting for 

covariates) and the total pooled estimate. If the effect estimates are not robust and differ between 

analyses (i.e. confounding may have an influence on the results), then review authors might consider 

whether to exclude the studies with unadjusted analyses; however, if the effect estimates do not differ 

(e.g. confounding apparently has no influence on the results), then the review authors may keep the 

unadjusted studies in the analysis because the suspicion of confounding apparently does not have a big 

impact. In these instances when the effect estimate is similar across studies then authors could consider 

updating the individual study level ratings to indicate a less severe RoB for the item and include the 

rationale that the sensitivity analysis showed no effect of RoB on the results.  

Using BPA as an example, we compared studies for the body weight outcomes of prevalent overweight 

and prevalent obesity at higher and lower RoB in sensitivity analyses specifically across the domain of 

confounding (Tables 4 & 5; Appendices F & G). We conducted these sensitivity analyses to explore the 

potential for bias introduced by studies that did not adjust for all critical confounders. The sensitivity 

analysis for the outcome of prevalent overweight resulted in a difference between the effect estimates, 

demonstrating that bias due to confounding impacted the pooled estimate; therefore, the judgment would 

be reflective of the more severe RoB (Table 4). An additional option would be to only show results from 

Harley, Eng, and Carwile in the GRADE evidence assessment. In contrast, the sensitivity analysis of 

studies reporting on prevalent obesity demonstrated similar effect estimates (Appendix G). In this 

situation, all studies reflect the less serious RoB judgment (Table 5).

3.6. Integration of RoB judgments across a body of evidence into GRADE assessment
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The overall rating of RoB across the body of evidence for an outcome is integrated into the GRADE 

assessment similar to what has been previously described in the literature for the result of RCTs and 

observational studies [10]. It is also during this process where indirectness, if identified during Steps I or 

II within the RoB instrument for NRS of exposures, would be integrated in the overall assessment of the 

evidence. When evaluating RoB using ROBINS-I and the RoB instrument for NRS of exposures, the 

body of evidence starts at ‘High’ initial CoE within GRADE. For the example of BPA and its effect on 

body weight, we present the outcomes of prevalent overweight (i.e., BMI ≥ 85th percentile for age/sex 

in children; 25 ≤ BMI < 30 kg/m2 in adults) and prevalent obesity (BMI ≥ 95th percentile for age/sex in 

children; BMI ≥ 30 kg/m2 in adults) in a GRADE evidence profile (Table 6). It is across this body of 

evidence that we look for evidence of the three factors (magnitude of effect, dose-response gradient, and 

opposing residual confounding) considered in the past as mechanisms to upgrade the quality of the 

evidence for NRS within GRADE [21]. The BPA example does not demonstrate any situation, based on 

these three factors, which may lead to a less severe RoB judgment. Across the body of evidence for 

prevalent overweight, our RoB based on the RoB instrument for NRS of exposures and sensitivity 

analysis of the item of confounding is ‘Critical’, resulting in a rating down of three levels for RoB. In 

addition, we rate down for imprecision because the effect estimate crosses the null. Our final CoE would 

be ‘Very low’. Across the body of evidence for prevalent obesity, our RoB is ‘Serious’; therefore, we 

rate down two levels for RoB. There are no other GRADE domains that we would rate down for. Our 

final CoE would be ‘Low’.

4. Discussion

The RoB instrument for NRS of exposures presents a novel instrument for conducting the RoB 

assessment of individual studies included in a systematic review of the health effects of exposure. In this 
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users’ guide, we suggest that the RoB instrument for NRS of exposures provides a standardized 

instrument for the transparent evaluation of RoB for NRS of exposures. We present an overview of the 

process, using examples to demonstrate specific issues encountered when formulating the PECO for the 

review, outlining a target experiment for an individual study, evaluating bias in individual studies, and 

summarizing judgments across the body of evidence. We highlight the need for critical consideration of 

the RoB judgments, including situations within individual studies and across a body of evidence when 

the judgments may be less severe. In addition, we present sources of indirectness identified in eligible 

studies that would inform the GRADE evidence assessment. We also present the steps for integrating the 

RoB across a body of evidence into a GRADE evidence profile. 

3.1. Advantages and disadvantages of using the RoB instrument for NRS of exposures approach

Some challenges remain, specifically when defining the target experiment and making judgments at the 

study and review level. The major challenge when identifying a hypothetical target randomized 

experiment is that much of the research on environmental health exposures focuses on a potential link 

with a human health hazard. Defining a specific comparison to an exposure presents a challenge, as 

there may be a paucity of evidence to support the distinct exposure and comparator; however, in this 

paper we present five scenarios to facilitate the identification of an exposure and comparator [12]. In 

addition, the best available studies to inform a review may only present data on one exposure category. 

In this situation, we recommend other sources of comparative exposure data, such as historical controls 

(i.e. source of data presents levels of exposure before and after introduction to a known source of 

exposure).
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Inter-rater reliability of the RoB instrument for NRS of exposures has not yet been measured; however, 

the purpose of the RoB instrument for NRS of exposures is not necessarily to have different experts 

reach the same judgment per study and across studies, but instead to justify the judgements and make the 

judgements transparent. We present several examples when using the RoB instrument for NRS of 

exposures. More examples are needed to highlight nuances of this instrument when applied on an 

individual-study and across-study basis.

Based on concerns from systematic-review authors and guideline developers in the environmental health 

field, the RoB instrument for NRS of exposures evaluates bias using a standardized comparison to a 

hypothetical target experiment. This allows the body of evidence to start at ‘High’ initial CoE within the 

GRADE framework, potentially improving acceptability of this instrument and the use of GRADE for 

environmental decision-making assessments. Of note is that randomized controlled exposure trials in 

animals would be evaluated with the framework for randomized trials and not the herein described 

instrument.

4.2. Relation to other studies

This is the first article describing examples from systematic reviews using the RoB instrument for NRS 

of exposures to evaluate the RoB across a body of evidence for a specific outcome. We present one 

option of a RoB matrix displaying the RoB study- and item-level judgments. In addition, we present 

examples of when an individual and a body of evidence RoB judgment may be improved (determined to 

be a less severe RoB) based on further exploration of residual and unmeasured confounding. We 

highlight the value added by performing sensitivity analyses with the body of evidence to explore 

sources of bias. 
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The application of ROBINS-I for RoB assessment across a body of evidence is undergoing further 

development, as are the procedures for interpreting RoB within the GRADE approach when NRS are 

compared to RCTs as in the RoB instrument for NRS of exposures or ROBINS-I [9]. Collaboration 

between the developers of the RoB instrument for NRS of exposures and these projects allows for an 

iterative approach to methods advancements. We expect that this approach would be applicable to 

broader research of exposures conducted in the fields of public health and nutrition, not limited to 

environmental exposures.

4.3. Implications for stakeholders using the RoB instrument for NRS of exposures

Evaluating the RoB across the body of evidence for an outcome informs one domain within the GRADE 

framework’s evidence assessment contributing to the understanding about the overall CoE. Using this 

instrument should not result in a final certainty distinct from the prior approach of starting NRS at ‘Low’ 

initial CoE within GRADE because the conceptual underpinnings are the same. However, the approach 

is fairer and more transparent. Indeed, users may prefer investigating the relationship between rating 

down for imbalances due to confounders, selection bias, or misclassification of the exposure instead of 

starting at ‘Low’ initial CoE as a general judgment about these items. The process and examples 

outlined in this manuscript provide guidance for researchers and guideline developers using evidence 

about exposures to inform their systematic reviews and decision making. 

4.4. Unanswered questions and future research

This research provides many opportunities for further application and assessment of the RoB instrument 

for NRS of exposures and integration into GRADE. Specific areas of interest based on our research may 

include 1) how to apply the RoB instrument for NRS of exposures to primary studies that use different 
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exposure measurement strategies; 2) the process for making a judgment about the body of evidence 

when using different techniques to synthesize evidence of the effects; and 3) the role of dose-response 

within RoB and GRADE assessments.

We present several measurement strategies that may be used when direct measures of the exposure are 

unfeasible or not available, such as modelling, or environmental or personal monitoring. Each method 

may be associated with greater or lesser specificity and/or potential for exposure misclassification. 

Application of the RoB instrument for NRS of exposures to topics using these measures is needed.  

In addition, we present the process for when the RoB across a body of evidence can be further explored 

and assessed by using meta-analytic approaches; however, systematic reviews of exposures may use 

other approaches to summarize evidence, such as a qualitative analysis or narrative summary. Further 

exploration of how these methods may translate to different summary approaches is needed.

Lastly, while we present situations of where magnitude of effect and opposing residual confounding 

may decrease our concerns about bias within both individual assessments and across the body of 

evidence, more exploration of the role of dose-response is needed. Future research should provide 

examples of how to incorporate dose response into an assessment using the RoB instrument for NRS of 

exposures.

5. Conclusions

The RoB instrument for NRS of exposures provides a novel approach for evaluating RoB of exposures. 

Determining the RoB across a body of evidence is critical to inform decision making about health 
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exposures. We present guidance and examples for systematic-review authors and guideline developers 

to follow when using this instrument. 
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Appendices

Appendix A. Step I of the RoB instrument for NRS of exposures for the PECO: “What is the effect of highest levels vs. lowest 
levels of BPA exposure on weight?”

Step I Items Response

Confounding for BPA 
and obesity

 Body composition (age, ethnicity, gender, height, race); 
 Weight (age, gender); 
 Waist circumference (age, gender); 
 Body mass index (age, ethnicity, gender, race);
 In addition, consumption of canned or packaged food and drink (“processed” food) that is also energy dense and low-nutrient 

(e.g., soda) is a significant confounder because food packaging is a main source of exposure to BPA.
 Co-exposures: There may be some concern for co-exposure to certain phthalates used in food packaging that have also been linked to 

obesity. However, phthalates are used in different types of food packaging than BPA (plastic wraps versus canned lining and 
polycarbonate materials). No other a priori co-exposures of particular concern are identified for general population studies. There 
may be some co-exposures that need to be considered in occupational studies and these should be assessed on a case by case basis if 
discovered.

Co-interventions  None identified

Accuracy of the 
measurement of 
exposure to BPA 
(CAS# 80-05-7)

 BPA is a non-persistent compound (near 100% elimination within 24 hours after oral exposure, possible longer elimination time 
from non-oral exposure but on order of days), so blood and urine measures only assess recent exposure. This means current 
exposure levels may NOT be indicative of past exposures. This is problematic for assessment of BPA as a risk factor for health 
outcomes that are not acute and take time to develop like obesity.

 BPA measures are variable over time in the same person (even during the same day) so methods that utilize repeated measures of 
exposure are preferred. Some experts on BPA exposure assessment express less concern for lack of repeated measures for NHANES 
data because it is a large sample survey of the general population.

 Standard analytical measures: Measurement of urine or blood by quantitative techniques such as liquid chromatography-triple 
quadrupole mass spectrometry (LC-MS/MS) and high-pressure liquid chromatography with tandem mass spectrometry (HPLC/MS) 
are preferred. Measurements made at CDC are considered high-quality. 

 Measures to minimize sample contamination with BPA should be taken (e.g., glass pipettes, polypropylene plastic lab ware and 
sample collection materials, water blanks).

 Measures of unconjugated BPA in blood need to be very carefully considered based on extent to which investigators controlled for 
background exposures.

 Questionnaire or self-reported measures of BPA exposure are more problematic due to the ubiquity of exposure and lack of 
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knowledge on all possible routes of exposure, e.g., thermal paper, certain pharmaceuticals. However, there is some support for an 
association between higher urine/blood levels of BPA and higher reported use of BPA-containing food packaging (e.g., canned food 
consumption) or handling of BPA-containing thermal paper (cashiers) so questionnaire data that assess these types of exposure 
sources may have some utility in assessing longer-term time trends in exposure.

Accuracy of the 
measurement of 
outcome of obesity

 Body Composition: Dual-energy X-Ray absorptiometry, triceps skinfold thickness, subscapular skinfold thickness, suprailiac skinfold 
thickness

 Measured waist circumference
 Body mass index 
 Measured weight
*Obesity typically develops relatively slowly over time so preferred follow-up times after start of exposure would be on the order of 
several months to years.
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Appendix B. Step II of the RoB instrument for NRS of exposures for Carwile & Michels, 2011

Specify a target randomized trial specific to the study

Design Individual randomized controlled trial 

Participants Adults of all ages, predominantly 18-35 years (8.2% <18 years and 7.9% > 35 years). Civilian, non-
institutionalized, United States population. Analyses restricted to participants 18–74 years of age, who were 
included in the random subsample of participants, who supplied a spot urine sample analyzed for BPA.

Experimental intervention BPA highest levels (quartile 4: ≥ 4.7 ng/mL) 

Comparator BPA lowest levels (quartile 1: ≤ 1.1 ng/mL)

Specify the outcome

Specify which outcome is being assessed for risk of bias (typically from among those earmarked for the Summary of Findings table). 
Specify whether this is a proposed benefit or harm of intervention.

Prevalent overweight (Overweight: 25 ≤ BMI < 30 kg/m2 [reference: BMI <25 kg/m2])

Specify the numerical result being assessed

In case of multiple alternative analyses being presented, specify the numeric result (e.g. RR = 1.52 (95% CI 0.83 to 2.77) and/or a 
reference (e.g., to a table, figure or paragraph) that uniquely defines the result being assessed.

Participants in the upper BPA quartile 4 vs. participants in the lowest BPA quartile 1: OR: 1.76, 95% CI: 1.06–2.94)
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(i) Confounding domains listed in Step I
Confounding domain Measured variable(s) Is there evidence that 

controlling for this 
variable was 
unnecessary?

Is the confounding domain 
measured validly and 
reliably by this variable (or 
these variables)?

OPTIONAL: Is failure to adjust for 
this variable (alone) expected to 
favor the experimental intervention 
or the comparator?

Yes / No / No information Favor experimental / Favor 
comparator / No information

Age, gender Weight No Yes Favor experimental

Consumption of canned or packaged food 
and drink (“processed” food) that is also 
energy dense and low-nutrient (e.g., soda)

Daily caloric intake No No Favor experimental because obese 
individuals (potentially caused by 
higher consumption of canned 
foods and drinks) have higher 
urinary BPA levels relative to those 
with normal weight. 

(ii) Additional confounding domains relevant to the setting of this particular study, or which the study authors identified as important
Confounding domain Measured variable(s) Is there evidence that 

controlling for this 
variable was 
unnecessary?

Is the confounding domain 
measured validly and reliably 
by this variable (or these 
variables)?

OPTIONAL: Is failure to adjust 
for this variable (alone) expected 
to favor the experimental 
intervention or the comparator?

Yes / No / No information Favor experimental / Favor 
comparator / No information

Alcohol drinking, fish intake, protein, 
fat, carbohydrate, and energy intake

none no no

Carwile JL, Michels KB: Urinary bisphenol A and obesity: NHANES 2003–2006. Environmental research 2011, 111(6):825-830.
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Appendix C. Step II of the RoB instrument for NRS of exposures for Harley et al., 2013

Specify a target randomized trial specific to the study

Design Individual randomized controlled trial 

Participants Children at 5 and 9 years of age born to eligible pregnant women were at least 18 years of age, spoke English 
or Spanish, qualified for low-income health insurance, were at < 20 weeks gestation, and were planning to 
deliver at the county hospital. Must have had a singleton, live birth. 

Experimental intervention BPA highest levels (tertile 3: 4.6–349.8 μg/g) 

Comparator BPA lowest levels (tertile 1: <LOD-2.4 μg/g)

Specify the outcome

Specify which outcome is being assessed for risk of bias (typically from among those earmarked for the Summary of Findings table). 
Specify whether this is a proposed benefit or harm of intervention.

Prevalent overweight (Overweight: BMI ≥ 85th percentile at 5 and 9 years of age)

Specify the numerical result being assessed

In case of multiple alternative analyses being presented, specify the numeric result (e.g. RR = 1.52 (95% CI 0.83 to 2.77) and/or a 
reference (e.g. to a table, figure or paragraph) that uniquely defines the result being assessed.

Participants in the upper BPA tertile 3 vs. participants in the lowest BPA tertile 1: OR = 1.36 (0.75–2.47)
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(i) Confounding domains listed in Step I
Confounding domain Measured variable(s) Is there evidence that 

controlling for this 
variable was 
unnecessary?

Is the confounding domain 
measured validly and 
reliably by this variable (or 
these variables)?

OPTIONAL: Is failure to adjust for 
this variable (alone) expected to 
favor the experimental intervention 
or the comparator?

Yes / No / No information Favor experimental / Favor 
comparator / No information

Age, gender Weight No Yes Favor experimental
Consumption of canned or packaged food 
and drink (“processed” food) that is also 
energy dense and low-nutrient (e.g., soda) 

Child consumption of 
soda, fast food, and 
sweets

No Yes Favor experimental because obese 
individuals (potentially caused by 
higher consumption of canned 
foods and drinks) have higher 
urinary BPA levels relative to those 
with normal weight.

(ii) Additional confounding domains relevant to the setting of this particular study, or which the study authors identified as important
Confounding domain Measured variable(s) Is there evidence that 

controlling for this 
variable was 
unnecessary?

Is the confounding domain 
measured validly and reliably 
by this variable (or these 
variables)?

OPTIONAL: Is failure to adjust 
for this variable (alone) expected 
to favor the experimental 
intervention or the comparator?

Yes / No / No information Favor experimental / Favor 
comparator / No information

Television watching Average daily TV 
time

No Yes Favor experimental

Environmental tobacco smoke exposure Self-reported 
mother’s smoking 
status

No Yes No information

Time spent playing outdoors Unknown No No information No information

Harley KG, Schall RA, Chevrier J, Tyler K, Aguirre H, Bradman A, Holland NT, Lustig RH, Calafat AM, Eskenazi B: Prenatal and 
postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environmental health 
perspectives 2013, 121(4):514.
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Appendix D. Summary of Step III of the RoB instrument for NRS of exposures and the direction of bias and reaching the 
overall bias judgement for Carwile & Michels, 2013

Bias items Risk of 
bias

Direction of bias Rationale

Bias due to 
confounding

Serious Unknown NHANES data were used. Specific details were not provided in the study report, but 
NHANES co-variate data were obtained from either a standardized questionnaire or 
laboratory methods (e.g., creatinine). The reliability/validity of the questionnaire was 
not reported, but it is not expected to appreciably bias the results. Most of the critical 
confounders were considered statistically, but there is possibility of residual unmeasured 
(and unidentified) confounding. For the most part, although certain post-exposure 
variables are relevant to evaluating obesity (e.g., caloric intake), there is little 
information on the association of these variables to BPA exposure.

No indication that time-varying confounding is a major concern given the cross-
sectional nature of the study.

Critical confounders (age, gender, and ethnicity) were accounted for in the analysis. 
Model 1 was adjusted for age, sex, and urinary creatinine. Model 2 was adjusted for 
race, education, and smoking in addition to Model 1 covariates.

Bias in 
selection of 
participants 
into the study

Low N/A Study is cross-sectional. Subjects were randomly selected from NHANES subjects with 
urinary BPA data available using the same criteria. Selection of subjects was unrelated 
to either exposure or outcome.

While there is no information on start of exposure, everyone is exposed to BPA 
throughout their life, but the levels will change over time. Although BPA is ubiquitous, 
start of exposure and how exposure changes over time are not known. Timing of 
recruitment was similar (2003-2006) but given that the age ranged from 18 to 74 years, 
exposure could range by more than a decade.
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Bias in 
classification 
of exposures

Critical Concerns of bias 
toward the null 
due to non-
differential 
misclassification 
of the exposure.

Urinary BPA concentration was measured in 1 spot sample from each participant. The 
lower limit of detection (LLOD) was 0.36ng/ml in 2003/04 and 0.4ng/ml in2005/06. For 
BPA concentrations below the LLOD (2003/04: n=110/1373 [8%]; 2005/06: 
n=114/1374 [8%]) NHANES assigned a value of the LLOD divided by the square root 
of two. BPA is a non-persistent compound and exposure measures were not repeated. 
Therefore, there is no confidence that the current exposure reflects exposure over the 
subject's life time or even over any duration of time. Because this population is obtained 
from NHANES some experts consider the lack of repeated measures to be less of a 
concern because it is a large survey of the general population (this cross-sectional study 
had a population of 2747 adults).

Exposure was measured at same time as outcome, but participants were likely exposed 
throughout life due to BPA being a ubiquitous exposure. Therefore, it is unlikely that 
entry into the cohort started with the exposure.

Cross-sectional analyses with both BPA exposure and weight, height, and waist 
circumference used to define obesity assessed simultaneously.

Urine samples were obtained at the time that obesity measurements were obtained and 
analyzed later in a laboratory separate from where the data were collected. In addition, 
NHANES collected data on a variety of compounds and health effects without 
knowledge of the intent for this current study indicating that exposure status is not likely 
to be biased by knowledge of the outcome.

The range/variability in exposure was likely sufficient with a 25th to 75th percentile 
range of 1.18 to 3.33 ng/mL urinary BPA ng/mL and quartiles ranging from <1.1 ng/mL 
to >4.7 ng/mL. However, we are not confident that the subjects were exposed to this 
concentration for a long period of time. Lacking information on the duration that 
subjects were exposed to these levels, the single BPA measurement obtained at the same 
time as outcome is not of sufficient to detect an effect of exposure.

Urinary BPA samples were collected at the same time that height, weight, and waist 
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circumference were measured. Because BPA is not persistent, and obesity is not an 
acute effect, there is not adequate follow-up period to allow for the development of the 
outcome of interest.

Total (free and conjugated) urinary BPA concentrations were measured at the Division 
of Environmental Health Laboratory Sciences (National Center for Environmental 
Health, CDC) using online solid-phase extraction coupled to isotope dilution high-
performance liquid chromatography–tandem mass spectrometry. Quality control (QC) 
procedures included analysis of reagent blanks and samples of pooled human urine 
spiked with BPA at low-and high-concentrations. Coefficients of variation calculated 
for low-and high-concentration QC samples were 19% and 12% in 2003–2004 and 13% 
and 11% in 2005–2006. Additional information on laboratory methods is available 
online (CDC, 2004b, 2006b).

Bias due to 
deviations 
from 
intended 
exposures

Low N/A There is little concern that changes in exposure status occurred among participants. 
Although BPA levels may change overtime, the cross-sectional nature of the study and 
the intention-to-treat analyses this is of little concern because participants are analyzed 
based on the exposure group they are assigned from the single measurement. No critical 
co-exposures were identified and nothing about the subject characteristics suggests 
likelihood of differential exposure to other environmental contaminants at lower versus 
higher concentrations of BPA.
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Bias due to 
missing data

Low N/A There is no information on the missing data by exposure level, but it is unlikely to be 
related to exposure level.

The missing indicator method was used for covariates with missing data for >=10% of 
observations, otherwise observations with missing covariate data were excluded. Data 
excluded from analysis did not exceed 4% and is considered relatively complete. 32 or 
87 observations were stated excluded from analysis due to missing BMI data depending 
on the analysis conducted. 47 participants were excluded based on missing urinary BPA 
measurements. There were observations excluded based on missing covariate data. The 
number varied with the analysis but was only excluded if it was <10%.
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Bias in 
measurement 
of the 
outcome

Low N/A It is unlikely that the outcome could be affected by knowledge of exposure. Height, 
weight, and waist circumference were measured using standard NHANES protocols (not 
described in the publication, but available on NHANES website). Body mass index was 
calculated (weight (kg)/height (m)2). The specific measurements would not be affected 
by knowledge of exposure, and it is unlikely that the calculation or assignment into 
obesity category would be affected by knowledge of exposure.

Specific methods were not reported in the study report but are provided on NHANES 
website. Height and weight are likely sensitive measurements with waist circumference 
likely slightly less sensitive. Height, weight, and waist circumference were measured by 
trained technicians using a standardized protocol. Method details, including QA/QC 
procedures, are available on the NHANES website. BMI was calculated as weight in 
kilograms divided by height in meters squared and used to define overweight [25.0 
<BMI<29.9] and obesity [BMI >30.0].

It is unlikely that any systematic error in measuring height, weight, or waist 
circumference (or in calculating the BMI or assigning obesity category) would have 
been related to exposure. NHANES has a standard protocol for measuring height, 
weight, and waist circumference that would have been used for all subjects. Outcome 
was assessed at the time of sample collection for exposure. Therefore, exposure was 
unknown at time of outcome assessment.

Bias in 
selection of 
the reported 
result

Low N/A Reporting of the results is consistent with an a priori plan and data were readily 
available from NHANES that provides all protocols for obtaining the data online. 
Results were provided for two measurements of obesity, which were reported in the 
methods making it unlikely that there is selective reporting based on outcome. Statistical 
methods reported in the methods section were used and presented in the results. 
Associations between urinary BPA and obesity were assessed for effect modification by 
gender, which were provided in the supplemental material.
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Carwile JL, Michels KB: Urinary bisphenol A and obesity: NHANES 2003–2006. Environmental research 2011, 111(6):825-830.

Overall bias Serious Possibly toward 
the null

Overall bias was judged as Serious due to concerns of potential unknown confounders, 
unmeasured confounding due to the single time-point data collection, and concerns of 
non-differential misclassification of the exposure.
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Appendix E. Summary of Step III of the RoB instrument for NRS of exposures and the direction of bias and reaching the 
overall bias judgement for Harley et al., 2013

Bias items Risk of 
bias

Direction of 
bias 

Rationale
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Bias due to 
confounding

Serious Unknown Most of the critical confounders were considered statistically, but there is possibility of residual 
unmeasured (e.g., diet, pesticide exposure) confounding.

The study evaluated the child's BPA exposure throughout several points in their life. And used 
each one separately in the evaluation.

Changes in BPA exposure could be related to changes in food consumption over time as BPA 
exposure is mainly through canned or processed food including soda, which could also be 
related to obesity. Since Harley follows participants over time, there is some concern for time-
varying confounding as they may have changed their diet while pregnant.

Potential confounders were identified a priori using directed acyclic graphs. Potential 
confounders included maternal pre-pregnancy BMI, age, education, years of residence in the 
United States, smoking during pregnancy, soda consumption during pregnancy, and family 
income. Time-varying covariates considered were child consumption of soda, fast food, and 
sweets, television watching, environmental tobacco smoke exposure, and time spent playing 
outdoors, assessed at multiple times during childhood. Covariates were included in the final 
models if they were associated with both exposure and any of the growth outcomes at p-value < 
0.2 or if removing them changed the coefficient for the main BPA exposure variable by > 10%. 
Maternal age and pre-pregnancy BMI were analyzed as continuous variables. Other variables 
were categorical. Mothers were interviewed twice during pregnancy, after delivery, and when 
their children were 2, 3.5, 5, 7, and 9 years of age to obtain information about demographic 
characteristics, diet, and behaviors. All interviews were conducted in English or Spanish using 
structured questionnaires, but no information was provided on reliability/validity. At the 
baseline interview, we asked mothers about their race/ethnicity, education, income, marital 
status, and number of years they had lived in the United States, as well as information about 
soda consumption, smoking, and alcohol and drug use during pregnancy. We calculated pre-
pregnancy BMI from self-reported pre-pregnancy weight and measured height. If self-reported 
pre-pregnancy weight was unavailable or invalid, we used measured weight at first prenatal visit 
(n = 23) if the first prenatal visit occurred at or before 13 weeks gestation or used regression 
models to impute pre-pregnancy weight based on weight at all prenatal visits if the first prenatal 
visit occurred after 13 weeks (n = 16).
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Bias in 
selection of 
participants 
into the study

Low N/A Selection of subjects was unrelated to either exposure or outcome. The study sample 
consisted of participants in the Center for the Health Assessment of Mothers and 
Children of Salinas (CHAMACOS), a longitudinal cohort study of environmental 
factors and children’s growth and development. Pregnant mothers were enrolled 
Selection of subjects was unrelated to either exposure or outcome in 1999 and 2000 
from prenatal clinics serving the farmworker population in the Salinas Valley, 
California. Eligible women were at least 18 years of age, spoke English or Spanish, 
qualified for low-income health insurance, were at < 20 weeks gestation, and were 
planning to deliver at the county hospital. Mothers provided written informed consent 
for themselves and their children to participate in the study.

Start of exposure occurred in the first trimester and all subjects were followed through 9 
years of age.
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Bias in 
classification 
of exposures

Moderate Some concern of 
bias toward the 
null due to non-
differential 
misclassification 
of the exposure.

Urinary BPA concentration was measured in 4 spot samples, 2 during pregnancy and 2 
from the child. LOD was 0.4 ng/mL. Concentrations < LOD for which a signal was 
detected were reported as measured. Concentrations < LOD with no signal detected 
were randomly imputed based on a log-normal probability distribution using maximum 
likelihood estimation. The number of collected samples increases our certainty in the 
correct classification of the higher exposed and lower exposed groups.

Initial exposure was measured during the first trimester of pregnancy. While this may 
not be the exact date of start of exposure it would be very close for the children.

Prenatal and five-year-old exposure measurements were taken prior to the assessment of 
BMI at 9 years.

Exposure was assessed prior to the outcome at three different time points. Only one 
exposure measurement was obtained at the same time as the outcome; thus, it was not 
possible for classification of exposure to have been affected by the knowledge of the 
outcome.

The range/variability in exposure was sufficient (range during pregnancy 0.5 to 4.6 
ng/mL and during childhood 0.9 to 16.3 ng/mL). Although BPA levels change over time 
and we are not confident that the subjects were exposed to this concentration for a long 
period of time, the fact that there were 4 measurements per subject make us more 
confident in the exposure being represented of changes over time. In addition, since the 
child's exposure was first measured based on mother's levels when pregnant, then again 
when the children were 5 (4 years prior to measuring outcome) the duration of exposure 
would have been sufficient even if the level of this exposure was not consistent. BPA 
levels were also measured in the child at 9 years. However, data were not provided for 
the individual subjects to know how the BPA levels may have varied per subject.

Children were followed up for 9 years, which would have been sufficient time for the 
outcome to develop.
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Spot urine samples were collected from mothers at two time points during pregnancy: 
near the end of the first (mean ± SD, 13.8 ± 5.0 weeks gestation) and second (mean ± 
SD, 26.4 ± 2.4 weeks gestation) trimester of pregnancy and from the children when they 
were 5 (mean ± SD, 5.1 ± 0.2 years) and 9 (mean ± SD, 9.4 ± 0.4 years) years of age. 
Urine samples were collected in polypropylene urine cups, aliquoted into glass vials, 
and frozen at –80°C until shipment to the CDC for analysis. Analysis of field blanks 
showed no detectable contamination by BPA using this collection protocol. Solid-phase 
extraction coupled to high performance liquid chromatography–isotope dilution tandem 
mass spectrometry to measure total urinary BPA concentration (conjugated plus 
unconjugated). Concentrations < LOD for which a signal was detected were reported as 
measured. Concentrations < LOD with no signal detected were randomly imputed based 
on a log-normal probability distribution using maximum likelihood estimation. Specific 
gravity was measured with a refractometer (National Instrument Company Inc., 
Baltimore, MD) for the maternal urine samples, but was unavailable for the children’s 
samples. Thus, maternal concentrations were normalized for urinary dilution using urine 
specific gravity, and child BPA concentrations were normalized by dividing by urinary 
creatinine concentration.

Bias due to 
deviations 
from intended 
exposures

Low N/A There is little concern that changes in exposure status occurred among participants. 
Although BPA levels may change overtime, several measurements were obtained and 
evaluate separately by exposure they were assigned. Because each exposure was 
evaluated as an intent to treat, there is little concern about the potential changes in 
exposure. The study authors reanalyzed the models controlling separately for three 
important prenatal exposures in this population: organochlorine pesticides [using 
prenatal serum concentrations of dichlorodiphenyldichloroethylene (DDE)], 
organophosphate pesticides (using prenatal urinary metabolites of organophosphate 
pesticides), and brominated flame retardants [using prenatal serum concentrations of 
polybrominated diphenyl ethers (PBDEs)].
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Bias due to 
missing data

Low N/A Reasons for exclusion were documented and unlikely to differ across exposures 
threshold. Although some subjects were lost to follow-up and the missing data were not 
described by exposure status, the study authors conducted analyses that addressed loss 
to follow-up and are likely to have removed any risk of bias thus judged low risk of 
bias. There is no statement that participants with missing covariate data were excluded 
from analyses. There is no information on the missing data by exposure level. Although 
it is unlikely to be related to exposure level, they had the data in order to compare those 
lost to follow-up with those included in the analysis, but no information was provided.

Of the 527 mothers meeting the inclusion criteria, 402 had at least one urine 
measurement available. There were 325 measurements in children at 5 years and 304 
available at 9 years. Of the 402 children included in the analysis, anthropometric 
measurements were available for 319 children at 5 years and 311 children at 9 years.
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Bias in 
measurement 
of the 
outcome

Low N/A It is unlikely that the outcome could be affected by knowledge of exposure.  It was not 
noted that outcome assessors were blind to the exposure level, but it was likely given 
that separate individuals were used to measure the outcome parameters than conducted 
the exposure analysis (i.e., CDC).

The same methods were used for all participants at all times measured. It is unlikely that 
any systematic error in anthropometric measurements (or calculating the BMI or 
assigning obesity category) would have been related to exposure. Children were 
weighed and measured without jackets or shoes by trained study staff. Weight was 
measured using a digital scale and rounded to the nearest 0.1 kg. Height was measured 
using a stadiometer and rounded to the nearest 0.1 cm. Starting at 5 years of age, waist 
circumference was measured at each visit by placing a measuring tape around the 
abdomen at the level of the iliac crest, parallel to the floor. Height and waist 
circumference measurements were conducted in triplicate and averaged for analysis. 
When the children were 9 years of age, fat percentage was measured using “foot-to-
foot” bio-impedance technology with a Tanita TBF-300A body composition analyzer 
(Tanita Corp.). BMI was calculated as weight (kilograms) divided by height squared 
(square meters) and compared with the sex-specific BMI-for-age percentile data issued 
by CDC in 2000 (National Center for Health Statistics 2005). Children who were ≥ 85th 
but < 95th percentile for their age and sex were classified as overweight. Age- and sex-
standardized BMI z-scores were also generated using the CDC norms. These methods 
are considered sensitive.
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Harley KG, Schall RA, Chevrier J, Tyler K, Aguirre H, Bradman A, Holland NT, Lustig RH, Calafat AM, Eskenazi B: Prenatal and 
postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environmental health 
perspectives 2013, 121(4):514.

Bias in 
selection of 
the reported 
result

Moderate Potential for bias 
away from the 
null.

Reported results are consistent with an a priori plan; however, as no protocol was 
published prior to the study there is potential for reporting bias to inflate results for 
publication success.

Several measurements of obesity were evaluated and reported. These were also assessed 
at several different time periods in the children. Although the publication only shows a 
few of the results (both positive and negative), the BMI-z-scores for all ages are 
presented in the supplemental data indicating that it is unlikely that there was bias from 
selective reporting of outcome. Gender and age were evaluated as separate subgroups as 
described in the report.

Statistical methods reported in the methods section were used and presented in the 
results or discussion. BPA was analyzed as categorical and continuous variable.

Overall bias Moderate Unknown Overall bias was judged as Moderate due to concerns of potential unknown 
confounders, some concerns of non-differential misclassification of the exposure, and 
some concerns with bias in reported results.
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Appendix F. Sensitivity analysis for the outcome of prevalent overweight

Figure F.1. Sensitivity analysis of studies with ‘Serious’ bias due to confounding

F.2. Sensitivity analysis of all studies
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Appendix G. Sensitivity analysis for the outcome of prevalent obesity

G.1. Sensitivity analysis of studies with ‘Serious’ bias due to confounding

G.2. Sensitivity analysis of all studies
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Figures.

Figure 1. Approach for conducting an assessment using the RoB instrument for NRS of exposures and 
the integration into GRADE when conducting systematic reviews of exposure. 
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GRADE: Grading of Recommendations Assessment, Development and Evaluation; PECO: population, 
exposure, comparator, outcome; RoB: risk of bias; SR: systematic review. 
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Tables

Table 1. Five paradigmatic approaches and examples for identifying the exposure and comparator in 
systematic review and decision-making questions (from Morgan RL, Whaley P, Thayer KA, Schünemann 
HJ: Identifying the PECO: A framework for formulating good questions to explore the association of 
environmental and other exposures with health outcomes. Environment international 2018.)

Potential systematic-
review or research context

Approach PECO example

1. Calculate the health 
effect from an exposure; 
describing the dose-effect 
relationship between an 
exposure and an outcome 
for risk characterisation.

Explore the shape and distribution 
of the relationship between the 
exposure and the outcome in the 
systematic review. 

Among newborns, what is the 
incremental effect of 10 dB 
increase during gestation on 
postnatal hearing impairment?

2. Evaluate the effect of an 
exposure cut-off on health 
outcomes, when the cut-off 
can be informed iteratively 
by the results of the 
systematic review.

Use cut-offs defined based on 
distribution in the studies 
identified in the systematic review. 

Among newborns, what is the 
effect of the highest dB 
exposure compared to the 
lowest dB exposure (e.g. 
identified tertiles, quartiles, or 
quintiles) during pregnancy 
on postnatal hearing 
impairment?

3. Evaluate the association 
between an exposure cut-off 
and a comparison cut-off, 
when the cut-offs can be 
identified or are known 
from other populations.

Use mean cut-offs from external or 
other populations (may come from 
other research). 

Among commercial pilots, 
what is the effect of noise 
corresponding to occupational 
exposure compared to noise 
exposure experienced in other 
occupations on hearing 
impairment?

4. Identify an exposure cut-
off that ameliorates the 
effects on health outcomes.

Use existing exposure cut-offs 
associated with known health 
outcomes of interest. 

Among industrial workers, 
what is the effect of exposure 
to < 80 dB compared to ≥ 80 
dB on hearing impairment?

5. Evaluate the potential 
effect of a cut-off* that can 
be achieved through an 
intervention to ameliorate 
the effects of exposure on 
health outcomes.

Select the comparator based on 
what exposure cut-offs can be 
achieved through an intervention. 

Among the general 
population, what is the effect 
of an intervention that reduces 
noise levels by 20 dB 
compared to no intervention 
on hearing impairment?
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Table 2. Risk of bias matrix presenting judgments for highest BPA exposure vs. lowest BPA exposure on 
the outcome of body weight, for the 7 RoB items, for 6 included studies.



3

Tables 3, 4, & 5. Risk of bias matrix presenting study-level and item-level judgments for exposure to 
highest BPA vs. exposure to lowest BPA on the outcomes of prevalent overweight and obesity. 

Table 3. Study-level judgments for prevalent overweight and prevalent obesity 

Table 4. Item-level judgments for prevalent overweight
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Table 5. Item-level judgments for prevalent obesity 
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Table 6. Exposure to BPA on the outcome of birthweight GRADE evidence assessment

Question: Exposure to highest levels of BPA (CAS# 80-05-7) compared to exposure to lowest levels of BPA in general population
Setting: Community 
Bibliography: Rancière, F., Lyons, J. G., Loh, V. H., Botton, J., Galloway, T., Wang, T., ... & Magliano, D. J. (2015). Bisphenol A and the risk of cardiometabolic 
disorders: a systematic review with meta-analysis of the epidemiological evidence. Environmental Health, 14(1), 46. 

Quality assessment № of patients Effect Quality Importance

№ of 
studies

Study 
design

Risk of 
bias Inconsistency Indirectness Imprecision Other 

considerations

exposure to 
highest BPA 
levels

exposure to 
lowest BPA 
levels

Relative
(95% CI)

Absolute
(95% CI)

Prevalent overweight (assessed with: BMI ≥85th percentile for age/gender in children; BMI 18.5-25/30 kg/m2)

5 studies very, very 
serious a

not serious b not serious c serious d none 1774/5403 
(32.8%) 

1584/5657 
(28.0%) 

OR 1.21
(0.98 to 1.56) 

40 more per 
1,000
(from 4 fewer 
to 98 more) 

⨁◯◯◯
VERY LOW 

CRITICAL 

Prevalent obesity (assessed with: BMI ≥95th percentile for age/gender in children; BMI ≥25-30 kg/m2)

3 studies very 
serious a

not serious not serious c not serious none 1425/5178 
(27.5%) 

1204/5342 
(22.5%) 

OR 1.67
(1.32 to 1.93) 

102 more 
per 1,000
(from 52 
more to 134 
more) 

⨁⨁◯◯
LOW 

CRITICAL 

CI: Confidence interval; OR: Odds ratio
Explanations
a. Most studies adjusted for known confounders of weight (age and gender) and diet; however, two studies did not account for caloric intake or diet which is relevant for evaluating weight-related 
outcomes, there is some risk of unmeasured confounding; BPA measurement present potential for bias as the chemical is non-persistent with a short half-life and exposure measurements were not 
repeated (except in one study), one study measures BPA three months post-BMI measurement, remaining studies measure BPA and BMI at the same time; however, the effect estimates may 
underestimate the true effect reducing our concern of non-differential misclassification; potential risk of reporting bias because three studies did not report prior publication of a protocol; however, all 
studies present outcome measures and analyses consistent with a priori plan outlined in the manuscript. 
b. The I2 value = 45% and exploration of the forest plot suggests some inconsistency introduced by one outlying study contributing 4.3% of the weight to the analysis of children. 
c. Studies measured BPA concentration through urinary output. uBPA (BPA in urine) is considered a reliable and direct measure of BPA consumption and was not downgraded for indirectness. 
d. Imprecision is present because the width of the confidence interval is consistent with no association.
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